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Abstract. In this paper, we consider the dynamics of even solutions of the one-dimensional nonlin-
ear Klein—-Gordon equation 8%4’7 — a§¢ + ¢ — |9p]?*¢ = 0for a > 1, in the vicinity of the unstable
soliton Q. Our main result is that stability in the energy space H ! (R) x L?(R) implies asymptotics
stability in a local energy norm. In particular, there exists a Lipschitz graph of initial data leading to
stable and asymptotically stable trajectories. The condition @ > 1 corresponds to cases where the
linearized operator around Q has no resonance and no internal mode. Recall that the case o > 2
is treated by Krieger, Nakanishi and Schlag [Math. Z. 272 (2012)] using Strichartz and other local
dispersive estimates. Since these tools are not available for low power nonlinearities, our approach
is based on virial type estimates and the particular structure of the linearized operator observed by
Chang, Gustafson, Nakanishi and Tsai [SIAM J. Math. Anal. 39 (2007/08)].
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1. Introduction

1.1. Main results

Consider the one-dimensional focusing nonlinear Klein—Gordon equation

Bop—p+¢— (@) =0. .x)eRxR.  [(p)=[p/"¢. (LD
where o > 0. This equation also rewrites as a first-order system in time for the function
¢ = (¢.0:¢) = ($1.92),

$1 = ¢2,
b2 = 21 — 1 + [ ($1).
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Let

_ ¢ _ 1 2a+2
F@) = [ s = il

Note that (1.1) is Hamiltonian. The conservation of energy of a solution (¢p, d;¢) of (1.1)
writes

1
E@.09) = 5 [ (@0 + @) + 92~ 2F@)} = E@(0).0:90). (1.2

For initial data in the energy space H'! x L2, local well-posedness, as well as global
well-posedness for small solutions, is well known (see for example [5, Theorem 6.2.2 and
Proposition 6.3.3]).

Denote by Q the standing wave solution of (1.1), also called soliton, explicitly given
by
(ot l)ﬁ

: , Ql/ _ Q + Q2<x+1 — 0 on R
cosh@ (ax)

0(x)

The linearized operator L around Q writes

3 Qo+ (e +1)

L=-34+1-Qa+1)Q0* =-3>+1 - (1.3)
cosh”(ax)
For any « > 0, the first eigenvalue of L is
Ao = —a(a+2)=—v3 (vo>0)
with corresponding normalized eigenfunction
Yo(x) = ~(1+3) _ — .2
0(x) = co(cosh(ax)) ™ "a’, (Yo, Yo) =1, LYy = —1gYp (1.4)

(we denote (A, B) = [ A- B). The second eigenvalue of the operator L is 0 with eigen-
function Y1 = ¢; Q’. In the case @ > 1, there is no other eigenvalue in [0, 1), which means
that there is no internal mode for the model (see Section 1.3).

Let
. Yo _ Yo
= (j:ono)’ Zs = (ivleo)'

The functions u (f, x) = et Y, (x) are solutions of the linearized problem

{ul - (1.5)

Uy = —LM2

illustrating the presence of exponentially stable and unstable modes both relevant in the
dynamics of solutions in the vicinity of a soliton.

In this paper, by global solution of (1.1), we mean a function ¢ € €([0,00), H! x L?)
satisfying (1.1) for all # > 0. We only consider solutions with even symmetry.
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Our main result is the following conditional asymptotic stability theorem.

Theorem 1. Let o > 1. There exists a constant § > 0 such that if a global even solution

¢ = (¢, 0:¢) of (1.1) satisfies

||¢(t) — (Q, 0)||H1(]R)><L2(]R) <34 for all t > 0, (16)
then, for any bounded interval I of R,
z_l)illloo o) = (Q.0)lg1(1yxr2(1y = 0. (1.7)

For the sake of completeness, we provide a description of the set of initial data leading
to global solutions satisfying the stability assumption (1.6) (see also Theorem 4.1 in [2]).
For §g > 0, let

Ao = {e € H'(R) x L*(R) : e iseven, ||&| g1,,2 < 8o and (e, Z4) =0}.  (1.8)

Theorem 2. Let o > 1. There exist C, 8y > 0 and a Lipschitz function h: Ay — R with

h(0) =0and |h(e)| < C ||€”Z{12><L2 such that denoting

M={(0.0)+e+h(e)Yy :e € Ay}

the following holds:

(1) If ¢y € M, then the solution ¢ of (1.1) with initial data ¢, is global and satisfies, for
allt > 0,

@) — (.0 |z ®yxz2®) = Clldo — (O, O)l51(®)xL2(R)- (1.9)
(2) If a global even solution ¢ of (1.1) satisfies, for all t > 0,

1
||¢(t) - (Qv 0)||H1(R)><L2(R) < 550,

then forallt > 0, ¢(t) € M.

1.2. Related results and comments on the proof

First, we comment on two articles devoted to soliton dynamics for the one-dimensional
nonlinear Klein—Gordon equation (1.1).

Using techniques based on Strichartz and other local dispersive estimates, Krieger,
Nakanishi and Schlag [21] have completely treated the case o > 2 in the case of even
data. Indeed, they classify all solutions whose energy does not exceed too much that
of the ground state Q. This includes the construction, by the fixed point argument, of
a €1 center-stable manifold around the soliton and the proof of asymptotic stability and
scattering (linear behavior) around the ground state for solutions on the manifold. The
method seems limited to o > 2 because of the use of Strichartz estimates to control the
nonlinear term, see comment in [21, Section 3.4].

By formal and numerical methods, Bizofi, Chmaj and Szpak [4] have shown that for
even solutions trapped by the soliton, the convergence rate to Q heavily depends on the
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power « of the nonlinearity. In the L°° sense, they conjecture the following trichotomy:
(a) fast dispersive decay for o > 1,

(b) slow decay fora =1,

(c) very slow decay for 0 < o < 1.

The threshold value o = 1 corresponds to the emergence of a resonance at the linear
level, while a < 1 leads to one or several internal modes (see Section 1.3). Follow-
ing these observations, unifying the case o > 1 was the main motivation of the present
work.

Our method does not give an explicit decay rate as t — +00, but we notice as a by-
product of the proof of Theorem 1 that, for any bounded interval I of R, it holds

+o00
[ 160 = Q00 sz dr < . (1.10

This is to be compared with the results obtained in [18] on the (local) asymptotic stability
of the kink for the ¢4 model under small odd perturbations. Indeed, in the latter case, the
presence of an internal mode leads to a lower convergence rate since the component z (¢)
of the solution along the internal mode only satisfies the weaker estimate

+o00
[ lz()|* dt < o0
0

(see [18, Theorem 1.2]). Although we do not claim optimality of such results, in the case
of (1.1) with 0 < o < 1, we do not expect estimates such as in (1.10) to hold.

The proof of Theorem 1 is mainly based on localized virial type arguments simi-
lar to that used in [18, 25, 28], for example. Unlike in these works, we avoid numerical
computations of certain constants related to the coercivity of the virial functional by
using factorization properties of the linearized operator described in [6] (see also refer-
ences [29,37], cited in [6]). A formal presentation of this approach is given in Section 4.1.
We point out that the same structure was crucially used in the construction of blow-up
solutions for the wave maps, Yang—Mills and O(3) o-models in [32,33]. Note that in the
present paper, we compensate the loss of two derivatives due to the change of variables to
still work in the energy space.

We refer to [1, 16,17, 19,20,23, 35,36] for various results of asymptotic stability for
the nonlinear Klein-Gordon equation and ¢* equation or variants of these models.

