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Abstract. We prove, under certain conditions on .˛; ˇ/, that each Schwartz function f such that
f .˙n˛/ D bf .˙nˇ / D 0 for all n � 0 must vanish identically, complementing a series of recent
results involving uncertainty principles, such as the pointwise interpolation formulas by Radchenko
and Viazovska and the Meyer–Guinnand construction of self-dual crystaline measures.
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1. Introduction

Given an integrable function f W R! C, we define its Fourier transform bybf .�/ WD Z
R
f .x/e2�ix�� dx: (1.1)

Let us consider the following classical problem in Fourier analysis:

Question 1.1. Given a collection C of functions f W R! C, what conditions can we
impose on two sets A;bA � R to ensure that the only function f 2 C such that f .x/ D 0
for every x 2 A and bf .�/ D 0 for every � 2 bA is the zero function?

Inspired by the notion of Heisenberg uniqueness pairs introduced by Hedenmalm and
Montes–Rodrígues in [10] (see also [9,12]), we refer to such pair of sets .A;bA/ as a Four-
ier uniqueness pair for C for a natural reason: the values of f .x/ for x 2 A and bf .�/ for
� 2 B determine at most one function f 2 C . For simplicity, when A D bA, we will say
that A is a Fourier uniqueness set for C .

Perhaps the most classical result which answers such a question is the celebrated
Shannon–Whittaker interpolation formula, which states that a function f 2 L2.R/whose
Fourier transform bf is supported on the interval Œ� ı

2
; ı
2
� is given by the formula

f .x/ D

1X
kD�1

f

�
k

ı

�
sinc.ıx � k/;
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where convergence holds both in the L2.R/ sense and uniformly on the real line, and
sinc.x/ D sin.�x/

�x
. This means that the pair 1

ı
Z and RnŒ� ı

2
; ı
2
� forms a Fourier unique-

ness pair for the collection C D L2.R/. More recently, Radchenko and Viazovska [16]
obtained a related interpolation formula for Schwartz functions: there are even functions
ak 2 �.R/ such that, for any given even function f W R! C that belongs to the Schwartz
class �.R/, one has the following identity:

f .x/ D

1X
kD0

f .
p
k/ak.x/C

1X
kD0

bf .pk/bak.x/; (1.2)

where the right-hand side converges absolutely. This interpolation result has as imme-
diate consequence: the set

p
ZC of square roots of non-negative integers is a Fourier

uniqueness set for the collection of even1 Schwartz functions.
The two theorems we just presented to motivate our question are, in fact, also instances

of the intimate relationship between interpolation and summation formulas. Indeed, as
previously mentioned, the Shannon–Whittaker interpolation formula is directly related to
the Poisson summation formula X

m2Z

f .m/ D
X
n2Z

bf .n/;
and the result by Radchenko and Viazovska is, in fact, a by-product of the development of
several summation formulas, having relationship to modular forms and the sphere packing
problem (see, for instance, [6, 7, 17]). In fact, the lower bound for the Fourier analysis
problem corresponding to the sphere packing problem (see [4]) is directly related to the
Poisson summation formula for lattices: if ƒ � Rn is a lattice with fundamental region
having volume 1, then X

�2ƒ

f .�/ D
X
��2ƒ�

bf .��/;
whereƒ� denotes the dual lattice ofƒ:Also, in [5], the authors need a summation formula
stemming from an Eisenstein series E6, which implies, in particular, that for each radial
Schwartz function f W R12 ! C, there exists constants cj > 0 such that

f .0/ �
X
j�1

cjf .
p
2j / D �bf .0/CX

j�1

cjbf .p2j /:
These concepts seem to be all tethered to the notion of crystaline measures and self-
duality, as discussed in [13–15]. A crystaline measure is essentially a tempered distribu-
tion with locally finite support whose Fourier transform has these same properties. For
instance, Poisson summation implies that

ıZ D
bıZ;

which shows that the usual delta distribution at the integers is not only a crystaline meas-
ure, but also a self-dual one with respect to the Fourier transform. Meyer then discusses
other examples of crystaline measures with certain self-duality properties, and, simil-

1In [16], the authors also have results for functions which are not even, but we chose to present
this version to keep technicalities to a minimum.
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arly to the strategy used by Radchenko and Viazovska, uses modular forms to construct
explicit examples of non-zero crystaline measures � supported in ¹˙

p
k C a; k 2 Zº, for

a 2 ¹9; 24; 72º: It is interesting to point out that Meyer calls out the readers attention to
the highly unexplored problem of analysing when there is a non-zero crystaline measure
� such that both itself and its Fourier transform have support on a given locally finite set
¹�k W k 2 Zº:

Back to Fourier uniqueness pairs, while both the Shannon–Whittaker and Radchenko–
Viazovska results provide Fourier uniqueness pairs by means of interpolation identities,
such explicit formulas are not always available and usually depend on special properties
of the sets involved, which are somewhat rigid. In the case of the Shannon–Whittaker
formula, the set 1

ı
Z plays an special role because of the Poisson summation formula. In

the case of the Radchenko–Viazovska interpolation, the set
p

ZC becomes important due
to special properties of certain modular forms involved in their proofs. Perturbing these
sets breaks down the proofs of these theorems, and sometimes even the existence of such
interpolation formulas. Nevertheless, the Fourier uniqueness pair property is inherently
less rigid as a condition than an interpolation formula, which might lead to uniqueness
results even in the absence of possible interpolation formulas.

For instance, define a set ƒ � R to be uniformly separated if there is a number
ı D ı.ƒ/ > 0 such that j� � �0j > ı whenever �; �0 2 ƒ and � ¤ �0. Given a uniformly
separated setƒ, we define its lower density and upper density, respectively, as the numbers

D�.ƒ/ D lim inf
R!1

inf
x2R

jƒ \ Œx �R; x CR�j

2R
;

DC.ƒ/ D lim sup
R!1

sup
x2R

jƒ \ Œx �R; x CR�j

2R
:

When these numbers coincide, we call it the density of ƒ. As a corollary of the work of
Beurling [2] and Kahane [11] about sampling sets, any pair ƒ and RnŒ�2�ı; 2�ı� forms
uniqueness sets for L2.R/ if ƒ is uniformly separated and D�.ƒ/ > ı. This means: any
uniformly separated set that is more dense than 1

ı
Z produces a pair of uniqueness sets

for L2.R/, and one can readily see that this condition, at least in terms of density, is
essentially sharp just by analysing subsets of 1

ı
Z.

Another instance of this density situation has to do with the aforementioned Heisen-
berg uniqueness pairs. In [10], the authors study pairs of sets .�;ƒ/, where � � R2,
which is a finite disjoint union of smooth curves, and ƒ � R2, which have the following
property: whenever a measure � supported in � , which is absolutely continuous with
respect to the arc length measure of � , has Fourier transform b� equal to zero on the set
ƒ, then � D 0. If a pair .�;ƒ/ has this property, it is called a Heisenberg uniqueness pair.
One of the main results of [10] is the following: Let � D ¹.x; y/ 2 R2 W xy D 1º be the
hyperbola, and ƒ˛;ˇ be the lattice cross

.˛Z � ¹0º/ [ .¹0º � ˇZ/;

where ˛ and ˇ are positive numbers. Then .�;ƒ˛ˇ / forms a Heisenberg uniqueness pair
if and only if ˛ˇ � 1. This provides yet another example of the interplay between con-
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Fig. 1. In blue, the closure of the region A, with the line ˛ C ˇ D 1 in black.

centration and uniqueness properties: there is a threshold of concentration one needs to
ask in order to maintain the uniqueness property, and increasing the concentration does
not affect the uniqueness property.

