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Abstract. We answer the long-standing question whether it is consistent to have simpleP -points of
two different characters. For a filter F over ! Guzmán and Kalajdzievski introduced a parametrised
version of Miller forcing called PT .F /. By combining iterands of the type PT .F / with others we
establish: It is consistent relative to ZFC that there is a simple P@1 -point and a simple P@2 -point.
A main technical point is the use of properness and descriptive complexity in the limit steps of
uncountable cofinality.

Keywords. Ultrafilters, P -points, near coherence, preservation of P -points, iterated proper
forcing

1. Introduction

The statement “There may be simple P@1 - and P@2 -points” is the first part of the title of
an article by Andreas Blass and Saharon Shelah [7] from 1987. In that work a creature
forcing with a norm and linear conditions is introduced and used to establish a model in
which any two non-principal ultrafilters are nearly coherent. A subforcing is supposed to
give a simple P@1 -point and simple P@2 -point. The statement was considered as proved;
however, in 2005 Alan Dow found a flaw in its proof, making the consistency of the
existence of a simple P@1 -point and a simple P@2 -point again an open problem.

We will use a countable support iteration of a new forcing notion introduced by
Guzmán and Kalajdzievski [14] and apply it with particularly chosen parameters that
are forced in intermediate steps. We further use an absoluteness argument in the steps of
uncountable cofinality. Thus we establish that the existence of a simple P@1 -point and a
simple P@2 -point is consistent relative to ZFC.
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Our consistency result solves Nyikos’ problems (1) and (4) of [21]. Our forcing also
provides a new type of model of b < s. This constellation is still rare and it is established
by a countable support construction with Shelah’s creature forcing [23], Blass and She-
lah’s matrix construction in [8] (by flipping the matrix for u < d we get a matrix forcing
for b < u D s; see also [1]), the b < s-matrix forcing by Brendle and Fischer [9], and
Dow’s and Shelah’s matrix model of a singular s [12]. Splitting families in the ground
model are destroyed by diagonalising an ultrafilter via Mathias forcing. The choice of a
name of an ultrafilter such that no dominating real is added is an important technical step.

In particular, the even rarer inequality u < s holds in our forcing extension, like in the
countable support iteration of Blass–Shelah forcing [7] and Guzmán and Kalajdzievski’s
new forcing [14], parametrised by F� -generic ultrafilters.

We refer the reader to [4] for the definitions of the cardinal characteristics b, d, s

and u.
In the remainder of this section we will recall the definitions that allow us to state

a technical version of the main theorem in Theorem 1.10. We begin with some basic
definitions concerning filters.

For a countable set A the set of finite/infinite subsets of A is denoted by ŒA�<! /ŒA�! .

Definition 1.1. (1) For a set X , a filter over X is a non-empty subset of the power set
P .X/ that does not contain the empty set and that is closed under supersets and under
finite intersections.

(2) By Fr we denote the Fréchet filter, which is the filter of cofinite subsets of !. Hence-
forth, by a filter we mean a filter over ! that contains the Fréchet filter. An ultrafilter
is a maximal filter.

(3) A subset B of a filter F is called a basis of F if for every F 2 F there is some
B 2 B such that B � F .

(4) For E � Œ!�! such that for all n 2 ! and x0; : : : ; xn�1 2 E we have x0 \ � � � \ xn�1
2 Œ!�! , we denote by filter.E/ the filter generated by E [ Fr , i.e.

filter.E/ D ¹Y � ! j .9n 2 !/.9x0 : : : 9xn�1 2 E/.Y �� x0 \ � � � \ xn�1/º:

In order to include the case n D 0 we stipulate
T
; D !.

(5) The character of a filter F is the smallest size of a basis of F and denoted by �.F /.
The ultrafilter number u is the minimal character of a non-principal ultrafilter over !.

(6) Let � be an uncountable cardinal. An ultrafilter U over ! is called a P�-point if
for any 
 < �, any ��-descending sequence hAˇ j ˇ < 
i of elements of U has a
pseudointersectionB 2U, that is, someB such that for ˇ <
 ,B �� Aˇ . AP@1 -point
is also just called a P -point.

(7) An ultrafilter U is called simple if there is an uncountable cardinal � such that
�.U/ D � and U is a P�-point.

If there is a simple P�-point, then � is regular. A simple P�-point U has a basis B

that consists of a strictly ��-descending sequence hA˛ j ˛ < �i.
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Solomon [25] showed that any non-principal ultrafilter has character at least b. Nyikos
[20], [21] showed: If U is a simple P�-point, then � D b or � D d. In order to see
this, assume that U is a simple P�-point and � > b. We fix some ��-unbounded family
¹f˛ j ˛ < bº of strictly increasing functions. Then for every A 2 Œ!�! , ¹f˛�A j ˛ < bº

is unbounded in ¹f j f W A! !º. For two functions f; g the relation �U is defined by
f �U g if ¹n j f .n/ � g.n/º 2U. This relation is a linear order on theDU-equivalence
classes, because U is an ultrafilter. Since U is a PbC -point, the family ¹f˛ j ˛ < bº is
�U-dominating. We let next.n;X/Dmin.X n .nC 1//. For any basis B of U, the family
¹f˛.next.�;X// j X 2 B; ˛ < bº is ��-dominating. Thus we have �.U/ � d. Since U is
simple, there is a basis ¹B˛ j ˛ < �º of U such that for any ˛ < ˇ < �, we haveBˇ �� B˛
but B˛ 6�� Bˇ . Then the family of increasing enumerations of the B˛ , ˛ < �, is strictly
��-increasing. The cofinality of this enumeration is at most d and since � is regular, we
have �.U/ D � � d.

Definition 1.2. Let P be a notion of forcing. We say that P preserves an ultrafilter W

over ! if
P 
 “.8X � !/.9Y 2 W/.Y � X _ Y � ! XX/”;

and in the contrary case we say that P destroys W .

In the first case, we have in VP ,

filterVP
.W/ D ¹X 2 Œ!�! \ VP

j .9Y 2 W/.X � Y /º is an ultrafilter.

We identify W with the generated filterVP
.W/ and we simply say that W is an ultrafilter

in VP . If W is a P -point in the ground model and P is proper and preserves W , then
W remains a P -point in the forcing extension by [7, Lemma 3.2].

The space 2! is endowed with the product topology of the discrete space 2 D ¹0; 1º.
Any subset F of ! is a point in 2! via its characteristic function �F . Collections C of
subsets of ! are said to be of descriptive complexity � if the set ¹�F j F 2 Cº is contained
in � .

Definition 1.3. (1) The partial order F� is the forcing with F� -filters over !. Stronger
filters are superfilters.

(2) If F is a filter, then F� .F / is the forcing with F� -filters that are compatible with F ,
i.e. G 2F� .F / iff G is anF� -filter and G �F CD¹X �! j .8F 2F /.X \F ¤;/º.

Definition and Observation 1.4 ([18, Lemma 6.1]). Let G be an F� .F /-generic filter.
We let U

z
be an F� .F /-name for the union of G. By a density argument, the poset F� .F /

forces that U
z

is an ultrafilter that extends F .

Remark 1.5. Since the forcing F� .F / is countably closed it does not add new reals and
thus preserves any ultrafilter from the ground model.

The set of finite strictly increasing sequences of natural numbers is denoted by !"<! .
The length of s 2 !"<! is its domain. For s; t 2 !<! , we say t extends s or s is an initial
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segment of t and write s E t if dom.s/ � dom.t/ and s D t� dom.s/. The corresponding
strict relation is denoted by G.

Definition 1.6. A non-empty subset p � !"<! that is closed under initial segments is
called a tree. The elements of a tree are called nodes. The range of a node t is denoted by
rge.t/. A node s of a tree p is called a splitting node of p if s has more than one direct
G-successor in p, and an !-splitting node of p if s has infinitely many direct G-successors
in p. The set of splitting nodes of p is denoted by spl.p/, while !-spl.p/ denotes the set
of !-splitting nodes of p.

Many well-known forcing notions such as Cohen, Random, Laver and Mathias forcing
have conditions that can be represented as particular kinds of trees. Stronger conditions
are given by subtrees.

Miller forcing consists of all trees in which every node can be extended to a node
which has infinitely many immediate successors.