Several other conditional asymptotic stability results or classifications in a neighbor-
hood of the ground state for the nonlinear Klein—Gordon in higher dimensions and for the
nonlinear Schrodinger equation were also obtained in [10,11,30,34], for example. We also
mention [22] where for the mass supercritical Schrodinger equation in one dimension,
a finite co-dimensional manifold of initial data trapped by the soliton was constructed.

Concerning the generalized Korteweg-de Vries equation and related models, stud-
ies of the dynamics of the solutions close to the soliton are presented in [9, 14, 15, 24,
26-28, 31], in blow-up contexts or for bounded solutions. Note that the method intro-
duced in [24,26], using the special structure of a transformed linearized problem, also has
some analogy with our proof.
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For global existence results in the case of semilinear and quasilinear wave equations,
we refer to [12, 13].

Finally, we refer to [2,3] and references therein for refined descriptions of dynamics
of solutions in various settings.

1.3. Resonances and internal modes

As mentioned before, the absence of any other eigenvalue in [0, 1) for the operator L
when o > 1 is important in our proof. For 0 < o < 1, we continue the description of the
spectrum of L. For o = 1, there is an even resonance at 1. For any 0 < « < 1, there is
a third eigenvalue associated to an even eigenfunction

2 1
Ya(x) = czYo(x)(l - — sinhz(ax)), A =a—-a), vy=21;.
o
In particular, for any 0 < o < 1, the function

u(r) = (cos(vat) Yz, —vy sin(y21)Y2)

is solution of (1.5). This solution is typical of the notion of internal modes and shows
that asymptotic stability (even up to the exponential instable mode) cannot be true at the
linear level for such value of «. An important issue is the nature of the interaction of such
internal mode with the nonlinearity. We recall that such an internal mode was treated in
the context of the ¢* equation in [18]. Pioneering results on internal modes were obtained
in [35]. See other references in [18].

For o € (%, 1), there are no other eigenvalue on [0, 1). For o = %, there is an odd
resonance at 1. For o € (%, %), there is a fourth eigenvalue, associated to an odd eigen-
function. For o € (%, %), there are five eigenvalues, three of them being associated to
even eigenfunctions. In particular, there are two even internal modes. This procedure can
be continued for all @ > 0, showing the emergence of arbitrarily many internal modes
(and sometimes resonances) as @ — 0.

The above information is taken from [6, Section 3].

2. Preliminaries

2.1. Decomposition of a solution in a vicinity of the soliton
Let ¢ = (¢, 9;¢p) be a solution of (1.1) satisfying (1.6) for some small § > 0. We decom-
pose (¢, ,¢) as follows:

{ o(t,x) = Q(x) + a1 (t)Yo(x) + uy(z, x), 2.1)

0 (t, x) = az(t)veYo(x) + uz(t, x),

where

ar(t) = (@) — 0. Yo). axlt) = vio<at¢(r), Yo).
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so that
(u1(1), Yo) = (u2(t), Yo) = 0. 22
Setting
by = %(611 +az), b-= %(al —az), (2.3)
we observe that ¢ also writes as
d=(0,0)+u+b_Y_+b Yy, u=(up,uz). (2.4)
From (1.6), for all ¢ € [0, 00), it holds
s Dzt + w22 + lar @] + laz (O] + [b4 (O] + [b-(O)] = Cob. (2.5)

Moreover, using Q" — Q + f(Q) =0, LYy = —v2Y, and (2.2), the systems of equa-

tions of (a1, az) and (uy, uy) write

. . N
ap = voda, by =voby + ﬁ,
. No equivalently 0
az = voai + —, b ——vb—&
Vo - = 00— 2‘}0,
and
Uy = Uy,
where

N = f(Q +a1Yo +u1) — f(Q) = f(Q)a1Yo — f'(Q)u,
No = (N.Ys), N+ =N —NyY,.

2.2. Notation for virial arguments

Let p be the following weight function:

p(x) = sech(%).

For any function w € H!, consider the norm

fully = [ [ (@07 + ou?)]"

We consider a smooth even function y : R — R satisfying
x=1 on[-1,1],
x=0 on(—oco0,—2]U 2, +00),
¥ <0 on]0,+0c0).

For A > 0, we define the functions {4 and ¢4 as follows:

ta0) = exp( 0= 0. a0 = [ Gy x ek

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

@2.11)
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For B > 0, we also define
to ) = exp( -1 = xIrl ). ea0) = [ Gay, xer a2
and we consider the function ¥ defined as
WMﬂ=xﬂwmuL\mmmﬂm=x(%) x € R. (2.13)

The notation X < Y means X < CY for a constant independent of 4 and B.
These functions {4, ¢4, (g, ¢p and ¥p will be used in two distinct virial arguments
with different scales

A> B*> B> 1. (2.14)
3. Virial argument in u
Set .
J = /((pAaxul + 5‘.01/4”1)142 3.1
and
w = Cquy. (3.2)

We refer to [ 18] for the use of such virial argument in a similar context. Here, w represents
a localized version of u1, in the scale A (see (2.14)). We shall prove the following result.

Proposition 1. There exist C; > 0 and §; > 0 such that for any 0 < § < 81, the following
holds. Fix A = §~1. Assume that for allt > 0, (2.5) holds. Then, for allt > 0,

. 1
d < —3 /((‘)xw)2 + C; / sech(g)w2 + C1|Cl1|4~ (3.3)

Remark 1. Note that estimate (3.3) does not involve any type of spectral analysis. Its
purpose is to give a simple control of [(dxw)? in terms of [ sech(3)w? and |a;|*.

The rest of this section is devoted to the proof of Proposition 1. We compute from (3.1)

. . 1, . 1 .
d = /(¢Aaxul + 5@1“1)”2 + /(@Aaxul + 590//1141)142

Replacing u; by u, and integrating by parts, the first integral in the right-hand side
vanishes. The expression of u; in (2.7) rewrites

iy = uy —ur + £(Q +arYo +ur) — £(Q) — f/(Q)arYo — NoYo,

and so

. 1
4= /(‘PAaxul + E‘PA“I)(aiul —up)

+ f(QDAaxul + %ﬁﬂﬁul)[f(Q +a1Yo +u1) — f(Q) — f'(Q)ar1Yo — NoYo).

To treat the first line in the expression of d, we claim the following.
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Lemma 1. It holds

1 /i 2
/(maxul+éwgul)(aiul—ul)=—/(axw>2—§/(§—j (Z)) w2 (3.4)

Moreover,

G @ l[
ta &G A

X" CO)lx| + 2 (x) sgn(x)] 3.5)

and - (
S _ G 11<x|<2(x) _ sech(x)
w2 YT 4~ a4 (3.6)

Proof. Proof of (3.4). By integration by parts

! I
/("’Aa"”l " 5‘”3“1)@2:”1 —u) = —/so;,(axul)z +3 / w3

We rewrite the above expression using the auxiliary function w. Indeed,

f (@5w)? = / Eadeur + Lyuy)? = [ (1) +2 [ EAljurdyun + / AR

= [htonunr = [t = [ oaoann? —f
[ va@any? /(a w)? + gﬁ 2,

o[5S 5N o
A A

Identity (3.4) follows.
Proof of (3.5)—(3.6). By elementary computations, we have

and so

Next,

! 1
g—j = —Z[—X’(X)IXI + (1 — x(x)) sgn(x)].
1" 1 1
g—j = ﬁ[—x’(X)IXI + (1= x(x)) sgn(X)] [ "(x)]x] + 2y (x) sgn(x)].
which proves (3.5). Estimate (3.6) then follows from the definition of . [

To treat the second line in the expression of d, we claim the following.