By comparing the aforementioned interpolation theorems to the considerations in [15]
about crystaline measures, one is naturally lead towards the following modified version of
Meyer’s question: if a sequence is “more concentrated than

p
Z”, does it define a Fourier

uniqueness set? For which notion of “more concentrated” could such a result possibly
hold? We obtain partial progress towards this problem.

Theorem 1.2. Let 0 < ˛; ˇ < 1 and f 2 �.R/. Then:

(A) If f .˙ log.nC 1/// D 0 and bf .˙n˛/ D 0 for every n 2 N, then f � 0.

(B) Let .˛; ˇ/ 2 A, where

A D

²
.˛; ˇ/ 2 Œ0; 1�2 W ˛ C ˇ < 1; and either ˛ < 1 �

ˇ

1 � ˛ � ˇ

or ˇ < 1 �
˛

1 � ˛ � ˇ

³
:

If f .˙n˛/ D 0 and bf .˙nˇ / D 0 for every n 2 N, then f � 0. (See Figure 1.)
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Theorem 1.2 will follow by complex analytic considerations. We will prove that f
and bf actually have better decay than usual Schwartz functions by using the fact that the
sequence of zeros of f and bf grows at a certain rate, as well as the information we can
obtain about the zeros of their derivatives. Once the decay is obtained, we prove either f
or bf admits an analytic extension of finite order, and conclude f is the zero function by
invoking the converse of Hadamard’s theorem about growth of zeros of an entire function
of finite order. It will also become clear from the proof that the condition on the exponents
.˛; ˇ/ on part (ii) of Theorem 1.2 is a barrier of our method. We postpone a more detailed
discussion about sharpness of our results to the final section of this paper.

Lastly, in order to better compare our results with the ones in [15] and [16] we state
the diagonal case of Theorem 1.2.

Corollary 1.3. Let ˛ < 1 �
p
2
2
: Then, if f 2 �.R/ is such that f .˙n˛/ D bf .˙n˛/ D 0

for each n 2 N, one has f � 0:

1.1. Organisation and notation

This article is organised as follows. In Section 2, we mention a couple of basic ideas
associating the denseness of zeros of a function and its pointwise decay. In Section 3,
we prove the first assertion in Theorem 1.2, and in Section 4 we work upon the ideas in
the previous Section to prove the second part of Theorem 1.2. Finally, in Section 5 we
make remarks, mention some corollaries of our methods and state conjectures based on
the proofs presented.

Throughout this manuscript, we will use Vinogradov’s modified notation A . B or
A D O.B/ to denote the existence of an absolute constant C > 0 such that A � C � B: If
we allow C to explicitly depend upon a parameter � , we will write A .� B: In general, C
will denote an absolute constant that may change from line to line or from paragraph to
paragraph in the argument. We adopt (1.1) as our normalisation for the Fourier transform.
Finally, we warn the reader that in some of the computations the constants obtained are
not necessarily the sharpest possible, but are always sufficient for our purposes.

We begin by pointing that we can assume without loss of generality in Theorem 1.2
that f is real-valued and bf is real-valued or purely imaginary-valued. In fact, if we
decompose f D .f1 C f2/C i.f3 C f4/, where f1 and f3 are odd functions and f2 and
f4 are even functions, then all these functions are of Schwartz class, have the zeros pre-
scribed in the statement of Theorem 1.2 and they are real-valued functions whose Fourier
transform is real-valued or purely imaginary-valued. Proving the result for such functions
therefore implies the results for any complex-valued function, therefore from this point
on we assume such conditions.

2. Preliminaries

We begin by pointing that we can assume without loss of generality in Theorem 1.2 that
f is real-valued and bf is real-valued or purely imaginary-valued. In fact, if we decom-
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pose f D .f1 C f2/C i.f3 C f4/, where f1 and f3 are odd functions and f2 and f4 are
even functions, then all these functions are of Schwartz class, have the zeros prescribed in
the statement of Theorem 1.2 and they are real-valued functions whose Fourier transform
is real-valued or purely imaginary-valued. Proving the result for such functions there-
fore implies the results for any complex-valued function, therefore from this point on we
assume such conditions.

2.1. Zeros of Schwartz functions and decay

After that remark that allows us to deal with real functions, we state some properties of
such functions under the condition that they are differentiable.

(I) By the mean value theorem, between two zeros of the kth derivative of a real
function, there is a zero of the .k C 1/st derivative. This means that, as long as
there is a sequence ¹amºm2Z of zeros f such that

lim
m!�1

am D �1; lim
m!1

am D C1;

by an induction argument, for each k � 1 there is a sequence ¹a.k/m ºm2Z such that:

(i) a
.k/
m�1 < a

.k/
m < a

.k/
mC1 and

lim
m!C1

a.k/m D C1; lim
m!�1

a.k/m D �1:

(ii) f .k/.a
.k/
m / D 0, for every m 2 Z.

(iii) For allm 2 N, Œa.k/m ; a
.k/
mC1� is contained in the interval Œam; amCkC1�. This,

in particular, implies the following bound on gaps of consecutive zeros:

ja
.k/
mC1 � a

.k/
m j � jamCkC1 � amj:

In case m 2 ZnN, we can ensure instead that Œa.k/m�1; a
.k/
m � is contained in

Œam�k�1; am�, with a similar control on the gap between consecutive zeros.

(II) As, by the remark in the beginning of the section, we may suppose that bf is either
purely imaginary or real, then in a completely analogous manner we can reproduce
the procedure above for bf : More details on this will be given throughout the text.

Given a function g 2 �.R/, we will use the following notation:

Ik.g/ D

Z
R
jg.y/jjyjk dy:

The integrals Ik.f / and Ik.bf /will play an important role because of the following obser-
vation: whenever a point x lies in an interval of the form Œa

.k/
mC1; a

.k/
m �, Fourier inversion

implies
jf .k/.x/j D jf .k/.x/ � f .a.k/m /j

D

ˇ̌̌̌Z
R

bf .y/.2�iy/k Œe�2�iyx � e�2�iya.k/m � dy
ˇ̌̌̌

� .2�/kC1IkC1.bf /jx � a.k/m j
� .2�/kC1IkC1.bf /ja.k/mC1 � a.k/m j:

(2.1)
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This means that the rate at which the zeros of the derivatives accumulate at infinity
provides extra decay for each derivative itself. We will use this observation iteratively
to improve decay bounds on our functions.

2.2. Fourier transforms of functions with strong decay

In addition to connecting location of zeros to decay of functions, we need to connect
decay of a function to properties of its Fourier transform. The next lemma is going to be
of crucial importance for us throughout the proof.