In order to define a parametrised version of Miller forcing we will need some notions
about blocks.

Definition 1.7. The elements of Fin D Œ!�<! n ¹;º are called blocks. Let F be a filter
over !. We let

F <!
D ¹X � Fin j .9A 2 F /.X � ŒA�<! n ¹;º/º;

.F <!/C D ¹B � Fin j .8A 2 F /.ŒA�<! \ B ¤ ;/º:

The set F <! is a filter over Fin and .F <!/C is the corresponding coideal. The fol-
lowing forcing notion was introduced by Guzmán and Kalajdzievski [14] in order to prove
that the ultrafilter number u may be smaller than the almost disjointness number a without
using large cardinals.

Definition 1.8 (see [14]). Let F be a filter over !. The forcing PT .F / consists of con-
ditions p � !"<! such that for each s 2 p there is t D s such that t 2 !-spl.p/ and

sucsplp.t/ WD ¹rge.r/ n rge.t/ j r is a G-minimal

!-splitting node of p strictly above tº 2 .F <!/C:

Such a t is called an F -splitting node. We furthermore require of p that each !-splitting
node is an F -splitting node1 and there is a unique G-minimal !-splitting node called the
trunk of p, tr.p/. The set of F -splitting nodes of p is denoted by F-spl.p/. A condition
q is stronger than a condition p if q � p and we write q � p.

Let G be PT .F /-generic. Then we define the generic real

rG D
[
¹tr.p/ j p 2 Gº:

1There might be finitely splitting nodes. It is open whether the set of conditions without finitely
splitting nodes is dense.
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The PT .F /-generic real rG diagonalises F [14, Lemma 18], i.e., for any F 2 F we
have rge.rG/ �� F . In order to see this, we define the following manner of strengthening
conditions.

Definition 1.9. For p 2 PT .F / and F 2 F we let p��F D q be the weakest strength-
ening of p such that

.8t 2 F-spl.q//.8r 2 sucsplq.t//.r � F /:

Since F is a filter, we have p��F 2 PT .F /. Since for every p, p��F � p and
p��F 
 “r

z
G �

� F ”, the forcing PT .F / diagonalises F .

Any node t 2 !"<! can be mapped to rge.t/ 2 Œ!�<! , the range of t . Vice versa, any
r 2 Œ!�<! can be mapped to en.r/ 2 !"<! , the strictly increasing enumeration of r . Note
that in contrast to Guzmán and Kalajdzievski, we do not identify t 2 p � !"<! with its
range. The function sending t 2 !"<! to its range is an isomorphism witnessing

.!"<! ;E/ Š .Œ!�<! ;v/;

wherev denotes the end-extension relation on Fin[ ¹;º, i.e., r v s if r � s and max.r/ <
min.s n r/ or r D; or r D s. Again, the strict relation corresponding tov is denoted by <.

Having collected the necessary definitions we may now state the main theorem of this
paper.

Theorem 1.10. Assume CH.

(A) There are a countable support iteration P D hP
 ;Q
z
ˇ j 
 � @2; ˇ < @2i and a

sequence of names hF
z

 ;U
z

 ; r
z
ˇ j 
 � @2; ˇ < @2i such that

(1) P0 D ¹0º,

(2) for ˇ < @2 we have the following:

(i) Pˇ 
 F
z
ˇ D filter.¹rge.r

z

 / j 
 < ˇº/,

(ii) Pˇ � F� .F
z
ˇ / 
 U

z
ˇ is the F� .F

z
ˇ /-generic ultrafilter,

(iii) Pˇ 
 Q
z
ˇ D F� .F

z
ˇ / � PT .U

z
ˇ /,

(iv) PˇC1 
 r
z
ˇ is the PT .U

z
ˇ /-generic real.

Statements (i) and (ii) also hold for ˇ D @2.

(B) Any P as in (A) is proper, does not collapse @2, and preserves any P -point from the
ground model .and hence there is a simple P@1 -point/ and forces that

filter.¹rge.r
z

 / j 
 < @2º/

is a simple P@2 -point and that 2! D @2.
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Remark 1.11. The existence of an iteration as in (A) follows from [24, Ch. III, Defini-
tion 3.1, Claim 3.1A, Theorem 3.1B]. Such an iteration is not as uniform as it may look
at first sight. As we will see in Lemma 3.5, for ˇ � @2 of uncountable cofinality we have

Pˇ 
 F
z
ˇ is an ultrafilter.

Hence for ˇ � @2 of uncountable cofinality, in VPˇ , the forcing F� .Fˇ / is equivalent to
the one-point forcing ¹F

z
ˇ º and we can let F

z
ˇ D U

z
ˇ .

Another important concept is the following.

Definition 1.12. (1) A function hW!!! is called finite-to-one if for any n, the preimage
of ¹nº, i.e. h�1Œ¹nº�, is finite (this includes the possibility of being empty).

(2) Two ultrafilters F and U over ! are called nearly coherent if there is a finite-to-one
function h such that h.F / D h.U/ where h.U/ D ¹X � ! j h�1ŒX� 2 Uº.

By [3] the near-coherence relation is an equivalence relation on the set of ultrafilters,
and its equivalence classes are called near-coherence classes.

Observation 1.13. If U is a simple P@2 -point then U is not nearly coherent to any
ultrafilter W with character @1.

Proof. We let hB˛ j ˛ < @2i be an enumeration of a basis of U with B˛ �� Bˇ and
B˛ 6�

� Bˇ for ˛ < ˇ < @2. We let ¹A˛ j ˛ < @1º be a basis for W . For a contradiction we
assume that f is a finite-to-one function and f .U/D f .W/. Then for every ˛ < @2 there
is some ˇ˛ < @1 such that f ŒAˇ˛ � �

� f ŒB˛�. Since @2 is regular, there is some ˇ < @1
and there is an unbounded subsetX of @2 such that for any ˛ 2 X , f ŒAˇ ��� f ŒB˛�. But
then hB˛ j ˛ < @2i cannot be a descending basis of an ultrafilter.

Remark 1.14. Moreover, by [6], in the extension VP@2 we have s D @2 and there are
exactly two near-coherence classes of ultrafilters. The reason for this is that the existence
of a simple P@1 -point and a simple P@2 -point implies u < s. This further implies that
there are at most two near-coherence classes.

Remark 1.15. In [19] we construct another model with exactly two near-coherence
classes.

2. Canjar filters and parametrised Miller forcing

We are interested in filters over ! such that the associated forcing PT .F / does not add a
dominating real. An example for such a filter is the following.

Definition 2.1. A filter F is called a Canjar filter if for any sequence hXn j n < !i of
elements of .F <!/C there is a sequence hYn j n < !i such that Yn 2 ŒXn�<! for all n 2 !,
and

S
¹Yn j n < !º 2 .F

<!/C.
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In fact it is enough to consider decreasing sequences of elements in .F <!/C.

Remark 2.2 ([11, Claim 2.3]). A filter F is Canjar if and only if for any decreasing
sequence hXn j n < !i of elements of .F <!/C there is a sequence hYn j n < !i such that
Yn 2 ŒXn�

<! for all n 2 !, and[
¹Yn j n < !º 2 .F

<!/C:

Proof. The “only if” part is obvious, so assume we have any sequence hXn j n < !i of
elements in .F <!/C. Now define a decreasing sequence by

X 0n D
[
i�n

Xi :

If there is a sequence hY 0n j n < !i such that Y 0n 2 ŒX
0
n�
<! for all n 2 !, andS

¹Y 0n j n < !º 2 .F
<!/C, we can set

Yn D
[
i�n

.Y 0i \Xn/:

Then for any n 2 ! we see that Yn 2 ŒXn�<! is a finite union of finite sets, each contained
in Xn, and also

S
¹Yn j n < !º D

S
¹Y 0n j n < !º 2 .F

<!/C.

If F is a Canjar filter, then PT .F / does not add a dominating real by [14, Proposi-
tion 23]. It is open whether there are non-Canjar filters F such that PT .F / does not add
dominating reals.

Definition 2.3. The following game GCanjar.F / is called the Canjar game about F : Play-
ers I and II play alternately in ! many rounds.