Lemma 2. One has

[ (o200 + 36t ) 1@ + ar¥o 410 = 10 = a1 /(@)% ~ No¥o)

X
< |a1|4+/sech(§)w%+A2||u1||§%o/|axw|2.

(3.8)
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Proof. First, we treat the term — [(@40,u; + %(p;iul)NO Yo. By Taylor’s expansion, one
has

IN| < a%QZa—IYOZ + Q2a—1u% + |a1|2a+1Y020t+1 + |u1|2°‘+1, (3.9
and thus, by decay estimates on Q and Yy, and by (2.5), |a1| S 1, Ju1|lre S uillgr 1,
A > 4, it holds

|No| S at +/sech(x)uf Sai+ / sech(%)wz. (3.10)

Using integration by parts,

1, 1,
- ¢A8xu1+§<pAu1 Yo= [ uy <pA8xYo+5<pAYo .

Note that for all x € R, |} (x)| < 1 and |p4(x)| < |x], and so
3
|pa(x) sech(x)| + |@)(x) sech(x)| < (|x| + 1) sech(x) < sech(zx) (3.11)

for an implicit constant independent of A. Thus, by the Cauchy—Schwarz inequality,

L < 4 X\,,2
No (pAaxuleE(pAul Yo| S ai + [ sech 5 Jwi-

Second, we decompose
[ (s + 3080 )[7(@ + ar¥o 410 = 1@ - 7' (@)ar ]

= /(pAax[F(Q +a1Yo +u1) — F(Q +a1Ye) — (f(Q) + f'(Q)arYo)u]
- [ 0aQ'[F(0 +arYo + 1) — £(Q +ar1¥e) = (f'(Q) + /"(Q)ar Yoyur]
—a / oAY[£(Q +arYo +ur) — £(Q +arYo) — f(Qur]

45 [nls@ +a¥o +u) - £0) - £'(@ar¥i]
=L+ 1L+ I3+ 14

We rewrite I, 1>, I3 and 14 as follows:
I = —/go;l[F(Q +a1Yo +u1) — F(Q + a1Yo) — F'(Q + a1Yo)uy — F(uy)]
- [l f@ +a¥o) = £ - £ (@Yol - [ giF ).
o=~ [ @aQ[AQ + Yo 1) = £(Q +ar¥o) = £(Q + arYoyu]
~ [eaQ7'(@ +ar¥o) = (@) - (@Yol
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I = —ay / GAYJ[F(Q + Yo +u1) — £(O +arYo) — £/(Q +arYoyui]
—ay /goAYo’[f%Q +arYe) — £1(O)]ur.

Iy = %/%',ul[f(g +a1Yo + 1) = £(Q +ar¥o) — f(ur)]

45 [ Gnlf©@ +aro) = Q) £(@ar¥al + 5 [ g fan.

To control the two terms that are purely nonlinear in 11, we need the following claim.

Claim 1. It holds
/ By P22 = / 2w P < A 2% / 1wl (3.12)

Proof of Claim 1. The first equality in (3.12) corresponds to the definition of w in (3.2).
Next, by integration by parts and standard estimates, we have

+oo 2
/ exp(—ax) |w|?**2 dx
0 A

A A [T 2
= —£|w(0)|2"""2 — %[ exp(qax)ax(|w|2“+2) dx
0

1 +oo 2
< _ot A/ exp(fx)(axw)wlwlz‘x dx
0

o

1 +o0
<Lt [ exp(ﬁx)wanww“ dx
o 0 A

1> +oo 1 [T 2
N e [ ek [ (2wt i
o 0 4 Jo A

Thus,
+o0 2 4 1 2 +oo
[ e < 5 ) g [ ok a,
0 o 0

which implies (3.12). [

In particular, (3.12) implies that

/gogF(ulego;lulf(ul) < /zﬂuu”“ < A2||u1||i%of|axw|2,

which takes care of the last terms in /; and /4.
By Taylor expansion, o > 1, |ay| < 1 and |Juq||p~ < 1, we have

|F(Q 4+ a1Yo +u1) — F(Q + a1Yo) — F'(Q + a1Yo)uy — F(uy)|

<10 + a1 Yo u? +|Q + a1 Yo|juy [***! < sech(x)u? < sech(%)w%.
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Similarly, using also (3.11) and A > 4, we find the following estimates:
X
leaQ'[ F(Q + a1Yo +u1) — f(Q +a1Yo) — f'(Q + arYo)ui]| S SeCh(E)w%»
X
|a19aYg[ f(Q + a1Yo +u1) — f(Q + ar1Yo) — f'(Q + arYo)ur ]| < sech(a)wf,

X
[ £Q + ¥y ) = £(Q +ar¥) = ] 5 sech ok
Moreover, again by Taylor expansion and (3.11) (with A > 8), we have

loa[f(Q +ar1Yo +ur) — f(Q) — f(Q)ar Yo ui |
+ |aQ'[ /(O + a1Yo) — f'(Q) — f"(Q)a1Yo]ui|
+ |areaYg[ f(Q + arYo) — f/(Q)]ui|
+ [@hur[f(Q + a1Yo) — £(Q) — f(Q)aYo]|

< sech(g)|a1|2|u1| < sech(%)wf + sech(%)|a1|4.

Collecting these estimates, (3.8) is proved.
Taking ||uy]||zce < 84, for §4 small enough, we have proved

J < —/(axw)2 +C / w? sech(;) + Cay + A% |u1 ||7% /(wa)z.

Using A = 8! and [[u1[|7% < 6%* (from (2.5)), for §; small enough, we obtain (3.3). m

~

4. Virial argument for the transformed problem

4.1. Heuristic
We recall results from [6, pp. 1086—-1087]. Let
L=-0+1-Qa+1)0%*, L_=-3+1-0%,
and
U=Yy-0x-Yy!, U*=-Y;'-0x-Yo.
(The above notation means Uf = Yo(Y, ™' f)'.) Then the operators L and L_ rewrite as
L=U*U+ Ao, L_ =UU™* + A¢ and it follows that
UL=L_U.

Now, let

oa—1
Lo=-9+1+——0%, 4.1
0 x+ +Ol+1Q ( )
and

§=0-0:-07", §*=-07"-8:-0.



M. Kowalczyk, Y. Martel, C. Muiioz 2144

A similar structure L_ = S*S, Lo = SS*, leads to
SL_=LoS andthus SUL = LoSU.

In particular, let (u1, u,) be a solution of (1.5), and set ti; = Uuy, i = Uu,. Then

Next, set
v1 = Sty = SUu; and vy = Sty = SUu,.

Then, (vy, v2) satisfies the following transformed problem:

U1 = Vg,
1.)2 = —L()U].
The key point for our analysis is that for « > 1, the potential in L¢ is positive. This
property happens to be the only spectral information needed for the proof of Theorem 1.
Observe that UYy =0, UQ’ = —aQ and SQ = 0, which means that the prior decom-
position of the solution (¢, d;¢) as in Section 2.1 and a coercivity argument as in Section 5

are necessary to avoid loosing information through the transformation. (Here, we work
with even functions and so only the direction Yy is relevant.)

