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Abstract. In this paper and the companion work [J. Funct. Anal. 281 (2021)], we prove that the
Schrodinger map flows from R with d > 2 to compact Kéhler manifolds with small initial data
in critical Sobolev spaces are global. The main difficulty compared with the constant sectional
curvature case is that the gauged equation now is not self-contained due to the curvature part. Our
main idea is to use a novel bootstrap-iteration scheme to reduce the gauged equation to an approx-
imate constant curvature system in finite times of iteration. This paper together with the companion
work solves the open problem raised by Tataru.
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1. Introduction

Let (N, J, h) be a Kdhler manifold. The Schradinger map flow (SMF) on Euclidean space
isamapu : R x R — N which satisfies

{ut = J(XL, Vioiw),

ul;—o = Uo,

(1.1)

where V denotes the induced covariant derivative in the pullback bundle u*T N .
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Assume that N is isometrically embedded into R¥ . Then (1.1) can be formulated as

{ut = JP,;N(ARdu), (12)

ul,—o = Uo,

where P,;N denotes the orthogonal projection from RY onto Ty, N .

(1.1) plays a fundamental role in solid-state physics and is usually to referred to as the
Landau-Lifshitz flow in physics literature. The various forms of SMF are commonly used
in micromagnetics to model the effects of a magnetic filed on ferromagnetic materials
(e.g. [20]). Inthe d = 1 and d = 2 case with N = S?, SMF is referred to as the ferro-
magnetic chain equation and the continuous isotropic Heisenberg spin model respectively
(e.g. [42]).

The Schrédinger map flow can be viewed as a Hamiltonian flow on an infinite-dimen-
sional symplectic manifold; see Ding [8]. One of the conservation laws of SMF is conser-
vation of energy defined by

1
E) = E/Rd |0ul? dx.

And SMF has the scaling invariance property: u(z, x) > u(A%t, Ax). Thus d = 2 is the
energy critical case. In the case N = S2, SMF has mass as another conserved quantity:

1
M(u) = E/Rd lu— P|?dx if||u0—P||L% < oo for some P € S2.

However, the mass is not conserved for a general target N .

We recall the following non-exhaustive list of works on Cauchy problems. The local
well-posedness theory of Schrodinger map flows was developed by Sulem—Sulem—Bardos
[32], Ding—Wang [9] and McGahagan [24]. The global well-posedness theory was star-
ted by Chang—Shatah—Uhlenbeck [7] and Nahmod—-Stefanov—Uhlenbeck [28]. And the
d = 1 case with general targets was studied by Rodnianski—Rubinstein—Staffilani [30].
Global existence for small data in critical Besov spaces was proved by Ionescu—Kenig
[14] and Bejenaru [1] independently. The small data global well-posedness theory in crit-
ical Sobolev spaces was developed by Bejenaru—Ionescu—Kenig [2] for high dimensions
d > 4. The dimension 2 case, which is energy critical, was studied by Bejenaru—Ionescu—
Kenig-Tataru [5] where the global well-posedness theory for small data in critical Sobolev
spaces was established for N = S? with d > 2. And Dodson—Smith [10] studied the con-
ditional global regularity problem for d = 2.

The stationary solutions of SMF are harmonic maps. So far, the dynamical behavior
of SMF near harmonic maps is partly known in the equivariant case with d =2, N' = S2.
The works of Gustafson—Kang—Tsai—Nakanishi [11, 12] studied asymptotic stability vs.
wind oscillating near harmonic maps in high equivariant classes. Bejenaru—Tataru [6]
studied global stability vs. instability of harmonic maps for 1-equivariant 2D SMF. The
type II blowup solutions were constructed by Merle—-Raphaél-Rodnianski [25] and Perel-
man [29] for 1-equivariant 2D SMF. And the below-threshold conjecture was verified for
equivariant SMF from R? into S? or H? by Bejenaru—Ionescu-Kenig—Tataru [3,4].
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All the above mentioned global well-posedness results for SMF with d > 2 are for
targets S? or H2. Tataru raised the question of small data global well-posedness in critical
Sobolev spaces for general compact Kéhler targets in the survey report [18]. This work,
which deals with the energy critical case d = 2, together with the companion work [21],
solves this problem.

1.1. Main results

Before stating our main results, we introduce some notations. For geometric PDEs, it is
convenient to work in both intrinsic and extrinsic Sobolev spaces. For smooth maps from
R4 — W the intrinsic norms are defined by

el 5 = mew”mw
Jj=1

where V denotes the induced covariant derivative in u*T N .
Given a point Q € N, we define the extrinsic Sobolev space H 5 by

Hé = {u ‘R4 - RV | u(x) € N ae.in R, lu — Ol gxray < 00},
equipped with the metric dg (f. g) = || f — gl g« . Define

o)
JfQ = ﬂ Hé
k=1

Our main results are the following.

Theorem 1.1. Let d = 2, let N be a 2n-dimensional compact Kéiihler manifold which is
isometrically embedded into RN, and let Q € N be a given point. There exists a suffi-
ciently small constant € > 0 such that if ug € H¢ satisfies

[0xuoll,2 < €x. (1.3)

then (1.1) with initial data ug evolves into a global unique solution u € C(R; #Hp).
Moreover, as |t| — oo the solution u converges to the constant map Q in the sense that

i Ju(0) = Qlluze = 0. (1.4)

Furthermore, in the energy space, we also have

hm Hu(t) - Z‘h(e”Ahj ) — Z\s(e”A J )”H1 = (1.5)

j=1

for some functions hi, gi :R2 — CN belonging to H' with j = 1,...,n
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Remark 1.1. The asymptotic behaviors (1.4) and (1.5) are new for SMF. The analogous
result of (1.4) for wave maps was obtained in part VII of Tao [38]. A similar result to (1.5)
was recently obtained by the author [22] in the setting of SMF on hyperbolic planes. One
can see that (1.5) is natural by checking the trivial target &' = R?"; see [22, Remark 1.1]
for instance.

We also prove uniform bounds and well-posedness results analogous to those of [5].

Theorem 1.2. Let d = 2 and o1 > 0. Let N be a compact Kiihler manifold which
is isometrically embedded into RN, and let Q € N be a given point. There exists a
sufficiently small constant €5, > 0 depending only on o such that the global solution
u = So(t)up € C(R; Hg) constructed in Theorem 1.1 satisfies the uniform bounds

sup lu(®) = Qllgo+1 = Co(lluo = Qligo+1), Vo €[0,01]. (1.6)
te ’

In addition, for any o € [0, 01], the operator S admits a continuous extension
. po . o+l
So : ?Béal — C(R; H™Y),

where we denote
B = {f e HG™ 1 f — Qi1 < e},

Remark 1.2. Theorem 1.1 holds for d > 3 as well. This is proved in the companion work
[21]. The main proof in higher dimensions uses ideas of this work and some additional
ingredients on heat flows. We will explain this issue at the end of the introduction.

1.2. Caloric gauge and heat flows

For dispersive geometric PDEs, especially for critical problems, it is important to choose
suitable gauges and function spaces adapted to the structure of nonlinearities (e.g. null
structure). Most of these tools were developed in the study of wave map equations; see
for instance [16,17,19,27,33,34,39,40]. In this work, we will use Tao’s caloric gauge and
function spaces developed in [5, 13]. As observed in [5,35], the caloric gauge is essential
for eliminating bad frequency interactions in dimension 2 compared with Coulomb gauge.
For convenience, we briefly recall the definition of caloric gauge.

First, let us recall the moving frame dependent quantities and some related identities;
see [26] and [30] for more extensive expositions. Let Greek indices run in {1, ..., n}.
Let Roman indices run in {1,...,2n} or {1,...,d} according to the context. Denote
B=PB+nforpe{l,. .. n.

Let .V be a 2n-dimensional compact Kahler manifold. Since R? x [T, T] is con-
tractible, there must exist global orthonormal frames for u* (7 N'). Using the complex
structure one can assume the orthonormal frames are of the form

E :={e1(t,x), Je1(t, x),...,en(t,x), Je,(t,x)}. (1.7)
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Lety; = (1//1.1, ii, RV wiﬁ) fori =0, 1,2 be the components of d; ,u in the frame E:
Y& = (Qiu,eq). Y = (diu, Jeq). (1.8)

We always use 0 to represent ¢ in subscripts. The isomorphism of R2" to C" induces a
C"-valued function defined by ¢;3 = wiﬂ + V-1 1//iﬂ with 8 = 1,...,n. Conversely,
given a function ¢ : [T, T] x R? — C", we associate with it a section ¢E of the bundle
u*(TN) via

¢ < OE := RN(pP)eg + 3(¢pP)Jep, (1.9)
where (¢!,...,$") are the components of ¢. Then u induces a covariant derivative on the
trivial complex vector bundle over the base manifold [—7, 7] x R? with fiber C", defined
by

n —
Dip? = 0i0P + > ([l + V-1[4:10)¢",
a=1

where the induced connection coefficient matrices are defined by
[A,]g = (V,-ep, eq).

Schematically we write D; = d; + A;. Recall the torsion free identity and the commutator
identity

Di¢; = Dj¢;, (1.10)
[Di, Djle = (0;Aj — 3 Ai + [Ai, AjDe < R(3;u, dju)(¢E), (1.11)

where R is the curvature rensor. Schematically, we write [D;, D;] = R(¢;, ¢;). With the
notations above, (1.1) can be written as

2
¢ =~v—1) Digi. (1.12)
i=1
In [31] it is proved that the heat flow with initial data u(¢, x) below threshold energy
converges to Q as s — oo in the topology of C([—T, T']; CL°). Tao’s caloric gauge is
defined as follows:

Definition 1.1. Letu : [-7,T] x R? — N be a solution of (1.1) in C([-T, T]; #g). For
a given orthonormal frame E* := {e°, Je(°, ..., e;°, Jey,°} for To N, a caloric gauge
is a tuple consisting of a map v : Rt x [T, T] x R? — N and orthonormal frames
E(v(s,t,x)) :={e1, Jeq, ..., e, Jey} such that

asv = Zz'2=1 Viaiv, (1.13)
v(0,¢,x) = u(t, x),
and
Vser, =0, k=1,...,n,
sk (1.14)

lim e = e°.
S—>00
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Denote
J(JQ(T) = C([—T, T]; ]fQ).

Proposition 1.1. Let u € Hg(T') solve SMF with ug € Hg. For any fixed frame E*° :=
texe, Jertyy_y for ToN, there exists a unique corresponding caloric gauge as defined
in Definition 1.1. Moreover, fori = 1,2 and p,q = 1,...,2n,

; 14 — ; q —
Shm [A,]p(s,t,x) =0, Shm [At]p(s,t,x) =0.
In particular, fori = 1,2 and s > 0,

[A,-]é’(s,t,x) = —/OO(R(E)SU(E')), d;v(S)ey, eq) ds,
47600 = = [ RAWE). 00 I

Proof. The proof is standard (see e.g. [31]). The only new issue here is the complex
structure J. But this will not cause any trouble since J commutes with V. ]

Givenu € #o(T) which solves (1.1), letv : RT x [T, T] x R — N be the solution
to (1.13). Let {eq, Jeq }h—_, be the corresponding caloric gauge. Define the heat tension
field ¢ to be

@Y 1= (0s5v,eq) + x/—_l(asv,Jea), a=1,...,n,
and the differential fields to be
¢F = (0;v, eq) + x/—_l(a,-v,Jea), a=1,...,n,
where i = 1, 2 refers to the variable x;,i = 1,2, and i = O refers to the variable ¢.

Lemma 1.1. The heat tension field ¢s satisfies

2
b5 = ZD,-¢,-. (1.15)
j=1
The differential fields {¢; }?_, along the heat flow satisfy
2 2
0s¢i = ) DiDjdhi + ) R(éi.9))¢;. (1.16)
j=1 j=1
And when s = 0, along the Schrédinger flow direction, {¢; }?_, satisfy
2 2
—V=1Dipi =) DiDjgi + ) Ridi.$;)¢;- (1.17)
j=1 j=1

Notations. Let Z4 = {1,2,...} and N = {0, 1,2,...}. We apply the notation X <Y
whenever there exists some constant C > 0 so that X < CY. Similarly, we willuse X ~ Y
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if X Y < X. We sometimes drop the integral variable in the integration if no confusion
occurs. And we closely follow the notations of [5] for the reader’s convenience.

Let ¥ denote the Fourier transformation in R2.

Let y : R — [0, 1] be a given smooth even function which is supported in {z € R :
|z] < 8/5} and equal to 1 for {z € R : |z| < 5/4}. Define yx(z) := y(z/2%) — x(z/2F71),
k € Z. The Littlewood-Paley projection operators with Fourier multiplier n — y (|n|) are
denoted by P,k € Z.For I C R, let y; := ) ;s xi(|]). The low frequency cutoff oper-
ator with Fourier multiplier n = x(—o0,k](|§|) is denoted by P, and the high frequency
cutoff is defined by Psx := I — P<.

Givene € S', k € Z, denote by Py . the operator with Fourier multiplier £ > yx (& - ).

The Riemannian curvature tensor on N is denoted by R. The covariant derivative
on N is denoted by 6, and we denote V the induced covariant derivative on u*T N . The
metric tensor of N is denoted by (-, -). Let £ be a Riemannian manifold with connec-
tion V, and T be a (0, r) type tensor. For k, r € Z, we define the (0, r 4 k) type tensor
VAT by

VET (X1, ..., Xk Y1, V) o= (Ve (VR T) (X, Xees YL )

for any tangent vector fields Xq,..., Xk, Y1,..., Y, on E.

1.3. Function spaces built in [5]

We recall the spaces developed by Bejenaru—Ionescu—Kenig—Tataru [5]. Given a unit vec-
tor e € S we denote its orthogonal complement in R? by e*. The lateral space LZ* is
defined by the norm

plq 1/p
1 Lga = ( / ( /L |f(r,x1e+x’)|qu’dr) dxl) ,
R el xR

with standard modifications when either p = oo or ¢ = co. And for any given A € R,
W C R, we define the spaces L% and L3, with norms

1z =GN lges 1z = inf 3"l fillgra,

f=2rew fa Aew

where G, denotes the Galilean transform:
Ga(f)(t. x) 1= €325 f(x 4 1a1).

We remark that the lateral space was studied by Linares—Ponce [23], Kenig—Ponce—Vega
[15] and Ionescu—Kenig [14].

We now recall the main dyadic function spaces N (T), Fx(T),Gy(T). Given T € R*
andk € Z,let Iy := {n € R2: 2k=1 < || < 2¥+1} and

LIZC(T) = {g € L2([-T,T] xR?) : Fg(t,n) is supported in R x I;}. (1.18)
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Given £ € Zy, T € (0,22%], and k € Z, define
W := {A € [=2%K 22k] . 2k+2%) ¢ 7. (1.19)

The Ny (T), Fi(T), Gy (T) spaces are Banach spaces of functions in Li (T) for which the
associated norms are finite:

. —k/2 —k/2
I8l rocry = lglegorz +272lglLsree + lglzs +27 sup gl 20
ecS! k+40
(T = inf inf 2 o,
”gHFA(T) jeZ+,n1,...,njENg=gnl+ +g nj 12: ”gnl ||Fk+”/
Igllger == llglFo + sup gl 36 + sup sup || Pjegll 6
ecS |k—j1<20 eeS!
+ 2Kk/2 sup  sup  sup || Pjegll 002,
lk—j|<20 eeS! |A|<2k—40 e
o : k/6 k/6
Iglveery = _inf gl + 2 Ngall gymers + 27 Ngall gpaers

+ 272 sup flgall 2
ecS! Wik—40
where {e;,e,} C S! is the standard basis of R%. The Gy, F) spaces were built by Beje-
naru—Ionescu—Kenig—Tataru [5].
Recall also the refined space for Fi(T'): Let S;”(T') denote the normed space of func-
tions in Li (T) for which

lgllspery =2 Ughypo 20 + 8l s +27 28N i o)

L4Lp‘”
is finite, where the exponents 2, and p;; are defined via

1 1 1 o
o

1
2% 2 pr 4

1.4. Overview of the proof

Main difficulty for general targets. The new difficulty arising in the case of general tar-
gets is to control the curvature terms in frequency localized spaces. Since the curvature
term relates to the map itself, it cannot be written in a self-contained form in terms of
differential fields and heat tension fields {¢y, ¢ }. Thus directly working with the moving
frame dependent quantities may lead to losing control of curvature terms, which is much
more serious when frequency interactions are considered. In the wave map setting, the
general targets case was solved by Tataru [41] using Tao’s micro-local gauge and Tataru’s
function spaces. It is important that the wave map equation is semilinear in the extrinsic
form, and the micro-local gauge adapts to the extrinsic formulation well. However, for
SMEF, on the one hand, since the extrinsic form equation is quasilinear, one has to use the
intrinsic formulation to obtain a semilinear equation. On the other hand, the intrinsic form
is not a self-contained system where the curvature term is not determined by differential
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fields. The two conflicting sides of the problem make solving SMF for general targets
challenging.

Outline of proof for d = 2. Let us sketch the proof in the d = 2 case. The whole proof
is divided into ten steps. Given § > 0, let {ay }xcz be a positive sequence; we call it a
frequency envelope of order § if

Zai <oo, and a; < 25”_”(11, VjleZ.
keZ
We call the frequency envelope {ay } an e-envelope if it additionally satisfies

2 2
> ap <€

keZ

Step 1. Tracking L°L2 bounds along the heat flow direction. Recall the extrinsic
formulations of heat flows: Assume that the target manifold .V is isometrically embedded
into R¥; then the heat flow equation can be formulated as

2 N
dsvl — Avt = Z Z Sl»ljaaviSavj, l=1,...,N, (1.20)

a=1i,j=1
where § = {S l-lj} denotes the second fundamental form of the embedding & < R . For
u € Ho(T), define

—§|lk—k'|Hok'+k’ 1
lk—k’| yok’+ I Peuillpoor2. 0 20.8=g5

Yk(0) ;= sup 2 800"

k’'€Z

Denote by {yx} the frequency envelope for the energy norm, i.e. yr = y%(0). The first
result of Step 1 is stated for o € [0, %]:

Proposition 1.2. Assume that u € Ho(T) satisfies
||3xu||L§>°L}C =€ K1, (1.21)
and let v(s, t, x) be the solution of the heat flow (1.20) with initial data u(t, x). Then

sup (1 + 52%)*1 24| Ppol| oo 2 S 27 %y (o)

s>0

forallo €0, %], k € Z. Moreover, for any o € [%, %], and k € 7, we have

sup (1 + 527202 ol oo 2 S ya(0) + yi(0 = 3/8)yx(3/8).

s>0

Remark 1.3. The power of 1 + s22¥ in Proposition 1.2 can be chosen to be any M € Z
if we additionally assume that € is sufficiently small depending on M ; see Proposition 1.3
below.

The second result of this step is bounds of 2(C+Vk || Py ||L;X>sz foro € (0,14 j/4]:
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Proposition 1.3 (j-th iteration). Let j € N and M € Z . Assume that u € Ho(T) sat-
isfies (1.21) with €; sufficiently small depending on j, M. Let v(s, t, x) be the solution of
the heat flow (1.20) with initial data u(t, x). Then for 0 € [0,1 + j/4] and any k € Z,
v satisfies

sup (1 + s22)M 2K FK| Pyl oo 2 Sur v (0), (1.22)

s€[0,00)
where {y) (0)} are defined in (3.18)~(3.20).

Step 2. Pretreating curvature terms. The curvature part in the master equation (1.17)
can be schematically written as

RR@@i¢)G1 = Y. (R(ejo.€jy)esy. ea) ViV Y72,
1<jo,j1,J2=2n

Z (R(ejy, €jy)ej, e&)wiiow]l:l l/fllz

1<jo,j1,J2=2n

S[R (@i, ;) pj1*

With abuse of notation, we denote

g = (R(ejy. €j) )¢ €j3)
for any given indices jo, ..., j3 € {1,...,2n}. Andlet ¢; © ¢; denote the linear combina-
tions of multiplications of real and imaginary parts of ¢;, ¢;,i.e. ), J Cij ¢ii¢i, where we

denote qufF = N¢j, ¢; = J¢;. Then the master equation (1.17) is schematically written
as

2 2
~V=1IDipi =) D;Ddi + ) 5 0¢; 0 9;. (1.23)
Jj=1 Jj=1
Moreover, the connection coefficients in D; also depend on curvatures, and with abuse of
notation can be schematically written as

[A)12(s) = / by 0 99 ds'.

We shall perform a dynamical separation of §. In fact, by the caloric condition Ve;
= 0 and twice dynamic separation, § can be decomposed into

9(s) = (R(ejov €j,)ejs . ej3>(s)

[e9)
= -0 / vl() ds
N

o o0
_[ wi(g)([ wf(s’)(VZR)(el,ep;ejo,...,ejS)ds’) ds
=T+ Ugo + Uo1 + Us + Uy,
where we define

' := lim §(s), Ffo’(l) = lim (ﬁR)(el;ejo,...,eh) (constant limit part),
S—>00

Ugo := — / Z(a Vi)t ds’  (first order terms),
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and quadratic terms by
oo 2 -
Upy 1= — / S @ (FR)ers e - ejy) — T5 D) s
S og=1
0o 2
O [T e as
Soi=1
o0 2 o0 -
U = = / Z(Al-w’(:v')( f wsp<s’)(v2R>(ez,ep:ej0,--wejg)ds’) ds,
N i=1 K

oo 2 B
A ORIt )~ ) 5

i=1

Here, with abuse of notation, A; denotes the 2n x 2n real-valued matrix with elements
{[4,15}> og=1- The constant limit part and the first order terms will be dominated by
frequency envelopes of {¢;}, while the bounds of quadratic terms essentially rely on a
delicate bootstrap on the term

gV = (VR)(eszejo. ..., ej5) — TP,
We also need higher order derivatives of §. Given k € N, let

X ~
ﬁl(l) L= (V(k)R)(el],...,elk;ejo,...,ej3),

.....

where we denote

J(k) .
Flolo(l)k = hm 2?1(1’) ().

Similarly, we perform a dynamical separation of frames. In fact, let 2 be the isometric
embedding of A into R, and let {el}lzi , be the caloric gauge built in Proposition 1.1.
With abuse of notation, we denote

[dP]® = (D*dP)(e,....ee),
N———
k
[dP]® = [dP]® — lim [d P]P.
§—>00

Step 3. Tracking L* N L L2 bounds for curvature terms and frames along heat
direction.

