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Abstract. The effects of spatial heterogeneity on the dynamics of reaction-diffusion models have
been studied extensively. In particular, global dynamics of general spatially heterogeneous (but tem-
porally static) Lotka–Volterra competition-diffusion systems were completely clarified by He and
Ni in 2016. However, the evolutionary impacts of temporal periodicity combined with spatial het-
erogeneity in population ecology remain a challenging issue. In this work, we consider a population
model of two competing species in a both spatially varying and temporally periodic environment,
where the two species only differ in their random dispersal rates but are otherwise ecologically
identical. In a pioneering 2001 work on this model by Hutson et al., by constructing various choices
of resource functions and dispersal rates of the two species, the authors demonstrated that all the
following three types of dynamics are possible: (i) stable coexistence of the two species; (ii) the
slower diffuser invades the faster one but not vice versa; (iii) the faster diffuser invades the slower
one but not vice versa. This is in drastic contrast with the spatially heterogeneous but temporally
static case, where Dockery et al. showed in 1998 that the slower diffuser always wipes out the
faster one. In this paper, we completely and explicitly characterize the asymptotic stability of both
semitrivial periodic solutions in terms of the two dispersal rates and the resource function, when
either dispersal rate is sufficiently small or large. In particular, the direction of selection on the dis-
persal rate during the evolution can be elucidated in these instances. Some novel analytical methods
are developed to investigate asymptotic behaviors of the underlying time-periodic parabolic eigen-
value problem and its adjoint problem. We hope that these methods are of independent interest in
the area of time-periodic parabolic equations.
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1. Introduction

Nonlinear periodic-parabolic equations arise naturally, e.g., in problems stemming from
population ecology, where the environment depends periodically on time (seasonal or
daily variations). Temporal and spatial variations of those physical conditions, such as
temperature, light and nutrients, are believed to be important factors which can interrupt
or even reverse competitive interactions [21].

On the other hand, dispersal is a vital life-history strategy in population ecology and
evolutionary adaptability. To understand the mechanism behind the evolution of dispersal
as clearly as possible, we choose the simplest dispersal strategy, namely (random) diffu-
sion or unconditional dispersal in our model. To motivate our discussion, we consider the
following two-species Lotka–Volterra competition-diffusion system:8̂̂̂<̂

ˆ̂:
Ut D d1�U C U.m.x; t/ � U � V / in � � .0;1/;
Vt D d2�V C V.m.x; t/ � U � V / in � � .0;1/;
@�U D @�V D 0 on @� � .0;1/;
U.x; 0/ D U0.x/; V .x; 0/ D V0.x/ in �;

(1.1)

where U.x; t/ and V.x; t/ represent the population densities of two competing species at
location x and time t in a bounded domain � � RN with smooth boundary @�. We are
therefore only interested in nonnegative solutionsU;V � 0. The parameters d1;d2 > 0 are
the dispersal rates of the species with density U and V respectively;�D

PN
iD1

@2

@x2
i

is the

usual Laplace operator, and @� D � � r, where � denotes the outward unit normal vector
on @�, is the normal derivative on the boundary. The zero Neumann (no-flux) boundary
condition is imposed on @� to ensure that no individual crosses the boundary of the
habitat. For simplicity, we assume throughout this paper that the initial data U0 and V0
are nonnegative and nontrivial, i.e., not identically zero. The function m.x; t/ represents
the local carrying capacity or intrinsic growth rate of the two species, which reflects the
environmental influence on the species.

System (1.1) describes the evolution of two ecologically equivalent competitors with
different dispersal rates. It seems natural to ask the following questions motivated by
[9, 14, 23]:

Question. Is the fast diffuser or the slower diffuser selected for during the competition?
What are the selection mechanisms behind the dispersal rates in a both spatially hetero-
geneous and temporally periodic environment? In particular, is there an optimal dispersal
rate in the sense that the species adopting such dispersal rate can never be invaded by its
competitor adopting a different dispersal rate?

When the environment is spatially heterogeneous but temporally static, the evolution
of dispersal is relatively well understood. For instance, Hastings [14] considered the inva-
sion of a small number of mutant species using a different random dispersal rate to a
resident population. It is shown that the mutant species can invade when rare if and only
if it has a smaller random dispersal rate. Later in 1998, Dockery et al. [9] confirmed that
the slower diffuser actually always wipes out its faster counterpart regardless of their ini-
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tial values – this is known as “the slower diffuser always prevails”. Since then, the effects
of spatial heterogeneity have been studied extensively in the past few decades, from many
different perspectives. See [3–6, 9, 12, 13, 15–19, 22, 27, 31, 32] and references therein.

To state the result of Dockery et al. [9] precisely, we now introduce the following
(single species) logistic equation:´

�t D d�� C �.m.x; t/ � �/ in � �RC;

@�� D 0 on @� �RC;
(1.2)

where d > 0 is the random dispersal rate of the species with density �.x; t/. Let T > 0
be a fixed constant which represents the time periodicity. Throughout this paper, for any
given function space E defined on N� �R, we set

ET WD ¹u 2 E ju.x; t/ is T -periodic in tº: (1.3)

For each m 2 C ˛;˛=2T . N� � R/ with m > 0 on N� � R, where C ˛;˛=2. N� � R/ is the usual
“parabolic” Hölder space with ˛ 2 .0; 1/, (1.2) admits a unique positive T -periodic clas-
sical solution, denoted as �d . Moreover, �d is globally asymptotically stable with respect
to positive initial conditions. For the proof of the existence and uniqueness of �d , see e.g.
[20, Theorem 28.1].

It is easy to see that (1.1) has a trivial steady state .0;0/ and two semitrivial T -periodic
solutions .�d1 ; 0/ and .0; �d2/.

We say that m is spatially homogeneous/constant (or independent of x/ if m.x; t/ D
m.y; t/ for any x; y 2 N� and t 2 R, andm is temporally homogeneous/constant (or inde-
pendent of t / if m.x; t/ D m.x; s/ for any x 2 N� and t; s 2 R.

Note that when m is temporally (resp. spatially) constant, the solution �d to (1.2) is
also temporally (resp. spatially) constant.

We now state the result by Dockery et al. [9]:

Theorem A ([9]). Suppose that m.x; t/ is spatially heterogeneous but temporally homo-
geneous, i.e.,m.x; t/Dm.x/. Then the semitrivial steady state .�d1 ;0/ of (1.1) is globally
asymptotically stable when d1 < d2, i.e., every solution .U; V / of (1.1) converges to
.�d1 ; 0/ as t !1, regardless of initial data .U0; V0/.

Theorem A indicates that in a spatially varying but temporally constant environment,
faster dispersal is always selected against if dispersal is completely random. In particu-
lar, the two species can never coexist. However, when additional temporal periodicity is
incorporated into the model, the situation changes drastically. In a pioneering work by
Hutson et al. [23] in 2001, by considering various choices of resource function m.x; t/
and dispersal rates d1; d2 of the two species, the authors demonstrated that the following
three outcomes of dynamics for system (1.1) are possible:

(a) stable coexistence of the two species;

(b) the slower diffuser invades/wipes out the faster one but not vice versa;

(c) the faster diffuser invades/wipes out the slower one but not vice versa.
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Their results indicate that the situation is substantially different from the spatially hetero-
geneous but temporally static case. Slower diffuser is not always selected for and interac-
tions between spatial and temporal variations can change or even completely reverse the
effects of spatial heterogeneity alone.

To study the evolution of dispersal, many researchers follow the adaptive dynam-
ics approach [7, 8, 10, 11, 25, 26]. Roughly speaking, for a pair of given dispersal rates
.d1; d2/, the primary focus is to determine the local stability of the two semitrivial peri-
odic solutions .�d1 ; 0/ and .0; �d2/ of system (1.1). For instance, let the species with
density U be a resident species. If .�d1 ; 0/ is locally stable, then biologically it means that
the mutant species with density V cannot invade when rare; otherwise, the mutant spe-
cies with density V may invade when rare. Mathematically, this is confirmed by studying
the sign of the principal eigenvalue of the underlying time-periodic parabolic eigenvalue
problem introduced in Section 3 below. In fact, the concept of principal eigenvalue of
time-periodic parabolic operators plays a crucial role in the study of dynamics of sys-
tem (1.1).

At this point, we would like to point out that in [23], most results concerning (a)–(c)
above are obtained when one of the two dispersal rates is fixed and the other one is suffi-
ciently small or large. In [23, Theorem 5.2], a class of resource functionsm is constructed
such that the faster diffuser is globally asymptotically stable when d1; d2 are close to
some d0 > 0. However, that class of functionsm and the corresponding d0 are given in an
implicit way. In other words, for a givenm, it seems difficult to decide whether it belongs
to that class or not.

Our goal in this paper is to understand the selection mechanisms for the evolution of
different dispersal rates in a more systematic way for system (1.1) whenm is both spatially
heterogeneous and temporally periodic. Based in part on the foundational monograph of
Hess [20] and the pioneering work of Hutson et al. [23], we develop some novel analyt-
ical methods to investigate asymptotic behaviors of a time-periodic parabolic eigenvalue
problem and its adjoint problem. Note that in contrast to the study of self-adjoint elliptic
eigenvalue problems, it is usually necessary to study both the time-periodic parabolic
eigenvalue problem and the time-reversed adjoint problem, so that one can obtain prop-
erties of the corresponding principal eigenvalue. Therefore, temporally periodic systems
are substantially more diffcult to analyze than temporally static systems. We believe that
our methods and results in Section 3 below are of independent interest in the area of
time-periodic parabolic equations.

We briefly summarize our main results as follows:

� When one of the dispersal rates d1 and d2 is sufficiently large, the slower diffuser,
so long as it is not too slow, wipes out its faster competitor, just as in the spatially
heterogeneous but temporally static case.

� When one of the dispersal rates d1 and d2 is sufficiently large, while the other one is
sufficiently small (relative to the larger dispersal rate), both semitrivial periodic solu-
tions are unstable and the two species coexist regardless of their initial data.
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� When both dispersal rates d1 and d2 are sufficiently small, the situation becomes very
delicate. Nevertheless, in this case, we completely characterize the dynamics of system
(1.1) in terms of m, d1 and d2. In particular, necessary and sufficient conditions for
each of the outcomes (a)–(c) listed above to take place are provided explicitly.

Based on our results, to a large extent, whether a selection on the dispersal rates or coex-
istence of the two species can now be determined, and our picture of understanding the
underlying mechanism seems more complete.

Our paper is organized as follows. In Section 2, we state our main results. In Sec-
tion 3, we recall some preliminary results concerning time-periodic parabolic eigenvalue
problems. Then, we establish the asymptotic behaviors of the principal eigenvalue and
the principal eigenfunction of a time-periodic parabolic operator, together with that of
its adjoint operator. In Section 4, we establish properties of the solution �d to equation
(1.2) and its asymptotic behaviors when d is small or large. Sections 5 and 6 are devoted
to proving our main theorems. Some miscellaneous remarks are included in Section 7.
In the Appendix, we establish an important a priori estimate for solutions of quasilinear
periodic-parabolic equations by modifying the Moser–Alikakos iteration procedure [1].

2. Statement of main results

In this section, we state our main results precisely. Throughout this paper, we assume that

m 2 C
2;1
T . N� �R/ and m > 0;rm 6� 0;mt 6� 0 on N� �R: (M1)

Here, for each n; k 2 N, C n;k. N� �R/ is the classical space defined by

C n;k. N��R/ WD ¹f 2C. N��R/ jDˇf;ft ; : : : ; f
.k/
t 2C. N��R/ with jˇj � nº; (2.1)

where ˇ D .ˇ1; : : : ; ˇN / is a multi-index and its order is defined as jˇj D ˇ1C � � � C ˇN ,
Dˇf D @jˇjf

@x
ˇ1
1
���@x

ˇN
N

and f .i/t is the i -th partial derivative of f with respect to t , for i 2N.

Note that the last two conditions in (M1) mean thatm is both spatially and temporally
heterogeneous.

We now introduce the following notation for the temporal and spatial averages of a
function h 2 CT . N� �R/, which will be frequently used throughout this paper:

Oh.x/ WD
1

T

Z T

0

h.x; t/ dt; Nh.t/ WD
1

j�j

Z
�

h.x; t/ dx:

In particular, we have

ONh D
NOh D

1

T j�j

Z T

0

Z
�

h.x; t/ dx dt:

Since system (1.1) is symmetric with respect to the line d1 D d2 in the diffusion plane

Q WD .0;1/ � .0;1/;
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it is sufficient to state our results only in the region Q \ ¹.d1; d2/ j d1 < d2º. In other
words, we will always assume in this section that

0 < d1 < d2:

Thus, the species with density U always represents the phenotype with the slower dis-
persal rate.

We first study linear stability of the two semitrivial periodic solutions .�d1 ; 0/ and
.0; �d2/ when both d1 and d2 are small. For technical reasons, we need to impose the
following additional condition on m.x; t/:

@�m D 0 on @� �R: (M2)

When m.x; t/ has a very special form, the dynamics of system (1.1) sometimes
behaves quite differently. Therefore, we exclude those situations by assuming that

m.x; t/ 6� e
R t
0 b.s/ dsa.x/C b.t/ for any functions a.x/; b.t/: (M3)

Note that these two conditions also show up in [23, Lemma 3.4 and Theorem 4.1].
To state our results precisely, we introduce the following auxiliary function and quant-

ity. For each x 2 N�, let p.x; t/ be the unique positive solution to the following ODE:´
pt D p.m � p/; t 2 R;

p is T -periodic in t;
(2.2)

and

I.p/ WD

Z
�

�
exp

�
1

T

Z T

0

lnp2 dt
�Z T

0

�p

p
dt

�
: (2.3)

Theorem 2.1. Assume that (M1) and (M2) hold. Then there exists some "0 > 0 small
such that for all .d1; d2/ 2 .0; "0/2 \ ¹.d1; d2/ j d1 < d2º, the following statements hold
for system (1.1):

(i) If I.p/ > 0 and minx2 N�
R T
0

�p
p
.x; t/ dt > 0, then .�d1 ; 0/ is linearly unstable and

.0; �d2/ is linearly stable.

(ii) If I.p/ > 0 and minx2 N�
R T
0

�p
p
.x; t/ dt < 0, then .�d1 ; 0/ is linearly unstable

and there exists a continuously differentiable function Od1 W .0; "0/ ! .0; "0/ with
Od1.d2/ 2 .0; d2/ such that .0; �d2/ is linearly unstable for all d1 2 .0; Od1.d2//

and linearly stable for all d1 2 . Od1.d2/; d2/. Moreover, limd2!0
Od1.d2/, Od 01.0/ and

limd2!0
Od 01.d2/ exist with

lim
d2!0

Od1.d2/ D 0 and lim
d2!0

Od 01.d2/ D
Od 01.0/ 2 .0; 1/:

(iii) If I.p/ < 0 and (M3) holds in addition, then .0; �d2/ is linearly unstable and

there exists a continuously differentiable function Qd1 W .0; "0/ ! .0; "0/ with
Qd1.d2/ 2 .0; d2/ such that .�d1 ; 0/ is linearly unstable for all d1 2 .0; Qd1.d2//
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and linearly stable for all d1 2 . Qd1.d2/; d2/. Moreover, limd2!0
Qd1.d2/, Qd 01.0/ and

limd2!0
Qd 01.d2/ exist with

lim
d2!0

Qd1.d2/ D 0 and lim
d2!0

Qd 01.d2/ D
Qd 01.0/ 2 .0; 1/:

For an illustration of Theorem 2.1 (i)–(iii), see Figure 1 (a)–(c) respectively.

(a): Theorem 2.1 (i) (b): Theorem 2.1 (ii) (c): Theorem 2.1 (iii)

Fig. 1. An illustration of Theorem 2.1 (i)–(iii). In the blue regions, the faster diffuser can invade the
slower one but not vice versa; in the green regions, the slower diffuser can invade the faster one but
not vice versa; in the yellow regions, both species persist regardless of initial data.

Theorem 2.1 almost completely clarifies local dynamics around .�d1 ; 0/ and .0; �d2/
for all d1; d2 sufficiently small, for given m satisfying conditions (M1)–(M2), and in
addition (M3) in the case of I.p/ < 0. It seems interesting whether all three possibilities
in (i), (ii), or (iii) of Theorem 2.1 can actually occur. The answer is affirmative – see
Lemma 7.1 for explicit examples.

Our next result clarifies linear stability of the two semitrivial periodic solutions
.�d1 ; 0/ and .0; �d2/ when d2 is sufficiently large.

Theorem 2.2. Assume that (M1) holds and 0 < d1 < d2. Then there exists a constant
D2 > 0 large such that the following statements hold:

(i) If (M2) and (M3) hold, then there exists a continuously differentiable strictly decreas-
ing function

Ld1 W .D2;1/! .0;1/ with Ld1.d2/ D O.1=d2/ as d2 !1

such that for all d2 2 .D2;1/, .�d1 ; 0/ is linearly unstable for all d1 < Ld1.d2/ and
linearly stable for all d1 > Ld1.d2/.

(ii) If Om 6� const, then .0; �d2/ is linearly unstable for all d2 > D2.