4.2. Transformed problem

With respect to the above heuristic, we need to localize and regularize the functions
involved. For y > 0 small to be defined later, set

vi = (1 —-y32) "' SU(xpu1),
va = (1= y32) "' SU(xau2),

where yp is defined in (2.13). We refer to Section 5 for coercivity results relating 4
and v;. The introduction of the operator (1 — )/8)26)’1 with a small constant y is needed
to compensate the loss of two derivatives due to the operator SU, without destroying
the special algebra described heuristically. Now, we explain the role of the localization
term yp in the definitions of vy and v,. Note that Proposition | provides an estimate on
the function w, which is a localized version of u (see (3.2)). To use this information, the
functions v and v, also need to contain a certain localization.
We deduce the following system for (vq, v;) from the one for (uy, u5) in (2.7):

4.2)

U1 U2,
{oz =—(1—y3) 'SU(xpLuy) + (1 —yd2) " 'SU(xsN? ).

First, we note that
xpLuy = L(xpuy) + 2xp0xu1 + ypui.
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Moreover, since SUL = LySU, it holds
—(1—y33) "' SUL(xpu1) = —(1 —y33) ™' LoSU(xpu1)
= —(1—y3) " Lol(1 —yd3)v1]

oa—1 _
= a)zcvl — U1 — a_—i—l(l - Va)zc) 1[Qm(l - Va)zc)vl]~

Since

(1= y3)[Q%* 1] = 02*(1 — yd2)v1 — 2y(0%) d,v1 — y(Q%*) vy
we obtain
— (1= yd)'SUL(xpu1)
= —Lovi = Sy =y 207 v + (0w
Therefore, we have obtained the following system for (vq, v3):
U1 = v,
b2 = ~Lavi — Sy (1 = ) 2% B + (@) v1] @3)
— (1 —yd2) ' SU[2x0xus + yjui] + (1 —yd2) 'SU[xpN*].

For this transformed system we construct a second virial functional, where the spectral
analysis reduces to the fact that the potential in L is positive.

4.3. Virial functional for the transformed problem

g = / (WBaxvl + %%/91)1)02

and (see (2.12) and (2.13))

We set

z = yxplpvy. 4.4)

Here, z represents a localized version of the function vy. The scale of localization B is
intermediate between the one involved in the definition of w from 1 (see (2.14) and (3.2))
and the weight function p defined in (2.9) (similar to a localization at the soliton scale).

Proposition 2. There exist Cy > 0 and 6 > 0l such that for y small enough and for any
0 < 8§ < 85, the following holds. Fix B = §~%. Assume that for all t > 0, (2.5) holds.
Then, for all t > 0,

. 1
g < =Colz|2 + 88wl + |a1 |’ (4.5)

Remark 2. The objective of estimate (4.5) is to control the local norm ||z ||,% up to small
error in terms of ||w||§ and |a; |3.
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_The rest of this section is devoted to the proof of Proposition 2. As in the computation
of 4 in the proof of Proposition 1, we have from (4.3),

. 1
g = / (VfBaxUl + Elﬂfgvl)l}z
1 Vi
= —/ (WBaxvl + EWBvl)Lovl

=gl (‘”Ba’”“ * %‘“9”1)“ — ) 207 Bevr + (0% 1]

1 _ ’
_/(waxvl +§wgv1)(1—ya§) 'SU[2xp0xu1 + xpu1]

1 _
+ / (1/138xvl + E‘/fz/avl)(l —yR)'SUBNT = T1+ o+ J3 + Ja.
First, using the definition of L¢ in (4.1) and integrating by parts, we have

Vp(0xv1)® + = [ vzt YBIxv1 + S Vpv1 | 0%y
-/ it [ (o Soim)

From (2.13), we note that Y = x3¢2 + (XB)/(/)B and

‘/’W XB@'B)” + 3()(3) (é'B) + 3()(3)”{3 + (XB)WQD
Thus,

[wn@o? =5 [vid = [ G007 - [ Begrt
3
-3 @y - / ) G}
+ [y enan? - ¢ [ om

By the definition of z in (4.4), proceeding as in the proof of (3.7) in Lemma 1, we have

/X%C%r(axvl)z = /(3x2)2 + /(XBEB)”XBEBUf

= [azr+ [ Ea [rpati+ 5 [odrar
1 1 " 2
/ B@B)N 1= 2/(; + ZB )z
B
1 ” 7 \2 _
oot 3 (5 F )
B

and

Thus,
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where we have set
=g [0y @+ 5 [[3067 + xpaldint
~ [dyenn? + 5 [ ot
Recalling (4.4), (2.13), (2.12) and integrating by parts,

/ (wBaxul + %wgvl)g% -, / 00, (ypv?) = —a [ L2 0% 102,

’3

Therefore, setting

1L (&) a—1¢p 5
:_(_B_ BZ )_a _2Q2(X IQ/,
2\ ¢p (g a+ 183
we have obtained
Ji = _/[(3x2)2 + sz] + 7.

Lemma 3. There exists By > 0 such that for all B > By, V > 0 on R. More precisely,

-1
V> Vo, where Vo= 2E " |x0'10% ! > 0. (4.6)
20 +1
Proof. First, from (3.6) (with A replaced by B), it holds
é _ (523)2 < 115\x|52(x)
(B G|~ B
Second, since for x € [0, 400) + {p(x) is non-increasing, we have for x > 0,
X
‘/’_g _ fo 2;129 > x.
{3 {3

Since Q’(x) < 0 for x > 0, we obtain, for a constant C > 0,
oa—1
o+ 1

[xQ'(x)| 0% (x),

V(x)

A%

C
5 Dzt () + o —1x0'(0)]0% ! ()
- aa—1

_Eoc—l—l

choosing By large enough. By parity, this estimate holds for any x € R. ]

Using this lemma, and the above computations for J;, we conclude
g < _/[(axz)z + V()ZZ] +T1+ o+ I3+ g 4.7)

To control the terms 71, J>, J3 and J4, we need some technical estimates.
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4.4. Technical estimates

Lemma 4. We have the following estimates:

(1) onw:

/ w? < B* /(8xw)2 + BZ/w2 sech(f), 4.8)
|x|<2B2 2
w2 5/(axw)2+f w? 5/(3xw)2+fwzsech(;). (4.9)
[x]<1

2) onz:
1212 5 [ @az? + [ Voz? < 1z 4.10)
/z% < B /(axz)2 +B f Voz? < B||z]3. (4.11)

(3) onwvy:
lvillz2 S v~ B> wll,, (4.12)
13xv1ll2 S v Hwll,. (4.13)

Proof. Proof of (4.8) and (4.9). For any x,y € R, using w(x) = w(y) + f dyw and
the inequality (a + b)? < 2a? + 2b?, we have

X 2
w2(x) < 2u2(y) + 2(] axw) < 2w2(y) + 2l — | /(axw)2
y (4.14)

< 2w(y) + 2(x] + y)) / (Bxw)>.

Integrating (4.14) in x € [-2B2%,2B?] and y € [—1, 1], we find (4.8). Multiplying (4.14)
by sech({5) and integrating in x € R and y € [—1, 1], we find (4.9).
Proof of (4.10) and (4.11). The proof is similar. For any x € R and y € R, we have

2(x) < 222(0) + 2(0x] + Iy)) / (9x2)2.

