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Abstract. We consider the geometric non-linear inverse problem of recovering a Hermitian con-
nection A from the source-to-solution map of the cubic wave equation Cl4¢) + k|¢|®¢ = f, where
k # 0 and Oy is the connection wave operator in the Minkowski space R113. The equation arises
naturally when considering the Yang—Mills—Higgs equations with Mexican hat type potentials. Our
proof exploits the microlocal analysis of non-linear wave interactions, but instead of employing
information contained in the geometry of the wave front sets as in previous literature, we study the
principal symbols of waves generated by suitable interactions. Moreover, our approach relies on
inversion of a novel non-abelian broken light ray transform, a result interesting in its own right.
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1. Introduction

This paper considers an inverse problem for a non-linear wave equation motivated by the-
oretical physics and differential geometry. The main problem we wish to address is the
following: can the geometric structures governing the wave propagation be globally deter-
mined from local information, or more physically, can an observer do local measurements
to determine the geometric structures in the maximal region where the waves can propa-
gate and return back? There has been recent progress on this question when the geometric
structure is space-time itself and the relevant PDEs are the Einstein equations [22].

Here we propose the study of a natural non-linear wave equation when the Lorentzian
background is fixed and the goal is the reconstruction of a Hermitian connection. The
main difference between the inverse problems for the Einstein equations and the equation
considered here is that, in the former case, the geometric structure (the metric) to be
reconstructed appears in the leading order terms, and in the latter case, the structure (the
connection) appears in the lower order terms. This difference poses novel challenges,
since a perturbation in the leading order affects the wave front sets of solutions whereas
lower order perturbations do not.

The leading order terms can frequently be reconstructed via study of distances (or time
separations/earliest arrival times), whereas lower order terms often require reductions to
light ray transform questions. Nevertheless, our approach exploits the recent philosophy
that non-linear interaction of waves creates new singularities and enriches the dynamics
[20,22,27]. As we shall see, this interaction leads to a broken non-abelian ray transform
on lightlike geodesics that has not been previously studied.

Our main long-term goal is the study of inverse problems for the Yang—Mills—Higgs
equation. The present paper is the first step in this direction and our objective here is to
start exposing the main features that this problem will have by considering a simplified,
but non-trivial model case.
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1.1. The Yang—Mills—Higgs equations

Let (M, g) be a Lorentzian manifold of dimension 1 + 3 and consider a compact Lie
group G with Lie algebra g. We choose a positive definite inner product on g invariant
under the adjoint action. To simplify the exposition we discuss the case of the trivial
bundle M x g over M. The Yang-Mills—Higgs equations are PDEs on a pair (4, ®),
where

(A, ®) e C®M;T*M ® q) ® C®(M:q).

Since the bundle M X g is trivial, A is a connection, and it is called the Yang—Mills
potential; @ is the Higgs field. The Yang—Mills—Higgs equations are

D} F4 + [®, D4®] = 0; (D
DiDs® + V(|0 =0, 2)

where Fq := dA + A A A is the curvature of A, D4® := d® + [A, D] is the associ-
ated covariant derivative, and V"’ is the derivative of a smooth function V : [0, c0) — R.
The adoint D} is taken with respect to g and hence (4 := D} D4 is the wave operator
associated with g and A.

An extensively studied case is the Yang—Mills—-Higgs equations with the Mexican hat
type potential,

V(@) = Lk(|®]> - b)>, 3)

where «,b € R; see e.g. [8, (10.5)] where the Lagrangian formulation of the problem is
used. We will consider the potential (3) with k # 0, and to simplify the notations, with
b = 0. The case b # 0 is not substantially different. Our choice can be viewed as the
simplest potential introducing a non-linearity. We refer also to [37] where Yang—Mills—
Higgs equations, with the potential (3), are discussed in a purely mathematical context,
(M, g) being a Riemannian manifold there.

As is well known, equations (1)—(2) are invariant under the group of gauge transfor-
mations which in this case coincides with the set of maps u € C*°(M ; G) and the action
on pairs is

(A, ®) > (u 'du+u'Au, u ' du).

When ® = 0 we obtain the pure Yang-Mills equation D} F4 = 0.