Proposition 1.4. Letu € #Ho(T) be a solution of SMF. Denote by v(s,t, x) the solution to
the heat flow with initial data u(t, x), and denote by {d), _o the corresponding differential
fields under the caloric gauge. Assume that {By (o)} is a frequency envelope of order §
such that foralli = 1,2 and k € Z,

27| gibsoll 2o ranrs . < Brl0). (1.24)
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o There exists a sufficiently small constant € > 0 such that if

D 1B <e. (1.25)

keZ

then for anym € N, o € [0, 2], s € 271,22 ") and j. k € Z,

”Pkg(m) ||L4OL‘,>°L)2€ Sm 2_Gk_k,3k(o)(l + SZZk)_3Oa
| Pedsllpanreers < 27K+

><[lkﬂ-zo(l+s22k)_30,3k(0)+1k+jso > ,BI(U),BZ]»

k<l=—j
I Pe(d P ™) | oe p2nps Sm Br(0)(1 + 522) 729270k K
1PxAill oo 12 S Brs(0)(1 + 52%%) 727270k,
o Furthermore, given j, M € Z, if {Bi(0)} is a frequency envelope of order %8, then

similar results hold for o € [0, 1 + j/4] and € sufficiently small depending only on
Jj»M € Z. In particular, foranym € N, k € Z and o € [0,1 + j/4], one has

(1 +SZZk)M+22Uk+k||Pkg(m)“LétngoL}C SmM ﬂ](cj)(a)’
(1 + 522 MH 25K P (A P)) | oo 2018 Smomt B (0),
(1+ 522 M oK) P Ay oo 2 S BY) ().
Remark 1.4. The {8} and {8)(c)} are defined in (3.18)~(3.20) below. Proposition
1.4 will be proved in Sections 3.5 and 3.6.

Step4.1. F,, N S ,i/ 2 bounds for connections along the heat direction. In this step, we
prove

Lemma 1.2. Given o € [0, %], let {hy (o)} be frequency envelopes defined by
hi(o) = sup 279" K ok (1 4 224 Pyl 7 (.- (1.26)
k'eZ,j=1,2

Let {by} be an s-frequency envelope. Assume that forany k, j € 7. and s € [2%/ 1,227 +1),
2’</2||Pk§(1>||L§L?O(T) < eV (1 4+ 9227200 gm0 + 1 <022% 1 (1.27)

99

Then, if & > 0 is sufficiently small, for o € [0, 155

| one has
| Pe A )] gy oy 72y S s (@)27F (1 4+ 522)74

For the proof, see the proof of Lemma 4.1.
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Step 4.2. F; bounds along the heat direction without assuming (1.27).

Lemma 1.3. Let {by} be an e-frequency envelope. Given o € [0, %

{br(0)} are also frequency envelopes, and {hy(c)} are the frequency envelopes defined
by (1.26). Assume that fori = 1,2,

| suppose that

1Pt —oll Ecry < br(0)277F, o € [0. 755 ].
| Pecpebymolls | S br(e)27@ Dk, o€ [0, 2],

| Pryi ()| oy S €/ 2bg (1 4 52%) 74,

99
> 100

B [ Pedi ()] g (rynsi/> S hes(@)277K (1 +5226)74

Then, if ¢ > 0 is sufficiently small, for o € [0 i = 1,2, one has

I Prpi ()l ey < bie(0)27 (1 + 5226) 74,
(B2) 1 I PrAilsolls S br(0)27%, i=12,
1P ()]s < br(0)27 @7 DE(1 +2%K5) 72,

1PeA e=ollz | S ebi(0)277K,

(B3)
1PicAits=oll2 < €.

Remark 1.5. In the proof of Lemma 1.3, we first assume (1.27) and apply Lemma 1.2 to
obtain all the estimates stated in (B2); see Lemmas 4.3, 4.5, 4.6. Then combining theses
estimates and Proposition 1.4, we improve (1.27) by dropping ¢ ~'/4 on the RHS of (1.27),
and thus close the bootstrap assumption of (1.27); see Lemma 4.7. Then Lemma 1.2, i.e.
(B1), holds without assuming (1.27). And (B3) is proved as Lemma 4.8.

Step 5. G bounds along the SMF direction for o € [0, % .

Proposition 1.5. Assume that o € [0, %]. Givenany £ € 7., assume that T € (0,22%].

Let € be a sufficiently small constant. Assume that {cy} is an €g-frequency envelope of
order 8, and let {cy (o)} be another frequency envelope of order 8. Let u € H o (T') be the
solution to SMF with initial data uy which satisfies

1PVuoll 2 < k. [[PVuoll2 < cx(0)27%.

Denote by {¢;} the corresponding differential fields of the heat flow initiated from u.
Suppose also that at the initial time s = 0,

I PedillGry < €5 e
Then, when s = 0, foralli = 1,2 and k € Z we have
IPedillcery < cks |1Pediller) < ck(o)27F.

Proposition 1.5 is proved in Section 5.
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Step 6. Improved Fj bounds of P! once.

Lemma 1.4. Letu € #Hg(T) solve SMF with data uy. Let {c } be an €o-frequency envel-
ope of order %8. Given any o € [0, %], let {cx(0)} be another frequency envelope of
order § such that

1PeVuoll2 < k. [1PeVuoll2 < cx(0)27%.
Then for € sufficiently small,

22 PegWllpa g0 < er@)27 K1+ 22420) 20N n0 + Tigg 202’ O,
(1.28)
1PeE | ey S 27 e (@)1 + 25750) 71144020250 + Tigap=027¥1 (1.29)
forany o € |0, %], k.ko € Z and s € [2%ko=1 22ko+1),
The proof of (1.28) is given in Lemma 6.1, and (1.29) follows from Corollary 4.1.

Step 7. Improved Fj; N S,i/ 2 pounds of {PrA; }]2-=0 and parabolic estimates for
{¢j)7_o with o € [0, 3].

Lemma 1.5. Let u € Ho(T) be the solution to SMF with initial data uy € #g. Define a
frequency envelope {¢V (o)} as in Definition 6.1. Given any o € [0, %] let {by(0)} be a
frequency envelope of order §, and assume that

br(0) S cM(0), Vo e [0, 2].

Assume also that fori = 1,2,

I Pei b s—oll o () < br(0)27F, o< |o,

=T
<
~
-7
1)
Il
o
=~
~&
¥
IA
S
~
~
Q
g
Y
L
Q)
|
Ao’
=
Q
m
r—
e

Then, if ¢ > 0 is sufficiently small, for o € |0, %] one has

| PeAi ) rynsi 2 S i ©@)277F (1 452774,

1Pegi )|l Fery S b2 (0)277F (1 + 5227,
I1PeAitmollps S bR @27%, i =12, 0

I Pece ()3 < b (0)27€ k(1 4 2% 5)72, (=0
| Pedctsmoll2 | S eb @27 ifo €[5, 3],
| PeAitimoll2 S &%

Remark 1.6. In Lemma 1.5, the {b,(cj)}, {h,(('j)},{b,(cjs)}, {h,(("g} are defined in Definition 6.2.
The key of Lemma 1.5 is (1.30), and its proof is given in Lemma 6.2.
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Step 8. G, bounds along the SMF direction for o € [0, 2].

99 5
T00° 4
any £ € Zy, assume that T € (0,2%%]. Let {cy.(0)} be a frequency envelope of order %5,
and let {c} be an €g-frequency envelope of order %5. Letu € #g(T) be the solution to

SMF with initial data wo which satisfies

Lemma 1.6. Assume that o € ( |- Let €g > 0 be a sufficiently small constant. Given

1PeVuoll2 <k, [1PeVuoll2 < cx(0)27%.

Denote by {¢; } the corresponding differential fields of the heat flow initiated from u. Then,
when s = 0, given o € (%, %] one has

I Peils—ollGp (1) < (ck(0) + cx(o —3/8)ck(3/8))27K.

Step 9. F; bounds of Py €W and G bounds of ¢, along the SMF direction for o €
[0,1+ j/4].

Lemma 1.7. Given j > 2, assume that 0 € [0, 1 + j/4]. Let Q € N be a fixed point
and €g be a sufficiently small constant depending on j. Given any £ € Z, assume that
T e (0,22%]. Letu € Ho(T) be the solution to SMF with initial data u. Let {c,(cj)(o)}
be the frequency envelopes defined in Definition 6.1, and assume that {c](cj )(O)} is an €g-
frequency envelope with 0 < €y < 1.

e foroe[0,1+ %], we have

2PN PGV g e < ¢ 027K+ 25720 0150 + Liig=02” P,
1PeZ | Fecry S €(@)277F[(1 + 25750) 7142020 + 1 pig=02 751,

forany s € [22k0=1 22ko+t1y gnd ko k € 7.

e Denote by {¢;} the corresponding differential fields of the heat flow initiated from u.
Then, foro € [0,1+ j/4],

| Prils=ollGy (1) < C;gj)(U)TOk-

Step 10. Global regularity, global well-posedness and asymptotic behaviors. As in
Step 9, performing the bootstrap-iteration scheme K times gives bounds of 2°% || Py, oillG
for o € [0, K/4 + 1]. Then, transforming the bounds of {¢;} |',_, back to the solution u
gives

el oo o+t y < Mol ga g

Noticing that an H' N H2* uniform bound will rule out blow-up for SMF in R2, one
step iteration suffices to show u is global. And the €y only depends on the dimension and
the target manifold /. Moreover, we proceed the bootstrap-iteration scheme for K times
and obtain uniform bounds for higher Sobolev norms.

The asymptotic behaviors stated in (1.5) will be proved following our recent work [22]
on SMF on hyperbolic planes. The proof of Step 10 is presented in Section 7.
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1.5. Main ideas

Let us explain the main ideas. To control the curvature terms, which is the non-self-
contained part, we use dynamical separation and a bootstrap-iteration scheme to obtain
an approximate constant sectional curvature nonlinearity with controllable remainder in
finite steps of iteration. The essential advantage of this scheme is that it reduces estimates
in frequency localized spaces such as Fy, Gy to decay estimates in Lebesgue spaces along
the heat direction.

Iteration scheme for Step 1. We describe the iteration scheme for heat flows. The start-
ing point of the heat flow iteration is bounds for dsv.

1. First time iteration. Suppose that we have obtained parabolic decay estimates of
||Pkasv||L;>°L§ such as

| Pidsvllgoora S (1+2%5) ™My (0)27%, o € [0, 755].

By applying dynamical separation

S (v(s)) = 55(Q) - / (DS (w(s")) - dsv ds’,

N

bounds for || Prosv]| o2 yield improved frequency localized bounds for the second
fundamental form term, i.e. ||PkSiZj L&) Ler2- The only potential trouble is the

High x Low interaction of (DSl.lj)(v(s’ )) - dsv. But we will see that this interaction can
be handled by additionally proving the decay estimates

195+ DS (v(s))llper2 SLers™ % VL eN.

Then back to the extrinsic map v, using the heat flow equation will give an improved
bound for ||Pk85v||L?oL% foro €1, %].

2. m-th time iteration. Using dynamical separation of the schematic form
o0
D™ 1S(v(s)) = D™ 15(0Q) —/ D™S(v(s"))dsv ds’
N

and the decay estimates

05T D™ SE (v(9) | poe 2 SLam €152 VL €N,
one gets frequency localized bounds of the extrinsic map v for o € [1,1 + m/4]:

2K Pev(s) | o2 S €1(1 + 2%Ks)™M1tmy ) ),

The motivation of decomposition in Step 2. To bound the curvature terms, by a kind of
dynamical separation we have the decomposition of curvature terms denoted by §:

§ = constant + first order terms + quadratic terms
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(see Step 2). We observe that to control ¥ in the Fy space, it suffices to prove parabolic
decay estimates of §(/). The same idea will be applied to bound the frames in frequency
localized spaces. We remark that dynamical separation was previously used in [19,38] to
reveal the implicit null structures. Here, we apply dynamical separation to do iterations.
Besides using dynamical separation, in order to give a bound for connection coefficients
which is the key for bootstrap, we further decompose the curvature term into differen-
tial fields ¢; dominated terms and relatively smaller quadratic terms. By an appropriate
bootstrap argument, bounding connection coefficients {A; }]2'=1 inthe Fxy NS ,:/ 2 space
reduces to deriving parabolic decay estimates of covariant derivatives of the curvatures
Y in the simpler LY L2 N L* spaces.

The motivation of adding (1.27) in Step 4.1. The key difficulty in bounding curvature
involved terms is the High x Low — High interaction of curvatures and differential fields
or heat tension fields, i.e., the frequency of curvatures occupies the dominating position
compared with differential fields or heat tension fields.

e First of all, we observe that it suffices to control the Fj norms of curvatures §. Then we
further clarify that among the four blocks of the Fj space only the three blocks L L2,
L*, L% L% need to be estimated for curvatures.

e Second, we find that using dynamic separation in the heat direction
9 = R(ej,. €, €y, €i,) =T — / 1//S(VR)(e1,,e,o,ell,elz,e,3)ds

=T>_ °°(1)/ whds' — [ vlg (l)ds

and the heat flow iteration scheme, the L°L2 and L* norms of curvatures can be
controlled by corresponding norms of differential fields.

e The troublesome block of Fy is the L$L% norm. This norm of curvatures cannot
be obtained by dynamical separation in the heat direction and the heat flow iteration
scheme as before. The problem is that the High x Low — High interaction of gl(l)t//sl
in L% L% fails if one only previously has bounds for W in L%®L2 N L*. (Estimates
of €0 in L%L2 N L* are obtained in Step 3.) So we add the bootstrap assumption
(1.27) to bound L% L of €W The key is that one can indeed improve the assumption
(1.27) and then close the bootstrap.

How to drop (1.27) in Step 4.2. Let us explain how to improve (1.27) and thus close the
bootstrap of Step 4.

(I) With the assumption (1.27) we can prove bounds of A; and ¢, in L* by envelopes of
differential fields ¢, loosely speaking say
IPe(AD e 27 hie(@)[(1 +25F20) ™ gm0 + Tiegg 202”0,

| Pr(po)ll s < 2%br(1 + 2%K5)72,
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where k, ko € Z, s € [22ko~1 22ko+1) (, (0)} is the frequency envelope associated
with the differential fields {¢;}?_, defined in (1.26), and {by} is some frequency
envelope with || by || 2 sufficiently small. This will give bounds for || P9, 6" || 4.

(II) We improve the assumption (1.27) by interpolation

1PeED 400 < 1 PPN Ped F VN (1.31)

and the L* estimates obtained from Step 3 (Prop. 1.4 for heat flow iteration)
24N Pg D e < hie(1 + 2% 5)™.
In fact, we can prove

= — _3
22 gVl o oo < hi277K[(1+ 22KF2R0)T3M 1 g0+ Lgggo2FFHOI).

Then choosing sufficiently large M, one obtains better bounds of €W than in (1.27).
This gives the way to bound curvatures in the block space L% L of Fy.

In (I), the key step is to obtain bounds of the connection coefficients; see Lemma 4.1. To
prove Lemma 4.1, as mentioned before, we decompose the curvature term into differential
fields ¢; dominated terms and the remaining quadratic terms; see Step 2 of Lemma 4.1.
The additional smallness gained by the remaining quadratic terms gives us the chance to
use a bootstrap argument to control the connection coefficients.

Iteration in Step 6 to Step 9. With these new ideas and [5]’s framework, the range of
o €0, %] can be reached before performing iteration for the SMF evolution. In order to
reach larger o, one combines the heat flow iteration with an SMF iteration. For the SMF
iteration scheme, the key is to improve the estimate || Pkg ) L4150 Step by step to reach

larger 0.

1.6. Idea for higher dimensions

Let us give a prevue of the higher-dimensional case. As d = 2, for higher dimensions
in order to track the curvature terms § in the Fy space along the heat flow direction, it
suffices to control the first order covariant derivative of the curvature term § () in the sim-
pler Lebesgue spaces in the heat direction. Thus the parabolic decay estimates of moving
frame dependent quantities for d > 3 should be established. The difficulty is to bound all
geometric quantities in fractional Sobolev spaces when d is odd. We solve this problem by
using geodesic parallel transport and a difference characterization of Besov spaces. The
idea is that the difference characterization reduces bounding fractional Sobolev norms to
bounding differences of all these geometric quantities and their covariant derivatives in
Lebesgue spaces. And geodesic parallel transport gives us the difference of the geometric
quantities at different points of the base manifold.

We divide the whole theorem for d > 2 into two papers to make the main idea clear
and avoid the paper being too long.
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2. Preliminaries

2.1. Linear estimates
The following are the main linear estimates established in [5].

Proposition 2.1 ([5]). Given £ € Z, assume that T € (0,22%]. Then for every ug € L2
with frequency localized in Iy, and every F € Ny (T), we have the following inhomogen-
eous estimate: If u solves

i d Au=F,
10;u + Au @.1)
u(0,x) = up(x),
then
lullgery S lluoll 2 + I1F e r)- 2.2)
The following lemma will be used widely.
Lemma 2.1 ([5]). For f € L3 (T),
1 Pef s < 1f | ey (2.3)
1P f Nl Fecry S W llp2poe + 1 s 24
1Pk fllizzrge = 1 Ngrras (2.5)
and
le**gll ey S (1 + 522 gllm ). Vs =0, (2.6)

provided that the RHS is finite.

2.2. Frequency envelopes
We recall the definition of envelopes introduced by Tao.

Definition 2.1. Let {a;}xez be a positive sequence. We call it a frequency envelope if

Zai <oo, and a; < 28|l*j|al, Vj,leZ. 2.7)
keZ
We call the frequency envelope {a } an e-envelope if it additionally satisfies
Y ap <€
keZ

For any nonnegative sequence {a;} € €2, we define its frequency envelope by

~ ,0—8li—j'l
dj := sup a;2 .
j'ez

~ ; . ~2 2
laj| <a;, VjeiZ; Zaj < Zaj.

JEZ JEZ

It satisfies
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Generally the 6 in Definition 2.1 is not important if it has been fixed throughout the paper.
But due to our iteration argument we shall introduce different § in different steps of itera-
tions. So we call {ay } satisfying (2.7) a frequency envelope of order §.

In this paper, each time we mention a frequency envelope, we will clearly state its
order.

We recall the following two facts on envelopes: (a) If di < by for all k € Z and {by}
is a frequency envelope of order § > 0 then dy < by for all k € Z as well, where {Jk}
denotes the envelope of {dy } of the same order § > 0:

d := sup d;278Ik=il,
JEZ
(b) If {dy } is already an envelope of order § > 0 then dj, = c?k forallk € Z.
‘We recall the classical result obtained in [31,36].

Lemma 2.2 ([31,36]). Assume that u € Hg(T) satisfies
10xull oo 2 = €1 < 1., (2.8)
and let v(s, t, x) be the solution of the heat flow (1.13) with initial data u(t, x). Then
||a;j;+lv||L;>oL}C < 572, (2.9)

and the corresponding differential fields and connection coefficients satisfy

721001l oo 2 < €, 2.10)
7210 Aillpee 2 < €1, @11)
sUTDRY80 6yl < €, 2.12)

sUTDI210] Ai|| oo o0 S €1 (2.13)

~

forall s € [0,00), i = 1,2 and any nonnegative integer j.

3. Iteration for heat flows

3.1. Main results on the extrinsic map v solving HF

Foru € #Hp(T), define

3 Iy
8lk—k'| ok’ +k I Prrutllpoer2, o0 =0,8= L (3.1)

Yk(0) := sup 27 800"

k’'eZ
Denote by {yx} the frequency envelope for the energy norm, i.e.,
Vi = 7k (0).

Thus
2K Prull oo 12 < 27%yi(0), Vo = 0.
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Before going ahead, we recall the extrinsic formulations of heat flows. Assume that
the target manifold N is isometrically embedded into RY . Then the heat flow equation
can be formulated as

2 N
dv' — AV =" " SLogv 007, I=1.....N, (3.2)
a=1i,j=1

where § = {Silj} denotes the second fundamental form of the embedding & < R¥.

Recall that {yx (o)} are defined to be the frequency envelopes of u € #Ho(T). (See
(3.1) and note that u need not solve SMF.) The frequency localized estimates of the
extrinsic map v solving (3.2) with initial data u are given below.

Proposition 3.1. Assume that u € Ho(T) satisfies
l0cull e 2 = €1 < 1. (3.3)

and let v(s, t, x) be the solution of the heat flow (3.2) with initial data u(t, x). Then v
satisfies
sup (1 + 52%)*1 24| Peol| oo 12 S 27 %y (o)

s>0

99 5

99
forallo € [0, {551 and k € Z. Moreover, for any o € [{55, 7

> 700 | and k € Z, we have

sup (1 + 52%€)2 0279 Po|l oo 2 < y(0) + yi(0 = 3/8)yx(3/8).

s>0

Remark 3.1. The power of 1 4 s22F in Proposition 3.1 can be chosen to be any M € Z
if we additionally assume that €; is sufficiently small depending on M ; see Proposition
3.4 below.

3.2. Before iteration

Given an initial data vo € #o with energy sufficiently small, by Lemma 2.2 the corres-
ponding heat flow is global with (2.9) holding. Combining this with the local Cauchy
theory in Sobolev spaces for heat flows yields the following lemma.

Lemma 3.1. Assume that vo € Ho has sufficiently small energy, and let v(s, x) be the
solution of the heat flow (3.2) with initial data vy. Given an arbitrary L € 7.y, there exist
constants Cr,, Cg > 0 such that forany s > 0and0 < j < L,

197 vl gz < CL+ 972 Jv(s) = Q|2 < Cs.

Proposition 3.2. Assume that u € Ho(T) satisfies

> 2K Prull e, = €7 < 1, (3.4)
t X
keZ
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and let v(s, t, x) be the solution of the heat flow (3.2) with initial data u(t, x). Then for

o €0, %] and all k € 7, v satisfies

sup (1452712 | Pev)| o2 < yk(0). (3.5)

s€[0,00)

Proof. Since v converges to a fixed point Q € N as s — oo, we put
Si;(v) = S;;(Q) + (S];(v) — 5;(Q)).

