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Abstract. It has been a long-standing problem to find good symbolic codings for translations on
the d -dimensional torus that enjoy the beautiful properties of Sturmian sequences like low factor
complexity and good local discrepancy properties. Inspired by Rauzy’s approach we construct such
codings in terms of multidimensional continued fraction algorithms that are realized by sequences
of substitutions. In particular, given any exponentially convergent continued fraction algorithm,
these sequences lead to renormalization schemes which produce symbolic codings of toral transla-
tions and bounded remainder sets at all scales in a natural way.

The exponential convergence properties of a continued fraction algorithm can be viewed in
terms of a Pisot type condition imposed on an attached symbolic dynamical system. Using this
fact, our approach provides a systematic way to confirm purely discrete spectrum results for wide
classes of symbolic dynamical systems. Indeed, as our examples illustrate, we are able to confirm
the Pisot conjecture for many well-known families of sequences of substitutions. These examples
include classical algorithms like the Jacobi–Perron, Brun, Cassaigne–Selmer, and Arnoux–Rauzy
algorithms.

As a consequence, we gain symbolic codings of almost all translations of the 2-dimensional
torus having factor complexity 2n C 1 that are balanced for words, which leads to multiscale
bounded remainder sets. Using the Brun algorithm, we also give symbolic codings of almost all
3-dimensional toral translations having multiscale bounded remainder sets.

Keywords. Symbolic dynamical systems, symbolic codings, multidimensional continued fraction
algorithms, S -adic dynamical systems, substitutions, Pisot conjecture, Lyapunov exponents, Rauzy
fractals, bounded remainder sets, toral translations, purely discrete spectrum

1. Introduction

One of the classical motivations of symbolic dynamics is to provide representations of
dynamical systems as subshifts made of infinite sequences which code itineraries through
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suitable choices of partitions. In the present paper, we focus on symbolic models for toral
translations. More precisely, for a given toral translation, we provide symbolic realiza-
tions based on multidimensional continued fraction algorithms. These realizations have
strong dynamical and arithmetic properties. In particular, they define bounded remainder
sets for toral translations with a natural subdivision structure governed by the underlying
continued fraction algorithm. We recall that bounded remainder sets are defined as sets
having bounded local discrepancy. In ergodic terms, these are sets for which the Birkhoff
sums of their characteristic function have bounded deviations. Their study started with
the work of W. M. Schmidt in his series of papers on irregularities of distributions (see
for instance [101]) and has led to many important contributions; see [72] for references.

Our approach is inspired by the seminal example of Sturmian dynamical systems,
introduced by M. Morse and G. Hedlund [93]. There is an impressive literature devoted to
their study and to possible generalizations in word combinatorics [66], and also in digital
geometry [100]. The importance of Sturmian dynamical systems is due to several reasons.
For instance, they provide symbolic codings for the simplest arithmetic dynamical sys-
tems, namely for irrational translations on the circle, they code discrete lines, and they are
one-dimensional models of quasicrystals [21]. Moreover, Sturmian dynamical systems are
characterized as the minimal shifts having 1-balanced language over a two-letter alpha-
bet [93]. Balance is a classical notion in word combinatorics and symbolic dynamics that
has been widely studied from many viewpoints, for instance in ergodic theory and word
combinatorics (see e.g. [53]) and in number theory in connection with Fraenkel’s con-
jecture [69, 115]. The scale invariance of Sturmian dynamical systems allows them to be
described by using a renormalization scheme governed by classical continued fractions,
which in turn can be interpreted as Poincaré sections of the geodesic flow acting on the
modular surface. This admits important generalizations in the study of interval exchange
transformations in relation with the Teichmüller flow and renormalization schemes that
can often be interpreted as continued fractions [118]. The basic combinatorial elements
for the understanding of Sturmian dynamical systems together with their renormaliza-
tion scheme are substitutions which are symbolic versions of induction steps (i.e., of first
return maps).

In order to get symbolic models, in the present work we rely on substitutive dynamical
systems as well as on the more general S -adic dynamical systems. A substitution is a rule,
either combinatorial or geometric, that replaces a letter by a word, or a tile by a patch of
tiles. Substitutions are used to define substitutive dynamical systems which play a fun-
damental role in symbolic dynamics, as emphasized e.g. in the monographs [21, 66, 96].
In particular, Pisot substitutions are of importance in this context since they create hier-
archical structures with a significant amount of long range order [4]. Each substitutive
dynamical system defined in terms of a Pisot substitution is conjectured to have purely
discrete spectrum, that is, to be isomorphic (in the measure-theoretic sense) to a transla-
tion on a compact abelian group. The fact that this so-called Pisot substitution conjecture
is still open (even though it is solved for beta-numeration in [24]) shows that important
parts of the picture are still to be developed.
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More generally, S -adic dynamical systems are defined in terms of words that are
generated by iterating sequences of substitutions, rather than iterating just a single sub-
stitution, much as multidimensional continued fraction algorithms in general produce
sequences of matrices, and not just powers of a single one. A survey on S -adic dynamical
systems is provided in [31]. The S -adic formalism offers representations similar to the
Bratteli–Vershik systems related to Markov compacta, and to representations by Rokhlin
towers as studied for instance in [64] or [34, Chapter 6]. In [37], we extend the Pisot con-
jecture to S -adic dynamical systems, which enables us to go beyond algebraicity. Since
S -adic dynamical systems are defined in terms of sequences of substitutions, they can be
regarded as nonabelian and combinatorial versions of multidimensional continued frac-
tion algorithms. The requirement of Pisot substitutions in the substitutive case is replaced
here by a more general condition, called the Pisot condition, which is essentially an expo-
nential convergence condition imposed on the underlying continued fraction algorithm
(see Section 2.1 for precise definitions). Under this condition, S -adic dynamical systems
are conjectured to have purely discrete spectrum. In [37], we prove that this extended
Pisot conjecture holds for large families of three-letter S -adic dynamical systems based
on well-known continued fraction algorithms, such as the Brun or the Arnoux–Rauzy
algorithm. As a striking outcome, this yields symbolic codings for almost every transla-
tion of the torus T2 [37], paving the way for the development of equidistribution results
for the associated two-dimensional Kronecker sequences.

In order to apply the results of [37] for a given family of S -adic dynamical systems,
one has to check quite tedious combinatorial conditions for the sequences of substitutions
involved (like the ones checked in [29] for the Brun algorithm; see [37, Proposition 9.7]).
These arguments crucially relied on the topology of the plane and were thus applicable
only to three-letter alphabets. This is why the results of [37] are not sufficient for setting
up a general theory that is easy to apply for a given family of S -adic dynamical systems.

In the present paper, we circumvent this problem by a new ergodic argument which
ensures that the required combinatorial conditions are generically satisfied under mild
and natural assumptions. This enables us to formulate results that are easily applicable
to any given class of S -adic dynamical systems that satisfies the Pisot condition (see
Definition 2.1) on any finite alphabet. For instance, our new theory works for general-
ized continued fraction algorithms including the Arnoux–Rauzy algorithm in arbitrary
dimension, the Jacobi–Perron algorithm (in dimension 3), the Brun algorithm (in dimen-
sion 4), and the Cassaigne–Selmer algorithm in dimension 3. (Only the cases of Brun and
Arnoux–Rauzy algorithms in dimension 3 were handled in [37].)

Another novelty we present in this paper builds on recent results from [30]. In partic-
ular, we can refine the theory of bounded remainder sets established in [37] in the sense
that bounded remainder sets (for letters) admit natural subdivisions into subsets that form
bounded remainder sets (for words). This results in multiscale natural codings for almost
all translations on the torus; see Theorem 3.8, whose informal version is provided in The-
orem B. Note that the constructions of bounded remainder sets given in [72, 75] do not
offer such scalability.
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To each continued fraction algorithm satisfying the Pisot condition, we attach a shift-
invariant set of S -adic sequences, which generically leads to S -adic dynamical systems
having purely discrete spectrum. This shows that S -adic dynamical systems are measur-
ably conjugate to minimal translations on the torus. In other words, we provide symbolic
representations of toral translations, i.e., symbolic dynamical systems that code toral
translations in the measure-theoretic sense, as well as symbolic representations for mul-
tidimensional continued fractions. In particular, we gain symbolic codings of almost all
translations of the 2-dimensional torus having factor complexity 2nC 1 that are balanced
for words (and not only for letters). Thus they admit bounded remainder sets at all scales;
see Corollaries C and 6.3. Using the Brun algorithm, we also give symbolic codings of
almost all 3-dimensional toral translations with bounded remainder sets for all words; see
Corollaries D and 6.8.

In our results on purely discrete spectrum (see Theorems 3.1 and 3.5, and Theorem A
for an informal version), we use two main conditions. Firstly, the above-mentioned Pisot
condition (see Definition 2.1), which is formulated in terms of negativity of the second
Lyapunov exponent. Secondly, the existence of a single substitutive dynamical system
that “behaves well” and corresponds to a periodic sequence in the set of S -adic sequences
under consideration. As mentioned above, in contrast to the results in [37], our results on
the purely discrete spectrum of S -adic dynamical systems do not require combinatorial
conditions which are hard to verify. In fact, some of our results do not need any combinat-
orial conditions to be verified: see Theorems 3.3 and 3.6. Indeed, we can prove that each
algorithm that satisfies the Pisot condition has an acceleration that leads to toral transla-
tions almost surely by using the existence of arbitrarily large blocks of Pisot substitutions
in the set of S -adic sequences.

In our proofs, we also heavily rely on the theory of S -adic Rauzy fractals, which
has been developed in [37]. For an illustration of such a fractal, see Figure 1. Rauzy
fractals have been introduced in [97] for the so-called Tribonacci substitution; see also
[112]. One motivation for Rauzy’s construction was to exhibit explicit factors of the sub-
stitutive dynamical system as translations on compact abelian groups, under the Pisot
hypothesis. The formalism of S -adic Rauzy fractals allows us to verify the Pisot con-
jecture on sequences of substitutions for wide families of systems satisfying the Pisot
condition, thereby extending the results in [37,67]; see Theorems 3.1 and 3.5. Already in
[37], for the Brun algorithm as well as the Arnoux–Rauzy algorithm, purely discrete spec-
trum results have been shown. Parallel to our work, [67] proved results on purely discrete
spectrum of S -adic dynamical systems coming from continued fraction algorithms with
special emphasis on the Cassaigne–Selmer algorithm. However, the conditions we have
to assume in our main results are easy to check effectively and our results (stated in Sec-
tion 3) are more general than the ones in [37,67]. This allows us to treat the Arnoux–Rauzy
algorithm in arbitrary dimensions as well as multiplicative continued fraction algorithms
like the Jacobi–Perron algorithm (which requires to work with S -adic dynamical systems
based on infinitely many substitutions).

In order to state our results with full mathematical precision, we require several con-
cepts and notation that will be introduced in Section 2. Nevertheless, for the convenience
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Fig. 1. An (affine image of an) S -adic Rauzy fractal and its subdivision (cf. Section 2.4) whose
directive sequence .�n/n2N starts with �0 D � � � D �7 and �8 D � � � D �15, where �0, defined by
1 7! 13, 2 7! 12, 3 7! 2, is a Cassaigne–Selmer substitution (see Section 6.2), and �8 is the classical
Tribonacci substitution 1 7! 12, 2 7! 13, 3 7! 1.

of the reader, we provide already here an informal “prototype” of our theorems on purely
discrete spectrum; for the exact statements, we refer to Theorems 3.1, 3.3, 3.5, and 3.6.

Theorem A. If .D; �/ is an S -adic version of a .d�1/-dimensional continued fraction
algorithm satisfying the Pisot condition, then, under mild conditions that are easy to
check, the S -adic dynamical system .X� ; †/ has purely discrete spectrum for �-almost
every � 2D. Moreover,X� is a bounded natural coding of an explicitly given translation
on Td�1.

The next result, which can be considered as a partial converse of Theorem A, is an
informal statement of Theorem 3.8, which shows that S -adic Rauzy fractals are essentially
the only candidates of bounded remainder sets for S -adic dynamical systems.

Theorem B. Assume that the S -adic dynamical system .X;†/ is the natural coding of a
minimal translation Rt on Td�1 with respect to a partition ¹F1; : : : ;Fd º of a bounded
fundamental domain of Td�1. Then the sets F1; : : : ; Fd are affine images of S -adic
Rauzy fractals. Moreover, they are bounded remainder sets of Rt for letters .and, under
some properness condition, also for words/.

When we apply these theorems to concrete examples in Section 6, we will see that
they have several consequences. We want to mention two of these consequences already
here; see Corollaries 6.3 and 6.8.

Corollary C. Almost every rotation .with respect to Lebesgue measure/ of the 2-torus T2

has a natural coding by a subshift of three letters of complexity 2nC 1 that is balanced
for words. The associated bounded remainder sets for letters and words are the .bounded/
S -adic Rauzy fractals corresponding to the Cassaigne–Selmer algorithm.

Corollary D. Almost every rotation .with respect to Lebesgue measure/ of the 3-torus T3

has a natural coding by a subshift of four letters that is balanced for words. The associated
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bounded remainder sets for letters and words are the (bounded) S -adic Rauzy fractals
corresponding to the Brun algorithm.

As applications for our results, we want to mention the recent paper [56], where our
present results are used in the framework of Schrödinger operators with quasi-periodic
multi-frequency potentials based on toral translations. In particular, they use our theory
to produce Cantor spectra of zero Lebesgue measure for these potentials. Moreover, we
are currently considering higher-dimensional versions of the three-distance theorem in
[10] where the shapes involved are generated by symbolic and geometric versions of
continued fraction algorithms (related again to S -adic Rauzy fractals). Note that there
have been recently several major advances on higher-dimensional distance theorems, such
as [33, 76–78]. We also mention that sequences with good balance properties are used in
operations research, for optimal routing and scheduling (see e.g. [6, 40, 41]).

More generally, we would like to deduce global discrepancy estimates for multidimen-
sional Kronecker sequences from the local study of bounded remainder sets and thanks to
the symbolic codings considered here. This is in the spirit of the one-dimensional results
obtained in [2]. In [11], we also consider Markov partitions for nonstationary hyperbolic
toral automorphisms (as defined in [13]) related to continued fraction algorithms. We
thereby develop symbolic models as nonstationary subshifts of finite type and Markov
partitions for sequences of toral automorphisms. The pieces of the corresponding Markov
partitions are fractal sets (and more precisely S -adic Rauzy fractals) defined by associ-
ating substitutions to (incidence) matrices, or in terms of Bratteli diagrams, obtained by
constructing suspensions via two-sided Markov compacta [50].

In the present paper, we are dealing exclusively with results that hold for almost all
parameters (with respect to a given measure). However, similarly to the examples on
the Arnoux–Rauzy algorithm in [37, Theorem 3.8 and Corollary 3.9], it is possible to
produce concrete families of S -adic dynamical systems having purely discrete spectrum
(characterized e.g. by properties of their partial quotients or by recurrence properties)
for other continued fraction algorithms as well. According to [37, Theorem 3.1], their
study involves the investigation of combinatorial properties of the underlying sequences of
substitutions. Other explicit examples are provided by S -adic systems related to a constant
sequence given by the repetition of a single Pisot substitution. Such a constant sequence
leads to a substitutive dynamical system, and in this case there exist many algorithms for
checking purely discrete spectrum; see e.g. [36] or Section 6.1 below. Moreover, given
any Pisot matrix, we show how to construct Pisot substitutions giving rise to substitutive
dynamical systems with purely discrete spectrum for large enough powers of this Pisot
matrix; we refer to Section 5.2, and in particular, to Proposition 5.9.

Outline of the paper

After recalling basic notation and definitions in Section 2, Section 3 is devoted to the
precise statement of our main results on purely discrete spectrum including their con-
sequences on natural codings of translations and bounded remainder sets. The concepts
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needed in the proofs of our results are provided in Section 4. In particular, we recall the
required background on Rauzy fractals. These proofs are then given in Section 5. Sec-
tion 6 is devoted to the detailed discussion of some examples which provide codings of
a.e. translation on T2 and T3 that lead to bounded remainder sets of all scales.

2. Mise en scène

2.1. Multidimensional continued fraction algorithms

There are several formalisms for defining multidimensional continued fractions; see e.g.
[15, 42, 44, 83–85, 105]. In the present paper, a .d�1/-dimensional continued fraction
algorithm .�; T;A/ is defined on a set

� � ¹x 2 Œ0; 1�d W kxk1 D 1º

by a map
A W �! GL.d;Z/

satisfying
tA.x/�1x
ktA.x/�1xk1

2 � for all x 2 �, together with the associated transformation

T W �! �; x 7!
tA.x/�1x
ktA.x/�1xk1

: (2.1)

Here tM denotes the transpose of a matrix M . The map A is usually piecewise con-
stant, which entails that T is piecewise continuous. These algorithms are called linear
simplex-splitting in [84, Section 2], and their iteration produces convergent matrices used
for simultaneous Diophantine approximation. The matrices tA.x/ are called partial quo-
tient matrices. This class of algorithms contains prominent examples like the classical
algorithms of Brun [47–49], Jacobi–Perron [27,82,95,103], and Selmer [107], which are
discussed in Section 6. When we refer to these well-known continued fraction algorithms
we will often informally talk about the classical continued fraction algorithms.

In the present paper the transition from the linear homogeneous version of the
algorithm given by the piecewise linear map x 7! tA.x=kxk1/�1x to its projectivized ver-
sion (2.1) is performed by a normalization by the 1-norm. This choice allows working
with a symmetric version of the algorithm, as e.g. in [15].

A multidimensional continued fraction algorithm .�; T; A/ is called positive if A.x/
is a nonnegative matrix for all x 2 �, i.e., A.�/ is contained in

Md D ¹M 2 Nd�d
W jdetM j D 1º;

with N D ¹0;1;2; : : :º. It is additive if the set of matricesA.�/ is finite, and multiplicative
otherwise. Setting

A.n/.x/ D A.T n�1x/ � � �A.T x/A.x/;

we find that A is a linear cocycle for T , i.e., it fulfills the cocycle property A.mCn/.x/ D
A.m/.T nx/A.n/.x/; this is the reason for defining T by the transpose of A.
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The column vectors y.n/i , 1 � i � d , of the convergent matrices tA.n/.x/ produce d
sequences of rational convergents .y.n/i =ky.n/i k1/n2N that are supposed to converge to x.
More precisely,

� T converges weakly at x 2 � if limn!1 y.n/i =ky.n/i k1 D x for all i 2 ¹1; : : : ; dº;

� T converges strongly at x 2� if1 limn!1 ky.n/i � ky
.n/
i k1xk D 0 for all i 2 ¹1; : : : ; dº;

� T converges exponentially at x 2 � if there are positive constants �; ı 2 R such that
ky.n/i � ky

.n/
i k1 xk < �e�ın for all i 2 ¹1; : : : ; dº and all n 2 N.

An important role is played by the following condition, which is essentially equivalent to
almost everywhere exponential convergence of the algorithm.

Definition 2.1 (Pisot condition, cf. [31, 37]). Let .X; T; �/ be a dynamical system with
ergodic invariant probability measure �, and let C W X !Md be a log-integrable linear
cocycle for T ; here log-integrable means that

R
X

log max.1; kC.x/k/ d�.x/ <1. Then
the Lyapunov exponents #k.C / ofC exist and are given for k 2 ¹1; : : : ;dº by (^k denotes
the k-fold exterior product)

#1.C /C � � � C #k.C /

D lim
n!1

1

n
log k^k C.T n�1x/ � � �C.T x/C.x/k for �-almost all x 2 X:

We say that .X; T; C; �/ satisfies the Pisot condition if #1.C / > 0 > #2.C /.

We always assume that the continued fraction algorithm .�; T; A/ is endowed with
an ergodic T -invariant probability measure � such that the map A is �-measurable; here
GL.d;Z/ carries the discrete topology. Then the Pisot condition together with the Osele-
dets theorem (see e.g. [9, Theorem 3.4.1]) implies that there is a constant ı < 0 such that,
for �-almost all x 2 �, there is a hyperplane V of Rd with

lim
n!1

1

n
log kA.n/.x/vk � ı for all v 2 V:

According to Lagarias [84, Theorem 4.1] the Pisot condition is equivalent to a.e. expo-
nential convergence of .�;T;A/ under some natural conditions called (H1)–(H5) that are
introduced in [84, Section 4]. These conditions are true in many cases; see e.g. [38]. In
the present paper, we will only rely on the Pisot condition; the relation between the Pisot
condition and exponential convergence will not be used. Thus we do not go into details.