1.2. Formulation of the main results

Dealing with the equations (1)—(2) from the outset might be too ambitious, so here we
propose a simplified model. We shall suppose that we have a trivial bundle £ = M x C”"
and a Hermitian connection A on E giving rise to a covariant derivative d + A. In this
case, the gauge group is U(n). We take V to be the Mexican hat type potential (3) with
b = 0, discard equation (1) completely and focus on the analogue of equation (2) with
M x g replaced by E. That is, we consider the equation

Oa¢ + «|p*p = 0, 4)



X. Chen, M. Lassas, L. Oksanen, G. P. Paternain 4

where ¢ is a section of £, 04 = (d + A)*(d + A) and |¢| is the norm with respect to the
standard Hermitian inner product of C”. We shall further simplify matters by assuming
that M is R!*3 and g is the Minkowski metric.

Let us consider Cartesian coordinates (r = x°, x!, x2, x3) on R!*3, Let €9 > 0 and
define B(eg) = {y € R®: |y| < €0} and

B = (0,1) x B(eo). (5)

We will define a source-to-solution map, associated to (4), that corresponds physically to
measurements gathered in 8. We can think that the measurements are performed by an
observer travelling along the path

w01 = R u@) = (¢,0). (6)

In what follows, we consider only finite time intervals, and write M = (—1,2) x R3. and
let © be a small neighbourhood of the zero section in Cy(3; E). Then the source-to-
solution map

Laf :=¢ls., [f€E, (7

is well-defined, where ¢ is the solution of

Oag +«lpl’p =/ in M,
¢h<0:=0-

We discuss the existence of L4 in more detail in Section 2 below.

The goal of the observer is to determine the Yang—Mills potential A up to the natural
obstructions, given the source-to-solution map L 4. The causal structure of (M, g) encodes
the finite speed of propagation for the wave equation (4). Given x, y € M we say that
x < yif x =y or x can be joined to y by a future pointing causal curve, and denote
the causal future of x € M by #1(x) ={y € M : x < y}. The causal future _# *(x)
is the largest set that waves generated at x can reach. The causal past of a point z € M
is denoted by #7(z) = {y € M : y < z}. If waves generated at x are recorded at z,
the finite speed of propagation dictates that no information on the potential 4 outside the
causal diamond ¢ *(x) N _# ~(z) is obtained.

The model inverse problem is to determine A given L4 in the largest domain possible,
that is, in

®)

D= (TN 7 G, ©)
x,2€8
up to the natural gauge,
A uldu+u!Au, (10)

where u € C*°(D; U(n)) and u|;s = id. The sets O and D are visualized in Figure 2.
Observe that if we have two connections A and B on M such that there exists a
smooth map u : M — U(n) with the property that B = u!'du + u~! Au and u = id,
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then Op = u™'d4u and |ug| = |¢|. Moreover, as f has compact support in & we have
uf = f. Therefore ¢ solves (8) for B if and only if u¢ solves (8) for A, and it follows
that L4 = Lp. This shows that the gauge (10) is indeed natural.

Our main theorem asserts that the model inverse problem has a unique solution, or in
more physical terms, the measurements performed on O, as encoded by L4, determine
the gauge equivalence class of the Yang—Mills potential A4, in the largest possible causal
diamond D. As D is strictly larger than 8, we can view the determination of the equiv-
alence class of A as a form of remote sensing. We emphasize that the gauge equivalence
classes of Yang—Mills potentials, not the potentials themselves, correspond to physically
distinct configurations.

Theorem 1. Let A and B be two connections in RY13 such that Ly = Ly where the
source-to-solution map L4 is defined as above, and Lp is defined analogously, with A
replaced by B in (8). Suppose that k # 0 in (8). Then there exists a smoothu : D — U(n)
such that | = id and B = uw"'du + u~! Au.

It is straightforward to see that L4 = L g implies A = B on 8. The non-trivial content
of the theorem is the gauge equivalence away from O. To see that A and B coincide on U,
we fix y € U and choose ¢ € C5°(3; E) such that ¢(y) = 0. Then for small € > 0 we
have f := e(0a¢ + «|p|?>¢) € €. Since L4 = Lp we see that at y,

3 3
—Aodip+ > Ajd ;¢ =—Bodip+ Y Bjd,¢

Jj=1 Jj=1

(cf. (16) below), and since d¢ at y is arbitrary, we have A = B at y.