The {Silj (Q)} part is constant and makes an acceptable contribution to the final estimates
by [5, Lemma 8.3]. Moreover, by Lemma 2.2, for all nonnegative integers L the remaining
part satisfies

1051 (S]; (0) = SO ooz S1 ™ 2Vt oo 2.
Thus for all j € Z 4+ we have the bound
(1+2%5)7 0x[Pr(S]; (0) = S5Ol oo 2 5) €1 (3.6)

Now, let us use [5, Lemma 8.3]’s arguments. Given ¢ € [0, %], define

Bio(S):=  sup  yrN(0)(1 + 522K)312K 0K | P oo 2
keZ,seo,S) Lo

By Lemma 3.1 and the fact {yx(0)} is a frequency envelope, B; (S) is well-defined for
S > 0 and continuous in S with

lim By ,(S) =1.
S1—>H}) 1,0 ( )
Then by trilinear Littlewood—Paley decomposition (see (8.2) in Lemma 8.1), we have

NP ()00 S Baf pgora £2° 3 mia 2 1
k1<k

2
1 SETRUND pEI

ka>k ki<k

+ Z 2227 R4, i, Z 25 g,
ko>k k1<k>

where

aj .

N
PORED DR [N A AN

|k—k’|<201,i,j=1

v (3.7
D D ST B
=1 |k’—k|<20
Then by definition of B;(S) and slow variation of envelopes, for s € [0, S],0 € [0, % s

we get



Global Schrodinger map flows to Kahler manifolds 4901

2K PiSE (/)00 f 0a f I oor2
S BioBro(1+527%) 71y, Z 2a—okithy, (o)
klfk

+Bl,0'Bl,0 Z 22k—0k2(1+322k2)—62yk2yk2(0_)
ko>k

—31
+BioBro2ag (Y 29 (145221, ) (30 2R (145221 ) Ty (0)
k1<k ki1<k

+Bi1oB1o Y 22X(1+45222)7127%20 y, (0w,
kzzk
< Bio Bio(14+52%9) 7222y (0)
+BigBio Y 2277 (145272) 3y, (o)
kzzk

+B1oBio Y 27F22%K (14+527%2) 7 ap, yiey vk, (0) +ak27% By o 102 yiyic (0).
ko>k
(3.8)

By applying (3.6) to {ay }, we further bound

RHS(3.8) $277% By 5 B102%% D (1 +52%%2) 7y, (0).
kQZk

Therefore, for s > 0, we conclude that the LHS of (3.8) satisfies

2K P (0)8av 9407 oo 2 £ 2772 BioBro ) (14 52%%2) 7y, yi, (0).
kr>k

Hence by the Duhamel principle

_ 02k
(1 + 522k)312k+0k”ka”LI°°L)2( < (1 + 822k)3l€ 52 2k+0k||Pku||L?OL)26
s

+ BioBro(l + 52%%)% / oDkt ok P §L ()40 0007 | o2 dT

0
and the inequality

/ e T A 4 A d e s+ As) PN+ Ays) 7 (3.9)
0

we get

(1 + S22k)312k+0k”ka”L‘;°L§

S 7k(0) + B1.oB1.o(8)2%s D Y, iy (0)(1 4 2%%25) 7
kzzk

< Vk(0) 4 B1.o(S)B1.o(S)eryi (o).
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Then B1p <1+ €1B12’0. Since B1,0(0) < 1 and ¢, is sufficiently small, we have B o(S)
S1forall § >0.Thenusing By s S1+¢€1B1,0B1,0 and B15(0) <1,weget B; 5(5) <1
for any o € [0, %] and any S > 0 provided that €, is sufficiently small. Thus (3.5) has
been proved. ]

Remark 3.2. The power of 1 4 s22* in Proposition 3.2 can be chosen to be any M € Z
if we additionally assume that €, is sufficiently small depending on M ; see Proposition 3.4
below.

3.3. First time iteration
We state the first time iteration in the the following proposition.

Proposition 3.3. Assume that u € Ho(T) satisfies (3.4), and let v(s,t, x) be the solution
of the heat flow (3.2) with initial data u(t, x). Then for o € (%, %] and any k € Z,
v satisfies

sup (14527202 9K P oo 2 < ya(0) + ya(0 = 3/8)7(3/8).  (3.10)

s€[0,00)

Proof. The key point is to improve the bounds of {a;} defined by (3.7). For this, we use
dynamic separation again. One has

o0
Sh)(s) = 85(0) —/ (DS)) () - dsv ds’. (3.11)
S
By Proposition 3.2, for o € [0, %] and any k € Z, we get

2K P Av| oo 2 S (27K + 1) 7127 4 (0),
and repeating the proof of Proposition 3.2 gives

D 2RSS @av’ dav ) llpee 2 S22 D 271 + )7 ik vy (0).

a=1,2 k1>k
Thus, given s € [22k0—1 22ko+1) by the heat flow equation we get, for all k € Z and
o €0, % s

2K Pdsvll e 2 S (%5 + D72% p(0) + ) (2%Fs + )72y i, (0)

k1>k
< (%5 + D722 (0) + Lkakoz02%s + 172122y yi(0)
+ 2% ltkgo Y, vini(o). (3.12)

k<l<—kg

Recall the bound
KU PL(DS) )]l o0 2 S €125 + 1) (3.13)
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forall j € Z, and k € Z. Then for s € [22k0~1 22ko+1) repeating bilinear arguments,
(3.11) shows that if k + k¢ > 0 then

| Px [S [(v) ()] ||L°°L2

S D SR [T P N RPN
S

lky—k|<4

o D SR R O PR T R P
s k1 —k2|<8, k1 ko >k—4

o0
[T MRS 1P bl 4
$ 0 lko—kl<4, ki <k—4

< 2—0k—k(22k+2k0 + 1)_3122k+2k°)/k(0)1/k (3.14)

provided o € [0, %], where we applied (3.12) and (3.13) in the last line. Moreover, for
any o € [0, %], ko € Z, and s € [22ko=1 22ko+1) 'in the case k + ko < 0 one has

IPELSS @) llpeer2 S Y- 2772y @)y 27 Koy (B.19)

ko<j<—k
Thus (3.14) and (3.15) yield the following bounds for {ay }:
2% ay < (1+2%9) 7 (@) 7k (3.16)
provided that o € [0, 100] Now for a given o € (100 4] define
Boo(S)i= sup  (r"(0)727K(1 + 522) 02K | P poc 2,
keZ,s€l0,S)
where
99
(1)( )= {Vk(a)’ e [o. 100]
Vk(0) + vi(0 —3/8)yk(3/8). o € (35 3]

Moreover, by Lemma 3.1 and the fact that {ylgl) (0)} is a frequency envelope of order 24, it
is clear that B; 4 : [0, 00) — RT is well-defined and continuous with limg_, ¢ By s(S)=1.
Then by trilinear Littlewood—Paley decomposition (see (8.2)), the definition of B , and

slow variation of envelopes, for s € [0, S]and o € (19090, 2] we get

2k||Pk[S (V)00 g v1]||LooLz

< By o Bio(1 + 52%) 7302~ Gk)/lgl)(a) Z 2k +kJ/k1
klfk

+ BagBio Y 227K (1 4 52%2) 760, D (0)
ko>k

+ Bl,OBl,3/8ak<Z 2k1(1+522k1)_3oyk1)(2 2k1=Rok (1 452%1)" vk, (3/8))
klfk k1<k

+ BagBio Y 2%K(1 4 s2%2) 730272,y Do)y,
kzzk
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< BaoBio Z 22k=oka (] 4 522k2)730y, ) V,g)(a)
kzzk

+ BagBro y_ 277222 (1 4 52%%2)0a,, Y (0)
kzzk

_3
+ ax278°% By 0By 3822 vy (3/9). (3.17)

Then applying the trivial bound (3.6) to the RHS of (3.17) except the last term and apply-

ing (3.16) to {ay } in the last term, for all ¢ € (%, %] we get

2HR | P8 (0)Bav 800 ] o2 S BroBao2 Y- (145272 iy (0)
ko>k

+ B1,0B1,3/s2 277K (1 + 522%) 3% (0 — 3/8) i (3/8) Vi Licko>0

+ B1,o By 32727 7K 22K Kol (0 — 3/8) yi (3/8) vk Lk ko0
if s € [22ko=1 22ko+1) Then using the Duhamel principle, (3.9) and the inequality

1+ 22ks)30€—22ks /S 52" (5/22k)_81s/<272k ds' <272,
o <
we obtain
pktrok(q 4 22ks)30||ka||L§>°L§ S (1 +e€1Bi1oB1,3s + 6132,031,0)}/151)(0)
Since Bz < 1fora € [0, %] has been proved in Proposition 3.2, we arrive at
Byo S1+e1Bry, Vo< (1p5 3]

which shows B, s < 1, thus finishing the proof. [

We define the frequency envelope y,ij )(o), j =0,1,by

y P ©0) = y(0), 0<o <2 (3.18)
. ), 0<0 < 5.

Ve (0):= © 9 ) (3.19)
Ye(0) +y, (0 —3/8)yk(3/8), 150 <0 =3,

and the frequency envelopes ylgj )(0), j = 2, are defined by induction:

Doy = | VPO 0<o=(j+3)/4
¢ ye(@) + v (0 = 3/8)yk(3/8), (j +3)/4<0 < (j +4)/4
. (3.20)
For j € N define the sequence {J/IEJS) (0)}kez by
) 2k+k0)/(j)(0))/(j) 0), k+ko>0
k —k ’ B
CHOES N (3.21)

—k ; .
2ok y,(")(o )VZ(" )(0), k+ko <0,

for s € [22ko=1 22ko+1) and k, ko € Z.
We state the j-th time iteration in the following proposition.
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Proposition 3.4 (j-th iteration). Let j € N and M € Z . Assume that u € Ho(T) sat-
isfies (3.4) with €1 sufficiently small depending on j + M. Let v(s,t, x) be the solution
of the heat flow (3.2) with initial data u(t, x). Then for o € [0,1 + j/4] and all s > 0,

sup (1 + s22)Mok+ok|p gy oo < ylgj)(o). (3.22)
s€[0,00) e

Proof. Define intervals {I;}72 by

=02 L= (23] = (3] 122

Given K € Z and o € [}, € N, we denote

1
Biy1ok(S):= sup —m—(1+ S22k)K2k+ck||ka||L§>°L§’
s€[0,8),keZ y ' (o)
and let
Biy1,6(S):=  sup  Biy1,6,k(S).
o€lUp<s Lo

(In this notation, Propositions 3.2 and 3.3 yield B; 30(S) < 1.)
Moreover, the argument of Proposition 3.3 indeed shows:

(i) Forall Ko >2,j e Nand0 <a < j + 1,
zk”Pk[(DaS)(U)]”L?OL}C < Ck,,je(1 + 22ks)—Ko—(j+1)‘
(ii) Forall Ko >2and j € N, if
2K Pl (D7) )] go 12 < €(1 + 2%Ks)Kom/ 1,
2 Pevllygerz S 2770 0)(1 4 22K Kom
then
24| Pl(D7 ) ()] oo 12 27Ky (0)(1 + 22 5) K0/

where the implicit constant in the conclusion is of the form C(1 + C? 4+ C3) if we
denote by C;, C, the implicit constants in the conditions of (ii). Here, C is universal
and C;, C; may depend on j, Kj.

(iii) Forall Ko >2and j e N,0<a < j + 1,if
ok ” Pk[(DaJ'_lS)(U)]”Lctx:L% < 2_UkYI§j_(a+1))(U)(l + 22ks)—K0—(a+l)’
ok I ka”L,OOL% < 2_ak)/]§j_a)(0)(1 + 22ks)—K0—(a+l),
then '
2K Pel(DAS) )]l oz S 27Ky ™ (0)(1 + 2% 5) Ko,

where the implicit constant in the conclusion is of the form C(1 + C? 4+ C3) if we
denote by Cy, C; the implicit constants in the conditions of (iii). Here, C is universal
and C;, C; may depend on j, K.
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@iv) Forany K >2,j > 1,1 <a <j 4+ lando € l,,if

2K Pe[S)]oo 2 < Ck277Fy D (0)(1 4 2% 5)7K,
2K Pevll oo 12 < Bat1.o,k2 7Ky 2 (0)(1 + 22K5)7K,

then for all S € [0, 00),

a
Bus1.0,k(S) = Cu(1+ €1Buk Bas1.o,k(S) + Ck Y. sup By (9)),
=15 €[0,00)

where C, depends only on d and emerges from trilinear Littlewood-Paley decom-
position. Then our proposition follows by iteration. To be concrete, we make several
remarks. First, in order to get the M -power decay in (3.22), it suffices to set
Ko = M + 4 and the top derivative order involved is D7t1S . Second, let us describe
the iteration in a clearer way: In the first step, one verifies

sup  Bixo+j+1(S) < Cky,j (3.23)
S€[0,00)

i.e. the second conditions in (ii). This was presented in Proposition 3.2. (We emphas-
ize that in this step, €; shall be sufficiently small depending on K¢y + j.) In the
second step, one verifies SUpgeo,00) B2,ko+,(S) =< Cky,;, and in the a-th step one
verifies supgeio,o0) Ba,Ko+j+2-a(S) < Ck,, ;. This is presented as (iii) and (iv).
Thus in the j-th step, we get (3.22). ]

3.4. Rough dynamical separation

Recall the notations ¥ = (0;v, eq), 1//1.‘Y = (0jv,Jeq),a =1,...,n,i =0,1,2,3,and
¢% =Y + /—1yZ. Here, i = 0 refers to the ¢ variable and i = 3 refers to the s variable.

We aim to bound the connection coefficients in the localized frequency spaces. As a
preparation, we first derive a suitable form of the connection coefficients. By definitions,
we see

R(E¢;, E¢s) = R((Ngf)eq + (97 )ea, (N )es + (3¢5 )eg)
= (@7 A P )R(eq. e5) + (7 - DL IR (eq. €p).
where we denote z1 A z, = —3(2122), 21 - 22 = Rz1 Nz + IJz1 Iz, for complex numbers
z1, z2. Thus schematically under the frame E = {eq, eg}},_; we can write
(Al = X [2@F © 08 (R(ea. €5 5)ey . e0) ds',
{ (AL = Y [0 © 68) (Riea- 4 ey e5) s

IRt

(3.24)

where ¢ = “A” when €5 =€p> and ¢ =
of notation we schematically write

when e 5.5 = ep- For simplicity, with abuse

o0
Ai(s) = Z / (¢i © ¢s)(Rejy. €jy)ejs . €j3) ds’,
Josdsizagz Yt

where {jc}2_orunin{1,...,2n}, and i runsin {0, 1,2}. Recall also that ¢; = 212=1 D;¢;.
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With abuse of notation, set
G(s) = (R(ejwejl)ejz’ejs)(s) (3.25)

for any given jo, ..., j3 € {1,2,...,2n}. We expand § as

o0
(R(ejo’ € )ejzv ej3>(s) Sl_i)rgo(R(ejo’ € )ejz’ ej3> - / Os (R(ejo’ ejl)ej2’ ej3) ds’'
N

o0
F°°—/ VL TR erseson. . e0) s,
S

where I"*° denotes the limit part which is constant, and we have used the identity Vse, =0
forall p = 1,...,2n in the last line. Here, we view R as a type (0, 4) tensor.
With the above notations, we write

1= % [ @opsas, (3.26)
Josdsizgz s

and ¢ is decomposed as

o0
g =T —/ v (VR)(eri¢jy, ..., ej5) ds'.
N
Of course, one can perform this separation for any time desired. Denote
g .= (61R)(e,...,e;ejo,...,ej3), 10 = lim €Y ().
—— §—>00
J

Then we can schematically write

§ =T [ "yt ds (r°°’<“ - / " (52 sy (PO 4 ))

For simplicity we also denote

€ —g_ ree, €0) .— () _oo,(i)

3.5. Intrinsic vs. extrinsic formulations in localized frequency pieces

Proposition 3.5. Let u € #Ho(T) satisfy
||8xu||L;>oL)2€ = K 1 (3.27)

Here, we do not require u to solve SMF. Denote by v(s,t, x) the solution to the heat
Sflow with data u(t, x), and by {¢; } the corresponding differential fields under the caloric
gauge. Assume that {ny (o)} is a frequency envelope of order § such that for alli = 1,2
and k € 7,

27K || Pedpils=oll oo 12 < mi (). (3.28)
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Then
Ve () < ni(0), (3.29)
(1+ 522)202°K | P A | oo 12 S (), (3.30)
for any o € [0, %] and k € 7. Furthermore, assume that for o € [0, %], {ni(o)} is a

frequency envelope of order %8 such that for alli = 1,2 and k € Z, (3.28) holds. Then
forany o € [0, %] andk € Z,

7 ©0) s 1), (331)

(145292 2°% | PeAi o 2 < 1) (0)- (3.32)

Proof. Step 1.1: 0 € [0, %]. Let # : N — R¥ be the isometric embedding. By defin-
ition, we see

2n 2n 2n
v ="y YldPe) =) vix®+ D v dPler) — 1), (3.33)
=1 =1

=1

where { x7°} are the corresponding limits of d & (e;) as s — oo, which are constant vectors
belonging to RY . Denote

op(s) = Y NPevi®llpeer2, i) = Y XN Pe(dP(en) = 47 poor2-
|k—k’|<20 |k—k’|<20
(3.34)
Then we see by Lemma 2.2 that

lvidllee < 18:dPer) — 22 < 19vll2 + I Aill 2 < e

Moreover, direct calculations give the inequality

l0E@Per) = 2 ers S D D109l 10% il |98 A (05 Al
0=p.q=L A (3.35)

where s is the set of nonnegative indices /1,...,n, € Z and (@1, ..., Bq) € 7% x---x7?
which satisfy

Ll +1) + -+ Dp(lepl + D) +ni(IBil + 1) + - +ng(IBg| + 1) = L.
Suppose /; > 1. By Holder and Lemma 2.2, we get
19% (d P (er) — 17 .2
<€ ZS_al/zs—(ll—1)0‘1+1/2S—12((¥2+1)/2—"'_1p(‘¥p+1)/2S—(|ﬂ1|+1)”1/2—"'—(|ﬂ9q|+1)nq/2

< els_(L_l)/z.
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Suppose that n; > 1. Then we also obtain the same bound as above. Thus we arrive at
(1 + 5229w ($)}le2 <ar e (3.36)

for M € Z. Meanwhile, we see ||d P(e;) — x7°|lLee < 1. Thus by [5, (8.4)], we obtain

2N Pe@iv)lpgorz S 20 +ve Y 0, 20+ Y 27 Ky 2Ry 337)
k1<k ki1=k

Since wy (0) < 27°% 1, (o), by slow variation of envelopes one deduces

2K Pe@iv)l ooz 227K (o) + vy Y 21 HRTRIT gy (o)
k1§k
+ Z 2—2(k1—k)28|k1—k|2k1vklz—o‘klnkl(o.)
k1>k

<2527 K (o) (1 + &)

foro € [0, %] and s = 0. Thus since {1 (o)} is an envelope, by the definition of {yx (o)}
we obtain

Yk (0) <k (0). (3.38)

99

Hence, (3.29) has been proved for o € [0, 1551

Step 1.2: 0 € (%, %]. Recall 2 : & < R¥ is the given isometric embedding. Viewing

d P as a section of T*N ® TRY, the connection on N induces a covariant derivative D
on the bundle T* N ® TRY. We have the identity

o0
dP(er) — xi° = —/ VIDdP(ejier)ds’. (3.39)
S
where we use the caloric condition Vie; = 0foralll = 1,...,2n. Similar to (3.36), direct
calculations give
| Pe(Dd P (ej; )l o0 12 Sm 1275(1 +52%6) 7™ (3.40)

forany M € Z4 and k € Z.
By (3.12), we have the bound for d;v:
27K Pe@s0) o2 S 22 [(14 225 ikgzon @)+ Y (0]
k<l<—ko

(3.41)

if s € [22k0=1 22ko+1) with ko € Z. And using the identity ¥} = (d Pe;) - d5v, (3.36)

and (3.41) instead yield

1Pevsllzzerz S 2% (Teskgzo(l + 52261 (0) + Tktiozo 3 11(0I)
k<l<—kgo

(3.42)

forallk € Z, 0 € [0, %], s € [22ko=1 22ko+1) and k¢ € Z.
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Then applying bilinear Littlewood—Paley decomposition to (3.39), (3.42) and (3.40)

shows that for any o € [0, 2o . 00

(1+ 522K Pe(d P (er) = 17 o2 S 27 ma(0) S27%% (o), (3.43)

where we have applied (3.38) in the last inequality. Then by (3.33), (3.43) and bilinear
Littlewood—Paley decomposition, when s = 0 one has

| P 0; U||L°°L2 < 1P ||L°°L2 | P<k—ald P (el)_Xl P23
I PeldP(er) = xMpeerz D 2V Pk Villpoor2

k1<k—4
+2f > | Py Vil oo 2 | Peld P (en) = 25 oo 12
lk1—k2|<8,k1,ko>k—4
< 27 n(0) + 27 ne(3/8) ik (0 — 3/8). (3.44)

Thus (3.44) gives y, l)(0) <M )(0) foro € (100, 4]. Combining Steps 1.1 and 1.2, we
have proved (3.31) and (3.29).

Step 2.1: Bounds of connections for o < [0, %]. Applying Proposition 3.1 gives
(1 + 275> 274, o)l oo 2 S 72(0) (3.45)

forall o € [0, 2%] and s > 0. Then using the identity ¥/ = (d Pe;) - 9;v and the bounds

(3.36), (3.29), (3.45), we infer from bilinear Littlewood—Paley decomposition that
279 Pegpillpoer2 < (145277 (o)

forallk € Z ando €[0
position again gives

, 100] Then, by (3.41), applying bilinear Littlewood—Paley decom-

1Pe(@s & $)llpeer2 < 27K (1 + 227 F29) 3127/ e (0) + 27 11— (0))

(3.46)
for j +k >0,s € 227122 ) and o € [0, 55
Recall that Section 3.4 shows A; can be written in the form
o0
Ai(s) = / (¢ps © ;)& ds’. (3.47)
N

Direct calculations and Lemma 2.2 imply that ¥ modulo the constant part I'*° satisfies
2K Pif | ooz Sy (14 522) Mgy (3.48)

forall My € Z4, k € Z and s > 0. Then applying bilinear Littlewood—Paley decomposi-
tion and (3.46) leads to

/ I1Pe((@i © $)9)lIpee 2 ds” < 277K (1 + 522) e (0)n-; (3.49)
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forall j € Z,s € [22/71,22/+1) and k 4 j > 0. Moreover, similarly one has
oo k
[ 1@ 0 009z a5 52 miomm
s k<l<—j

forany j € Z,s € 271,22y andk + j < 0.
Hence, (3.30) is proved.

Step 2.2: 0 € (5. 3]. Recall that (3.29) and (3.31) have given
@) < @), 7 0) < 1P (0.