Lemma 2.1. Let f 2 �.R/ be such that there exist two constants C > 0 and A > 1 for
which jf .x/j . e�C jxj

A
for all x 2 R: Then its Fourier transform bf can be extended to

the whole complex plane as an analytic function with order at most A
A�1

: That is, for all
" > 0,

jbf .z/j ." ejzj AA�1C" :
Proof. Let z D � C i� 2 C: Without loss of generality, in what follows we assume that
� < 0: We simply write bf .z/ D Z

R
e2�iz�xf .x/ dx:

By the decay property of f , it is easy to see that this integral is well-defined for each
z 2 C, and Morera’s theorem tells us that this extension is, in fact, entire. For the assertion
about its order, we have the trivial bound

jbf .z/j � Z
R
e�2��xe�C jxj

A

dx:

In order to prove that the expression on the right-hand side above is ." ejzj
A
A�1

C"

, we
split the real line as

R D A� [ B� [ C�;

where

A� D

²
x 2 R W

ˇ̌̌̌
x �

�
2�j�j

CA

�1=.A�1/ ˇ̌̌̌
� KA

�
2�j�j

CA

�1=.A�1/³
;

B� D

²
x 2 R W x > .KA C 1/

�
2�j�j

CA

�1=.A�1/³
;

C� D

²
x 2 R W x < .1 �KA/

�
2�j�j

CA

�1=.A�1/³
;

and rewrite our integral asZ
R
e�2��xe�C jxj

A

dx D
Z
A�

e�2��xe�C jxj
A

dx C
Z
B�

e�2��xe�C jxj
A

dx

C

Z
C�

e�2��xe�C jxj
A

dx

DW I1 C I2 C I3:
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On the interval over which we integrate in I1, �2��x � C jxjA is at most (an absolute
constant depending on A times) j�j

A
A�1 : This holds because the center of the interval A�

is the critical point of �2��x � C jxjA where this function attains its maximum. As we
know that jA�j .A j�j

1
A�1 ,

jI1j . j�j
1

A�1 eCAj�j
A
A�1 (2.2)

follows. On either the interval defining I2 or on the one defining I3, we see that, for
KA > 0 large enough depending on A,

�2��x � C jxjA � � QCAjxj
A:

Therefore,

jI2j C jI3j .
Z C1
j�j

1
A�1

e�C
0
A
jxjA dx . e�C

00
A
j�j

A
A�1

: (2.3)

One readily notices that (2.2) together with (2.3) implies the result then.

As an immediate corollary, we obtain the following statement, which will be particu-
larly useful in Section 3.

Corollary 2.2. Let f 2 �.R/ be such that, for each A > 1, there is a constant CA > 0
such that jf .x/j .A e�CAjxj

A
for all x 2 R: Then its Fourier transform can be extended

to the whole complex plane as an analytic function with order at most 1.

3. Proof of Theorem 1.2, Part (A)

3.1. Obtaining decay for f

The first idea is to exploit the considerations in Section 2.1 to obtain decay for f:We must,
however, obtain simultaneously bounds on the Fourier transform to somehow improve
the decay on f we obtain at each step. The following result is the key ingredient to this
iteration scheme.

Lemma 3.1. Let f 2 �.R/, and assume that f .˙ log.nC 1// D 0 and bf .˙n˛/ D 0 for
every n 2 N, where ˛ 2 .0; 1/: Then, for jxj > log.k C 1/ and j�j > .2j C 1/˛ , one has

jf .x/j � .k C 2/.2�/kC1..k C 1/Š/2IkC1.bf /e�.kC1/jxj D �ke�.kC1/jxj;
jbf .�/j � .j C 1/Š.22�˛�/jC1˛jC1IjC1.f /j�j.˛�1˛ /�.jC1/

D bCj j�j.˛�1˛ /�.jC1/:
(3.1)

Proof. We first prove the assertion about bf , as it will be also of interest to Lemma 4.1 in
the next section. We start out by using the notation from Section 2.1; that is, we denote
the sequence of zeros of the kth derivative of bf to be ¹a.k/m ºm2Z:

Let � � 0. First we consider n such that � 2 Œn˛; .nC 1/˛�. This implies n˛�1 �
21�˛�

˛�1
˛ . By inequality (2.1), we have

jbf .�/j � 2�j.nC 1/˛ � n˛jI1.f / � 2�˛n˛�1I1.f /
� 22�˛�˛�

˛�1
˛ I1.f /:

(3.2)
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This gives us a preliminary bound on bf : By observation (I) (i), as long as � > .2j C 1/˛ ,
we can conclude there is n � j C 1 such that � 2 Œa.j /n ; a

.j /
nC1� � Œn

˛; .nC j C 1/˛�. This
means that

n˛�1 � 21�˛�
˛�1
˛ ;

and therefore

jŒbf �.j /.�/j � .2�/jC1ja.j /nC1 � a.j /n jIjC1.f /
� .2�/jC1j.nC j C 1/˛ � n˛jIjC1.f /

� ˛.j C 1/.2�/jC1n˛�1IjC1.f /

� 21�˛˛.j C 1/.2�/jC1�
˛�1
˛ IjC1.f /:

(3.3)

By induction, one can iterate this process and obtain decay of the order of �.
˛�1
˛ /j for

� > .2j C 1/˛ . More precisely, suppose that, for given k 2 ¹0; 1; : : : ; j � 1º we have

jŒbf �.j�k/.�/j � ˛kC1.j C 1/ � j � � � .j � k C 1/
� .2�/jC1.21�˛/kC1IjC1.f /�

.˛�1˛ /.kC1/;
(3.4)

whenever � > .2j C 1/˛:Using the fundamental theorem of calculus, we have, whenever
y 2 Œa

.j�k/
m ; a

.j�k/
mC1 /,

jŒbf �.j�kC1/.y/j � ˇ̌̌̌Z a
.j�k/
mC1

y

Œbf �.j�k/.�/ d�
ˇ̌̌̌

� ja
.j�k/
mC1 � a

.j�k/
m j˛kC1.j C 1/ � j � � � .j � k C 1/.2�/jC1

� .21�˛/kC1IjC1.f /y
.˛�1˛ /.kC1/

� ˛kC2.j C 1/j � � � .j � k/.2�/jC1.21�˛/kC1IjC1.f /y
.˛�1˛ /.kC2/:

The last two inequalities follow from the hypotheses we have made on Œbf �.j�k/ and the
bounds we have on the gaps ja.k/m � a

.k/
mC1j in terms of gaps of zeros of bf , as long

as y > .2j C 1/˛: Of course, (3.4) holds for k D 0, and thus, by the aforementioned
argument, also for all k D 1; : : : ; j: In other words,

jbf .�/j � .j C 1/Š.22�˛�/jC1˛jC1IjC1.f /�.˛�1˛ /.jC1/; (3.5)

as long as � > .2j C 1/˛: Applying the same analysis for negative � 2 Œa.k/m�1; a
.k/
m �,

together with the observation we made about control on the gaps of the zeros of the kth
derivative of bf in case m � 0 (see Section 2.1) yields the desired result for bf :

In order to obtain the asserted bound for f , we run the same scheme of proof, paying
attention to the fact that, if ¹b.k/m ºm2Z denotes the sequence of zeros of the kth derivative
of f , in the sense of Section 2.1, then Œb.k/m ; b

.k/
mC1� � Œlog.mC 1/; log.mC k C 2/�, and

jb.k/m � b
.k/
mC1j � log

�
1C

k C 1

mC 1

�
�
k C 1

mC 1

� .k C 1/ � .k C 2/ � e� log.mCkC2/:
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If x � 0 belongs to the interval Œb.k/m ; b
.k/
mC1�, then the expression above is bounded by

.k C 1/ � .k C 2/ � e�x : This implies, in particular, that

jf .k/.x/j � .2�/kC1IkC1.bf /.k C 1/ � .k C 2/e�jxj;
as long as x � log.1C k/: In a completely analogous fashion to what we did for bf , one
may use this bound to, inductively, attain the bounds

jf .k�j /.x/j � .2�/kC1IkC1.bf /.k C 2/..k C 1/ � k � � � .k � j C 2//2
� .k � j C 1/e�.jC1/jxj

for x � log.1C k/ and j 2 ¹0; 1; : : : ; kº: The same analysis, together with the observa-
tions mentioned in Section 2.1, implies the desired decay for x < 0 as well. We leave
out the details to the induction procedure, for they essentially only replicate equations
(3.2)–(3.5).