The proof of Theorem 1 is based on analysis of interactions of three singular waves. To
explain this briefly, consider a source of the form f = €1 fi + €2 f> + €3 f3 where €; > 0
are small and f; are conormal distributions, and let ¢ = ¢(€), with € = (€1, €2, €3), be
the corresponding family of solutions to (8). Then the cross-derivative

861 8628€3¢|€=0 (11)

satisfies a linear wave equation with a right-hand side that corresponds to a certain product
of d¢; ple=0, j = 1,2,3. As also the functions d¢; p|e=o satisfy the linear wave equation,
we can view the cross-derivative as a result of their interaction. In a suitable microlocal
sense, the cross-derivative has a principal symbol, and we use information contained in
the principal symbol in order to recover a novel broken non-abelian light ray transform of
the connection A, which we will define next.

For a lightlike geodesic segment y : [0, £] — D, denote by P‘;‘ the parallel transport
map with respect to A from y(0) to y(£) along y. We recall that Pf is obtained as the
solution map to a differential equation (see (35) below). The broken non-abelian light

ray transform of the connection A along lightlike geodesics is the composition S;‘zy L=
.P%P;l] parametrized by two lightlike geodesic segments y; : [0,£;] — D, j = 1,2, sat-
isfying

¥1(0), y2(£2) € B, y1(£1) = y2(0). (12)
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We prove the following theorem:

Theorem 2. Let A and B be two connections in R'3 such that S;,‘lzyl = szyl for all

lightlike geodesic segments y; : [0,{;] — D, j = 1,2, satisfying (12). Then there exists a
smoothu : D — U(n) such that

ulg=id and B =u 'du+u!Au

In more physical terms, we can say that the interaction of the three waves d¢; ¢|e=o,
j =1,2,3, produces an artificial source, which can be viewed either as two moving point
sources or as a filament in spacetime, and which emits a wave encoded by the cross-
derivative J¢, 0¢, 03 P|e=0. We show that when the sources f;, j = 1,2, 3, are chosen
carefully, the singular wave front emitted by the artificial source returns to 8. This wave
front is visualized in Figure 1. Stretching the physical analogy further, we can say the
leading amplitude of this singular wave front gives us the information that allows us to
apply Theorem 2 in the proof of Theorem 1.

1.3. Previous literature

Interaction of singular waves has been studied outside the context of inverse problems.
In particular, the wave front set of the cross-derivative (11) was studied in the case of the
1 4 2-dimensional Minkowski space by Rauch and Reed [32]. We also mention [6, 30]
and the recent preprint [33] for later results of similar nature. The previous results on
inverse problems for non-linear wave equations [20,22,27] are based on the study of the
wave front set resulting from the interaction of four singular waves.

In contrast to all the above mentioned works, in the present paper we employ more
precise information on the singular structure of the interaction, encoded by (11), than just
its wave front set. Namely, as already mentioned above, we compute the principal symbol
of (11). The principal symbol contains information on the connection whereas the wave
front set does not.

Paradoxically, Theorem 1 is open for the linear case, k = 0, but a positive solution
is known if A and B are supposed to be time-independent [21]. In the time-dependent
case there are results [35] available only in the abelian case of a line bundle, » = 1, and
it is an open problem if recovery of A in the optimal causal diamond D is possible in
this case. The result [35] assumes that the region where the measurements are available,
corresponding to our U, encloses the region where A is to be determined, corresponding
to our D, in the sense that the latter is a cylinder in the Minkowski space, and the former
is the timelike part of the boundary of the cylinder. This can be viewed as an additional
(pseudo)convexity assumption, not imposed in the present paper.