Now, we are ready to estimate A, for o € (%, %]. By the identity wil = (dPej) - 0;v,
the bound (3.43) and

1Peivll ooz S 27K (1 4+ 522) 2000 (o),

one obtains, by bilinear Littlewood—Paley decomposition,

| Pedill ooz < 27K (1 + 522%) 7010 (o) (3.50)
forany o € (%, %], k € Z and s > 0. For any 0 € (%, %], the proof of Proposition 3.3

yields the bound
[ Prosvlipeer2 < 2_Uk+k[1k+j20(1 +S22k)_307);({1)(0) + lkyj<o Z 7751)(0)771],
k<l<—j
which combined with (3.43) gives
1 Prslipoer2 < 2_0k+k[1k+j20(1 +5229729 0V (0) + ko Y 7)51)(0)771]
k<l<—j

(3.51)

forany k € Z,s € [2%71,22/+1) j e Zand o € (%a% .

In order to apply (3.47), we also need to improve the bound of g stated in (3.48).
Recall the formula

o0
g := (R(ejy. €j,)(ej,), €j3) = '™ —/ VP (VR)(ep; ey, ... ej;)ds'.
s
By Lemma 2.2 and the direct calculations (see Step 1.1 for instance) we have the bounds:
2% Pe(VR)(er: ). . ... €j3) — r,°°’(1>)||L?oL§ < (14 522F)~M (3.52)
forall M € Z 4, k € Z. Hence by (3.42) and bilinear Littlewood—Paley decomposition,

2K PL(§ = T®) o2 £ 277K + 5227y (0) (3.53)

929

forany k € Z and o € [0, T00)-
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Then by (3.53), (3.51), (3.50), using trilinear Littlewood—Paley decomposition as in
Step 2.1 with additional modifications in the Low x High interaction of Py ((¢s ¢ ¢;)§)
(see Proposition 3.2 for instance), we conclude that

oo
/ | Pe((bs © ¢ o2 ds” 5 277K (1 + 522201 (o)
S

forany k € Z and o € (%, %]. Thus, (3.32) is proved. [

Lemma 3.2. Let j, M € Z4 and u € #g(T), and let v(s, t, x) be the solution of the
heat flow with data u(t, x). Denote by {¢;} the differential fields of v under the caloric
gauge. Assume that o € [0, 1 + j/4], and {ng (o)} are frequency envelopes of order 2—11-8
such that foralli = 1,2 and k € Z,

27| Pegi g=ollpge 12 < M (0). (3.54)
Then, given j,M € Z, there exists a sufficiently small constant €; depending only on
M, j such that if||Vu||L?oL§ < ¢j, then
7 ©) <0 (0) (355)
foro €[0,1+ j/4] and k € Z. Moreover, forl = 0,..., j, we have
(142 M| Pegill oo 2 S 2770 0), i =1,2,0€[0,1+4 j/4),
(3.56)
(1 + 52 MK A P) D oo 2 5 2770 TV (0), 0 € 10,1+ (j —1)/4), (B35T)
(14 522)M | PG D o2 S 27759 (0), 0 €[0.14(j—1)/4), (3.58)
(4 s2OM Pedil ooz S277F 00 (0). o €0 1+)/4). (359
where we denote [d P]D =D d P) (e, ..., e;e), and [ﬁ](l) =[d P]D —limy_, oo [d P]D.
hlfd

Proof. The case o € [0, %] has been handled in Proposition 3.5. Let o € [1 4+ j/4,1 +
(j + 1)/4]. The general case of (3.55) follows by iteration. The highest covariant derivat-
ive order of § and d & (e) one needs for the j-th iteration is j + 1, and it suffices to take
the decay power M + 2 + j,i.e.,

1051 GY D ooya Spj e VL €0, M +24 ],
105 [ d IV poora 1, €52, VL €0, M +24 ],
where we denote

g0 .= (VER)(e,...,eie,....e) and [dP]P := (D dP)(e,... e e).
N N —— N——
k 4 k
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These decay estimates are easy to check by using Lemma 2.2. If these decay estimates
along the heat direction are verified, then (3.55) follows by repeating (j times) the argu-
ments of Step 2 in Proposition 3.5. Moreover, (3.56)—(3.59) follow along the same lines
by applying dynamical separation and j -fold iteration. |

Similar to Proposition 3.5, one also has
Corollary 3.1. Let vy € Hg satisfy
Bvollz = €1 < 1.
o Let {dy(0)} withk € Z and o € |0, %] be frequency envelopes of order %5 satisfying
275K Pruvoll 2 < di(0). (3.60)

Denote by v(s, x) the solution to the heat flow with data vy, and denote by {¢;} the
corresponding differential fields under the caloric gauge. Then

1Peditsoll 2 < 277%d P (0). (3.61)

o Let j € Z. Assume that {dy (o)} with k € Z and o € [0, 1 + j/4] are frequency
envelopes of order %5. Then for €1 sufficiently small depending only on j, similar

results hold with d,gl)(a) replaced by d,gj)(a).
Proof. By (3.60), Propositions 3.2 and 3.3 show that for o € [0, %]
(1 + 5226)202K K Py 2 < dP (o). (3.62)

Let us first consider o € [0, %]. Recall

) Pi(dP(er) — x2S el +527)7%. (3.63)

Then by the identity wi] =d &P (e) - 0;v, (3.62) and (3.63), from the bilinear Litttlewood—
Paley decomposition

1Pe(d P (er) - 0iv)ll 2 S 277K di (0) || P<k—ad P (er) | oo
+ 2k > 277K dy, (0) | Py d P (1)l oo 12
k1>k—4, |k1—k2|<8

+ Y NPuEPE)l Y, 297%dy, (o)

|k—k2| <4 key<k—4

we deduce that for any o € [0, %] andk € Z,

I Peribscoll 2 S 27%di(0).
Using this bound and similar arguments to those before one can improve (3.63) to

K| Pe(dPler) = 2z S 27 di(@) (1 +52%)7, o € [0, 355],

giving (3.61). The second item of the corollary follows by similar arguments and Lem-
ma 3.2. .
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Lemma 3.3. Let u € #Hg(T) solve SMF, and let v(s, t, x) be the solution of the heat
Sflow (3.2) with initial data u(t, x). Then given L € Z, L > 200, for any 0 < o < 2L,
there exist constants €1, Cr,, Cp,7 > 0 such that if ||8x””L‘;°L§ < €1, K 1, then for any
s>0,i=1,2p=0,1andm =0,1,...,L,

19795 (v = Q) et < Crr(s + 1), (3.64)
@7 leco + 27 Pegill o2 < Cllu = Qllpgo ) @Fs + D7 (3.65)
Q7 1ezo + 27| Pedill o < Cllu = Qg3 )@ s + D75, (3.60)
2" || Pediill oo 2 < CrLor(@s +1)7%, (3.67)
2K || Prd, A lpoer2 < Crr(2%*s+1)7%. (3.68)
Proof. Fix arbitrary L € N, L > 200. Let A, (o) be the frequency envelope

— L §lk—k'| nok’
(o) = sup 2727 KK | P — Q) oo 2
k'eZ

foro € I; N [0,2L], and define

Biok($):=sup L0171+ 522K Prv] e 2
keZ,s€[0,S) :

foroc el; N[0,2L], j € N and K € Z. By Lemma 3.1 and the fact that {)t](cj)(o)}
are frequency envelopes, Ej,a, k (S) is well-defined for S > 0 and continuous in S with
limg_o Ej,a, k(S) = 1. Then applying Propositions 3.2-3.4 and their proofs, we get
Bjo30(S) < 1, that is,

[Puvlers < (14522929420 0)

foroc € I; N[0,2L].
Recall the definition of y,E] )(0) in Section 3.3. Then Corollary 3.1 together with
Lemma 3.2 shows that for o € [0, 1 + j/4],

27K Pedill oo 2 S ¥ (0)(2%Fs + 17,
2K PeAi | oo 2 S 1) (0)2%s + )72,

which verifies half of (3.65)—(3.66).
Moreover, by Lemma 3.2 one has

27K Prld P (@)l oo 2 S 275(1 4 527%)73° (3.69)
for 0 € [0,2L]. Let us check the left half of (3.65)—(3.66). Recall the bounds
I1Pevllg2 < 27F A7 (@)(1 + 52%6)~%

99

foro € [0, 100

]- Then (3.69) and bilinear Littlewood—Paley decomposition show that
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2n
|Pe@lzorz < 3 IP(dP(er) - i)l 12
I

< 2090)(1 + 522) 7201 + | Pay_sd P (1) | Lo0)

+25 3T PR/ Pd P )l e
k1=k—4,|k1—k2|<8
+ Y Pu@EPE)z Y. 22200
|lk—ko|<4 k1<k—4
< _ k/2 2k\—30
S Clllu = Qll o )21 +527%)
forany i = 1,2 and k < 0. Similar arguments give
1Pe (Al o2 S Clllu = Ol oo 1) 25/>(1 4 527) 728 (3.70)
forany i = 1,2 and k < 0. Hence, (3.65) and (3.65) have been proved.
Since d;v = J(U)(Zi=1,2 D;¢) ats = 0, we observe from u € #Hp(T) that
||3vas=o||L;>oH4 <C,r, VleN.
Thus using the smoothing estimates of heat semigroups and applying d; to (3.2), one

obtains (3.64). From (3.64), (3.63), (3.69) and the identity

[
oy =" 0l (dP(ea)) - 07 (3,v)

11=0
we get
2" || Pedllpgerz S (1452278 VO<m <L,
which further gives bounds of || Pr A, || Ler2- Then applying similar bounds of A4;¢;, A;¢;
and the identity d,¢; = —A;¢; + D;¢p;, we obtain (3.67). For (3.68), we use ¢ps = D;¢;
and

l oo oo
(RIS / DY Dl DY | ds” + / D" 1| DY Digssds’.
N

=0""

3.6. Additional decay estimates for dynamical caloric gauge

Proposition 3.6. Let u € #Ho(T) be a solution of SMF. Denote by v(s, t, x) the solution
to the heat flow with data u(t, x), and denote by {gb,-}izzo the corresponding differential
fields under the caloric gauge. Assume that {By(0)} is a frequency envelope of order §
such that foralli = 1,2 and k € Z,

27| Pegilsmolloe r2rs |, < Br(0). (3.71)
o There exists a sufficiently small constant € > 0 such that if
D B O <. (3.72)

keZ
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then for any | € N,

18Dl anpoerz 1277 Br(o) (1 + 522)7, (3.73)
1Pedsllsnrsors S 277 [ 1epjzo (14522 0Bk (@) 4 krjzo Y Bilo)Bi].
k<l<—j
(3.74)
(14 522222754 | P (d P (e)) | Lo < Br(0), (3.75)
99

forany o € [0, {55], s € 2277122/ and j, k € Z. Furthermore, assume that for
o €0, %], {Br(0)} is a frequency envelope of order %5 such that for alli = 1,2 and
k € Z, (3.71) and (3.72) hold. Then for any ¢ € |0, %] and k € Z,

(14 529772°K | P il o 12 S Bl (0. (3.76)

o If {Bx(0)} is a frequency envelope of order %5, then similar results hold for o €
[0, 1 + j/4] and € sufficiently small depending only on j € Z. (see Prop. 1.4 for
instance).

Proof. By Proposition 3.5 and its proof, we have

(1452731275 2K | P oo 2 < Br(0), (3.77)
(14 52%6)2 027K 2K | PeS ()| oo 12 S Br(0), (3.78)
1 Pedslizzors S 27 H 1egjmo(1 + 528 0800) + lerjzo Y. Bil)BL].
k<l<—j
(3.79)
(1+ 527)%02 | Pe(d P (er) = x) 2 S 277 Br(0), (3.80)
Y (1 52202k | P [ oo 2 S B (o), (3.81)
i=1,2

forany o € [0, 255], j.k € Z and s € [22/71, 227 1) if {B;(0)} is a frequency envelope

of order 8. And Proposition 3.5 and its proof give similar results for o € [0, 2] if {Bx(0)}
is a frequency envelope of order %8.

Step 1. When s = 0, using d;jv = ) ; P (e;)tpil, from the bilinear Littlewood—Paley
decomposition

1PeDls S Y I1P<kaf g | Pergllze

lk—k>|<4
+2* > 1 Pey Sl oo 12 || Prsglla
k1,ko>=k—4,|k1—k2|<8
1
+ Yoo 2PIP fllpeer222 | Progls (3.82)

ko<k—4,|k1—k|<4
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and (3.71), (3.80) we get
1PL@iv)lls S 277% Br(o) (3.83)

99

for s = 0 and any o € [0, 155

to obtain

] and k € Z. Then we turn to the heat flow equation (1.13)

(1 + 52%)3%) P (3;v)[| L+ < 277F Br(0) (3.84)

forany s > 0,0 € [0, %] and k € Z. In fact, set

Zi(S):=  sup 20K (1 + 522930 P (3;0) | s

sef0,S), kez Br (o)

Then Z(S) is well-defined, continuous and tends to 1 as S — 0 by (3.83). Using the
trilinear Littlewood—Paley decomposition

2K PeS@)@xv, 00l s S 2Bk Y Br, 2 + Y 2RI B

k1<k kao>k
-~ \2 ~ ~
+ 2k/2&k( Z 2k]:3k1) + Z 22k_k205k2,3k2 Z 2klﬂk1’ (3.85)
ki1<k ko>k k1<k>
where we denote
Bi= > 2XNPevlpeorangs . @i= ) 2XIPe(S@)lpee 2,
|k’—k|<30 |k/—k|<30

and using similar arguments to those for Proposition 3.2, we deduce from (3.77) and
(3.78) that
Z1(S) S 14+ €Z3(S)

forany S > 0. Then Z;(S) < 1 since limg_,¢9 Z1(S) = 1. Thus (3.84) follows.

Step 2. With (3.84) in hand, using the heat flow equation one obtains bounds for
|| Pxdsv| z4. Then the bound of || Pr¢s|za follows by the bilinear Littlewood—Paley
decomposition (3.82) and (3.80). By performing dynamical separation for d & (e), we
get bounds of || Px(d P (e))|| 4 from || Pr¢s| s and ||Pk(Dd{P(e;e))||L<t>oL§. Then one
obtains bounds of || Px(§)| 4, || Px¢illp4 for all s > 0, which further yields bounds of
||Ai|| 4 for any s > 0. See Proposition 3.5 for the details. (]

QOutline of proof before iteration

One of the ingredients of the proof before iteration is the framework of [5]. The other main
ingredient is the decomposition of curvatures mentioned in Step 2 of Section 1.4. And at
the technical level we need a bootstrap assumption on || Pkg(l) I L4LS°(T) and some ideas
to improve this bound; see Steps 4.1 and 4.2 of Section 1.4 for instance.

We outline the framework of [5] for the reader’s convenience. Since the gauged equa-
tion is now not self-contained due to the curvature terms, several key new ideas as men-
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tioned above will be used. But to give the reader a whole picture, we just sketch the
framework of [5] rather than presenting all technically complex issues.

The proof is a bootstrap argument. Let o € [0, %) be given. Given £ € Z4 and
0 € N, let T € (0,22%]. Assume that {cx} is an €o-frequency envelope of order § and
{ck (0)} is another frequency envelope of order §. Let 1 be the initial data of SMF which
satisfies

1P Vuoll,2 < cx(3)277F, & € [0.355] (3.86)

Denote by u the solution to SMF with initial data uo. Assume that u satisfies

Bootstrap 1. ||PkVu||L?oL§ < egl/zck.

Denote by v(s, ¢, x) the solution of the heat flow with initial data u(¢, x), and A4;,
Ay, Ag the corresponding connection coefficients. And denote the heat tension field by ¢y
and the differential fields by {¢;}, ¢, respectively. Suppose that {¢; }?_, satisfy the fol-

lowing condition at s = O:
Bootstrap IL. || Pr¢; | —gllG (1) < eal/zck.

In Step 1, by studying the heat equations (1.15), (1.16), we prove that Bootstraps I-1I
in fact give parabolic estimates for A;, A; and ¢; ; along the heat flow direction:

| Pedi )l pecry < ex©@)277F (1 +522974 o e [0, 155].
1P ()lls < cx(@)277FE (1 + 527972 o e [0, 755,

—ok
1PeAils=ollLy < cx(e)27%, o € [0, 155,
||PkAtrs=o||L%x < €o.

In Step 2, by studying the Schrodinger equations (1.17), we prove that Bootstraps I-11
indeed yield improved estimates for ¢; along the Schrodinger flow direction:

I Pedpits—ollcer) < ck(@)27F, o € [0. 23]

In Step 3, we prove
| Pedpits=ollc, () < ck (3.87)
with Bootstraps I-1I dropped.

4. Evolution of SMF solutions along the heat direction

4.1. Parabolic estimates for differential fields
The main result of this section is the following.
Proposition 4.1. Let {by } be an e-frequency envelope. Assume that fori = 1,2,

I Pitits—oll Fecry < br(@)27%. o €[0. 5], 4.1)
1 Peetomollps < br(@)27“7D%, o € [0, 1], 4.2)
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and
| Prgpi () || 77y < € V/2bi (1 + 522K) 74, (4.3)

Then if € > 0 is sufficiently small, for o € [0, %] one has

1Pegi ()l Fery S br(0)277K (1 + 52%) 74, (4.4)

1PeAibsmollps | < br(@)27F, i =12, (4.5)
1Pecpe(9)ll s < bi(0)277DF (1 + 2%K5)72,

| PiAitsollzz < ebk(0)27F ifo € [g5. 15 ). (4.6)

2
||PkAtrs=0||L%x < et

Remark. Assumption (4.3) can be dropped. It suffices to apply Sobolev embeddings,
Lemma 3.3 and [5, p. 1463]’s argument.

4.2. Proof of Proposition 4.1

Now we turn to prove the parabolic estimates in Proposition 4.1.
Denote

2
h(k) := sup (1 +52)* > " | Pegi () | e 1) - (4.7)

§20 i=1

Define the corresponding envelope by

hi (o) := sup 20K 278K =kIp (k1. (4.8)
k'eZ

Assume that
22| P8O poory < 67 hal(1 4+ 2759) 701 pam0 + 14a=02’ 1] (4.9)
for any s € [22/71,22/ ) and k, j € Z.

Lemma 4.1. Under the assumptions of Proposition 4.1 and (4.9), for any k € Z, s > 0
andi = 1,2, we have

1P (i D gy ryns) 2y S 27760+ 52%) s (0), (4.10)
where the sequences {hy s} with 22ko—1 < ¢ < 22ko+1 gpd ko € 7 are defined by

2k+k0h_k0hk(0) ifk +ko>0,

h = | ko 4.11
k,s(a) Zl’lll’ll(O') if k + ko < 0. ( )
1=k

Proof. By assumption (4.3) of Proposition 4.1 and noticing {bx} is an e-envelope, we
have
{172 < e (4.12)
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In order to prove (4.10), let By denote the smallest number in [1, 0o) such that for all

06[0,100]s>0k€Zand1—12

| Pe(Ai Dl g, ryns) 2y < Br27 (1 + 5229 i (0). (4.13)

Step 1. Recall that Section 3.4 shows A; is schematically written as

L= X [ @ saRE ). e) ds' (4.14)

Josdsizgz S

where {jc}2_, runin {1,...,2n}, and i runs in {1, 2}. Recall also that ¢s = 212:1 D;¢y.
Applying Py to (4.14) we have

”Pk(Al (S))”Fk(T)ﬂS/l/z(T) =

o0
> / | Pl Pie (@1 © b6) Py (R(ejo- €3¢ € )] g s/ 45
k1 —ko|<8, k1, ko>k—4 "5

+ Z / | Pk[Pkl (9 © ¢s) P<i—a(R(ejy. €j))ejs. €)3)] ||Fk(T)ﬂSl/2(T) ds’
k1 —k|<4

+ > / | P[Py (9 © 65) Picy R(€jo- €51 )e 130 g,y /2y 45
lko—k|<4,k1<k—4

(4.15)

The above three subcases according to their order are usually called (a) High x High
— Low, (b) High x Low — High, (c) Low x High — High.