I X0 X1 X2 : : :

II Y0 Y1 Y2 : : :

The rules are: Xn 2 .F <!/C and Yn 2 ŒXn�<! . Player II wins if[
¹Yn j n 2 !º 2 .F

<!/C:

A filter is a Canjar filter if and only if Mathias forcing with second components in
the filter does not add a dominating real [15, Theorem 5]. There are more equivalent
formulations; see, e.g., [5, 11, 13]. The following one will be used further below.

Proposition 2.4 ([11]). A filter F is a Canjar filter if and only if player I does not have a
winning strategy in GCanjar.F /.

Lemma 2.5. If a filter F is not Canjar, then player I has a winning strategy � in the
Canjar game GCanjar.F / such that for each n � 1,

�.Y0; : : : ; Yn�1/ � �.Y0; : : : ; Yn/ �
[
0�i�n

Yi :
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Proof. If F is not Canjar, then by Remark 2.2 there exists a decreasing sequence
hXn j n < !i of elements of .F <!/C such that for any sequence hYn j n < !i with
Yn 2 ŒXn�

<! for n 2 ! we have
S
¹Yn j n < !º … .F

<!/C. Obviously playing Xn in the
n-th move is already a winning strategy for player I in the Canjar game. We now define

�.Y0; : : : ; Yn/ D XnC1 [
[
0�i�n

Yi

to obtain a winning strategy as claimed.

Guzmán and Kalajdzievski introduced a family of strengthenings of Canjarity. To state
these strengthenings we first recall subrelations of the partial order on PT .F / that are
related to finite subtrees.

Definition 2.6. Let T � p be a finite tree. We write q �T p if q � p, T � q, and
T \ F-spl.q/ D T \ F-spl.p/.

Definition 2.7. Let d W!"<! ! ! be a bijection such that s E t ! d.s/ � d.t/. For a
filter F , a condition p 2 PT .F /, and n 2 ! we define

T .p; n/ D ¹t 2 p j .9s/.t E s ^ s 2 F-spl.p/ ^ d�1.s/ � n/º:

We will use the following game which is closely related to the Canjar game.

Definition 2.8. For a filter F we consider the game H .F /

I p0 p1 p2 : : :

II n0 n1 n2 : : :

with the following rules: For i < !,

(1) pi 2 PT .F /,

(2) n0 2 !, niC1 > ni ,

(3) piC1 �Ti pi for Ti D T .pi ; ni /.

Player II wins the game H .F / if
S
¹T .pi ; ni / j i < !º 2 PT .F /.

This game is equivalent to the Canjar game in the sense that for any filter F player I
has a winning strategy in GCanjar.F / if and only if player I has a winning strategy in H .F /.
For our purposes we are only concerned with the “only if” part of this equivalence; for
the other direction see [14, Proposition 27].

Lemma 2.9. If a filter F is not Canjar, then player I has a winning strategy in the
game H .F /.

Proof. By Proposition 2.4 and Lemma 2.5 player I has a winning strategy � in the Canjar
game GCanjar.F / such that for each n � 1 we have

�.Y0; : : : ; Yn�1/ � �.Y0; : : : ; Yn/ �
[
0�i�n

Yi :
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Now I plays in the game H .F / as follows. In the first move I plays �.;/ D X0 in the
Canjar game and chooses p0 such that for any s 2 F-spl.p0/,

sucsplp0.s/ D ¹y 2 X0 j max.s/ < min.y/º:

Now II plays some n0 2 ! in the game H .F /. Player I interprets n0 in the Canjar game
as

Y s0 D ¹rge.t/ n rge.s/ j t 2 T .p0; n0/º \ sucsplp0.s/;

Y0 D
[
¹Y s0 j s 2 F-spl.p0/º:

The set Y0 is a finite subset of X0. For i � 1, once ni�1 is played, it is interpreted as Yi�1
in the same fashion. Player I plays Xi according to � and translates this to some2 pi such
that pi �T.pi�1;ni�1/ pi�1 and for each s 2 F-spl.pi /,

sucsplpi .s/ D ¹y 2 Xi j max.s/ < min.y/º:

Note that for the existence of pi we use

Xi�1 � Xi D �.Y0; : : : ; Yi�1/ �
[
j<i

Yj :

Player I wins the Canjar game with the strategy � and hence
S
¹Yi j i <!º 62 .F

<!/C.
Now the strategy above is a winning strategy for player I in H .F /: We show that
T D

S
¹T .pi ; ni / j i < !º fails to be a condition. If T has no !-splitting node, then

T 62 PT .F /. If T has an !-splitting node s, then

sucsplT .s/ �
[
¹Yi j i < !º 62 .F

<!/C:

We recall the P -point game.

Definition 2.10. Let W be an ultrafilter. The P -point game for W , for short GP -point.W/,
is the following game:

I X0 X1 X2 : : :

II Y0 Y1 Y2 : : :

such that

(1) Xi 2 W ,

(2) Yi 2 ŒXi �<! .

In the end, player II wins if
S
¹Yi j i < !º 2 W .

Lemma 2.11 (Galvin and Shelah, see, e.g., [2, Theorem 4.4.4]). Let W be an ultrafilter.
W is a P -point if and only if player I does not have a winning strategy in GP -point.W/.

2Actually, pi is determined by the requirements.
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Now we can give a version of Canjarity in relation to a P -point.

Definition 2.12 ([14, Def. 42]). Let W be an ultrafilter. Let d be a fixed bijection as in
Definition 2.7. A filter F is called a W -Canjar filter if player I does not have a winning
strategy in the following game H .W ;F /. The game is played in ! rounds and in round 2i
player I plays Yi and player II plays zi , then in round 2i C 1 player I plays pi and player II
answers with ni .

I Y0 p0 Y1 : : :

II z0 n0 z1 : : :

The rules are, for i < !,

(1) Yi 2 W ,

(2) zi 2 ŒYi �<! ,

(3) pi 2 PT .F /,

(4) n0 2 !, niC1 > ni ,

(5) piC1 �Ti pi for Ti D T .pi ; ni /.

Player II wins if[
¹T .pi ; ni / j i < !º 2 PT .F / and

[
¹zi j i < !º 2 W :

The game H .W ;F / is a combination of the P -point game about W and the variation
H .F / (from Definition 2.8) of the Canjar game GCanjar.F / in which player I only needs
to win one of the two partial games.

Lemma 2.13. Let W be an ultrafilter. If a filter F is W -Canjar then W is a P -point and
F is Canjar.

Proof. The moves Y0; z0; Y1; z1; : : : in H .W ;F / follow the rules of the P -point game
GP -point.W/. If W is not a P -point, then player I has a winning strategy in this subgame
and thus in H .W ;F /.

Similarly, the moves p0; n0; p1; n1; : : : follow the rules of the game H .F / and if F

is not a Canjar filter, player I has a winning strategy in this subgame by Lemma 2.9 and
thus in H .W ;F /.

Let U be a Canjar ultrafilter. Then U is a P -point. The easiest way to see this is to use
the fact that the Mathias forcing with U does not add a dominating real [10]. However, U

is not U-Canjar by Lemma 2.15 (b) below. Thus in general the reverse implication of the
statement in Lemma 2.13 does not hold.

For properness and the preservation of @1, we use Axiom A (see, e.g., [16, Definition
31.10]).

Definition 2.14. Let F be a filter and p; q 2 PT .F /.

(1) By induction on n we define F-spln.p/ � p:

� F-spl0.p/ D ¹tr.p/º.
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� F-splnC1.p/ is the set of shortest nodes s 2 F-spl.p/ that are not in F-spln.p/ but
have a G-predecessor in F-spln.p/.

(2) For n 2 ! we write q �n p if q � p and F-spln.q/ D F-spln.p/. Note that q �n p
implies q �k p for all k < n.

The next lemma collects three technical properties of the forcing notions PT .F / and
the notion of W -Canjarity that we will use and that have been proved by Guzmán and
Kalajdzievski.

Lemma 2.15. Let W be a P -point.

(a) [14, Lemma 18 and Proposition 20] Let F be a filter. The forcing PT .F / with the
suborders �n, n < !, has Axiom A and diagonalises F .

(b) [14, Proposition 43] Let F be a W -Canjar filter. Then PT .F / preserves W .

(c) [14, Proposition 55] The generic filter of the forcing F� is a W -Canjar ultrafilter.