We now describe, in a concise way, the iteration scheme to be undertaken. In order to
do so, let f 2 �.R/ satisfy the same assumptions as in Lemma 3.1; that is, it has zeros
at ˙ log.1C n/ and its Fourier transform has zeros at ˙n˛ , for some ˛ 2 .0; 1/: Since
f 2 �.R/, there is a constant D > 0 such that

jbf .�/j � D:
Hence, the estimates in Lemma 3.1 for bf imply

Ik.bf / � D Z
j�j�.1C2j /˛

j�jkd� CcCj Z
j�j�.1C2j /˛

j�jkC.
˛�1
˛ /j d�

� 2D
1

k C 1
.1C 2j /˛.kC1/ CcCj 1

.1�˛
˛
/j � k C 1

.1C 2j /˛.kC.
˛�1
˛ /jC1/;

as long as we choose j � .kC2/˛
1�˛

. Choosing j D j.k/ to be the smallest integer greater
than .kC2/˛

1�˛
implies

Ik.bf / � 2D 1

k C 1

�
3C

2.k C 2/˛

1 � ˛

�˛.kC1/
CcCj�1C 2.k C 2/˛

1 � ˛

��˛
� A˛

�
k˛.kC1/�1 C bCj �

D A˛
�
k˛.kC1/�1 C .j C 1/Š.22�˛�/jC1˛j Ij .f /

�
:

(3.6)

We also observe that the bound (3.1) in Lemma 3.1 for f with k D 1 implies

Ij .f / � C.f /

Z
R
e�jxjjxjj dx .f j Š; (3.7)

where the implicit constant depends only on f , but otherwise does not depend on any
other parameter. Putting (3.6), (3.7) together with (3.1), we obtain

jf .x/j � k.2�/k..k C 1/Š/3Ik.bf /e�kjxj
� k.2�/k..k C 1/Š/3A˛

�
k˛.kC1/�1 C .j C 1/Š.2�˛/j Ij .f /

�
e�kjxj

� eO.k logk/�kjxj

(3.8)
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for jxj � log.k C 1/, where by O.k log k/ we denote an expression that is bounded by
C˛k log.k C 1/, for some constant depending on ˛: Equation (3.8) implies, as k� ejxj � 1
can be chosen arbitrarily, that for each A� 1, there is cA > 0 such that

jf .x/j .f;A e�cAjxj
A

:

3.2. Viewing bf as an entire function

The final part of the argument uses complex analysis to derive a contradiction. In fact,
by Corollary 2.2, bf is an entire function of order at most 1. The converse to Hadamard’s
factorisation theorem then predicts that the sum of reciprocals of zeros of bf raised to
1C " should converge, no matter which value of " > 0 we choose. But we know that
¹˙n˛ºn�0 is contained in the set of zeros of bf , thereforeX

n�0

1

n.1C"/˛
< C1:

This is a clear contradiction, as long as ˛ < 1: The contradiction came from assuming
that bf 6� 0, and thus we have proved the first part of Theorem 1.2.

4. Proof of Theorem 1.2, Part (B)

Assume, throughout this section, that f 2 �.R/ satisfies the hypothesis of Theorem 1.2,
Part (B). That is, f .˙n˛/ D bf .˙nˇ / D 0 holds for all n 2 N, where .˛; ˇ/ 2 A are
indices belonging to the range described in the introduction.

4.1. Obtaining simultaneous decay

The first key step of the proof is, analogously to the proof of Part (A), obtaining enough
decay on either f or bf in order extend the other as an analytic function. One of the key
estimates for that will be an iteration scheme of inequality (2.1), which is the content of
the next lemmata.

Lemma 4.1. Let f 2 �.R/ and assume that f .˙n˛/ D 0 and bf .˙nˇ / D 0 for every
n 2 N, where 0 < ˛; ˇ < 1. Then, for jxj > .2k C 1/˛ and j�j > .2j C 1/ˇ , one has

jf .x/j � .k C 1/Š.22�˛�/kC1˛kIk.bf /jxj.˛�1˛ /k
D Ckjxj

.˛�1˛ /k ;

jbf .�/j � .j C 1/Š.22�ˇ�/jC1ˇj Ij .f /j�j.ˇ�1ˇ /j
D bCj j�j.ˇ�1ˇ /j :

The proof of this lemma is identical to that of the second assertion in Lemma 3.1, and
we therefore omit it. Lemma 4.1 means that one can obtain very good decay for f .x/ for
large values of x by sacrificing the potentially large number

Ck D .k C 1/Š.2
2�˛�/kC1˛kIk.bf / D BkIk.bf /:
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Thus, we need some device in order to control the growth of these numbers in terms of k:
The number Bk is easy to estimate by using Stirling’s formula. Indeed,

Bk � Ce
�.kC1/C.kC 32 / log.kC1/Ck log.2�˛/

� c˛e
k logkC.log.2�˛/C1/kC 32 logk :

(4.1)

Meanwhile, the number Ik.bf /, although finite due to the fact that the functions we are
interested in belong to the Schwartz class, might grow at an undesirable rate. Our next
step is to use Lemma 4.1 in order to produce the appropriate control over the growth of
such integrals.

Lemma 4.2. Let f 2 �.R/ and assume that f .˙n˛/ D 0 and bf .˙nˇ / D 0 for every
n 2 N, where 0 < ˛ C ˇ < 1. Then there exists � D �.˛; ˇ/ > 0 such that

Ik.f / .f;˛;ˇ e�k logkCO.k/:

Proof. From the proof of Theorem 1.2, Part (A), and generally the remarks made after
the proof of Lemma 3.1,

Ik.bf / � 2D 1

k C 1

�
3C

2.k C 2/ˇ

1 � ˇ

�ˇ.kC1/
CcCj�1C 2.k C 2/ˇ

1 � ˇ

��ˇ
� Aˇ

�
kˇ.kC1/�1 C bCj �;

where jbf j � D pointwise. We can now apply the same inequality to Ik.f /, and obtain

Ik.f / � A˛
�
k˛.kC1/�1 C Cyj

�
; (4.2)

wherebj Dbj .k/ is the smallest integer larger than .kC2/˛
1�˛

. Keeping in mind that

Ck D .k C 1/Š.2
2�˛�/kC1˛kIk.bf / D BkIk.bf /;bCj D .j C 1/Š.22�ˇ�/jC1ˇj Ij .f / D bBj Ij .f /;

one can iterate inequalities (3.6) and (4.2) within each other. More precisely,

Ik.f / � A˛
�
k˛.kC1/�1 C Byj .k/Iyj .k/.

bf /�
� A˛

�
k˛.kC1/�1 C Byj .k/Aˇ

�bj .k/ˇ.bj .k/C1/�1 C bC
j.bj .k//��

D A˛
�
k˛.kC1/�1 C Byj .k/Aˇ

�bj .k/ˇ.bj .k/C1/�1 C bB
j.bj .k//Ij.bj .k//.f /��:

This chain of inequalities amounts to the following inequality:

Ik.f / � G.k/CH.k/Ij.bj .k//.f /; (4.3)

where

G.k/ D A˛;ˇ
�
k˛.kC1/�1 C Byj .k/

bj .k/ˇ.bj .k/C1/�1�;
H.k/ D A˛;ˇByj .k/

bB
j.bj .k//: (4.4)
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An observation in order is that, from the way we defined j.n/;bj .n/ for n 2 N,

0 < �.k/ �

�
˛

1 � ˛

��
ˇ

1 � ˇ

�
k .ˇ 1; (4.5)

where we let �.k/ D j.bj .k//: Therefore, we let

 D

�
˛

1 � ˛

��
ˇ

1 � ˇ

�
< 1 ” ˛ C ˇ < 1:

Since we assumed that ˛ C ˇ < 1, we have  < 1 and inequality (4.3) translates directly
to

Ik.f / � G.k/CH.k/I�.k/.f /: (4.6)

The bound (4.6) can be successively iterated, as we are roughly “decreasing the degree”
of the integral Ik to k C cˇ , where we let cˇ > 0 be the constant appearing on the
right-hand side of (4.5).