Case (b): High x Low — High. In [5, Lemma 5.2, p. 1470], the authors have proved

Z/ 1P (@i © @)l g, (7ynsi 72y ds' < eB127K (1 + 52%) *hi5(0),  (4.16)
i=1

with slightly different notations. Thus in case (b), by (8.5) and applying the trivial bound

”(R(ejo’ej])ejza€j3>||L°° < K(N) (4.17)

t.5.x

to the Py _4 part and (4.16) to the Py, part, we obtain

. Zkl / | Pic (Px, (@i © ¢s5) P<i—a(R(ejy, €, )ej)s, e13))”Fk(T)ﬁS1/2(T)
1—k|<4
<eB2” Uk(l + S22k) 4hk,s(0). (4.18)

Step 2. Refined dynamic separation. For the Low x High and High x High part, we
need to further decompose the curvature term. The dynamic separation performed in Sec-
tion 3.4 also needs to be refined. Recall the notation

G(s) = (R(ejy, €j,)ej,, €j3) (),
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for any given jo, ..., j3 € {1,...,2n}, and the decomposition of § in Section 3.4. Thus
using Y5 = Y ;1 ,(9; + A;)V;, after the second time-dynamic separation, ¥ can be
decomposed into

G(s) = (R(ejy, €j1)e),, €j3) (5)
o
= -0 / vl () d5
o0 : o0 ~
—/ %’(5)(/~ U2 (s")(V2R)(er, ep: ejy. - - .,ej3)ds’) ds
=T+ Ugo + Uo1 + Ur + Uy, 4.19)

where
o 2
Uopo 1= _Floo,(l)/ Z(ail//i)ds/
S oi=1

‘U()l .

oo 2 _
[ @) (TR ) - T as
Si=1
0o 2
Uy = — >0 / > (i) ds’
Soi=1
oo 2 0 ~
U= = [ O [ v R epici e ) a5
5=l s

2

[ A O TRy er) ~ 17 .
Soi=1

It is easy to prove that

00 2
[ T @vas
2707 o

< 27K hi (0) (Lkg 1k <027 4 Ligrz022k0 k) (1  22koF2k)=4 (400

Fi(T)

And recall that [5, Lemma 5.2] shows that for s € [22/~1,22/+2),

||Pk(¢t <& ¢S)(s)||Fk(T)ﬂS]i/2(T)

_ 277K 4+ 2205 (s (0) + Bre2 P hy(0) itk +j 20,

< ~ . 421
{2—0k(hk,s(o) + B1e22 h_jh_;(0)) ifk+j <0, @21

where B . _
his(0) :=277h_; 2% (0) + 277 h_; (0)).
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Then repeating the bilinear estimates of [5, Lemma 5.1], we have

00
/ | Pr. (Uoo(ps © ¢i))”Fk(T)ﬂS,i/2(T) ds' <+ gBl)Z_Ukhk’s(o)(l + 22k0+2k)—4'
s

(4.22)
The I"*° part

00
/ | P (T (g5 © ¢i))”Fk(T)ﬂS,1/2(T) ds' <+ EBl)z_Okhk,s(O')(l + 22k0+2k)—4
s

follows by directly applying [5, Lemma 5.2], since I"*° is just a constant.
Recall the notation € = (VR)(e; €jos €15 €jns €j3) — M For U, applying
(3.73) which says

2K Peg V| oo 2 27K i (0)(1 4 2%%5) 7, (4.23)
and (4.9) which says, for s € [22/71,22/+1),
22 P D 14 oo £ 27 i (@)1 +2%9) 70 am0 + 2V 0], (4.24)
we find by Lemma 4.2 that

I Pe (3 i) € i (1)
S D Pl ke, ()l P<k—aF P |l

lk1—k|<4
+ ) 2472 P, 0i il (T)IIPk2§(1)||L§L§,Q
lkr—k|<4,ki<k—4
+ Y PR adle, @ PaEVlL
lko—k|<4,k|<k—4
! 2 1P, 91l 7y, () (1 Py @ Plloe + 2672 Py 8Ol 400

lko—k1|<8,ky,ka>k—4

Thus by the slow variation of envelopes we further have
I Pe(@ivi)E D) I ey < 27 i (0) (1t 2025 (1 + 22KF2) ™4 4 14 L9277 2817FH])

for s € [22/71,22/%1) and k, j € Z. Notice that the large constant e~'/* is absorbed
by [[{hx}]leee < €/2. Also notice that in the Low x High interaction of (d;;)§® it
is possible to deduce 27°% for o € [0, %] from 9;v; due to the fact that the series
Dk <k—4 22k=0kp, (o) is summable for o < 2. Thus for s € [22k0~1 22ko+1) ‘symming

the above formula over j > kg yields

o0
/ I Pe (i i) ) | ey ds’
N

< 27 ni(0) (k202K 72RO (1 4+ 22K+ 2k0) =4 1y 40 <027F),
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which is the same as (4.20). Thus (4.21) and bilinear estimates give

S
/ | P (Uo1 (s © ¢i))”Fk(T)ﬂS,i/2(T) ds' <(1+ EBI)Z_Ukhk,S(O')(l + 22k0+2k)—4.
s

Therefore, it remains to estimate Uy and U;.

Step 3. Proof of our lemma with a bootstrap condition. We first prove our lemma with
an additional bootstrap condition. In the final step we will drop the bootstrap condition
and finish the whole proof.

Bootstrap Assumption A. Assume that for all k, j € Z and s € [2%/ 71,22/ +1),

| PeUs g, sty < €20+ 29D T e (4.25)
1P Uil p oy < €210+ 2F) T jhiees, (4.26)

where ¢ = [[{hx}||;2 and we denote
Trj = litj<027% + 1py 2027 (4.27)

Our aim for this step is to prove that By defined by (4.15) satisfies
By 1+¢By,

assuming Bootstrap Assumption A.
For s € [2%/71,22/+1) and j € Z, (4.25) and (4.26) show U := U; + Uy satisfies

25(1 4+ 288 PeU oy S 1. (4.28)

Case (a): High x High — Low. The bound (4.28) suffices to control the High x High
interaction. For k + k¢ > 0, applying the bounds (4.28), (4.21) and (8.4) of Lemma 8.2
with w = 1/2, one finds that in the High x High case,

> /2 - > 1Pic(Pey (9 © 85) Pes W g (7yns 2y ds'
Jj=ko k1 —k2|<8,k1,ka>k—4
k—k . .
SR N Y 2 (2R SR (R Ty (o) + - (0)
Jj=ko k1=k—4
k—k .
+270K SN 272 Bre(1 + 22 Sy 05 (0), (4.29)
J=ko kizk—4

which by slow variation of envelopes is further bounded by

k—kq

2—(Tk Z Z 272 (l+2kl+j)_1025‘j_k0|h,kohk(O’)(zkl+j+8|kl_k‘+28|k+j|)
Jj=ko k1=k—4

k—k . .
+270K 37N 277 Bre(1 + 2kt 108l —kolpSlki—kl, ().
Jzko ki=k—4
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Since k1 + j Z k+ j =k + ko > 0, it is easy to see the above formula is acceptable
because

> 27K (1 + eBy)h_gyhyc(0)28V TR0l (1 4 gk )8
J=ko

< (1 + eB1)2 " h g hy (o) 2Ktk (1 4 2k Fkoy=8,

Therefore, the k + ko > 0 case for the High x High interaction has been settled.
Assume k + ko < 0. Applying the bounds (4.21), (4.28) with ¢ = 0 and (8.4) with
w = %, for j 4+ k < 0, by slow variation of envelopes we have

22/+1

> [, > IR @0 60 P Wl 2y 45

ko<j<—k "7 |ki—ka|<8,k1kazk—4

k—k . .
S > Y 22 2R 22RO 2 Yy (0) + b (0)
ko<j<—k ki >k—4

k—

Bt Y (Y 2 > h_ih_ (o)

ko<j<—k k—4<k;=<—j
+ > 2

ki>—j

k—

k .
> 1 (1 + 221+2k1)_4hk1,22j (O_))

s ). 2%+ eBhjh_j (o).
ko<j=—k

Therefore, for ko + k < 0, the High x High part is bounded by

2j+1
Z ) Z ”Pk(Pk] (¢l <>¢S)Pk2u)”Fk(T)ﬁS]i/2(T)d‘[
ko "H TN i~k |<8,ky ko zk—4

S D Cc 4282k (0)20EDEED 1 N ()

ko<j<—k j=—k

SA+Bie) Y, 2% hojhoj0) + (1 + Bie)2™  hihi (o)
ko<j<—k

S ). U+ B2 % jh (o). (4.30)

ko<j=<—k

where the ij_k (...) part in (4.30) is bounded by (1 + B1£)2~%hihi (o) by directly
using results of the k 4+ ko > 0 case. Therefore, we conclude that

2j+1
/; Z ||Pk(Pk1(¢i quS)szu)”Fk(T)ﬂS]l/z(T)dT

J2ko "2 T ki —ka|<8, k1 ko>k—4

< (1+eB)27K (1 + 270 By (o).
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Case (¢): Low x High — High. In case (c), we assume |k — k;| <4 and k > ky + 4,
i.e. Low x High — High. We apply the bound

”Pk(fklgkz)”kaS,l/z < 2k1 ”Pk] f”Fkl mslll/z ||Pk2g||Fk2(T)
provided that |k — k,| < 20. To avoid a long formula, we recall the notation

T = litj02) + 1k+j502_k~

Thus by (4.21), (4.25) and (4.26), for j > k¢ and o € [0, %], we find that the Low x
High — High part is bounded by

22j+1

)N IR DI [ X R AT R TT ppa
Jzko P27 ko—ki<4, ky <k—4
22 +1

DD DY f2 24 Pl (8580 g, 5372 Pl (W iy

Jzko |k—kz|<4 ki <k—4

€ 30 Wi (12777 37 2ok BTy (o) +hej (@) (1424
Jzko k1<k

+Z hiTi,; (1+277%) 7 Brelgy o Z 2k1=okip_ih_j (o)

J=ko ki=—j
+ ) hTe;(1+27) T Bielpy 0 Y 2"1_""‘2k‘+jh_jhk1(o)(1+2k‘+j)_7
J=ko —j<ki<k
+ Y T (14277 Brely j<0 Y 257K h_ih_ (o).
Jzko ky<k

Therefore, for k + k¢ > 0 we conclude that

22/ +1

S X IRPL@ o 8P Wllg s
Jzko "7 |ko—k|<4, ki <k—4
S 27K N (1 + Bie)(1 + 28720l Kol p_y oy (o)
j=ko

S 277K (1 + Bre)(1 + 22K42) "y 4k (0),
and for k + kg < 0, we also have

22/ +1

Z Z /2\21‘71 ”Pk(Pk] (¢S <>¢i)Pk2u)”Fk(T)ﬁS]i/2(T)

Jj=ko lka—k|<8,k1 <k _
< 27K (1 + B2 (1 + 222y o (0).

Thus the Low x High part has been handled for U as well.



Z.Li 4926

Therefore, combining the three cases, we summarize

||Pk(Al (S))”kasll/z S (81/2B1 + 1)2_0k(1 + 2k+k0)—8hky22ko (0.) (431)

This shows
By <e'?By + 1. (4.32)
Hence B; < 1. So, we have obtained our lemma for o € [0, % assuming Bootstrap

Assumption A.

Step 4. In this step, we prove that our lemma remains valid if we drop the Bootstrap
Assumption A in (4.25) and (4.26). First, we prove a claim.

Claim A. If (4.25)—(4.26) hold, then for allk, j € Z, 0 € [0, 2] and s € [22/71, 227 +1),

> 100
Il P Us ”sz(T)ms,i/z(T) < 27" (1 + 25T i (o). (4.33)
1P WU 7y 1y < €5277% (1 + 254 Ty shic(0). (4.34)

Recall the definition of U;:
o0
Uy = —1>® / > (A (s ds'.
Si=1,2
For Uy, it is better to use
o
Uy = _/ Z (Aiyi)? (sHI(VR)(ep: ejoys )y, €)1 €j3) — F;o’(l)] ds'.
S oi=1,2

Recall the notation
W = (VR)(e; ¢y, ..., ej;) — T,

Moreover, by (3.73) and since ¢ := |[{hx}||;2 we have
1PeED)®)llLge, S 27 % hi(0) (1 +522)72°, o e [0, 355].  (435)
Thus in order to prove Claim A for Uy, it suffices to prove
o
[ 1A E Oy s 5 01+ 25512 76T 436)
S

The bound claimed for Uy is easier to verify. Since now B; < 1, applying bilinear
Lemma 8.2 to A;¥;, one has for j +k > 0 and s € [22j_1, 22j+1),

”(Aiwi)“Fk(T)ﬂS]ifz(T)
. k—j .
S (k20277 + Ly j=02 2)(1 + 2224070k expy (). (437)
Summing the above formula over j > kg, we get
o0
/ 14iill g rynsi/2ey 45° S €62 Ty (1 + 297 Thie0). (4.38)
s

Thus Claim A has been verified for U;.
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For U,;, we will use the inequality (see (4.45))
||Pk(Pk1 kazg)”Fk(T) < ||Pk2g||L§° ”Pk] f”Fk] (T)ﬂS,:{Z(T)'

Then by Littlewood—Paley bilinear decomposition,

1P Av)EDmry S 0 1P (Al s I Pee-a8 s
lk1—k|<4

+ > 1Py (Al gy | Pea @ Plles
k1 —ka|<8. k1 ko=k—4 :

LD DR 1 A C 0] [pAVETee [t A T2
|ka—k|<4, ki <k—4 '

Thus by (4.37), the High x Low part of (A4; 1/fi)§(1) is dominated by

> 1Pe(Prey (Ai ) P<ie—s ) ()
lk—ki|<4

<2 (L =02 7 PR (0) + Lig 20277 (1 4+ 250) Ty (0)hy).

Summing over j > k¢ yields

Y22 3 PPy (i) PiE D)

Jj=ko lk—ky|<4
< g2 " i (0) (ko020 (1 + 2875077 4 1y g <0275).

Using (4.35) and (4.37), the High x High part of (4;v;)€") is dominated by

> | Pe(Pe, (i) Pey § )| ey
lko—k1|<8,k1,ko=k—4
Scplerjzo ), 20N+ 22T TR, (0)
ki1>k—4
k1

+C;1k+j50|: Z 2 > 28|kl+j|2_0k1hk1(0)

k—d<ki<—j —oky 2j+2k\—=79k1
+ Y 27k 22 TRy (o)
kiz—j

S cilig =027 (1 4 271F) 710079k (0) + e 1gy j<o2 7/ 28710k pyy ().

Summing over j > kg also gives

> 2% > | Pe(Pr, (Aii) Pey § )| 7y

Jj=ko lko—k11<8,k1,kr>k—4
< b 27" 1 qpg =020 (1 4 25750) Tl (0) + cf 1k kg <02 K27 g (0).
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Then using (4.35), the Low x High part of (A;y;)€ 1 is bounded as
> 1P (Prey (Ai Vi) Py § )| ey
lk—ka|<4, ky <k—4

< he(0)2 Ly jzo Y by 22017 28k+]
k]fk

+ hk(o.)z—(fk(l + 22j+2k)_201k+j20|: Z hklzkl (1 + 22]+2k1)—4]
—j<ki=<k

(@027 (14 2TF 20 o[ 37 g, 277 28]
ki<—j

< 32K N 1202 (1427 T0) 727k (0) 032K 1y j 02 20 28K Hi =0k ().
Summing over j > kg as well yields

D2 > 1 Pec(Pr, (Ai ) Pey § )| o

Jj=ko lk—k>|<4,ki<k+4
S 02 g 2020 (1 4+ 2750) Thy(0) + €5 Trtkg=02 ¥ 27 g (0).

Thus back to the LHS of (4.36), we conclude that if (4.26) holds, then
I P Unll pery S €27 Lkro20250 (1 4 25750 Ty (o) + ¢ Tkro<027¥ 27 hye(0).

In particular, (4.26) holds, thus proving Claim A.
Now we are ready to prove our lemma with (4.25) and (4.26) being dropped. Define
a function of 77 € [0, T'] by

(T = Z sup sup (e) 11 + 2k23/2)7Tk_7}h,:1
{eyClL,..any Ko €T s€[227 71,2274

X (I1Px Uz | £ 77y + 1 P Uil Fy (7)) -

Using Lemma 3.3 and Sobolev embeddings, we find that ® is a continuous function on
[0, T']. In order to proving our lemma, it suffices to prove @ < 1. It is easy to see that ® is
also an increasing continuous function on [0, T']. And Claim A shows

d(T)<eV? — o(T) < 1.

Hence it suffices to verify
lim ®(T") < 1.
T'—0

This reduces to proving that for all j, k € Z and s € [22/~1,22/+1),

2

{je}c{1,....2n}

Pk/ (A [(VR)(eg: €jyr .. 2 e)3) — r‘;o’(l)]‘

L%

o0
+ / | Pe(Aiyl 2 ds’ < cg (L + 262572 T .
s
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where all the fields ¥; and the matrices A; are associated with the heat flow with initial
data ug. This can be proved by applying the results of Section 3. In fact, by the definition
of hy (o) one has

27 i smoll oo 2 < hi(0)
if o € [0, £55]. Then by Proposition 3.5 with ng (o) = hy (o) we get
(1 + 229> PeAi ()l oo 12 < 27 i 5(0). (4.39)
The proof of Proposition 3.5 shows

(1+ 225 P (9)l| oo 12 < 27 I (0) (4.40)

if o €0, %]. Then by (4.40), (4.39) and bilinear Littlewood—Paley decomposition, one

obtains
k oo k
(142492 [ IR 317 05 5 Wl Tehe()277
s
for s € [22/71,22/*y and k, j € Z. It remains to prove
oo
(1+2%5)%® / 1Pe[Ai i G Dl o2 ds” < K2 T, hic(0)27%, o € [0, £55].

’ (4.41)

This follows by (4.39), (4.40), (3.52) and bilinear Littlewood—Paley decomposition as
well. [ ]

Remark 4.1. Checking the proof of Lemma 4.1, we see the range of o € [0, %] was

only used in the Low x High interaction of (9; w,-)g(l), (A; ) (Up + Uyy) of Step 2 and
Step 3 respectively.

Lemma 4.2. If |ky — k| < 4, then
I Pk (Pre, fP<k-a@ | Fery < N Pry 8l i () | P<ic—ag Lo (4.42)
If |k — k1| <8andky,ky > k — 4, then
1Pe(Pr, f P Eery S 1 Piy £ Lm0y (1 Praglizee + 227 Prygllpaoo). (4.43)
If kp — k| <4andky <k — 4, then
| P (Pr, /Py &)l Fy (1)
<2920 Py fllee, )| Pragllpapoe + 2501 Pey fllE ()| ProgllLs.  (4.44)

For any ky,ka,k € Z, one has

| Pk (Prey S Pry @ Fi 1y < |l Pry f”Fkl(T)ﬂS,ifz(T)”szg”Lw' (4.45)
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Proof. (4.42) has been given in [5]. And (4.43) follows by Holder and [5, (3.17)] which
says
1Peflmery S 1 Pef lizzee +1Peflps

(4.44) follows for the same reason with additionally using the Bernstein inequality.
Moreover, by definition,

WP flieg, = W lmcay. I1Peflzree = W f g2y
Thus one obtains
1Pk (P, S Py Firy S N1 Pry S Pro8 M2 100 + 1 Prey S Prp 8 Ml
S 1Py fllizzpee + 1Py fllzs I Proglinee
S IPiogllel P f g sty .
The proof of Lemma 4.1 yields

Corollary 4.1. Under the assumptions of Proposition 4.1 and (4.9), for s €[22/ =1,22/+1),

o €0, 5land j.k € Z,

| P @) Fery <277 hie(0) Ty (1 4+ 277)77,
where Ty ; is defined by (4.27). When s = 0, we have
1P (&)t s=oll Fecry S 2% hye(o)27F.
Proof. Lemma 4.1 gives

1Pk (Uoo) | £y + 1Pk (UoD) | ecry S 27K Tie jhac(0) (1 + 2775) 77,
1P Ul g ryns) /2y < 27K Ty jhic(o) (1 + 27T 77,
| PeUanll ey < 277 Tie jhae(0) (1 +274) 77
Then the corollary follows by the decomposition
§=9—-T%=Uy + Uo1 + Us + Uy,

and the inequality (1 + 2/7%)~17} ; <2 % forall j, k € Z. "

4.3. Evolution of differential fields along the heat flow
Recall the evolution equation for ¢; along the heat flow:
(s — A)gi = K,
2 2 2
Ki =2 0j(Aj¢) + > (A2 —0;4))pi + Y ¢ o pi 0 ¢5.  (446)
i=1 j=1 j=1

Now we control the nonlinearities in the above equations.
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Lemma 4.3. Under the assumptions of Proposition 4.1 and (4.9), for all s € [0, 00),

i=12ando €0, %], we have

<e(1 4 s22)7427% by (0). (4.47)
Fi(T)

S
/ e DA pLK; (r)dt
0

Proof. First, we consider the quartic term § (¢; ¢ ¢;) © ¢; in K;. In [5, (5.25)] it is proved
that for t € [22/71,22/+1),

” Pk (¢l <& ¢P <& ¢l)(T)||Fk(T)ﬂS,1/2(T)
< e270k02K (1 4 2224 (0) + 2 2RI (o). (4.48)

Recall that & = & + I'™. The constant part follows by (4.48). By bilinear Littlewood—
Paley decomposition we have

I Pe (i © dp © 019) | F (1)
S Y NP @iodp o d)PGllrnyt Y. 1Pk (i 0 ¢p © $1) PG | mr)

ki1>k—4 k1<k—4
lk1—k2|<8 lko—k|<4
+ Y NP (¢ © ¢p © b)) P<k—aG | F(1)-
lk1—k|<4

For the High x Low term, directly applying ||§|| L, = K(N) gives

1Pk, (@i © bp © ¢1) Pk—aF | Firy S I1Pe(@i © $p © 6D, 7yns12r)
< 27K (1 4 2262y (0) + 273 KD h_ (o)),

For the High x High term, denoting 'V := ¢; ¢ ¢, ¢ ¢;, Corollary 4.1 and (8.4) show

> 1P, (i & $p © $1) Py 6|l )
lk1—k2|<8,k1,kr>k—4
k1+k
< > 22 1P YV g st | Pl Fg
lk1—k2|<8, k1 kozk—4 !
5 Z 2k12+k2—0'k]+2k] (1 +2k]+j)—15
ki,ka=k—4,|k1—k>|<8

x [he, (@) + 273 €D h_ ()| Thy shiey. (4.49)
If k + j > 0, then by slow variation of envelopes, (4.49) is bounded by

23k+j2—ak(] + 2k+j)_14hk(0)hk.
Ifk + j <0,using (1 +25+/)717 ; <2 % forall k € Z, (4.49) is dominated by

2k/2_3j/22_0kl’lk(O')hkzs‘j—i_kl.
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Therefore, for the High x High interaction, if s € [22/~1,22/+1) then
> I Py (i © ¢p © ¢1) Py G| i (1)
lk1—k2|<8,k1,ko>k—4

< 270k=3T k298K iy (0)(1 4+ 22K+2) 7S (4.50)

To finish estimates for the High x High interaction, we verify the corresponding part in
(4.47). We use (4.50) to verify (4.47). Let s € [22k0~1 22ko+1y) with ko € Z fixed. For
k + ko < 0, by (2.6) one has

N
/ etmoA > Pr(Pr, VP, 6)dt
0 ky=k—4, [k —k2| <8
92j+1

<y /2 S PP Vo Dlpm dt

J<ko k1=k—4,|k1—k2|<8
<e Z 2—0khk(0)(2%(j+k) + 2(%i5)(k+j))
j=<ko
< 27 i (0).