2.2. Substitutive and S -adic dynamical systems, shifts of directive sequences

Substitutions will be very important objects in our constructions. Let A D ¹1; : : : ; dº be
a finite ordered alphabet and let � W A� ! A� be an endomorphism of the free mon-
oid A� of words over A, which is equipped with the operation of concatenation. If � is

1We indicate which norm we use only if the choice of the norm is relevant. Here, k � k can be
any norm in Rd .



Continued fraction algorithms and translations 5005

nonerasing, i.e., if � does not map a nonempty word to the empty word, then we call �
a substitution over the alphabet A. A word w is a factor of a word v if there exist words
p; s such that v D pws. Moreover, if p is the empty word, then w is a prefix of v, which
will often be denoted by w � v; we write w � v when w � v and w ¤ v. On the space
AN of one-sided infinite sequences over A (equipped with the product topology of the
discrete topology on A), the notions of factor and prefix are defined in a similar way. With
the substitution � we associate the language

L� D ¹w 2 A� W w is a factor of �n.i/ for some i 2 A, n 2 Nº;

i.e., L� is the set of words that occur as subwords in iterations of � on a letter of A. Using
the language L� , the substitutive dynamical system .X� ; †/ is defined by

X� D ¹! 2 AN
W each factor of ! is contained in L�º;

with † being the shift map .!n/n2N 7! .!nC1/n2N ;2 X� is obviously †-invariant.
The abelianized counterpart of a substitution � is its incidence matrix

M� D .j�.j /ji /1�i;j�d ;

where jwji denotes the number of occurrences of a letter i 2 A in the word w 2 A�.
The abelianization of a word w 2 A� is `.w/ D t .jwj1; : : : ; jwjd /, so that `.�.w// D
M�`.w/.

Many properties of a substitution depend on its incidence matrix. Indeed, while M�

“forgets” the combinatorics of � , it encodes letter frequencies and convergence properties
of the sequences of X� . Unimodular Pisot substitutions, which are characterized in terms
of incidence matrices, have attracted particular interest: A unimodular Pisot substitution is
a substitution � whose incidence matrix M� has a characteristic polynomial which is the
minimal polynomial of a Pisot unit. Recall that a Pisot unit is an algebraic integer greater
than 1 whose norm equals ˙1 and whose Galois conjugates are all contained in the open
unit disk. For example, if � is unimodular Pisot, then we can infer that the elements of
X� are balanced in the sense defined in Section 4.1; see e.g. [3, Theorem 1]. Moreover, a
unimodular Pisot substitution � is primitive in the sense that its incidence matrix admits
a positive power. This implies that the associated symbolic dynamical system .X� ; †/ is
minimal (i.e.,X� has no nontrivial closed shift-invariant subset); see e.g. [96]. Throughout
this paper we will assume that the incidence matrix of a substitution � is unimodular, i.e.,
we consider the set of substitutions

�d D
®
� W � is a substitution over A D ¹1; : : : ; dº; M� 2Md

¯
:

When we discuss sequences .�n/n2N of unimodular substitutions later, considering
the linear cocycle .�n/n2N 7!

tM�0
will enable us to study the convergence behavior

of .�n/n2N . Here the Pisot condition (see Definition 2.1), which is also a condition on
incidence matrices in this setting, will be of particular importance for us.

2We denote by† the shift map on any space of sequences; this should not cause any confusion.
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Substitutive dynamical systems (and related tiling flows) have been studied extens-
ively in the literature with special emphasis on unimodular Pisot substitutions; see for
instance [22, 51, 66, 96]. The main conjecture in this context, the Pisot substitution con-
jecture, claims that, for each unimodular Pisot substitution � , the substitutive dynamical
system .X� ; †/ is measurably conjugate to a minimal translation on the torus Td�1,
and hence has purely discrete spectrum. Although there are many partial results (see e.g.
[4, 23, 24, 79, 90]), this conjecture is still open. However, given a single unimodular Pisot
substitution � , there are many algorithms that can be used to verify that .X� ; †/ has
purely discrete spectrum; see [5,36,90,109]. Thus, for each single unimodular Pisot sub-
stitution � , this property is easy to check, which is important for us.

To be more precise, in the present paper, unimodular Pisot substitutions are of import-
ance because of their relation to multidimensional continued fraction algorithms that
satisfy the Pisot condition. Indeed, we show that wide classes of symbolic dynamical sys-
tems of Pisot type are measurably conjugate to minimal translations on the torus, provided
that the same is true for a particular Pisot unimodular substitutive element of the class;
see Theorem 3.5.

The concept of S -adic dynamical system constitutes a generalization of substitutive
dynamical systems; see for instance [11,16,31,37,113], where S -adic dynamical systems
are studied in a similar context. An S -adic dynamical system is defined in terms of a
sequence � D .�n/n2N of substitutions over a given alphabet A in a way analogous to
the definition of a substitutive dynamical system. In particular, let

L� D ¹w 2 A� W w is a factor of �Œ0;n/.i/ for some i 2 A, n 2 Nº

be the language associated with � , with

�Œk;n/ D �k ı �kC1 ı � � � ı �n�1 .0 � k � n/:

Then the S -adic dynamical system .X� ; †/ is defined by setting

X� D ¹! 2 AN
W each factor of ! is contained in L� º:

The sequence � is called a directive sequence of .X� ; †/. Note that the S -adic dynam-
ical system of a periodic directive sequence .�0; : : : ; �n�1/1 is equal to the substitutive
dynamical system .X�Œ0;n/

; †/.
We say that a directive sequence � has purely discrete spectrum if the system

.X� ; †/ is uniquely ergodic (i.e., it has a unique shift-invariant measure �), minimal,
and has purely discrete measure-theoretic spectrum (i.e., the measurable eigenfunctions
of the Koopman operator UT W L2.X� ; †; �/ ! L2.X� ; †; �/, f 7! f ı †, span
L2.X� ; †; �//.

There is a tight link between S -adic dynamical systems and continued fraction
algorithms. For the classical continued fraction algorithm, this is worked out in detail in
[12, 13]; for multidimensional continued fractions algorithms, see for instance [37, 113].
Indeed, for each given vector, a continued fraction algorithm creates a sequence of partial
quotient matrices. If these matrices are nonnegative and integral (i.e., if the algorithm is
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positive), they can be regarded as incidence matrices of a directive sequence of substitu-
tions of an S -adic dynamical system. In fact, a continued fraction algorithm produces a
whole shift of sequences of matrices, depending on the vector that has to be approximated.
The matrices are taken from a (finite or infinite) set M depending on the algorithm. While
for some algorithms, all sequences in MN occur as sequences of partial quotient matrices
(as is the case for instance for the Brun and Selmer algorithms), other algorithms (like the
Jacobi–Perron algorithm) impose some restrictions on these admissible sequences, which
are usually given by a finite type condition. As a further illustration, in the formalization
of multidimensional continued fraction algorithms as Rauzy induction type algorithms
developed in [57, 68], inspired by interval exchanges, finite graphs allow one to formal-
ize admissibility conditions. Here, we do not need to restrict ourselves to such finite type
admissibility conditions and we work with shift-invariant sets of directive sequences as
formalized below. We will come back to the notion of admissibility in Section 2.5.

We assume throughout the paper that the space �N
d

of sequences over the substitu-
tions �d carries the product topology of the discrete topology on � . Let D � �N

d
be a

shift-invariant set of directive sequences (which is not to be confused with the S -adic
shift .X� ; †/ of a single directive sequence � 2 D); note that we do not require D to be
closed. We define the linear cocycle Z over .D;†/ by

Z W D !Md ; .�n/n2N 7!
tM�0
I

recall thatM� is the incidence matrix of � . Analogously to the linear cocycleA, we define

Z.n/.� / D Z.†n�1� / � � �Z.†� /Z.� /; (2.2)

so that Z.n/.� / D tM�n�1
� � � tM�1

tM�0
D tM�Œ0;n/

. As mentioned before, this cocycle
will be important in the study of convergence properties of the S -adic dynamical system
.X� ; †/. Indeed, under mild conditions we have (see Section 4.1)\

n2N

M�0
M�1
� � �M�n�1

RdC D RCu (2.3)

for some vector u 2 RdC, which is called a generalized right eigenvector of � (or of
.M�n

/n2N) and can be seen as the generalization of the Perron–Frobenius eigenvector
of a primitive matrix. Moreover, we wish to carry over the property of a substitution
being Pisot in the substitutive case to this more general setting. This will be done by
imposing the Pisot condition in Definition 2.1 on the Lyapunov exponents of the cocycle
.D; †; Z; �/ for a convenient †-invariant Borel measure �. Thus we do not consider a
single sequence � but the behavior of �-almost all sequences in D.

Finally, recall that in general a shift (or equivalently, a symbolic dynamical system)
is a closed and shift-invariant set Y of sequences ! 2 AN over some alphabet A. The
language L of Y is the set of all factors of the sequences in Y . The factor complexity of L
(or of Y ) is given by

pL W N ! N; n 7! #¹v 2 L W v has length nº: (2.4)



V. Berthé, W. Steiner, J. M. Thuswaldner 5008

2.3. S -adic shifts given by continued fraction algorithms

Our goal is to set up symbolic realizations of positive continued fraction algorithms, which
in turn will provide symbolic models of toral translations, as described in Section 2.4
below. To this end, for a given multidimensional continued fraction algorithm .�; T; A/,
we associate with each x2� a sequence � D .�n/n2N 2 �N

d
of substitutions with general-

ized right eigenvector x. In particular, given x 2�, we regard the partial quotient matrices
tA.T nx/ as incidence matrices of substitutions, i.e., for each n 2 N we choose �n with
incidence matrix M�n

D tA.T nx/. This obviously implies that M�Œ0;n/
D tA.n/.x/.

Definition 2.2 (S -adic realization). We call a map ' W �! �d a substitution selection
for a positive .d�1/-dimensional continued fraction algorithm .�; T;A/ if the incidence
matrix of '.x/ is equal to tA.x/ for all x 2 �. The corresponding substitutive realization
of .�; T;A/ is the map

' W �! �N
d ; x 7! .'.T nx//n2N ;

together with the shift .'.�/; †/. For any x 2 �, the sequence '.x/ is called an S -adic
expansion of x, and .X'.x/; †/ is called the S -adic dynamical system of x with respect to
.�; T;A; '/.

If '.x/D '.y/ for all x;y2�withA.x/DA.y/, then ' is called a faithful substitution
selection and ' is a faithful substitutive realization.

Note that the diagram

� �

'.�/ '.�/

T

' '

†

(2.5)

commutes. If T converges weakly at x for �-almost all x 2 � (with respect to a measure
� having the properties determined in Section 2.1), then the dynamical system .�; T; �/

is measure-theoretically isomorphic to its substitutive realization, which we write as

.�; T; �/
'
Š .'.�/;†; � ı '�1/: (2.6)

The following definition will play a crucial role. A Pisot matrix is an integer matrix
with characteristic polynomial equal to the minimal polynomial of a Pisot number, and a
Pisot substitution is a substitution whose incidence matrix is a Pisot matrix.3

Definition 2.3 (Pisot sequence and point). A sequence .Mn/ 2MN
d

[.�n/ 2 �N
d

] is called
a periodic Pisot sequence if there is a k � 1 such that the sequence has period k and
M0M1 � � �Mk�1 is a Pisot matrix [�0 ı �1 ı � � � ı �k�1 is a Pisot substitution].

For a multidimensional continued fraction algorithm .�; T;A; �/, we say that x0 2 �
is a periodic Pisot point if there is a k � 1 such that T k.x0/ D x0 and A.k/.x0/ is a Pisot
matrix.

3We stress that in this paper we mainly work with unimodular Pisot substitutions and matrices.
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We also need to recall the notion of properness. A substitution � over A is left Œright�
proper if there exists j 2 A such that �.i/ starts [ends] with j for all i 2 A. A sequence
� D .�n/ of substitutions is left Œright� proper if for each k 2 N there exists n > k such
that �Œk;n/ is left [right] proper. It is proper if it is both left and right proper.4 Proper-
ness is a natural assumption introduced in [64] in order to relate Bratteli–Vershik systems
associated with stationary, properly ordered Bratteli diagrams with substitutive dynamical
systems. In the present paper, we will use [30, Corollary 5.5] which states that if a primit-
ive unimodular proper S -adic shift .X� ;†/ is balanced for letters, then it is also balanced
for words (see Sections 4.1 and 4.4 for definitions). Telescoping a directive sequence .�n/
means the following (this is also called blocking): we consider a directive sequence of
the form .�Œkn;knC1// for some strictly increasing sequence .kn/. Directive sequences are
not assumed to take finitely many values in [30], hence, up to telescoping, we can use
[30, Corollary 5.5] with the present definition of properness.

2.4. Natural codings, bounded remainder sets, and Rauzy fractals

In this section, we introduce some terminology related to symbolic codings of toral trans-
lations with respect to finite partitions; see [58] for more details and also [7, Section III].
For t 2 Rd , we consider the translation

Rt W T
d
! Td ; x 7! xC t .mod Zd /;

on Td D Rd=Zd . We assume that t D .t1; : : : ; td / is totally irrational in the sense that
1; t1; : : : ; td are rationally independent. This implies that Rt is minimal and uniquely
ergodic.

We want to provide symbolic codings of Rt with respect to a given finite partition.
There are many possible codings, and the simplest partitions, using polytopes for example,
do not give the best results in terms of multiscale bounded remainder sets. We rather
consider partitions of a fundamental domain of Td which are chosen in such a way that
on each atom the map Rt is translation by a vector. This induces an exchange of domains
on this fundamental domain and leads to the notion of natural partition and natural coding,
which we describe now.

Definition 2.4 (Natural partition). A measurable fundamental domain of Td is a set
F �Rd with Lebesgue measure 1 that satisfies F CZd DRd . A collection ¹F1; : : : ;Fhº
is said to be a natural partition5 of F with respect to Rt if

�
Sh
iD1 Fi D F ;

� the (Lebesgue) measure of Fi \ Fj is zero for all i ¤ j , 1 � i; j � h;

4We mention that, in previous papers, a sequence .�n/ of substitutions is called proper if each
substitution �n is proper; see for instance [30, 63]. For our purposes, the weaker definition stated
before is sufficient, i.e., for each k 2N there exists n > k such that �Œk;n/ is proper. Via telescoping,
the definition used in the present paper amounts to the definition which requires each substitution
�n to be proper.

5This is a partition up to zero measure sets.
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� each set Fi , 1 � i � h, is the closure of its interior and has boundary of measure zero;

� there exist vectors t1; : : : ; th in Rd such that ti C Fi � F with ti � t .mod Zd /,
1 � i � h.

A natural partition is called bounded if the set F is bounded.

A natural partition ¹F1; : : : ;Fhº of a measurable fundamental domain F of Td allows
us to define a.e. on F a map QRt W F ! F as an exchange of domains (which depends on
the partition) by QRt.x/D xC ti whenever x2 VFi . The map QRt is defined on F n

Sh
iD1 @Fi ,

hence it is defined almost everywhere. The dynamical system .F ; QRt; �jF /, where
� denotes the Lebesgue measure, is measurably isomorphic to .Td ; Rt/ (endowed with
the Haar measure). For a.e. x 2 F , one has QRt.x/ � Rt.x/ .mod Zd /. The collection
¹F1 C t1; : : : ;Fh C thº also forms a measurable natural partition of F , hence the ter-
minology exchange of domains; see Figure 3 below for an illustration. The language
associated with the partition ¹F1; : : : ;Fhº is the set of words i0 � � � in 2 ¹1; : : : ; hº� such
that

Tn
kD0
QR�kt
VFik ¤ ;.

Definition 2.5 (Natural coding). A shift .X; †/ is a natural coding of .Td ; Rt/ if its
language is the language of a natural partition ¹F1; : : : ;Fhº and the set\

n2N

n\
kD0

QR�kt
VFik

is reduced to one point for any .in/n2N 2 X , where QRt stands for the associated exchange
of domains.6

A sequence .in/n2N 2 ¹1; : : : ; hº
N is said to be a natural coding of .Td ; Rt/ with

respect to the natural partition ¹F1; : : : ;Fhº if there exists x 2 F such that .in/n2N codes
the orbit of x under the action of QRt, i.e., QRnt .x/ D xC

Pn�1
kD0 tik 2 Fin for all n 2 N;

note that Rnt .x/ � QRnt .x/ .mod Zd /.

If .X; †/ is a natural coding of .Td ; Rt/ with respect to a natural partition
¹F1; : : : ;Fhº, whose elements F1; : : : ;Fh are bounded, we call .X;†/ a bounded natural
coding. The shift .X;†/ is minimal, uniquely ergodic, and has purely discrete spectrum
according to Lemma 5.12.

We give an example for the concepts defined above. Consider the translation R˛
on T1 with ˛ 2 R nQ. The partition ¹F1;F2º of F D Œ0; 1/ given by F1 D Œ0; 1�˛/ and
F2 D Œ1�˛;1/ is a bounded natural partition (which corresponds to a Sturmian dynamical
system [93]) because R˛.x/ D x C ˛ for x 2 F1 and R˛.x/ D x C ˛ � 1 for x 2 F2.
The bounded natural coding of a point x 2 T1 is the (Sturmian) sequence .in/n2N given
by Rn˛.x/ 2 Fin , n 2 N. On the contrary, the partition of Œ0; 1/ by the intervals Œ0; 1=2/
and Œ1=2; 1/ is not a natural partition for R˛ . Indeed, since there are no integers k1; k2
such that both Œ˛C k1; ˛C k1 C 1=2/ � Œ0; 1/ and Œ˛C k2 C 1=2; ˛C k2 C 1/ � Œ0; 1/,
the fourth bullet point in Definition 2.4 is not fulfilled.

6This intersection on F is meaningful because ¹F1; : : : ;Fhº is a natural partition of F ; see the
fourth bullet point of Definition 2.4.
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Definition 2.6 (Bounded remainder set). A bounded remainder set of a dynamical system
.X; T;�/ with invariant probability measure � is a measurable set Y � X such that there
exists C > 0 with the property

j#¹0 � n < N W T n.x/ 2 Y º �N�.Y /j � C for all N 2 N and a.e. x 2 X:

Bounded natural codings and bounded remainder sets are closely related; see for
instance [65,98] and Theorem 3.8 below. We will define bounded natural partitions using
Rauzy fractals. To define Rauzy fractals, we denote by

�u W R
d
! 1? the projection along u on 1?; (2.7)

where 1? is the hyperplane orthogonal to 1 D .1; : : : ; 1/.

Definition 2.7 (Rauzy fractal and subtile). Let .X� ; †/ be an S -adic dynamical system
with � 2 �N

d
having the generalized right eigenvector u. The Rauzy fractal associated

with � D .�n/n2N is defined as

R� D ¹�u `.p/ W p � �Œ0;n/.j / for infinitely many n 2 N, j 2 Aº;

and, for each word w 2 A�, a subtile of R� is defined by

R� .w/ D ¹�u `.p/ W pw � �Œ0;n/.j / for infinitely many n 2 N, j 2 Aº: (2.8)

We clearly have
R� D

[
w2An

R� .w/ .n 2 N/;

and in particular R� D
S
i2A R� .i/. In Figure 2, we illustrate the definition of the

Rauzy fractal for the periodic directive sequence � D .
1; 
2/
1, with 
1; 
2 being the

Cassaigne–Selmer substitutions defined in (6.1) below. Rauzy fractals associated with

Fig. 2. Illustration of the definition of the Rauzy fractal R� corresponding to the periodic directive
sequence � D .
1; 
2/1, where 
1; 
2 are the Cassaigne–Selmer substitutions defined in (6.1). The
abelianizations `.p/ of the prefixes of .
1 ı 
2/n.1/ define a broken line and are projected along u
to 1? in order to define the Rauzy fractal R� , where u is a generalized right eigenvector of � . The
subtiles R� .1/, R� .2/, and R� .3/ are indicated by different shades of grey.
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periodic sequences � (and therefore related to substitutive dynamical systems) go back to
[97] and have been studied extensively; see for instance [14, 35, 36, 52, 66, 80, 108, 113].
Our definition of R� is equivalent to the one in [37, Section 2.9], which uses limit
sequences of � , i.e., infinite sequences that are images of �Œ0;n/ for all n 2 N.