Let us also mention that the linear, abelian, time-independent case has been studied
extensively (see e.g. [2, 3, 17]), but these results do not carry over to the time-dependent
case. The reason is that the results (and also those in [21]) are based on Tataru’s unique
continuation principle [36], which again is known to fail for equations with time-depen-
dent coefficients [1].
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Fig. 1. The interaction of three pieces of spherical waves, the blue surfaces. Top left: The pieces
propagate along the black lines, and do not intersect yet. Top right: The pieces intersect along the
blue curves. Pairwise intersections do not produce new propagating wave fronts. Bottom left: All the
three pieces intersect in the two black points, moving along the vertical axis over the point where the
black lines intersect. The points act as artificial sources that produce a new propagating wave, the
red surface. The line segment traced by the two points can also be viewed as the projection of a one-
dimensional filament acting as an artifical source. The filament curves in spacetime since the two
points move with a non-constant speed. Bottom right: As time progresses, the red propagating wave

front grows. Eventually it will reach the points where the pieces of the spherical waves originate
from.

We emphasize once more that the focus of the current paper is on the recovery of the
lower order terms in a non-linear wave equation. This makes definite progress towards
Open Problem 5 in [25], and is different from the previous results where only the deter-
mination of the leading order terms is considered. See for instance [20, 27] where the
determination of the metric tensor (or its conformal class) is studied for scalar-valued
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non-linear equations, or [22, 28] where the determination of the metric tensor is studied
for the Einstein equations coupled with different matter field equations. The difference
between recovery of leading and lower order terms is reflected in the key novelty of our
approach, the study of principal symbols instead of wave front sets.

The difference is also apparent in the existing theory of inverse problems for linear
wave equations. The case of a linear wave equation with time-independent coefficients,
and with sources and observations in disjoint sets, illustrates this. In this case the theory is
still under active development, and the best results available are very different for leading
and lower order terms: the recovery of the metric [26] is based on distance functions,
whereas the recovery of the lower order terms [19] is based on focussing of waves. The
latter also requires additional convexity assumptions, not present in the former case.

1.4. A conjecture on higher order non-linearities

One outcome of the current paper is the following emergent principle for dealing with
inverse problems for waves with polynomial non-linearities using an approach similar to
ours. Assume for simplicity that we are in the line bundle case (i.e. » = 1) and consider
an equation of the form

Oag + ¢~ = f, (13)

where « 7 0. Then to recover A (up to gauge) from a source-to-solution map it is neces-
sary to consider the J-fold linearization of (13), where

J > max {3, N}. (14)

The necessity is discussed further in Remarks 2 and 4 below. We conjecture that (14) is
also a sufficient condition, but the present paper establishes this only in the case N = 3.

As mentioned above, the previous results on inverse problems for non-linear wave
equations are based on analysis of four singular, interacting waves. The use of only three
waves in the present paper leads to a more economic proof, and is particularly well-suited
to the cubic non-linearity in (8). A more detailed comparison of interaction three versus
four waves is given at the beginning of Section 3.1.

1.5. Outline of the paper

This paper is organized as follows. Section 2 contains preliminaries mostly having to
do with the direct problem (8). Section 3 contains the microlocal analysis for the inter-
action of three waves and shows that we can recover the broken non-abelian light ray
transform along lightlike geodesics from the knowledge of L 4. Section 4 solves the geo-
metric inverse problem of determining A up to gauge from the broken non-abelian light
ray transform and completes the proof of Theorem 1. Appendix A recalls the theory of
conormal and Intersecting Pair of Lagrangian (IPL) distributions; Appendix B contains
certain technical details concerning symplectic transformations to a model pair of inter-
secting Lagrangians, and Maslov bundles; and Appendix C gives a full description of the
wave front set of the cross-derivative d¢, 0¢, 0e; @ |e=0, that is, the red surface in Figure 1.
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We would like to dedicate this paper to the memory of our friend and colleague Slava
Kurylev who was instrumental in initiating the present line of research on inverse prob-
lems for the Yang—Mills—Higgs equations.