Fr(T)

For k + ko > 0, by (2.6) and (4.50), one has

S
(s—DA P(Pe. VP € H d
/OHe 3 C(P VPG|, e
k1>=k—4,|k1—k2|<8

s/2 K
5/ ...dr+/ .oodt
0 s/2

22/ +1
s 2 / p720ktko) N || Pe(Phy VP )y
j<—ko—172%" ki=k—4, [k —k2| <8
+ 270 > sup 1 Pi(Pr, V Py &) F oy

ki >k—4, [k —ky| <8 TE[22F072,22k0H1]

< ¢2—20(k+ko) Z 2—akhk(0)(25(j+k)+2(%ia)(j+k))
Jj<—ko—1

127y (o) (1 + 2k+k0)—10[2%(k0+k) + 2(%:&8)(k0+k)]
< g(1 + 2k Fkoy=82=0kp, (o).
Thus we conclude
S
/ He(H)A 3 Pe(Pe, VP, 9) H dt < £27% (o) (1 + 22K 5)4,
0 F(T)
k1>k—4, |k1—k2|<8

For the Low x High term, using

1Pey (Wllpe, < 251627 7R1F2K1 (1 4 2k14) B[ (o) 4272 ®14Dp_j (0)]
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we deduce by Corollary 4.1 and Lemma 4.2 that

> | P (Pr, (@ © b © 00 PoF) |, 1y

k1<k—4,|k—kz|<4
SZ_Uka,j(l+2j+k)_7hk(0)8 Z 23k1(1+2k1+j)—8(1+2—%(k1+j))'

ki1<k—4

Fork + j > 0, we have

Yo PP B0 8p 0 0P| 5y S 8277F27 (1 4+ 25) i (o).
k1<k—4,|lk—ky|<4
4.51)
Fork + j <0, we have

> PP @i oty 0 )P

ki1<k—4,lk—k,|<4
< e279kp3k=30 (1 4 X)) T (o). (4.52)

As a summary, we use (4.51) and (4.52) to verify (4.47). Let s € [22ko~1 22ko+1y with k¢
fixed. For k + ko < 0, by (2.6) one sees for the Low x High interaction that

/Os H6<H)A S PPy VPLE) ” pn 4TS ;;0/2 ..dt

ki1<k—a4,lk—kz|<4 2/—1
5 & Z 2j/2+k/22_0khk(0') s Z_UkEhk(U).

Jj=<ko

For k + ko > 0, similarly we have

s
(—DA Pi(P.. VP, §” d
/OHe Z k( k1 ko )Fk(T) T
ky <k—a. [k—ka|<4

< 82—20(k+k0)2—0khk (o) Z 2%(j+k) + Sz—akhk @)1 + 2k+ko)—72—2ko—2k
Jj<—ko—1

< g(1 4 2ktkoy=82=9kp, ().

Thus we conclude
A
/ He“—fm 3 Pe(Py, szg)ﬂp TSt k+koy=87=0k . (7).
0 k1 <k—4, [k—ka| <4 g

And the High x Low case is easy by repeating the same argument or directly applying the

result of [5, Lemma 5.3]. Therefore, the curvature term has been handled:

< e(1 4+ 22427y (o).
Fi(T)

H / eSTAP (g 0 pp o p1F) d
0
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Step 2. Connection coefficient terms. In this step, we turn to estimating the terms
91 (A;v;), 0;Aj¢p; and A12¢,-. With Lemma 4.1 in hand, all these terms follow directly
by repeating arguments of [5, Lemma 5.3]. |

Lemma 4.4. Under the assumptions of Proposition 4.1 and (4.9), for allk € Z, s > 0
andi = 1,2, we have

1 Pidyi ()| ey < bie(@)27F (1 +522)7% o € [0, 755 ]. (4.53)
Proof. By the Duhamel principle and (4.47), we get
sup (14 227X || P (5)l| i) S bi(0) + ehe (o). (4.54)
5>

Since the RHS of (4.54) is a frequency envelope of order §, by the definition of {/x (o)}
we get

hi(0) < b (0) + ehi(0), (4.55)

which by letting € be sufficiently small yields
hi(0) < br(0). (4.56)
(]

Lemma 4.5. Under the assumptions of Proposition 4.1 and (4.9), for allk € Z, s > 0

andi = 1,2 we have
1PeAibsmollps | < br(@)27F. (4.57)

Proof. In the proof of Lemma 4.4 we have shown (4.56). Then the previous bounds in
Lemma 4.1 now hold with &y (o) replaced by b (). Recall that in [5, pp. 1473-1474] it
is proved that

1Pegsllps < 2527F by () (2%%5) 733 (1 4 5277, (4.58)

We also recall the bilinear estimate of [5, Lemma 5.4] in our Appendix A, Lemma 8.4.
Then (4.58) and (4.53) show

1Pe(gi 0 ¢o)llps S 270K Y br(o)by2 ™ (s22) /8 (1 4 5274) 73
’ I<k

+ y—ok Z bk(a)b12212%(k_1)(22ks)_3/8(1 + szzk)—4
1<k

+ Z 2—Glbl (U)b12k+l (2213)_3/8(1 + S221)_7.
1>k

Thus given s € [22/~1,22/+2) with j € Z, we conclude that for k + j > 0,
IPi(@i © ¢o)llzs < be(0)b2* oK (s22) 33 (1 52773, (4.59)
and fork + j <0,
I1Pe(@i © ¢o)llp3 < be(o)by2* 1+ 120Kk, (4.60)
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Recalling that fori = 1,2,

4;(0) = /000(451‘ o hs)G ds, (4.61)

we see that it remains to deal with the interaction of ¢5 ¢ ¢; with §. Recall that § =
' + g with
1P Fery S 27K T j (1 + 24) T hy (o) (4.62)
for s € 2271, 22/+1) with j € Z. (4.59) and (4.60) show that the constant part I'*®
contributes by (0)27°% to ||A,-(0)||L4[1X. Thus it suffices to control (¢; © ¢>s)§.
As before, we consider three cases according to Littlewood—Paley decomposition.
Using the trivial bound ||| L2, = K(WN) in the High x Low part gives

22j+1
S X IR @0 0 Patily ds
JEZ " |k1—k|<4
< :E: 1k+j20bk(O)bk22k+2j—ok(22k+2j)—3/8UL+_22k+2j)—3
j=—k
+ Y iy j=obi(0)b 220K+ Ipmok ok
Jj<—k

< b (0)bp27°.

Notice that Lemma 8.4 shows

k(1 —wk
> | Pi(Prey fPrs@)llps S D 2K0F 927 g vy
[k1—k2|<8,k1,ko>k—4 k1>k

where [tk = Yk _g/1<20 ||Pk/f||slg’/ and Vg = Y5 _g/1<20 ||Pkrg||th;~x. Thus using (4.62),
we have by choosing w = 0 that

o0
/ S PP @ 0 60PN ds
O ki —k2l<8, ki ko =k—4 ’
S Y 2MedR 37 by by (0)2F1 270K (1 272Ky
j>—k ki1>k—4
+ Z y—okyk Z 2'ibk1 (O)bk1225|k1+j|
j<—k k—4<ki<—j
+2—Uk Z 22j2k Z bkl(o_)bk1228\k1+j|2k1(22j+2k1)—3/8(1+22j+2k1)—5
j<—k ki=—j
j=—k Jj=<—k
< brbi(0)27°F,

where we have used (1 + 2¥*/)717} ; < 27% for all k € Z. In the Low x High part,
Lemma 8.4 shows



Z.Li 4936

!
> 1 Pr(Pry fPry@)lls < > 2 v,

lko—k|<4,k1<k—4 I<k

Whel‘e Mk = Zlk,—k‘ﬁzo || Pk/f”sllé) and Vi = Zlk/_klszo || Pk/g”LA[lx Then by (462) we
have ’

3 | Pl Pry (s © 61) Py Gl

|ko—k|<4,ki<k—4
< 27 by (0)eTy (1 4 27 TF)77
x Y 2 byby (174 <022 12I7T 1545022 273U FD (1 4 227120 73)
1<k
< 27 b )bk (T j20272 (1 4+ 257) 4 4 1y 257720,
Hence for the Low x High part we conclude that
o0
| Y IPP s 0 90 Pl s ds
O kp—k|<4,ky<k—4
277 3 b (@)l jzo(1+2H) 7 4 27K Y b (0) 1 j <0227
JEZ JEZ
< brbr(0)27°k.
Therefore, we get
1Pe(Ai )4 < 27 (0). u

Now we turn to the bounds for ¢; stated in Proposition 4.1.

Lemma 4.6. Assume that the assumptions of Proposition 4.1 and (4.9) hold. Then for

99
[UNS [O, 100

], one has
| Pigpe ()4 < br(0)27O7DR(1 4 2%K5)72, (4.63)
Proof. Recall that ¢, satisfies ”
Ospr — Ar = L(y),
L(¢:) = L1(¢:) + L2(¢y),
L6 = 320 + (i A7 =01 A1) .
=1

i=1
2
La(¢e) = Y (¢ 0 hi) o $i.
i=1

By the Duhamel principle, ¢; can be written as

¢ = emlﬁt Ps=o + /0 e(S_T)AL(fﬁt(T)) dz. (4.64)

By a uniqueness argument as in [5, Lemma 5.6], in order to prove (4.63), it suffices to
show that
| Pee()lla < br(0)27 7Dk 4+ 2%K9) 72 (4.65)
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implies
S
/ leC™PAL(()s _dT S br(0)27 DR + 2%K5) 72, (4.66)
0 X

The L;(¢;) part of (4.66) has been shown in [5, Lemma 5.6]. It suffices to prove (4.66)
for L,(¢;) under the assumption of (4.65). Recall also that § = I'*® + § satisfies

1Pc(€ — T pery < 27K+ 27871 ;. (4.67)
By the proof of [5, Lemma 5.6],
I Pe(de(s) o @i o gl s < bF27 O VK(1 4+ 2%K5)2(s2) by (o). (4.68)

Then the ['*° part of L;(¢;) follows directly from that proof.
Denote P = ¢;(s) ¢ ¢; © ¢;. In order to control P(§ — I'*®), we first control
(i © 1) ||S;/2(T). We have seen

c(Pi © ¢ 120 S 27 7427 b j bmax (k- ) (0)- :
| Pe(@i 0 )l g (yns) /2y S 277K 1+ 2252427 b_jb (0).  (4.69)

Thus applying bilinear Littlewood—Paley decomposition, we find by (4.67) that

||Pk(¢l <>¢lg)”Fk(T)ﬂS]:/2(T) S Z ”Pk] (¢l 0¢Z)||Fk(T)ﬂS11/2(T)||P5k_4§”l‘oo

lk1—k|<4
k+kq ~
+ > 272 1Py (81 © 0 gy /2y 1P ¥ iy )
lk1—k2|<8,k1,ko>k—4
. .
+ > 2V Py @1 © 00 (s /2y 1P iy )

lko—k|<4,ki<k—4
< 2_Okbk(o-)bk28‘k+j‘(1k+j502_j + 2k1k+j20(1 + 2k+j)—7).

Then using Lemma 8.4 with v = % and (4.67), P¢ is dominated by

1P (Pr, e Pry (i © 919)) 13

f ~
< > 221 Py bellpg NPio (b 0 o) 5172
ey —k| <4, k> <k—4

J g P ~
+2¢ > 22O Py il N Pey (@i 0 39112,
lk1—k2|<8, k2. k1 >k—4

k+kq ~
o 2 Pty (P @i o dif)lgag
lko—k|<4,ki<k—4

< 27 b ()0 2K 1y <0 (23737 4 2%
+ 277 b (0)bic L+ 0
< (28\k+j\23k(1 4 okHiy=10 4 2%(/(—,')(1 4+ 2k HIy=T 4 k=20 (1 4 2k+j)—4)
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fors € [22/71,2%2/* 1) and j, k € Z. As a summary, inserting this bound to the heat estim-
ates

[ 1SR Rl o g0 giBllg ds s [ +F-sh N ds
0 " 0

we conclude that

Since L1 has been handled before, we have finished the proof. [

P /0 TG (6,(0)) d

< e(1 + 2%k5)2070k+kp, ().
L4

r.x

Lemma 4.7. With the assumptions of Proposition 4.1, the bootstrap assumption (4.9) can
be improved to

2k/2||Pk§(1)||L§L§’° < (g jzo(1 + s2%0)720 4 28I+l o o)

foranyk,j € Z ands € [2%771,22/%1),

99

Proof. The proof of Lemma 4.1 has shown that for any o € [0, 155

[22j—1’22j+1),

l.k,jeZands €

1Pe(F Digi)lanpoors S ha(@)27 7K (1 4+ 52%) 731 gm0 + 27727 o
(4.70)
Meanwhile, Lemma 4.6 yields

I1Pidpella < b2 (1 +5279) 72, 4.71)

Recall that by < ¢!/2 for any k € Z. Then bilinear Littlewood—Paley decomposition shows
[ Pr(:(DigiG))| L4

S hi(0)27 KR (1 4 52%8) P Uiy jmo + 272 257K 22Ky (0) By 1y <0

fori =1,2,0 €0, 755]. k. j € Z and s € [22/71,22/*1) Here, in the High x Low

interaction of ¢, (D;¢; &) we use

> | Px(Pe, b1 Py (Di i ) L4

lk1—k|<4,ka<k—4

Sh2 Y (00277 R (1 4 5272) gm0 + 277201 N ).
kr<k—4

The other two frequency interactions are standard. Thus
[e )
/ | Pic(pe Di)G |4 ds” < hae(0)27 (1 4 22420) Mg
s

+ 257Ky (o) (1 4 22K Ko ) <0 (472)
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forany o € [0 k, ko € Z and s € [22ko=1 22ko+1) Recalling that

> 100]

A = /oo(¢t o) ds', ¢s= ) Did;,

§ i=1,2
we see that || P A¢|| .+ is bounded by the RHS of (4.72). By the schematic formula

3(FW) = ¢,8? + 4,9V,
and the bounds

1PeE )| panpoers S (14527027 iy (o), vI=1,2,
we deduce from bilinear Littlewood—Paley decomposition that
| Picde (8 V) ILa < a2 (1 4+ 225K R0l 1y o).
Then by the Gagliardo—Nirenberg inequality we get
2P Pe(E s rge < N PLEDNFE 19 PG
S hie (145275 2 g0 + hi2’ KO g <o

for ko, k € Z and s € [22k0—1 p2ko+1), n

4.4. End of proof of Proposition 4.1

By Lemma 4.7, the assumption (4.9) in Lemmas 4.4—4.6 can be dropped. In fact, let
O(T') :=
- - j -1 >
sup sup hk1(1k+jzo(l-|—s22k) 20+25|k+1\1k+]_50) 2k/2||Pkg(l)||L§L§>O(T/).

k.j€Z se[22/=1,22/+1)

Lemma 3.3 and Sobolev embeddings imply ® is an increasing continuous function on
T’ € [0, T]. Lemma 4.7 shows ®(T’) < e~/ = ®(T’) < 1. Then by the Bernstein
inequality and letting 77 — 0, it remains to prove

KN Peg WVl S hic(Liyjzo(1 +5276) 720 4 2741, )

along the heat flow initiated from uq forany k, j € Z and s € [22/=1,22/ 1) This follows
by (3.73).

By Lemma 3.3 and similar arguments, assumption (4.3) can also be dropped. Thus
Lemmas 4.4-4.6 all hold only assuming (4.1) and (4. 2) of Proposition 4.1. To complete
the proof of Proposition 4.1, it remains to prove the Ly . bound for 4;.

Lemma 4.8. With the assumptions (4.1), (4.2) of Proposition 4.1, for all k € Z, one has

1PeAs=ollz2 < ebi(0)27K, o € [1h5. 1] (4.73)

14t s=ollz2, S €% o €[0. 155]- (4.74)
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Proof. Recall that in [5, Lemma 5.7] it is proved that

1Pe(de 0 po)ll2 < )27 2 bi(e)b (s22) /51 + 522) 72
ik
+Y 277122 by ()b (s22) (1 4 5227, (4.75)
1>k
Denote the RHS of (4.75) by ag (o) for simplicity.

Since A;(0) = fooo (¢r © ¢5)EG ds, (4.74) follows by directly applying [5, Lemma 5.7]
and ||g|| Lo < K(N). For (4.73), we need to clarify the frequency interaction between
¢: © ¢s and § as before. The constant part of § follows by (4.75). It remains to deal with
the & part. In the High x Low part of P [(¢; © ¢5)E], we have

Y NP @0 )PskaFll S D NPk (e o @)z 1€ < (o).
lk1—k|<4 |k1—k|<4

Thus the High x Low part is acceptable by directly repeating [5, Lemma 5.7].
From now on until the end of this proof, we assume o € [llﬁ, %]. In the High x High

part of Pi[(¢; © ¢5)F), using || Px f [l < 2¢(| f ||, and (4.62), we have

> 1P, (0 © 65) Pis G 1.2

|k1—k2|<8,k1,ka>k—4

Py
s Y PG sl 2R,
lk1—k|<8,k1,ko>=k—4

S Y a0 + 527327 Kp (o)

ki1>k—4

S > 2Mb (o) (1 + 52261y Y 2l TRy by (522) 7381 s221) 7
k12k74 lSkl

+ > 2R (o) (1 +s22K1)73 Y " 22 by (s221) (1 4 522D 7 (476)
ki1>k—4 1>k

Thus for j € Z and s € [22/71,22/+1) when k 4+ j > 0, the above quantity is bounded
by
(1 + 22j+2k)—222k—0kbkbk (0)(22k+2j)—3/8.

When k + j < 0, by (4.76) the High x High part is dominated by
< Z + Z )(1 + 22k1+2j)—322k1—ak1b£1bk1 (0)2—%(k1+j)
kiz—j  k—4<ki=—j

. =3 v 4
+ Z 1k1+j20(1+22k1+21) 2 aklbkl(o)[z 22 pb2 2(]+1)(1+221+2]) ]
klzk—4 le]

. =3 _
+ Y lygj=o(l 42172 27K py (o)

ki>k—4 X[(Z"' Z )22’b,b12_%(””(1+221+2f)_4]’

I>—j  ki=l=—j
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which is further bounded by

Z bkl (O’)sz 728lk1+jly2k1—aky 2_%(k1+j)2—6(k1 5

ki=—j
+ Z{: bk1(U)bsz_“kl22“k1+JW22k12—%(k1+j)
k<ki=—j
+b2,b_j(0) Y. Loyt jmo(1 4+ 221727y T pZki—oks gflki 47— k)
k1>k—4
+ D 1k1+150b3jbk1(0)[2_""12‘21' +27ok N 2l —%(1’+1)]
k1>k—4 il
Sb2boj (02727 4 Y iy jzob? i, (0)27K127Y
k1=k—4

S b2 ;b (002727 + 27 by (0)b2 ;27

where in the last line we have used o > —L-. Summing over j > k¢ we see the High x High

100°
part satisfies

o0
/ Y 1P @i ) PuBll d
O k1 —ka|<8, ki ko>k—4 ’
< Y 2%b ()2 + Y b2 27 by (o)
j<—k Jj<—k
+ Z (1 +22j+2k)—222k+2j—0kbkbk(0)(22k+2j)—3/8
j=—k

< 227, (0),

where we have applied o > ﬁ in the last line again. Now let us consider the Low x High

part of Pi[(¢; © gbs)‘g]. For the same reason as High x High, the Low x High part is
dominated by

/ Z | P<k—a(ps © ¢S)Pk2§”l‘%x ds'
0 !

lko—k|<4

o0
s/ > 1Peka(@r 0 Bl 2 221 P e dS'
| . ;
lky—k|<4

o0
0@ [0 0 90lz, d' 5 be(@)2 e
i ,,

where we have applied (4.62) and 2K Ty ; (1 + 277%)~1 < 1 in the third inequality. ~ =

5. Evolution along the Schriodinger map flow direction

In this section, we prove the following proposition, which is the key to closing the boot-
strap for solutions in the Schrodinger evolution direction.
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Proposition 5.1. Assume that o € [0, %]. Let Q € N be a fixed point and €y be a
sufficiently small constant. Given any £ € 7., assume that T € (0,2%%]. Let {cy} be
an €g-frequency envelope of order §, and let {cy(a)} be another frequency envelope of

order 8. Let u € #Hg(T) be the solution to SMF with initial data uy which satisfies
[ PeVuoll 2 < ck, (5.1)
1Pe Vol 2 < cix(0)27F, (5.2)

Denote by {¢;} the corresponding differential fields of the heat flow initiated from u.
Suppose also that at the heat initial time s = 0,

I Pedillc, ) < €5 . (5.3)

Then whens = 0, foralli = 1,2 and k € 7 we have
| Pedillc, (r) < ck- (5.4)
I PitillGyry S ci(0)27F. (5.5)

The proof of Proposition 5.1 will be divided into several lemmas. First of all, Corol-
lary 3.1 shows

2
> I Pepitsmoi=ollz S 2Fer(o) (5.6)
i=1

forany k € Z ando € [0,% .

Second, we reduce the proof to frequency envelope bounds. Let

2
b(k) == [ Peopils—oll Gy (1)- (5.7)
i=1
For g € [0, %], define the frequency envelopes:
bi(o) := sup 2K 278Ik=Klp k") (5.8)
k’€Z

By Proposition 3.1 and Sobolev embeddings, they are finite and £? summable. And

| Peits—ollGyry < 27 bic(0). (5.9
To prove (5.4) and (5.5), it suffices to show

bk (o) < ck(0). (5.10)
By (5.3), we have b < ao_l/zck, and in particular
S b2 < 6. (5.11)
keZ

The assumption (4.1) of Proposition 4.1 follows from the inclusion Gy C Fy. The
following lemma will show that the assumption (4.2) holds as a corollary of (5.9) if
u solves SMF.
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Lemma 5.1. If {by(0)} are defined as above, then the field ¢, at the heat initial time
s = 0 satisfies
| Pepetomolls < br(0)277 D, (5.12)

Proof. Whens =0, ¢;(0) = ~/—1 Zle 9; ;i (0) + A; (0)¢; (0). The terms v; (0), A; (0)
have been estimated before in Section 4. Thus copying the proof of [5, Lemma 6.1] gives
(5.12). (]

Thus both the assumption (4.1) and the assumption (4.2) of Proposition 4.1 are veri-
fied. Now one can apply Proposition 4.1, since (4.3) can be dropped. We summarize the
results in the following:

I Pe (@i ()| 7oy < 27K b (o) (1 + 2%k5)74, (5.13)
| Pi(Dii ()| ey < 2K27F by (o) (s22%)=3/8(1 + 22k 5) =2, .
and for F € {y; ¢ wj,Alz}lzl. =1
I1PeFhomollp2  S27702,(0). I1F=oll2 |, < €o. (5.14)

Then at s = 0, A, satisfies
1402 5 o, o € [0, 1551
IPcA: O <27Fbi(@). o € [35: 1o5)-

Recall that when s = 0, the evolution equation of ¢; along the Schrodinger map flow
direction (see Lemma 1.1) is

2 2
~V=1Dipi =) D;Di¢i + ) R(¢i.9))¢s- (5.15)
j=1 j=1

5.1. Control of nonlinearities

Now let us deal with the nonlinearities in (5.15). In this section we always assume s = 0.
Denote

2 2 2
L= Ay + ) AT +2)  0i(Aigy) — Y _(3iAi)gy. (5.16)
i=1 i=1 i=1
Proposition 5.2 ([5]). Forall j € {1,2} and o € |0, %] we have
1P (L) s=ollver) S €0277F by (o). (5.17)
2

D 1Py © iy © i) smollmey S €027 be(0). (5.18)

JosJj1,j3=1

Proof. (5.17) and (5.18) have been proved in [5, Proposition 6.2]. We emphasize that
to bound || A;¢; |~ [5, Proposition 6.2] used ||A,||L? < &2 when o € [0, 1—12] and
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12
bound [|4;¢; || w, as well, although (4.73)—(4.74) themselves differ from the bounds stated

in [5, Lemma 5.7]. [

”PkAt”L%x < 279kp; (0) when o > -L. Thus our bounds (4.73) and (4.74) suffice to

Now we turn to the remaining curvature term in (5.15).
Proposition 5.3. Forall k € Z and o < [0, %] we have

2

1Py © 85 © 8D vy S 27 eobi(0). (5.19)
JosJ1,73=1

Proof. Recall § = T’ + €. The constant part I"®° satisfies (5.19) by directly applying
(5.18). It suffices to control the § part.
As a preparation, we first prove the following estimate:

2
S NPcED) rery S

i=1

—ok
{2 b (o), 05 < = T0o- (5.20)
(o} .

i
2ok > sk bibj(0), 0<

1

100° then

This follows directly by applying Corollary 4.1 and Lemma 8.2: If o >

1P Fory S 27 % bie(0) +27F 7K b (o) Y 25112l by by (o) Y~ 270 228k
I<k jzk

< 27% (o).