For an illustration of Theorem 2.2, see Figure 2 (a).
We now clarify the global dynamics of system (1.1) when d2 is large while d1 is not

too small. The conclusion is that the slower diffuser, so long as it is not too slow, still
wipes out the faster diffuser, just as in spatially heterogeneous but temporally static case
in Theorem A.
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(a): Theorem 2.2 (b): Theorem 2.3

Fig. 2. An illustration of Theorems 2.2 and 2.3. The green region and the yellow region have the
same meanings as in Figure 1; in the red region, the slower diffuser wipes out the faster diffuser,
i.e., .�d1 ; 0/ is globally asymptotically stable.

Theorem 2.3. Assume that (M1) holds and 0 < d1 < d2. Then for each " > 0, there exists
a large constantD" > 0 such that .�d1 ; 0/ is globally asymptotically stable for all d1 > "
and d2 > D".

For an illustration of Theorem 2.3, see Figure 2 (b). Note that in [23, Theorem 5.3],
the authors showed that for fixed d1, .�d1 ; 0/ is globally asymptotically stable when d2 is
sufficiently large. However, their arguments cannot be applied to the case when .d1; d2/ 2
.D";1/

2, i.e., when both d1 and d2 are sufficiently large.
By Lemma 5.7 below and similar arguments to those in [23, proof of Theorem 5.2],

we obtain the following result where the fast diffuser is the global attractor – which is
“completely opposite” to the spatially heterogeneous but temporally homogeneous case
in Theorem A.

Corollary 2.4. Assume that (M1) and (M2) hold and I.p/ > 0. Let "0 > 0 be as in
Theorem 2.1. Then for each d1 2 .0; "0/ and d2 > d1 sufficiently close to d1, the fast
diffuser .0; �d2/ is globally asymptotically stable.

By monotone flow theory [20], we can easily obtain conditions under which both
species persist regardless of initial data. Note that in the spatially heterogeneous but tem-
porally homogeneous case, the two species can never coexist!

Corollary 2.5. Assume that (M1) and (M2) hold and 0 < d1 < d2. Then system (1.1) has
a stable coexistence T -periodic solution and the two species persist regardless of initial
data in each of the following cases:

(a) I.p/ > 0, minx2 N�
R T
0

�p
p
.x; t/ dt < 0, d2 2 .0; "0/ and d1 2 .0; Od1.d2//;

(b) I.p/ < 0, (M3) holds, d2 2 .0; "0/ and d1 2 .0; Qd1.d2//;

(c) Om 6� const, (M3) holds; d2 2 .D2;1/ and d1 2 .0; Ld1.d2//.

Here, "0, Od1.�/, Qd1.�/ are as in Theorem 2.1, and D2 and Ld1.�/ are as in Theorem 2.2.
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3. Asymptotic behaviors of periodic-parabolic eigenvalue problems

In this section, we mainly study the asymptotic behaviors of the principal eigenvalue
and the principal eigenfunction to a time-periodic parabolic eigenvalue problem, together
with those of its adjoint eigenvalue problem defined below. Our results in this section will
play a central role in determining the local and global stability of both semitrivial peri-
odic solutions .�d1 ; 0/ and .0; �d2/ of system (1.1) when either of the two dispersal rates
is sufficiently small or large. Furthermore, we believe that the methods and techniques
developed in this section can be applied to other time-periodic parabolic equations.

We first recall some preliminary results. Given h 2 C ˛;˛=2T . N� �R/, we introduce the
following periodic-parabolic eigenvalue problem:8̂̂<̂

:̂
't � d�' D h.x; t/' C �' in � �R;

@�' D 0 on @� �R;

' is T -periodic in t:

(3.1)

It is well-known [20, Sect. 14] that (3.1) admits a unique principal eigenvalue �1 D
�1.d;h/ possessing a positive eigenfunction ' 2 C 2C˛;1C˛=2T . N��R/which is unique up
to scaling. Furthermore, �1.d; h/ is also the principal eigenvalue of the following adjoint
eigenvalue problem:8̂̂<̂

:̂
� t � d� D h.x; t/ C � in � �R;

@� D 0 on @� �R;

 is T -periodic in t:

(3.2)

The sign of the principal eigenvalue �1.d; h/ of (3.1) plays an important role in
determining local stability of the two semitrivial periodic solutions of system (1.1). (See
Lemma 4.5 below.) For comparison purposes, we consider a linear elliptic eigenvalue
problem for g 2 L1.�/:´

d�' C g.x/' C �' D 0 in �;

@�' D 0 on @�:
(3.3)

Note that when h is temporally homogeneous, the periodic-parabolic eigenvalue problem
(3.1) reduces to the elliptic case (3.3); see e.g. [20, Remark 16.5]. Hence, without causing
any confusion, we also use �1.d; g/ to denote the principal eigenvalue of (3.3). There
are extensive studies on the principal eigenvalue of the eigenvalue problem (3.1) and its
variants. For recent progress in those directions, see e.g. [24, 28–30, 39] and references
therein. We now state properties of the solution �1.d; h/ and �1.d; g/ for (3.1) and (3.3)
respectively:

Lemma 3.1. Assume that h 2 C ˛;˛=2T . N� �R/. Then the following hold:

(i) 1
T

R T
0

minx2 N�.�h.x; t//dt ��1.d;h/��
ONh for all d > 0. Moreover,�1.d;h/D�

ONh

if and only if h is spatially homogeneous.
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(ii) limd!0 �1.d; h/ D min N�.� Oh/ and limd!1 �1.d; h/ D �
ONh.

(iii) �1.d; h/ � �1.d; Oh/ for all d > 0, where equality holds if and only if h � Oh is
spatially homogeneous.

(iv) Assume that g 2 L1.�/ and g 6� const. Then �1.d; g/ is strictly increasing in d
for all d > 0.

Lemma 3.1 (i, ii) follows from the Maximum Principle and [23, Lemma 2.4]. The
proof of Lemma 3.1 (iii) can be found in [24, Theorem 2.1]. The proof of Lemma 3.1 (iv)
is standard: see e.g. [6, Corollary 2.2].

It follows from Lemma 3.1 (iv) that, for a spatially heterogeneous but temporally con-
stant function h, the corresponding principal eigenvalue is strictly increasing in d > 0.
However, when h is both spatially and temporally heterogeneous, �1.�; h/ is not neces-
sarily monotone; see [23, Theorem 2.2] for an example. Nevertheless, we will show in
Lemma 3.3 below that �1.d; h/ is still strictly increasing in d for all d sufficiently large
under mild conditions on h.

3.1. Asymptotic behavior for large diffusion rates

In this subsection, we show the following result which plays a significant role in studying
the dynamics of system (1.1) when either of the two dispersal rates d1 and d2 is suffi-
ciently large.

To state our result precisely, we emphasize the dependence on d and h of the principal
eigenfunctions ' and  of (3.1) and (3.2) respectively by writing them in the form of
'.x; t I d; h/ and  .x; t I d; h/. For each t 2 Œ0; T � fixed, we define �h.�; t / to be the
unique solution satisfying´

���h D h � h in �; @��h D 0 on @�;R
�
�h.x; t/ dx D 0:

(3.4)

Proposition 3.2. For each constant K > 0, there exist constants dK ; CK > 0 such that
for any d > dK and h 2 C ˛;˛=2T . N� �R/ with ht 2 L2..0; T /; L2.�// satisfying

khkL1.��.0;T // C khtkL2..0;T /;L2.�// � K; (3.5)

the principal eigenfunctions '.x; t I d; h/;  .x; t I d; h/ of (3.1) and (3.2) corresponding
to �1.d; h/ respectively with normalization k'kL2..0;T /;L2.�// D k kL2..0;T /;L2.�// D 1
can be rewritten into the following form:

'.x; t I d; h/ D x'.t I d; h/C
x'.t I d; h/�h.x; t/

d
C
'2.x; t I d; h/

d2
;

 .x; t I d; h/ D x .t I d; h/C
x .t I d; h/�h.x; t/

d
C
 2.x; t I d; h/

d2
;

(3.6)

where the spatial averages satisfy

1

CK
� x'.t I d; h/; x .t I d; h/ � CK 8t 2 Œ0; T �; (3.7)
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and '2.x; t I d; h/ and  2.x; t I d; h/ satisfy

k'2kL2..0;T /;H1.�// � CK and k 2kL2..0;T /;H1.�// � CK : (3.8)

Furthermore, for each constant � > 0, there exists a constant d�;K > 0 depending
only on � and K such that if h satisfies in addition

kr�hkL2..0;T /;L2.�// � �;

then
@�1.d; h/

@d
> 0 for all d > d�;K : (3.9)

Proof. For simplicity of notation, we suppress the dependence on d and h of ',  , x', x ,
'2,  2 and denote �1 D �1.d; h/ during this proof.

Set �.x; t/ WD x'.t/�h.x; t/.

Claim. There exists some constant CK > 0 such that

k�kL2..0;T /;L2.�// � CK ; (3.10)

k�tkL2..0;T /;L2.�// � CK : (3.11)

We first prove (3.10). Indeed, for each t 2 Œ0; T � fixed, multiplying both sides of
the equation for �h in (3.4) by �h and integrating over �, as �h.t/ � 0, by Hölder’s
inequality, Poincaré inequality and (3.5), we obtainZ
�

jr�hj
2
D

Z
�

�h.h � h/ �

�Z
�

�2h

�1=2
�

�Z
�

.h � h/2
�1=2

� CK

�Z
�

jr�hj
2

�1=2
:

This implies that for all t 2 Œ0; T �,
R
�
jr�hj

2 � CK and hence
R
�
�2
h
� CK . Integrating

those two inequalities from 0 to T , we see that

k�hkL2..0;T /;H1.�// � CK : (3.12)

By Hölder’s inequality and the normalization of ', we see thatZ T

0

Z
�

x'2 � 1: (3.13)

Therefore, (3.10) follows from Hölder’s inequality, (3.12) and (3.13).
Next we prove (3.11). Differentiating the equation for �h in (3.4) with respect to t ,

we obtain ´
��@t�h D ht � ht in �; @�@t�h D 0 on @�;R
�
@t�h.x; t/ dx D 0:

By similar arguments to the proof of (3.12), we deduce that

k@t�hkL2..0;T /;H1.�// � CK : (3.14)
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We now estimate x'.t/. Integrating the equation for ' over �, we obtain

x't D x'.hC �1/C
1

j�j

Z
�

h.' � x'/: (3.15)

By Lemma 3.1 (i) and (3.5), j�1j � khkL1.��.0;T // �K. Therefore, by direct calculation,Z T

0

Z
�

.x't /
2
� CK : (3.16)

Since �t D x't �h C x' @t�h, (3.11) follows from Hölder’s inequality, (3.12)–(3.14) and
(3.16).

Now, to prove the proposition, we rewrite

'.x; t/ D x'.t/C
�.x; t/

d
C
'2.x; t/

d2
: (3.17)

It is easy to see that '2 is T -periodic in t with '2.t/ D 0 for any t . Moreover, by direct
computation and (3.15), it is easy to check that '2 satisfies the following equation:8<:
1

d
@t'2��'2�

1

d
.hC�1/'2 D .hC�1/���t �

1

j�j

Z
�

�
�C

1

d
'2

�
h in ��R;

@�'2 D 0 on @��R:

Since '2.t/ D 0 for any t ,
R T
0

R
�
'22 � C

R T
0

R
�
jr'2j

2 by Poincaré’s inequality. Mul-
tiplying the equation for '2 by '2 and integrating over � � .0; T /, we see thatZ T

0

Z
�

jr'2j
2
D
1

d

Z T

0

Z
�

.hC �1/'
2
2 C

Z T

0

Z
�

'2Œ.hC �1/� � �t �

�
CK

d

Z T

0

Z
�

jr'2j
2
C

Z T

0

�
"

Z
�

'22 C C.";K/

Z
�

.�2t C �
2/

�
�

�
CK

d
C "C

�Z T

0

Z
�

jr'2j
2
C C.";K/

Z T

0

Z
�

.�2t C �
2/:

Therefore, choosing dK even larger such that dK > 4CK and " < .4C /�1, we deduce
from (3.10) and (3.11) thatZ T

0

Z
�

jr'2j
2
� CK and

Z T

0

Z
�

'22 � CK 8d > dK :

This finishes the proof of (3.6) for '. By similar arguments, we can prove the inequality
for  .

We now prove (3.7). Denote

'� WD ' � x' and %.t/ WD
1

j�j

Z
�

.' � x'/h D
1

j�j

Z
�

'�h:
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Using the variation of constants formula, we can solve the ODE (3.15) on Œ0; T � and
obtain

x'.t/ D x'.0/ exp
�Z t

0

.h.s/C �1/ ds

�
C �.t/; (3.18)

where

�.t/ WD exp
�Z t

0

.h.s/C �1/ ds

�Z t

0

%.s/ exp
�
�

Z s

0

.h.�/C �1/ d�

�
ds:

Multiplying both sides of the equation for ' by ' and integrating over � � .0; T /, we
obtain

d

Z T

0

Z
�

jr'j2 D

Z T

0

Z
�

.hC �1/'
2
� CK :

Since '�.t/D 0 for any t andr'Dr'�, by Poincaré’s inequality and the above estimate,
we see that Z T

0

Z
�

'2� �
CK

d
: (3.19)

This implies by Hölder’s inequality that for any t 2 Œ0; T �,

j�.t/j � CK

Z T

0

j%.t/j dt � CK

�Z T

0

Z
�

'2�

�1=2
�
CK
p
d
:

Now assume for contradiction that x'.0/ ! 0 as d ! 1 (passing to a subsequence
of d if necessary). Then (3.18) and the above estimate imply that x'.t/! 0 uniformly
on Œ0; T �. Since ' D x' C .' � x'/ D x' C '�, this combined with (3.19) ensures that
k'kL2..0;T /;L2.�// ! 0 as d !1, which contradicts the normalization of '. Therefore
x'.0/ is uniformly bounded from below by a positive number depending only on K for
all d sufficiently large. Similarly, we can show that x'.0/ is uniformly bounded from above
for all d sufficiently large. This finishes the proof of (3.7).

It only remains to prove (3.9). It follows from [23, proof of Lemma 2.3] that

@�1.d; h/

@d
D

R T
0

R
�
r' � r R T

0

R
�
' 

: (3.20)

Therefore, by (3.6) we obtain, for all d > dK ,

@�1.d; h/

@d

Z T

0

Z
�

' D
1

d2

Z T

0

x'.t/ x .t/

Z
�

jr�hj
2

C
1

d3

Z T

0

�
x'.t/

Z
�

r�h � r 2 C x .t/

Z
�

r�h � r'2

�
C

1

d4

Z T

0

Z
�

r'2 � r 2:

Since
R T
0
x'.t/ x .t/

R
�
jr�hj

2 � �2=C 2K > 0 for all d > dK , choosing d�;K � dK even
larger if necessary, we see from (3.7), (3.8) and (3.12) that @�1.d;h/

@d
> 0 for all d > d�;K .

This finishes the proof of the proposition.
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For given h 2 C ˛;˛=2T . N� � R/ fixed, actually we can obtain more precise asymptotic
expansions of �1.d; h/, ' and  as d ! 1, based on the proof of Proposition 3.2.
Although this result will not be used directly in this paper, we think it might be of inde-
pendent interest.

Lemma 3.3. Let h 2 C ˛;˛=2T . N� � R/ with ht 2 L2..0; T /; L2.�// be spatially hetero-
geneous. Then the principal eigenvalue �1.d; h/ and the corresponding principal eigen-
functions ';  of (3.1) and (3.2) respectively with normalization k'kL2..0;T /;L2.�// D
k kL2..0;T /;L2.�// D 1 satisfy the following asymptotic expansion as d !1:

�1.d; h/ D �
ONhC

1

d

2
jr�hj2CO

�
1

d2

�
;

x'.t/ D x'.0/ exp
�Z t

0

h.s/� ONh ds

��
1C

1

d

�Z t

0

jr�hj2.s/�
2
jr�hj2 ds

��
CO

�
1

d2

�
;

x .t/ D x .0/ exp
�
�

Z t

0

h.s/� ONh ds

��
1�

1

d

�Z t

0

jr�hj2.s/�
2
jr�hj2 ds

��
CO

�
1

d2

�
;

where the second and thirdO-notations are understood in the sense ofL2..0;T /;H 1.�//

norm, and limd!1 x'.0/ and limd!1
x .0/ exist.

We postpone the proof of Lemma 3.3 to the Appendix.

3.2. Asymptotic properties of linear periodic-parabolic equations with small diffusion
rates

In this subsection, we establish asymptotic behavior of normalized solutions to a class of
linear periodic-parabolic equations when the “diffusion rate” tends to 0.