2. Preliminaries

In this section, to accommodate further work, we let (M, g) be an arbitrary, globally
hyperbolic Lorentzian manifold of dimension 1 + m. Also E can be an arbitrary Hermi-
tian vector bundle over M. Recall that a Lorentzian manifold (M, g) is globally hyper-
bolic if there are no closed causal paths in M, and the causal diamond ¢ *(x) N _# ~(z)
is compact for any pair of points x,z € M (see [5]). A globally hyperbolic manifold
(M, g) is isometric to a product manifold R x M, with the Lorentzian metric given by

g =—c(t.x)dr* + go(t.x), (1.x') € R x My, (15)

where ¢ : R x My — R™ is smooth and go is a Riemannian metric on M, depending
smoothly on ¢ (see [4]). Moreover, the vector field d, gives time-orientation on M. To
simplify the discussion, we make the further assumption that all the geodesics of (M, g)
are defined on the whole R.

2.1. Direct problem

We write occasionally V = d + A for the covariant derivative associated to the connec-
tion A, and view it as a map

V:C®M;E) > C®M;T*M Q E).

Writing g = g;;dx'dx’ in coordinates, we denote by |g| and g*/ the determinant and
inverse of g;;, respectively. Moreover, A = A;dx/ is a 1-form, and each 4; is a skew-
Hermitian matrix. Let us now write the wave operator 4 = V*V in coordinates. Con-
sider compactly supported sections ¢ and Y = v dx’ of E and T*M ® E, respectively.
Then

(Vo V) 12(m:1*MeE) = /M 705+ Aid), Y;) g d Vs,

where (-, ) g is the inner product on E, and dV, denotes the volume form on (M, g).
Integrating by parts and using the fact that A is skew-Hermitian, we have

(b V) 2t moE) = — /M<¢, 1720, (18267 y) £ d V.

(9. V) 2007 MoE) = — /M (9.7 Aiyj)p dVy.
Consequently, (4 ¢ takes the form

—lgI720,: (121?87 8,5 ¢) — 287 A; 0,5 — g 720, (1828 Aj)p — gV A; A;.
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Remark 1. To prove Theorem 1, we will need the operator (4 exclusively in Minkowski
space where we can explicitly write

3 3
Dap = 0¢ —2(=Aodip + Y 4;0,,9) + (divA+ 43 =" 42)p.  (16)
j=1

j=1

where [0 and div are the usual wave operator and divergence,

3 3
O¢ =07 —Y 02,6, divA=0,A0— Y 0, 4;.

J=1 Jj=1

Let T > 0 and let us consider the non-linear Cauchy problem

Oap(t,x) = H(t,x,¢(t,x)) + f(t,x) on(—oo0,T) x My,

a7
¢ =0, fort <0,

where H : (R x M) x E — E is a smooth map operating sectionwise such that H (¢, x,0)
=0, and f is a section of E. We will now give sufficient conditions on f in order for (17)
to have a unique solution.

As the leading term of [Cly4 is simply the canonical wave operator on (M, g), acting on
each component of ¢, we can use the standard results for quasilinear hyperbolic equations
to show existence and uniqueness of solutions to this Cauchy problem. See, for example,
[18, Theorem 6 and its proof] (with the notations explained in detail in [23, Appendix C])
or [15, Theorems I-III and proof of Lemma 2.7]. By these results, we know that for an
integer r > m /2 + 2 and any compact set X C (0, T) x My, there is €9 > 0 such that for
any f € CJ(K) satistying || f||cr(x) < €o, the initial value problem (17) has a unique
solution. Recall that m is the dimension of the underlying space M. In particular, in the
case of the Minkowski space RT3 we may take r = 4, and see that the source-to-solution
map L4 is well-defined by (7).

2.2. Notations for microlocal analysis

For a conic Lagrangian submanifold Ao C 7*M \ 0 and a vector bundle E over M, we
denote by 17 (M ; Ag; E) the space of Lagrangian distributions of order p € R associated
to Ao, and taking values in E. If A; C T*M \ 0 is another conic Lagrangian submanifold
intersecting A cleanly, we denote by 1?7 (M ; Ay, A1; E) the space of Intersecting Pair of
Lagrangian (IPL) distributions of order p € R associated to (Ag, A1), and taking values
inE.

