
© 2023 European Mathematical Society
Published by EMS Press

J. Eur. Math. Soc. (Online first) DOI 10.4171/JEMS/1313

Laurent Desvillettes · Ling-Bing He · Jin-Cheng Jiang

A new monotonicity formula for the spatially
homogeneous Landau equation with Coulomb potential
and its applications

Received October 31, 2020; revised June 17, 2021

Abstract. We describe a time-dependent functional involving the relative entropy and the PH1

seminorm, which decreases along solutions to the spatially homogeneous Landau equation with
Coulomb potential. The study of this monotone functional sheds light on the competition between
dissipation and nonlinearity for this equation. It enables us to obtain new results concerning regu-
larity/blowup issues for the Landau equation with Coulomb potential.
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1. Introduction

We consider the spatially homogeneous Landau equation with Coulomb potential

@tf D Q.f; f /.v/; (1.1)

complemented with initial data f0 D f0.v/ � 0. Here f WD f .t; v/ � 0 stands for the
distribution of particles that at time t 2 RC have velocity v 2 R3. The Landau operator
(with Coulomb potential) Q is a bilinear operator acting only on the velocity variable v.
It reads

Q.g; h/ D r � .Œa � g�rh � Œa � rg�h/ (1.2)

with

a.z/ D jzj�1
�

Id �
z ˝ z

jzj2

�
: (1.3)
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This equation, first obtained by Landau in 1936, is used to describe the evolution in time
of a (spatially homogeneous) plasma due to collisions between charged particles under
the Coulomb potential.

Introducing the quantity

bi .z/ WD

3X
jD1

@jaij .z/ D �2zi jzj
�3; (1.4)

the Landau operator with Coulomb potential can also be written as

Q.f; f / D

3X
iD1

@i

� 3X
jD1

.aij � f /@jf � .bi � f /f
�

D

3X
iD1

3X
jD1

.aij � f /@ijf C 8�f
2; (1.5)

where we have used the identity
P3
iD1 @ibi .z/ D �8�ı0.z/.

1.1. Basic properties of the equation and notations

The weak counterpart of the Landau operator Q, for a suitable test function ', is the
following:Z

R3
Q.f; f /.v/'.v/ dv D �

1

2

3X
iD1

3X
jD1

“
R3�R3

aij .v � v�/

�

²
@jf

f
.v/ �

@jf

f
.v�/

³
¹@i'.v/ � @i'.v�/ºf .v/f .v�/ dv dv�: (1.6)

From this formula, we can obtain the fundamental properties of the Landau operator Q.
The operator indeed conserves (at the formal level) mass, momentum and energy, more
precisely Z

R3
Q.f; f /.v/'.v/ dv D 0 for '.v/ D 1; vi ; jvj2=2; i D 1; 2; 3: (1.7)

We also deduce from (1.6) the entropy structure of the operator (still at the formal
level) by taking the test function '.v/ D logf .v/, that is, we define

D.f / WD �

Z
R3
Q.f; f /.v/ logf .v/ dv

D
1

2

3X
iD1

3X
jD1

“
R3�R3

aij .v � v�/

�

²
@if

f
.v/ �

@if

f
.v�/

³²
@jf

f
.v/ �

@jf

f
.v�/

³
f .v/f .v�/ dv dv�: (1.8)
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Note that D.f / � 0 since the matrix a is (semidefinite) positive. Note also that for
any f such thatD.f /D 0, it can be shown (see [9] and [13] for a rigorous statement and
proof) that f is a Maxwellian distribution, that is, f D ��;u;T with

��;u;T .v/ D
�

.2�T /3=2
e�
jv�uj2

2T ; (1.9)

where � � 0 is the density, u 2 R3 is the mean velocity and T > 0 is the temperature of
the plasma. They are defined by

� D

Z
R3
f .v/ dv; u D

1

�

Z
R3
vf .v/ dv;

T D
1

3�

Z
R3
jv � uj2f .v/ dv:

(1.10)

Thanks to the conservation of mass, momentum and energy, we have (when f WD
f .t; v/ is a solution of (1.1)–(1.3) and �; u; T are as defined above, at the formal level),

8t � 0; �.t/ D �.0/; u.t/ D u.0/; T .t/ D T .0/; (1.11)

which implies that the parameters �; u; T are constant (along solutions of (1.1)–(1.3)).
Denoting (when f WD f .t; v/ is a solution of (1.1)–(1.3)) by

H.t/ WD H.f j��;u;T /.t/

WD

Z
R3

�
f .t; v/ log

�
f .t; v/

��;u;T

�
� f .t; v/C ��;u;T

�
dv; (1.12)

the relative entropy with respect to ��;u;T (defined by (1.9), (1.10)), we see that (still at
the formal level)

d

dt
H.t/ D �D.f .t; �// � 0: (1.13)

Note that in the above definition, H.t/ differs from the usual (nonrelative) entropyR
f .t; v/ logf .t; v/ dv only by a constant, thanks to the identities (1.11).