Ifo €0, ﬁ], for the High x High interaction we directly use

> | Pk (Pky 8 Prcy @) || i (1)
lk1—k2|<8,k1.ka>k—4

YV 1PFlrm)( X 1Pubil,m)

jzk—4 lk1—jl<28 lka—jl<28
277K " bbi(0).
jzk

The other two interactions are all the same as for 0 > 35. Thus (5.20) follows.

As before, denoting F = ¢;, © ¢j,, by bilinear Littlewood—Paley decomposition, we
have

| Pie(F & (13 9)) | wy (r
= > N1P(Pas—100F P ) nery+ Y PP, FPoi—100(8;) Iy (1)

|l—k|<4 lk1—k|<4
|k1—k2|<120
+ > PP FPi,(§95) v r- (5.21)

kl,kzzk—loo
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For the first RHS term of (5.21), applying (8.12) and the trivial bounds

19]lzse, < 1. (5.22)
gl 5 <o, (5.23)
t.x
and (5.20), for o € [% %] we get

Y IPe(Pakm100F ProEdi) Iy < 1950 2 I Pe(G5) gy
lko—k|<4

< €02 %% by (0).

For the first RHS term of (5.21), when o € [0, ﬁ],
Plic—4k+4] (§¢j3) into High x High, Low x High, High x Low. We schematically write

one further decomposes

> I Pe(P<k—100F Py (§7:) | vy (1)

lko—k|<4
S > IP((P<k—100F) Prjs (P<i—s9)) | w1 (5.24)
[l—k|<8
+ Y I Pe((Par—100F) (P<ic—s¢ss Pr&)) |, (5.25)
|I—k|<8
+ > | Pe((P<k—100F) Pi, $j5 (P )| v, (1) (5.26)

|k1—k2|<16,k1,ka>k—8

Since for all o € [0, 5], the Low x High (denoted by P{" for short) and High x Low
(denoted by P} for short) interactions lead to ||(P}" + P,?l)(§¢,3)||Fk < 279Dy (0), we
conclude that

(5.24) + (5.25) < ligio®ii 2 (IPE" (G5 | ey + I PR (G5 | piec)

< €02 % b (0).
For the (5.26) term, applying (8.14) yields

(52005 > D IPl((Pak-100F) Py §) P, ¢ v

ko>k—8|k1—k2|<16

S Y PP PeBls 2 P dnle,
ko>k—8,|k1—k2|<16

< Z ||F||L,2!X2
k1>k—12
< €027 %% by (0).

(0)

Thus the first RHS term of (5.21) has been handled.
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For the second RHS term of (5.21), we further divide F into

> 1Pe(PiFPoi—100(8 ;) |y 1)

|k1—k|<4
S ) 1 Pe[Pigjo) (P<ic—sn) P<ic—100(5$is)] | i (1) (5.27)
[[—k|<8
+ Y PPy (P<ic—sio) P<kc—100(8j3)] | vy (1) (5.28)
[l—k|<8
+ > 1Pel(Pr 6jo) (PLdi) P<k—100(E D) Ingry.  (5:29)

[l =lx|<16,11,lb>k—8

Using again (8.12) and the bounds (5.22), (5.23), we obtain
(528) +(527) < ||Pk(¢x)||Fk(T)||¢x||i?x < €02 % b (0).

and using (8.14) and the bounds (5.22), (5.23), we have

k=iy ~
(529 < Z 275 [|(P<k~100(5¢j:)) Pry bji I 2 N PrdjollG ()
i —la|<16,11,l,>k—8 ’

2 Ll Y —ok
Slexllys > 275 2772bi,(0) S €2 7 bi(0),
Ir,>k—8
where we have used the embedding L,‘i(T) — Fp(T) — G(T) and the fact

| P, (§¢j3) L4 < ||¢xllz4 in the second inequality. Thus the first two RHS terms of (5.21)
are handled.
For the third term of (5.21), applying Littlewood—Paley decomposition to F shows

> PP FPe,(5¢55)) v,

k1,ko>k—100
lk1—k2|<120
< E E | P [Prebjo P<ky—8%j1 Pry (G051l v (5.30)
ki1,ko>k—100 |I—ki|<4
|k1—k2]|<120

+ ) > IPelPis, P<ii—sbio Prr ()] v, (5.31)

k1,ko>k—100 |l—k||<4
|k1—k2|<120

+ > > PP ¢, Prydio Py (5]l - (5.32)

k1,ko>k—100 [{,lo>k|—8
lk1—k2|<120 |I;—I2]|<16

By Lemma 8.5 and (5.20), (5.23), we have

(5.30) + (5.31)
k=1 ~
< > > Y 25 Pl dxlls 1P (i)l

k1>k—100 |k1 —k>|<120 |l—k|<4

k—k
< E £027°6

LKy (0) S €02 Kb (0).
k1>k—100
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And using Lemma 8.5, especially (8.14) and (8.12), we see

k=1y ~
G535 Y Y 2 1Py lie, )l (Prdio) P (i)l

ki1,ky>k—100 I{,lr>k1—8
lk1—k2|<120 |l1—I2|<16

= ~
s > Yo 2 Py lles, @) | Pudiolliall Pry (865l s

k1,kr>k—100 [,lr>k1—8
lk1—k2|<120 |I1—I2|<16

K=ty __ _
Se Y > 275 27Ny (0) S €027 bi(0).
k1>k—100 [1>k|—4
llh—l|<16

Thus the third RHS term of (5.21) has been handled. Hence, the proof is finished. [

Corollary 5.1 (Proof of Proposition 5.1). Under the assumptions of Proposition 5.1, for
alli € {1,2} and o € [0, =] we have

> 100
I Pegi G ry < 27 % cx(0). (5.33)
99
Proof. (5.6) shows that for any k € Z and o € [0, 1551
27K Pehi 0.0.9) ]l 2 S ek (0). (5.34)

Then by Proposition 5.3, Proposition 5.2 and the linear estimates of Proposition 2.1, one
has

br(0) < ck(0) + €0bi (0) (5.35)
forallo €0, %]. Thus by (0) < cx(0), and our result follows by the definition of {bx (0)}
in Section 5. ]

5.2. Unform bounds for o € [0, %

99

We end the arguments for o € [0, 155

] with the following proposition.

Proposition 5.4. Assume that o € [0, %]. Let Q € N be a fixed point and €y be a
sufficiently small constant. Given any £ € 7, assume that T € (0,22%]. Let {cy} be
an €g-frequency envelope of order §, and let {c(0)} be another frequency envelope of

order 8. Let u € Hg(T') be the solution to SMF with initial data uy which satisfies
[ PeVuoll 2 < ck. (5.36)
[ PeVuollp2 < cx(0)27°. (5.37)

Denote by {¢; } the corresponding differential fields of the heat flow initiated from u. Then
foralli = 1,2,k € Z and o € |0, %] we have

| Pxopits—ollG,(m) < k- (5.38)
I Pei b s—ollGrry < ck(0)27F, (5.39)
sup (1 + 522)*|| Py ()| p (1) < e (0)27°. (5.40)

s>0
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Proof. Define the function © : [-T.T] — R™* by
(T )= SuP Cr 1(||Pk¢z Fs 0||Gk(T’) + ||kau||L0°L2(Tf))
By Lemma 3.3, the function ® is continuous on [0, 7']. Then Proposition 5.1 implies
o) <> = sup i (1 Pedilsmollr) < 1.
keZ
And by Proposition 3.5,

:up Ckl(||Pk¢z Mo= 0||G;\(T’)) 1= EUP Ck1(||kau||L<>°L2 T’)) NE
€z

Hence, we conclude
OT) <e'? = o)< 1.

And it is easy to see ©(T") is increasing. Moreover,
lim ©(T") <1,
T'—0

by the definition of ®(7T"’), G (T’) and Corollary 3.1. Therefore, from the continuity of
® we conclude that (5.36) and (5.37) suffice to get

o) < 1,

thus giving (5.38). Then Proposition 5.1 yields (5.39), and (5.40) follows by the inclusion
Gy C Fy and Proposition 4.1. ]

6. Iteration scheme
From now on, the notations a(’ )(0) and a kl )(o) differ from the ones defined in Sec-
tion 3. They are defined as follows

Definition 6.1. Assume that vy € #g. Given j € N, let

cry(0) = sup 27370 N PeVuolz. ke
k'eZ

e Foro € [0, 100] define
o (0) = ck)(0).
e Foro € [0, %], define

Do) : ¢k, (0), o € [0. 755
k T
ck,(l)(o) + Ck,(l)(3/8)ck,(1)(0 — 3/8), o € (—1990, %]
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e Given an integer j > 2, foro € [0, j/4 + 1], define {c,(('j)(o)} by induction:

Ck,(j)(0), o € [0. 750]
(@) + cr,(HB/8)ck () (0 —3/8). 0 € ({55 ]

’
)

6/ @)= 1" ()
Ck,(H(0) + cr,(jH(3/8)c;’ (0 — 3/8),

Q
m
—_—
A‘+

w
INK]
+

() (@) + cr(y3/8)c (0 —3/8), o e (L2 L 41]

Definition 6.2. e Assume that {a; (o)} are frequency envelopes of order § with o €

[0, 100] Define
aP(0) =), Voelo,2].
e Assume that {a (o)} are frequency envelopes of order § with o € [0, 100] Define
(1) 99
(1)(0) _ (@), € [0. 155].
(1 1
ak(o) + ¢ )(3/8)(:( Yo —3/8), o€ (5 2]-

e Given an integer j > 2, assume that {ay (o)} are frequency envelopes of order § with
o € [0, j/4 + 1]. Define

a9 (o) = ¢ (©). ef0. 2],
k ' ak(a)+c,(€j)(3/8)c,(€j)(a—3/8), o€ (i £~|—1].

Given an integer j € N, assume that {a (o)} are frequency envelopes of order § with
o €0, j/4 4 1], and define

ktkog 4 (©0)a (o) ifk + ko >0,

) . —ko
a o) .—
ke(0) = > a;(0)a” (0) ifk + ko <0,
1=k

for s € [22ko=1 22ko+1) and k, ko € Z.

Remark 6.1. Given j > 2, we infer from Definition 6.1 that {c() ()} is of order 2}” §if
o€ (mi'3, T+ 11,2 <m < j.Inparticular, {cD (o)} is of order § forall o € [0, j/4 + 1].
One can also see from Definition 6.2 that {a) (o)} are of order § for all & € [0, j/4 + 1].

Now we iterate the argument of previous sections to obtain uniform bounds for all

o €0, %] We aim to prove the following proposition:

Proposition 6.1. Assume that o € [0, %] Let Q € N be a fixed point and €y be a suffi-
ciently small constant. Given any £ € Zy, assume that T € (0,22%]. Let u € Ho(T) be
the solution to SMF with initial data uq. Let {c,(cl)(a)} be frequency envelopes defined by
Definition 6.1, and assume that {c,(cl) (0)} is an eg-frequency envelope. Denote by {¢; } the
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corresponding differential fields of the heat flow initiated from u. Then for all i = 1, 2,
keZando €0, %], we have

1
2K || Pedpi sl cry S e (0).

As before, this proposition will be divided into two propositions, one for the heat flow
evolution and the other for the Schrodinger map flow evolution. In the statements of the
following propositions or lemmas, the notation v means that the relevant line can be
dropped.

Proposition 6.2. Let o € [0, %] Let {by.(0)} be frequency envelopes of order § such that
br(0) < c](cl)(o) foro €0, %]. Assume that {c,(cl)(O)} is an €g-frequency envelope.
o Assume that fori = 1,2,

1PeditsmollFecry < bi(a)277%, o’ €[0,3], 6.1)
VI Pedi 9l ey < €700 0)(1 + 522K) 7, 6.2)
Then for o € [0, %] andi = 1,2,
1Pedi ()l F oy < 277K (1 + 5225 *b" (0). 6.3)
| PeAilsmollps S BV (@)27F. (6.4)
o Assume further that
I1Pidpelsmolls < b(0h27€ Dk, 0" e [0.3]. (6.5)

Then for o € [0, %] one has

1At s=ollz2 , < €%, (6.6)
1Pee ()l s S bR ()27 @D (1 + 2%K5)72, (6.7)
| PeAcmoll 2, S sby”(@)27%, (6.8)

Proof. Recalling the definitions of c](cl) (0), b,(cl) (0) in Definitions 6.1 and 6.2, by Propos-
itions 4.1 and 5.4, we see (6.3), (6.4), (6.7) and (6.8) are already proved for o € [0, % .
Moreover, (6.6) and the assumption (6.2) hold naturally. It remains to prove (6.3), (6.4),
(6.7) and (6.8) for o € [, 2].

The key and starting point for the SMF iteration scheme is to improve || P g I Lirse
step by step.

Lemma 6.1. Letu € o (T) solve SMF with data ug. Given any o € [0, %], let {c](cl) (o)}

be frequency envelopes defined in Definition 6.1. Assume also that {c,(cl)(O)} is an €p-
[frequency envelope. Then for € sufficiently small,

22 gD s poe < ¢ (0)27F[(1 4+ 22K72K0) 201 oo+ Ty =02 K]

forany o € |0, %], k.ko € Z and s € [2%ko=1 22ko+1),
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Proof. By combining Propositions 5.1 and 4.1 we obtain

1Pedilis < (1+524) 22704 (o), o e [0, 2],

1Pgills < (1+ 5227427k Dg), o efo, 2]

—

—
S

Then Proposition 3.6 yields
1PeGl s npeepz S (14 522%)70277% Vo), o e [0, F5],
1PE™ s ppoora S (1452272027 k kDo), m=1,2,0 € [0, 5]

So using the schematic formula

o0
At = / ¢t Q(Di(bi)gdsl
s
and bilinear Littlewood—Paley decomposition (see the proof of Lemma 4.7), we get
||PkAt||L4 < Ckl)(o)2—0k+k[(l + 22k+21) 11k+]>0 + 1k+j 06(1)28|k+1|]

for any o € [0, 100] k,j € Z and s € [22/71,2%/*1) Thus using 9, g0 = 4,60 4
€@ ¢, and interpolation (see the proof of Lemma 4.7), one deduces that

P72 PGVl a0 = e ()2 K1+ 224250) 200 o+ T g2 ROl

forany o € [0 k, ko € Z and s € [2%ko—1 p2ko+1), .

’ 100]
As before, we start with the bound for connection forms.
Lemma 6.2. Leto € [100 4] Denote
h(k) := sup (1 4 s2%%)* Z | Pegpi ()| e r- (6.9)
s>0 i=1

Define the corresponding envelope by

hi (o) == sup 20K 278K =kl "y, (6.10)
k'eZ

Then under the assumptions of Proposition 6.2, forallk € Z, s > 0and i = 1,2 we have
1P (Ai Dl g, ryns) 2y S 2 k(1 + 522 (o). (6.11)
where the sequence {h,(clz} when 22k0=1 < ¢ < 22ko+1 ko e 7, is defined by
2k+kop_y hD (o) if k + ko > 0,

. —ko
= 6.12
SN @) i k+ko <0, 1
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with
1), s ’ 99
’ S Os Jo00 |
n )=k ((/7) 0 M, g [991005] (6.13)
hi(0') + ¢, ’(3/8)cy (0" —3/8). o' € (755.3]-

Proof. The proof is almost the same as for Lemma 4.1. The difference is that more con-
cern is needed for the High x Low interaction of Py[§¢ V1] in Step 4 of Lemma 4.1.
First of all we point out that (5.40) of Proposition 5.4 shows that for all o’ € [0, <=

) m 3
hi (o) < eP(a"). (6.14)
Let Bl(l) be the smallest constant such that for all o € [%, %], s>0andk € Z,
| PeCAi D g, sty < BLV27KA 4529700 0). (615

Recall the following decomposition of §:
w [ -0
!/ !
g:rw—r;O=>/ wspds—/ yPeW ds'.
S S

Since Yy = Ziz=1 0; ¥ + A;vr;, we separate the v; part away. And thus schematically
one has

g =T —r,‘x”“)/ @) a’s/—/ @y G ds’
s s
_ Floo,(l)/ (Aillfi)l ds’ _/ (Aiwi)lgl(l) ds’.
N s

In order to prove our lemma, as before we first prove Bl(l) < 1 under the Bootstrap
Assumption B: For a fixed given o € (355, 3],

o0
/ I Pi(Aivi) | mocry ds” < €7 Y2270K T (1 + 51225 7Th{Y (0)cg,
S
o0
/ 1 PE(Aiyi)E Dl p (y ds’ < e712279F T (1 + 51226700 (0) e,
5

where ¢ := |[{hi}llg2, s € [2271,22/ %), and Ty ; is defined in (4.27). This part is the
same as Step 2 of Lemma 4.1 except controlling

P ( f " @i EW) ds’)

which was labeled as Ug; in Lemma 4.1. To estimate (6.16), recall the bounds in Lemma
6.1 and Proposition 3.6 for §(V:

) (6.16)
F(T)

21 P(ED) oo 2 ps + 221 PeE D)l oo

<270 (B) etz (1 +2%%5) ™0 + 1xg <02 (6.17)
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forany k, j € Z,s € [2%/71,22/T1) and 5 €0, %]. By bilinear Littlewood—Paley decom-
position and Lemma 4.2, we have

I Pe (3 i) ) i (1)
S Y 1P @Yl g, @)l P<k—aF Voo

Iy —k|<4

* 2 | Py @91 ey ) (1 Py (B 100 +202 [ Piy (5 ) | 4 )
lk1—k2|<8,k,ko>k—4

+ Y 2P @) 1P (F )l o

|ko—k|<4, k) <k—4
+ 251 o, Qi) |, o) || Py (8 ) 4

<20 ©) + 27 ek (0) s 7202 (1 4+ 225)7 4 Ly 20271541277
+ R 2738k W (5 —3/8)

X[Z—k/z Z Z%kl_%klcﬁ)(3/8)+2_k Z 22k1_%k1c2)(3/8)]
ki <k—4 ki <k—4

where Rj = 14 js0(1 +2%5)720 + 151 j<023%+71 and we have used (6.14). Thus by
slow variation of envelopes we get

I Pe (@i i) Fe(ry < Z_Ukh,(cl)(a)(lkﬂzozk(l +2%R25) ™4 4 1y <927 28R,

for s € [22/71,22/*1) and j, k € Z. This bound is the same as for Uo; in Lemma 4.1 and
acceptable.
In the third step, we prove the claim: If Bootstrap Assumption B holds, then

o0
/ I P(Aiyi) | Fecry ds” < 27K Ty ; (1 + 51225 TRV (0)eg, (6.18)
s
o0
/ 1P (Aiyi) Dl gy ds’ < 27F Ty (1 + 51226 ThD0)ey. (6.19)
s

The proof of (6.18) is the same as Step 4 of Lemma 4. 1. For (6.19), the Low x High inter-
action of Pk[(Ail//i)g (] is different due to the larger 0. The other two interactions are
the same. We present the necessary modifications. Since under Bootstrap Assumption B
one has B < 1, Pr(A; ;) enjoys the same Fj N S,i/z bound as in Lemma 4.1 with

hi (o) replaced by h,(cl)(o):
|| Pr.(A; wi)||Fk(T)ﬁS]:/2(T) < 652_0k1k+j§0hl(€1)(U)zl/z(k_'/)28|k+j|
652 Ly o (@)2(1 4+ 2717

forallo € [0,3],s € [2%/71,22/* 1) and j .k € Z.
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Then by (6.17), (6.14) and (4.45), the Low x High part of (4; ;)€™ is dominated
by

> 1 Pec(Pe, (Ai ) Pey § )| o
|k—kp|<4,k1<k+4

S OO (G =3/ 1y Y i) (3/8)28kimNodki Ik
klsk—4

+eg2m OOk 4 22742 200D (6 — 3/8) 15 j2g
x[ X ce/matimia g 02tz ]
—j<ki<k
+ g2 OTIIR(1 4 220D (5 3/8) 1 g
x[ D2 e/t
ki<—j
< g2 e (0 —3/8)ct” (3/8) (Lks 20277 (1 + 27 1K) 77 4 14y j 2k 7/208 K+,

Summing over j > kg as well yields

L » I P (Piey Vs Py ) | 7o ()

Jj=ko lk—k>|<4,ki<k+4

S C(Tz_okh;({l)(ff)(1k+k0302k0(1 + 25K T L 2R 1y k<o)

for s € [22ko=1 22ko+1) and ko, k € Z. This bound is again the same as for Uy in
Lemma 4.1 and acceptable.

Finally, we need to prove that (6.18), (6.19) of Bootstrap Assumption B hold when
T — 0. Let us verify it. Using (3.32) and (3.52) and putting %-th order derivatives on
A; i, when estimating the Low x High interaction of (A4; wi)g(l), we also have

/ P4 i 8O oo 2 ds” S bk 2 T phy” (0)27%
N

99 5
foro € [m,z .