To motivate our discussion, we first consider a simpler toy case. Let hd 2
C
˛;˛=2
T . N� � R/ for all d > 0 small. Let '.� I d/ and  .� I d/ be the principal eigen-

function and the principal adjoint eigenfunction corresponding to �1.d; hd / respectively
with normalization

k' kL2..0;T /;L2.�// D 1:

In other words, '.� I d/ and  .� I d/ are strictly positive and satisfy the following equa-
tions: 8̂̂<̂

:̂
't � d�' D hd .x; t/' C �1.d; hd /' in � �R;

@�' D 0 on @� �R;

' is T -periodic in t;

(3.21)

and 8̂̂<̂
:̂
� t � d� D hd .x; t/ C �1.d; hd / in � �R;

@� D 0 on @� �R;

 is T -periodic in t:

(3.22)
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Define v.�I d/ WD '.�I d/ .�I d/. Then kvkL2..0;T /;L2.�// D 1 and v satisfies8̂̂<̂
:̂
vt D �dr � .rv � 2vr ln'/ D �d.�v � 2rv � r ln' C 2v� ln'/ in � �R;

@�v D 0 on @� �R;

v is T -periodic in t:

(3.23)

The above equation has a very special structure as now we can divide both sides by d and
view the parameter 1=d as the time frequency. Note that the coefficients of the equation
for v depend on d through '.�I d/. In general, we can ask:

Question. Assume that '.�I d/ converges in a suitable function space as d ! 0; can we
say anything about the convergence of v.�I d/, and in which sense?

An affirmative answer to this question means that the eigenvalue problem (3.21) and
its adjoint problem (3.22) are correlated as d ! 0. It is this observation that gives us the
key insight to the local dynamics of system (1.1) when both the dispersal rates d1 and d2
are small in Section 6.

Our goal in this subsection is to address the above question concerning a more general
linear equation than (3.23) in the following nondivergence form (using � as the “diffu-
sion” parameter instead):8̂̂<̂

:̂
�t D �Œ��Cr� � rb�.x; t/C c�.x; t/�� in � �R;

@�� D 0 on @� �R;

� is T -periodic in t;

(3.24)

where rb� 2 .C
˛;˛=2
T . N� � R//N and c� 2 C

˛;˛=2
T . N� � R/. For notational convenience,

for any function f 2 L1.� � .0; T //, we use kf kL1.��.0;T // and kf k1 interchange-
ably to denote the essential sup-norm of f . We now state the following result which plays
a significant role during the study of the dynamics of system (1.1) in Section 6:

Proposition 3.4. Let �� be a nonnegative classical solution of (3.24) which is T -periodic
in t for all � small and

k��kL2..0;T /;L2.�// D 1: (3.25)

Assume that

lim
�!0
kb� � b0kC.Œ0;T �;C1. N�// D 0; lim

�!0
kc� � c0k1 D 0: (3.26)

Then
�� ! �0 in L2..0; T /;H 1.�// as �! 0; (3.27)

where �0 2 H 1.�/ is a weak solution to´
��0 Cr�0 � r Ob0.x/C Oc0.x/�0 D 0 in �;

@��0 D 0 on @�;
(3.28)

satisfying k�0kL2.�/ D 1=
p
T .
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Before we proceed to the proof of the above proposition, we would like to mention that
a similar problem has been considered in [28, 37], where the authors studied asymptotic
behaviors of the principal eigenvalue to a general linear time-periodic parabolic eigen-
value problem in the following form:8̂̂<̂

:̂
�@tu D rŒA.x; t/ru�Crb.x; t/ � ruC c.x; t/uC �u in � �R;

ŒAru� � � D 0 on @� �R;

u is T -periodic in t:

Here � > 0 is a constant referred to as the frequency, and A is a symmetric and uniformly
elliptic matrix field. Proposition 14.4 in [5] ensures the existence and uniqueness of the
principal eigenvalue, denoted by �.�/, of the above problem, which is real, simple, and its
corresponding eigenfunction u.�/ can be chosen positive in N�� Œ0;T �. When �!1, the
asymptotic behavior of .�.�/; u.�// and the limiting equation satisfied by lim�!1 u.�/

have been obtained in [28, 37].

Remark 3.5. At a first glance, Proposition 3.4 looks very similar to [37, Theorem 3.10]
and [28, Theorem 1.3 (ii)]). However, we cannot apply their results directly in our paper
for the following reasons:

(i) As we pointed out at the beginning of this subsection, our study of problem (3.24)
is motivated by the analysis of the local dynamics of system (1.1) in terms of the
two dispersal rates d1 and d2. Therefore, the coefficients in (3.24) are not fixed but
naturally depend on the parameter � involved, which would be d1 and d2 instead
when we apply Proposition 3.4 in the study of system (1.1). This is usually the case
when one studies dynamics of a system rather than a scalar equation.

(ii) More importantly, in the proof of [37, Theorem 3.10], one only has to show that the
normalized eigenfunction u.�/ converges strongly in L2.Œ0; T �; L2.�// but weakly
in L2.Œ0; T �; H 1.�// as � !1 to get the conclusion. However, for our purposes,
we need to show in Proposition 3.4 that �� converges strongly in L2.Œ0; T �;H 1.�//!
This is the particular reason why we need to establish Lemma A.1 in the Appendix
to obtain a technical uniform a priori estimate (3.29) below as a first step during our
proof.

Proof of Proposition 3.4. We first claim that for eachƒ>0, if kb�kC.Œ0;T �;C1. N�//, kc�k1
and k��kL2..0;T /;L2.�// are uniformly bounded in � 2 .0; ƒ�, then there exists a con-
stant C depending only on sup� kb�kC.Œ0;T �;C1. N�//, sup� kc�k1 and ƒ such that for all
� 2 .0;ƒ�,

k��k1 � C: (3.29)

Indeed, (3.29) follows directly from Lemma A.1 by choosing Nk D 0 there.
It only remains to prove (3.27). For simplicity of notation, we suppress the subscript �

in �� in the remainder of this proof. Multiplying both sides of the equation for � in (3.24)
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by � and integrating over � � .0; T /, we deduce from (3.26) and (3.29) thatZ T

0

Z
�

jr�j2 D

Z T

0

Z
�

�r� � rb� C

Z T

0

Z
�

c��
2

� C

�Z T

0

Z
�

jr�j2
�1=2�Z T

0

Z
�

jrb�j
2

�1=2
C C:

Therefore,
R T
0

R
�
jr�j2 is uniformly bounded for all � > 0 small, which together with

(3.29) implies that for all � > 0 small,

k�kL2..0;T /;H1.�// � C: (3.30)

Next, we claim that for all � > 0 small,

k�t=�kL2..0;T /;L2.�// � C: (3.31)

Indeed, multiplying both sides of the equation for � in (3.24) by �t and integrating over
� � .0; T /, we obtainZ T

0

Z
�

�2t D �
�

2

Z T

0

Z
�

.jr�j2/t C �

Z T

0

Z
�

�t .r� � rb� C c��/

� �C

�Z T

0

Z
�

�2t

�1=2��Z T

0

Z
�

jr�j2
�1=2

C

�Z T

0

Z
�

�2
�1=2�

;

which combined with (3.30) imply (3.31).
For each t 2 Œ0; T � fixed, by elliptic regularity, we see that

k�kH2.�/ � C.k�kL2.�/ C k�t=�kL2.�//;

which implies that

k�kL2..0;T /;H2.�// � C.k�kL2..0;T /;L2.�// C k�t=�kL2..0;T /;L2.�///:

This combined with (3.30) and (3.31) indicates that k�kL2..0;T /;H2.�// is uniformly
bounded for all � > 0 small. Since H 2.�/ � H 1.�/ � L2.�/ and the two embeddings
are compact, passing to a subsequence of � if necessary, we may apply the Aubin–Lions
Lemma [41, Theorems 2.1 & 2.3] to conclude that

�! �0 in L2..0; T /;H 1.�// as �! 0 and k�0kL2..0;T /;L2.�// D 1: (3.32)

Passing to a subsequence of � again if necessary, we may assume that there exists a set
N � Œ0; T � of measure zero such that �.�; t /! �0.�; t / in H 1.�/ for all t 2 Œ0; T � nN

as �! 0. Let � 2 H 1.�/ be a test function. Multiplying both sides of the equation for �
in (3.24) by � and integrating from s to t , where s; t 2 Œ0; T � nN , we see thatZ
�

Œ�.x; t/� �.x; s/��.x/dx D��

Z t

s

Z
�

r� � r�C �

Z t

s

Z
�

�r� � rbC �

Z t

s

Z
�

c��

� �

�Z T

0

Z
�

jr�j2
�1=2�Z T

0

Z
�

jr�j2
�1=2

C �Ck�kL2.�/k�kL2..0;T /;H1.�//:
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Letting �! 0 in the above estimate, we find from (3.30) thatZ
�

Œ�0.x; t/ � �0.x; s/��.x/ dx � 0:

Since � 2 H 1.�/ is arbitrary, we may replace � by �� and still get the above inequality.
This implies thatZ

�

Œ�0.x; t/ � �0.x; s/��.x/ dx D 0 8s; t 2 Œ0; T � nN ; 8� 2 H 1.�/:

By a density argument, it is easy to see that the above identity holds for all � 2 L2.�/.
This combined with (3.32) indicate that �0.�; t / is independent of t for all t 2 Œ0; T � nN .
Therefore, without causing any confusion with the notations being used, we denote

�0.x; t/ D �0.x/ 8t 2 Œ0; T � nN : (3.33)

Multiplying both sides of the equation for � in (3.24) by � 2 H 1.�/ and integrating over
� � .0; T /, we obtain

0 D �

Z T

0

Z
�

r� � r� C

Z T

0

Z
�

�r� � rb C

Z T

0

Z
�

c��:

Letting �! 0, we conclude from (3.26), (3.32) and (3.33) that

�T

Z
�

r�0 � r� C T

Z
�

�r�0 �brb0 C T
Z
�

Oc0�0� D 0

Therefore, �0 2 H 1.�/ is a weak solution to (3.24) with k�0kL2.�/ D 1=
p
T . This fin-

ishes the proof of the proposition.

To end this subsection, we answer the question raised at its beginning concerning the
limiting behavior of v D ' satisfying (3.23). This result will not be used in the rest of
this paper, but it may be of independent interest.

Corollary 3.6. Let hd 2 C
˛;˛=2
T . N��R/ for all d > 0 small, and let '.� I d/ and  .� I d/

be the principal eigenfunction and the principal adjoint eigenfunction of (3.21) and (3.22)
corresponding to �1.d; hd / respectively with normalization k' kL2..0;T /;L2.�// D 1.
Assume that there exists some function '0 such that

lim
d!0
kln' � ln'0kC.Œ0;T �;C1. N�// D 0 and lim

d!0
k� ln' �� ln'0k1 D 0:

Then

v D ' ! v0 D c0 exp
�
1

T

Z T

0

ln'20 dt
�

in L2..0; T /;H 1.�// as d ! 0;

where c0 > 0 is a constant uniquely determined such that kv0kL2.�/ D 1=
p
T .

This follows directly from Proposition 3.4 and a direct computation to verify that v0
is a positive solution to (3.23). Hence, we omit the proof.
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4. Asymptotic behaviors of �d

In this section, we study the asymptotic behaviors of �d and its derivatives as d goes to 0
or1.

Lemma 4.1. Assume f 2CT . N��R/. Then for each ı > 0, there exists fı 2C1T . N��R/
with @�fı D 0 on @� �R such that

kfı � f kC. N��Œ0;T �/ < ı:

Furthermore, if f 2 C 0;1T . N� � R/, then fı can be chosen with fı 2 C
2;1
T . N� � R/ such

that
kfı � f kC0;1. N��Œ0;T �/ < ı:

Lemma 4.2. Assume that fd ;hd 2CT . N��R/ for all d > 0 small and there exist f0;h0 2
CT . N� �R/ such that

lim
d!0
kfd � f0kC. N��Œ0;T �/ D lim

d!0
khd � h0kC. N��Œ0;T �/ D 0 and Oh0 < 0 on N�:

Let ud 2 CT . N��R/ be the unique strong solution to the linear periodic-parabolic prob-
lem 8̂̂<̂

:̂
ut D d�uC hduC fd in � �R;

@�u D 0 on @� �R;

u is T -periodic in t:

(4.1)

Then
lim
d!0
kud � u0kC. N��Œ0;T �/ D 0;

where u0 is the unique solution to the following ODE:´
.u0/t D h0u0 C f0 in � �R;

u0 is T -periodic in t:
(4.2)

Remark 4.3. Lemma 4.2 also holds true when the Laplacian operator � is replaced by a
more general uniformly elliptic operator A.t/ defined as in [20, Section II.12].

For the proofs of Lemmas 4.1 and 4.2, see the Appendix.

Lemma 4.4. Assume that m satisfies (M1). Then the following hold:

(i) k�dk1 < kmk1 and k�d;tkL2..0;T /;L2.�// � Ckmk
2
1. Moreover, sup N��Œ0;T � �d <

sup N��Œ0;T �m and inf N��Œ0;T � �d > inf N��Œ0;T �m.

(ii) Let .U.x; t/; V .x; t// be a coexistence T -periodic solution of system (1.1), if it exists.
Then

kU k1 < k�d1k1 < kmk1; kV k1 < k�d2k1 < kmk1;

kUtkL2..0;T /;L2.�// � Ckmk
2
1; kVtkL2..0;T /;L2.�// � Ckmk

2
1;

where C > 0 is a constant depending only on � and T .
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Proof. The proof for part (i) is standard except for the second inequality. To prove it,
multiplying the equation for �d by �d;t and integrating over � � .0; T /, we obtainZ T

0

Z
�

�2d;t D d

Z T

0

Z
�

�d;t��d C

Z T

0

Z
�

�d;t�d .m � �d /

� �
d

2

Z T

0

Z
�

.jr�d j
2/t �

1

3

Z T

0

Z
�

.�3d /t C kmk1

�Z T

0

Z
�

�2d

�1=2�Z T

0

Z
�

�2d;t

�1=2
� Ckmk21

�Z T

0

Z
�

�2d;t

�1=2
:

This implies that k�d;tkL2..0;T /;L2.�// � Ckmk21. The proof of (ii) uses the Maximum
Principle and similar arguments to those above.

The linear stability of the two semitrivial periodic solutions .�d1 ; 0/ and .0; �d2/ relat-
ive to system (1.1) can be characterized as follows. For a proof, see e.g. [20, Sect. IV.31]
and [23, Lemma 3.2].

Lemma 4.5. Assume that condition (M1) holds. Then the trivial solution .0; 0/ is lin-
early unstable for all d1; d2 > 0. The semitrivial periodic solution .�d1 ; 0/ is linearly
stable (resp. linearly unstable) if �1.d2;m� �d1/ > 0 (resp. �1.d2;m� �d1/ < 0). Ana-
logously, .0; �d2/ is linearly stable (resp. linearly unstable) if �1.d1;m� �d2/ > 0 (resp.
�1.d1; m � �d2/ < 0).

Now we study the asymptotic properties of �d as d ! 0.

Lemma 4.6. Assume that m satisfies (M1) and (M2). Let p.x; t/ be defined in (2.2) and
w.x; t/ be the unique solution to the following ODE:´

wt D w.m � 2p/C�p; t 2 R;

w is T -periodic in t:
(4.3)

Then

lim
d!0

1

d



�d � p � dw

C0;1. N��Œ0;T �/ D 0; lim
d!0
k��d ��pkC. N��Œ0;T �/ D 0; (4.4)

and for each q 2 .1;1/,

lim
d!0
k�d .�; t / � p.�; t /kW 2;q.�/ D 0 uniformly in t 2 Œ0; T �: (4.5)

In particular,
lim
d!0
k�d � pkC.Œ0;T �;C1. N�// D 0: (4.6)

Proof. Since m > 0 on N� � Œ0; T �, for each x 2 N� there is a unique positive and lin-
early stable T -periodic solution p.x; �/ of (2.2). As m belongs to the classical space
C
2;1
T . N� �R/, so does p.x; t/. It follows from [23, proof of Lemma 3.4] that

lim
d!0
k�d � pkC. N��Œ0;T �/ D 0 (4.7)
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and
@�p D 0 on @� �R: (4.8)

Differentiating the equation for �d with respect to t , we can easily see that �d;t is a
strong solution to 8̂̂<̂

:̂
#t � d�# D #.m � 2�d /Cmt�d in � �R;

@�# D 0 on @� �R;

# is T -periodic in t:

Since �1.d;m� 2�d / > �1.d;m� �d /D 0 for all d small, the above periodic-parabolic
problem has a unique strong solution, which must be �d;t . By (4.7) and Lemma 4.2,

lim
d!0
k�d;t � ptkC. N��Œ0;T �/ D 0: (4.9)

Denote
wd WD .�d � p/=d:

It follows from (4.8) and the equations satisfied by �d and p that wd satisfies8̂̂<̂
:̂
@twd � d�wd D wd .m � �d � p/C�p in � �R;

@�wd D 0 on @� �R;

wd is T -periodic in t:

(4.10)

It then follows from (4.3), (4.7) and Lemma 4.2 that

lim
d!0
k.�d � p/=d � wkC. N��Œ0;T �/ D 0: (4.11)

Differentiating the equation for w with respect to t , we see that wt satisfies8̂̂<̂
:̂
wt t D wt .m � 2p/C w.mt � 2pt /C�pt in � �R;

@�wt D 0 on @� �R;

# is T -periodic in t:

Sincem;p 2C 2;1. N�� Œ0;T �/, we see from the equation satisfied by p that�pt 2C. N��
Œ0; T �/. Differentiating (4.10) with respect to t , we see that @twd is a strong solution to8̂̂<̂
:̂
@t .@twd /�d�@twd D @twd .m��d �p/Cwd .mt ��d;t �pt /C�pt in ��R;

@�@twd D 0 on @��R;

@twd is T -periodic in t:

Hence it follows from (4.7), (4.9)–(4.11) and Lemma 4.2 that

lim
d!0
k.�d;t � pt /=d � wtkC. N��Œ0;T �/ D 0: (4.12)

This combined with (4.11) finishes the proof of the first equality in (4.4).
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For each t 2 Œ0; T � fixed, we can rewrite (4.10) as follows:´
�.�d � p/ D

1
d
.�d;t � pt / �

1
d
.�d � p/.m � �d � p/ ��p in �;

@�.�d � p/ D 0 on @�:

By (4.3), we see that

�.�d�p/ D
1

d
.�d;t�pt /�

1

d
.�d�p/.m��d�p/��p

D

�
1

d
.�d;t�pt /�wt

�
Cw.m�2p/C�p�

1

d
.�d�p/.m��d�p/��p

D

�
1

d
.�d;t�pt /�wt

�
�

�
1

d
.�d�p/�w

�
.m�2p/C

1

d
.�d�p/

2: (4.13)

Hence, it follows from (4.7), (4.11) and (4.12) that

lim
d!0
k��d��pkC. N��Œ0;T �/ D 0;

which finishes the proof for the second equality in (4.4). Consequently, for each t 2 Œ0; T �
fixed, (4.5) follows directly from elliptic regularity theory for equation (4.13) satisfied by
�d .�; t /�p.�; t /. Finally, (4.6) follows from (4.5) and the Sobolev embedding theorem.