For convenience, we define a further “projection” that will provide translations
on Td�1 in the main results given in Section 3. We set

� 0 W Rd ! Rd�1; .x1; : : : ; xd / 7! .x1; : : : ; xd�1/; (2.9)

i.e., we omit the last coordinate of a vector. (In doing so, we make an arbitrary choice;
it would also be possible to omit any other coordinate.) Sometimes, we will just write x0

instead of � 0.x/. Similarly, for the subtiles embedded in Rd�1 via � 0, we will write

R0� .w/ D �
0.R� .w// .w 2 A�/: (2.10)

Figure 3 illustrates how subtiles of the projection of a Rauzy fractal R� give rise to a
natural partition and visualizes the domain exchange QRt. In this figure, we again use the
Rauzy fractal for the periodic directive sequence � D .
1; 
2/1, with 
1; 
2 as in (6.1)
below.

Fig. 3. Let R� D
S
i2A R� .i/ be the Rauzy fractal associated with the directive sequence

� D .
1; 
2/
1; see (6.1) for the definition of the Cassaigne–Selmer substitutions 
1 and 
2.

The negative projection �R0� of this Rauzy fractal is a measurable fundamental domain of T2

(i.e., its translates by vectors in Z2 tile R2) admitting the natural partition ¹F1; F2; F3º D

¹�R0� .1/;�R0� .2/;�R0� .3/º with respect to Rt, where t D .1=ˇ3; 1=ˇ4/ with ˇ3 D ˇ C 1. The
exchange of domains QRt is defined by QRt.x/ D xC ti on Fi with t1 D t � .1; 0/, t2 D t � .0; 1/,
t3 D t.

2.5. Cylinders and positive range

To state our theorems, we need a few more definitions on partitions associated with con-
tinued fraction algorithms.
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Definition 2.8 (Cylinder and follower set, positive range). Let .D; †; �/ be a dynam-
ical system with D � �N

d
and a shift invariant Borel measure �. The cylinder set of

.!0; : : : ; !n�1/ 2 �n
d

is defined as

Œ!0; : : : ; !n�1� D ¹.�k/k2N 2 D W .�0; : : : ; �n�1/ D .!0; : : : ; !n�1/º;

and †nŒ!0; : : : ; !n�1� is the follower set of .!0; : : : ; !n�1/. Moreover, we say that
.!n/n2N has positive range in .D;†; �/ if

inf
n2N

�.†nŒ!0; : : : ; !n�1�/ > 0:

Similarly, the cylinder sets of a multidimensional continued fraction algorithm
.�; T;A; �/ are given by

�.n/.x/D¹y2� WA.y/DA.x/;A.T y/DA.T x/; : : : ;A.T n�1y/DA.T n�1x/º; (2.11)

with �.0/.x/ D �; for convenience, we set �.x/ D �.1/.x/. In this context, the follower
sets are the sets of the form T n�.n/.x/. Then x 2 � is said to have positive range in
.�; T;A; �/ if

inf
n2N

�.T n�.n/.x// > 0:

Cylinder sets of .D; †; �/ are measurable because all cylinders are open sets in the
subspace topology on D. This is the reason why we assumed that � is a Borel measure.
We also recall that D is not necessarily closed. Note that measurability of the cylinder
sets of .�; T;A; �/ holds because A is measurable by assumption.

In all the classical algorithms we are aware of, almost every x 2 � has positive range,
and we even have the (global) finite range property [81] stating that the set of follower
sets

D D ¹T n�.n/.x/ W x 2 �; n 2 Nº

is finite, where sets differing only in a set of �-measure zero are identified. For instance,
although the Jacobi–Perron algorithm is multiplicative, D consists of only two elements;
see also Section 6.4. By the T -invariance of �, the finite range property obviously implies
positive range for a.e. x 2 � if we suppose that all cylinders satisfy �.�.n/.x// > 0; this
will be the case for the algorithms considered in Section 6.

If .�; T; A; �/ has the finite range property and
T
n2N �

.n/.x/ D ¹xº for almost all
x 2 �, i.e., the set of cylinders ¹�.x/ W x 2 �º is a generating partition, then ¹U \�.x/ W
U 2 D ; x 2 �º forms a (measurable countable) generating Markov partition of .�; T /;
see e.g. [119, Theorem 10.1]. Most of the classical continued fraction algorithms (like
Brun, Selmer, and Jacobi–Perron) are designed in such a way that this Markov partition
property holds.

We need the fact that any set B � � with �.B/ > 0 included in the follower set
T n�.n/.x/ leads to an intersection T �nB \�.n/.x/ with positive measure. To this end,
we always assume the stronger property that

�.E/ D 0 H) � ı T .E/ D 0 for all measurable sets E: (2.12)
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Although � ı T is usually not additive and therefore not a measure, we use the notation
� ı T � � because (2.12) is reminiscent of absolute continuity.

The notation � ı†� � has the analogous meaning in the context of a shift .D;†; �/.

3. Main results

We present two types of result: the first type is stated in the framework of multidimensional
continued fraction algorithms in Section 3.1, the second one is stated in terms of S -adic
dynamical systems and directive sequences in Section 3.2. For both frameworks, two
theorems are given. The first one requires the existence of a single substitutive dynamical
system with purely discrete spectrum which corresponds to a periodic sequence in the
set of S -adic sequences under consideration. The existence of this single system already
implies purely discrete spectrum for a whole shift of S -adic dynamical systems. It is stated
in Theorem 3.1 for multidimensional continued fraction algorithms and in Theorem 3.5 for
shifts of directive sequences. The second one yields unconditional purely discrete spectrum
results for accelerations and is contained in Theorem 3.3 for multidimensional continued
fraction algorithms and in Theorem 3.6 for shifts of directive sequences. All these results
are then made more explicit in terms of bounded remainder sets with Theorem 3.8.

3.1. Main results on multidimensional continued fraction algorithms

In this section, we provide our main results for multidimensional continued fraction
algorithms. We recall that we use the abbreviation x0 D � 0.x/ for the map � 0 defined
in (2.9). In particular, following (2.10), we wite R0� .i/ D �

0.R� .i//. The notation� is
defined at the end of Section 2.5.

Theorem 3.1. Let .�; T; A; �/ be a positive .d�1/-dimensional continued fraction
algorithm satisfying the Pisot condition and � ı T � �. Let ' be a faithful substitutive
realization of .�; T;A; �/. Assume that there is a periodic Pisot point x0 2 � with posit-
ive range in .�;T;A; �/ such that '.x0/ has purely discrete spectrum. Then, for �-almost
all x 2 �, the S -adic dynamical system .X'.x/; †/ is a bounded natural coding of the
minimal translation by � 0.x/ on Td�1 with respect to the partition ¹�R0

'.x/.i/ W i 2 Aº;
in particular, its measure-theoretic spectrum is purely discrete.

It will follow from Theorem 3.8 that the sets�R0
'.x/.i/, i 2A, are bounded remainder

sets. If the directive sequence '.x/ is assumed to be (left) proper (as defined in Sec-
tion 2.3), Theorem 3.8 shows that we can even refine these bounded remainder sets from
letters to words. In particular, in this case the Rauzy fractals �R0

'.x/.w/, w 2 An, asso-
ciated with words of length n are bounded remainder sets for each n 2 N.

Remark 3.2. (i) We note that .X'.x0/; †/ is a substitutive dynamical system since
'.x0/ is a periodic sequence of substitutions. For such systems, some combinatorial
coincidence conditions (as for instance the ones used in [4, 25, 36, 80]) can be used to
establish purely discrete measure-theoretic spectrum; see Section 4.2 for precise state-
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ments. We could therefore replace the purely discrete spectrum condition in Theorem 3.1
by “'.x0/ ı '.T x0/ ı � � � ı '.T n�1x0/ satisfies the supercoincidence condition from [80,
Definition 4.2]”. However, since coincidence conditions require quite some notation, we
decided to formulate them later in this paper in order to make our main results easier to
read. The Pisot substitution conjecture implies that all Pisot substitutions satisfy the super-
coincidence condition. To get an impression of the techniques used in the substitutive case
for proving purely discrete spectrum, see also Section 6, where we use the balanced pair
algorithm to prove purely discrete spectrum of a substitutive dynamical system.

(ii) In Theorem 3.1, we can omit the requirement that ' is faithful if we replaceA by '
in the definition of the cylinder sets �.n/.x/ in (2.11), if we assume that ' is measurable,
and if we assume positive range with respect to this new definition of cylinder.

Since the Pisot substitution conjecture is not proved, we cannot omit the requirement
of a periodic Pisot point with purely discrete spectrum in Theorem 3.1, and we do not
even know whether there always exists a substitutive realization ' that admits such a
point. However, we are able to establish the following unconditional theorem that guar-
antees the existence of accelerations .�; T k/ for which there exists a faithful substitutive
realization ' with a periodic Pisot point x0 such that '.x0/ has purely discrete spectrum.

Theorem 3.3. Let .�; T; A; �/ be a positive .d�1/-dimensional continued fraction
algorithm satisfying the Pisot condition and � ı T � �, and assume that there exists
a periodic Pisot point with positive range. Then there exist a positive integer k and a
. faithful/ substitutive realization ' of .�; T k ; A; �/ such that for �-almost all x 2 �
the S -adic dynamical system .X'.x/; †/ is a bounded natural coding of the minimal
translation by � 0.x/ on Td�1 with respect to the partition ¹�R0

'.x/.i/ W i 2 Aº; in
particular, its measure-theoretic spectrum is purely discrete. Moreover, .�; T k ; �/

'
Š

.'.�/;†; � ı '�1/.

Remark 3.4. The set of translations in Theorems 3.1 and 3.3 does not cover Td�1 since
the translations are of the formRt with t 2 Œ0; 1�d�1 and ktk1 � 1. However,Rt is conjug-
ate to all translations Rs with s 2 GL.d�1;Z/ t, and ¹t 2 Œ0; 1�d�1 W ktk1 � 1º is mapped
by

.t1; : : : ; td�1/ 7! .t1; t1 C t2; : : : ; t1 C t2 C � � � C td�1/

to ¹t 2 Œ0; 1�d�1 W 0 � t1 � � � � � td�1 � 1º. Then, taking permutations of the coordinates
of the latter set gives the whole torus Td�1.

Verifying purely discrete spectrum for some concrete substitutive dynamical systems
will allow us to use Theorem 3.1 in Section 6 in order to prove a.e. purely discrete spec-
trum for many continued fraction algorithms like for instance the Jacobi–Perron, Brun,
Cassaigne–Selmer and Arnoux–Rauzy algorithms. Indeed, it is well known that these
algorithms have the finite range property, and the Pisot condition holds for all these
algorithms when d D 3. In the Brun case, the Pisot condition also holds for d D 4.
Applying Theorem 3.1 to these algorithms, according to Remark 3.4 we are able to realize
almost all translations in T2 and T3 via systems of the form .X'.x/;†/, x 2 �. Since the
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Cassaigne–Selmer algorithm (for d D 3) gives rise to languages L'.x/ of factor complex-
ity 2nC 1, we also show that there exist natural codings for almost all translations of T2

with factor complexity 2nC 1; see Corollary 6.3. Looking at [30, 37], we also see other
consequences for these algorithms and their associated shifts of directive sequences like
bounded remainder sets for letters and words, tiling properties of Rauzy fractals, and a
description of their dimension group. We will come back to these consequences in The-
orem 3.8, in Section 4.2, and in Section 6.

3.2. Main results on shifts of directive sequences

We now give variants of the results of the previous section in terms of directive sequences.

Theorem 3.5. Let D � �N
d

be a shift-invariant set of directive sequences equipped with
an ergodic †-invariant Borel probability measure � satisfying � ı †� �. Assume that
the linear cocycle .D;†;Z; �/ defined by Z..�n/n2N/ D

tM�0
satisfies the Pisot condi-

tion, and that there is a periodic Pisot sequence in D having positive range in .D;†; �/
and purely discrete spectrum. Then for �-almost all � 2 D the S -adic dynamical system
.X� ; †/ is a bounded natural coding of the minimal translation by � 0.u/ on Td�1 with
respect to the partition ¹�R0� .i/ W i 2 Aº. Here, u is the generalized right eigenvector
of � normalized by kuk1 D 1. In particular, the measure-theoretic spectrum of .X� ; †/
is purely discrete.

To get an analogue of Theorem 3.3 for directive sequences, we do not start with a shift-
invariant set of directive sequences but rather with its abelianization, i.e., a shift-invariant
set of sequences of matrices .D; †/ for which we would like to find a map s WMd ! �d
such that almost all � 2 s.D/ have purely discrete spectrum, where s..Mn/n2N/ D

.s.Mn//n2N . Again, we have to consider the accelerated shift-invariant set .D; †k/ for
a suitable power †k to gain such a result. The main issue is the construction of a sub-
stitution with purely discrete spectrum associated with a given unimodular Pisot matrix,
which is done in Proposition 5.9.

Theorem 3.6. Let D �MN
d

be a shift-invariant set of sequences of unimodular matrices
equipped with an ergodic †-invariant Borel probability measure � satisfying � ı†� �.
Assume that the linear cocycle .D; †;Z; �/ defined by Z..Mn/n2N/ D

tM0 satisfies the
Pisot condition, and that there is a periodic Pisot sequence in D having positive range in
.D; †; �/. Then there exists a positive integer k and a map  W D! �N

d
satisfying  ı

†k D † ı such that for �-almost all M 2D the S -adic dynamical system .X .M/; †/

is a bounded natural coding of the minimal translation by � 0.u/ on Td�1 with respect
to the partition ¹�R0

 .M/.i/ W i 2 Aº. Here, u is the generalized right eigenvector of M
normalized by kuk1 D 1. In particular, the measure-theoretic spectrum of .X .M/; †/ is
purely discrete.

Remark 3.7. Let M D .Mn/ and  .M/ D .�n/. According to (5.8), the map  in The-
orem 3.6 can be chosen in such a way that Mnk � � �M.nC1/k�1 is the incidence matrix
of �n. This choice is needed to derive Theorem 3.3 from Theorem 3.6.
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The main difference between the results in Section 3.1 and the ones in Section 3.2
is that in the latter case there can be several directive sequences in D with the same
generalized right eigenvector (normalized with respect to k � k1).

3.3. Main results on natural codings and bounded remainder sets

We now prove that natural codings with respect to bounded fundamental domains (see
Definition 2.5) provide bounded remainder sets, and that moreover Rauzy fractals can be
considered as canonical bounded remainder sets, up to some affine map. In the following
theorem, we need the fundamental domain F to be bounded and the partition of F to
have d atoms for a translation on Td�1. Recall that we set x0D � 0.x/ for the projection � 0

defined in (2.9) and that � denotes the Lebesgue measure.

Theorem 3.8. Assume that .X; †/ is the natural coding of a minimal translation Rt

on Td�1 with respect to a natural partition ¹F1; : : : ; Fd º of a bounded fundamental
domain F . Then the atoms F1; : : : ;Fd are bounded remainder sets ofRt. Their Lebesgue
measures are rationally independent.

If moreover .X; †/ is an S -adic dynamical system with X D X� for some � 2 �N
d

,
then

� u D .�.F1/; : : : ; �.Fd // is a generalized right eigenvector of � ,

� there is an affine map H W Rd ! Rd�1 such that Fi D H.R� .i// for 1 � i � d ,

� .X� ; †/ is a natural coding of Ru0 with respect to the natural partition ¹�R0� .i/ W

1 � i � dº.

Furthermore, if the directive sequence � is left proper, then for each word i0i1 � � � in 2L� ,
the “cylinder set” Fi0 \ R

�1
t Fi1 \ � � � \ R

�n
t Fin is also a bounded remainder set of Rt;

in particular, �R0� .i0i1 � � � in/ is a bounded remainder set of Ru0 .

The result also holds if one replaces left properness by right properness.
As mentioned in the introduction, the study of bounded remainder sets started with

the work of W. M. Schmidt [101]. A vast literature is devoted to the subject; see e.g. [65,
72,86,98]. In the case of S -adic dynamical systems that are natural codings of a minimal
translation on a torus, Theorem 3.8 characterizes the bounded remainder sets for letters
as affine images of S -adic Rauzy fractals and can be considered as a partial converse
to Theorems 3.1, 3.3, 3.5 and 3.6. It shows that these bounded remainder sets “extend
to words” in the sense that they can be subdivided in a natural way to provide bounded
remainder sets for words as well. This yields a great variety of sets of bounded local
discrepancy for Kronecker rotations on the torus. In [86], it is shown that only “trivial”
axis-parallel boxes can be bounded remainder sets for Kronecker sequences and toral
translations. The bounded remainder sets constructed in [72] are based on polytopes. In
all these cases, the bounded remainder sets do not “extend to words” like ours.

We also note that such natural codings by S -adic dynamical systems provide (non-
stationary) Markov partitions in the sense of [13] for automorphisms of the torus. We will
pursue this in the forthcoming paper [11].
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Theorem 3.8 leads us to state the following conjecture stating, roughly speaking, that
a bounded remainder set that “extends to words” must have fractal boundary.

Conjecture 3.9. Let ¹F1; : : : ; Fhº be a natural partition of a minimal translation Rt

on Td�1, d � 3, such that all sets Fi0 \R
�1
t Fi1 \ � � � \R

�n
t Fin , i0i1 � � � in 2 ¹1; : : : ; hº�,

are bounded remainder sets for Rt. Then Fi cannot have piecewise smooth boundaries
.1 � i � h/.

One argument supporting this conjecture is the above-mentioned relation between
natural codings and Markov partitions for automorphisms of the torus, and the fact that
Markov partitions cannot have smooth boundaries for hyperbolic automorphisms of the
torus in dimension d � 3; see [39].

After some preparations in Section 4, the proofs of all main results will be contained
in Section 5. The proof of the S -adic results in Theorems 3.5 and 3.6 will be given in
Sections 5.1 and 5.2, respectively. The results on multidimensional continued fractions,
namely Theorems 3.1 and 3.3, will then be deduced from the corresponding S -adic results
in Section 5.3. Finally, Theorem 3.8 is proved in Section 5.4.

4. Preparations for the proofs of the main theorems

Throughout the proofs of our main results, we will need the notation, definitions, and
results that are recalled in this section.

4.1. Properties of sequences of substitutions

In our main theorems, we make certain assumptions, most notably, the Pisot condition
from Definition 2.1. We will now discuss combinatorial properties that will be satisfied by
almost all directive sequences � under these assumptions. We need these combinatorial
properties because they occur in some results from [37] that will be important for us.
Accordingly, most of the definitions stated in the present subsection are taken from [37,
Section 2].

Let � D .�n/2�N
d

be a sequence of substitutions over a given alphabet AD¹1; : : : ;dº.
We say that � is primitive if for each k 2 N there exists n > k such that M�Œk;n/

is a
positive matrix. If each factor .�0; : : : ; �m/, m 2 N, occurs infinitely often in � , then
� is recurrent. As observed in [71, pp. 91–95], primitivity and recurrence of � allow
for an analog of the Perron–Frobenius theorem for the associated sequence .M�n

/ of
incidence matrices. In particular, if � is primitive and recurrent, then the generalized right
eigenvector u defined in (2.3) exists.

A sequence � of substitutions is said to be unimodular if the incidence matrices of the
substitutions are unimodular.

Another important property is algebraic irreducibility. A sequence � D .�n/ of substi-
tutions over the alphabet A is called algebraically irreducible if for any k 2 N the matrix
M�Œk;n/

has irreducible characteristic polynomial provided that n 2N is large enough. For
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S -adic dynamical systems that arise from multidimensional continued fraction algorithms
which satisfy primitivity and the Pisot condition, we can (almost everywhere) prove a res-
ult that is even stronger than algebraic irreducibility; see Lemma 5.1.

Finally, we require the language given by a sequence of substitutions to be balanced.
More precisely, a language L over a finite alphabet A D ¹1; : : : ; dº is said to be C -
balanced if for any two words w;w0 2 L with jwj D jw0j we have

ˇ̌
jwji � jw

0ji

ˇ̌
� C for

each i 2 A. It is called balanced if it is C -balanced for some C . We define

BC D ¹� 2 �N
d W L� is C -balancedº: (4.1)

The following lemma relates balancedness to boundedness of Rauzy fractals.

Lemma 4.1 (cf. [37, Lemma 4.1]). Let � be a primitive sequence of substitutions with a
generalized right eigenvector andC 2N. Then � 2BC implies that R� � Œ�C;C �

d \ 1?.

We mention that unbounded Rauzy fractals were recently studied in [8] for the
Arnoux–Rauzy S -adic dynamical systems discussed in Section 6.3.