For the reader’s convenience, we prove this lemma along the lines of [14] in the
remainder of this section. The proof that PT .F / diagonalises the filter F was given
after Definition 1.9.

Definition 2.16. Let p be a tree and let s 2 p. We write ps D ¹t 2 p j t E s _ s E tº.

For a set X � Fin we let minimal.X/ be the set of elements of s of X such that there
is no r 2 X with r < s.

Lemma 2.17 ([14, Proposition 20]). Let F be a filter, p 2 PT .F /, s 2 F-spl.p/ and let
D be a dense subset of PT .F /. Let � > 2!1 be a regular cardinal and M � H.�/ be
a countable elementary submodel with F ; p; D 2 M . Then there is a q �0 ps , q 2 M ,
such that q forces “G

z
\M \D ¤ ;”.

Proof. We define

X D E.D;p; s/ WD minimal¹rge.r/ n rge.s/ j s G r ^ .9q � ps/.tr.q/ D r ^ q 2 D/º:

Then X 2 .F <!/C, since otherwise we could find some F 2 F such that no t in X is a
subset of F . Thus the set D would not be dense below q D ps��F . For every t 2 X we
take q.t/ �0 psaen.t/ such that q.t/ 2 D. We let q D

S
¹q.t/ j t 2 Xº.

We show q 2 PT .F /. For this we have to show that any infinitely splitting node u 2 q
is F -splitting in q. We let

OX D ¹r 2 p j r F s ^ rge.r/ n rge.s/ 2 Xº:

We fix an infinitely splitting node u 2 q. Note that u 2 ps .
First case: If there is some r 2 OX , u D r , then for the t with saen.t/ D r we have

t 2 X , u 2 q.t/ and u is F -splitting in q.t/, hence F -splitting in q.
Second case: The node u does not extend any node in OX . Since D is dense, by the

forcing theorem, for any q0 � p there is some r 2 OX \ q0. So for any w 2 sucsplp.u/ we



C. Bräuninger, H. Mildenberger 4982

pick the u0 such thatwD rge.u0/ n rge.u/ and for u0 there is r 2 OX with u0E r . Thus u0 2 q
and w 2 sucsplq.u/. Taking all w together yields sucsplq.u/ D sucsplp.u/ 2 .F

<!/C.
Now ifw 2 sucsplq.s/, the set ¹q.t/ j t 2X ^ saen.t/D saen.w/º 2M is a predense

set above qsaen.w/ and the latter forces M \D \G
z
¤ ;.

Axiom A is immediate. We proved above (after Definition 1.9) that PT .F / diagon-
alises F . Thus Lemma 2.15 (a) is proved.

Now we turn to part (b).
For this we first give a shorter proof to the following.

Lemma 2.18 (Special case of [14, Lemma 11]). Let F be a Canjar filter. For every
sequence hXn j n < !i of elements Xn 2 .F <!/C there is some f 2 !! such that for
n 2 ! and

Yn D ¹s 2 Xn j s � Œf .n/; f .nC 1//º

we have
S
¹Yn j n < !º 2 .F

<!/C.

Proof. We let f .0/ D 0. I and II play the Canjar game GCanjar.F / as follows:

I X 00 X 01 X 02 : : :

II Y 00 Y 01 Y 02 : : :

so that

(1) X 00 D X0, f .0/ D 0, and for n � 1 we let

f .n/ D max ¹max.s/C 1 j s 2 Y 0n�1º; X 0n D ¹t 2 Xn j min.t/ � f .n/º:

Since F is non-principal, X 0n 2 .F
<!/C.

(2) Now player II plays Y 0n 2 ŒX
0
n�
<! .

In the end we take a play hY 0n j n < !i such that II wins, and we obtain f . We observe
that Y 0n � Yn.

Lemma 2.19 (A rest of Ramseyness, [14, Lemma 38]). Let F be Canjar and p 2PT .F /
and cWF-spl.p/! 2. Then there is a q � p such that F-spl.q/ is c-monochromatic.

Proof. Assume there is no q � p such that F-spl.q/ is 0-monochromatic, i.e., 1 2
cŒF-spl.q/� for every q � p. Then we need to find a q � p such that F-spl.q/ is 1-
monochromatic. For s 2 F-spl.p/ we define

X.s/ D ¹rge.t/ n rge.s/ j t 2 F-spl.p/; s G t; c.t/ D 1º:

We fix s. In order to show X.s/ 2 .F <!/C, for contradiction we assume that there exists
anA2F such that r 6�A for any r 2X.s/. Then the condition qDps��A fulfils c.t/D 0
for every t 2 F-spl.q/ n ¹sº. In other words, for any t 2 sucsplq.s/, the set F-spl.qt / is
0-monochromatic, contrary to our assumption. Hence X.s/ 2 .F <!/C is proved. Now
we unfix s.
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By Lemma 2.18 we can pick for each s 2 F-spl.p/ some Y.s/ � X.s/ such that
Y.s/ 2 .F <!/C and for every n 2 ! the set ¹t 2 Y.s/ j t \ n ¤ ;º is finite. We will now
inductively construct a fusion sequence

p � q0 �0 q1 �1 q2 �2 � � �

such that for every n 2 ! and s 2 F-spln.qn/ we have c.s/ D 1. In the end q D
T
n2! qn

� p will be the desired condition.
Let s0 2F -spl.p/ be such that c.s0/D 1 and set q0D ps0 . If qn is already constructed

we set
qnC1 D

[
s2F-spln.qn/

[
t2Y.s/

psaen.t/:

Note that for s 2 F-spln.qn/ and t 2 Y.s/ we have psaen.t/ D .qn/saen.t/.
For s 2 F-spln.qn/, we show that sucsplqnC1.s/ � Y.s/.
If r 2 F-spl.qnC1/ is such that rge.r/ n rge.s/ 2 sucsplqnC1.s/, by definition of qnC1

we have r 2 psaen.t/ for some t 2 Y.s/ of minimal length. Since r is an F -splitting
successor of s in qnC1 and since ¹t 2 Y.s/ j t \ n ¤ ;º is finite for each n 2 !, we must
have r D saen.t/ and rge.r/ n rge.s/ D t 2 Y.s/.

Lemma 2.20 ([14, Lemma 40]). Let F be a Canjar filter, B
z

be a PT .F /-name and
p 2 PT .F / with tr.p/ D s and p 
“B

z
is an infinite subset of !”. Then there are q �0

p D ps , Bs 2 Œ!�! , and finite sets hFn j n < !i such that

(1) Fn 2 ŒFin�<! and .8n/.8r 2 Fn/.8t 2 FnC1/.max.r/ < min.t//,

(2) sucsplq.s/ D
S
n<! Fn,

(3) .8m � n/.8t 2 Fm/.qsaen.t/ 
 B
z
\ .nC 1/ D Bs \ .nC 1//.

Proof. For n 2 ! we let

Dn D ¹q
0
2 PT .F / j q0 � p and q0 determines B

z
\ .nC 1/º: (2.1)

The set Dn is dense below p and with the definition of E from the proof of Lemma 2.17
we have

Xn D E.Dn; p; s/ 2 .F
<!/C:

For m � n and A � nC 1 we set

Y.A;m; n/ D ¹u 2 Xm j .9q
0
�0 psaen.u//.q

0
2 Dm and q0 
 B

z
\ .nC 1/ D A/º:

For n 2 ! we let

An D ¹A � nC 1 j .8m � n/.Y.A;m; n/ 2 .F
<!/C/º:

Since for eachm, theXm is positive and is divided into finitely many pieces by the choice
of B
z
\ .n C 1/, for each m, at least one of the pieces is positive. By König’s Lemma,

An ¤ ;.
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Players I and II play the Canjar game: By induction on n we choose X 0n, An, and Fn.
We start with A�1 D ;, F�1 D ;. In step n we choose X 0n 2 .F

<!/C and An 2 An such
that An � An�1 and

X 0n D ¹t 2 Xn j .8r 2 Fn�1/.max.r/ < min.t// ^

.9q0/.q0 �0 psaen.t/ ^ q
0 
 B
z
\ .nC 1/ D An/º:

If a finite union is positive, then one of the parts is positive. Hence we can choose X 0n as
above in .F <!/C. Player II chooses Fn 2 ŒX 0n�

<! . We take a play such that II wins, and
hence

S
¹Fn j n < !º 2 .F

<!/C. We let

Bs D
[
¹An j n 2 !º

and for t 2 Fn we choose q.t/ such that q.t/ �0 psaen.t/ and q.t/
 B
z
\ .nC 1/ D An.