Throughout this paper, we shall assume that f0 � 0 and f0 2 L12 \ L logL.R3/.
Furthermore, without loss of generality, we shall also assume that f0 satisfies the normal-
ization identitiesZ

R3
f0.v/ dv D 1;

Z
R3
f0.v/v dv D 0;

Z
R3
f0.v/jvj

2 dv D 3; (1.14)

which can be rewritten as �.0/ D 1, u.0/ D 0, T .0/ D 1. Finally, we denote by

�.v/ WD .2�/�3=2e�jvj
2=2 (1.15)

the Maxwellian distribution (centred reduced Gaussian) with the same mass, momentum
and energy as f0 satisfying (1.14).

Next we introduce some function spaces which will be used throughout the paper:
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� Let hvi WD .1 C jvj2/1=2 denote the Japanese bracket. For any p 2 Œ1;C1Œ, l 2 R,
the Lp

l
norm is defined by

kf k
p

L
p

l

WD

Z
R3
jf .v/jphvipl dv:

� The following quantity, for functions in L logL, is written as if it were a norm:

kf kL logL WD

Z
R3
jf j log.1C jf j/ dv:

� For any p 2 .1;1/; q 2 Œ1;C1�, the standard Lorentz space Lp;q is defined by the
norm

kf kLp;q WD

8<:
�R1
0
.t1=pf ��.t//q dt

t

�1=q
; 1 � q <1;

sup
t>0

t1=pf ��.t/; q D1;
(1.16)

where f ��.t/ WD t�1
R t
0
f �.s/ ds, and f � is the decreasing rearrangement of f . When

l 2 R we also denote the weighted Lorentz norm by

kf kLp;q
l
WD kf .�/h�ilkLp;q :

More details on Lorentz spaces including the case when p D 1; p D 1 can be found in
the Appendix.

� The homogeneous Sobolev PHm norm with m 2 R is defined by

kf k2
PHm
WD

Z
R3
j�j2mj Of .�/j2 d�;

while the weighted inhomogeneous Sobolev Hm
l

norm with m 2 N; l 2 R is defined by

kf k2Hm
l
WD

X
j˛j�m

Z
R3
j@˛.f hvil /j2 dv:

1.2. Short review of the Landau equation with Coulomb potential

We briefly review the works on the Landau equation with Coulomb potential (1.1)–(1.3).

� Existence and uniqueness of solutions: In [39], Villani proved the global existence
of so-called H -solutions for (1.1)–(1.3) when the initial data have finite mass, energy
and entropy. The key part of the proof lies in the use of the entropy dissipation D.f /,
rewritten as

D.f .t// D 2

“
1

jv � v�j
j….v � v�/rv�v�

p
f .t; v/f .t; v�/j

2 dv dv�: (1.17)

Here….z/r WD .Id� z
jzj
˝

z
jzj
/r is called the weak projection gradient (see [23,39]). In

all generality (when an estimate for rvf is not available), ….v � v�/rv�v� is not equal
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to….v � v�/rv �….v � v�/rv� . This means that the construction of approximations to
an H -solution plays a significant role. When the solutions are well-constructed (that is,
using a suitable approximation process), we have

….v � v�/rv�v� D ….v � v�/rv �….v � v�/rv� : (1.18)

We refer the readers to [23] for more details. When (1.18) holds, we can use the estimate
for the entropy dissipation D.f / in [9] to show that an H -solution is a weak solution of
the equation. More precisely, there is an explicitly computable constant C0 D C0. NH/ > 0
such that, for all (normalized) f � 0 satisfying H.f / � NH , the following inequality
holds:

kf kL3
�3
� C0.1CD.f //: (1.19)

Therefore, we know that such anH -solution of (1.1)–(1.3) lies in L1loc.Œ0;1/IL
3
�3.R

3//,
and this estimate is sufficient to show that it is indeed a weak solution in the usual sense.