Therefore, combining the above four steps gives Lemma 6.2. ]

The proof of Lemma 6.2 gives an Fy bound for g

Lemma 6.3. Forallo € (3. 3] and k € Z,

27k (1 4+ 522)42/ V(o) if j +k >0,

(6.20)
27k2~k V(o) if j +k <0,

1P| i 1) < {

when 22771 <5 < 22/+1 j e 7. Moreover, for s = 0,

1PLE ol ey S 2750 (o). (6.21)
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Proof of Proposition 6.2. With this improved bound of g, running the program of Sec-
tion 4 again gives

sup 27K (1 4 5279 Z 1Pedi ()l F 1y < br(©) + eh” (0).
i=1
Since the right side is a frequency envelope of order §, we have
hi(0) < bi(0) + ehy (o).
By the definition of h( )(0) we conclude that for o € (l 00 4
hi(0) < b (@) + ¢ 3/8)f” (0 - 3/8).
thus proving (6.3). The remaining (6.4), (6.7) and (6.8) are the same. ]
In the following proposition, we finish iteration of ¢ in the Schrédinger direction.

Proposition 6.3. Given £ € 7, suppose that T € (0,22%] and Q € N. Assume that
o €l0,2]. Letu € Ho(T) be a solution to SMF with initial data uy, let {c](cl)(a)}kez

be frequency envelopes defined in Definition 6.1, and assume that {c,(cl)(O)} is an €g-
frequency envelope with 0 < €9 <K 1. Then for any o < [0, %], k € Z, we have

1Pedits—olloecry < etV (o). (6.22)

Proof. (6. 22) has been proved for o € [0
o€ (100, 2], Let

, 100] in Section 5. Thus, it suffices to consider

2
bk) = > | Peoyits—oll Gy (1)-

i=1

For o € [0, %] define the frequency envelopes

bi(o) = sup 20K 2 8Ik=KIp (k1.
k’eZ

By Proposition 3.1, they are finite and £2 summable, and
1Petits—ollGecry S 277 be(0).

The assumption (6.5) holds by repeating the argument of Lemma 4.1. Thus using Propos-
ition 6.2, we see (6.3)—(6.8) hold. With Lemma 6.3, repeating the argument in Section 5,
one finds that when s = 0,

| Pecibs—ollaury S ¢ (@) + €o(br(o) + ¢ (3/8)ci (0 —3/8)), o € (555, 5]-
Since the RHS is a frequency envelope of order §, we conclude
bi(0) 5 ¢”(0).

This gives (6.22) and finishes the proof. ]
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7. Proofs of Theorems 1.1 and 1.2

7.1. Global regularity
In order to prove u is global, it suffices to verify (see Appendix B)
IVullzzs, 1. (.1)

To prove (7.1), it suffices to give a uniform bound for [|u(2)|| 714 g2+. Since energy is
preserved, it remains to bound ||u()|| g2+, which is related to frequency envelopes with
o = 1+4. Thus we need to transform the intrinsic bound (6.22) to bounds for u.

The following lemma follows directly from Corollary 3.1.

Lemma 7.1. Let u € Ho(T) solve SMF with data uy of small energy. For o € [0, %],

suppose that {clgl)(o)} are frequency envelopes as in Definition 6.1. Assume that the dif-
ferential fields {¢;} associated with u under the caloric gauge satisfy

Y IPeditsollpgorz <27 eP(0), Vk e Z. (7.2)
i=1,2

Then
2K Peull ooz < 27 e (0), Vi € Z. (1.3)

Proposition 6.3 shows the assumption (7.2) of Lemma 7.1 holds. And thus by applying
Lemma 7.1, we conclude that

Il gron g < Clluoll gongr) (7.4)

for all p € [0, %]. In particular, [[Vu|Lee < 1 by Sobolev embedding. Therefore, u is
global by Appendix B, and global regularity follows by the local theory of [24].

The remaining part for Theorem 1.1 is (1.4) and (1.5). These will be proved in Sec-
tions 7.4 and 7.5 respectively.

7.2. Uniform Sobolev norm bounds of solutions to SMF

To get uniform Sobolev norm bounds for SMFuptoo = 1 4 K/4, K € Z, in the heat
flow iteration scheme it suffices to begin with the parabolic decay estimates

||a§+1£<K+1>||L?oL% <es L2 WL €10,100 + K],
||a§+1[d<7>]<K+1)||L?OL§ <es L2 VL €[0,100 + K].
And in the SMF iteration scheme, for the j-th iteration we always begin by proving
2PNPF OV 1 pee < (0927 K[+ 22620 200+ Lrg02” KON,
oel0,1+(—1)/4].

for any s € [22K0=1 22ko+1) and k¢, k € Z. Then repeating (K times) the argument of the
first time iteration we obtain
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2K Ped P(e) gl pserz 5 277 (0),
| Pedpats—ollpoorz < 27F e (o).
By bilinear estimates we then arrive at
| Prdxll oo 2 S 277 (0 (0), (7.5)

from which the uniform Sobolev bounds follow. Each time iteration requires €4 to be
smaller in our arguments. We emphasize that the key to the succeeding SMF iterations is
to improve ||Pk‘§(1) ||L§L?o step by step (see e.g. Lemma 6.1).

Therefore, we have the following result:

Proposition 7.1. For any j > 1, there exists a constant €; > 0 such that ifug € Ho with
luollgr < €, then [lu(®)ll z; < Clluoll g1npgs) forall t € R.

Since the mass of SMF solutions is not conserved, the |[u — Q|| 2 norm should be
handled separately. This will be proved as a corollary of well-posedness; see the next
section.

7.3. Well-posedness

In fact, the well-posedness stated in Theorem 1.2 follows closely by [41] and [5]’s original
arguments. We sketch them for the reader’s convenience.

Tataru [41, Prop. 3.13] proved that given u, u, € #o with ||ug||H1 <L 1forh=0,1,
there exists a smooth one-parameter family {ulg}he[o,l] € C*®([0, 1]; #Hp) of initial data
which satisfies

lublljn <1, helo1], (7.6)

1
[ stz ~ 8~ bl 2. 1.7)
0

Given h € [0, 1], Theorem 1.1 yields a solution uh(t, x) € C(R; #Hp) with initial data ug.
Then under the caloric gauge {eq, Jeg} for u” (¢, x), define the differential field ¢y, by

¢y = (ahuh,ea) + /=1 Bhuh,Jea), a=1,...,n, (7.8)

and define {qbi}izzo as before. Since —v/—1¢; = Zi:l,z D;¢; at s = 0 (because for all
h € [0, 1], u” (¢, x) solves SMF), applying Dj, = ), + A to both sides gives

2 2
—V=1D.¢y =) DiDig + Y R"(t.x))(¢i.¢n)pi whens =0,
i=1 i=1
which as before can be further schematically written as

2
—V=IDigy = DiDign+ Y (¢ o ¢pn)$i§ whens = 0. (7.9)

i=1
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Giveno € [0,1 4 j/4) with j € Z 4, let

— L8l —k| ok +k h
Ck,(j).h(0) := sup 272/ 275 Proug 2,
k'eZ .

and define {c,(cj })l (o)} as in Definition 6.1. Then Section 7.2 gives

2
3 2% Pegi(s = 0. h. - )l gury S e 0), (7.10)
i=1
and thus _
275K P (s = 0.1, )| pery S e (0). (7.11)

Using (7.10), (7.11) we infer by (7.9) that

D 1 Pedn(s = 03, 7y < (s = 0.1 = )17
keZ

Transforming this bound to d,u" yields
h h
1n" o2 < I10aehl 2.

Then (7.7) leads to
et =% o2 < lug —ugll 2 (7.12)

With (7.12) in hand, the continuity of Sp from B¢ to C(R; H 5‘“) follows by the argu-
ments of [5, pp. 1467-1468] if € > 0 is sufficiently small depending only on j thus o.
Moreover, letting u(l) =0, ug = ug in (7.12) one obtains

le = Qlipeor2 < lluo — Q2.
t X X

which combined with Proposition 7.1 gives (1.6).

7.4. Asymptotic behavior

Let us prove (1.4). First, we notice
o0 o0
0 = 0l = [ awisnlds 5 [ gl as' 7.13)
0 0

Step 1.1. Recall the definition of {c,ﬁj )(o)} in Definition 6.1. Applying (3.74) with B (o)
= c,(co) (0), and its analogues in succeeding iterations, by the Bernstein inequality we get

Isllpspee S 57743 V), (7.14)
keZ
ltslzspee S 574D 2 00). (7.15)

keZ
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We find by Young’s inequality and the triangle inequality that

g 8lkl —L sk
2377 e < sup 22775 P Vg 2,
k'e€Z

and thus _ 1 )

> e < sup 2577 K P w2 < 1, (7.16)
keZ k’€Z *

since ug € Hgp. Then (7.14) and (7.15) show

sl 40 < min(s ™4, 5734, (7.17)
We see (7.17) is not enough to put ||¢ps || 0 in L!, but useful for Step 2 below.

Step 1.2. Applying (3.74) and (3.77) with B (o) = c,(co) (0), 0 =0, and by interpolation,
we see that for any p € (4,00) and p € (2,4) satisfying 1/p + 1/p = %, we have

sl p 7 < 2 L jzo (1 + 227727460 (0) + 211y 02”12 (0)

for s € [22/71,22/* 1) and k, j € Z. Then by the Bernstein inequality,

o0
| Mgz ds' < 30 3 22RO 00k
0 ,

keZ j<—k
+ )03 22 k2K (1 4 2k T80 ()
keZj>—k
< Y 2@/FDk O (). (7.18)
keZ

Taking p € (2,4) suchthat |2/p — 1] < %8, one finds that (7.18) is finite by (7.16). Hence,
there exists a p € (4, oo) such that

oo
/0 psllprpge ds” < 1. (7.19)

Step 1.3. We aim to prove
o0
tim [ 8Ol s’ =0 (720
t—>00 0

If (7.20) fails, then for some o > 0, there exists a time sequence {!} such that lim,,_, o, 2!
= oo and

o0
/ Ibs (Dl ds’ > 0. Vv € Zy. (7.21)
0

We can also assume 7! < t1}+1 — 4 for any v € Z4. Thus by (7.19) there must exist a
sufficiently large constant N' and a time sequence {¢2} such that

th—1<t2<tl+1, (7.22)

o0
/ 165Dl ds’ < Lo, Yv = N. 7.23)
0
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Step 2. On the other hand, we have

0:ps = Digps — Arps = Dspr — Arps
= A+ Y QAdigs + Ai Aipy + $10i Ai + R(@i. d)Pi) — Arhs.

i=1,2

Using Proposition 6.2 ((6.12), (6.13)) with by (o) replaced by clgl)(a) and similar results
for succeeding iterations, we see

2
lpellparee S D PG/ S,

keZ

6
loxillpspee S Y05/ 51,
keZ

126l ar0e S Y e (7/2) 5 1,
keZ

since as before one has
skl () <
Z 22 ¢ (o) S 1.
keZ

And for the same reason,

1026l spe0 S 574D V(1) S 5754,

keZ
_ 1 _
”axgbt”L‘}Lgo <s 3/4 Z CIE )(1) <s 3/4,
keZ
Meanwhile, Lemma 3.3 and (1.6) show
Iillzoe S (1 +95)7%, i=1,2,

182 Ai oo < (14 5)73/492 j =0,1.

Thus we arrive at
o0

/ [Apell L0 + Z 124;0;¢: + Ai Aipr + ¢:0i Ai + R(bi p)Pillpap0 ds S 1.
0 i=1,2

For the rest A;¢;, by the proof of Lemma 6.1 and its analogues in succeeding iterations,
we see that

_ 1 _ _ 0 _
1Al Lspee S 5743 e S 57V Al S 574D fP(0) 5574
keZ keZ
Hence, (7.17) implies
o0
| 14l a5 1
; :
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Therefore, we conclude in this step that there exists a decomposition d;¢5 = I1 + I such
that

o0 o0
[ il ds 10 [T bl s 51 (124
0 : 0

Step 3. (7.22) and (7.24) show
o0
| 1.6 = auDlue a

[o9)
5/0 (111022 Lo uz-1241xr2) T 12l 2 oo 2134 11xr2)) 4. (7:25)

Then as v — oo, (7.24) further implies the RHS of (7.25) goes to zero. Thus (7.23) yields

o0
/0 151l ds’ < Lo

for v sufficiently large, which contradicts (7.21). So we have verified (7.20).
Similar to (7.20) we also have

o0
i [ 180l s =0
——o00 J,

Then (1.4) follows by (7.13).

7.5. Proof of (1.5)
The proof of (1.5) can be reduced to the following lemma.

Lemma 7.2. Given s > 0, there exists a function fy : R* — C" belonging to H' such
that

Jim () = ¢4 £l 7y = 0.

Moreover, fs satisfies
I fsllgp < Lsepoy + 1y=15%/2,

Now, let us prove (1.5) by assuming Lemma 7.2. Recall that

i = —/ (0ips + Aigps) ds’.

Since ||A||Lo<; 2 S 1,(7.20) shows

=0.
L%

o
. X i
i [ i
Then Lemma 7.2 yields

lim [|¢(0,¢,x) — Ve fi |2 =0, (7.26)
t—>00 x
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—/ fyds'.
0

Let # denote the isometric embedding of N into RY. Recall that {ey, J eq)n_q
denotes the caloric gauge. Then the caloric gauge condition shows

where f € H' is defined by

2n 00
SldPe) - dPe)l 5 [ Igdds
I=1 0
which combined with (7.20) implies, for s = 0,
tlim |dP(e;) —dP(ef°)re =0, VI=1,...,2n. (7.27)
—00

Thus, we deduce from

dju =Y (R(¢Mea + (%) ex)

a=1

that for s = 0,

Hd (Vu) — Z N(Vel™™ £)%d P () — Z (Ve £,)%d P (JeS

a=1 :
S llg = Ve frllpa + 1AV ] 1d P (e) —d P(e™)]] 12
+ ||l — Ve frl1d P(e) — dP )]z
Therefore, (7.27) and (7.26) give

n
tllgloHd!P(Vu) . Zl(m(vez” FtdP ) =3V )P, =0
o=
Then, letting Uy := d P (e3°) and Vg4, := d P(Jed°), we get
n n
lim Hu(t) = DR LT = 3O ) T =0 (7.28)

j=1 j=1
Thus, (1.5) follows from (7.28) by setting
hﬂ_ = f+l_5j, gj_ Z=f_i{l_)'j+n, j=1,...,n.
Now, let us prove Lemma 7.2. The convenient way is to introduce the so-called

Schrodinger map tension field Z := ¢5 — i¢;. Then the heat tension field ¢, satisfies,
for any s > 0,

(id; + A)ps = N, (7.29)

(Z 0 Ax ) s Z<2A 065 — Aj Ajs) + 10,7 +Zﬂ<¢, $s)¢;. (1.30)

j=1
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And the Schrédinger map tension field Z satisfies the heat equation

(05— NZ = (X1 0 ANZ + Y71 24,0, Z + Aj A; Z)
+ 37 [R(Z.6)8) + iR (@), )b — R(@j,id)p;], (13D
Z(0,1,x) = 0.

To prove Lemma 7.2, it suffices to verify
121 PeNllw Hlee < (1 + )72,

where N is given by (7.30). Except for the d;Z term in N, the other terms have been
handled before. It remains to dominate || P¢dsZ||n, . In fact, one can prove a stronger
result for Z:

{1+ 22925 P Zl pass} | o < (1 4 )72 (7.32)

We see that (7.32) follows by bootstrap and (7.31). Therefore, Lemma 7.2 follows.
Hence, we have finished the proofs of Theorems 1.1 and 1.2.

8. Appendix A. Bilinear estimates

Lemma8.1. Ler S : RY — Rand f : (=T, T) x R?2 = RN be smooth. Let

N k
pi= Y2 Py Sl (8.1)
lk1—k|<20

Assume that || f ||pee < 1 and supycz jix < 1. Then

2K PiS(f)@af 05 ooz $2° ) iy 2 + Y 2%,

k1<k ko>k
2
+ar( 3 M)+ Y 2 Ran e, Y M. 82)
k1<k ka>k ky<ka
where
ag = ||VPk(S(f))||L;>°L}C' (8.3)

Proof. The proof of [5, Lemma 8.2] shows

K PeS()@af I fpoorz S 2% Y i 25 + Y 2720702202
ki<k ko>k

2
+ak<2 2k‘Mk1> + Z 22Kk k2 g, Z 25 g,
ki1<k ka=k ki<k>

The only difference is that we use

1P (SN2 < 2751V PSS 2
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when S(f) lies in the high frequency with respect to d, f dp f, and the trivial bound

[P (S(fNlLge 1

when S(f) lies in the relatively low frequency. |

Denote by H %% (T) the set of functions f : [T, T] x R? — R satisfying 81," Bng €
L%([-T,T] x R?) for any by, b, € N.

Lemma 8.2 ([5, Lemma 5.1]). Given £ € Z, w € [0, 3] and T € (0,2>%]. Suppose that
f.g € H®°°(T), and let

ap = Y Nfwlsemnram b= ) lgwllso, crys

|k—k’|<20 |lk—k’|<20
If |k1 —k2| <8, then
| Pe(Pre, [P, )l 12 S 2K20eR-0)y, g (8.4)
Fi (T)NS,'“(T)
If |k — k1| <4, then
PPy N, opvmst /2y S € llLooatiy - (8.5)
x (T)NS “(T)

Lemma 8.3 ([5, Lemma 5.4]). Given £ € Z, w € [0, %] and T € (0, 22:6]. Then for
.f" g € HOO’OO(T))

1 (f— —w(]—
1Pe(fls < D2 @by + 25 % Daghy) + 28 Y2700 Rahy. (8.6)
' I<k I>k
where
aci= Y IPSflseary b= Y IPkglis () 8.7
|l—k|<20 |l—k|<20

Lemma 8.4 ([5, Lemma 5.4]). Given £ € Z 4, w € [0, %] and T € (0,2%%). Suppose that
frg € H®(T), and P f € SP(T), Prg € L?,x forallk € 7. Let

we= Y IPflsp (T vie= D I1Pegllps ) (8.8)

|l—k|<20 |l—k|<20

If ko —k| <4andky <k — 4, then
1Pe(frer gra)llzs - < 251 pay vie. (8.9)
If |ky — k| <4andk, <k — 4, then
| P fiy i)l s, S 25223678 oy, (8.10)
If |k —ka| <8andky,ky > k — 4, then

1P (fier 8k a | 5 2k(Fe) ok 1y v,y (8.11)
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Lemma 8.5 ([5, Lemma 6.3]). If || —k| <80 and f € F;(T), then

1 Pr (@) Ny S Nglp2p2 IS I1F ry- (8.12)

Ifl <k—80and f € Fi(T), then

I—k
1 Pr (N Inery <22 Mgl 22 1/ L Fp - (8.13)
If k <1 —80and f € Gi(T), then
k=1
I1Px (g Iy S 275 lIgll22 1l f il - (8.14)

Lemma 8.6 ([5, Lemma 6.5]). If k <!l and f € Fx(T), g € Fi(T) then

1/glz . 5 1/ Ima gl may- (8.15)

If k <land f € Ft.(T), g € Gi(T) then

k—
2

/i
I7ellz =22 1 flEen lIglle - (8.16)

9. Appendix B. Proof of remaining claims

It seems that the following blow-up criterion has not been explicitly written down in the
literature. This result is well-known for energy critical heat flows. For completeness, we
give a proof.

Proposition 9.1. Suppose that ug € H é‘ with L > 4 is the initial data to SMF. If in the
time interval [T, T), the SMF solution u satisfies

lu(®)llLss, (ry = B < 00, .1
then u has the bound
[u@)ll ooz = C(B, T, |luollyr) < oo. 9.2)

As a corollary, if (9.1) holds then u can be extended beyond [T, T] to
C(-T —p, T + pl; H’Q‘)forsome p>0.

Proof. Recall the tension field t(u) = Z?:l V;d;u. By integration by parts,

2
Az(t(u),t(u))dx = /Rz kZ: (V;0;u, Vi dgu) dx

J 1

=/ (Vijaku,Vij8ku)dx+/ O(dul*ydx.  (9.3)
R2 R2
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Since u solves SMF, by integration by parts we get

d 5y Y 2
E/Rz(r(u),f(u))dx —2].;1/}Rz(V]E),<')tl4,t(u))a’x—k/]R2 O(|du|?|d;ul |t (u)|) dx

2
= 22/ (ViJr(u), Vit(u))dx +/ O(|du*|3,ul |t (u)|) dx.
o /R? R2
Since J commutes with V;, (JX, X) = 0, we then arrive at

%”T(U)”LZ S lldull7e< T3

The Gronwall inequality and (9.1) show
Itz < e lle o)l 2
Using the energy bound
IVull o2 < Vol 2
and (9.3) gives
lu(@)llw22 < Bl[Vuoll 2 + e[t (o)l 12 9.4)

By integration by parts,

/(Vr(u)Vr(u) dx—/ Z (ViV;dju, V; Vidgu) dx

Jk=1
=/RZ(V,-VJ~3ku,V,-Vj8ku)dx—l—/Rz O(|du|®|V?du|+|Vul?|Vdu|*+|Vdu| |du|?) dx.
Thus we have
IV2du®)l72 S IV2@l7s + Idulfs + ldulfellVdul}, + dul7 || Vdul 2
< IIVT(M)IIL% + C(B. 1, [[uo|w2.2). (9.5)

And applying integration by parts furthermore gives
|Vr(u)||L2 _/ Z Vi V;dju, V,V;V;d;u) dx
:/ Z(Vir(u),ViV,-VjB,u)dx +/ V)| |V ul|dul*dx
R2 5 C R2
—|—/ |V2du||Vdul|d,u| |du| dx —|—/ |du|?|0,u| |V2du|dx
R2 R2

< /R 2 _<,Z ViVt (). J ,Z V; Vi) dx + B2 Vr@)2,

+ BIVT@)ll 2 [ VdulZy + B2 [Ve@)] 2170l 2
< B2Ve) |2, + BIVe@)l2 1 V2dull 2 [ Vdul 2 + B3 Vel 2 ez
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Hence, denoting F(t) = ||Vr(u)||L)2€, (9.4) and (9.5) show

LS F@? 5 QUB.TFOIFW) + C(B.T))
where C1(B, T) and C,(B, T) are smooth functions of B, T. So the Sobolev norm of
u has a uniform bound in [—7, T] up to order 3. This together with the classical local
existence theory (see [9] or [24]) implies u can be extended to [—p — T, T + p] for some
p > 0. And the bounds for the higher order Sobolev norms follow from [24, Theorem 3.3]
or by induction. Then by Sobolev embedding, u is smoothin [—p — T, T + p] ifug € Hop.
(]
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