We multiply by sech(75) and Vo(y) > 0 and integrate in x € R and y € R. Since [Vo>0
and [ |y|Vo(y)dy < oo from (4.6), we obtain (4.10).
We multiply by ¢g(x) and Vy(y) and integrate in x € R and y € R. Since

3 < B, x|tg < B* and Vo <1
y

we obtain (4.11).
Proof of (4.12) and (4.13). Note by direct computations that

o =r=[Gesl+ [R) « GR)

1 _1
= f" + (« + 2) tanh(ax) f* +(“+1)(1+m)f
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Thus,
ISUf N2 < NS lg2-

Moreover,
I =y3) ™ Sl < v~ 1S 2
As a consequence, it holds
1=y SUS N2 <y~ I Dz (4.15)

Using (4.15), the definition of v in (4.2), the definition of w in (3.2) and 4 > B2, we
obtain

—1 —1 —1
lvillez £ v~ lxsuillze S v7 lluillz2gx<22) S 77 wllz2qx<282),

and then (4.8) implies (4.12).
Moreover, by direct computation

0<(SUf) = SUf" + (o + 2)a sech®(ax) ' + a(a? — 1) sech?(cx) tanh(ax) f.
Thus, similarly,
19x(1 = yd) ™' SUS N2 S v~ 1Lf L2 + 1L f sech(x)]| 2. (4.16)
Using (4.16), we obtain
19xvillz2 < ¥~ 19x (xBu) L2 + llxBUL sech(x)| 2.

By the definition of w, A > B? and the definition of yp and {4, we have

2 2 72
XB XB XB
|95 (xun)|* = 8x(—w) < 221 jocwf? + ‘(_) w?
$a Ca Ca
S 1wl + BNy <pe,
and || yguy sech(x)||; 2 < |lwsech(x)]|; 2. Thus, estimate (4.8) imply (4.13). -

Lemma 5. Forany 0 < K < 1 and y > 0 small enough, for any f € L?,
Isech(Kx)(1 = y33) ™" f .2 < lIsech(Kx) |2 (4.17)
where the implicit constant is independent of y and K.
Proof. We set g = sech(Kx)(1 —y9d2)~! f and k = sech(Kx) f. We have
cosh(Kx)k = (1 — y2)[cosh(K x)g]
= cosh(Kx)g — yK? cosh(Kx)g — 2yK sinh(Kx)g’ — y cosh(Kx)g".

Thus,
k =[(1-yK?* —yd2]g —2yK tanh(Kx)g’.

ForO0 < K <landy < % we apply the operator [(1 — yK?) — y32]™!, to obtain

g =[(1—yK?) —y32] 'k +2yK[(1 — yK?) — 2] [tanh(K x)g'].
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ForO< K <landy < %,onehas
”[(1 —yK?) — Va)zc]_l ”;e(Lz,H) <L
I - vK?) — Vaazc]_lax ”:ti(LZ,LZ) vz
Thus, [|[(1 — yK?) — y02] "'kl z2 < k|22, and
|[(1 = yK?) = y32] " [tanh(Kx)g"] | 2
< |1 = yK?) - y82] " dx[tanh(Kx)g] | -
+ ]| [(1 = yK?) = y82] ™ [sech®(Kx)g]| .
<y 2 llgl e

We deduce, for a constant C independent of y,

D=

1
lglliz> = Clikliz2 + Cy2 gl
which implies (4.17) for y small enough. ]

4.5. Control of error terms
Now, we are in a position to control the error terms in (4.7).

Control of 71 By the definition of {p, it holds

_lx| 1
{p(x) Se B, Iéfg(X)ISEe B

Thus, using the properties of y in (2.11), we have

_2]x]

/ (x5l 28E + (16)*E3 + 1 XpChlunts]v? < / 02 < 2B oy 2.

B2<|x|<2B?

Next, since |pg| < B and |(x3)'| < B2, |(x3)"| < B~°, we have

[ 166y sl @00 < B ol and [ 163" alod < Bl
Using (4.12)—(4.13), we conclude for this term
Tl <y 2B ]} (4.18)
Control of J,. By the Cauchy—Schwarz inequality,

- 1 o o
21 % 1) 0% =y (adson + 3 )| (10% 11z + 10 Br012)
L

First, we estimate using (4.17)

lo(t —yd) ™ (Wpdxv1)| 2 < 1QVBIxv1lL2.

From the definition of z in (4.4), we have

dxz = L xBOxv1 + (CBxB) V1,
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and so
e A3 10xv1® S 102217 + |(CBxB) V1]
Using | x| < 1, the definitions of yp and {p and again the definition of z,
(Caxp)vilP x5 S B L apvi < B2,
and so
Caapldxv? S 10x2 05 + B722% S 1052”4 22 (4.19)
Thus, using V| < [x|x3.
|0VBdcvi* < [xP Q% xg10x011> £ QR aBl0xv1]? S 10x27 + Q2%
It follows that
Q¥BdxvilL2 < llzllp.
Second, we also estimate using (4.17)

[0 =y~ WavD) |2 S 1Q¥pvilL
We claim
(VB)* < Xp- (4.20)

Indeed, using |x3| < B72, || < |x|, xp = Ofor |x| > 2B and {p < 1,

(V5)* < Wpxsle5 + (525 < X5

Using (4.20), we infer that [(y3)?v?| < x3v7, thus [Q(¥)?*v?| < 22, and so
1
IQvpvillL2 S 1Q2zllz2 < lzll,-

Now, we estimate | Q%v;||z2 and || Q%05 v1 | 2. From the definition of z in (4.4), we

have e~ v%x% < z2. Thus, from the definition of XB»

2 2
e_zlxlvf < e_zlxlvf)(% +e2B vf <e X2 4 o728 vf.
It follows using also (4.12) that
- -1B2 1
le™™villz2 S Nzl +e722 7y wll,.

Differentiating z = yp{pv;, we have
!/
ABCBOxV] = 0xzZ — g—Bz — xgiBV1.
B

Thus, as before,
M (@,01)? 5 e [(@0:2) + 22] + 2B [(0x01)? + v]].
It follows using (4.12) and (4.13) that

- —-1p2 1
le™™a,villz2 S Nzl + €722y Hwll,.
Collecting these estimates, we conclude

|2l S vlizl12 + e Bllwll,ollzlp- 4.21)
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Control of J3. Using Cauchy—Schwarz inequality and (4.15), we have

1731 £ v (I dxville + 1y gville) (I dxuille + lxpuillz2).
First, using |¥g| < B (from its definition and |¢pp| < B) and (4.13),

1WBdxvillL> < BlldxvillL2 <y~ Bllwl,.
Then, since |pg| < B and ¢ = {3,
V5| = |22 x8¢s + C5x] < B~ + {32k
Thus, using the definition (4.4), z = yp{pv; and then (4.12),
lvpvill. < B 2lluill7 + / t32> Sy 2Bl + Bzl
In conclusion,
lwsdevilizz + lvgvilliez S v~ Blwl, + Blzl,- (4.22)
Second, differentiating w = {4u;, we have
dxw = Cyur + Ladxur,

so that (using also the assumption 4 > B?)

9xu1[* S A2 i P + |0xw)® £ B™Hw]® + [9xw|*  for |x] < A.

Thus, using also (4.8),

1 dsu 25 < B~ / 912

B2<|x|<2B2
< B—“U ol + 57 [ |w|2]
|x|<2B2
—4 2
< B wlly.