We let
q D

[
¹q.t/ j n < !; t 2 Fnº:

Then (3) holds.

By a fusion argument we get the following slight strengthening.

Lemma 2.21. Let F be a Canjar filter, B
z

a PT .F /-name and p 2 PT .F / with p 

“B
z

is an infinite subset of !”. Then there is a q �0 p, and for each s 2 F-spl.q/ there
are Bs 2 Œ!�! and finite sets hF sn j n < !i such that

(1) F sn 2 ŒFin�<! and .8n/.8r 2 F sn /.8t 2 F
s
nC1/.max.r/ < min.t//,

(2) sucsplq.s/ D
S
n<! F

s
n ,

(3) .8m � n/.8t 2 F sm/.qsaen.t/ 
 B
z
\ .nC 1/ D Bs \ .nC 1//.

Here is the final step of the proof of part (b) of Lemma 2.15, where we literally follow
the original proof.

Proof of Lemma 2.15 (b). Given p such that p 
 B
z
2 Œ!�! we fix q, Bs , and F sn ,

n < !, s 2 F-spl.q/, as in Lemma 2.21. Moreover by the Ramsey Lemma 2.19 we may
strengthen q once (even lengthen the trunk) such that – for the strengthening, which we
call q again – .8t 2 F-spl.q//.Bt 2 W/ or .8t 2 F-spl.q//.Bct 2 W/. We assume the
first. Note that also the strengthened q has the analogue of property (3) of Lemma 2.21.

Let s0 D tr.q/.
We define a strategy for player I in H .W ;F / as follows:

(i) Player I starts with W0 D Bs0 .

(ii) Assume that player II plays z0 2 ŒW0�<! . Letting l0 D max.z0/, player I plays
p0 D

S
¹qs0aen.t/ j t 2 F

s0
i ; i > l0º. Note p0 
 z0 � B

z
.

(iii) Assume that player II plays n0. Now player I sets T0 D T .p0; n0/ and W1 DT
¹Bs n .l0 C 1/ j s 2 F-spl.p0/ \ T0º.
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(iv) Suppose that the sequence hW0; z0; p0; n0; : : : ; Wm; zm; pmi has been played such
that for i < m, Ti D T .pi ; ni / and piC1 �Ti pi , and for i � m, pi 
 zi � B

z
. Now

player II chooses nm and player I lets Tm D T .pm; nm/, lm D max.zm/, and

WmC1 D
\
¹Bs \ Œlm C 1; !/ j s 2 F-spl.pm/ \ Tmº:

Assume that player II chooses zmC1 2 ŒWmC1�<! . Player I lets lmC1 D max.zmC1/
and chooses for s 2 Tm \ F-spl.pm/ a condition p0s;m �0 .pm/s as follows: If
s 2 Tm \ F-spl.pm/ has a G-larger element in Tm, then p0s;m \ Tm D ¹r j r E sº,
and otherwise p0s;m D .pm/s . Now player II plays

pmC1 D
[
¹.p0s;m/.saen.r// j s 2 Tm \ F-spl.pm/ ^

j > lmC1 ^ r 2 F
s
j ^ s

aen.r/ 2 pmº:

By construction, pmC1 �T.pm;nm/ pm and pmC1 
 zmC1 � B
z

.

Since F is W -Canjar, we know that � is not a winning strategy. Suppose that player I
played according to � and player II won. Then we know that U D

S
¹zi j i < !º 2 W

and q D
S
i<! Ti 2 PT .F /. By construction of q, we have q 
 U � B

z
, and we are

done.

So now part (b) is proved.
We turn to part (c) of Lemma 2.15. First we need some topology.

Definition 2.22. Let X � Fin. We let

C.X/ D ¹A � ! j .8s 2 X/.s \ A ¤ ;/º:

Note that the set C.X/ is closed in the compact space 2! and hence compact.

Lemma 2.23 ([14, Lemma 47]). Let G be a filter, F 2 F� .G / and X � Fin. Then
F 
F� .G / X 2 .U

z
.G /<!/C if and only if C.X/ � filter.F [ G /.

Proof. For the forward implication, let H 62 filter.F [ G /. Then H c is filter.F [ G /-
positive and F [ ¹H cº � F is a condition in F� .G /. Then there is some s in X with
s � H c . Thus H 62 C.X/.

For the reverse implication, suppose C.X/ � filter.F [ G /. Then for any A in C.X/
we see that the condition F forces “Ac 62 U

z
.G /”. Hence F forces “if D 2 U

z
.G / then

Dc 62 C.X/, i.e., there is s 2 X with s � D”.

Lemma 2.24 ([14, Lemma 54]). Let F be a filter and let D � F be compact and let
X1; : : : ; Xn 2 ŒFin�! be such that C.Xi / � F . Then there are Yi 2 ŒXi �<! , 1 � i � n,
such that for every F 2 D and for every 1 � i � n and every A1i ; : : : ; A

n
i 2 C.Yi / we

have
F \

\
1�i;j�n

A
j
i ¤ ;:
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Proof. We consider the compact space Z D .
Qn
iD1 P .!/n/ �D . For ` 2 !, we define

the closed subspace K.`/ as follows:

K.`/ D
°�˝
hA1i ; : : : ; A

n
i i j 1 � i � n

˛
; F
�
2 Z

ˇ̌̌
^

1�i;j�n

A
j
i 2 C.Xi \P .`// ^

\
1�i;j�n

A
j
i \ F D ;

±
: (2.2)

Since C.X1/; : : : ;C.Xn/;D � F we conclude that
T
`2!K.`/D ;. SinceZ is compact,

there is some ` such that K.`/ D ;. Let Yi D Xi \P .`/.

Now we perform the final step in the proof of Lemma 2.15 (c):
Assume for a contradiction that F is an F� -filter and that F forces in F� that � is a

winning strategy for player I in H .W ;U
z
/. Since F� is a � -closed forcing and since � is

a real, we can assume that � is in the ground model. Let F D
S
i<! Ci for an increasing

sequence Ci of compact sets. We will show that there is a winning strategy for player I in
GP -point.W/, yielding a contradiction.

If F 
 p 2 PT .U
z
/ then F 
 .8s 2 !-spl.p//.sucsplp.s/ 2 .U

z

<!/C/. The latter
means, according to Lemma 2.23, C.sucsplp.s// � F .

By Lemma 2.24, for every X D hX1; : : : ;Xni such for every 1 � i � n, C.Xi / � F ,
and every k 2 !, there is a function

F.X;k/WX ! ŒFin�<!

with the following properties:

(1) Yi D F.X;k/.Xi / 2 ŒXi �<! for every 1 � i � n.

(2) For all B 2 Ck and A1i ; : : : ; A
n
i 2 C.Yi /, 1 � i � n, we have B \

T
1�i;j�nA

j
i ¤ ;.

We fix such a function.
Now we define a strategy � for player I in the P -point game GP -point.W/:

(i) W0 D �.;/ DW �.;/.

(ii) Assume that player II plays z0 2 ŒW0�<! as a response in H .W ;U
z
/. We let p0 D

�.hW0; z0i/ and s0 D tr.p0/. We take n0 > d�1.s0/ so large that

.8t 2 F.sucsplp0 .s0/;0/
.sucsplp0.s0///.d

�1.s0
aen.t// < n0/:

Now the strategy � in GP -point.W/ says: Player I will playW1 D �.hW0; z0; p0; n0i/.

(iii) In general assume that hW0; z0;W1; z1; : : : ;Wmi has been played in GP -point.W/ and
that in the same stage player I has constructed on the side a sequence

hW0; z0; p0; n0; W1; z1; p1; : : : ; nm�1; Wmi

in the game H .W ;U
z
/ following � such that for each i < m the integer ni has the

following property: Letting

Xi D ¹sucsplpi .u/ j u 2 T .pi ; ni�1/ \ F-spl.pi /º
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we have taken ni so large such that

.8u 2 T .pi ; ni�1/ \ F-spl.pi //

.8t 2 F.Xi ;i/.sucsplpi .u///.d
�1.uaen.t// < ni /: (2.3)

and player I has played WiC1 D �.hW0; : : : ; Wi ; zi ; pi ; ni i/ D �.z0; : : : ; zi /.
Assume that player II plays zm as a response to hW0; : : : ; Wmi in GP -point.W/.