Ifm does not satisfy conditions (M1) or (M2), we may use Lemma 4.1 to approximate
it by functions that satisfy those conditions. Then we can obtain the following result:

Lemma 4.7. Assume that m 2 C 0;1T .� �R/ and m > 0 on N� � Œ0; T �. Then

k�d � pkC0;1.��Œ0;T �/ ! 0 as d ! 0: (4.14)

Since Lemma 4.7 is independent of the other parts of this paper, its proof is postponed
to the Appendix.

To end this section, we characterize the behavior of �d when d !1.

Lemma 4.8. Assume that m 2 C ˛;˛=2T . N� �R/ and m > 0 on N� � Œ0; T �. Then

lim
d!1

k�d � �kC. N��Œ0;T �/ D 0;

where �.t/ is the unique positive solution to´
�t D �. Nm � �/; t 2 R;

� is T -periodic in t:
(4.15)

The above lemma can be proved by similar arguments to those in the proof of [23,
Lemma 3.7] and hence we omit the details.

5. Proofs of Theorems 2.2 and 2.3

In this section, we first prove Theorem 2.3 under condition (M1).
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Proof of Theorem 2.3. We will only prove the theorem for d1 < d2, as the case d2 > d1
follows by symmetry. Throughout the proof, we assume that condition (M1) holds.

Claim 5.1. Assume that (M1) holds. There exists a constantD > 0 depending only onm
such that the following hold:

(i) Any coexistence T -periodic solution .U; V / of system (1.1) with d1; d2 > D, if it
exists, satisfies

@�1.d;m � U � V /

@d
> 0 8d > D: (5.1)

(ii) For i D 1; 2,
@�1.d;m � �di /

@d
> 0 8d; di > D: (5.2)

To prove Claim 5.1, we first show there exists D > 0 depending only on m such that
any coexistence T -periodic solution .U; V / of system (1.1) with d1; d2 > D, if it exists,
satisfies

kr�m�U�V kL2..0;T /;L2.�// �
1
2
kr�mkL2..0;T /;L2.�// > 0: (5.3)

To see this, it is easy to observe that �m�U�V D �m � �U � �V . Therefore

kr�m�U�V kL2..0;T /;L2.�// � kr�mkL2..0;T /;L2.�// (5.4)

� kr�U kL2..0;T /;L2.�// � kr�V kL2..0;T /;L2.�//:

Multiplying both sides of the equation for �U by �U and integrating over � � .0; T /, as
�U .t/ � 0, by Hölder’s inequality and Poincaré’s inequality, we obtainZ T

0

Z
�

jr�U j
2
D

Z T

0

Z
�

�U .U � xU/ � "

Z T

0

Z
�

�2U C C."/

Z T

0

Z
�

.U � xU/2

�
1

2

Z T

0

Z
�

jr�U j
2
C C."/

Z T

0

Z
�

.U � xU/2; (5.5)

where the last inequality follows by choosing " sufficiently small. Multiplying both sides
of the equation for U by U and integrating over � � .0; T /, we obtain

d1

Z T

0

Z
�

jrU j2 D

Z T

0

Z
�

U 2.m � U � V /:

By Lemma 4.4 and Poincaré’s inequality, we see thatZ T

0

Z
�

.U � xU/2 � C

Z T

0

Z
�

jrU j2 �
C

d1
;

where C is a constant depending only on m and � and may change from place to place.
This combined with (5.5) implies that kr�U kL2..0;T /;L2.�// � C=

p
d1. Similarly, we

can show that kr�V kL2..0;T /;L2.�// � C=
p
d2. Therefore, (5.3) follows from (5.4) by

choosing D sufficiently large.
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By similar arguments, we can show that for i D 1; 2,

kr�m��di
kL2..0;T /;L2.�// �

1
2
kr�mkL2..0;T /;L2.�// > 0 8di > D: (5.6)

Hence, Claim 5.1 follows directly from (5.3), (5.6), Lemma 4.4 and Proposition 3.2,
by choosing D even larger if necessary.

Claim 5.2. Assume that (M1) holds. If .d1; d2/ 2 .D;1/ � .D;1/ and 0 < d1 < d2,
then .�d1 ; 0/ is globally asymptotically stable for system (1.1).

To prove Claim 5.2, we first show that for any .d1; d2/ 2 .D;1/ � .D;1/ with
d2 > d1, system (1.1) has no coexistence periodic solution. Assume for contradiction that
.U; V / is a coexistence T -periodic solution. Then we see from the equations satisfied
by U and V that �1.d1; m � U � V / D �1.d2; m � U � V / D 0, which contradicts
(5.1). Moreover, it is easy to see from (5.2) that �1.d2;m� �d1/ > �1.d1;m� �d1/ D 0
and �1.d1; m � �d2/ < �1.d2; m � �d2/ D 0, Therefore, .�d1 ; 0/ is linearly stable and
.0; �d2/ is linearly unstable. Now, Claim 5.2 follows directly from the theory of monotone
dynamical systems (see e.g. [20, Theorem 34.1]).

Claim 5.3. Assume that (M1) holds. For each " > 0, there exists some yD" > 0 such that
for all .d1; d2/ 2 Œ";D� � . yD";1/:

(i) .�d1 ; 0/ is linearly stable;

(ii) .0; �d2/ is linearly unstable;

(iii) system (1.1) has no coexistence periodic solution.

Consequently, .�d1 ;0/ is globally asymptotically stable for all .d1;d2/2 Œ";D/�. yD";1/.

To prove Claim 5.3, note that parts (i)–(iii) follow by a standard perturbation argument
from the proofs of Lemma 3.3 (c), Lemma 3.6 (c) and Theorem 5.3 (a) in [23] respectively
(see also [23, Remark 1]). Note that it is sufficient to assume that rm 6� 0 in their proofs.
Hence, we omit the proofs of (i)–(iii). Now for each .d1; d2/ 2 Œ";D�� . yD";1/ fixed, we
may apply [20, Theorem 34.1] to conclude that .�d1 ; 0/ is globally asymptotically stable.
This finishes the proof of Claim 5.3.

Theorem 2.3 now follows directly from Claims 5.2 and 5.3 by setting D" WD

max ¹D; yD"º.

Next, we prove Theorem 2.2, which characterizes the stability properties of the two
semitrivial periodic solutions .0; �d1/ and .�d2 ; 0/ when d2 is sufficiently large.

Proof of Theorem 2.2. We divide the proof into several claims.

Claim 5.4. Assume that (M1)–(M3) hold. There exist constants "1 > 0 small and
zD"1 �

yD"1 large such that for each d2 > zD"1 fixed, �1.d2; m � �d1/ is strictly increas-
ing in d1 2 .0; "1/. Moreover, there exists a unique continuously differentiable function
Ld1 W . zD"1 ;1/! .0; "1/ such that for .d1; d2/ 2 .0; "1/ � . zD"1 ;1/,

�1.d2; m � � Ld1.d2/
/ D 0 ” d1 D Ld1.d2/: (5.7)
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To prove Claim 5.4, for each " > 0, let yD" be as in Claim 5.3. For each d2 > yD"
fixed, it follows from [23, Lemma 3.4] and (M1)–(M3) that .�d1 ; 0/ is linearly unstable
for all d1 sufficiently small. By Claim 5.3, .�d1 ; 0/ is linearly stable for all d1 2 Œ"; D�.
Therefore, �1.d2;m� �d1/must change sign at least once when d1 increases from 0 to ".

Now, to show the existence and uniqueness of the function Ld1 in Claim 5.4, it suf-
fices to show that there exist "1 > 0 small and zD"1 � yD"1 large such that for each
d2 2 . zD"1 ;1/ fixed, �1.d2; m � �d1/ is strictly increasing in d1 2 .0; "1/. Indeed, let
' and  be the principal eigenfunction and the principal adjoint eigenfunction corres-
ponding to �1.d2; m � �d1/ respectively, normalized so that

k'kL2..0;T /;L2.�// D k kL2..0;T /;L2.�// D 1:

In other words, ' and  are positive and satisfy the following equations respectively:8̂̂<̂
:̂
't � d2�' D .m � �d1/' C �1.d2; m � �d1/' in � �R;

@�' D 0 on @� �R;

' is T -periodic in t;

(5.8)

and 8̂̂<̂
:̂
� t � d2� D .m � �d1/ C �1.d2; m � �d1/ in � �R;

@� D 0 on @� �R;

 is T -periodic in t:

(5.9)

Differentiating the equation for ' in (5.8) with respect to d1, denoting �1 WD

�1.d2; m � �d1/ and 0 D @
@d1

for simplicity, we obtain8̂̂<̂
:̂
@t'
0 � d2�'

0 D '0.m � �d1/ � '�
0
d1
C �1'

0 C �01' in � �R;

@�'
0 D 0 on @� �R;

'0 is T -periodic in t:

Multiplying the equation for '0 by  and the equation for  by '0, integrating over
� � .0; T / and subtracting, we obtain

�01

Z T

0

Z
�

' D

Z T

0

Z
�

' � 0d1 : (5.10)

Differentiating the equation for �d1 with respect to d1, we see that8̂̂<̂
:̂
@t�
0
d1
� d1��

0
d1
D � 0

d1
.m � 2�d1/C��d1 in � �R;

@��
0
d1
D 0 on @� �R;

� 0
d1

is T -periodic in t:

Then it follows from Lemmas 4.2 and 4.6 that

lim
d1!0

k� 0d1 � wk1 D 0; (5.11)
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where w is the unique solution to the ODE (4.3). Dividing the equation for w by p and
integrating over .0; T /, we see thatZ T

0

w.m � 2p/

p
C

Z T

0

�p

p
D

Z T

0

wt

p
D

Z T

0

wpt

p2
D

Z T

0

w.m � p/

p
;

which implies that Z T

0

w D

Z T

0

�p

p
: (5.12)

Integrating the above identity over � and using the divergence theorem, we obtainZ T

0

Z
�

w D

Z T

0

Z
�

jrpj2

p2
> 0: (5.13)

It is easy to see from (M3) that m � p is spatially heterogeneous. Therefore, by Lem-
ma 4.6, we have

kr�m��d1
kL2..0;T /;L2.�// �

1
2
kr�m�pkL2..0;T /;L2.�// > 0 8d1 small: (5.14)

Moreover, by Lemmas 4.4 and 4.6, km��d1kL1.��.0;T // and kmt�@t�d1kL2..0;T /;L2.�//
are uniformly bounded for all d1 small. Consequently, by Proposition 3.2 and (3.18), there
exists a constant C > 0 such that for all d1 small and d2 sufficiently large,

'.x; t/ D x'.t/C
x'.t/�m��d1

.x; t/

d2
C
'2.x; t/

d22
;

 .x; t/ D x .t/C
x .t/�m��d1

.x; t/

d2
C
 2.x; t/

d22
;

where

x'.t/ D x'.0/ exp
�Z t

0

�
m � �d1.s/C �1

�
ds

�
C �.t/;

x .t/ D x .0/ exp
�
�

Z t

0

�
m � �d1.s/C �1

�
ds

�
C Q�.t/;

k'2kL2..0;T /;H1.�// � C; k 2kL2..0;T /;H1.�// � C;

�.t/ D O

�
1
p
d2

�
; Q�.t/ D O

�
1
p
d2

�
and

1

C
� x'.t/; x .t/ � C 8t 2 Œ0; T �:

Plugging the above estimates into (5.10), we deduce from (5.13) that

�01

Z T

0

Z
�

' D

Z T

0

Z
�

' � 0d1 D

Z T

0

Z
�

' w C

Z T

0

Z
�

' .� 0d1 � w/

D x'.0/ x .0/

Z T

0

Z
�

w CO

�
1
p
d2

�
C ˛.d1/

D x'.0/ x .0/

Z T

0

Z
�

jrpj2

p2
CO

�
1
p
d2

�
C ˛.d1/;
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where ˛.d1/ WD
R T
0

R
�
' .� 0

d1
� w/ D o.1/ as d1 ! 0 by (5.11). Therefore, there exist

"1 > 0 small and zD"1 � yD"1 large such that �01 > 0 for all .d1; d2/ 2 .0; "1/� . zD"1 ;1/.
Hence, the existence and uniqueness of the function Ld1.d2/ W . zD"1 ;1/ ! .0; "1/ are
proved. Moreover, Ld1.d2/ is continuously differentiable by the implicit function theorem.
This finishes the proof of Claim 5.4.

Claim 5.5. The function Ld1 W . zD"1 ;1/! .0; "1/ defined in Claim 5.4 is strictly decreas-
ing and satisfies

Ld1.d2/ D O

�
1

d2

�
as d2 !1:

To prove Claim 5.5, we first show that

Ld1.d2/! 0 as d2 !1: (5.15)

Assume for contradiction that lim supd2!1
Ld1.d2/ D d?1 2 .0; "1�. Then there exists a

sequence ¹d .n/2 º
1
nD1 � .

zD"1 ;1/ such that d .n/2 !1 and Ld1.d
.n/
2 /! d?1 as n!1.

Therefore, there exists someN ? 2N such that Ld1.d
.n/
2 / > d?1 =2 for all n>N ?. It follows

from Claim 5.4 that �1.d
.n/
2 ; m � �d1/ < 0 for all n > N ? and d1 � d?1 =2 < Ld1.d

.n/
2 /.

On the other hand, choosing " D d?1 =4 in Claim 5.3, we see that .�d1 ; 0/ is globally
asymptotically stable for all .d1; d2/ 2 Œd?1 =4;D�� . yDd?1 =4;1/, which is a contradiction

since .d?1 =2; d
.n/
2 / belongs to that set for all n sufficiently large such that d .n/2 > yDd?

1
=4,

while �1.d
.n/
2 ; m � �d?

1
=2/ < 0. This finishes the proof of (5.15).

To finish the proof of the claim, it suffices to show that

Ld 01.d2/ D O

�
1

d22

�
8d2 > zD"1 : (5.16)

To see this, let L' and L be the principal eigenfunction and principal adjoint eigenfunction
of (5.8) and (5.9) respectively with d1 replaced by Ld1.d2/ and �1.d2; m � � Ld1.d2// D 0

normalized so that k L'kL2..0;T /;L2.�//Dk L kL2..0;T /;L2.�//D 1. Differentiating the equa-
tion for L' with respect to d2, multiplying the equation for @ L'

@d2
by L and the equation for

L by @ L'
@d2

, integrating over � � .0; T / and subtracting, we obtain

Ld 01.d2/

Z T

0

Z
�

L' L 
@�d

@d

ˇ̌̌̌
dD Ld1.d2/

D �

Z T

0

Z
�

r L' � r L : (5.17)

By a similar calculation to that in the proof of Claim 5.4, we can show that for all d2
in . zD"1 ;1/,Z T

0

Z
�

L' L 
@�d

@d

ˇ̌̌̌
dD Ld1.d2/

D

Z T

0

Z
�

L' L w C

Z T

0

Z
�

L' L 

�
@�d

@d

ˇ̌̌̌
dD Ld1.d2/

� w

�
D L'.0/ L .0/

Z T

0

Z
�

jrpj2

p2
CO

�
1
p
d2

�
C L̨ .d2/; (5.18)
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where

L̨ .d2/ WD

Z T

0

Z
�

L' L 

�
@�d

@d

ˇ̌̌̌
dD Ld1.d2/

� w

�
D o.1/ as d2 !1

by (5.11) and (5.15). By similar arguments to the proof of (5.14) and calculation as in the
proof of Claim 5.4, we can show thatZ T

0

Z
�

r L' � r L D
1

d22

Z T

0

L'.t/ L .t/

Z
�

jr�m�� Ld1.d2/
j
2
CO

�
1

d32

�
�

1

2C 2d22

Z T

0

Z
�

jr�m�pj
2
CO

�
1

d32

�
: (5.19)

Now, (5.16) follows from (5.17)–(5.19). This finishes the proof of Claim 5.5.