In order to do such an iteration, we define, for each k 2 N, a sequence of numbers
¹!l .k/ºl2N associated to it as

!lC1.k/ D  � !l .k/C cˇ ; !0.k/ D k:

With this definition and iterating (4.6), keeping in mind (4.5), one obtains

Ik.f / �

m�1X
lD0

"
G.!l .k//

l�1Y
sD0

H.!s.k//

#
CH.!m�1.k// � � �H.!.k//H.k/I�m.k/.f /:

(4.7)

In order for our bounds to behave in a controlled way, we assume at this point that
A˛;ˇ D 1 in (4.4), which is possible simply by dividing f by A˛;ˇ at the cost of an extra
constant depending only on ˛ and ˇ on the desired bounds. We estimate G using (4.1):

G.k/ .˛ e˛.kC1/ logk
C e.1Cˇ/

˛
1�˛ k logkCO.k/

� e�k logkCO.k/; (4.8)

where we let
� D .1C ˇ/

˛

1 � ˛
;

and we have used that the bound controlling G.k/ as a sum of two terms in (4.8) is
bounded by the maximum of the two terms. We estimate H in the same fashion:

H.k/ D Byj .k/
bB
j.bj .k//

.˛ e.
˛
1�˛ /k logkCO.k/ek logkCO.k/

� eık logkCO.k/;

(4.9)

where

ı D
˛

1 � ˛
C  D

˛

.1 � ˛/.1 � ˇ/
:
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This means, on the other hand, when translating estimates (4.8) and (4.9) to (4.7),

l�1Y
sD0

H.!s.k// � exp

 
l�1X
sD0

Œı sk log k C ı Qcˇ log k C  sO.k/CO. Qcˇ /�

!

� eı
1�l

1� k logkCO.k/;

whenever k &ˇ 1 and l .ˇ log k, where we let Qcˇ D
cˇ
1�

: Therefore, using (4.7), we
obtain

Ik.f / �

"
m�1X
lD0

e�
lk logkCO. lk/eı

1�l

1� k logkCO.k/

#

C eı
1�m

1� k logkCO.k/I�m.k/.f /

� me.�Cı/
1
1� k logkCO.k/

C eı
1
1� k logkCO.k/I�m.k/.f /:

We have used, in the inequalities above, the estimate !j .k/ � j � k C Qcˇ several times.
Now, if we choose m to be the least integer larger than � logk

log , we are going to have

Ik.f / � e
�Cı
1� k logkCO.k/

� J.f /;

where
J.f / D

Z
R
jf .x/j.1C jxj/ QcˇC1:

The proof of the lemma is then complete by letting � D �Cı
1�

:

The choice of � given by the proof of Lemma 4.2 is going to be important in the con-
siderations below. In fact, one direct consequence of applying Lemma 4.2 to the estimates
in Lemma 4.1 is that we obtain an explicit decay for bf of the form

jbf .�/j � e.1C�Cı1� /k logkCO.k/
j�jk.

ˇ�1
ˇ
/

D e.1C
�Cı
1� /k logkC.ˇ�1

ˇ
/k log j�jCO.k/;

(4.10)

whenever .1C 2k/ˇ � j�j. Now, if one chooses k � j�j
1
� , the exponent in (4.10) becomes�

1

�

�
1C

�C ı

1 � 

�
log j�j C

�
ˇ � 1

ˇ

�
log j�j

�
j�j

1
� CO.j�j

1
� /:

As long as
1

�

�
1C

�C ı

1 � 

�
<
1 � ˇ

ˇ
;

or equivalently

� >

�
1C

�C ı

1 � 

�
ˇ

1 � ˇ

D
1 � ˛ � ˇ C .2 � ˇ2/˛

1 � ˛ � ˇ

ˇ

1 � ˇ

D
1C ˛ � ˇ.1C ˛ˇ/

1 � ˛ � ˇ
�

ˇ

1 � ˇ
;

(4.11)
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we can conclude that, for some 0 < � < 1,

jbf .�/j .f e�.1��/j�j 1� ; (4.12)

where estimate (4.11) is obviously true for some admissible large �, where by “admiss-
ible” we mean a number such that .1C 2k/ˇ < j�j � k�; or, in other words, so that we
find ourselves within the context of applying Lemma 4.1.

Although (4.12) already gives us some exponential-like decay, which, together with
Lemma 2.1 allows us to extend f to the whole complex plane as an entire function in case
� < 1, we mention that we can further sharpen our results by rerunning the optimisation
algorithm from above. Although the details of such a procedure shall be undertaken in the
next subsection, we state and prove briefly a lemma improving the magnitude of Ik.f /:

Lemma 4.3. Let f 2 �.R/ be such that

jf .x/j � Cf e
�.1��/jxj

1
ı
: (4.13)

Then Ik.f / .f;ı;� �.ı.k C 1//:

Proof. By (4.13), we have

Ik.f / .
Z

R
e�.1��/jxj

1
ı
jxjk dx:

By the change variables x Ý tı

.1��/ı
, we haveZ

R
e�.1��/jxj

1
ı
jxjk dx D

2ı

.1 � �/k.ıC1/

Z 1
0

e�t tı.kC1/�1 dt

D
2ı

.1 � �/k.ıC1/
�.ı.k C 1//;

which directly implies the assertion of the lemma.

4.2. Optimising the exponent

It is important to point out that up to this point the only condition imposed on the pair
.˛; ˇ/ is that ˛ C ˇ < 1. This means that, whenever f is a Schwartz function such that
f .˙n˛/ D 0 and bf .˙nˇ / D 0, then inequality (4.12) holds for some small � and " sat-
isfying (4.11). We now describe an iteration procedure to improve the decay obtained in
the previous subsection, at the cost of extra constraints on the pair .˛; ˇ/.