We will need results from [37] which require a set of technical conditions that goes
under the name Property PRICE, which is an abbreviation for Primitivity, Recurrence,
algebraic Irreducibility, C -balancedness, and recurrent left Eigenvector.

Definition 4.2 (Property PRICE). A directive sequence � D .�n/ 2 �N
d

has Property
PRICE if the following conditions hold for some strictly increasing sequences .nk/k2N

and .`k/k2N and a vector v 2 Rd�0 n ¹0º:
(P) There exists h 2 N and a positive matrix M 0 such that M�Œ`k�h;`k /

D M 0 for all
k 2 N.

(R) We have .�nk
; : : : ; �nkC`k�1/ D .�0; : : : ; �`k�1/, i.e., †nk� 2 Œ�0; �1; : : : ; �`k�1�

for all k 2 N.

(I) The directive sequence � is algebraically irreducible.

(C) There exists C > 0 such that the language of†nkC`k� is C -balanced, i.e.,†nkC`k�

2 BC for all k 2 N.

(E) We have limk!1
tM�Œ0;nk /

v=ktM�Œ0;nk /
vk1 D v.

We note that if � satisfies Property PRICE, then so does †� by [37, Lemma 5.10].

Remark 4.3. Since a unimodular Pisot substitution � is primitive by [52, Proposition 1.3]
and balanced by [1, Theorem 13 (1)], the constant sequence .�/ satisfies Property PRICE
with v being the dominant left eigenvector of M� .

4.2. Tilings by Rauzy fractals and coincidence conditions

As mentioned before, the Rauzy fractals defined in Section 2.4 play a crucial role in
proving that the S -adic dynamical system .X� ; †/ has purely discrete spectrum. The
importance of Rauzy fractals is due to the fact that one can “see” on them the toral trans-
lation to which we want to conjugate (in the measure-theoretic sense) an S -adic dynamical
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system .X� ; †/; this is worked out in [37, Section 8]. In the substitutive case, the proof
of this conjugacy strongly relies on a certain self-affinity property of the subtiles R� .i/,
i 2A; see e.g. [110]. In the S -adic case, these subtiles are no longer self-affine. However,
they still satisfy a certain set equation that allows us to express them as unions of shrunk
copies of subtiles R†n� .i/ corresponding to a shift of the original directive sequence � .
More precisely, we have the following slight variant of [37, Proposition 5.6].

Lemma 4.4. If � admits a generalized right eigenvector u then

R� .i/ D
[

p2A�; j2AWpi��Œ0;n/.j /

�u
�
`.p/CM�Œ0;n/

R†n� .j /
�
.i 2 A; n 2 N/: (4.2)

Because the notation (and also the statement) of this lemma differs from [37, Pro-
position 5.6], we provide a full proof for the convenience of the reader. Figures 1 and 4
illustrate Rauzy fractals that are subdivided into subtiles according to Lemma 4.4.

Proof. Let i 2 A, n 2 N. According to (2.8), R� .i/ is the closure of the set of points
of the form �u `.p

0/, where p0i is a prefix of �Œ0;k/.j 0/ for infinitely many k > n and
j 0 2 A. Since �Œ0;k/.j 0/ D �Œ0;n/ ı �Œn;k/.j

0/, we conclude that p0i � �Œ0;k/.j 0/ if and
only if p0 can be written as p0 D �Œ0;n/. Qp/p with Qpj � �Œn;k/.j 0/ and pi � �Œ0;n/.j / for
some Qp;p 2 A�, j 2 A. Thus `.p0/ D `.p/C `.�Œ0;n/. Qp// D `.p/CM�Œ0;n/

`. Qp/, and
hence R� .i/ is the union of the sets�

�u `.p/C ¹�uM�Œ0;n/
`. Qp/ W Qpj � �Œn;k/.j

0/ for infinitely many k > n, j 0 2 Aº
�

over p 2 A� and j 2 A with pi � �Œ0;n/.j /. It then follows from (2.3) that u.n/ D
M�1�Œ0;n/

u is a generalized right eigenvector of †n� . Since �u.n/.x/ D x for all x 2 1? and
�u.n/u.n/ D 0 D �uM�Œ0;n/

u.n/ we have �uM�Œ0;n/
D �uM�Œ0;n/

�u.n/ , thus

¹�uM�Œ0;n/
`. Qp/ W Qpj � �Œn;k/.j

0/ for infinitely many k > n, j 0 2 Aº

D �uM�Œ0;n/
¹�u.n/ `. Qp/ W Qpj � �Œn;k/.j

0/ for infinitely many k > n, j 0 2 Aº

D �uM�Œ0;n/
R†n� .j /:

An S -adic Rauzy fractal R� thus has two different kinds of natural subsets:
the subtiles R� .w/ defined in (2.8) and the (level n) subdivision tiles �u.`.p/ C

M�Œ0;n/
R†n� .j // occurring on the right hand side of (4.2) for some i 2A. In this section,

we will mostly use the subdivision tiles.
We will need the collection7

C� D ¹xCR� .i/ W x 2 Zd \ 1?; i 2 Aº

7Note that we cannot exclude a priori that different pairs .x; i/ give rise to the same set x C
R� .i/, i.e., that C� is a multiset and not a set. If C� forms a tiling, then this possibility is excluded.
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consisting of the translations of (the subtiles of) the Rauzy fractal R� by vectors in the
lattice Zd \ 1?. As shown e.g. in [37], the fact that C� forms a tiling of 1? implies
that .X� ; †/ has purely discrete spectrum. Here, a tiling of 1? is a set of tiles that cov-
ers 1? in such a way that the intersection of any two distinct tiles has .d�1/-dimensional
Lebesgue measure 0. Related results for the substitutive case are in [14, Theorem 2]
and [52, Theorem 3.8]; for the classical example that initiated the whole theory we refer
to [97].

It is proved in [37, Proposition 7.5] that, if Property PRICE holds, C� is a locally
finite multiple tiling of 1? by compact tiles (in the sense that a.e. point of 1? is contained
in exactly m elements of C� for some given m � 1). It is not a priori clear how to decide
for a given directive sequence � if this multiple tiling is actually a tiling. However, as
shown in [37, Section 7], the following coincidence conditions (whose meaning will be
explained in Remark 4.7) can be used to get checkable criteria for this tiling property.

Definition 4.5 (Geometric coincidence condition). A directive sequence � D .�n/n2N

satisfies the geometric coincidence condition if for each R > 0, there is k 2 N such that,
for all n � k, there exist zn 2 1? and in 2 A such that

¹y 2 Zd W kM�1�Œ0;n/
.y � zn/k � R; 0 � h1; yi < j�Œ0;n/.j /jº

� ¹`.p/ W p 2 A�; pin � �Œ0;n/.j /º for all j 2 A: (4.3)

(Recall that w � v means that w is a prefix of v.)

This geometric coincidence condition is a rephrasing of the more geometric vari-
ant defined in [37, Section 2.11]. In this geometric setting, the condition ensures suit-
able growth properties of certain patches of parallelotopes that are defined by the dual
E�1 .�Œ0;n// of the so-called one-dimensional geometric realization E1.�Œ0;n// of �Œ0;n/ for
growing n.8 Since we do not want to define discrete hyperplanes and dual substitutions
here, we use equivalent statements with usual substitutions and abelianizations of words.

It turns out that the following version of the geometric coincidence condition taken
from [37, Proposition 7.9 (iv)] is more useful for our purposes.

Definition 4.6 (Effective version of the geometric coincidence condition). A directive
sequence � D .�n/n2N satisfies the effective version of the geometric coincidence condi-
tion if there are n 2 N, z 2 1?, i 2 A, and C > 0 such that

†n� 2 BC ;
(4.4)

¹y 2 Zd W k�u.n/M�1�Œ0;n/
y � zk1 � C; 0 � h1; yi < j�Œ0;n/.j /jº

� ¹`.p/ W p 2 A�; pi � �Œ0;n/.j /º for all j 2 A

with u.n/ DM�1�Œ0;n/
u.

8The linear maps E1.�Œ0;n// and E�1 .�Œ0;n// are introduced in [14].
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If � is a substitution for which the constant sequence .�/n2N satisfies the geometric
coincidence condition, we say that � satisfies the geometric coincidence condition (and
similarly for the effective version).

Remark 4.7. We want to motivate the geometric coincidence conditions of Defini-
tions 4.5 and 4.6 and discuss how they imply that the multiple tiling C� is a tiling (subject
to Property PRICE; proofs will follow in Proposition 4.8). First note that these coincid-
ence conditions are about control points of tiles and, in order to understand their meaning,
it is useful to replace these control points by the associated tiles. For n 2 N, let Tn be the
collection of all n-th subdivision tiles (in the sense of (4.2)) of the tiles in C� . The geo-
metric coincidence condition (4.3) states that, given R > 0, for n large enough, there is a
subcollection Pn consisting of all tiles of Tn contained in a large ball (in terms of R and
M�Œ0;n/

) such that Pn �Qn, where Qn is the collection of n-th subdivision tiles of R� .in/

for some in 2 A (compare the range of the union in (4.2) to the right hand of side (4.3)).
Since it is known from [37, Proposition 7.3] that the elements of Qn are pairwise disjoint
in measure (in particular, Qn and thus Pn are sets), Tn is a multiple tiling that far enough
inside Pn covers without overlaps. (Here, we need that R is large enough to avoid that
M�1�Œ0;n/

Pn is covered again by tiles from M�1�Œ0;n/
.Tn n Pn/.) Thus Tn is a tiling. As the

tiles of C� are unions of tiles of Tn, also C� is a tiling.
The size of the patch Pn that we require in order to infer that C� is a tiling is

determined by the largest diameter of the subtiles in the n-th subdivision of R� .in/. This
diameter is in turn determined by the balance constant C of the language L†n� . This
observation leads to the quantified version of geometric coincidence in (4.4), which is
also illustrated in Figure 4.

The geometric coincidence condition can be seen as an S -adic analog of the geometric
coincidence condition (or super-coincidence condition) in [25, 36, 80], which provides a
tiling criterion in the substitutive case. This criterion is a coincidence type condition in the
same vein as the various coincidence conditions introduced in the usual Pisot framework;
see e.g. [5, 111]. The term “coincidence condition” goes back to Dekking [60] where it
meant that the letters of the images of all letters under a substitution (of constant length)
“coincide” at a certain position. The letter in in Definitions 4.5 and 4.6 plays the role of
this common coincidence letter. This condition was further developed and, in the sub-
stitutive case, it means that certain broken lines that can be associated with the multiple
tiling C� “coincide”, in the sense that they have at least one edge in common; see e.g.
[25, 80].

Results from [37] that are central for our proofs are contained in the following pro-
position.

Proposition 4.8. Let � 2 �N
d

be a directive sequence satisfying Property PRICE. Then
the following assertions are equivalent:

(i) The collection C� forms a tiling.

(ii) The collection C†n� forms a tiling for some n 2 N.
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(iii) The collection C†n� forms a tiling for all n 2 N.

(iv) The sequence � satisfies the geometric coincidence condition.

(v) The sequence � satisfies the effective version of the geometric coincidence condition.

Proof. This result is proved in [37] but, because our equivalent assertions somewhat differ
from the ones in [37, Proposition 7.9], we give some details here. For given w 2Rd�0 n ¹0º
and � 2 �N

d
, we define in [37, Section 2.10] a collection C� ;w similarly to C� . However,

the elements of C� ;w are Rauzy fractals that are projected to w?. (The detailed definition,
which requires some notation, is not relevant for us and we refrain from stating it.) These
collections are of particular importance when w is equal to the generalized left eigenvector
from Definition 4.2(E). Indeed, letting v and v.n/ be generalized left eigenvectors of � and
†n� , respectively, we can use results from [37] to gain that, for each n 2 N,9

C� forms a tiling of 1?

” C� ;v forms a tiling of v? [37, Proposition 7.5]

” C†n� ;v.n/ forms a tiling of .v.n//? [37, Lemma 7.2]

” C†n� forms a tiling of 1? [37, Proposition 7.5]:

Fig. 4. Illustration of the proof of Proposition 4.8 (v))(i). The large tiles are the tiles of C� , the
marked points are the translation points of their level n subdivision tiles (these tiles are drawn in
grey; up to three subdivision tiles can share the same translation point in this three-letter example).
Because †n� 2 BC , these level n subdivision tiles are bounded in terms of C ; here C D 2. More
precisely, the given point �uM�Œ0;n/

z can only be contained in level n subdivision tiles whose
translation points are contained in the (shaded) parallelepiped �uM�Œ0;n/

.zC Œ�C;C �3 \ 1?/. All
translation points inside the shaded parallelepiped belong to level n subdivision tiles of the same
tile of C� , namely R� .i/; this is the effective version of the geometric coincidence condition.
Therefore, �uM�Œ0;n/

z belongs only to level n subdivision tiles of a single tile of C� . Thus it is an
exclusive point of C� .

9Note the different notation in [37]: C� ;v D Cv and C†n� ;v.n/ D C
.n/
v .
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These equivalences prove that (i),(ii),(iii). The equivalences (i),(iv),(v) are treated
in [37, Proposition 7.9]. However, the proof of the implication (v))(i) in [37] is some-
what sketchy. Since this implication will be of particular importance for us, and in order
to further explain the (effective version of the) geometric coincidence condition, we give
a more detailed proof of it, which is illustrated in Figure 4.

Proof of the implication (v))(i). Let u be a generalized right eigenvector of � , which
exists because Property PRICE implies that � is primitive and recurrent. Assume that
there are n2N, z2 1?, i 2A, andC >0 such that (4.4) holds. We show that �uM�Œ0;n/

z is
an exclusive point of the collection C� in the sense that it is contained in only one element
of C� . Since [37, Proposition 7.5] states that C� is a locally finite multiple tiling by
compact tiles, this will already imply that C� is in fact a tiling, because the compactness of
the tiles together with local finiteness imply that each exclusive point has a neighborhood
consisting of exclusive points. Since C� forms a multiple tiling and hence a covering
of 1?, we have �uM�Œ0;n/

z 2 x CR� .i
0/ for some .x; i 0/ 2 .Zd \ 1?/ � A. To prove

exclusivity, we have to show that this choice of .x; i 0/ is unique. By the set equation in
Lemma 4.4 for R� .i

0/, there exist p0 2 A� and j 0 2 A with

p0i 0 � �Œ0;n/.j
0/ (4.5)

such that
�uM�Œ0;n/

z 2 �u
�
xC `.p0/CM�Œ0;n/

R†n� .j
0/
�
: (4.6)

As in the proof of Lemma 4.4, note that �uM�Œ0;n/
D �u M�Œ0;n/

�u.n/ , where u.n/ D
M�1�Œ0;n/

u is a generalized right eigenvector of †n� . Therefore, (4.6) implies that

�uM�Œ0;n/
z 2 �uM�Œ0;n/

�
�u.n/M�1�Œ0;n/

.xC `.p0//CR†n� .j
0/
�
: (4.7)

Since u 2 M�Œ0;n/
Rd�0 n ¹0º implies that u … M�Œ0;n/

.1?/, the mapping �uM�Œ0;n/
j1? W

1?! 1? is a bijection. Therefore, and because z, �u.n/M�1�Œ0;n/
.xC `.p0//, and R†n� .j

0/

are contained in 1?, (4.7) is equivalent to

z 2 �u.n/M�1�Œ0;n/
.xC `.p0//CR†n� .j

0/: (4.8)

Because we assume (4.4), we have†n� 2BC and thus Lemma 4.1 implies that kyk1�C
for all y 2 R†n� ; hence, (4.8) yields

k�u.n/M�1�Œ0;n/
.xC `.p0// � zk1 � C:

Since h1; xC `.p0/i D h1; `.p0/i D jp0j < j�Œ0;n/.j 0/j, by (4.4) we may conclude that
xC `.p0/D `.p/ for some p 2A� with pi � �Œ0;n/.j 0/. In particular, we have jp0j D jpj.
Since p0i 0 is also a prefix of �Œ0;n/.j 0/ by (4.5), we deduce that p0 D p and i 0 D i ,
thus x D 0. Therefore, .x; i 0/ D .0; i/ is the only possible choice for .x; i 0/, and hence
0CR� .i/ is the only tile of the collection C� containing �uM�Œ0;n/

z. This proves that
�uM�Œ0;n/

z is an exclusive point of C� , and hence shows that the collection C� is a
tiling (and, a fortiori, that all elements of C� are different). This concludes the proof
of (v))(i).
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4.3. Purely discrete spectrum implies geometric coincidence

In our main theorems, substitutive dynamical systems with purely discrete spectrum play a
key role. The following lemma shows that in the substitutive case purely discrete spectrum
is equivalent to the geometric coincidence condition, and thus, by Proposition 4.8, also
to its effective version. This will be crucial in the proofs of Theorems 3.5 and 3.6; see
also the discussion before Lemma 5.4. Indeed, let � be a unimodular Pisot substitution
that satisfies the geometric coincidence condition. We will show that the existence of
occurrences of long blocks of � in a given directive sequence � allows one to “transfer”
the effective version of the coincidence condition from � to � . Using the following lemma,
this “transfer” works for purely discrete spectrum property as well.

Lemma 4.9. Let � be a unimodular Pisot substitution. Then .X� ; †/ has purely discrete
spectrum if and only if � satisfies the geometric coincidence condition.

Proof. Assume that .X� ; †/ has purely discrete spectrum.10 As � is primitive, the ele-
ments of .X� ; †/ have sublinear complexity by [96, Proposition 5.12], and by [66, Pro-
position 5.1.12] we can uniquely extend a.e. sequence in .X� ; †/ to a two-sided infinite
sequence having the same language. Hence, it is immaterial whether we define .X� ; †/
by using one- or two-sided infinite sequences.

Next we claim that .X� ; †/ has purely discrete spectrum if and only if the tiling
flow .T� ; T / associated with .X� ; †/ has purely discrete spectrum. To prove sufficiency,
assume that .X� ;†/ has purely discrete spectrum. Then .X� ;†/ is measurably conjugate
to a translation x 7! x C ˛ on a compact abelian group G via a measurable conjugacy ˆ.
Let . QX� ; QT / be the suspension flow with constant roof function f .!/ � c. Then . QX� ; QT /
is measurably conjugate to the translation Qx 7! Qx C .0; ct/ on the compact abelian group
QG D .G � R/=�, with .g; c/ � .g C ˛; 0/, via the measurable conjugacy ˆ � id. Thus,

by a slight variation of [117, Theorem 3.5], . QX� ; QT / has purely discrete spectrum. If the
constant c is chosen properly, [25, Corollary 5.7] shows that . QX� ; QT / and the tiling flow
.T� ; T / associated with .X� ;†/ are conjugate; see also [59, Corollary 3.2]. Thus, .T� ; T /
has purely discrete spectrum. Necessity is due to [109, Corollary 5.2].

Next we establish that the tiling flow .T� ; T / has purely discrete spectrum if and
only the substitution � satisfies the geometric coincidence condition. Indeed, according
to [25, Corollary 9.4], .T� ; T / has purely discrete spectrum if and only if the so-called
coincidence rank of T is equal to 1.11 This, by [25, Remark 18.5], is in turn equivalent
to the fact that the collection C.�/ of (substitutive) Rauzy fractals associated with the
constant sequence .�/ forms a tiling. Finally, because the constant sequence .�/ satisfies

10Since there does not seem to exist a direct proof of the fact that purely discrete spectrum of
.X� ;†/ implies the geometric coincidence condition, we have to take the deviation via tiling flows
in the proof of this lemma. Because tiling flows will play no role in this paper, we refrain from
giving detailed definitions and refer e.g. to [25].

11The fact that the coincidence rank is equal to one is the analog of our geometric coincidence
condition in the setting of flows, see [25, Section 7].
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Property PRICE by Remark 4.3, Proposition 4.8 shows that this tiling property holds if
and only if the substitution � satisfies the geometric coincidence condition.

This chain of equivalences proves the lemma.

4.4. Balance and bounded remainder sets

In what follows, we will strongly rely on the relation between balance and bounded
remainder sets. We are interested in bounded remainder sets given by arbitrary words
and not only by letters. Therefore, we also consider balance for words: A language L is
balanced for the word v 2 L if there exists some Cv � 1 such that, for any two words
w;w0 2 L with jwj D jw0j, we have

ˇ̌
jwjv � jw

0jv

ˇ̌
� Cv , and L is balanced for words if

it is balanced on each v 2 L. Here, jwjv denotes the number of occurrences of the factor v
in w. Without further precision, balance will always refer to letters. We note that, in case
a directive sequence � is primitive and proper, balance for letters of the language L�
implies its balance for all words; see [30, Corollary 5.5].