Now we are ready to finish the proof of Theorem 2.2 (i). Let "1 be as in Claim 5.4.
Then for all d2 > D"1 , where D"1 is defined as in Theorem 2.3, it follows from the
proof of Theorem 2.3 that .�d1 ; 0/ is linearly stable for all d2 > D"1 . Now setting D2 WD
max¹D"1 ; zD"1º, we can deduce Theorem 2.2 (i) from Claims 5.4 and 5.5.

It only remains to prove Theorem 2.2 (ii).

Claim 5.6. Assume that (M1) holds and Om 6� const on N�. Then there exist "2 > 0 small
and D2 > 0 large such that .0; �d2/ is linearly unstable for all .d1; d2/ 2 .0; "2/ �
.D2;1/.

To prove this, note that since Om 6� const on N�, there exist some x0 2� and a constant
�1 > 0 such that Om.x0/ � ONm D �1 > 0. By Lemma 4.8,

lim
d2!1

k�d2 � �kC. N��Œ0;T �/ D 0:

Therefore, choosing D2 sufficiently large, we see that for all d2 > D2,

m � �d2 > m � � � �1=2 on N� �R: (5.20)

By Lemma 3.1 (ii) and the fact that O� D ONm, we see that

lim
d1!0

�1.d1; m � � � �1=2/ D �max
x2 N�

. Om � ONm � �1=2/ � �. Om.x0/ � ONm/C �1=2 < 0:

(5.21)

By [20, Lemma 15.5], �1.d1;m� �d2/ < �1.d1;m� � � �1=2/. Therefore, by choosing
"2 > 0 sufficiently small, we see that �1.d1; m � �d2/ < 0 for all .d1; d2/ 2 .0; "2/ �
.D2;1/. This finishes the proof of the claim.

Let "2 andD2 be as in Claim 5.6. Then choosingD2 even larger such thatD2 � yD"2 ,
where yD"2 is as in Claim 5.3, we deduce Theorem 2.2 (ii).

By Lemma 4.5, the linear stability of .�d1 ; 0/ is determined by the sign of
�1.d2;m� �d1/. To end this section, we prove the following result which will be used in
Section 6.
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Lemma 5.7. Assume that (M1) holds. Then there exists a constantD > 0 depending only
on m such that

@�1.d2; m � �d1/

@d2

ˇ̌̌̌
d2Dd1

> 0 8d1 > D: (5.22)

If further (M2) holds, then

lim
d1!0

@�1.d2; m � �d1/

@d2

ˇ̌̌̌
d2Dd1

D �
I.p/

T
R
�

exp
�
1
T

R T
0

lnp2 dt
� : (5.23)

Proof. Note that (5.22) is a special case of (5.2). Hence it only remains to prove (5.23).
Let ' and  be the principal eigenfunction and principal adjoint eigenfunction satisfying
(5.8) and (5.9) respectively, normalized so that k' kL2..0;T /;L2.�// D 1. Differentiating
the equation for ' with respect to d2, denoting �1 D �1.d2; m � �d1/ and 0 D @

@d2
for

simplicity, we obtain8̂̂<̂
:̂
@t'
0 � d2�'

0 D '0.m � �d1/C �1'
0 C�' C �01' in � �R;

@�'
0 D 0 on @� �R;

'0 is T -periodic in t:

Multiplying the equation for '0 by  and the equation for  by '0, integrating over � �
.0; T / and subtracting, we obtain

�01

Z T

0

Z
�

' D �

Z T

0

Z
�

 �' D �

Z T

0

Z
�

' 
�'

'
: (5.24)

When d2 D d1, we know that �1.d2; m � �d1/ D 0 with ' being a constant multiplier
of �d1 . It follows from Corollary 3.6 and Lemma 4.6 that

' ! cp exp
�
1

T

Z T

0

lnp2 dt
�

in L2..0; T /;H 1.�// when d2 D d1 and d1 ! 0;

where the constant cp > 0 is uniquely determined such that kcp exp. 1
T

R T
0

lnp2 dt/kL2.�/
D 1=

p
T . Plugging the above estimates into (5.24), we obtain

�01T

Z
�

exp
�
1

T

Z T

0

lnp2 dt
�
D �

Z
�

�
exp

�
1

T

Z T

0

lnp2 dt
�Z T

0

�p

p
dt

�
:

This finishes the proof of (5.23).

6. Local stability of semitrivial periodic solutions for small dispersal rates

In this section, we characterize the stability properties of the two semitrivial periodic
solutions .0; �d1/ and .�d2 ; 0/ of system (1.1) when both d1 and d2 are sufficiently small.
Throughout this section, we always assume that m satisfies conditions (M1) and (M2).
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Recall that p is the unique positive periodic solution to (2.2). We consider the follow-
ing indefinite-weight eigenvalue problem:8̂<̂

:�ˆC
1

T

Z T

0

r lnp2 dt � rˆ �ƒ.p/
�
1

T

Z T

0

�p

p
dt

�
ˆ D 0 in �;

@�ˆ D 0 on @�:
(6.1)

We say that ƒ.p/ is a principal eigenvalue of (6.1) if (6.1) has a positive solution. The
adjoint eigenvalue problem of (6.1) is8̂<̂
:r �

�
r‰ �

‰

T

Z T

0

r lnp2 dt
�
�ƒ.p/

�
1

T

Z T

0

�p

p
dt

�
‰ D 0 in �;

@�‰ D 0 on @�:
(6.2)

Notice that 0 is always a principal eigenvalue of (6.1) and (6.2) with principal eigenfunc-
tions 1 and exp. 1

T

R T
0

lnp2 dt/ respectively.
Recall that I.p/ is defined in (2.3). The following result can be easily obtained

from [40].

Lemma 6.1. Problem (6.1) has a nonzero principal eigenvalue, denoted byƒ1.p/, if and
only if

R T
0
�p
p
dt changes sign in� and I.p/¤ 0. Furthermore, when

R T
0
�p
p
dt changes

sign in �, the following hold:

(i) if I.p/ > 0, then ƒ1.p/ > 0,

(ii) if I.p/ < 0, then ƒ1.p/ 2 Œ�1; 0/ with

ƒ1.p/ D �1 ” p.x; t/ D e
R t
0 b.s/ dsa.x/ for some b.t/ satisfying

Ob D 0 and a.x/ > 0 on N�: (6.3)

Proof. Except for (ii), the lemma follows from [40, Theorem 2]. We now show that
ƒ1.p/ � �1 if I.p/ < 0. To see this, denote by ‰ the principal eigenfunction of (6.2)
corresponding to ƒ1.p/. Dividing the equation for ‰ by ‰ and integrating over �, we
obtain

ƒ1.p/

Z T

0

Z
�

jrpj2

p2
D T

Z
�

jr‰j2

‰2
� 2

Z
�

Z T

0

rp

p
�
r‰

‰

� �

Z T

0

Z
�

jrpj2

p2
: (6.4)

Therefore, ƒ1.p/ � �1.
Assume that p.x; t/ D e

R t
0 b.s/ dsa.x/ for some b.t/ satisfying Ob D 0 and a.x/ > 0

on N�. It is easy to check thatƒ1.p/D�1 and‰ D a. Now, we assume thatƒ1.p/D�1.
Then it follows from (6.4) thatZ T

0

Z
�

�
r‰

‰
�
rp

p

�2
D 0:
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Therefore, r lnp.x; t/ � r ln‰.x/ on N� � Œ0; T �, which implies that there exists b.t/
with

R T
0
b.t/ dt D 0 such that p.x; t/ D e

R t
0 b.s/ ds‰.x/. This finishes the proof of (6.3)

and the lemma.

Remark 6.2. Since p is the unique positive periodic solution to (2.2), it is easy to check
that p.x; t/D e

R t
0 b.s/ dsa.x/ if and only ifm.x; t/D e

R t
0 b.s/ dsa.x/C b.t/, where Ob D 0

and a.x/ > 0 on N�. In other words,m satisfies condition (M3) if and only ifƒ1.p/¤�1
by Lemma 6.1 (ii).

Now we are ready to prove Theorem 2.1. Note that since the dynamics of system (1.1)
is symmetric with respect to the line d1 D d2 in Q D .0;1/2, we stated our results in
Theorem 2.1 concerning the linear stability of both .�d1 ; 0/ and .0; �d2/ only in the region
.0; "0/

2 \ ¹.d1; d2/ j d1 < d2º. Equivalently, we can also state our results concerning
only the linear stability of .�d1 ; 0/ but in the region .0; "0/2. In either case, the other half
information which is not stated there can be inferred by exchanging d1 and d2. Since it is
smoother to conduct our proof in the latter form and to make things clear, we now state
the following equivalent version of Theorem 2.1 and prove it.

Theorem 2.10. Assume that (M1) and (M2) hold. Then there exists some "0 > 0 small
such that for all .d1; d2/ 2 .0; "0/2, the following statements hold on the linear stability
of .�d1 ; 0/:

(i) If I.p/ > 0 and minx2 N�
R T
0
�p
p
.x; t/ dt > 0, then .�d1 ; 0/ is linearly unstable for all

d1 < d2 and linearly stable for all d1 > d2.

(ii) If I.p/ > 0 and minx2 N�
R T
0

�p
p
.x; t/ dt < 0, then there exists a continuously dif-

ferentiable function Od2 W .0; "0/! .0; "0/ with Od2.d1/ 2 .0; d1/ such that .�d1 ; 0/
is linearly unstable for all d2 2 .0; Od2.d1// [ .d1; "0/ and linearly stable for all
d2 2 . Od2.d1/; d1/. Moreover, limd1!0

Od2.d1/, Od 02.0/ and limd1!0
Od 02.d1/ exist with

lim
d1!0

Od2.d1/ D 0 and lim
d1!0

Od 02.d1/ D
Od 02.0/ D

1

1Cƒ1.p/
2 .0; 1/:

(iii) If I.p/ < 0 and in addition (M3) holds, then there exists a continuously differ-
entiable function Qd1 W .0; "0/ ! .0; "0/ with Qd1.d2/ 2 .0; d2/ such that .�d1 ; 0/
is linearly unstable for all d1 2 .0; Qd1.d2// [ .d2; "0/ and linearly stable for all
d1 2 . Qd1.d2/; d2/. Moreover, limd2!0

Qd1.d2/, Qd 01.0/ and limd2!0
Qd 01.d2/ exist with

lim
d2!0

Qd1.d2/ D 0 and lim
d2!0

Qd 01.d2/ D
Qd 01.0/ D 1Cƒ1.p/ 2 .0; 1/:

Note that Od2 � Od1 by symmetry, where Od2 is defined in Theorem 2.10 (ii) and Od1 is
defined in Theorem 2.1 (ii).

Proof of Theorem 2.10. Recall from Lemma 4.5 that the linear stability of .�d1 ; 0/ is
determined by the sign of �1.d2; m � �d1/: .�d1 ; 0/ is linearly stable if �1.d2; m � �d1/
> 0 and linearly unstable if �1.d2;m� �d1/ < 0. It is obvious that �1.d2;m� �d1/ D 0
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when d2 D d1 with principal eigenfunction �d1 . Let  be the adjoint principal eigenfunc-
tion to �1.d2;m� �d1/ defined in (5.9) and denote v D  �d1 . By direct computation, we
see that v satisfies8̂̂<̂
:̂
�vt �d2r �.rv�2vr ln �d1/�.d1�d2/

���d1
�d1

v D �1.d2; m��d1/v in ��R;

@�v D 0 on @��R;

v is T -periodic in t:
(6.5)

We now consider the following one-parameter family of eigenvalue problems (with para-
meter �):8̂̂<̂

:̂
��t � d2r � .r� � 2�r ln �d1/ � �

���d1
�d1

� D �.�/� in � �R;

@�� D 0 on @� �R;

� is T -periodic in t

(6.6)

and the adjoint eigenvalue problem8̂̂<̂
:̂
�t � d2�� � 2d2r� � r ln �d1 � �

���d1
�d1

� D �.�/� in � �R;

@�� D 0 on @� �R;

� is T -periodic in t:

(6.7)

Denote by �1.�/ the principal eigenvalue of both (6.6) and (6.7) with principal eigenfunc-
tions �� and �� respectively, normalized so that k��kL2..0;T /;L2.�//Dk��kL2..0;T /;L2.�//
D 1. Then it is easy to see that

�.0/ D 0 with �0 D 1=
p
j�jT and �0 D c�d1

exp
�
1

T

Z T

0

ln �2d1 dt
�
; (6.8)

where the constant c�d1 > 0 is uniquely determined such that k�0kL2..0;T /;L2.�// D 1.
By Lemma 4.6, we easily obtain

lim
d1;d2!0





�0 � cp exp
�
1

T

Z T

0

lnp2 dt
�





L2..0;T /;H1.�//

D 0; (6.9)

where the constant cp > 0 is uniquely determined such that kcp exp. 1
T

R T
0

lnp2 dt/kL2.�/
D 1=

p
T .

Differentiating the equation for �� in (6.6) with respect to �, integrating over � �
.0; T / and evaluating at � D 0, we see that

d�1

d�
.0/ D

Z T

0

Z
�

�0
��d1
�d1

:

Hence, it follows from (6.9) and Lemma 4.6 that

lim
d1;d2!0

d�1

d�
.0/ D cp

Z
�

�
exp

�
1

T

Z T

0

lnp2 dt
�Z T

0

�p

p

�
D cpI.p/: (6.10)
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Since for each t 2 R,
R
�
��d1 D

R
@�
r�d1 � � D 0 and ��d1 6� 0, it is obvious thatZ T

0

�
min
x2 N�

���d1
�d1

�
dt < 0 <

Z T

0

�
max
x2 N�

���d1
�d1

�
dt 8d1 > 0:

Therefore, the following claim follows from [20, Lemmas 15.2 & 15.5]:

Claim 6.3. The function �1.�1/ is concave in �. Moreover,

lim
�!˙1

�1.�/ D �1:

We now characterize the zeros of �1.�/ and consider the following indefinite-weight
eigenvalue problem:8̂̂<̂

:̂
�t � d2�� � 2d2r� � r ln �d1 � �

���d1
�d1

� D 0 in � �R;

@�� D 0 on @� �R;

� is T -periodic in t:

(6.11)

By [20, Theorem 16.3], problem (6.11) has a unique nonzero principal eigenvalue
�1.d1; d2/ for all d1; d2 > 0 if and only if d�1

d�
.0/ ¤ 0. Moreover, if d�1

d�
.0/ ¤ 0, we

see from Claim 6.3 that

�1.�/ D 0 ” � D 0 or � D �1.d1; d2/: (6.12)

We now assume that
I.p/ ¤ 0:

Then by (6.10), there exists "0 > 0 small such that d�1
d�
.0/ has the same sign as I.p/ for

all .d1; d2/ 2 .0; "0/2. Therefore, to determine the sign of �1.d2; m � �d1/, we see from
(6.5) and (6.7) (or (6.6)), (6.12) and Claim 6.3 that it suffices to locate �1.d1; d2/ and
then determine the sign of �1.�/ according to the relative positions of 0, �1.d1; d2/ and
d1 � d2 when .d1; d2/ 2 .0; "0/2.

We now study the asymptotic behavior of �1.d1; d2/ when d1 and d2 are sufficiently
small and consider the following two cases separately:

Case (i): I.p/ > 0.

Case (ii): I.p/ < 0.

We first treat Case (i). Then by (6.10), we see that d�1
d�
.0/> 0 for all .d1;d2/2 .0;"0/2,

which implies by [20, Theorem 16.3] that

�1.d1; d2/ > 0 8.d1; d2/ 2 .0; "0/
2: (6.13)

Since �1.0/ D �1.�1.d1; d2// D 0, it follows from Claim 6.3 that´
�1.�/ > 0 for all � 2 .0; �1.d1; d2//;

�1.�/ < 0 for all � 2 .�1; 0/ [ .�1.d1; d2/;1/:
(6.14)

We need to further consider the following two subcases:
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Case (i)(a): minx2 N�
R T
0

�p
p
.x; t/ dt > 0.

Case (i)(b): minx2 N�
R T
0

�p
p
.x; t/ dt < 0, i.e., there exist x� 2 � and �2 > 0 such thatZ T

0

�p

p
.x�; t / dt DW ��2 < 0: (6.15)

For simplicity of notation, we denote

#d1 D
���d1
�d1

in the remainder of this proof.
For Case (i)(a), by Lemma 4.6, we see that O#d1 < 0 on N� for all d1 2 .0; "0/ by choos-

ing "0 smaller if necessary. Fix �0 > "0. For each d1 2 .0; "0/, by [23, Lemma 2.4 (c)],
the principal eigenvalue �1.�/ of (6.7) satisfies

lim
d2!0

�1.�0/ D �max
x2 N�

�0 O#d1.x/ > 0:

Therefore, choosing "0 smaller if necessary, we see from continuous dependence of
�1.�0/ on d1 2 .0; "0/ and [20, Lemma 15.5] that

�1.d1; d2/ > �0 > "0 > 0 8.d1; d2/ 2 .0; "0/
2:

In particular, this combined with (6.5), (6.7) and (6.14) implies that �1.d2;m� �d1/ > 0
when d1 � d2 2 .0; "0/, while �1.d2; m � �d1/ < 0 when d1 � d2 < 0. This finishes the
proof of Theorem 2.10 (i).