Player I uses zm in the game H .W ;U
z
/ and plays

pm D �.hW0; : : : ; Wm; zmi/:

Let nm > nm�1 be such that for

Xm D ¹sucsplpm.u/ j u 2 T .pm; nm�1/ \ F-spl.pm/º

we have

.8u 2 T .pm; nm�1/ \ F-spl.pm//

.8t 2 F.Xm;m/.sucsplpm.u/// .d
�1.uaen.t// < nm/: (2.4)

Player I plays

WmC1 D �.hW0; : : : ; Wm; zm; pm; nmi/ DW �.z0; : : : ; zm/:

Now suppose that the play is finished. We let Z D
S
¹zi j i < !º and q DS

i<! T .pi ; ni /. The properties of the function F and statements (2.3) and (2.4) ensure
that

K WD filter
�
F [

[
¹C.sucsplq.s// j s 2 F-spl.q/º

�
is an F� -filter. Then K �F� F and by Lemma 2.23 we have

K 
 q 2 PT .U
z
/ ^ � is a winning strategy for player I in H .W ;U

z
/:

Hence K 
 Z 62 W . Since the latter two sets are in the ground model, we see that in V,
Z 62 W . Thus � is a winning strategy for player I in GP -point.W/, contradiction. Now
Lemma 2.15 is proved.

Besides Lemma 2.15 we will also use the following consequence of the backward
implication in Lemma 2.23.

Lemma 2.25. Let G be a filter. If F is an F� -filter, C.X/ � F and F [ G generates
a filter, then F 
F� .G / X 2 .U

z
.G /<!/C.

3. Proof of statement (B) of the theorem

We turn to new work and recall Definition 1.2 and the discussion thereafter.
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Definition 3.1. For a notion of forcing P we say W is aP -point in VP if W has a P -name
and P 
 “W generates a P -point”.

Note that such aP -point W is still aP -point in VP 0 if P is a complete subforcing of P 0

and the quotient forcing P 0=P is proper and preserves W . This will apply to numerous
P -points in intermediate stages of our construction.

We state and prove our main lemma. From now on we will drop the tildes underneath
the names, except in cases where we want to stress technical arguments.

Lemma 3.2. Assume CH and fix a P -point E from the ground model. Let P D hP˛;Qˇ j

˛ � @2; ˇ < @2i be a countable support iteration and hF˛;U˛; rˇ j ˛ � @2; ˇ < @2i

a sequence of names with the following properties:

(1) P0 D ¹0º.

(2) For ˇ < @2 we have the following:

(i) Pˇ 
 Fˇ D filter.¹rge.r˛/ j ˛ < ˇº/,

(ii) Pˇ � F� .Fˇ / 
 Uˇ is the F� .Fˇ /-generic ultrafilter,

(iii) Pˇ 
 Qˇ D F� .Fˇ / � PT .Uˇ /,

(iv) PˇC1 
 rˇ is the PT .Uˇ /-generic real.

Statements (i) and (ii) also hold for ˇ D @2.

Then the following statements hold:

(A) For any ordinal ˇ � @2 and any ˛ < ˇ with cf.˛/ � !, the forcing Pˇ is proper
and preserves any P -point in VP˛ . In particular, E is preserved in every step of the
iteration. For ˛ < @2, we have jP˛j � @1.

(B) For any ˇ � @2 with cf.ˇ/ � !,

Pˇ 
 Fˇ is an F� -filter;

Pˇ � F� .Fˇ / 
 Uˇ is a W -Canjar ultrafilter for any P -point W in VPˇ :

In particular,
Pˇ � F� .Fˇ / 
 Uˇ is an E-Canjar ultrafilter.

(C) For any ˇ � @2, if cf.ˇ/ � @1, then

Pˇ 
 Fˇ D Uˇ is a W -Canjar ultrafilter

for any P -point W in VP˛ for any ˛ < ˇ with cf.˛/ � !:

In particular,
Pˇ 
 Uˇ is an E-Canjar ultrafilter.

(D) 8˛ < ˇ < @2, PˇC1 
 rge.rˇ / �� rge.r˛/.

We prove conclusion (A) by induction on ˇ � @2. In order to do this, we carry over
conclusions (B), (C), and (D) along this induction.
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We outline the organisation of the tasks: Conclusion (A) collects the properties that
we carry over any step ˇ, i.e., from P˛ , ˛ < ˇ, to Pˇ . In successor steps, we use

Pˇ 
 Qˇ D F� .Fˇ / � PT .Uˇ /:

We have two kinds of successor steps: from Pˇ to PˇC1 for cf.ˇ/ � !, and from Pˇ to
PˇC1 for cf.ˇ/ D @1. The two types differ strongly:

If cf.ˇ/ � !, then Fˇ is countably generated. Now conclusion (B) is easy to see.
Part (c) of Lemma 2.15 says: The Pˇ � F� .Fˇ /-generic ultrafilter U

z
ˇ is W -Canjar for

each P -point that is known in Pˇ , which means by induction hypothesis for any P -point
in P˛ for an ˛ � ˇ with cf.˛/ � !. By induction hypothesis of (A) such a P -point W

in VP˛ is still a P -point in VPˇ . Now conclusion (A) for PˇC1 follows immediately
by Lemma 2.15 (b). Conclusion (C) is vacuous, and conclusion (D) for rˇ follows from
Fˇ � Uˇ .

If cf.ˇ/ � @1, then by known facts on countable support iteration of proper iterands,
Fˇ D Uˇ is a P -point. Now we face the only novel task: show that Uˇ is W -Canjar
for each P -point W that is known in P˛ for any ˛ < ˇ with cf.˛/ � !. For this we will
use all four clauses (A) to (D). Any such W still generates a P -point in Pˇ by induction
hypothesis. The ultrafilter U˛ for ˛ < ˇ with cf.˛/ � ! is a P -point in the half-step
VP˛�F� .F˛/. The ultrafilter U˛ will be diagonalised by P˛C1 and does not generate a P -
point in Pˇ . The ultrafilter U˛ for ˛ � ˇ with cf.˛/D@1 is aP -point at stage VP˛ . Again
the ultrafilter U˛ will be diagonalised by P˛C1 and does not generate a P -point in Pı for
ı � ˛C 1. Now, as above, conclusion (A) for PˇC1 is immediate by Lemma 2.15 (b), and
conclusion (D) is derived quickly, as seen below. This ends the outline.

Now we carry out the induction.
For ˇ D 0, conclusion (B) follows from Lemma 2.15 (c), and the other conclusions

are vacuously true. Note that filter.;/ D Fr .
We suppose that ˇ � @2 is a limit ordinal and the lemma is proved for ˛ < ˇ. For

conclusion (A) we cite:

Theorem 3.3 ([7, Theorem 4.1]). If W is a P -point in V, ˇ is a limit ordinal and Pˇ D
hP˛ j ˛ < ˇi is the countable support limit and for ˛ < ˇ, the forcing P˛ is proper and
preserves W , then Pˇ is proper and preserves W .

Also the statement on the size of the forcing order is well-known [24, Theorem
III.4.1]. Conclusion (D) is easy in the limit step.

Now we are concerned with the successor step. Properness is preserved since each
iterand is proper by countable closure of F� and by Lemma 2.15 (a).

We now wish to carry over conclusion (D) from Pˇ to PˇC1. For this, the cofinal-
ity of ˇ does not matter. For ˛ < ˇ < @2, we have Pˇ 
 rge.r˛/ 2 Fˇ and hence
Pˇ � F� .Fˇ / 
 rge.r˛/ 2 Uˇ . Since the PT .Uˇ /-generic real diagonalises Uˇ (see
Definition 1.8 and the following paragraph), we have PˇC1 
 rge.rˇ / �� rge.r˛/ for
ˇ > ˛.