Next, by the definition of yp and (4.8),

IsulZs < B—S/ a2
L B2<|x|<2B2

<B® / |wl?
|x|<2B2

< B w2,
In conclusion,
Ixpdxurllc + llxpuillzze S B2 [w,. (4.23)

Collecting (4.22) and (4.23), we obtain
1731 Sy 2B w2 + v BT wll izl (4.24)
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Control of J,. Using the Cauchy—Schwarz inequality, (4.15) and then N+ = N — NyY,
we have

[Jal < v~ (1¥B0xvill2 + 1¥pvill2) lxa N2
<y (Ivsdxvilize + 1Wgviliz2) (lxs N2 + [Nol).
By (3.9), |ai| £ 1, |lur|lze < 1, and decay properties of Yy and Q, we have
lxeNl2 S af + lurlleoe | Qxpurlpz + lai P + [lur |72 llxpur 2
< af + llurllzee |l xpua 2

Using yp < ¢4 (since A > B? in (2.14)) and (4.8), it holds

s l2s < / w? < B*|wl?.
|x|<2B2

Moreover, from (3.10),
|Nol < af + lullzeollwll,.

Therefore, using again (4.22), we obtain

[Jal <y 2B (lwlo + l1zl,) (i + B*[urllLee lwll,)- (4.25)

4.6. End of proof of Proposition 2

From (4.7), (4.10), (4.18), (4.21), (4.24) and (4.25), it follows that there exist C, > 0 and
C > 0 such that

§ < —4C|z|2 4+ Cy 2B wlZ + Cyllz|2 + Ce B lw], iz,
+Cy ' B wllizll, + Cy2B(Ilwllp + lIzllp) (@2 + B usllzeollw]],)-

We fix y > 0 such that Cy < 2C, and also small enough to satisfy Lemma 5.
The value of y being now fixed, we do not mention anymore dependency in y. Using
standard inequalities and B large enough, we obtain, for a possibly large constant C > 0,

. - 2
§ = —Calzlly + CBHwlp + CB*(af + B |lurllzee|wll,)".
Choosing (as specified in the statement of Proposition 2)
B=5"4,
and next using the assumption (2.5), we have
7 1
B (B |lur|zeellwllp)® < 873 JurlZ e wll} < 8% w3
Therefore, using again (2.5), for § small enough (to absorb some constants), we obtain
. 1 1
§ = =Coiz|} + C83||wl; + B3a} < =Cazll; + 8% [wll} + |ax|*.

This estimate completes the proof of Proposition 2.
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5. Coercivity and proof of Theorem 1
In this section, the constant y is fixed as in Proposition 2.

5.1. Coercivity results

Lemma 6. Let B > 2. Let u and v be Schwartz functions related by
v=(1-y3})"'SU(ypu). (5.1)

Assume
(u,Ye) = {u, Q'Y = 0. (5.2)

/()(BM)Z sech(g) < /[(8xv)2 + v2]p2 +e B / u? sech(%). (5.3)

Proof. Using the expression of S and U, we rewrite (5.1) as

Y u
- on (5(2)

Yo XBU 8xv)_1( o’ )
e | x| S - ) =5l lv—r5v)
(Q (Yo)+VQ o\" 77 g™

Integrating between 0 and x > 0, this yields, for some constant a,

Yo. ( xBu dxv T1 o’
Yoa (28 420 _ Llv—yZo0)].
0 (Yo)”Q ”/o [Q(” ) ”)}

which rewrites as

xsu)_ Q@ v O "1(_2’ )]
ax(Yo) aYo yYo+Y00|:Q 0 yanv .

Integrating on [0, x], x > 0, and multiplying by Yy, it holds, for some constant b,

It holds

and thus

0
xpu = bYo + dYo/ 2. (5.4)
o Yo

_ . ixv Q0 [V]1 o’
”—Y"/o {‘VTOWO A [5(”‘?5“”)”‘

Let us now estimate | * sech(%). First, by the Cauchy—Schwarz inequality,

Yo /0 % <o ( / (axv)zpz)z ( fo (PYO)_2)2 <o ( / (axv)zpz)z.

where



Soliton dynamics for 1D NLKG 2155

Second,

Q
Yo

1

Yg(/ vzpz);(foy(pQ)‘z)% < (pYo)_‘(/ v202)2
Ygfy Pl ([ vzpz)%Yofox(pYo)‘1 Sp“(/ 2p2)£~

< 1, we obtain similarly,

0 [1Q[11200 _1([(3xv)2pz)5

Collecting these estimates, we obtain, for all x > 0,
2 5 [[0:0 + %]

The same holds for x < 0, and thus

/ﬁ2sech(§) < /[(axv)2+v2]p2,

To complete the proof, we estimate the constants ¢ and b in (5.4). Using (5.2) and
parity property, projecting (5.4) on Yy yields

(XBM7 YO) = <(XB - l)u’ YO) =b + (ﬁ’ YO)

S |

/%
/

Third, since 2’|

NS

Thus,
b* < /222 sech(x) + / u? sech(x)(1 — xp)?

< /ftz sech(x)—i—e_%Bz/u2 sech(g).

Using (5.2), Yo fox Y% = —a~ ' Q' and projecting (5.4) on Q' yields similarly

a’ < /ﬁz sech(x) +e7%32/u2 sech(%).

We conclude the proof using again (5.4). ]

The next result is a consequence of the previous general lemma, in the framework of
the time-dependent functions introduced in (2.2), (3.2), (4.2) and (4.4).

Lemma 7. For B large enough, it holds

X _
[0 seen(3) < 1213 + e P, 5:5)
12 5 1203 + Dol 56)
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Proof. Recall that the function u; is even so that it satisfies (17, Q') = 0 in addition to
the orthogonality (2.2). Therefore, applying (5.3),

/(XBul)Z sech(g) < /[(3xv1)2 +vﬂp2 —i—e_B/uf sech(g),

which implies by (3.2) and (2.10)

/ (xzw)? sech(g) 3 / [@xv1)* + vi]o® + e F w7, (5.7)

By (4.4) and (4.19), it holds
ploxvi|* + plvi]® < 0xz)* + 2% for |x| < B2.

Thus, using (4.12)—(4.13),

2
/[(axv1)2 +vi]p® 5 / [(8xv1)? + v}]0% + ¢ 5 [Jui |,

|x|<B2
2 _B2 2 2 _B2 2
Slzlp + e 5 il < Nzl + e 1wl

Using (4.9) and the definition of yp in (2.13), it holds

iy < [ @ew? + /|x|<1w2 < [ew+ [ (wa>2sech(§).

Inserting these estimates into (5.7), it follows for B large enough that

X —
[ secn(3 ) 5 1212 + ¢ P,

The last two estimates imply (5.6).

Finally,
2
/w2 sech(%) < /()(Bw)2 sech(%) + e~ / w?p
< /()(Bw)2 sech(%) + e_B||w||2,

and (5.5) follows. [

5.2. Proof of Theorem 1
Recall that the constants y > 0, 81,6, > 0 were defined in Propositions 1 and 2.

Proposition 3. There exist C3 > 0 and 0 < §3 < min(81,812) such that for any § with
0 < 8§ < 83, the following holds. Fix A = §~' and B = §~ 4. Assume that for all t > 0,
(2.5) holds. Let
1
H =g +88,°4. (5.8)
Then, forall t > 0, ]
H < —Csllwll + 2|a1 . (5.9)
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Proof. In the context of Propositions 1 and 2, observe that fixing 4 = § ! and B = 53 ,
for § > 0 small is consistent with the requirement 4 > B2 > B > 1 in (2.14).