The quantity C occurring in the definition of bounded remainder sets (i.e., in Defini-
tion 2.6) can be considered as a notion of local discrepancy; see e.g. [3]. To illustrate this,
we characterize balance by the following geometric version of [1, Proposition 7], using
the projection �u defined in (2.7). For u 2 RdC with kuk1 D 1, we have

�u`.w/ D `.w/ � jwju;

which is a geometric version of local discrepancy when u is a letter frequency vector.

Proposition 4.10. Let .X;†/ be a uniquely ergodic minimal shift over the alphabet AD

¹1; : : : ; dº. Let u D .u1; : : : ; ud / be the vector whose entry ui equals the measure of the
cylinder Œi � for each i 2 A. Then the language of X is balanced for letters if and only if
¹k�u `.w/k W w in the language of Xº is bounded. Moreover, .X; †/ is balanced for the
word v if and only if the cylinder Œv� is a bounded remainder set.

Proof. Let L be the language of X and denote the unique †-invariant measure of .X;†/
by �.

We start with the proof of the second assertion. Assume first that v 2 L is chosen in
such a way that Œv� is a bounded remainder set, and let w;w0 2 L with jwj D jw0j D m
be given. Choose x D x0x1 � � � 2 X . Then, by minimality, there exist n; n0 2 N such that
†nx 2 Œw� and †n

0

x 2 Œw0�. Thus, because Œv� is a bounded remainder set,ˇ̌
jwjv � jw

0
jv

ˇ̌
�
ˇ̌
jx0 � � � xnCm�1jv � jx0 � � � xn�1jv � jx0 � � � xn0Cm�1jvCjx0 � � � xn0�1jv

ˇ̌
C 2.jvj � 1/

� �.Œv�/j.nCm/�n� .n0Cm/Cn0jvC 2.jvj � 1/C 4C

D 2.jvj � 1/C 4C

holds for some C > 0. (The summand 2.jvj � 1/ comes from occurrences of v in x that
partially overlap with x0 � � � xn�1 or with x0 � � � xn0�1.) Thus L is .2.jvj � 1/ C 4C /-
balanced for the word v.
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Assume now that L is C -balanced for v, and let x D x0x1 � � � 2 X be generic for the
measure �. Then we haveˇ̌

jx0 � � � xn�1jv � n�.Œv�/
ˇ̌
D lim
m!1

ˇ̌̌̌
jx0 � � � xn�1jv �

1

m
jx0 � � � xmn�1jv

ˇ̌̌̌
for all n 2 N because x is generic; moreover,

0 � jx0 � � � xmn�1jv �

m�1X
kD0

jxkn � � � x.kC1/n�1jv � .m � 1/.jvj � 1/

for allm;n2N because we only have to count the number of occurrences of v at positions
kn � h, 1 � k < m, 1 � h < jvj, andˇ̌̌

mjx0 � � � xn�1jv �

m�1X
kD0

jxkn � � � x.kC1/n�1jv

ˇ̌̌
� mC

by the C -balancedness for v. Putting everything together, we obtainˇ̌
jx0 � � � xn�1jv � n�.Œv�/

ˇ̌
� C C jvj � 1 (4.9)

for all n 2 N, thus Œv� is a bounded remainder set.
To prove the first assertion, assume that sup ¹k�u`.w/k1 W w 2 Lº D C (without loss

of generality we may use the 1-norm). Let w; w0 2 L with jwj D jw0j be given. Then
`.w/ � `.w0/ 2 1?, and hence

max
i2A

ˇ̌
jwji � jw

0
ji

ˇ̌
D k`.w/ � `.w0/k1 D k�u.`.w/ � `.w

0//k1 � 2C:

Thus L is .2C /-balanced for letters. Now assume that L is C -balanced for letters.
Then, in the same way as we derived (4.9), we deduce that maxi2A

ˇ̌
jwji � jwjui

ˇ̌
D

maxi2A

ˇ̌
jwji � jwj�.Œi �/

ˇ̌
� C for all w 2 L. Since �uei D ei � u for each i 2 A, we

have �u `.w/D .jwji � jwjui /i2A forw 2A�. Thus sup ¹k�u`.w/k1 Ww 2Lº � C .

5. Proofs of the main results

This section contains the proofs of all our main results. In Sections 5.1 and 5.2, we prove
the results stated in Section 3.2 on shifts of directive sequences. In Section 5.3, we use
these results to derive the theorems on multidimensional continued fraction algorithms
formulated in Section 3.1. Section 5.4 is devoted to the proof of Theorem 3.8 on natural
codings and bounded remainder sets.

5.1. Proof of Theorem 3.5

For convenience, we recall the assumptions of Theorem 3.5. Let D � �N
d

be a shift-
invariant set of directive sequences equipped with an ergodic †-invariant Borel probabil-
ity measure � satisfying � ı†� �. Assume that
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� the linear cocycle .D;†;Z; �/ defined by Z..�n/n2N/ D
tM�0

satisfies the Pisot con-
dition;

� there is a periodic Pisot sequence with purely discrete spectrum and positive range in
.D;†; �/.

We first show that under these assumptions �-almost all � 2 D satisfy Property PRICE.
To this end, we need the following auxiliary results.

Lemma 5.1 (cf. [37, Lemma 8.7]). Let the assumptions of Theorem 3.5 be in force. If
�-almost all .�n/ 2D are primitive, then for �-almost every sequence .�n/ 2D, for each
k 2 N, the characteristic polynomial of M�Œk;n/

is the minimal polynomial of a Pisot unit
for all sufficiently large n 2 N.

In contrast to the assumptions in [37, Lemma 8.7], the shift invariant set D is not
required to be closed in Lemma 5.1. Nevertheless, the lemma holds by the same proof.

In the statement of the next result, recall that BC is defined in (4.1) and denotes the
set of sequences in �N

d
with C -balanced language.

Lemma 5.2. Under the assumptions of Theorem 3.5, we have limC!1 �.D \BC /D 1,
in particular D \ BC is �-measurable for all C > 0.

Proof. We first show that a.e. � 2 D is primitive. By assumption, D contains a peri-
odic Pisot sequence with positive range, i.e., there is a sequence � D .�n/ 2 D with the
following properties:

(a) there is j � 1 such that †j� D � and �Œ0;j / is a unimodular Pisot substitution;

(b) infn2N �.†
nŒ�0; : : : ; �n�1�/ > 0.

Since �Œ0;j / is a unimodular Pisot substitution by (a), Remark 4.3 implies that it is primit-
ive, and hence there is k 2 N such that �Œ0;kj / has positive incidence matrix. Set h D kj .
Because � ı†h � �, (b) implies that

�.Œ�0; : : : ; �h�1�/ > 0: (5.1)

Ergodicity of � and the Poincaré Recurrence Theorem therefore imply that a.e. � 2 D
contains Œ�0; : : : ; �h�1� infinitely often, and hence a.e. � 2 D is primitive.

Since the Pisot condition holds, since �Œ0;h/ has positive incidence matrix, and since
(5.1) holds, we conclude from [31, Theorem 6.4] that �.

S
C2N.D \ BC // D 1. Since

BC � BC 0 for all C < C 0, it only remains to show that D \ BC is �-measurable for all
C > 0. Let C > 0 be arbitrary but fixed and set

B 0C D
\
n2N

[
.�0;:::;�n�1/2�n

d
W �.Œ�0;:::;�n�1�\BC />0

Œ�0; : : : ; �n�1�:

(Recall that the cylinders Œ�0; : : : ; �n�1� are subsets of D according to Definition 2.8.)
Then clearly D \ BC � B 0C . On the other hand, if � 2 B 0C is primitive, then � 2 D and
the finite languages

L.n/� D ¹w 2 A� W w is a factor of �Œ0;n/.i/ for some i 2 Aº

are C -balanced for all n 2 N. Since L.0/� � L
.1/
� � � � � , also L� D

S
n2N L

.n/
� is
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C -balanced, i.e., � 2 BC . Hence, because a.e. directive sequence in D is primitive, we
have �..D \ BC /4 B 0C / D 0. Since cylinders are measurable (they are open sets and
� is a Borel measure on D), and countable unions and intersections of measurable sets
are measurable, we conclude that B 0C , and hence also D \ BC , is �-measurable.

Proposition 5.3. Under the assumptions of Theorem 3.5, �-almost every � 2 D satisfies
Property PRICE.

Proof. Let � D .�n/ 2 D be a periodic Pisot point. We saw in the proof of Lemma 5.2
that there is h 2 N such that �Œ0;h/ has positive incidence matrix and (5.1) holds.
Thus by Lemma 5.2 there is C 2 N such that �.†�h.D \ BC // D �.D \ BC / >

1 � �.Œ�0; : : : ; �h�1�/, and hence �.Œ�0; : : : ; �h�1� \†�hBC / > 0.
By ergodicity of � together with the Poincaré Recurrence Theorem, for almost all

� D .�n/n2N 2D there exists `0.� /� h such that†`0.� /�h� 2 Œ�0; : : : ; �h�1�\†
�hBC ,

i.e., .�0; : : : ; �`0.� /�1/ ends with .�0; : : : ; �h�1/ and †`0.� /� 2 BC . We will now extend
`0.� / for almost all � 2 D to a sequence .`k.� //k2N such that

� .�0; : : : ; �`kC1.� /�1/ ends with .�0; : : : ; �`k.� /�1/ (and, a fortiori, with .�0; : : : ; �h�1/),

� †`kC1.� /� 2 BC ,

� `kC1.� / � 2`k.� /,

for all k 2 N. To this end, assume that `0.� /; : : : ; `k.� / are already defined for almost
all � 2 D. Consider the set of all � having a given value `k D `k.� / and a given
prefix .�0; : : : ; �`k�1/. Assume that this set has positive measure, which implies that
�.Œ�0; : : : ; �`k�1� \ †

�`kBC / > 0. Then, for almost all � in this set, we obtain (by the
Poincaré Recurrence Theorem and ergodicity of �) some `kC1.� / with the required prop-
erties. Applying this for all choices of `k and .�0; : : : ; �`k�1/, we get some `kC1.� / for
almost all � 2 D. Therefore, such a sequence .`k.� //k2N exists for almost all � 2 D.

Setting nk.� /D `kC1.� /� `k.� /, we find that conditions (P), (R) and (C) of Property
PRICE hold for almost all � 2 D. By [37, Lemma 5.7], we can replace .nk/ and .`k/ by
subsequences such that condition (E) holds. These subsequences also satisfy (P), (R),
and (C). From the Pisot condition and Lemma 5.1, we conclude that almost all � 2D are
algebraically irreducible, i.e., also (I) holds a.e. and we are done.

With Proposition 5.3 at our disposal, we can use a slight variation of [37, Theorem 3.1]
to show without much effort that under the conditions of Theorem 3.5 the following is
true: For almost all � D .�n/ 2 D, the dynamical system .X� ; †/ has an m-to-1 factor
which is a minimal translation on Td�1 for some m 2 N. However, in order to prove
Theorem 3.5, we have to show that m D 1, i.e., .X� ; †/ is measurably conjugate to a
minimal translation on Td�1, which is way more difficult. Indeed, to prove this, accord-
ing to Proposition 4.8 and [37, Theorem 3.1], one has to verify the (effective version of
the) geometric coincidence condition for a.e. element of D.12 This would require tedi-

12Recall that even in the substitutive case, it is not known if the geometric coincidence is always
fulfilled.
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ous combinatorial verifications: By interpreting geometric coincidence geometrically (as
indicated by its name), this was done for some instances in the case of three-letter alpha-
bets in [29] by using the dual E�1 .�Œ0;n// of the one-dimensional geometric realization
of �Œ0;n/ for growing n. As recalled in the introduction, this requires both combinatorial
and geometric arguments relying on planar topology, which restricts the scope of applic-
ation of such methods to the case of three-letter alphabets. In the present paper, we use an
ergodic argument to simplify this decisively, allowing us to consider general alphabets,
and we show that it suffices to check the condition on the Pisot point in the statement of
Theorem 3.5.

The idea behind this ergodic argument is as follows. The geometric coincidence con-
dition (4.3) is satisfied for a given directive sequence � 2D if certain sets defined in terms
of balls of arbitrarily large radius R are contained in sets that are defined by the combin-
atorics of � . According to the effective version of the geometric coincidence condition
(4.4), it is even sufficient to consider balls with a radius chosen in terms of certain balance
properties of languages related to � . By the assumptions of Theorem 3.5, there exists a
substitutive system .X� ; †/, with � D �Œ0;j / and .�0; : : : ; �j�1/1 2 D, which has purely
discrete spectrum and hence, by Lemma 4.9, satisfies the geometric coincidence condi-
tion (4.3) for balls of arbitrarily large radii R. After a technical preparation contained in
Lemma 5.4, in Lemma 5.6 we show that this has the following consequence: Each S -adic
dynamical system whose directive sequence � D .�n/ has Property PRICE and contains a
sufficiently long block .�n; : : : ; �nC`�1/ with �Œn;nC`/ D �m (i.e., m is sufficiently large)
followed by some tail †nC`� 2 BC , satisfies the effective version (4.4) of the geomet-
ric coincidence condition. Informally speaking, in � we need a sufficiently long block
consisting of the repetition of a given substitution that satisfies the coincidence condition
(4.3), which is followed by a tail that is “balanced enough”, to guarantee the coincidence
condition for the whole sequence � . Using the Poincaré Recurrence Theorem, we are able
to show that almost all directive sequences in D contain such a block. This will finally
imply Theorem 3.5.

Lemma 5.4. Let � be a unimodular Pisot substitution with geometric coincidence. Then
for each C > 0 there are m D m� .C / 2 N, z 2 1?, and i 2 A such that for each
t 2 Rd�0 n ¹0º we have

¹y 2 Zd W k�tM
�m
� y � zk1 � C; 0 � h1; yi < j�m.j /jº

� ¹`.p/ W p 2 A�; pi � �m.j /º for all j 2 A: (5.2)

Remark 5.5. If we look at the definition of the effective version of geometric coincidence
in (4.4), the lemma states that the inclusion in this definition still holds if we replace �u.n/

by an arbitrary projection �t with some nonnegative vector t. Indeed, because the ele-
ments M�m� y that are projected are close to a hyperplane that is “sufficiently orthogonal”
to t and 1, this projection does not change these vectors too much.

Proof of Lemma 5.4. Since � satisfies the geometric coincidence condition, there exist,
for each R > 0 and sufficiently largem 2 N, some i 2 A and z0 2M�m� 1? D .tMm

� 1/?,
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such that

¹y 2 Zd W kM�m� y � z0k1 � R; 0 � h1; yi < j�m.j /jº
� ¹`.p/ W p 2 A�; pi � �m.j /º for all j 2 A: (5.3)

Since tMm
� 1=ktMm

� 1k converges to a dominant eigenvector of tM� which is posit-
ive, there exists a constant c1 > 0 such that kxk1 � c1k�txk1 for all t 2 Rd�0 n ¹0º,
x 2 .tMm

� 1/?, and m 2 N. Let Q�t;m denote the projection along t onto .tMm
� 1/?.

There is another constant c2 > 0 such that kx � Q�t;mxk1 � c2 for all t 2 Rd�0 n ¹0º
and x 2 Rd with 0 � htMm

� 1; xi < maxj2A h
tMm
� 1; ej i D maxj2A j�

m.j /j, m 2 N.
To see this, note that htMm

� 1; xi < maxj2A h
tMm
� 1; ej i says that the orthogonal dis-

tance between x and .tMm
� 1/? is smaller than the maximum of the orthogonal distances

between ej and .tMm
� 1/?. This implies that the same is true for the corresponding

distances “along t”, i.e., kx � Q�t;mxk1 � maxj2A kej � Q�t;mej k1 and we can take
c2 D maxm02N maxj2A kej � Q�t;m0ej k1, which is finite because tMm

� 1=ktMm
� 1k con-

verges to a positive dominant eigenvector of tM� . Therefore, we have

kM�m� y � z0k1 � k Q�t;mM
�m
� y � z0k1 C c2 � c1k�t.M

�m
� y � z0/k1 C c2

for all y2Zd and z0 2 .tMm
� 1/? with 0� h1;yi<maxj2A j�

m.j /j. ChoosingmDm� .C /
such that (5.3) holds for R D c1C C c2 and some z0 2 1? and i 2 A, we conclude that
(5.2) holds with z D �tz0.

Let � be a unimodular Pisot substitution that satisfies geometric coincidence. We now
prove geometric coincidence for directive sequences � D .�n/ containing a long block
.�n; : : : ; �nC`�1/ satisfying �Œn;nC`/ D �m followed by a tail †nC`� 2 BC . Indeed, this
constellation will allow us to apply Lemma 5.4 in order to fulfill the effective version of
the geometric coincidence condition for †nC`� . Thus †nC`� gives rise to tilings which
will lead to the desired conclusion.

Lemma 5.6. Let � be a unimodular Pisot substitution that satisfies geometric coincid-
ence. Let � D .�n/ be a sequence satisfying Property PRICE with C > 0 chosen in such
a way that there are `; n 2 N such that, for m D m� .C / as in Lemma 5.4, we have
�Œn;nC`/ D �

m and †nC`� 2 BC . Then C� forms a tiling of 1?.

Proof. Let u be a generalized right eigenvector of � . Then u.n/ D M�1�Œ0;n/
u is a gen-

eralized right eigenvector of †n� . Since � satisfies Property PRICE, so does †n� by
[37, Lemma 5.10]. We want to prove that †n� satisfies (4.4). To this end, we apply
Lemma 5.4 to � and t D u.nC`/. Since �Œn;nC`/ D �m, this yields

¹y 2 Zd W k�u.nC`/M�1�Œn;nC`/
y � zk1 � C; 0 � h1; yi < j�Œn;nC`/.j /jº

D ¹y 2 Zd W k�tM
�m
� y � zk1 � C; 0 � h1; yi < j�m.j /jº

� ¹`.p/ W p 2 A�; pi � �Œn;nC`/.j /º for all j 2 A:

Thus all conditions of Proposition 4.8 (v), in particular (4.4), are satisfied by †n� , hence,
by Proposition 4.8 each of the two collections C†n� and C� forms a tiling of 1?.
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We are now in a position to prove Theorem 3.5. Indeed, we use the Poincaré Recur-
rence Theorem together with the ergodicity of � in order to show that under the conditions
of Theorem 3.5, Lemma 5.6 can be applied to almost all directive sequences � 2 D.

Conclusion of the proof of Theorem 3.5. According to the assumptions of Theorem 3.5,
there is a sequence .�n/ 2 D with period k and positive range such that � D �Œ0;k/ is
a Pisot substitution and the substitutive dynamical system .X� ; †/ has purely discrete
spectrum. Lemma 4.9 implies that � satisfies the geometric coincidence condition. By
Lemma 5.2 and the positive range of .�n/, there is C 2 N such that

�.D \ BC / > 1 � inf
n2N

�.†nŒ�0; : : : ; �n�1�/:

This yields �.†nŒ�0; : : : ; �n�1� \ BC / > 0, and since � ı †n � �, �.Œ�0; : : : ; �n�1� \
†�nBC / > 0 for all n 2 N. Choose m D m� .C / as in Lemma 5.4. By the Poincaré
Recurrence Theorem and the ergodicity of �, for almost all sequences � 2 D, there
exists n such that †n� 2 Œ�0; : : : ; �km�1� \ †�kmBC , which is equivalent to the con-
ditions �Œn;nC`/ D �m and †nC`� 2 BC in the formulation of Lemma 5.6. Thus, since
Property PRICE holds for a.e. � 2 D by Proposition 5.3, Lemma 5.6 yields geometric
coincidence for almost all � 2 D. This implies that C� forms a tiling of 1?. We may
thus apply [37, Proposition 8.5] to conclude that .X� ; †; �/ is conjugate to the transla-
tion by �uei D ei � u on 1?=Zd for all i 2 ¹1; : : : ; dº, where u is the generalized right
eigenvector of � normalized by kuk1 D 1. Taking i D d and omitting the d -th coordin-
ate, we see that .X� ; †; �/ is conjugate to the translation by �� 0.u/ D �u0 on Td�1,
thus also to the translation by u0. In particular, .X� ; †; �/ has purely discrete measure-
theoretic spectrum. It remains to prove that the shift .X� ; †/ is a natural coding of Ru0

with respect to the natural partition ¹�R0� .1/; : : : ;�R0� .d/º. The required topological
properties of the atoms of the natural partition are established in [37, Theorem 3.1]. We
then consider the action of the domain exchange from [37, Proposition 8.4] on the pieces
of the Rauzy fractal, which gives R� .i/C ei � u �R� for 1 � i � d . This shows, after
applying � 0, that �R0� .i/ � ei C u0 � �R0� for 1 � i < d and �R0� .d/C u0 � �R0� .
Lastly, the intersection of cylinders from Definition 2.5 consists always of a single point
by [37, Lemma 8.3].