We turn to the successor step for cf.ˇ/ � !. Conclusion (B) has to be proved.
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Lemma 3.4. Let W 2 VPˇ be a P -point. For cf.ˇ/ � !, Fˇ is an F� -filter and
Pˇ � F� .Fˇ / forces that Uˇ is W -Canjar.

Proof. Since cf.ˇ/ D 1 or cf.ˇ/ D ! we may choose a cofinal (not necessarily strictly
increasing) sequence h˛n j n < !i converging to ˇ. By part (D) of the induction hypo-
thesis, in VPˇ , the filter Fˇ is generated by ¹rge.r˛n/ j n < !º. Thus

Fˇ D ¹A � ! j .9n/.A �
� rge.r˛n//º

is an F� -filter and F� .Fˇ / is equivalent to F� below the condition Fˇ . Thus Lem-
ma 2.15 (c) shows that Uˇ is a W -Canjar ultrafilter.

Now we turn to the new instances of conclusion (A) of Lemma 3.2 in this successor
step. Let W be a P -point in VPˇ (see Definition 3.1). In particular, W could be a P -point
from the ground model. Since F� .Fˇ / is � -closed, we only have to consider whether
the second half of the iterand preserves W . The second component of the iterand Qˇ D

F� .Fˇ / � PT .Uˇ / is PT .Uˇ /, and by Lemma 3.4, Uˇ is a W -Canjar ultrafilter. Hence
by Lemma 2.15 (b) any P -point W is preserved.

Now we consider the successor step for cf.ˇ/D @1, that is, we prove conclusion (C)
and new instances of (A).

For a forcing Q and a condition q 2Q, we write Q�q for the forcing ¹p 2Q j p � qº
with the order of Q; and “' holds in VQ�q” is used as a synonym to q 
Q '.

Lemma 3.5. Let ˇ � @2 with cf.ˇ/ � @1 and fix some ˛ < ˇ of countable cofinality and
a P -point W in VP˛ . Then Pˇ forces that Fˇ is a W -Canjar ultrafilter.

Proof. Let ˇ � @2 be of uncountable cofinality. Any name for a subset of ! appears
in some VPı , ı < ˇ, by [22, p. 96 ff]. Therefore an easy density argument shows that
Pˇ 
 Fˇ D Uˇ is ultra.

The only not so easy statement is that Pˇ forces that Uˇ is W -Canjar.
We fix p0 2 P˛ such that p0 
 “W is a P -point”. By Lemma 3.4 we know that for

any ı with ˛ � ı < ˇ such that cf.ı/ � !, the name Uı is forced by .Pı � F� .Fı//�p0
to be a W -Canjar ultrafilter.

Suppose for a contradiction that we have p 2 Pˇ�p0 and a Pˇ -name � such that

p 
Pˇ � is a winning strategy for I in H .W ;U
z
ˇ /: (3.1)

Note that � is a real. There are some q � p and ı0 2 Œ˛; ˇ/ with supp.q/ � ı0 and
cf.ı0/ � ! such that below q the name � is equivalent to a Pı0 -name.

Let D be a countable cofinal subset of ı0. If ı0 is a successor, ı0 D � C 1, then
D D ¹�º. Now in VPı0�q ,

filterVPı0
�q
.¹r" j " 2 ı0º/ D Fı0 :

By part (D) of the induction hypothesis, in VPı0�q , the filter Fı0 is generated by ¹r" j
" 2 Dº and hence is an F� -filter.
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We work below q and we identify � with its Pı0 -name. From part (B) of the induction
hypothesis we get

.q;Fı0/ 
Pı0�F� .Fı0 /
� is not a winning strategy for I in H .W ;U

z
ı0/: (3.2)

Claim. The condition .q;Fı0/ forces also in the subforcing Pı0 � F� .Fı0/ that � is a
legal strategy for player I in H .W ;U

z
ı0/.

This is seen as follows: By statement (3.1), for any m 2 ! we have

.q;Fı0/ 
Pˇ 8.z0; n0; : : : ; nm�1; zm/; �.z0; n0; : : : ; nm�1; zm/ D pm 2 P .U
z
ˇ /:

(3.3)

And pm has a Pı0 � F� .Fı0/-name, since � has a Pı0 -name. By induction bypothesis for
statement (D), we have

.q;Fı0/ 
Pˇ U
z
ı0 � U

z
ˇ :

Hence
.q;Fı0/ 
Pˇ PT .U

z
ˇ / � PT .U

z
ı0/;

and statement (3.3) implies

.q;Fı0/ 
Pˇ pm 2 P .U
z
ı0/: (3.4)

The condition pm is a Pı0 � F� .Fı0/-name and “pm 2 PT .U
z
ı0/” is a statement in

the Pı0 � F� .Fı0/-forcing language. We claim that this statement is absolute between
VPˇ�.q;Fı0 / and VPı0�F� .Fı0 /�.q;Fı0 /.

The statement “pm 2 PT .U
z
ı0/” reads

.8t 2 !-spl.pm//.sucsplpm.t/ 2 ..U
z
ı0/

<!/C/:

We fix t , X 2 VPı0 , and a condition .r;G / 2 Pı0 � F� .Fı0/ below .q;Fı0/ such that

.r;G / 
Pˇ t 2 !-spl.pm/ ^X D sucsplpm.t/:

Since pm 2 V Pı0�q and since the forced statement is absolute, by [17, Lemma VII,
7.13] between the complete subforcing Pı0 � F� .Fı0/�.r; G / and the original forcing
Pˇ�.r;G /, we also have

.r;G / 
Pı0�F� .Fı0 /
t 2 !-spl.pm/ ^X D sucsplpm.t/: (3.5)

Our aim is to show

.r;G / 
Pı0�F� .Fı0 /
X 2 ..U

z
ı0/

<!/C:

We go into a generic extension V ŒGˇ � with .r;G / 2 Gˇ . That X 2 ..Uı0/
<!/C holds in

the big model V ŒGˇ � means that for all F in the filter generated by Uı0 (which is not an
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ultrafilter in V ŒGˇ � but this does not matter anyway), there is s 2 X with s � F . Now
take any F in the ultrafilter Uı0 in the small model V ŒGˇ�.Pı0 � F� .Fı0//�. Then we
can find the required s in the big model and thus also in the small model, so that X is also
positive in the latter. Thus the Claim is proved.

By the Claim, we have the following improvement of statement (3.2):

.q;Fı0/ 
Pı0�F� .Fı0 /
� is a strategy for I in H .W ;U

z
ı0/;

and � is not a winning strategy for I:

By the countable closure of F� .Fı0/, the forcing theorem yields a condition r �Pı0
q

and a Pı0 -name for an F� -filter G such that

r 
Pı0
G � Fı0 ;

and a Pı0 -name for a sequence Ns D hYi ; zi ; pi ; ni j i < !i such that .r;G / forces that Ns is
a winning play for player II, i.e.,

.r;G / 
Pı0�F� .Fı0 /
Ns is played according to � and

q0 D
[
i2!

T .pi ; ni / 2 PT .U
z
ı0/ and

[
i<!

zi 2 W : (3.6)

The statement
S
¹zi j i < !º 2W is absolute and by [17, Lemma VII, 7.13 (b)], applied

to Pı0 � F� .Fı0/�.r;G / as a complete suborder of Pˇ�.r;G /, we have

.r;G / 
Pˇ

[
i<!

zi 2 W :

Now we show

.r;G / 
Pˇ q
0
2 PT .U

z
ˇ /: (3.7)

Then
.r;G / 
Pˇ � is not a winning strategy for I in H .W ;U

z
ˇ /;

contrary to statement (3.1).
In order to prove statement (3.7), it is enough to show

.r;G / 
Pˇ .8t 2 !-spl.q0//.sucsplq0.t/ 2 ..U
z
ˇ /
<!/C/:

We fix t , X 2 VPı0 , and a condition .r 0;G 0/ � .r;G / in Pı0 � F� .Fı0/ such that

.r 0;G 0/ 
Pı0�F� .Fı0 /
t 2 !-spl.q0/ ^X D sucsplq0.t/: (3.8)

Since q0 2 V Pı0�r we can use the forcing Pı0 � F� .Fı0/ instead of Pˇ , again by [17,
Lemma VII, 7.13 (b)]. Since r 0 
Pı0

G 0 � G and r 0 
Pı0
G � Fı0 , we have r 0 
Pı0

G 0 � Fı0 . Our aim is to show

.r 0;G 0/ 
Pˇ X 2 ..U
z
ˇ /
<!/C: (3.9)
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Statements (3.6) and (3.8) yield

.r 0;G 0/ 
Pı0�F� .Fı0 /
X 2 ..U

z
ı0/

<!/C:

By Lemma 2.23 in VPı0�r
0

, this means

C.X/ � G 0: (3.10)

The property (3.10) is a …1
2-relation of a real parameter with a Pı0 � F� .Fı0/�.r 0; G 0/-

name and hence is absolute by Shoenfield’s absoluteness theorem [16, Theorem 25.20].
By [17, Lemma VII, 7.13 (b)], the absolute property (3.10) also holds in VPˇ�.r

0;G 0/ since
Pı0�.r 0;G 0/ is a complete suborder of the forcing Pˇ�.r 0;G 0/.