Let �.bf / denote the infimum of all � > 0 obtained in the previous subsection such
that (4.12) holds. That is, we let

�.bf / D ˇ.1C �Cı
1�

/

1 � ˇ
:

Define �.f / in the same fashion, exchanging the roles of ˛ and ˇ: A careful analysis of
the estimates from the previous subsection implies that

jf .x/j . e�.1�#/jxj
1
a
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holds for jxj &˛;ˇ 1 and any a > �.f /: The process that follows is a way to progressively
decrease the magnitude of both �.f / and �.bf /:

It follows from Lemmata 4.1, 4.3 and estimate (4.10) that

jbf .x/j � e.1C�.f //k logkC.ˇ�1
ˇ
/k log j�jCO.k/:

Define then two sequences ¹anºn2N ; ¹bnºn2N associated to f;bf to be

b0 D �.bf /; a0 D �.f /;

bnC1 D .1C an/
ˇ

1 � ˇ
; anC1 D .1C bn/

˛

1 � ˛
:

(4.14)

Notice that the definition of �.f /; �.bf / and of the sequences, together with a straight-
forward induction argument, implies that an > ˛; bn > ˇ for all n � 0: In spite of their
seemingly sudden occurrence, we will see that these sequences determine, iteratively,
improvements on the exponential-like behaviour of the functions f and bf :

In order to set the iteration process needed to improve the decay of f and bf in motion,
we will need Lemmata 4.1, 4.3 and estimate (4.12). Indeed, if we use Lemma 4.3 with bf –
which satisfies the hypotheses by (4.12) –, we will obtain

IkC1.bf / .f;˛;ˇ;" �.�..bf /C "/.k C 2//
for each " > 0: We can, thus, use this new bound on Ik.bf / in the first assertion of
Lemma 4.1. By doing so, and using Stirling’s formula in order to bound the �-factor,
one obtains

jf .x/j � exp
�
k log k � k

1 � ˛

˛
log jxj C .�.bf /C "/k log k CO".k/

�
for each " > 0 and whenever jxj > .2k C 1/˛: By using that a1 D .1C �.bf // ˛

1�˛
and

that " > 0 was arbitrary, we readily obtain that, whenever a > a1, the choice of k to be
the smallest integer larger than jxj

1
a is allowed (as we know already that an > ˛ for all

n � 0) in such a bound, and calculating it out gives a C1 > 0 so that

jf .x/j .˛;ˇ e�C1jxj
1
a

holds on the real line. In a completely analogous manner, we perform the same process
for bf : By symmetry, for any b > b1,

jbf .�/j .˛;ˇ e� QC1j�j 1b
for some QC1 > 0: In other words, for any " > 0,

jf .x/j .f;" e�C1jxj
1

a1C"

; jbf .�/j .f;" e� QC1j�j 1
b1C"

for each x; � 2 R:We then reiterate this procedure indefinitely: recalling the definition of
the exponent sequences ¹anºn�0; ¹bnºn�0 given in (4.14), suppose that, for some given
n � 0 the inequality

jf .x/j .f;" e�Cnjxj
1

anC"
; jbf .�/j .f;" e� QCnj�j 1

bnC"
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holds for some pair of constants Cn; QCn > 0 (that may also additionally depend on " > 0,
but not on x or �), whenever " > 0: Lemma 4.3 applies directly to show that

IkC1.f / .f;˛;ˇ;ı �..an C ı/.k C 1//; IjC1.bf / .f;˛;ˇ;ı �..bn C ı/.k C 1//;

whenever ı > 0:Using these bounds in Lemma 4.1, we obtain, whenever jxj > .2k C 1/˛

and j�j > .2j C 1/ˇ ,

jf .x/j � exp
�
k log k � k

1 � ˛

˛
log jxj C .an C ı/k log k COı.k/

�
;

jbf .�/j � exp
�
j log j � j

1 � ˛

˛
log jxj C .bn C ı/j log j COı.j /

�
for all ı > 0: Setting k to be the smallest integer larger than jxj1=.anC1C"/ and j to be
the smallest integer larger than j�j1=.bnC1C"/, where " > 0 is fixed, and carrying out the
computations yields that there are constants CnC1; QCnC1 > 0 so that

jf .x/j .f;" e�CnC1jxj
1

anC1C"

; jbf .�/j .f;" e� QCnC1j�j 1
bnC1C"

;

closing the inductive procedure. Notice that the constants Cn; QCn are allowed to depend
on n and even on " > 0, but not on x or �:

In order to reach the best possible threshold for the exponential decay of f and bf ,
we need still to analyse the limiting behaviour of the sequences ¹anºn�0; ¹bnºn�0: To that
extent, we define

�1.˛; ˇ/ D
˛

.1 � ˛/.1 � ˇ/
; �2.˛; ˇ/ D

ˇ

.1 � ˛/.1 � ˇ/
:

A computation with (4.14) shows that we actually have

anC2 D �1 C an; bnC2 D �2 C bn:

As  < 1, we see that both ¹a2nºn�0 and ¹b2nºn�0 are convergent sequences, with limit

L1.˛; ˇ/ D lim
n!1

a2n D
˛

1 � ˛ � ˇ
; L2.˛; ˇ/ D lim

n!1
b2n D

ˇ

1 � ˛ � ˇ
:

This implies that, for all " > 0, there are constants C; QC D C"; QC" > 0 so that

jf .x/j .f;" e�C jxj
1

L1.˛;ˇ/C"

; jbf .�/j .f;" e� QC j�j 1
L2.˛;ˇ/C"

: (4.15)

Notice that, if �.f / > L1.˛; ˇ/ and �.bf / > L2.˛; ˇ/, it can be proven (for instance from
(5.2)) that the sequences ¹anºn�0; ¹bnºn�0 are decreasing, and (4.15) is the best exponen-
tial decay we could expect for f;bf with our methods. Notice that condition (4.11) gives
us that �.bf / > L2.˛; ˇ/ as desired, which proves that the iteration scheme presented
achieves, in fact, a better exponential decay for f;bf than the original one.

Remark. If we let S��.R/ denote the Gelfand–Shilov space of Schwartz functions ' such
that

sup
x2R
j'.x/ehjxj

1
�
j; sup

�2R
jb'.�/ekj�j 1� j < C1
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for some k; h > 0, then we have actually proved that f 2 QS��.R/ WD
S
�0>�;�0>�

S
�0
�0.R/,

where � D L1.˛; ˇ/ and � D L2.˛; ˇ/: These function spaces are originally defined
through specific decay properties of the Schwartz seminorms ' 7! kx˛@ˇ'k1, and the
equivalence to the higher-order decay statement above is proved through the seminorm
decay. This procedure is in many ways analogous to the one undertaken here to obtain
that f 2 S��.R/, and the relationship between our proof and these function spaces was
recently brought to our attention. For more information on Gelfand–Shilov spaces, see,
for instance, [3, 8] and the references therein.

4.3. Analytic continuation

We wish to derive a contradiction from the fact that f 6� 0: In order to do it, we prove
that either f or bf can be analytically extended with control on its order depending only
on min¹L1.˛; ˇ/; L2.˛; ˇ/º: Without loss of generality, let ˛ � ˇ: Therefore,

L1.˛; ˇ/ < L2.˛; ˇ/

and, in case ˇ � 1 � 2˛, then L1.˛; ˇ/ < 1, and this contains the region A described in
the introduction. We then resort to Lemma 2.1, which enables us to conclude that bf is
extendable as an analytic function of order at most

1

1 � L1.˛; ˇ/
:

By the converse to Hadamard’s factorisation theorem, we must haveX
n�0

n
�

ˇC"
1�L1.˛;ˇ/ < C1

for each " > 0: Thus, we reach an immediate contradiction if

ˇ < 1 � L1.˛; ˇ/:

As we supposed initially that ˛ � ˇ, elementary calculations lead to the following obser-
vation: if .˛; ˇ/ 2 A, then each Schwartz function f such that f .˙n˛/ D bf .˙nˇ / D 0
for all n 2 N, then f � 0: This finishes the proof of Theorem 1.2.