For Case (i)(b), by Lemma 4.6 there exist x� 2 � and a constant r > 0 such that
#
z
d1.t/ WD minx2 N�0 #d1.x; t/ satisfiesZ T

0

#
z
d1.t/ > �2=2 > 0 8d1 2 .0; "0/; (6.16)

where �0 WD B.x�; r/ �� � and B.x�; r/ is the ball centered at x� with radius r .

Claim 6.4. There exists a constant C1 > 0 such that

0 <
�1.d1; d2/

d2
� C1 8.d1; d2/ 2 .0; "0/

2: (6.17)

To prove Claim 6.4, we consider the periodic-parabolic Dirichlet eigenvalue problem8̂̂<̂
:̂
@tw
z
� d2�w

z
� 2d2rw

z
� r ln �d1 � �#

z
d1w
z
D �
z

.�/w
z

in �0 �R;

w
z
D 0 on @�0 �R;

w
z

is T -periodic in t:

(6.18)

Since #
z
d1 is independent of x 2 �0, it follows from [20, Lemma 15.3] that

�
z

.�/ D �
z

.0/ �
�

T

Z T

0

#
z
d1.s/ ds:
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We now claim that there exists a constant C2 > 0 independent of d1 and d2 such that

0 < �
z

.0/ � C2d2 8.d1; d2/ 2 .0; "0/
2: (6.19)

Indeed, the fact that �
z

.0/ > 0 follows from [20, Prop. 17.1], since it is obvious that 0 is the
principal eigenvalue of (6.18) for �D 0with the Dirichlet boundary condition replaced by
the Neumann boundary condition on @�0 � R. To show the second inequality in (6.19),
we follow the idea in the proof of [2, Lemma 2.6] to construct a positive supersolution
of (6.18) with � D 0. For this purpose, let ‚ > 0 be the principal eigenfunction of ��
with zero Dirichlet boundary condition on @� normalized so that k‚kC. N�/ D 1, i.e.,
‚ 2 C 2. N�/ satisfies

��‚ D �1.�/‚ in �; ‚ D 0 on @�; (6.20)

where �1.�/ > 0 is the principal eigenvalue corresponding to ‚. Denote z‚ D
exp.�‚/ � 1, where � > 0 is constant to be determined. By a similar computation to the
proof of [2, Lemma 2.6], we can show that there exists a sufficiently large � depending
only on ‚ and supd12.0;"0/ kr ln �d1k1 such that

@t z‚ � d2�z‚ � 2d2r z‚ � r ln �d1 � d2C.�; k‚kC2. N�//z‚:

Then, by the comparison principle for time-periodic parabolic eigenvalue problems (see
e.g. [2, Prop. 2.2]) and Lemma 4.6, there exists a constant C2 D C.�; k‚kC2. N�// such
that the second inequality in (6.19) holds.

Next we consider the periodic-parabolic Dirichlet eigenvalue problem8̂̂<̂
:̂
@tw � d2�w � 2d2rw � r ln �d1 � �#d1.x; t/w D �.�/w in �0 �R;

w D 0 on @�0 �R;

w is T -periodic in t;

(6.21)

where �.�/ is the principal eigenvalue of (6.21). Since #d1.x; t/ � #
z
d1.t/ on N�0 � R,

we see from [20, Lemma 15.5] that �.�/ � �
z

.�/. By [2, Corollary 4.2], we find that
�1.�/ � �.�/. Consequently,

�1.�/ � �.�/ � �
z

.�/ D �
z

.0/ �
�

T

Z T

0

#
z
d1.s/ ds:

In particular, plugging � D �1.d1; d2/ in the above inequality and using the fact that
�1.�1.d1; d2// D 0, we find by (6.16) and (6.19) that

�1.d1; d2/

d2
�
�
z

.0/

d2
�

TR T
0
#
z
d1 ds

�
2C2T

�2
DW C1 8.d1; d2/ 2 .0; "0/

2:

This combined with (6.13) finishes the proof of (6.17) and hence Claim 6.4.

Claim 6.5.
lim

d1;d2!0

@�1.d1; d2/

@d2
D ƒ1.p/ > 0: (6.22)



X. Bai, X. He, W.-M. Ni 4618

To prove Claim 6.5, denote by '1 the principal eigenfunction of (6.11) and  1 the
principal eigenfunction of its adjoint eigenvalue problem corresponding to the eigenvalue
�1.d1; d2/ normalized so that

k'1kL2..0;T /;L2.�// D k 1kL2..0;T /;L2.�// D 1:

In other words, '1 and  1 satisfy respectively8̂̂<̂
:̂
@t'1 � d2�'1 � 2d2r'1 � r ln �d1 � �1.d1; d2/

���d1
�d1

'1 D 0 in � �R;

@�'1 D 0 on @� �R;

'1 is T -periodic in t;
(6.23)

and8̂̂<̂
:̂
�@t 1 � d2r � .r 1 � 2 1r ln �d1/ � �1.d1; d2/

���d1
�d1

 1 D 0 in � �R;

@� 1 D 0 on @� �R;

 1 is T -periodic in t:
(6.24)

Differentiating the equation for '1 with respect to d2 and denoting 0 D @
@d2

, �1 WD
�1.d1; d2/, we obtain8̂̂̂̂

<̂̂
ˆ̂̂̂:
@t'
0
1 � d2�'

0
1 � 2d2r'

0
1 � r ln �d1 � .�'1 C 2r'1 � r ln �d1/

��01
���d1
�d1

'1 � �1
���d1
�d1

'01 D 0 in � �R;

@�'
0
1 D 0 on @� �R;

'01 is T -periodic in t:

Multiplying the equation for '01 by  1 and the equation for  1 by '01, subtracting the
resulting equations and integrating over � � .0; T /, we obtain

@�1.d1; d2/

@d2
D

R T
0

R
�
.r'1 � 2 1r ln �d1/ � r 1R T
0

R
�

���d1
�d1

'1 1

: (6.25)

By Proposition 3.4, Lemma 4.8 and (6.17), we conclude that, passing to a subsequence of
.d1; d2/ if necessary,

'1 ! ˆ1;  1 ! ‰1 in L2..0; T /;H 1.�//;

�1.d1; d2/=d2 ! ƒ 2 Œ0; C1�;
as d1; d2 ! 0; (6.26)

where ˆ1; ‰1 2 H 1.�/ are the principal eigenfunctions to (6.1) and (6.2) respectively,
with ƒ being the corresponding principal eigenvalue, satisfying

kˆ1kL2.�/ D k‰1kL2.�/ D 1=
p
T :

Since
R T
0

R
�
�p
p
dt D

R T
0

R
�
jrpj2

p2
dt > 0, we see from (6.15) that

R T
0
�p
p
dt changes sign

in �. Hence, it follows from Lemma 6.1 that ƒ1.p/, the nonzero principal eigenvalue
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of (6.1), exists and ƒ1.p/ > 0. Therefore, we have either ƒ D 0 or ƒ D ƒ1.p/. We now
claim that ƒ ¤ 0. Assume for contradiction that ƒ D 0. Then it is easy to check that
‰1 D cp exp. 1

T

R T
0

lnp2 dt/. However, integrating the equation for  1 over � � .0; T /,
we see that

�1.d1; d2/

Z T

0

Z
�

��d1
�d1

 1 D 0:

Since �1.d1; d2/ > 0, letting d1; d2 ! 0 we deduce from (6.26) and Lemma 4.6 that

0 D lim
d1;d2!0

Z T

0

Z
�

��d1
�d1

 1 D cp

Z T

0

Z
�

exp
�
1

T

Z T

0

lnp2 dt
�
�p

p
D cpI.p/ > 0;

which is a contradiction. Hence ƒ ¤ 0 and thus we must have ƒ D ƒ1.p/. Multiplying
the equation for ˆ1 by ‰1 and integrating over �, we obtain

ƒ1.p/ D

R
�
.Trˆ1 � 2‰1

R T
0
r lnp/ � r‰1R T

0

R
�
��p
p
ˆ1‰1

: (6.27)

Letting d1; d2 ! 0 in (6.25), and then combining the result with (6.26) and (6.27), we
derive (6.22). This finishes the proof of the claim.

Claim 6.6. There exists a unique continuously differentiable function Od2 W .0; "0/ !
.0;1/ with Od2.d1/ < d1 such that for .d1; d2/ 2 .0; "0/2,

�1.d1; d2/ D d1 � d2 ” d2 D Od2.d1/:

Moreover,

lim
d1!0

Od2.d1/D 0; Od 02.0/D
1

1Cƒ1.p/
2 .0; 1/; lim

d1!0

Od 02.d1/D
1

1Cƒ1.p/
2 .0; 1/:

(6.28)

To prove Claim 6.6, note that by (6.17) and (6.22), we may extend the definitions of
�1.d1; d2/ and @�1.d1;d2/

@d2
so that

�1.�; 0/ D 0 in Œ0; "0/ and
@�1.0; 0/

@d2
D ƒ1.p/ > 0: (6.29)

Choosing "0 smaller if necessary, we may assume that @�1.d1;d2/
@d2

> 0 for all .d1; d2/ 2
.0; "0/

2. Therefore,

@Œ�1.d1; d2/ � d1 C d2�

@d2
> 1 8.d1; d2/ 2 .0; "0/

2: (6.30)

Now for each d1 2 .0; "0/ fixed, by (6.13) and (6.29) we see that �1.d1; 0/ � d1 C 0
D �d1 < 0 and �1.d1; d1/ � d1 C d1 > 0. Hence, by the intermediate value theorem
and (6.30), for each d1 2 .0; "0/ there exists a unique d2 D Od2.d1/ 2 .0; d1/ such that
�1.d1; d2/ � d1 C d2 D 0 if and only if d2 D Od2.d1/. It is obvious that limd1!0

Od2.d1/

D 0. Since �1.d1; d2/ is analytic, Od2.d1/ is actually analytic in d1 2 .0; "0/.
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It only remains to prove the last two identities in (6.28). Dividing both sides
of the equation d1 � Od2.d1/ D �1.d1; Od2.d1// by Od2.d1/ and letting d1 ! 0, since
limd1!0

Od2.d1/ D 0 we see by (6.22) and (6.29) that

lim
d1!0

d1� Od2.d1/

Od2.d1/
D lim
d1!0

�1.d1; Od2.d1//

Od2.d1/
D lim
d1!0

�1.d1; Od2.d1//��1.d1; 0/

Od2.d1/�0
Dƒ1.p/:

(6.31)

From this, we deduce the second identity in (6.28). Since d1 � Od2.d1/ D �1.d1; Od2.d1//,
by (6.5)–(6.7) and (6.12) we see that �1. Od2.d1/; m � �d1/ D 0. Denote by Q'
and Q the principal eigenfunction and adjoint principal eigenfunction corresponding to
�1. Od2.d1/;m � �d1/ D 0 respectively normalized so that

k Q'=�d1kL2.��.0;T // D k
Q �d1kL2.��.0;T // D 1: (6.32)

In other words, Q' and Q are positive and satisfy respectively8̂̂<̂
:̂
Q't � Od2.d1/� Q' D .m � �d1/ Q' in � �R;

@� Q' D 0 on @� �R;

Q' is T -periodic in t;

and 8̂̂<̂
:̂
� Q t � Od2.d1/� Q D .m � �d1/

Q in � �R;

@� Q D 0 on @� �R;

Q is T -periodic in t:

Differentiating the equation for Q' with respect to d1 and denoting 0 D @
@d1

, we obtain8̂̂<̂
:̂
Q'0t D

Od2.d1/� Q'
0 C .m � �d1/ Q'

0 C Od 02.d1/� Q' � �
0
d1
Q' in � �R;

@� Q'
0 D 0 on @� �R;

Q'0 is T -periodic in t:

Multiplying the above equation by Q and the equation for Q by Q'0, integrating over � �
.0; T / and subtracting the resulting equations, we deduce from the divergence theorem
that

Od 02.d1/ D �

R T
0

R
�
� 0
d1
Q Q'R T

0

R
�
r Q � r Q'

: (6.33)

Let Qv D Q'=�d1 . By direct computation, we see that Qv satisfies8̂̂<̂
:̂
Qvt D Od2.d1/Œ� Qv Cr ln �2

d1
� r Qv� � Od2.d1/ �

d1� Od2.d1/
Od2.d1/

�
��d1
�d1
Qv in � �R;

@� Qv D 0 on @� �R;

Qv is T -periodic in t:
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Therefore, by Proposition 3.4, Lemma 4.6, (6.31) and (6.32), we conclude that

Qv D Q'=�d1 ! ˆ1 in L2..0; T /;H 1.�// as d1 ! 0; (6.34)

where ˆ1 > 0 on N� is the principal eigenfunction of (6.1) corresponding to ƒ1.p/ > 0
and satisfying kˆ1kL2.�/ D 1=

p
T . Similarly, we can prove that

Q �d1 ! ‰1 in L2..0; T /;H 1.�// as d1 ! 0; (6.35)

where ‰1 > 0 on N� is the principal eigenfunctions to (6.2) corresponding to ƒ1.p/ > 0
and satisfying k‰1kL2.�/ D 1=

p
T . By Lemma 4.6, (6.34) and (6.35), we obtain

Q' ! pˆ1 and Q ! ‰1=p in L2..0; T /;H 1.�// as d1 ! 0:

Consequently, as d1 ! 0,Z T

0

Z
�

r Q � r Q' !

Z T

0

Z
�

r‰1 � rˆ1 � 2

Z T

0

Z
�

ˆ1
rp

p
� r‰1 C

Z T

0

Z
�

�p

p
ˆ1‰1;

and Z T

0

Z
�

� 0d1
Q Q' !

Z T

0

Z
�

�p

p
ˆ1‰1;

where in the last limit we have used (5.11) and (5.12). Now letting d1 ! 0 in (6.33), the
last identity in (6.28) follows from the above two limits and (6.27). This finishes the proof
of Claim 6.6.

We now finish the proof for Case (i)(b). Since �1.d1; d2/ � .d1 � d2/ is strictly
increasing in d2 2 .0; "0/ by (6.30), we see from Claim 6.6 that8̂̂<̂

:̂
d1 � d2 2 .�1.d1; d2/;1/ for all d1 2 .0; "0/ and d2 2 .0; Od2.d1//;

d1 � d2 2 .0; �1.d1; d2// for all d1 2 .0; "0/ and d2 2 . Od2.d1/; d1/;

d1 � d2 2 .�1; 0/ for all d1 2 .0; "0/ and d2 2 .d1; "0/:

(6.36)

This combined with (6.5), (6.7) and (6.14) finishes the proof for Case (i)(b) and hence the
proof for Theorem 2.10 (ii).

Finally, we deal with Case (ii) and assume that I.p/ < 0. Then by (6.10), we see that
d�1
d�
.0/ < 0 for all .d1; d2/ 2 .0; "0/2, which implies by [20, Theorem 16.3] that

�1.d1; d2/ < 0 8.d1; d2/ 2 .0; "0/
2: (6.37)

Since �1.0/ D �1.�1.d1; d2// D 0, it follows from Claim 6.3 that´
�1.�/ > 0 for all � 2 .�1.d1; d2/; 0/;

�1.�/ < 0 for all � 2 .�1; �1.d1; d2// [ .0;1/:
(6.38)

Claim 6.7.
�1 �

�1.d1; d2/

d2
< 0 8d1; d2 > 0: (6.39)
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To prove Claim 6.7, recall that '1 is the principal eigenfunction of (6.23) correspond-
ing to �1.d1; d2/, normalized so that k'1kL2..0;T /;L2.�// D 1. Dividing both sides of the
equation for '1 by '1 and integrating over � � .0; T /, we obtain

�1.d1; d2/

d2

Z T

0

Z
�

jr�d1 j
2

�2
d1

D

Z T

0

Z
�

jr'1j
2

'21
C 2

Z T

0

Z
�

r'1

'1
�
r�d1
�d1

� �

Z T

0

Z
�

jr�d1 j
2

�2
d1

:

This combined with (6.37) finishes the proof of (6.39) and hence of Claim 6.7.

Claim 6.8. Assume that m additionally satisfies condition (M3). Then

lim
d1;d2!0

@�1.d1; d2/

@d2
D ƒ1.p/ 2 .�1; 0/: (6.40)

To prove Claim 6.8, recall that '1 and  1 are the principal eigenfunction and the
principal adjoint eigenfunction satisfying (6.23) and (6.24) respectively, normalized so
that

k'1kL2..0;T /;L2.�// D k 1kL2..0;T /;L2.�// D 1:

By (6.39) and similar arguments to the proof of Claim 6.5, passing to subsequences of
.d1; d2/ if necessary, we see that

'1 ! ˆ1;  1 ! ‰1 in L2..0; T /;H 1.�//;

�1.d1; d2/=d2 ! ƒ� 2 Œ�1; 0�;
as d1; d2 ! 0; (6.41)

where ˆ1; ‰1 2 H 1.�/ are the principal eigenfunctions to (6.1) and (6.2) respectively
with ƒ� being the corresponding principal eigenvalue and

kˆ1kL2.�/ D k‰1kL2.�/ D 1=
p
T :

Since I.p/ < 0 and
R T
0

R
�
�p
p
dt D

R T
0

R
�
jrpj2

p2
dt > 0, we see from (2.3) that

R T
0
�p
p
dt

changes sign in �. Hence, it follows from Lemma 6.1 that ƒ1.p/ exists and ƒ1.p/ 2
.�1; 0/, where ƒ1.p/ ¤ �1 follows from (M3) and Remark 6.2. By similar arguments
to the proof of Claim 6.5, we can show that ƒ� ¤ 0 and hence we must have ƒ� D
ƒ1.p/ 2 .�1; 0/. Similarly to the proof of Claim 6.5, letting d1; d2 ! 0 in (6.25), and
then combining the result with (6.41) and (6.27), we derive (6.40). This finishes the proof
of the claim.