Since, in VPı0C1 and rı0 2 Fı0C1, rı0 diagonalises G 0 � Uı0 , it follows that

Pˇ�r 0
Pˇ G 0

z
�F
z
ˇ . By Lemma 2.25, applied in VPˇ�r

0

to the condition filterVPˇ�r0
.G 0/

in the forcing F� .Fˇ / (the trivial forcing) and statement (3.10), in VPˇ�r
0

we have

filterVPˇ�r0
.G 0/ 
F� .Fˇ/ X 2 ..U

z
ˇ /
<!/C:

Back in the ground model we have statement (3.9).

Now we turn to the new instances of conclusion (A) of Lemma 3.2 in the successor
step of uncountable cofinality. Since Fˇ is an ultrafilter, the forcing F� .Fˇ / is a forcing
with one condition. The second component of the iterand Qˇ D F� .Fˇ / � PT .Uˇ / is
PT .Uˇ /. By Lemma 3.5, for any P -point W in VP˛ for any ˛ < ˇ with cf.˛/ � !,
the ultrafilter Uˇ is a W -Canjar ultrafilter. Hence by Lemma 2.15 (b), the forcing PˇC1
preserves the P -point W .

Thus we proved statements (A) to (D) of Lemma 3.2 for ˇ � @2, and Lemma 3.2 is
proved. This concludes the proof of Theorem 1.10.

We recall the concept of near coherence from Definition 1.12. By [3, p. 585], if two
ultrafilters U, V are nearly coherent, then there is a finite-to-one weakly increasing sur-
jective function h such that h.U/ D h.V/. A function h is weakly increasing if m < n

implies h.m/ � h.n/.

Observation 3.6. With Uˇ and W as in Lemma 3.4, the generic ultrafilter Uˇ is not
nearly coherent to any such W .

Proof. First proof: PT .Uˇ / diagonalises Uˇ and preserves W by Lemma 2.15. If
f .Uˇ / D f .W/ for a finite-to-one f , then any diagonalisation D of Uˇ destroys W .

The second proof is by hand: Let W be an ultrafilter in VPˇ . Let h be a finite-to-
one surjective staircase function. It suffices to consider finite-to-one functions from VPˇ ,
since F� .Fˇ / is !-closed and thus does not add reals [18]. Let h be such a finite-to-one
function. We choose �n such h.k/D n for k 2 Œ�n; �nC1/. Let p be an F� -filter. Since p
is Borel, h.p/ D ¹X � ! j h�1ŒX� 2 pº is analytic and hence not an ultrafilter. So there
is an infinite set A such that[

¹Œ�n; �nC1/ j n 2 Aº;
[
¹Œ�n; �nC1/ j n 62 Aº 62 p:
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We assumeX D
S
¹Œ�n; �nC1/ j n 2 Aº 2W and consider Y D

S
¹Œ�n; �nC1/ j n … Aº.

Then
q D filter.p [ ¹Y º/

fulfils q 2 F� and q � p. Of course q forces Y 2Uˇ as well as X D h�1ŒA� 2W . Thus
q forces that Uˇ is not nearly coherent via h to W .

Question 3.7. Regarding Lemma 2.15, given aP -point W , for which filters G does F� .G /
force that the generic ultrafilter U

z
.G / is a W -Canjar ultrafilter?

In our proof we have examples of such W , G : We have a countably generated G and
then for any P -point W the forcing F� .G / forces that U

z
.G / is Canjar by Lemma 2.15 (c).

At a forcing stage Pˇ of uncountable cofinality the filter Fˇ is a W -Canjar ultrafilter for
any P -point W from a strictly earlier stage and F� .Fˇ / is the trivial forcing. A very deep
example of a non-Canjar filter G with the property above for any P -point W is given by
the dual filter I.A/� of a Laflamme MAD family in [14, Proposition 70].

We conclude this section by showing that there are no rapid ultrafilters in the models
of our main theorem.

Definition 3.8 (The Rudin–Keisler order). Let U and W be two ultrafilters over !. We
write U �RK W and say U is a Rudin–Keisler predecessor of W if there is a function
f W ! ! ! such that f .W/ D U. For the definition of f .U/, recall the second part of
Definition 1.12.

Definition 3.9 (Rapid ultrafilters). An ultrafilter R is called rapid if for any f W! ! !

there is some X D ¹x0; x1; : : : º 2 R such that

.8n/.f .n/ < xn/:

An ultrafilter is rapid iff the set ¹en.X/ j X 2 Rº of enumerating functions is a
��-dominating family.

Remark 3.10. According to Lemmas 3.5 and 2.13 in the forcing models of our main the-
orem, the simple P@2 -point generated by ¹r˛ j ˛ < @2º is a Canjar ultrafilter. In particular,
it does not have any rapid Rudin–Keisler predecessor by [10, Lemma 4].

Lemma 3.11. Let hW! ! ! be a finite-to-one surjective staircase function and let R be
an ultrafilter. Then R is rapid if and only if h.R/ is rapid.

Proof. We assume that R is rapid and show that h.R/ is rapid. Let f W! ! ! be given.
For n 2 !, we let g.n/ D max h�1Œ¹nº�. Note that h ı g D id and that for y > g.n/,
h.y/ > n. Since R is rapid, there is some X D ¹x0; x1; : : : º 2 R such that

.8n/..g ı f /.n/ < xn/:

Applying h to each side yields

.8n/.f .n/ < h.xn//:

Since ¹h.xn/ j n 2 !º 2 h.R/, we are done.
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Now we assume that h.R/ is rapid and show that R is rapid. Let f W! ! ! be given.
Since h.R/ is rapid, there is some X D ¹h.x0/; h.x1/; : : : º 2 h.R/ such that

.8n/.f .n/ < h.xn/ � xn/:

Proposition 3.12. There is no rapid ultrafilter in the forcing extension of our main the-
orem.

Proof. Let P be the forcing from the main theorem. We work in VP . By Remark 1.14
there are exactly two near-coherence classes of ultrafilters and they are represented by a
simple P@1 -point W in V and the simple P@2 -point U D U@2 . Let R be an ultrafilter
in VP . We have two cases.

First case: R is nearly coherent to W , via a surjective staircase function h. Since at
each stage ˇ, PT .Uˇ / diagonalises Uˇ and hence adds an unbounded real by [25], the
dominating number is @2. However, any rapid ultrafilter has character at least the domin-
ating number. So h.W/ D h.R/, having character @1, cannot be rapid. By Lemma 3.11,
R is not rapid.

Second case: R is nearly coherent to the Canjar ultrafilter U. We let h be a finite-
to-one surjective staircase function with h.R/ D h.U/. Then h.R/ is Rudin–Keisler
below U. By [10, Lemma 10], the ultrafilter h.R/ is not rapid, and by Lemma 3.11,
the ultrafilter R is not rapid either.

Acknowledgements. The authors thank Hannes Jakob for reading preliminary versions and invalu-
able advice. We would also like to thank the referee for careful reading, suggesting smoother
arguments in the main theorem, and numerous deep insights, among them the suggestion that there
might be no rapid ultrafilter in the models.

References

[1] Banakh, T., Repovš, D., Zdomskyy, L.: On the length of chains of proper subgroups covering
a topological group. Arch. Math. Logic 50, 411–421 (2011) Zbl 1221.03048 MR 2786762
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