Combining (4.5) with (5.6) and (3.3) with (5.5), for §3 > 0 small enough and § satis-
fying 0 < 6 < 43, one obtains, for a constant C > 0,

; G 2 1o 2 3
§ == lzllp + 85" 19xwllzz + laa |,
. 1
d < —leaxwlliz +Cllzllp + la: .
Define J¢ as in (5.8). It follows by combining the above estimates that
; G 2 1o 2 101112 1o 3
H = ——lzllp = 85" 0xwllp2 +8C ;7 |zl + (1 + 8357 |an|”.
Possibly choosing a smaller §3, we obtain
. C, 1
H < —TIIZH% — 830 wliZ> + 2lar .
This estimate, together with (5.6), implies (5.9) for some C3 > 0 (depending on §3). =

We set
B8 =b2 b2

Lemma 8. There exist C4 > 0 and 0 < 84 < 83 such that for any § with 0 < § < 84, the
following holds. Fix A = 57L. Assume that for allt > 0, (2.5) holds. Then, for allt > 0,

by —voby| + b + vob_| < Ca(bF + b2 + |w]?) (5.10)
3
‘—(b ) — 2vb3 | + ‘—(b2)+2v b2| < Ca(b3 + 02 + |wll2)>. (5.11)
In particular,
. %
B > vo(b3 +b2) — Cal|w| = f(a% +a3) — Callwl)3. (5.12)

Proof. From (3.10) and (2.3), it holds

[Nol S af + lw|? < b3 + b2 + |lwl.
Estimates (5.10) and (5.11) then follow from (2.6). Last, estimate (5.12) is a consequence
of (5.11) taking §4 > 0 small enough. ]

Combining (5.9) and (5.12), it holds
Casp Vo o - 2 4G4 3
B 2C—3% > 7(a1 +az) + Callw|; —4C—3|a1| ,

and thus, for possibly smaller § > 0,

C
8- 2-“3{ > —(a1 +a2) + Ca|w|?. (5.13)
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By the choice of A = §~!, the bound |p4| < A, and (2.5), we have for all ¢ > 0,
4] < Allurllgolluzllz2 < 6.
Similarly, using also (4.15), it holds
|#1 < Bllvillgillv2llz2 £ 6 andthus  [H] < 6.

Estimate | 8| < §2 is also clear from (2.5).
Therefore, integrating estimate (5.13) on [0, ¢] and passing to the limit as t — 400,
it follows that

/0°°[af + a2+ iR dr < 5.
Since [[(xu1)? 4+ u3]sech(x) < ||w|?, this implies
/(‘)00 {a% + a3 + /[(axu1)2 + uﬂ sech(x)} dt <6. (5.14)
Using (5.14), we conclude the proof of Theorem 1 as in [18, Section 5.2]. Let
K= /umz sech(x) and § = %/[(3xu1)2 +u? + ug] sech(x).
Using (2.7), we have
K = /[uluz + uq;] sech(x)
= /[u% +ui(=Lu; + Nl)] sech(x)
= /[u% — (dxu1)* — ut]sech(x) + %/u% sech” (x)
+ [ L@+ @Yo 1) = £(Q) a1 f(Q)¥o — No¥o]ur seeh().
We check that
‘ /[f(Q + a1Yo 4+ u1) — f(Q) — a1 f'(Q)Yo — NoYouy sech(x)
<al+ / u? sech(x).
(See (3.9)—(3.10) in the proof of Lemma 2.) In particular, it follows that
/u% sech(x) < K 4 Ca? + C /[(3xu1)2 + u?] sech(x).
Using the bound | K| < §2 and (5.14), we deduce

oo
/ [a7 + a3+ §]dr < 6. (5.15)
0
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Similarly, we check that
g = /[(8xu1)(8xu1) + iUy + tauz ] sech(x)
= / [(@xu2)(3xu1) + uzuy + (—Lug + N )uz] sech(x)
- f (95141)uz sech’(x)
+ /[f(Q +a1Yo +u1) — f(Q) — a1 f(Q)Yo — No¥o|uz sech(x),

and so, as before )
16| <a? + 8. (5.16)

By (5.15), there exists an increasing sequence t,, — +00 such that
Tim [a3(ta) + a3 (tn) + 5 (tn)] = 0.
For ¢ > 0, integrating (5.16) on [¢, t,], and passing to the limit as n — oo, we obtain
o0
2() < / [a? + 9] dt.
t

By (5.15), we deduce that
tlim g(t) =0.
—>00

Finally, by (2.6) and (3.10), we have

d
E(a%)

d
+ ‘E(ag) < a% + a% + /u% sech(x),

and so as before, by integration on [z, t,] and n — oo,
o
ai(t) +a3(t) < / [a} + a3 + 9] dt,
t

which proves
lim |a(t)| + |a2(2)] = 0.
t—>00

By the decomposition (2.1), this clearly implies (1.7). The proof of Theorem 1 is
complete.

6. Proof of Theorem 2

6.1. Conservation of energy

Using (1.3) and (1.4) and performing a standard computation, we expand the conservation
of energy (1.2) for a solution (¢, d,¢) written under the form (2.1) with the orthogonality
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conditions (2.2), to obtain
2{E(¢.0:9) — E(Q,0)}
— [{0:67 + @0.9° + 87 26 (@)} ~2E(Q.0
= azvg (Yo, Yo) 4+ ai(LYo, Yo) + lluzll7> + (Luy,uz)
+ O(lar + lazl? + llu1ll3;)

=vg(a3 —a}) + luzl?> + (Luy,uy) + O(lar | + laz + [u1ll31).

Using the notation (2.3), we have
2UE(¢p.0:¢) — E(Q,0)} = —4vobib_ + [[ua7, + (Luy,ur) 6.

+ O(1b4 1> + b= + llurl31)- '

Let 8o > 0 be defined by
85 = 03(0) +b2(0) + [ur ()51 + [u2(0) 7.
Then (6.1) applied at t = 0 gives
2AE@.0:¢) — E(Q.0)}| < 6.
Thus, by conservation of energy, estimate (6.1) at some ¢ > 0 gives
|—4vobyb— + |ualo + (Luy,ur) + O(1b+4 > + 6> + [lurllz)] < 85

Under the orthogonality conditions (2.2), the parity of u;, from the spectral analysis
recalled in the Introduction (see [6]), it follows that for some u > 0,

(Luq,uq) ZM||M1||§.11- (6.2)

1
Thus, as long as [u1]lz1 + |uzllz2 + |b+] + [b—| < 85, the following energy estimate
holds:

larlizn + luzllZ> < 164 + |- + 65 6.3)

6.2. Construction of the graph

By the energy estimate (6.3), Lemma 8 and a standard contradiction argument, we con-
struct initial data leading to global solutions close to the ground state Q.
Let e = (g1, &2) € Ag (see (1.8)). Then the condition (e, Z1) = 0 rewrites

(81, Y()) + (82, 1)0_1Y0) = 0.
Define b_(0) and (u1(0), u5(0)) such that
b_(0) = (1, Yo) = —(e2, vy ' Yo)

and
e1 =b_(0)Yo +u1(0), &2 =—b_(0)vo¥o + u2(0).
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Then it holds
(u1(0), Yo) = (u2(0), Yo) = 0.

This means that the initial data in the statement of Theorem 2 decomposes as (see (2.4))
$o = ¢(0) = (Q.0) + (u1,u2)(0) + b_(0)Y- + h(e)Y.

Now, we prove that there exists at least a choice of h(e) = b4 (0) such that the
corresponding solution ¢ is global and satisfies (1.9).