Claim 6.9. Let

N" D N"."0; p/ WD
1Cƒ1.p/

2
"0 2 .0; "0=2/:

There exists a unique continuously differentiable function Nd2 W .0; N"/! .0;1/with Nd2.d1/
2 .d1; "0/ such that for .d1; d2/ 2 .0; N"/ � .0; "0/,

�1.d1; d2/ D d1 � d2 ” d2 D Nd2.d1/:
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Moreover,

lim
d1!0

Nd2.d1/D 0; Nd 02.0/D
1

1Cƒ1.p/
> 1; lim

d1!0

Nd 02.d1/D
1

1Cƒ1.p/
> 1: (6.42)

We now prove Claim 6.9. By (6.39) and (6.40), we may extend the definitions of
�1.d1; d2/ and @�1.d1;d2/

@d2
so that

�1.�; 0/ D 0 in Œ0; "0/ and
@�1.0; 0/

@d2
D ƒ1.p/ 2 .�1; 0/: (6.43)

For notational convenience, denote

F.d1; d2/ WD �1.d1; d2/ � d1 C d2:

We see from (6.43) that @F .d1;d2/
@d2

ˇ̌
.d1;d1/D.0;0/

D 1Cƒ1.p/ > 0. Choosing "0 smaller if
necessary, we may assume that

@F.d1; d2/

@d2
>
1Cƒ1.p/

2
> 0 8.d1; d2/ 2 .0; "0/

2: (6.44)

Then for each d1 2 .0; N"/, by (6.37) and (6.43) we see that

F.d1; d1/ D �1.d1; d1/ � d1 C d1 < 0

and there exists � 2 .0; 1/ such that

F.d1; "0/ D F.d1; 0/C "0
@F.d1; d2/

@d2

ˇ̌̌̌
d2D"0�

> �d1 C
1Cƒ1.p/

2
"0 D �d1 C N" > 0;

Hence, by the intermediate value theorem and (6.44), for each d1 2 .0; N"/, there exists a
unique d2 D Nd2.d1/ 2 .d1; "0/ such that �1.d1; d2/ � d1 C d2 D 0 if and only if d2 D
Nd2.d1/. For each d1 2 .0; N"/, there exists some � 0 2 .0; 1/ such that

d1 D �1.d1; Nd2.d1//C Nd2.d1/

D Œ�1.d1; Nd2.d1// � d1 C Nd2.d1/� � Œ�1.d1; 0/ � d1 C 0�

D Nd2.d1/
@F.d1; d2/

@d2

ˇ̌̌̌
d2D�0 Nd2.d1/

>
1Cƒ1.p/

2
Nd2.d1/;

where we use (6.44) in the last inequality. Consequently, limd1!0
Nd2.d1/ D 0. Since

�1.d1; d2/ is analytic, Nd2.d1/ is actually analytic in d1 2 .0; N"/. The proof of (6.42) now
follows from similar arguments to those for (6.28) and hence is omitted. This finishes the
proof for Claim 6.9.

Choosing "0 even smaller if necessary, we see from (6.42) that Nd2.d1/ is strictly
increasing in .0; N"/. Now, replacing "0 by Nd2.N"/, we may define the inverse function of
Nd2.d1/ by Qd1 W .0; "0/! .0;1/. To summarize, we have the following result:
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Claim 6.10. There exists a unique continuously differentiable function Qd1 W .0; "0/ !
.0;1/ with Qd1.d2/ 2 .0; d2/ such that for .d1; d2/ 2 .0; "0/2,

�1.d1; d2/ D d1 � d2 ” d1 D Qd1.d2/:

Moreover,

lim
d2!0

Qd1.d2/ D 0; Qd 01.0/ D 1Cƒ1.p/ 2 .0; 1/; lim
d2!0

Qd 01.d2/ D 1Cƒ1.p/ 2 .0; 1/:

(6.45)

We now finish the proof for Case (ii). Since �1.d1; d2/� .d1 � d2/ is strictly increas-
ing in d2 2 .0; "0/, we see from Claims 6.9 and 6.10 that8̂̂<̂
:̂
d1 � d2 2 .0;C1/ for all d2 2 .0; "0/ and d1 2 .d2; "0/;

d1 � d2 2 .�1.d1; d2/; 0/ for all d2 2 .0; "0/ and d1 2 . Qd1.d2/; d2/;

d1 � d2 2 .�1; �1.d1; d2// for all d2 2 .0; "0/ and d1 2 .0; Qd1.d2//:

(6.46)

This combined with (6.5), (6.7) and (6.38) finishes the proof for Case (ii) and hence the
proof of Theorem 2.10 (iii).

7. Miscellaneous remarks

In this section, we first construct explicit examples of m’s such that the conditions in
Theorem 2.1 (i, ii, iii) hold respectively. Recall that 0 < ‚ 2 C 2. N�/ is the principal eigen-
function of (6.20) normalized so that k‚kC. N�/ D 1, and �1.�/ > 0 is the corresponding
principal eigenvalue. Define � 2 C1.R/ by

�.r/ WD

´
C exp

�
1

r2�1

�
if jr j < 1;

0 if jr j � 1;

where the constant C > 0 is selected so that
R

RN � dx D 1.

Lemma 7.1. Let h 2 C 2T .R/ with mint2Œ0;T � h.t/D 0 and maxt2Œ0;T � h.t/DM > 0. For
each ı > 0 and ˇ 2 .1; 2/, set

�
ˇ;ı
.x/ WD ıˇ�.jxj=ı/:

Then the following hold:

(i) Define
p.x; t/ D kh.t � � � x/‚.x/2 C k�; (7.1)

where 0¤ � 2 RN and 0 < k 2 R. Then for � > 0 sufficiently small and k > 0 suffi-
ciently large,mDpt=pCp satisfies conditions (M1) and (M2), and .��p=p/^<0
on N�, i.e., the conditions in Theorem 2.1 (i) hold.
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(ii) Denote

S WD ¹0 < p 2 C
2;1
T . N� �R/ j m D pt=p C p satisfies (M1) and (M2);

and .��p=p/^ < 0 on N�º: (7.2)

Let p1 2 S , x0 2 � and define

p.x; t/ WD p1.x; t/C �ˇ;ı .x � x0/:

Then for all ı > 0 sufficiently small,mDpt=pCp satisfies (M1) and (M2), I.p/> 0
and .��p=p/^.x0/ > 0, i.e., the conditions in Theorem 2.1 (ii) hold.

(iii) Let
p.x; t/ D a.x/.b.t/C k/C �;

where 0 < a 2 C 2. N�/ satisfies @�a D 0 on @�, b 2 C 1T .R/ with minŒ0;T � b > 0,
and k; � 2 .0;1/. Then for all � > 0 sufficiently small and k > 0 sufficiently large,
m D pt=p C p satisfies conditions (M1)–(M3) and I.p/ < 0, i.e., the conditions in
Theorem 2.1 (iii) hold.

Proof. We first prove part (i) of the lemma. By direct calculation, we see that

�p D kh00.t � � � x/‚2j�j2 � 4kh0.t � � � x/‚� � r‚C 2kh.t � � � x/.‚�‚C jr‚j2/:

Therefore, Z T

0

��p

p
dt D J1 C J2 C J3; (7.3)

where

J1 WD �

Z T

0

h00.t � � � x/‚2j�j2

h.t � � � x/‚2 C �
dt D �j�j2

Z T

0

�
h0.t � � � x/‚2

h.t � � � x/‚2 C �

�2
dt

� �
j�j2

T

�Z T

0

ˇ̌̌̌
h0.t�� �x/‚2

h.t�� �x/‚2C�

ˇ̌̌̌
dt

�2
� �
j�j2

T

�Z tx
2

tx
1

ˇ̌̌̌
h0.t�� �x/‚2

h.t�� �x/‚2C�

ˇ̌̌̌
dt

�2
D �
j�j2

T

�
ln
�
M‚2.x/

�
C 1

��2
� 0;

J2 WD 4

Z T

0

h0.t � � � x/‚� � r‚

h.t � � � x/‚2 C �
dt D 0;

J3 WD �2.‚�‚C jr‚j
2/

Z T

0

h.t � � � x/

h.t � � � x/‚2 C �
dt

D 2.�1.�/‚
2
� jr‚j2/

Z T

0

h.t � � � x/

h.t � � � x/‚2 C �
dt:

Note that in the estimation of J1, tx1 ; t
x
2 2 Œ0; T � are chosen such that h.tx1 � � � x/ D

mint2Œ0;T � h.t/ D 0 and h.tx2 � � � x/ D maxt2Œ0;T � h.t/ DM . In the computation of J3,
we have used the identity (6.20).
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Let�" WD ¹x 2� j dist.x; @�/ > "º. Then by the Hopf boundary lemma, there exists
"0 > 0 small such that

�0 WD min
N�n�"0

.jr‚j2 � �1.�/‚
2/ > 0 and �1 D min

�"0
‚ > 0:

Since J3 is uniformly bounded on N�"0 with respect to � > 0, for all � > 0 sufficiently
small we can guarantee thatZ T

0

��p

p
dt D J1 C J2 C J3 � �

j�j2

T

�
ln
�
M�21
�
C 1

��2
C J3 < 0 on N�"0 :

On N� n�"0 , it follows from the positivity of � and the above estimations thatZ T

0

��p

p
dt D J1 C J2 C J3 � J3 � �2�0

Z T

0

h.t � � � x/

h.t � � � x/‚2 C �
dt < 0:

It is easy to check thatm D pt=pC p > 0 on N� �R by choosing k sufficiently large
and m satisfies (M1) and (M2). Note that in the construction of p.x; t/ in (7.1), we have
chosen ‚2 other than ‚ to make sure that condition (M2) is satisfied. This finishes the
proof of part (i) of the lemma.

We next prove part (ii). It follows from (i) that the set S defined by (7.2) is nonempty.
Without loss of generality, we may assume that 0 2 � and set x0 D 0 in the rest of the
proof. By direct calculation, we see that

��
ˇ;ı
.x/ D ıˇ�2

�
�00
�
jxj

ı

�
C .N � 1/

ı

jxj
�0
�
jxj

ı

��
: (7.4)

Note that ı
jxj
�0. jxj

ı
/ is uniformly bounded and continuous in Bı.0/ n ¹0º and we can

extend its definition to x D 0. Since ��
ˇ;ı
.0/ D ıˇ�2N�00.0/, �00.0/ < 0 and ˇ 2 .1; 2/,

we can show thatZ T

0

��p

p
.0; t/ dt D

Z T

0

��p1.0; t/ � ı
ˇ�2N�00.0/

p1.0; t/C C
dt !C1 as ı ! 0:

On the other hand,

I.p/ D

Z
�nBı.0/

�
exp

�
1

T

Z T

0

lnp2 dt
�Z T

0

�p

p
dt

�
dx

C

Z
Bı.0/

�
exp

�
1

T

Z T

0

lnp2 dt
�Z T

0

�p

p
dt

�
dx DW I1.p/C I2.p/:

Since p � p1 on � n Bı.0/ and p1 2 S , we see that I1.p/ > 0 and I1.p/ is decreasing
in ı > 0. We now estimate I2.p/. Let K1; K2 > 0 be chosen such that

K1 � p1 � K2 on N� � Œ0; T �; j�p1j � K2 on N� � Œ0; T �;ˇ̌̌̌
�00.jxj/C .N � 1/

�0.jxj/

jxj

ˇ̌̌̌
� K2 in B1.0/:
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By direct computation, we have

jI2.p/j �

Z
Bı.0/

�
exp

�
1

T

Z T

0

lnp2 dt
�Z T

0

ˇ̌̌̌
�p

p

ˇ̌̌̌
dt

�
dx

� .K2 C Cı
ˇ /2

Z
Bı.0/

Z T

0

ˇ̌̌̌
�p1 C��ˇ;ı

p1 C �ˇ;ı

ˇ̌̌̌
dtdx

� .K2 C Cı
ˇ /2!

N
ıN
K2 C ı

ˇ�2K2

K1 � ıˇ

� 8.K2 C C/
3!

N
.ıN C ıNCˇ�2/=K1 ! 0 as ı ! 0;

where !
N

is the volume of the unit ball B1.0/ in RN . Consequently, I.p/ > 0 for all
ı > 0 sufficiently small. This finishes the proof of (ii).

Finally, we prove (iii). By direct computation,

I.p � �/ D �T exp
�
1

T

Z T

0

lnŒ.b C k/2� dt
�Z

�

jraj2 dx < 0:

Therefore, choosing k > 0 sufficiently large first and then � > 0 sufficiently small, we
can make sure that I.p/ < 0 and m D pt=p C p satisfies conditions (M1)–(M3).

For a general spatially heterogeneous and temporally periodic function m.x; t/ satis-
fying conditions (M1) and (M2), we have shown in Theorem 2.3 that when the diffusion
rates of both species are sufficiently large, the fast dispersal is selected against. On the
other hand, when the two diffusion rates are sufficiently small and close, and in addition
I.p/ > 0, we know by Corollary 2.5 that the phenotype with the faster diffusion rate is
selected for. Therefore, when I.p/ > 0, it is interesting to know whether there exists an
optimal dispersal rate in the sense that if the resident species U adopts such dispersal
rate, then a small number of mutant or exotic species V using a different random dis-
persal rate can never successfully invade. Such an optimal dispersal rate is usually called
a globally evolutionarily stable strategy (ESS), which is an important concept in adaptive
dynamics introduced by Maynard Smith and Price [35]. See also [7,8,10,11] for the gen-
eral approach of adaptive dynamics. We now recall the definition of local ESS for system
(1.1) motivated from [25, 26].

Definition 7.2. A strategy d�1 is a local ESS if there exists ı > 0 such that�1.d2;m��d�
1
/

> 0 for all d2 2 .d�1 � ı; d
�
1 C ı/ n ¹d

�
1 º.

When d2 D d1, �1.d2;m� �d1/D 0with �d1 being the corresponding eigenfunction.
By Taylor’s theorem,

�1.d2; m � �d1/ D
@�1.d2; m � �d1/

@d2

ˇ̌̌̌
d2Dd1

.d2 � d1/CO..d2 � d1/
2/:

Hence, if
@�1.d2;m��d1 /

@d2

ˇ̌
d2Dd1

is positive (resp. negative), then a rare mutant V with
strategy d2 slightly less than (resp. greater than) d1 can invade the residentU successfully.
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Therefore, it is important to first seek the existence of evolutionarily singular strategies,
defined as follows:

Definition 7.3. We say that d�1 is an evolutionarily singular strategy if

@�1.d2; m � �d�
1
/

@d2

ˇ̌̌̌
d2Dd

�
1

D 0:

Then Lemma 5.7 implies

Lemma 7.4. If I.p/ > 0, there exists at least one evolutionarily singular strategy.

If there is a unique evolutionarily singular strategy, we suspect that it should be
an ESS.

Appendix

In this appendix, we derive a global boundedness result for nonnegative classical solutions
of quasilinear time-periodic parabolic equations by modifying the Moser–Alikakos itera-
tion procedure [1]. We believe that this result will be of interest in its own right in the study
of periodic-parabolic equations. As we could not find a precise reference with accurate
dependence on all the parameters involved in the equation, and some major modifications
to the original procedure are also necessary, we include a detailed proof here for the sake
of completeness.

Consider the following periodic-parabolic equation:8̂̂<̂
:̂
ut D r � A.x; t; u;ru/C B.x; t; u;ru/ in � �R;

A.x; u;ru/ � � D 0 on @� �R;

u is T -periodic in t;

(A.1)

where the functions A W � � R � R � RN ! RN and B W � � R � R � RN ! R are
measurable and T -periodic in t .