We occasionally use the notation (-, -} for the duality pairing between covectors and
vectors, and

I(M;AG:E) = | I7(M; Ag;E),  I(M; Ao, Ai;E) = | ] 17(M; Ao, Ay; E).
PER PeER
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If Ag coincides with the conormal bundle
N*K ={(x,§) e T*M :x € K, (§,v) = Oforallv € T, K}

of a submanifold K C M in the sense that A9 = N*K \ 0, then the distributions in
I(M; Ao; E) are called conormal distributions. Although removing the zero section from
N*K, when considering it as a conic Lagrangian manifold, is somewhat awkward nota-
tionally, it is natural to consider N*K as a submanifold of 7*M, since then the fibres
NIK C TYM, x € K, are linear subspaces. We recall the basic properties of conormal
and IPL distributions in Appendix A below.

The wave front set of a distribution u € D’(M) is denoted by WF(u) (see [11, Def.
2.5.2]). It is a subset of T7*M \ 0, and its projection on M is called the singular support
singsupp(u) of u. The wave front set WF(u) is conical and closed in 7*M \ 0, and it is
occasionally convenient to use the notation

ccl B ={(x,A) e T*M \0: (x,£) € B, A >0}

for the conical closure of aset Z C T*M \ 0. Foru € I(M; Ag; E) we have WF(u) C Ag.

If 27 is the Schwartz kernel of a pseudodifferential operator y on M, then the projec-
tion of WF(#) C (T*M \ 0)? on the first factor T*M \ 0 is called the essential support
of x. (As WF(¥) is contained in the conormal bundle of the diagonal {(x, y) € M? :
x = y}, the choice between the first and second factor makes no difference.) Following
[11, p. 124] we write WF(y) for this set.

We denote by ©2!/2 the half-density bundle over M. When Ag and A \ A coincide
with conormal bundles, and E = E ® Ql/ 2 there is a coordinate invariant way to define
the principal symbol a[u] of u € I(M; Ag; E), respectively u € I(M; Ay, A1;E), as an
equivalence class of sections of E ® ©21/2 over Ay, respectively A; \ Ao. We will not
emphasize the difference between the equivalence class o [u] and a representative of it, and
we will also use the same notation for the half-density bundles over M and A;, j =0, 1.
Let us remark that there is typically no natural way to relate these bundles. For example,
while it is natural to use |g|'/* to trivialize !/2 over M, the Lorentzian metric g on M
typically does not induce a natural trivialization of '/ over A ;.

For IPL distributions in /(M ; Ay, Ay; E), there is also a refined notion of principal
symbol, with components on both Ay and A;. We will use the refined principal symbol
only in Appendix A. The notation o[y] is used also for the principal symbol of a pseu-
dodifferential operator y on M. In this case, o[ y] is represented by a section of T*M \ 0.

2.3. Microlocal analysis of the wave operator

It is convenient to rescale (8), and consider the non-linear wave operator

Qo(p) = 2(Tad + xlg]? ¢),

where | - | = | - |g is the norm with respect to the inner product (-, -) = (-, -)g. In order
to make use of the microlocal machinery developed in [9], we conjugate the operator Q¢
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with the half-density |g|'/# and consider the operator

O®w) = |g|"*0o(lg|™*u)

acting on the sections of £ ® Q'/2. Writing Pu = |g|'/*04(|g|~"/*u)/2, the operator
Q reads

O@) = Pu + g||g|_1/4u|2u. (18)

For the sake of convenience, we will slightly abuse the notation, and write

uv = g4 (g7 *u) (g7 *v))

for products of half-densities as functions. Then Q (1) = Pu + «|u|*u/2.
Writing 1 = +/—1, the full symbol of the operator P reads

P(x,&) = gifg,.g,-/z + l_l(axigij/2 + giin)Sj + zeroth order terms,

and we see that P has the following principal symbol o[P] and subprincipal symbol
Osub| P], in the sense of Duistermaat and Hérmander [9, p. 189 (5.2.8)]:

o[Pl(x.§) = gV E&/2,  owlPl(x.&) =17'g" Ak, (v, §) eT™M.  (19)
We write also
o[P]=(£.6)g/2

where (£, £)¢ denotes the inner product with respect to g. Let us remark that the subprin-
cipal symbol transforming as a connection is discussed in [16] in the more general context
of pseudodifferential operators on vector bundles.