5.2. Proof of Theorem 3.6

To prove Theorem 3.6, we need to get rid of the condition on the existence of a periodic
Pisot sequence with purely discrete spectrum present in Theorem 3.5. In other words,
under the conditions of Theorem 3.6, we have to provide an “accelerated” substitution
with purely discrete spectrum (i.e., satisfying the geometric coincidence condition by
Lemma 4.9). This is the objective of Proposition 5.9, which, for any given unimodular
Pisot matrixM , provides a substitution with incidence matrixM n (for some n� 1) having
purely discrete spectrum.

We start with two technical lemmas. Lemma 5.7 recalls the classical connection
between Pisot substitutions and balance; see Remark 4.3. Moreover, Lemma 5.8 recalls
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that for any given integer vector x with nonnegative entries, there exists a word w with
uniformly bounded balance (with respect to the direction of x) whose abelianization sat-
isfies `.w/ D x.

Lemma 5.7. Let M be a unimodular Pisot matrix with dominant right eigenvector u.
There exists a constant C > 0 such that each substitution � satisfying M� D M k for
some k 2 N and

max
p2A�Wp��.i/; i2A

k�u`.p/k1 < 2 (5.4)

has C -balanced language L� .

Proof. Let � be a substitution satisfying the conditions indicated in the statement of the
lemma. Let n 2 N be arbitrary but fixed and choose a prefix p of �n.i/ for some i 2 A.
Then we have p D �n�1.pn�1/ � � � �.p1/p0 for some prefixes pj of �.ij /, ij 2 A, with
�.ij / 2 pj ij�1A

�; thus

`.p/ DM k.n�1/`.pn�1/C � � � CM
k`.p1/C `.p0/:

Let v be a dominant left eigenvector of M , % < 1 the maximal absolute value of the
nondominant eigenvalues of M , and Q�u the projection along u on v?. Then there is a
constant c1 > 0 such that kM `xk1 � c1%`kxk1 for all ` 2 N and x 2 v?. Thus we have
k Q�uM

`xk1 D kM ` Q�uxk1 � c1%`k Q�uxk1 for all x 2 Rd , hence

k Q�u`.p/k1 <
c1

1 � %k
max

q2A�Wq��.i/; i2A
k Q�u`.q/k1: (5.5)

There is a constant c2 > 0 such that k�uxk1 � c2kxk1 for all x 2 v? and k Q�uxk1 �
c2kxk1 for all x 2 1?. Thus (5.5) and (5.4) yield

k�u`.p/k1 D k�u Q�u`.p/k1 � c2k Q�u`.p/k1 <
c1c2

1 � %k
max

q2A�Wq��.i/; i2A
k Q�u`.q/k1

D
c1c2

1 � %k
max

q2A�Wq��.i/; i2A
k Q�u�u`.q/k1

�
c1c

2
2

1 � %k
max

q2A�Wq��.i/; i2A
k�u`.q/k1 <

2c1c
2
2

1 � %k
:

If v 2 L� , then v is a factor of �n.i/ for some n 2 N and i 2 A. Thus there are two
prefixes p1; p2 of �n.i/ such that p1v D p2, and hence k�u`.v/k1 � k�u`.p1/k1 C

k�u`.p2/k1 <
4c1c

2
2

1�%k . Moreover, for two factors v1; v2 with jv1j D jv2j, we have

k`.v1/� `.v2/k1 D k�u`.v1/� �u`.v2/k1 � k�u`.v1/k1Ck�u`.v2/k1 �
8c1c

2
2

1 � %k
;

and thus L� is C -balanced with C D 8c1c
2
2

1�%k .

Lemma 5.8. Let x 2 Nd . Then there exists a word w 2 A� such that `.w/ D x and
k�x`.p/k1 � 1 �

1
2d�2

for p � w. Moreover, w starts with the letter corresponding to
the largest coordinate of x.



V. Berthé, W. Steiner, J. M. Thuswaldner 5034

Proof. This is proved in [89, 114].

The construction of the desired substitution is contained in the following proposition.

Proposition 5.9. Let M be a nonnegative unimodular Pisot matrix. Then there exists a
substitution � with incidence matrix M� satisfying M� DM

n for some n 2 N such that
the geometric coincidence condition holds. Moreover, we can choose � in such a way that
�.i/ � �.j / or �.j / � �.i/ for all i; j 2 A.

Proof. Let u be a dominant right eigenvector of M . We construct a substitution � using
the set

P D
°

y 2 Zd W k�uyk1 � C; 0 � h1;M nyi � max
i2A
h1;M nei i for some n 2 N

±
;

with C as in Lemma 5.7. Note that P is a finite set since h1; M nyi D htM n1; yi and
u 2 RdC. Write P D ¹y` W 0 � ` � Lº with 0 D hu; y0i < hu; y1i < � � � < hu; yLi; this is
possible since u has rationally independent coordinates. Then for n 2 N large enough we
have

k�uM
nyk1 � 1=3 for all y 2 P (5.6)

and M n.y`C1 � y`/ 2 Nd for all 0 � ` < L. Let words w` be given by Lemma 5.8 with
xD x` DM n.y`C1 � y`/ for 0 � ` < L, and let Lj , j 2A, be such that yLj

D ej . (Note
that ej 2 P since C � 1.) Define the substitution � by �.j / D w0w1 � � �wLj�1 for all
j 2 A. Note that �.i/ is a prefix of �.j / if and only if hu; ei i < hu; ej i.

To show that L� is C -balanced, consider p � �.j / for some j 2 A. Then p D
w0 � � �w`�1p

0 for some 0 � ` < L, p0 � w`. (Here, w0 � � �w`�1 is the empty word for
` D 0.) This yields

k�u`.p/k1 D k�uy` C �u`.p
0/k1 � k�uy`k1 C k�u`.p

0/k1

� k�uy`k1 C k�uM
n.y`C1 � y`/k1 C k�Mn.y`C1�y`/`.p

0/k1 < 2;

where the last inequality follows from (5.6) and Lemma 5.8. Therefore, Lemma 5.7
implies that L� is C -balanced. It remains to show that the constant sequence .�/ sat-
isfies the effective version of the geometric coincidence condition (4.4).

By the construction of � , we have M� DM
n and

¹y 2 Zd W k�uM
�1
� yk1 � C; 0 � h1; yi < j�.j /jº

D

[
j 02A

¹`.w0 � � �w`/ W 0 � ` < Lj 0 � 1º �
[
i2A

¹`.p/ W p 2 A�; pi � �.j /º (5.7)

for all j 2 A. Let i0 2 A be chosen in such a way that hu; ei0i D maxj2A hu; ej i. Then
the i0-th coordinate of x` is the largest one for each 0� ` < L if n is chosen large enough.
Since we defined the words w` by Lemma 5.8, this means that w` starts with i0 for each
0 � ` < L if n is chosen large enough, and we can sharpen the inclusion in (5.7) to[

j 02A

¹`.w0 � � �w`/ W 0 � ` < Lj 0 � 1º � ¹`.p/ W p 2 A�; pi0 � �.j /º
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for all j 2 A. Together with (5.7), this yields

¹y 2 Zd W k�uM
�1
� yk1 � C; 0 � h1; yi < j�.j /jº � ¹`.p/ W p 2 A�; pi0 � �.j /º

for all j 2 A. Therefore, � satisfies the effective version of the geometric coincidence
condition, and hence, by Proposition 4.8, also the geometric coincidence condition.

Remark 5.10. To prove the main statement of Proposition 5.9, we could have also used
the condition from [23, Corollary 2] to check geometric coincidence.13 This condition
requires that the last letter of �.i/ is equal for all i 2 A and the first letter of �.i/ is
different from the first letter of �.j / if i ¤ j . IfM is a unimodular Pisot matrix, then it is
also primitive and thus there is n 2N such thatM n is a positive matrix. By this positivity,
there is clearly a substitution � with incidence matrix M n having this property. Because
our proof is elementary and much shorter than the proof of [23, Corollary 2], we decided
to give a direct proof.

We can now finish the proof of Theorem 3.6. The idea is to provide a suitable sub-
stitutive realization in the same flavor as the substitutive realizations associated with
multidimensional continued fraction algorithms from Section 2.3. Analogously to com-
positions of substitutions, we will use the notationMŒk;n/ DMk � � �Mn�1 for products of
matrices.

Proof of Theorem 3.6. Let .D; †; Z; �/ be as in the statement of Theorem 3.6. Then
for some k > 0 there is a sequence . QMn/ 2 D with period k and positive range such
that QMŒ0;k/ is a Pisot matrix. Since QMŒ0;k/ and QMŒi;iCk/ D

QM�1
Œ0;i/
QMŒ0;k/

QMŒ0;i/ are similar
matrices, QMŒi;iCk/ is a Pisot matrix for each 0 � i < k. By Proposition 5.9, there is a
substitution �i with incidence matrixM�i D

QMŒi;iCk/ satisfying the geometric coincidence
condition (replace k by km for some m 2 N if necessary). We choose �i in such a way
that �i D �j if QMŒi;iCk/ D

QMŒj;jCk/, 0 � i; j < k.
Choose a map s WMk

d
! �d with the properties that

� the incidence matrix of s.M0; : : : ;Mk�1/ is MŒ0;k/ for all .M0; : : : ;Mk�1/ 2Mk
d

;

� s.M0; : : : ;Mk�1/ D s.M
0
0; : : : ;M

0
k�1

/ if MŒ0;k/ DM
0
Œ0;k/

;

� s.M0; : : : ;Mk�1/ D �i if MŒ0;k/ D
QMŒi;iCk/ for some 0 � i < k.

Then the map

 WD! �N
d ; .Mn/n2N 7! .s.Mkn; : : : ;MknCk�1//n2N ; (5.8)

is well defined, and setting D D  .D/ we have the commutative diagram

D D

D D

†k

  

†

13In [23] the author deals with tiling flows, but as we saw in the proof of Lemma 4.9, this makes
no difference; see also [59, Theorem 3.1].
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The acceleration †k of † may no longer be ergodic with respect to �. Thus the sys-
tem .D;†; �0/ with �0 D � ı  �1 may be nonergodic. However, we will now show that
.D; †; �0/ can be partitioned into ergodic systems14 that satisfy the conditions of The-
orem 3.5. Since all cylinders in D are measurable, �0 is a Borel probability measure
onD. Suppose that .D;†; �0/ is not ergodic. Then there exists a†-invariant (up to meas-
ure zero) subset QD � D with 0 < �0. QD/ < 1. Then  �1. QD/ �D is †k-invariant, henceSk�1
iD0 †

�i �1. QD/ is†-invariant and, by ergodicity of �, equal to D up to measure zero.
Therefore, we have �0. QD/ D �. �1. QD// � 1=k. Since D n QD is also †-invariant, we
also have �0. QD/ � 1� 1=k. We repeat the argument until we have a measurable partition

¹D1; : : : ;D`º ofD, with 1 � ` � k, such that .Dj ;†;
�0jDj

�.Dj /
/ is ergodic for all 1 � j � `.

Let now j be fixed. We need to prove that, for some 0 � i < k, the constant (and
hence periodic) Pisot sequence .�i /n2N has positive range in Dj . For all 0 � i < k, we
have

�0.†nŒ�i ; : : : ; �i„ ƒ‚ …
n times

� \Dj / � �.†
knŒ QMi ; : : : ; QMiCkn�1� \ 

�1.Dj //

D �.†�i†knŒ QMi ; : : : ; QMiCkn�1� \†
�i �1.Dj //

� �.†knŒ QM0; : : : ; QMiCkn�1� \†
�i �1.Dj //: (5.9)

Since
†i

\
n2N

†knŒ QM0; : : : ; QMiCkn�1� D
\
n2N

†knCi Œ QM0; : : : ; QMiCkn�1�

and

�
�\
n2N

†knCi Œ QM0; : : : ; QMiCkn�1�
�
D inf
n2N

�.†knCi Œ QM0; : : : ; QMiCkn�1�/ > 0

by the positive range of . QMn/, � ı†i � � gives

�
�\
n2N

†knŒ QM0; : : : ; QMiCkn�1�
�
> 0:

Therefore, by (5.9) and because
Sk�1
iD0 †

�i �1.Dj / DD, there is 0 � i < k such that

inf
n2N

�0.†nŒ�i ; : : : ; �i„ ƒ‚ …
n times

� \Dj / > 0:

Note that the constant sequence .�i /n2N may not be in Dj , but the proof of Theorem 3.5
also goes through for Pisot directive sequences with positive range that are not contained
in Dj (but in the closure of Dj relative to D). Thus .�i /n2N 2 Dj is a periodic Pisot

sequence having positive range in .Dj ;†;
�0jDj

�0.Dj /
/ and purely discrete spectrum. Since the

cocycle Z satisfies the Pisot condition, the same is true for the cocycle Zj W Dj !Md ,

.�n/ 7!
tM�0

. Summing up, we can apply Theorem 3.5 to .Dj ;†;Zj ;
�0jDj

�0.Dj /
/. This proves

the result.

14These systems correspond to sets of directive sequences that may not be closed in D. This is
why we chose not to confine ourselves to closed sets of directive sequences.
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5.3. Proofs of Theorems 3.1 and 3.3

We now prove Theorems 3.1 and 3.3 by reducing them to Theorems 3.5 and 3.6 (see also
Remark 3.7), respectively.

Proof of Theorem 3.1. Recall that .�; T; A; �/ is a positive .d�1/-dimensional contin-
ued fraction algorithm satisfying the Pisot condition and � ı T � �, that ' is a faithful
substitutive realization of .�; T; A; �/, and that there is a periodic Pisot point x0 such
that '.x0/ has purely discrete spectrum and positive range in .�; T; A; �/. Then we have

.�; T; �/
'
Š .'.�/;†; � ı '�1/, hence � ı '�1 is an ergodic †-invariant Borel probabil-

ity measure satisfying � ı '�1 ı†� � ı '�1, the linear cocycle .'.�/;†;Z; � ı '�1/
defined byZ..�n/n2N/D

tM�0
satisfies the Pisot condition, and '.x0/ is a periodic Pisot

sequence with purely discrete spectrum having positive range in .'.�/; †; � ı '�1/.
Therefore, by Theorem 3.5, for �-almost all x 2 �, the S -adic dynamical system
.X'.x/; †/ is a natural coding of the minimal translation by � 0.u/ on Td�1 with respect
to the partition ¹�R0

'.x/.i/ W i 2 Aº of the bounded fundamental domain �R0
'.x/, where

u is the generalized right eigenvector of '.x/ normalized by kuk1 D 1. Since x is the
generalized right eigenvector of '.x/ satisfying kxk1 D 1, we have x D u, which proves
Theorem 3.1.

Theorem 3.3 follows from Theorem 3.6 in the following way.

Proof of Theorem 3.3. Recall that .�; T; A; �/ is a positive .d�1/-dimensional contin-
ued fraction algorithm satisfying the Pisot condition and � ı T � �, and that there is a
periodic Pisot point x0 2 � having positive range in .�; T; A; �/. Define � W �!MN

d

by x 7! .tA.T nx//n2N . Then we have .�; T; �/
�
Š .�.�/; †; � ı ��1/, hence � ı ��1 is

an ergodic †-invariant Borel probability measure satisfying � ı ��1 ı†� � ı ��1, the
linear cocycle .�.�/; †; Z; � ı ��1/ defined by Z..Mn/n2N/ D

tM0 satisfies the Pisot
condition, and �.x0/ has positive range in .�.�/;†;� ı ��1/. Therefore, by Theorem 3.6,
there exists a positive integer k and a map  W �.�/! �N

d
(which we choose as in (5.8))

satisfying  ı†k D † ı  such that, for �-almost all x 2 �, the S -adic dynamical sys-
tem .X ı�.x/; †/ is a natural coding of the minimal translation by � 0.x/ on Td�1 with
respect to a partition of a bounded fundamental domain. Setting ' D  ı �, we find that
the diagram

� �

�.�/ �.�/

'.�/ '.�/

T k

�

'

�

'†k

  

†

commutes. Because we have chosen  as in (5.8), ' is a substitutive realization of
.�; T k ; A; �/ such that for �-almost all x 2 � the S -adic dynamical system .X'.x/; †/
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is a natural coding of the minimal translation by � 0.x/ on Td�1 with respect to the parti-
tion ¹�R0

'.x/.i/ W i 2 Aº of the bounded fundamental domain �R0
'.x/. This implies that

.X'.x/; †/ has purely discrete spectrum. Since by construction, x is a generalized right
eigenvector of '.x/, the map ' is injective, thus .�; T k ; �/

'
Š .'.�/;†; � ı '�1/.

5.4. Proof of Theorem 3.8

We now establish the relation between a natural coding with d atoms, bounded remainder
sets, and Rauzy fractals asserted in Theorem 3.8. To this end, we need Lemma 5.11 that
states in a nutshell that balance implies strong convergence. Like in Section 2.1, strong
convergence refers to the convergence of the column vectors MŒ0;n/ei towards multiples
of the generalized right eigenvector u, for a sequence � 2 �N

d
. Lemma 5.11 was proved

in [37, Proposition 4.3] with the additional assumption that � is recurrent. We give a
slightly simpler proof that does not require recurrence. Recall that �u denotes the projec-
tion along u onto 1?.

Lemma 5.11. Let � 2 �N
d

. IfL� is balanced and the generalized right eigenvector u of �
has rationally independent coordinates, then limn!1 �uM�Œ0;n/

ei D 0 for all i 2 A and

lim
n!1

sup ¹k�uM�Œ0;n/
`.w/k W w 2 L†n� º D 0: (5.10)

Proof. Assume that � D .�n/n2N 2 �N
d

has balanced language L� and a generalized
right eigenvector u with rationally independent coordinates. We first show that � is a
primitive sequence of substitutions. Suppose that there exists k 2 N such that M�Œk;n/

is
not positive for all n > k. Then there exist coordinates i; j such that the .i; j /-element of
M�Œk;n/

is 0 for infinitely many n, i.e.,M�Œk;n/
ej 2 e?i . Since the conesM�Œk;n/

Rd�0 form a
nested sequence of nonempty compact sets, their intersection is nonempty, and we deduce
that e?i \

T
n2N M�Œk;n/

Rd�0 ¤ ¹0º, thus M�Œ0;k/
.e?i /\

T
n2N M�Œ0;n/

Rd�0 ¤ ¹0º, which
implies that u 2M�Œ0;k/

.e?i /, contradicting that u has rationally independent coordinates.
Therefore, � is primitive.