We assume that A and B satisfy the structure conditions

A.x; t; u;ru/ � ru � �jruj2 � ua � ru � f � ru;
B.x; t; u;ru/ � jbj jruj C jduj C jgj;

(A.2)

where � > 0 is a constant, a D .a1; : : : ; aN /, b D .b1; : : : ; bN /, f D .f 1; : : : ; f N /, d
and g are measurable functions and ai ; bi ; f i ; d; g W � �R! R are T -periodic in t for
i D 1; : : : ; N . To simplify the form of these inequalities, we write

Nu D juj C k; Nb D ��2.jaj2 C jbj2 C k�2j f j2/C ��1.jd j C k�1jgj/ (A.3)

for some k > 0. Using the Schwarz inequality, we then obtain, for any 0 < � < 1,

A.x; t; u;ru/ � ru �
�

2
.jruj2 � 2 Nb Nu2/;

B.x; t; u;ru/ Nu �
�

2

�
�jruj2 C

Nb

�
Nu2
�
:

(A.4)
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Lemma A.1. Let u be a nonnegative classical solution of (A.1) which is T -periodic
in t and u 2 Lˇ ..0; T /; Hˇ .�// for some ˇ � 1. Let 
 > N and � D

ON.
C2/


. ONC2/
2 .0; 1/

be two given constants, where ON D N for N > 2 and 2 < O2 < 
 . Assume further that
ai ; bi ; f i 2 L2=.1��/..0; T /; L
 .�//, i D 1; : : : ; N , d; g 2 L1=.1��/..0; T /; L
=2.�//.
Then u 2 L1..0; T /; L1.�// and

sup
��R

u �

�
1

T
C �e�T

�1=ˇ
exp

�
C�H

ˇ

�
CH 1=ˇ

�
kukLˇ..0;T /;Lˇ.�// C

Nk

�

�
; (A.5)

where C D C.N;�; T; 
; ˇ/, Nb is defined in (A.3),

Nk WD kfk
L

2
1�� ..0;T /;L
 .�//

C kgk
L

1
1�� ..0;T /;L
=2.�//

; H D

Z T

0

�Z
�

. NbC 2/


2

� 2

.1��/

:

Proof. Let w D uC k. For ˇ � 2, multiplying (A.1) by wˇ�1 and integrating over �,
using the structure (A.4) and taking � D 1=2, since rw D ru, we obtain

1

�

�Z
�

wˇ
�
t

D �
ˇ

�

Z
�

.ˇ � 1/wˇ�2A � ruC
ˇ

�

Z
�

Bwˇ�1

� �
ˇ � 1

ˇ

Z
�

jrwˇ=2j2 C ˇ2
Z
�

Nbwˇ

� �
.ˇ � 1/

ˇ

�Z
�

jrwˇ=2j2 C

Z
�

wˇ
�
� ˇ2

Z
�

wˇ C

Z
�

ˇ2. Nb C 2/wˇ

� �
.ˇ � 1/C1

ˇ
kwˇ=2k2

L
2 ON
ON�2 .�/

� ˇ2
Z
�

wˇ C ˇ2k Nb C 2kL
=2.�/kw
ˇ
k
L




�2 .�/

� �
.ˇ � 1/C1

ˇ
kwˇ=2k2

L
2 ON
ON�2 .�/

� ˇ2
Z
�

wˇ C ˇ2k Nb C 2kL
=2.�/kw
ˇ=2
k
2�

L
2 ON
ON�2 .�/

kwˇ=2k
2.1��/

L1.�/
;

where C1 D C1.N;�/ is a positive constant. It is clear that the structure (A.4) and con-
sequently the above estimate continue to hold for k D 0 provided in (A.2) the terms
involving f and g are set equal to zero. Choosing k as in the statement of the lemma and
using Young’s inequality

ˇ2k Nb C 2kL
=2.�/kw
ˇ=2
k
2�

L
2 ON
ON�2 .�/

kwˇ=2k
2.1��/

L1.�/

�
.ˇ � 1/C1

ˇ
kwˇ=2k2

L
2 ON
ON�2 .�/

C

�
ˇ

.ˇ � 1/C1

� �
1��

ˇ
2
1�� k Nb C 2k

1
1��

L
=2.�/
kwˇ=2k2

L1.�/
;

we eventually get

1

�

�Z
�

wˇ
�
t

� �

Z
�

wˇ C C2ˇ
2
1�� k Nb C 2k

1
1��

L
=2.�/
kwˇ=2k2

L1.�/
; (A.6)
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where C2 D C2.N;�; 
; ˇ/ and we have used the fact that ˇ � 2. Denote

y.t/ WD

Z
�

wˇ ; h.t/ WD k NbC 2k
1
1��

L
=2.�/
; z.t/ WD kwˇ=2k2

L1.�/
; H WD

Z T

0

h.t/dt:

Then we can rewrite (A.6) as

y0.t/ � ��y.t/C C2�ˇ
2
1�� h.t/z.t/: (A.7)

Let s0 2R be such that y.s0/D inft y.t/ and t0 2 Œs0; s0C T � such that y.t0/D supt y.t/.
Integrating both sides of (A.6) from s0 to s0 C T , we see that

Ty.s0/ �

Z s0CT

s0

y.t/ dt � C2Hˇ
2
1�� sup

t
z.t/: (A.8)

On the other hand, applying the variation of constants formula to (A.7) and integrating
from s0 to t0, we obtain

y.t0/ � e
�.t0�s0/y.t0/ � y.s0/C C2�ˇ

2
1��

Z t0

s0

e�.t�s0/h.t/z.t/ dt

� y.s0/C �e
�TC2Hˇ

2
1�� sup

t
z.t/:

Plugging (A.8) into the above inequalities, we see that

sup
t
y.t/ �

�
1

T
C �e�T

�
C2Hˇ

2
1�� sup

t
z.t/:

This implies that

sup
t
kwkLˇ.�/ � C

1=ˇ
3 ˇ

1
ˇ
� 2
1�� sup

t
kwkLˇ=2.�/; (A.9)

where C3 D .1=T C �e�T /C2H . Therefore, for any ˇ � 2, the inclusion of w 2
L1..0; T /; Lˇ=2.�// implies the stronger inclusion, w 2 L1..0; T /; Lˇ .�//. By iter-
ation of the above estimate, we may assume that w 2

T
1�ˇ<1 L

1..0; T /; Lˇ .�// and
by (A.9),

sup
t
kwk

L2
Kˇ.�/

�

� KY
mD1

C
1

2mˇ

3 .2mˇ/
2�

.1��/2mˇ

�
sup
t
kwkLˇ.�/

� C
�=ˇ
3 exp

�
2

1 � �
�

lnˇ
ˇ
� � C

2

1 � �
�

ln 2
ˇ
� �

�
sup
t
kwkLˇ.�/;

where � D
PK
mD1 2

�m < 1 and � D
PK
mD1m2

�m. Letting K !1 and denoting �0 DP1
mD1m2

�m, we obtain

kwkL1..0;T /;L1.�// �

�
1

T
C �e�T

�1=ˇ
H 1=ˇC4kwkL1..0;T /;Lˇ.�//; (A.10)
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where ˇ � 1 and

C4 D C4.N;�; 
; ˇ/ D C
1=ˇ
2 exp

�
2

1 � �
�

lnˇ
ˇ
C

2

1 � �
�

ln 2
ˇ
� �0

�
:

By (A.6) and Hölder’s inequality, we see that�Z
�

wˇ
�
t

� C5�h.t/

Z
�

wˇ ;

where C5 D C5.N;�; 
; ˇ/D C2ˇ
2
1�� . Hence, for any s; t 2 Œ0; T � with t � s, it follows

from the above inequality thatZ
�

w.x; t/ˇ dx � eC5�
R t
s h.�/ d�

Z
�

w.x; s/ˇ dx � eC5�H
Z
�

w.x; s/ˇ dx

and Z
�

w.x; s/ˇ dx D

Z
�

w.x; s C T /ˇ dx � eC5�
R sCT
t h.�/ d�

Z
�

w.x; t/ˇ dx

� eC5�H
Z
�

w.x; t/ˇ dx:

Thus, we have showed that for any s; t 2 Œ0; T �,

e�C5�H=ˇkw.�; s/kLˇ.�/ � kw.�; t /kLˇ.�/ � e
C5�H=ˇkw.�; s/kLˇ.�/;

which implies that

kwkL1..0;T /;Lˇ.�// D sup
t
kw.�; t /kLˇ.�/ � e

C5�H=ˇ inf
t
kw.�; t /kLˇ.�/

� T �1=ˇeC5�H=ˇkwkLˇ..0;T /;Lˇ.�//:

Combining the above estimate with (A.10), we obtain

kwkL1..0;T /;L1.�// �

�
1

T
C �e�T

�1=ˇ
H 1=ˇeC5�H=ˇC4T

�1=ˇ
kwkLˇ..0;T /;Lˇ.�//:

(A.11)

Now, letting C.N;�; T; 
; ˇ/ WD max ¹C5; C4T �1=ˇ º and k D Nk=�, the desired estimate
(A.5) follows from the definition w D uC k.

Proof of Lemma 3.3. By Proposition 3.2, for all d sufficiently large, there exist '2.x; t Id/
and  2.x; t I d/ with k'2kL2..0;T /;H1.�// and k 2kL2..0;T /;H1.�// uniformly bounded
in d such that

'.x; t/ D x'.t/C
x'.t/�h.x; t/

d
C
'2.x; t/

d2
;

 .x; t/ D x .t/C
x .t/�h.x; t/

d
C
 2.x; t/

d2
;
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where the dependence on d of all the functions involved is suppressed for notational con-
venience. Denote �1 WD �1.d; h/ in the remainder of this proof. Integrating the equation
for ' over �, we see that

x't D x'.hC �1/C
1

j�j

Z
�

h.' � x'/ D x'.hC �1/C x'
1

d j�j

Z
�

h�h C
1

d2j�j

Z
�

h'2:

(A.12)

Dividing the above equation by x' and integrating from 0 to T , we deduce from (3.7) that

0 D ONhC �1 C
1

d

b
h�h CO

�
1

d2

�
;

Multiplying the equation for �h by �h and integrating over�, we find that h�hD jr�hj2.
Hence

�1 D �
ONhC

1

d

2
jr�hj2 CCO

�
1

d2

�
:

Plugging this back into (A.12), we see that

x't D x'

�
.h � ONh/C

1

d

�
jr�hj2 �

2
jr�hj2

��
CO

�
1

d2

�
:

Therefore, using the variation of constants formula, we deduce the asymptotic expression
for x'. Similarly, we can deduce the asymptotic expression for x .

Finally, we prove Lemmas 4.1, 4.2 and 4.7.

Proof of Lemma 4.1. First of all, for any ı>0, we can approximate f by Qf 2C1T . N��R/
such that

k Qf � f kC. N��Œ0;T �/ < ı=2:

Hence, it suffices to prove the lemma assuming that f 2 C1T . N� �R/.
For each x 2 �, let d.x/ WD dist.x; @�/ and �� WD ¹x 2 � j d.x/ > �º. Since @� is

smooth, there exists some �0 > 0 small such that for each � < �0 and any x 2 @�� , there
exists a unique nearest boundary point yx 2 @� such that jx � yxj D d.x/. Moreover, the
points x and yx are related by

x D yx � �.yx/d.x/;

where �.yx/ is the unit outer normal to @� at yx .
Now for � < �0=3, define

Qf�.x; �/ WD

´
0 in N�3�;

f .yx ; �/ in N� n�3�:

Then Qf�.�; �/ 2 C1T .. N� n�3�/ �R/ with @� Qf� D 0 on @� �R. Moreover,

k Qf� � f kC.. N�n�3�/�Œ0;T �/ � 3�kf kC1.. N�n�3�/�Œ0;T �/:
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Recall that � 2 C1.R/ is the standard mollifier defined at the beginning of Section 6.
For each � > 0, set ��.x/ WD �.jxj=�/=�N . Let � WD �

�3�=2
� ��=2, where �

�3�=2
is the

characteristic function of the set �3�=2. Extending � by setting �.x/ D 0 in N� n��=2, it
is easy to see that � 2 C1. N�/ and that � � 1 in �2� and � � 0 in � n N�� . Let f� D
�f C .1 � �/ Qf� . Then it is easy to verify that f� 2 C1. N� � R/ is T -periodic in t with
@�f� D 0 on @� �R and

kf� � f kC. N��Œ0;T �/ < ı

for all � sufficiently small.

Proof of Lemma 4.2. Since Oh0 < 0 on N�, ˇ WD �maxx2 N� Oh0.x/ > 0. For all d sufficiently
small, we have

hd < h0 C ˇ=2 on N� � Œ0; T �:

Hence, it follows from [20, Lemma 15.5] that �1.d; hd / > �1.d; h0 C ˇ=2/. By [23,
Lemma 2.4],

lim
d!0

�1.d; h0 C ˇ=2/ D �max
x2 N�

. Oh0.x/C ˇ=2/ D ˇ=2 > 0:

Therefore, �1.d;hd / > 0 and hence by [33, Proposition 4.4.8], for all d sufficiently small
equation (4.1) has a unique T -periodic strong solution ud in the sense of [33, Defini-
tion 4.4.1].

Since Oh0 < 0 on N�, we can show that for each x 2 N�, there is a unique T -periodic
solution u0.x; �/ of the ODE (4.2). Indeed, by direct calculation, we see that

u0.x; t/D e
R t
0 h0.x;s/ ds

�R T
0
e�

R �
0 h0.x;s/ dsf0.x; �/ d�

e�
R T
0 h0.x;s/ ds � 1

C

Z t

0

e�
R �
0 h0.x;s/ dsf0.x;�/d�

�
:

(A.13)
For each " > 0 small, let u";˙0 be the unique strong solution of (4.2) with f0 replaced

by f0 ˙ 2". It follows from (A.13) that

lim
"!0
ku
";˙
0 � u0kC. N��Œ0;T �/ D 0: (A.14)

Therefore, there is a constant C > 0 depending only on f0 and h0 such that for all " < 1,

ku
";˙
0 kC. N��Œ0;T �/ � C:

By Lemma 4.1, for each " > 0 small, there exists Qu";˙0 2 C
2;1
T . N� �R/ such that

k Qu
";˙
0 � u

";˙
0 kC0;1. N��Œ0;T �/ <

"

2.kh0kC. N��Œ0;T �/ C 1/
; @� Qu

";˙
0 D 0 on @� �R:

(A.15)
Moreover, there exists d" > 0 such that

kfd � f0kC. N��Œ0;T �/ �
"

2
and khd � h0kC. N��Œ0;T �/ �

"

2C
8d < d":
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Then by direct computation, we have

@t Qu
";C
0 � d� Qu

";C
0 � hd Qu

";C
0 � fd

D .@t Qu
";C
0 � @tu

";C
0 /� d� Qu

";C
0 Cu

";C
0 .h0� hd /C hd .u

";C
0 � Qu

";C
0 /C .f0�fd /C 2"

� �"=2� d� Qu
";C
0 � "=2� "=2C 2"

D "=2� d� Qu
";C
0 :

Similarly, we can show that

@t Qu
";�
0 � d� Qu

";�
0 � hd Qu

";�
0 � fd � �"=2 � d� Qu

";�
0 :

Therefore, by choosing d� > 0 smaller if necessary, we see that for all d < d� ,

@t Qu
";�
0 � d� Qu

";�
0 � hd Qu

";�
0 � fd < 0 < @t Qu

";C
0 � d� Qu

";C
0 � hd Qu

";C
0 � fd :

Consequently, by the comparison principle for periodic-parabolic equations, we obtain

Qu
";�
0 < ud < Qu

";C
0 8d < d�:

Hence, letting d ! 0, we see that

lim inf
d!0

ud � Qu
";�
0 and lim sup

d!0

ud � Qu
";C
0 :

Finally, letting � ! 0, we see from (A.14) and (A.15) that

kud � u0kC0;1. N��Œ0;T �/ ! 0 as d ! 0:

This finishes the proof of the lemma.

Proof of Lemma 4.7. By Lemma 4.1, for any � > 0, there exists m� 2 C
2;1
T . N� �R/ with

@�m� D 0 on @� �R such that

km� �mkC0;1. N��R/ < �=2:

Define m˙� D m� ˙ �. Then

m�� <m<m
C
� ; �=2 < km˙� �mkL1. N��R/ < 3�=2; km

˙
�;t �mtkL1. N��R/ < �=2:

(A.16)
Let ��;˙

d
be the unique positive T -periodic solution to8̂̂<̂

:̂
ut � d�u D u.m

˙
� � u/ in � �R;

@�u D 0 on @� �R;

u is T -periodic in t:

Then it is easy to check that ��;˙
d

is a pair of sub- and supersolutions to (1.2) and that
0 < �

�;�
d

< �
�;C
d

for all � sufficiently small. Therefore, by the sub- and supersolution
method and uniqueness of a positive periodic solution to (1.2), we must have

�
�;�
d

< �d < �
�;C
d
: (A.17)
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On the other hand, by Lemma 4.6 we have

k�
�;˙
d
� p�;˙kC0;1.��Œ0;T �/ ! 0 as d ! 0; (A.18)

where p�;˙ is the unique positive solution to the ODE

p
�;˙
t D p�;˙.m˙� � p

�;˙/;

and it follows from (A.16) that

kp�;˙ � pkC0;1.��Œ0;T �/ ! 0 as � ! 0: (A.19)

Therefore, letting d ! 0 in (A.17), we deduce from (A.18) that

lim inf
d!0

�d � p
�;� and lim sup

d!0

�d � p
�;C:

Since � > 0 is arbitrary, letting � ! 0 we see from (A.19) that

k�d � pkC. N��Œ0;T �/ ! 0 as d ! 0:

By similar arguments to the proof of Lemma 4.6, we can show that

k�d;t � ptkC. N��Œ0;T �/ ! 0 as d ! 0:

This finishes the proof of the lemma.
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