We denote by Hp the Hamiltonian vector field associated to o[ P], and by X (P) the
characteristic set of P, that is,

Hp = g0, — 30,870,
T(P)={(x,§) e T*M\0: (£,&)g =0}.

The covectors £ satistying (£, £)g = O are called lightlike. We denote by @, s € R, the
flow of Hp, and we define for a set Z C X (P) the future flowout of % by

{r.m) e Z(P): (y.n) = Ps(x,8). s €R, (x,§) € B, y = x}. 1)

Let us recall the parametrix construction for the linear wave equation

(20)

(22)

Pu=f inR x M,,
u|t<0 = 07

which originates from [9]. We will follow the purely symbolic construction from [31],
the only difference being that u is vector-valued in our case. For the convenience of the
reader, we give a proof of the theorem below in Appendix A.
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Theorem 3. Let f € I¥(M; Ao; E ® QY2) for a conic Lagrangian Ao C T*M \ 0.
Suppose that Hp is nowhere tangent to Ao, write 8 = Ao N Z(P), and denote by A1 the
future flowout of B. Then the solution u of (22) is in I*72tV2(M; Ay, A1 E @ Q1/?).
Moreover,

(ZHp +100[P])o[u] =0 on A;\ Ay, (23)
olu] = Z((c[P))'o[f])  on . (24)

where Lhp is the Lie derivative with respect to Hp, o[u] and o[ f] are the principal
symbols of u and f on Ay and Ao, respectively, and % is a map, defined by (74) in
Appendix A below,

R Sk—1/2+n/4(A0 \ aAl’ QI/Z) N Sk+n/4(A1; Ql/z)|3A] ,

that acts as multiplication by a scalar on E. Here it is assumed that Ay and A1 \ Ag
coincide with conormal bundles.

2.4. Flowout from a point in the Minkowski space

The following case will be of particular importance for us. We have also included a
detailed discussion of Theorem 3 in the context of this example case in Appendix B.

Example 1. Let (M, g) be the 1 + 3-dimensional Minkowski space, and consider a light-
like vector £ € ToR! 13\ 0 of the form £° = (1, fy) where 6y is in the unit sphere

S2={heR3:|9] =1

Let ¢ € Eg \ 0, that is, ¢ is a non-zero vector in the fibre of E over the origin, and let y
be a pseudodifferential operator such that o[y] # 0 near ccl{(0, £°)}. We define

felM;Ag: E®QY?),  f=clg|V4ys,

where Ag = ToR!*™3\ 0 = N*{0} \ 0 and § is the Dirac delta distribution at the origin.
The corresponding future flowout A satisfies A; \ Ag C N*K \ 0 where

K={t.19)eR'"™3:t>0 0ec8?% (25)

is the future light-cone in the spacetime R!*3 emanating from the origin. Letting u be the
solution of (22), its restriction on R!*3\ 0 is a conormal distribution in 7(R!*3 \ 0;
N*K \ 0; E ® QY?). As o[f](0, %) # 0, Theorem 3 implies that for all s > 0 we
have o[u](y(s), £%) # 0 where y(s) = (s, 56p), and £° is also viewed as an element of
T, (s)R1T3. The smaller the essential support WF(y) is chosen around

cel(0, ££°) := ccl{(0, £°), (0, —£°)},

the smaller is singsupp(x) C K = K U {0} around

y(R4) :={y(s) : s = 0}.
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The pseudodifferential operator y can be chosen for example as follows. Choose func-
tions y; € C®(S?), y2 € C®(R) and y3 € C®(R!*3) such that y;(6y) =1, y2(1) =1
and y3(0) = 1. Let also ¢ € R. Then, writing £ = (£, &’) and ¢(§) = (/2 |€])"", with |£|
the Euclidean norm of &, we define the function

xo(x, &) = x3(x)x2(c(§)éo) x1(c(§)EN|E. (26)

Now o is positively homogeneous of degree g. Choose furthermore x4 € CS°(R'*4)
such that y4 = 1 near the origin. Then (1 — x4(£)) xo(x, &) is smooth also near § = 0,
and it is a symbol in 