5. Remarks and complements

5.1. Spacing between zeros and bounds for f

In Sections 2, 3 and 4, we have seen how to obtain decay for a Schwartz function given
we have information on the location of the zeros of its derivatives. A main feature, in
particular, of the proof in Section 4 was that the sequence of zeros of the derivative f .k/

satisfies a.k/n 2 Œn˛; .nC k C 1/˛�, which enables us to bound

ja
.k/
nC1 � a

.k/
n j � C˛.k C 1/ja

.k/
nC1j

� 1�˛˛ (5.1)
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if n > k C 1: A careful look into the proofs undertaken above relates the exponent of k
on the left hand side above to the iteration scheme for optimising the exponent performed
in Section 4.2. Indeed, if we were able to improve the factor on the right-hand side of
(5.1) from .k C 1/ to .k C 1/! ; ! < 1, then the sequences an; bn above would take the
form

b0 D �.bf /; a0 D �.f /;

bn D .! C an/
ˇ

1 � ˇ
; anC1 D .! C bn/

˛

1 � ˛
:

(5.2)

A simple computation shows that the limit of this new sequences is strictly smaller than
the one we obtained in Section 4.2. This yields, as a consequence, an improvement on
the set A of admissible exponents for Theorem 1.2, described in the introduction. For
instance, if (5.2) holds, then

lim
n!1

an D
!˛.1C .! � 1/ˇ/

1 � ˛ � ˇ
; lim

n!1
bn D

!ˇ.1C .! � 1/˛/

1 � ˛ � ˇ
:

If ˛ � ˇ and ! satisfies the equation

!.1C .! � 1/ˇ/ D 1 � ˛ � ˇ;

then the argument in Section 4.3 produces a contradiction whenever ˛ C ˇ < 1, which
would be the biggest regime in which one expects a version of our main theorem to
hold. This raises the question whether the decay in (5.1) can be improved. Unfortu-
nately, the answer to this question is negative. Indeed, let a.0/n D n˛ as before. Consider
1the intervals ¹n 2 N W n˛ 2 Œ2j ; 2jC1/º D Œnj ; njC1/, and define the sequence ¹a.k/n º for
n 2 Œnj ; njC1 � k/ and 1

jC1
2
k
˛ < k < 2

j
˛ satisfying

a.k�1/nj
< a.k/nj < .nj C 1/

˛;

a
.k�1/
nC1 > a.k/n > max.a.k�1/nC1 � 2

�10k.1�˛/ j˛ ; a.k�1/n /:
(5.3)

This satisfies, in particular, the growth requirements on the sequence from Section 2.1.
For k > 2

j
˛ ; n 2 Œnj ; njC1/, we let a.k/n be chosen arbitrarily satisfying (I) (i) in the same

subsection. The definition implies, in particular, that

a
.k/
njC1

> a
.0/

njCkC1
�

X
`�k

2�10`.1�˛/
j
˛ > .nj C k C 1/

˛
� c˛2

�10.1�˛/ j˛ :

Therefore,

ja
.k/
njC1

� a.k/nj j � .nj C k C 1/
˛
� .nj C 1/

˛
� 2�10.1�˛/

j
˛

� ˛k � .nj C k C 1/
˛�1
� 2�10.1�˛/

j
˛ :

As nj > 2
j
˛ , the right-hand side is controlled from below by a constant depending on ˛

times k2�
.1�˛/j
˛ : As njC1 � 2

1
˛ 2

j
˛ , estimate (5.1) is sharp for k < 2

j
˛ : Replicating the

same argument for all j > 1 and concatenating the sequences together implies the desired
sharpness for all k � 1:
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Nevertheless, a question still remaining is whether a decay better than (5.1) can hold
on average. We have used this estimate on the gap between zeros of the kth derivat-
ive to obtain decay for f .k/ pointwise. It could happen, though, that one obtains better
decay averaging over large intervals, rather than doing pointwise evaluation. This intuitive
thought is partially backed up by the fact that, for n 2 Œnj ; njC1 � k/, the average gap

ja
.k/
nC1 � a

.k/
n j

is of the same order of 2�.1�˛/
j
˛ , as long as n � k � 2

j
˛ : We show here that this phe-

nomenon does not happen in case the sequence of zeros ¹a.k/n º has structure similar to
the counterexample above. Considering the bound (2.1), we wish to bound the average of
f .k/ over the interval Œ2j ; 2jC1/: A computation shows that« 2jC1

2j
jf .k/.x/j dx .

1

2j
.2�/kIkC1.bf /

 njC1X
lDnj�k

ja
.k/

lC1
� a

.k/

l
j
2

!
: (5.4)

Notice that each of the ja.k/
lC1
� a

.k/

l
j terms is bounded by C˛ � .k C 1/2�.1�˛/

j
˛ , for some

absolute C˛ > 0: Our problem is equivalent to the following: we have a sequence of N
non-negative real numbers ¹cj ºNjD1 such that

PN
jD1 cj D A and 0 < cj � B: What is the

maximum of
NX
jD1

c2j ; (5.5)

and when is it attained? By fixing all but two variables, it is easy to see that the maximum
of (5.5) happens when the cj are all either B or 0. As

NX
jD1

cj D A;

the optimal value happens when there are � A
B

different indices j for which cj D B , and
then the maximal value of (5.5) is � B � A: Applying this analysis to (5.4) yields that« 2jC1

2j
jf .k/.x/j dx . .2�/kIkC1.bf /C˛ � .k C 1/2�.1�˛/ j˛ ; (5.6)

as long as k � 2
j
˛ , which is essentially the same as we obtained before. In order to prove

that there is a sequence with the behaviour described above, we define a sequence ¹a.k/n º
of the following form: on the interval Œnj ; nj C k C 1/, we define our sequence exactly as
in (5.3); we then do the same construction as in (5.3) on Œnj C k C 1; nj C 2.k C 1//, but
with nj C k C 1 in place of nj : Similarly, we do it for each of the � 1

k
2
j
˛ intervals of the

form Œnj C `.k C 1/; nj C .`C 1/.k C 1//: The sequence obtained that way will nearly
maximise the square sums, in the sense that there are going to be � 1

k
2
j
˛ terms close

to � k2�.1�˛/
j
˛ , and the remaining ones will be close to zero. A computation shows that

the bound (5.6) holds in the same way for this sequence.
These examples indicate that not much more can be improved in our methods in terms

of the range of exponents A above without additional information about the location of
the sequences of zeros ¹a.k/n ºk�0; n2Z:
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5.2. Generalisations of Theorem 1.2

5.2.1. Conditions on the sets of zeros. One might wonder if the sequences in Theorem 1.2
being composed of powers and logarithms of integers plays an important role in our
proofs, but it does not. The spacing of the zeros comes into the proofs in order to produce
the first decay estimates, and for that the important piece of information that plays a role
is the bound (5.1), which comes from the distance between two consecutive zeros of the
derivatives of f , and the growth condition of the sequence of zeros of f and bf . In other
words, if f .˙an/ D f .˙bn/ D 0, then it is sufficient to have two positive numbers �
and ! such that

� � ! > 1;

jakCn � anj � CkjakCnj
��;

jbkCn � bnj � CkjbkCnj
�!

in order to apply the same procedure as in Lemma 4.2 and obtain the initial degree of
exponential decay. Now, in order to optimise the exponent as in Section 4.2, we need

janj � Cn
1
1C� ; jbnj � Cn

1
1C! ;

where .˛; ˇ/ D . 1
1C�

; 1
1C!

/ belong to the region A in Theorem 1.2. This means our res-
ults are stable under small perturbations of the sequences of zeros. In fact, one can even
delete a large number of zeros and still get the same results. One should compare, for
instance, to the interpolation result (1.2) mentioned in the introduction, whose proof, to
the best of our knowledge, is rigid to the fact that the interpolation nodes are the square
roots of the natural numbers, and the construction of the interpolation basis itself shows
that one cannot remove any term from the sequence without breaking down the final result.