Choose a sequence .in/n2N 2AN such that in � �n.inC1/ for all n 2 N, and let !.n/

be such that �Œn;`/.i`/ � !.n/ for all ` > n, i.e., !.n/ is a so-called limit sequence of†n� .
Set

P D ¹w 2 A� W w � !.0/º and Pn D ¹w 2 A� W w � �Œ0;n/.in/º .n 2 N/:

Since � is balanced, the set �u`.P / is bounded by Proposition 4.10. From P0 � P1 �

� � � �
S
n2N Pn D P , we deduce that there is a sequence ."n/n2N of positive numbers

with limn!1 "n D 0 such that

kxk � "n for all x 2 1? satisfying xC �u`.Pn/ � �u`.P /: (5.11)

We can now show that �uM�Œ0;n/
`.Qn/ is small, where

Qn D ¹w 2 A� W pj � !.n/ and pwj � !.n/ for some p 2 A�, j 2 Aº
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is the set of return words in !.n/ to some letter. More precisely, we have

k�uM�Œ0;n/
`.w/k � 2"k for all w 2 Qn, k < n, provided M�Œk;n/

is a positive matrix:
(5.12)

To prove this, let w 2 Qn. If M�Œk;n/
is a positive matrix (which holds for sufficiently

large n by the primitivity of � ) and j 2A, then there exists v 2A� with vik � �Œk;n/.j /.
Because w 2 Qn, there exists some p 2 A� such that

�Œ0;n/.p/�Œ0;k/.v/u � �Œ0;n/.p/�Œ0;k/.vik/

� �Œ0;n/.pj / � �Œ0;n/.!
.n// D !.0/ for all u 2 Pk ;

and the same holds when we replace p by pw, thus

�u`.�Œ0;n/.p/�Œ0;k/.v//C �u`.Pk/ � �u`.P /

and
�u`.�Œ0;n/.pw/�Œ0;k/.v//C �u`.Pk/ � �u`.P /:

From (5.11), we obtain

k�uM�Œ0;n/
`.w/k �



�u`
�
�Œ0;n/.p/�Œ0;k/.v/

�

C 

�u`
�
�Œ0;n/.pw/�Œ0;k/.v/

�

 � 2"k :
Next we show that, for each n 2 N, the Minkowski sum

`.Qn/ �

dX
jD1

`.Qn/ contains a basis of Rd with vectors in ¹0; 1ºd : (5.13)

First note that `.Qn/ contains a basis of Rd by the rational independence of u and the
balance of L� . If this was not the case then, since `.Qn/ � Zd , there would be v? 2
Zd with `.Qn/ � v?. However, such a v cannot exist because Qn contains arbitrarily
long factors of !.n/, hence M�Œ0;n/

`.Qn/ contains arbitrarily large vectors with bounded
distance from Ru (by the balance ofL� ), which implies that u 2M�Œ0;n/

v?, contradicting
that u is rationally independent. Thus we may choose words wi 2 Qn such that ¹`.wi / W
1 � i � dº forms a basis of Rd . If `.wi / 2 ¹0; 1ºd for all i , then we have found a basis
of the required form because 0 2 `.Qn/. Otherwise note that each nonempty factor w of
!.n/ can be written as

w D v1a1v2a2 � � � v`a` with 1 � ` � d; vj 2 Qn;

aj 2 A for all 1 � j � `; aj ¤ ak if j ¤ k: (5.14)

Indeed, let a1 be the first letter of w and v1 the longest (possibly empty) word such that
v1a1 � w; then v1 2 Qn and .v1a1/�1w has no occurrence of a1; if w ¤ v1a1, then
let a2 2 A be the first letter of .v1a1/�1w and v2 the longest word such that v2a2 �
.v1a1/

�1w; repeat this procedure until .v1a1 � � � v`a`/�1w (which has no occurrences of
a1; : : : ; a`) is the empty word. Now, if `.wi / … ¹0; 1ºd and wi D v1a1v2a2 � � � v`a`, then
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we can replace wi by the shorter word vj for some j or, when all `.vj / are in the span
of the other basis vectors, we replace `.wi / by `.wi / �

P`
jD1 `.vj / without losing the

basis property. Since `.wi / �
P`
jD1 `.vj / D `.a1 � � � a`/ 2 ¹0; 1º

d and the replacement
by a shorter word can happen only finitely many times, this proves (5.13).

From (5.12) and (5.13) we see that, for each n 2 N, there is a basis of Rd with
vectors x 2 ¹0; 1ºd satisfying k�uM�Œ0;n/

xk � 2.dC1/"k for all k < n such that M�Œk;n/

is positive. In particular, we have the same basis for infinitely many n, and conclude that
limn!1 �uM�Œ0;n/

ei D 0 for all i 2 A.
Finally, let w 2 L†n� . By primitivity, w is a factor of !.n/. Writing w as in (5.14), we

find that k�uM�Œ0;n/
`.w/k � 2d"k C

Pd
iD1 k�uM�Œ0;n/

eik for all k < n such thatM�Œk;n/

is positive. This proves the lemma.

Before we start with the core part of the proof of Theorem 3.8, we need the following
variant of a result of Chevallier [58].

Lemma 5.12 (cf. [58, Theorems A and B]). Let .X;†/ be a bounded natural coding of
.Td ; Rt/ with respect to a natural partition ¹F1; : : : ;Fhº of a fundamental domain F .
Then there is a continuous surjective map � W X ! F and a one-to-one coding map ˆ
defined a.e. on F that satisfies � ıˆ.x/D x for a.e. x 2 F . Furthermore, the shift .X;†/
is minimal and uniquely ergodic, and .Td ; Rt/ is measure-theoretically isomorphic to
.X;†/. Thus .X;†/ has purely discrete measure-theoretic spectrum.

Sketch of the proof. The proof of this lemma is very similar to the proofs of [58, Theor-
ems A and B] (which are valid for Td according to the remark after their statement), and
we will refer to these proofs in the present sketch. Also observe that the aperiodicity con-
dition of [58, Theorems A and B] is used at the beginning of the proof of [58, Theorem A]

just to ensure that for each .i0i1 : : : / 2 X the set
T
n2N

Tn
kD0
QR�kt
VFik is either empty or

a singleton. This is true by assumption in our setting.

Define � WX!F by .i0i1 � � � / 7!
T
n2N

Tn
kD0
QR�kt
VFik . This is well defined because

the intersection is exactly one point by the definition of a natural coding. Continuity of �
is proved in the same way as in the proof of [58, Theorem A] (in this part of the proof, we
need the natural coding to be bounded), and surjectivity follows because �.X/ is dense
in F and compact. Thus �.X/ D F and F is bounded. Clearly, also F1; : : : ; Fh are
bounded. We can also define a mapˆ for a.e. x 2 F , more precisely, for every x 2 G with

G D F n
[
n2N

h[
iD1

QR�nt @Fi ;

by associating with x the natural coding of its orbit under the action QRt with respect to
the natural partition ¹F1; : : : ;Fhº. Now � ı ˆ.x/ D x for each x 2 G follows from the
definition of a natural coding.

Define �0 W X ! Td by �0 D � .mod Td /. Then �0 is obviously continuous and sur-
jective. Following the proof of [58, Theorem A], we can show that .Td ; Rt/ and .F ; QRt/

are topological factors of .X;†/, in particular, Rt ı �
0 D �0 ı† and QRt ı � D � ı†.
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The proof of minimality of .X; †/ deviates a bit from Chevallier’s proof, and we
provide the details. Fix ! 2 X . We want to prove that the orbit of ! is dense in X . Let
!0 D .i0i1 � � � / be an arbitrary element of the setˆ.G / (which is dense in X ) and let U D
Œi0; : : : ; in� be a neighborhood of !0 (for some n 2 N). The open set V D

Tn
kD0
QR
�ik
t
VFik

is nonempty because xD �.!0/ is in V . SinceRt is minimal, there exists an integerm� 0
such that Rmt ı �.!/ belongs to V . But QRt ı � D � ı †, and hence � ı †m.!/ belongs
to V . Since ¹F1; : : : ;Fhº is a natural partition, for each i ¤ j , VFi \ Fj D ;. By the
definition of �, we have ��1.V/ � U , and therefore †m.!/ 2 U . So all the elements
of Z are limit points of the sequence .†m.!//m�0, which shows that .X;†/ is minimal.

The remaining assertions are of a measure-theoretic nature and they follow by the
same proof as [58, Theorem B], since it is of measure-theoretic nature as well.

Proof of Theorem 3.8. Let .X; †/ be the natural coding of the minimal translation Rt

on Td�1 with respect to the natural partition ¹F1; : : : ;Fd º of the bounded fundamental
domain F . We consider the associated exchange of domains QRt defined on F ; see Sec-
tion 2.4. Let ti be such that QRt.x/ D xC ti on Fi (note that ti � t 2 Zd ), and let u D
.u1; : : : ; ud / with ui D �.Fi /, where � denotes the Lebesgue measure. Then we havePd
iD1 ui D 1. Since F is bounded and .F ; QRt; �jF / is ergodic, we have for almost all

x 2 F , by the Birkhoff Ergodic Theorem,

dX
iD1

ui ti D
dX
iD1

ti
Z

Fi

d� D lim
n!1

1

n

n�1X
kD0

. QRkC1t .x/ � QRkt .x// D lim
n!1

1

n
. QRnt .x/ � x/ D 0:

Define a matrix N 2 R.d�1/�d by N ei D ti , i.e., the columns of N are the vec-
tors ti . Then we have Nu D 0 and, by the minimality of QRt, the vectors ti span Rd�1,
thus the kernel of N is Ru. Hence we have kxk1 � ckN xk1 for all x 2 1?, with
1=c D min ¹kN xk1 W x 2 1?; kxk1 D 1º > 0. If w is in the language of X , then
N`.w/ D

Pd
iD1 jwji ti D QR

jwj
t .x/ � x for some x 2 F , thus kN`.w/k1 � diam.F /,

where diam.F / denotes the diameter of F . Hence, we have

jwji � jwjui � k`.w/� jwjuk1 � ckN.`.w/� jwju/k1 D ckN`.w/k1 � c diam.F /:

Therefore, Fi is a bounded remainder set for all 1 � i � d , and the language of X is
.2c diam.F //-balanced.

Minimality of Rt implies total irrationality of t. We will show that this in turn implies
that the vector u D .�.F1/; : : : ; �.Fd // has rationally independent coordinates. Indeed,
suppose on the contrary that hz; ui D 0 for some z 2 Zd n ¹0º. Consider the d � d
matrix QN that is obtained from N by subtracting t from each column and adding the
row .1; : : : ; 1/ at the bottom. Because ti � t 2 Zd , the matrix QN is an integer matrix.
Moreover, since Nu D 0 and kuk1 D 1, we have QNu D

�
�t
1

�
. If det QN ¤ 0, then t QN y D z

for some y 2 Qd n ¹0º; if det QN D 0, then t QN y D 0 for some y 2 Zd n ¹0º. In both cases,
0 D ht QN y;ui D hy;

�
�t
1

�
i, contradicting the total irrationality of t.
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Assume now that X D X� for some sequence � 2 �N
d

of substitutions. Because
F1; : : : ;Fd are bounded remainder sets with measures u1; : : : ; ud , X� has uniform let-
ter frequencies. Thus [31, Theorem 5.7] implies that u D .u1; : : : ; ud / is the (rationally
independent) generalized right eigenvector of � normalized by kuk1 D 1 (moreover, � is
primitive; see the first part of the proof of Lemma 5.11). Let !.0/ 2 X� be as in the
proof of Lemma 5.11, and write !.0/ D !0!1 � � � with !n 2 A. Then there is some
z 2 F such that Rnt .z/ 2 F!n

for all n 2 N. Define the affine map H W Rd ! Rd�1

by H.x/ D zC N x. Then, because Ru is in the kernel of N , we have H.x/ D H.�ux/,
in particular H.�uei / D zC ti . By minimality, we have

Fi D
®
zCN`.p/ W p 2 A�; pi � !.0/

¯
� H.R� .i// for all i 2 A: (5.15)

On the other hand, if pi � �Œ0;n/.j / for infinitely many .n; j / 2 N � A, then for
all these n there are words wn 2 L†n� such that �Œ0;n/.wn/pi � !.0/, which implies
H.M�Œ0;n/

`.wn/C `.p// 2 Fi for infinitely many n and, by Lemma 5.11,H.`.p// 2 Fi .
Hence, we have H.R� .i// � Fi , thus H.R� .i// D Fi . This means that .F ; QRt/ is the
domain exchange H.R� .i// 7! H.R� .i//CH.�uei /. Therefore, .F ; QRt/ is conjugate
to the domain exchange R0� .i/ 7!R0� .i/C e0i � u0, and .X� ;†/ is a natural coding ofRu0

with respect to the natural partition ¹�R0� .i/ W 1 � i � dº, by the same arguments as in
the proof of Theorem 3.5.

Assume now that the directive sequence � is left proper. Then by [30, Lemma 3.2] the
shift .X� ; †/ can be represented as .X� 0 ; †/, where � 0 is proper (and still unimodular).
Like � , also � 0 is primitive; see again the first part of the proof of Lemma 5.11. From
[30, Corollary 5.5], we gain that if a primitive unimodular proper S -adic shift .X� ; †/ is
balanced for letters, then it is also balanced for words. Hence, cylinders associated with
factors are also bounded remainder sets, by Proposition 4.10.

6. Examples

In this section, we show that our theory can easily be applied to well-known mul-
tidimensional continued fraction algorithms, in particular to the Jacobi–Perron, Brun,
(Cassaigne–)Selmer and Arnoux–Rauzy algorithms. For dimension d D 3, correspond-
ing results for the Brun and the Arnoux–Rauzy algorithms were already given in [37],
and for the Cassaigne–Selmer algorithm in [67]. Using our new theory, the conditions we
need to check are easier to verify than the ones in [37, 67]. This even allows us to treat
the Arnoux–Rauzy algorithm in arbitrary dimension (see Section 6.3), the (multiplicat-
ive) Jacobi–Perron algorithm (d D 3) in Section 6.4 and the Brun algorithm for d D 4
in Section 6.5. We start with the Cassaigne–Selmer algorithm (d D 3) in Section 6.2, for
which we can also prove more general results than the ones in [67].

Save for the Arnoux–Rauzy algorithm, we focus on algorithms with dimension d 2
¹3; 4º. For higher dimensions, the main problem is to prove the Pisot condition (see
Definition 2.1). Usually, heavy computer calculations are needed to prove that the second
Lyapunov exponent of an algorithm is negative; see [38] for the Selmer algorithm with
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d D 4. Moreover, somewhat surprising numerical experiments from [38] indicate that
the second Lyapunov exponent is positive for most of the classical continued fraction
algorithms if the dimension is beyond a certain threshold. In other words, the Pisot con-
dition seems to be violated in these cases, and our results cannot be applied. For instance,
the Brun and Jacobi–Perron algorithms seem to have positive second Lyapunov exponent
in dimension d � 10, contrarily to what was expected e.g. in [74, 84]. For the Selmer
algorithm, the Pisot condition seems to be violated already in dimension d � 5.

6.1. Balanced pair algorithm

Before studying individual continued fraction algorithms, we recall an algorithm that can
be used to check whether a substitution has purely discrete spectrum. (For each continued
fraction algorithm, we have to do this for one substitution associated with a periodic
point.) The balanced pair algorithm was introduced by Livshits [87,88] and was inspired
by the notion of coincidence for non-constant-length substitutions such as considered for
instance in [91]; see also [109, Section 3], [25, Section 17] or [36, Section 5.8]. This
algorithm is usually simpler than checking geometric coincidence.

Let � be a unimodular Pisot substitution. A balanced pair is a pair .v1; v2/ 2A� �A�

with `.v1/ D `.v2/. It is called irreducible if no proper prefixes of v1 and v2 give rise
to a balanced pair. Each balanced pair can be decomposed into irreducible balanced pairs
in an obvious way. The balanced pair algorithm for a substitution � on the alphabet A D

¹1; : : : ; dº starts with I0 D ¹.ij; j i/ W i; j 2 A; i ¤ j º. Given Ik for some k 2 N, the
set IkC1 is defined recursively by the set of all irreducible balanced pairs occurring in
a decomposition of a balanced pair .�.v1/; �.v2// with .v1; v2/ 2 Ik . We say that the
balanced pair algorithm terminates if for some k 2 N the set Ik n .I0 [ � � � [ Ik�1/ is
empty and if each .v1; v2/ 2

Sk
jD0 Ij eventually contains a coincidence, i.e., there is a

pair of the form .i; i/ 2 A �A that occurs in .�j .v1/; �j .v2// for some j 2 N.
According to [36, Theorem 5.8.8], the balanced pair algorithm terminates if and only

if C.�/ forms a tiling of 1?. (More precisely, the theorem states that a certain collection
of tiles forms a tiling of v?, where v is a left eigenvector of M� , but this is equivalent
to C.�/ being a tiling of 1?; see the proof of Proposition 4.8.) By Proposition 4.8 and
Lemma 4.9, this is equivalent to � having purely discrete spectrum. For a direct proof
that a slightly different version of the balanced pair algorithm implies purely discrete
spectrum, see [109, Theorem 3.1].

Proposition 6.1 (cf. [36, Theorem 5.8.8]). A unimodular Pisot irreducible substitution �
has purely discrete spectrum if and only if the balanced pair algorithm starting with I0
terminates.

6.2. The Cassaigne–Selmer algorithm

In 2015, Cassaigne announced a two-dimensional continued fraction algorithm that was
first studied in [54], and in more detail in [55]. This algorithm is called the Cassaigne–
Selmer algorithm because it is measurably conjugate to a semi-sorted version of the
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two-dimensional Selmer algorithm (with the conjugation given by a linear map, see [55,
Proposition 11.1]); Selmer’s algorithm goes back to [107] (see also [84, Section 6])
and is conjugate on the absorbing simplex to Mönkemeyer’s algorithm [92] (see [94]).
Cassaigne’s representation of this algorithm is remarkable because it admits a set of sub-
stitutions that is particularly relevant from a symbolic point of view. As shown in [54], the
S -adic dynamical systems defined in terms of these substitutions have factor complexity
2nC 1 (see (2.4)) and, as underlined in [30], belong to the family of so-called dendric
subshifts. Dendric subshifts have the striking property that the sets of return words all have
the same cardinality for every factor (they even generate the free group over the alphabet),
which, among other properties, provides a simple expression for their dimension group.

Let � D ¹.x1; x2; x3/ 2 Œ0; 1�3 W x1 C x2 C x3 D 1º. Using the matrices

C1 D

0@1 1 0

0 0 1

0 1 0

1A and C2 D

0@0 1 0

1 0 0

0 1 1

1A ;
we define the matrix valued function

AC W �! GL.3;Z/; x 7!

´
tC1 if x 2 �1 WD ¹.x1; x2; x3/ 2 � W x1 � x3º;
tC2 if x 2 �2 WD ¹.x1; x2; x3/ 2 � W x1 < x3º:

Then TC is given by

TC W �! �; .x1; x2; x3/ 7!

´ �
x1�x3

x1Cx2
; x3

x1Cx2
; x2

x1Cx2

�
if x1 � x3;�

x2

x2Cx3
; x1

x2Cx3
; x3�x1

x2Cx3

�
if x1 < x3;

and .�; TC; AC/ is called the Cassaigne–Selmer algorithm. In [15, Proposition 22], it is
proved that the density of the absolutely continous invariant probability measure �C of TC

equals 12
�2.1�x1/.1�x3/

. Following [54], we consider the Cassaigne–Selmer substitutions


1 W

8̂̂<̂
:̂
1 7! 1;

2 7! 13;

3 7! 2;


2 W

8̂̂<̂
:̂
1 7! 2;

2 7! 13;

3 7! 3:

(6.1)

The corresponding faithful substitution selection is defined by 'C.x/ D 
j if x 2 �j . By
Definition 2.2, the map

'C W �! ¹
1; 
2º
N ; x 7! .'C.T

nx//n2N ; (6.2)

is a faithful substitutive realization of .�; TC; AC/. We have TC.�1/ D TC.�2/ D �, thus
the algorithm satisfies the finite range property and each x 2 � has positive range (in the
sense of Definition 2.8). Moreover, 'C.�/ D ¹
1; 
2º

N (up to a set of measure zero).
According to [84, Section 6] and [105, Chapter 7], TC is �C-almost everywhere weakly
convergent, ¹�1; �2º is a generating (Markov) partition for TC, and hence

.�; TC; �C/
'C
Š .¹
1; 
2º

N ; †; �C ı '
�1
C /:
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The linear cocycle AC is log-integrable since the Cassaigne–Selmer algorithm is additive,
with AC taking only two values. By [106, Theorem 1] and [38, Theorem 5.1] (see also
[84, Section 6]), we know that .�; TC; AC; �C/ satisfies the Pisot condition. Moreover,
since �C is a Borel probability measure which is equivalent to the Lebesgue measure and
TC maps open sets to open sets, we have �C ı TC � �C.

To apply Theorem 3.1, we have to find a periodic Pisot point x2� (see Definition 2.3)
such that 'C.x/ has purely discrete spectrum. To this end, consider

� D 
1 ı 
2 W

8̂̂<̂
:̂
1 7! 13;

2 7! 12;

3 7! 2;

(6.3)

and let x 2� be the dominant right eigenvector ofM� . Then we have 'C.x/D .
1; 
2/1.
Since M� is a (unimodular) Pisot matrix, we conclude that x is a periodic Pisot point,
which has positive range by the above considerations. It only remains to prove that the
substitutive dynamical system .X� ; †/ has purely discrete spectrum.

For the balanced pair algorithm, we start with .12; 21/
�
�! .1312; 1213/, which splits

into the irreducible pairs .1; 1/ (a coincidence) and .312; 213/. Moreover, .13; 31/
�
�!