Let 89 > 0 small enough and K > 1 large enough to be chosen. We introduce the
following bootstrap estimates:

luillgr < K*8o and  uz| g2 < K2, (6.4)
|b—| < Ko, (6.5)
lbi| < K°83. (6.6)
Given any (11(0), u2(0)) and b—(0) such that
1O <80, u2(0)lz2 < o, [b—(0)] < do, (6.7)

and b (0) satisfying
b+ (0)] < K°83,
we define
T = sup{t > 0:(6.4)—(6.6) hold on [0, ¢]}.

Note that since K > 1, T is well defined in [0, +00]. We aim at proving that there exists at
least one value of b (0) € [-K>83, K>§2] such that T = co. We argue by contradiction,
assuming that any b4 (0) € [-K>83, K>83] leads to T < oo.

First, we strictly improve the estimate on (¥1, uz) in (6.4). Indeed, by estimates (6.3)
and (6.5)—(6.6), it holds

lurllZ + luzllZ> < Cs(K'°85 + K285 + 63)

for some constant Cs > 0. Thus, under the constraints
1 1 1
CsK'082 < ZK“, CsK? < ZK“, Cs < ZK“, (6.8)

it holds

3
2 2 462
heall + Nuzllz> = 7 K.

which strictly improves (6.4).
Second, we use (5.11) to control b_. By (6.4)—(6.6), since |wll, < [[u1]l g1, it holds

i (esztbz)

T < Co(K'°85 + K°53)e>™!

for some constant C¢ > 0. Thus, by integration on [0, ¢] and using (6.7), we obtain
C
b2 < 2—6(1<15<sg + KS83) + 62.
Vo
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Under the constraints

C 1 1
S k1558 < 7K° Gk < K> 1<

K2, 6.9
o (6.9)

FN-

it holds 3
b2 < —K28§

which strictly improves (6.5).

By the previous estimates (under the constraints (6.8)—(6.9)) and a continuity argu-
ment, we see that if 7 < +oo, then |b1(T)| = K°53.

Third, we observe thatif # € [0, T is such that |b4 (1)| = K>§3, it follows from (5.10)
that

d
%(bi) > 2v0b% — 2Calb+ |03 + b2 + |[w]]})
> 200K 185 — C7 K85 (K085 + K*53)

for some constant C; > 0. Under the constraints
1 1
C7K"38% < EvoKm, C7K° < 5vok“’, (6.10)

the inequality
d
E(bi) > voK'%85 >0

holds. By standard arguments, such transversality condition implies that 7 is the first time
for which b4 (t)| = K°§% and moreover that 7 is continuous in the variable b (0) (see
e.g. [7,8] for a similar argument). Now, the image of the continuous map

b4+ (0) € [-K>83, K°83] = by (T) € {—K>83, K53}

is exactly {—K°82, K°83} (since the image of —K°§87 is —K>82 and the image of K82
is K 583), which is a contradiction.

As a consequence, provided the constraints in (6.8)—(6.10) are all fulfilled, there exists
at least one value of b1 (0) € (—K°83, K>82) such that T = oo.

Finally, we easily see that to satisfy (6.8)—(6.10), it is sufficient first to fix K > 0 large
enough, depending only on Cs, Cg and C7, and then to choose §p > 0 small enough.

6.3. Uniqueness and Lipschitz regularity

The following proposition implies both the uniqueness of the choice of () = b (0), for
a given € € Ay, and the Lipschitz regularity of the graph M defined from the resulting
map & € Ay — h(e). It is thus sufficient to complete the proof of Theorem 2.

Proposition 4. There exist C,6 > 0 such if ¢ and (i) are two even solutions of (1.1)
satisfying

1) = (Q. 012 <8, 9() = (Q.0)|gixr2 <8 forallt =0,  (6.11)
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then, decomposing
$(0) = (0.0) + &+ b (0¥, $(0) = (0.0) +& + b4 (0)Ys
with (e, Z4) = (8, Z4) = 0, it holds
164(0) = b1 (0)] < C82 e — &l g1, - (6.12)

Proof. We use the decomposition and the notation of Section 2.1 for the two solutions
¢ and ¢ satisfying (6.11). In particular, from (2.5), there exists Cy > 0 such that for
allt > 0,

ey + 18 @l + w202 + 18202 + 1b+@)] + b+ (0)] < Cob. (6.13)

We denote
ay =ay —ai, dr = ap — dy, by =by—-by, b_=b_—b_,
U =u; —uy, Uy = Up — Uz,
N=N-N, Nt=Nt—Nt Ny;=Ny—N,.

Then, from (2.6) and (2.7), the equations of (i1, >, bv+, bv_) write

~

M v NO
by =vob — : .
+ = Vo ++2v0, 1 = 1,
N and . 5 - (6.14)
M v No U, = —Luy + N—.
b_ = —vob_ — —,
21)0
We claim that 5 5 5 5
|Nol + INFllz2 < C8(1bs| + 1b-| + lltiyllg1)- (6.15)

Indeed, by Taylor formula, for any v, v, it holds (recall that o > 1)
| (O +v)— f(Q)— f(Q)v—[f(Q+71)— f(Q)— f'(Q)7]]
S o —o|(Jv] + 19)(Q%* " + P! + [52*7")
< Jv = o[(Jv] + [9)).
Using this inequality for N = N — N, where N is defined in (2.8), and (6.13), we obtain
IN| < (la11Yo + lotr]) (Yolar| + Yola1| + luz] + |i#1]).

Using the Cauchy—Schwarz inequality and again (6.13), we find | N ||;2 < §(|d1| + |11])
and estimate (6.15) follows.
Let . .
B+ =03, B-=0b2 Bc=(Liiy, 1) + (i, 102).

By (6.14) and (6.15) (and the coercivity property (6.2) for i1) we have, for some K > 0,
|Bel + 1B+ — 2v0B+| + |B— + 2v0B-| < K8(Be + B+ + =) (6.16)
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For the sake of contradiction, assume that the following holds:

v
0= K8(Be(0) + +(0) + f-(0)) < 15B+(0). (6.17)

We introduce the following bootstrap estimate:
K8(Be + B+ + B-) = vof+. (6.18)

Define
T = sup{t > 0:(6.18) holds} > 0.

We work on the interval [0, T']. Note that from (6.16) and (6.18), it holds
B+ = 2008+ — K8(Be + B+ + B-) = voB. (6.19)

In particular, by standard arguments, B is positive and increasing on [0, T'].
Next, by (6.16) and (6.18),

Be < voB+ < B+
and thus, by integration,
Be(?) < Bc(0) + B+(t) — B+(0) < Bc(0) + B+(2).
Therefore, by (6.17), for § small enough,
K8Be(t) = KS(B(0) + B (1)) = T5B+(0) + K8B1(0) = 2B4.(0).
Then, by (6.16) and (6.18),

B < —2v0B— + voBs.
and so by integration and (6.17),

Bo(1) = VB (0) + vof e [ ds < pO) + 3540,

0
Therefore, for § small enough,

Vo Vo
K8B—(0) < KS(B—(0) + B (1) = T2B4(0) + K84 (1) = 20,
Last, it is clear that for § small, it holds K884 < "—SO,B+.
Therefore, we have proved that, for all ¢ € [0, T'],

K8(Be(t) + fe () + p(1)) < ngm(z).

By a continuity argument, this means that 7 = +oc0. By the exponential growth (6.19)
and B4 (0) > 0, we obtain a contradiction with the global bound (6.13) on |b4|.
Since estimate (6.17) is contradicted, and since it holds

e=u(0) +b_(0)Y., &=a(0)+h_(0)Y. with ((0),Y.) = (#(0),Y.) =0,

we have proved (6.12). [
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