5.2.2. Conditions on the functions. Another very natural question that arises from the res-
ults is if it is completely necessary to assume the functions involved are in the Schwartz
class. Perhaps the result could hold with more relaxed conditions, but our proof rely heav-
ily on finiteness of Ik.f / and Ik.bf / for every k � 0, and this implies, although not in
a straightforward manner, that f is a Schwartz function. For the sake of completeness,
we outline the proof of this fact.

First of all, by Fourier inversion and the Riemann-Lebesgue lemma, finiteness of
Ik.bf / implies that f is of C1 class with all derivatives bounded and converging to zero
at infinity. Now, we only need to prove polynomial decay of all the derivatives of f , and
in order for that to be true we start by proving that f has polynomial decay. For a fixed
N > 0, we define the set

Ej;N D Ej D ¹x 2 Œ2
j ; 2jC1/ W jxjNf .x/ > 1º:

From Chebychev’s inequality, we have

jEj j �

Z 2jC1

2j
jf .x/jjxjN dx � 2�jN I2N .f /:



J. P. G. Ramos, M. Sousa 4348

This means there is y 2 Ej and x 2 Œ2j ; 2jC1/nEj such that jx � yj � 2�jN I2N .f /. By
the aforementioned fact that f 0 is bounded, we have

jf .y/j � jf .x/ � f .y/j C jf .x/j

� Cf jx � yj C jxj
�N

.N;f jyj�N :

Therefore f has polynomial decay of any order. Now, in order to propagate this decay to
every derivative, we combine the fact that f 00 is a bounded function and jf .x/j . jxj�N
with a Taylor series remainder argument in order to obtain

jf 0.x/j . jxj�
N
2 :

This implies polynomial decay for f 0. Iterating this argument with higher-order derivat-
ives implies that f is of Schwartz class.

5.2.3. Radial versions for other dimensions. A very natural generalisation one could
think of is that of asking the same question for higher dimensional functions. Of course,
the notion of density would have to be redefined for general functions of several variables
since one can easily construct functions that vanish along uncountable sets, such as mani-
folds, but if one restricts its attention to the case of radial functions, similar questions will
naturally arise. In fact, if we consider �rad.Rd / to be the class of radial Schwartz class
on Rd , in [7] the authors study interpolation formulas in this radial setting, and dimen-
sional differences come into the fold. Indeed, one can deduce that the lattice Z4 forms
a Fourier uniqueness set for a certain class of radial functions in dimension d D 4 starting
from the result of Hedenmalm and Montes–Rodrígues for d D 0 via a duality argument,
which is an analogue of the uniqueness part of the Radchenko–Viazovska interpolation,
since radial functions that vanish on Z4 will vanish on all spheres of radius equal to the
square root of an integer by Lagrange’s four-square theorem. We refer the reader to [1]
for more information on this beautiful connection.

These considerations motivate the question: for which exponents .˛; ˇ/ does the pair
.¹n˛ºn2ZC ; ¹n

ˇ ºn2ZC/ forms a Fourier uniqueness pair for �rad.Rd /? Turns out in this
setting the same ideas already introduced here apply to this problem, and we outline the
steps here.

Step 1. By replacing f .k/ by the kth-order radial derivative @kr f , one can run the same
game of intermediate zeros as in section 2.1 to get high-order polynomial decay with loss
on the constants involved in terms of Ik;d .f / and Ik;d .bf /, where

Ik;d .g/ D

Z
Rd
jg.x/jjxjk dx:

One can also obtain analogues of Lemmata 4.2 and 4.3. More precisely, one gets the
analogue of inequality (4.3) paying a dimensional constant, which means one can directly
replicate Lemma 4.2 to obtain

jbf .j�j/j .f e�.1��/j�j 1� :
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Lemma 4.3 for the d -dimensional setting will read as the estimate

Ik;d .f / .f;ı;� �.ı.k C d//;

which can be applied in the same fashion in the rest of the iteration procedures to reach
the same order of decay.

Step 2. Hadamard’s theorem on distribution of zeros of entire functions fails to work in
the same fashion for several complex variable functions, so one cannot do the simply
extend the radial functions involved to Cd . The alternative to this is observe that the
Fourier transform of a radial function can be seen as a Hankel transform. We consider the
following Hankel transform:

H�.f /.�/ WD

Z 1
0

f .r/A�.r�/ dr;

where A�.s/ D .2�s/
�J�.2�s/, and J� is a Bessel function of first kind. In this setting,

if we consider ef .r/ D f .r/rd�1, which has the same zeros as f , then

bf .�/ D .2�/d2 Hd�2
2
.ef /.j�j/:

By observing that the function Ad�2
2

can be extended as a real entire function satisfying
the estimate

jAd�2
2
.� C i�/j .d e2�j�j;

it is clear that an analogue version of Lemma 2.1 holds for the Hankel transform.

Step 3. In order to finish, we now combine the analytic extension property of the Hankel
transform and its connections with the Fourier transform mention in Step 2, together with
the decay mentioned in Step 1, one can invoke Hadamard’s theorem in the same fashion
as before and conclude f has to be the zero function, as long as .˛; ˇ/ 2 A, where A is
the set introduced in Theorem 1.2.

5.3. Open problems

Comparing Theorem 1.2 and (1.2), we see that there is a gap in area between the two
pictures. The point .˛; ˇ/ D .1

2
; 1
2
/ considered by Radchenko and Viazovska possesses

a “quasi-uniqueness” property, in the sense that there is essentially one real function who
vanishes on the nodes ˙

p
n and belongs to the Schwartz class. We believe that the ques-

tion of denseness of the sequences .˙n˛;˙nˇ / plays an important role in removing this
rigidity condition, which is reflected on the following conjecture.

Conjecture. Let ˛; ˇ 2 .0; 1/ be such that ˛ C ˇ < 1: If a function f 2 �.R/ satisfies
f .˙n˛/ D bf .˙nˇ / D 0 for all n � 0, then f � 0:

Of course, Theorem 1.2 is partial progress towards this conjecture, but our techniques
do not seem to be immediately susceptible to being generalised in order to conclude the
full conjecture. On the other hand, another interesting problem that, as far as we know, is
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still largely unexplored is that of sequences that grow roughly as a power of an integer,
but do not posses as strong tightness properties as in Section 5.2.1 above.

Question 5.1. Let ˛; ˇ 2 .0; 1/ be such that ˛ C ˇ < 1: Under which conditions does it
hold that, for two sequences .˙cn;˙dn/n�0 such that

lim
n!1

dn

nˇ
; lim
n!1

cn

n˛
< C1

and a function f 2 �.R/ such that f .˙cn/ D bf .˙dn/ D 0 for all n � 0, then f � 0?

The first natural guess is that a result of that kind should hold in the same range as
Conjecture 5.3, but it would already be interesting if one could prove that the uniqueness
property holds under the assumptions in Theorem 1.2. Finally, our last question concerns
what happens on the critical case of Theorem 1.2.

Question 5.2. Let ˛; ˇ 2 .0; 1/ be such that ˛ C ˇ D 1: Suppose f 2 �.R/ is a real
function such that f .˙an˛/ D bf .˙bnˇ / D 0 holds for each natural number n � 0:
Under which conditions on a; b > 0 do we have that f � 0?

This type of questions remains heavily unexplored even in the ˛ D ˇ D 1
2

case, where
we believe that a combination of our present techniques with those of [16] may be useful.
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