.132;213/ does not split and .23;32/
�
�! .122;212/ splits into .12;21/ and the coincidence

.2; 2/. Thus
I1 D ¹.1; 1/; .2; 2/; .12; 21/; .312; 213/; .132; 213/º:

We have to go on with the new pairs .1; 1/; .2; 2/; .312; 213/; .132; 213/ occurring in I1.
While coincidences yield only coincidences again, we get the pairs

.312; 213/
�
�! .21312; 12132/ and .132; 213/

�
�! .13212; 12132/:

Splitting these yields the new pair .321; 213/. Summing up, the set I2 contains the new
pairs .3; 3/ and .321; 213/. We only have to check the one which is not a coincidence,
getting .321; 213/

�
�! .21213; 12132/. This gives (up to switching the order of the pair)

no new pairs in I3. Since all occurring pairs eventually end up in coincidences, the bal-
anced pair algorithm terminates for � , and hence .X� ;†/ has purely discrete spectrum by
Proposition 6.1.

Note that �2, and thus the periodic directive sequence .
1; 
2/1, is proper. Hence,
combining Theorem 3.1 with Theorem 3.8, we obtain the following result. (Recall that
x0 D � 0.x/ for the projection � 0 defined in (2.9); the corresponding projections of the
subtiles, R0� .w/, w 2 A�, are defined in (2.10).)

Theorem 6.2. Let .�; TC; AC; �C/ be the Cassaigne–Selmer algorithm, with substitutive

realization 'C defined in (6.2). Then .�; TC; �C/
'C
Š .¹
1; 
2º

N ; †; �C ı '
�1
C /, and for �C-

almost all x 2 � the following assertions hold:

(i) The shift X'C.x/ is a natural coding of the toral translation Rx0 with respect to the
natural partition ¹�R0� .i/ W i 2 Aº.
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(ii) The S -adic dynamical system .X'C.x/;†/Š .T
2;Rx0/ has purely discrete spectrum.

(iii) The set �R0� .w/ is a bounded remainder set for Rx0 for each w 2 A�.

According to [55, Theorem B], the system X'C.x/ has factor complexity 2n C 1
provided that 'C.x/ is primitive. Thus Theorem 6.2 has the following consequence; see
Remark 3.4 and the fact that �C is equivalent to the Lebesgue measure.

Corollary 6.3. For .Lebesgue/ almost all t 2 T2, there exists a minimal subshift X �
¹1; 2; 3ºN with factor complexity 2n C 1 and language balanced for factors such that
.X;†/ is a natural coding of the toral translation Rt.

This result is optimal in the sense that, according to [26], we cannot reach a smaller
factor complexity for a natural coding of a two-dimensional translation. The asserted bal-
ance for words means that all Fi0 \R

�1
t Fi1 \ � � � \R

�n
t Fin are bounded remainder sets

of Rt, with the notation of Theorem 3.8. We mention that the dimension group of X can
be completely described: It is isomorphic to .Z3; ¹x 2 Z3 W hx;ui > 0º [ ¹0º; 1/, where u
stands for the associated generalized right eigenvector which is normalized by kuk1 D 1;
see [30] for more on this topic. All this extends many properties of Sturmian sequences
to sequences on three-letter alphabets.

The Selmer algorithm also exists in higher dimensions; see e.g. [45, 46]. However, to
be able to extend the previous results to higher dimensions, two problems occur: firstly,
one has to find a suitable substitutive realization leading to S -adic dynamical systems
of factor complexity .d�1/nC 1; secondly, as mentioned above, the second Lyapunov
exponent seems to be negative only for d � 4 [38].

6.3. The Arnoux–Rauzy algorithm

In this section, we apply our results to the Arnoux–Rauzy algorithm in arbitrary dimen-
sion d � 3. Like the Cassaigne–Selmer algorithm (with d D 3), the Arnoux–Rauzy
algorithm generates symbolic dynamical systems that have factor complexity .d�1/nC 1
and belong to the family of dendric subshifts.

Define the set of Arnoux–Rauzy substitutions over the alphabet A D ¹1; : : : ; dº by

˛i W i 7! i; j 7! ij for j 2 A n ¹iº .i 2 A/: (6.4)

Let

�i D
°
.x1; : : : ; xd / 2 Œ0; 1�

d
W xi �

X
j¤i

xj ;

dX
iD1

xi D 1
±
:

Using the transposed incidence matrices of ˛i , we define the matrix valued function

AAR W

[
i2A

�i ! GL.d;Z/; x 7! tM˛i
if x 2 �i ;

which gives

TAR.x1; : : : ; xd / D

�
x1

xi
; : : : ;

xi�1

xi
;
xi �

P
j¤i xj

xi
;
xiC1

xi
; : : : ;

xd

xi

�
if x 2 �i :
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We have TAR.�i / D ¹x 2 Œ0; 1�d W kxk1 D 1º for all i 2 A, thus the image of TAR need
not be contained in

S
i2A�i . For this reason, we have to restrict the domain of TAR to the

d -dimensional Rauzy simplex, which is defined by

�AR D

°
x 2 Œ0; 1�d W kxk1 D 1 and T nAR.x/ 2

[
i2A

�i for all n 2 N
±
:

The Rauzy simplex is defined in such a way that TAR.�AR/ D �AR. The algorithm
.�AR; TAR; AAR/ is called the Arnoux–Rauzy algorithm and goes back to [17]. The Rauzy
simplex has zero Lebesgue measure by [18, Section 7]. We consider TAR-invariant prob-
ability measures � of .�AR; TAR/ satisfying � ı T � �. (The latter condition is satisfied for
instance for Borel probability measures � with respect to the subspace topology on �AR;
see e.g. [20].) The map 'AR defined by 'AR.x/ D ˛i when x 2 �i is a faithful substitu-
tion selection. We have TAR.�AR \�i /D�AR, thus the algorithm satisfies the finite range
property and each x 2� has positive range (in the sense of Definition 2.8). The associated
substitutive realization

'AR W �! ¹˛1; : : : ; ˛d º
N ; x 7! .'AR.T

nx//n2N ; (6.5)

thus satisfies 'AR.�AR/ D ¹˛1; : : : ; ˛d º
N (up to a set of measure zero).

By [19], we know that the second Lyapunov exponent of the fully subtractive
algorithm is negative. Here, we show the same for the Arnoux–Rauzy algorithm, which
is closely related to the fully subtractive algorithm.

Proposition 6.4. Let .�AR; TAR;AAR; �/ be the Arnoux–Rauzy algorithm for d � 2, where
� is an ergodic invariant probability measure with support�AR. Then the Lyapunov expo-
nents satisfy #1.AAR/ > 0 > #2.AAR/.

Proof. Since the matrices are unimodular, it suffices to show that #2.AAR/ < 0. We show
that the restriction of kA.n/AR .x/k to x? is exponentially shrinking for a.e. x 2 �AR. Indeed,
define a sequence . QMn.x// of Rd�d -matrices as in [61], i.e., if AAR.T

n
AR.x// D tM˛i

, then
t QMn.x/ is given by subtracting A.n/AR .x/ 1=kA.n/AR .x/ 1k1 from the i -th column of tM˛i

.
Then

QM0.x/ � � � QMn�1.x/ y D tA
.n/
AR .x/ y for all y 2 tA.n/AR .x/�1 1?;

k QMn.x/k1 � 1 for all x 2 �AR, n 2 N, and

k QMk.x/ � � � QM`�1.x/k1 <
2h � d

2h � 1
(6.6)

if all matrices QMk.x/ � � � QM`�1.x/ and QMn�hC1.x/ � � � QMn.x/, with k�n<`, are primitive;
see [61, Lemma 6]. For v 2 x? and i 2 A, we have

hei ; A.n/AR .x/ vi D htA.n/AR .x/ ei ; vi D h�x
tA
.n/
AR .x/ei ; vi D htA

.n/
AR .x/�.n/x ei ; vi

D h QM0.x/ � � � QMn�1.x/ �.n/x ei ; vi;

where �.n/x denotes the projection along T nAR.x/ on tA.n/AR .x/�1 1?.
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Let QT be the induced map of TAR on the cylinder Q�D'AR.Œ˛2; : : : ;˛d ;˛1;˛2; : : : ;˛d �/,
and QA the induced cocyle (so that we can apply (6.6) with h D d D ` � k). Then there
exists c > 0 such that k�.n/x eik1 � c for all x 2 �AR with T nAR.x/ 2 Q�, thus

kA
.n/
AR .x/vk1 � cdk QM0.x/ � � � QMn�1.x/k1kvk1:

We thus have

k QA.n/.x/vk1 � cd
�
2d � d

2d � 1

�n
kvk1 for all x 2 Q�; v 2 x?;

which implies that the second Lyapunov exponent of QA and thus of A is negative; see e.g.
[116, Section 4.4.1].

By induction on d , we can show that

˛1 ı � � � ı ˛d D Q̨
d with Q̨ .i/ D 1.iC1/ for 1 � i < d; Q̨ .d/ D 1:

The substitution Q̨ is the d -bonacci substitution; the characteristic polynomial of the incid-
ence matrix M Q̨ of Q̨ is xd � xd�1 � � � � � x � 1. Thus the dominant right eigenvector
x 2 �AR of M Q̨ is a periodic Pisot point. It has, like all points of �AR, positive range. It
is well known that Q̨ has purely discrete spectrum; see e.g. [80, Theorem 1.2 and Ex-
ample 3.1], which is based on [70], or [23, Corollary 4.3]. (It is also not difficult to show
that the balanced pair algorithm terminates for Q̨ .) Moreover, Q̨ is clearly left proper. Thus,
combining again Theorem 3.1 with Theorem 3.8 and using the results on factor complex-
ity from [17, p. 209] and [99, Theorem III.8], we obtain the following result (parts of
which were proved for d D 3 in [37]).

Theorem 6.5. Let .�AR; TAR; AAR; �/ be the Arnoux–Rauzy algorithm for d � 2, where �
is an ergodic invariant probability measure with support �AR, and let 'AR be as in (6.5).

Then .�AR; TAR; �/
'AR
Š .¹˛1; : : : ; ˛d º

N ; †; � ı '�1AR /, and for �-almost all x 2 �AR the
following assertions hold:

(i) The shift X'AR.x/ is a natural coding of the toral translation Rx0 with respect to the
natural partition ¹�R0� .i/ W i 2 Aº.

(ii) The S -adic dynamical system .X'AR.x/; †/ Š .T
d�1; Rx0/ has purely discrete spec-

trum.

(iii) The set �R0� .w/ is a bounded remainder set for Rx0 for each w 2 A�.

(iv) The shift X'AR.x/ has factor complexity .d � 1/nC 1 and is balanced for words.

Note that Arnoux–Rauzy shifts are also dendric and their dimension group has a sim-
ilar description to the one given in the previous section for the Cassaigne–Selmer shifts;
see [30].

6.4. The Jacobi–Perron algorithm

One of the most famous multidimensional continued fraction algorithms is the Jacobi–
Perron algorithm; see e.g. [84, Section 2] or [105, Chapter 4]. We want to apply our
theory to the case d D 3. In this case, the Jacobi–Perron algorithm is defined on the set
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�D ¹.x1; x2; x3/ 2 R3C W x1 C x2 C x3 D 1; x1 � x3; x2 � x3º. Let LD ¹.a; b/ 2N2 W

0 � a � b ¤ 0º, and for .a; b/ 2 L define the matrices

Ja;b D

0@0 1 0

0 0 1

1 a b

1A
and the sets�a;b D ¹.x1;x2;x3/ 2� W ax1 � x2 < .aC 1/x1 and bx1 � x3 < .bC 1/x1º.
Then UJP D ¹�a;b W .a; b/ 2 Lº forms a partition of �. We can thus define the matrix
valued function

AJP W �! GL.3;Z/; x 7! Ja;b if x 2 �a;b :

This function is used to define the piecewise linear function TJP according to (2.1), which
yields

TJP.x1; x2; x3/ D

�
x2 � ax1

1 � .aC b/x1
;

x3 � bx1

1 � .aC b/x1
;

x1

1 � .aC b/x1

�
if x 2 �.a; b/:

The algorithm .�; TJP; AJP/ is called the (two-dimensional) Jacobi–Perron algorithm and
goes back to Jacobi’s posthumously published work [82]. Note that, in contrast to the
Cassaigne–Selmer algorithm, this algorithm is multiplicative (its linear cocycle AJP pro-
duces infinitely many different matrices). It is known from [104] that the invariant meas-
ure �JP of TJP is equivalent to the Lebesgue measure on �, and hence has full support
and satisfies �JP ı T � �JP. However, there is no known simple expression for the density
of �JP; for more on this subject, see [43]. A cylinder

�.a0;b0/;:::;.an�1;bn�1/

D ¹x 2 � W .AJP.T
0x/; : : : ; AJP.T

n�1x// D .Ja0;b0
; : : : ; Jan�1;bn�1

/º

D

n�1\
kD0

T �kJP .�ak ;bk
/

is nonempty if and only if the pairs .a0; b0/; : : : ; .an�1; bn�1/ 2L satisfy the admissibility
condition

0 � ak � bk ¤ 0; and if ak D bk then akC1 D 0 (6.7)

for all 0 � k < n; see [105, Section 4.1]. This implies that the Jacobi–Perron algorithm
satisfies the finite range property. In other words, this admissibility condition is a sofic
condition that can be recognized by a finite graph. It is proved in [84, p. 322] that the
cocycle AJP is log-integrable (which is nontrivial in this case because AJP has infinite
range). Thus, because �JP has full support, each x 2� has positive range. The fact that AJP

satisfies the Pisot condition is proved in [105, Chapter 16]. Following [28], we define the
Jacobi–Perron substitutions

�a;b W

8̂̂<̂
:̂
1 7! 2;

2 7! 3;

3 7! 12a3b;

..a; b/ 2 L/: (6.8)
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Then tJa;b is the incidence matrix of �a;b for each pair .a; b/ 2 L. Define the substitution
selection 'JP on� by setting 'JP.x/D �a;b if x 2�a;b . The associated faithful substitutive
realization 'JP yields

.�JP; TJP; �JP/
'JP
Š .DJP; †; �JP ı '

�1
JP /;

where DJP is the set of all directive sequences .�ak ;bk
/ satisfying the admissibility condi-

tion (6.7) for all k 2 N. This isomorphy is due to the fact that the set ¹�a;b W .a; b/ 2 Lº

is a generating (Markov) partition for TJP, which yields weak convergence; see [84, Sec-
tion 5].

To apply Theorem 3.1, it remains to establish that there exists a periodic Pisot point
x 2 � for which 'JP.x/ has purely discrete spectrum. This assertion is easily checked.
Indeed, �0;1 is a unimodular Pisot substitution (see also [62] for relations between the
Jacobi–Perron algorithm and Pisot numbers) and .�0;1/1 2 DJP is admissible. Moreover,
using for instance the balanced pair algorithm (as we did in Section 6.2 for another sub-
stitution), one easily checks that �0;1 has purely discrete spectrum. This implies that the
right eigenvector x 2 � of the incidence matrix of � is a periodic Pisot point with 'JP.x/
having purely discrete spectrum. Thus, all the conditions of Theorem 3.1 are satisfied
and, because of right properness of all directive sequences, we arrive together with The-
orem 3.8 at the following result.

Theorem 6.6. Let .�;TJP;AJP; �JP/ be the two-dimensional Jacobi–Perron algorithm, and
let 'JP be as above. Then

.�; TJP; �JP/
'JP
Š .DJP; †; �JP ı '

�1
JP /;

and for �JP-a.e. x 2 � the following assertions hold:

(i) The shift X'JP.x/ is a natural coding of the toral translation Rx0 with respect to the
natural partition ¹�R0� .i/ W i 2 Aº.

(ii) The S -adic dynamical system .X'JP.x/;†/Š .T
2;Rx0/ has purely discrete spectrum.

(iii) The set �R0� .w/ is a bounded remainder set for Rx0 for each w 2 A�.

(iv) The shift X'JP.x/ is balanced for words.

6.5. The Brun algorithm

The case d D 3 of the Brun algorithm is treated in [37]. Here, we consider the unordered
version of the Brun algorithm, as defined in [61], with special emphasis on the case d D 4.
We start with the definition of the algorithm for arbitrary d � 3. For this algorithm, we
have� D ¹x 2 Œ0; 1�d W kxk1 D 1º, and the set of Brun substitutions over A is defined by

ˇi;j W j 7! ij; k 7! k for k 2 A n ¹j º: (6.9)

(We emphasize that in [32] the authors deal with other substitutions related to this
algorithm.) Let

�i;j D
®
.x1; : : : ; xd / 2 � W xi � xj � xk for all k 2 A n ¹i; j º

¯
:
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Using the transposed incidence matrices of ˇi;j , we define the matrix valued function

AB W �! GL.d;Z/; x 7! tMˇi;j
if x 2 �i;j ;

which yields

TB.x1; : : : ; xd / D

�
x1

1 � xj
; : : : ;

xi�1

1 � xj
;
xi � xj

1 � xj
;
xiC1

1 � xj
; : : : ;

xd

1 � xj

�
if x 2 �i;j :

The algorithm .�; TB; AB/ is called the (unordered) Brun algorithm. It goes back
to [47–49]. The faithful substitution selection corresponding to the substitutions in (6.9) is
defined by 'B.x/D ˇi;j if x 2�i;j . As indicated in [61], the directive sequences � D .�n/
that are generated by this algorithm are characterized by the admissibility condition

.�n; �nC1/ 2
®
.ˇi;j ; ˇi;j / W i 2 A; j 2 A n ¹iº

¯
[
®
.ˇi;j ; ǰ;k/ W i 2 A; j 2 A n ¹iº; k 2 A n ¹j º

¯
for all n 2 N: (6.10)

This is again a sofic condition that can be recognized by a finite graph. For the faith-
ful substitutive realization 'B associated with 'B, we thus have 'B.�/ D DB for a sofic
shift DB, and the algorithm satisfies the finite range property. The Brun algorithm has an
ergodic invariant probability measure �B that is equivalent to the Lebesgue measure; see
e.g. [15, Proposition 28]. Then each x 2� has positive range. Moreover, as TB maps open
sets to open sets, we have �B ı T � �B.

We now confine ourselves to the case d D 4. The linear cocycle AB is log-integrable
since AB takes only 12 values. By Schratzberger [102], we know that .�; TB; AB; �B/

satisfies the Pisot condition; see also [73, 74], where an acceleration of Brun’s algorithm
is considered. This implies that ¹�i;j W i ¤ j º is a generating partition for TB and that TB

is weakly convergent, hence, .�; TB; �B/
'B
Š .DB; †; �B ı '

�1
B /.

To apply Theorem 3.1, we have to find a periodic Pisot point x 2 � such that 'B.x/
has purely discrete spectrum. To this end, consider

� D ˇ12 ı ˇ23 ı ˇ34 ı ˇ41 W

8̂̂̂̂
<̂
ˆ̂̂:
1 7! 12341;

2 7! 12;

3 7! 123;

4 7! 1234;

and let x2� be the dominant right eigenvector ofM� . Then 'B.x/D.ˇ12;ˇ23;ˇ34;ˇ41/1

2 DB is an admissible sequence. Since M� is a Pisot matrix, we conclude that x is a
periodic Pisot point, which has positive range by the above considerations. Again using
the balanced pair algorithm, one can show that � has purely discrete spectrum. Since �
is left proper, 'B.x/ is also left proper for �B-a.e. x 2 �. Combining Theorem 3.1 with
Theorem 3.8, we thus obtain the following result.

Theorem 6.7. Let .�; TB; AB; �B/ be the Brun algorithm with d D 4, and let 'B be as

above. Then .�; TB; �B/
'B
Š .DB; †; �B ı '

�1
B /, and for �B-almost all x 2 �, the following

assertions hold:
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(i) The shift X'B.x/ is a natural coding of the toral translation Rx0 with respect to the
natural partition ¹�R0� .i/ W i 2 Aº.

(ii) The S -adic dynamical system .X'B.x/;†/Š .T
3;Rx0/ has purely discrete spectrum.

(iii) The set �R0� .w/ is a bounded remainder set for Rx0 for each w 2 A�.

(iv) The shift X'B.x/ is balanced for words.

Note that this result gives a natural coding for (Lebesgue) a.a. points of T3 in terms
of “Brun S -adic sequences” by Remark 3.4, and by recalling that the ergodic invariant
measure �B of the Brun algorithm is equivalent to Lebesgue measure.

Corollary 6.8. For .Lebesgue/ almost all t 2 T3, there exists a minimal subshift X �
¹1; 2; 3; 4ºN with language balanced for factors such that .X; †/ is a natural coding of
the toral translation Rt.
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