Fournier [14] showed that uniqueness holds for the solutions of (1.1)–(1.3) lying
in L1loc.Œ0;1/IL

1
2.R

3// \ L1loc.Œ0;1/IL
1.R3//, and this result implies a local well-

posedness result assuming further that the initial data lie in L1.R3/, thanks to the local
existence result of Arsen’ev–Peskov [3] for such initial data. We also refer to [7] for
uniqueness of higher integrable solutions, and to [26] for the study of an equation sharing
significant features with (1.1)–(1.3).

In the spatially inhomogeneous context, we quote [38] for the existence of renormal-
ized solutions and [18, 21] for the global well-posedness near Maxwellian and the local
well-posedness in weighted Sobolev spaces. We finally refer to [5] for a general perturba-
tion result, and to [24, 25] for conditional regularity results.

� Long time behavior: In a perturbative and spatially inhomogeneous framework, Guo
and Strain [35] (see also [5]) proved for solutions of (1.1)–(1.3) the stretched exponential
decay to equilibrium in a high-order Sobolev space with fast decay in the velocity vari-
able. For (uniformly in time) a priori smooth solutions with large initial data, L.D. and
Villani [12] proved the algebraic convergence to equilibrium.

In the homogeneous setting, Carrapatoso, L.D. and L.H. proved the following result
which plays an essential role in the present paper:

Theorem 1.1 (Cf. [4, Theorem 2 and Lemma 8]). Let f0 2 L logL.R3/ \ L1
`
.R3/ with

` > 19=2 satisfy the normalization (1.14), and consider a .well-constructed/ weak .or
H-/ solution f to (1.1)–(1.3) with initial datum f0. Then for any strictly positive ˇ <
2`2�25`C57
9.`�2/

, there exists some computable constant Cˇ > 0 .depending only on ˇ and
K > 0 such that kf0kL1

`
.R3/Ckf0kL logL.R3/ �K/ such that the relative entropy satisfies

8t � 0; H.t/ � Cˇ .1C t /
�ˇ : (1.20)

Moreover, for all ` > 2, there exists C` > 0 .which only depends on ` and K/ such that

8t > 0; kf .t; �/kL1
`
.R3/ � C`.1C t /: (1.21)
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� Functional estimates: In [9], it is shown that (for normalized f � 0) the following
estimate holds:

D.f /C 1 � CD;1k
p
f k2

H1
�3=2

; (1.22)

where CD;1 > 0 depends only on an upper bound of H.f j�/.
Using the precise Sobolev embedding inequality

kf kL6;2 � Ckrf kL2

(see [1]) and the O’Neil inequality in Lorentz spaces (see Proposition 6.2 in the
Appendix), we end up with the following inequality (holding for normalized f � 0):

D.f /C 1 � CD;2kf kL3;1
�3

; (1.23)

where CD;2 > 0 depends only on an upper bound of H.f j�/.
We refer to [4, 9, 13] for variants of (1.23).

� Partial regularity issue: Very recently Golse, Gualdani, Imbert and Vasseur [15]
proved that the set of singular times for (suitable) weak solutions of the spatially homo-
geneous Landau equation with Coulomb potential has Hausdorff dimension at most 1=2
if the initial data has all polynomial moments. The key ingredient of the proof is the
application of De Giorgi’s method to a suitable scaled solution. They also observed that
the solution to the Landau equation with Coulomb interaction enjoys a scaling property
which is similar to that of the 3D incompressible Navier–Stokes equation. This explains
the link between the bound on the Hausdorff dimension of the set of singular times in both
equations. We also mention the papers [16, 17] where Gualdani and Guillen provide esti-
mates which are useful to understand the issues of regularity blowup and the role played
by the various terms in the Landau equation with Coulomb potential.

1.3. Main result

A very challenging problem for the (spatially homogeneous) Landau equation with
Coulomb potential (1.1)–(1.3) is to answer whether smoothness is propagated for all pos-
itive times, or if some blowup may occur in finite time. If a blowup appears, a further
challenging issue is to understand what really happens at the blowup time (cf. Villani’s
monograph [40, Chapter 5, §1.3 (2)]). The main result of this paper provides new partial
answers to the first question, while another result deals with the second question.

Our main result is concerned with the new monotonicity formula for equation (1.1)–
(1.3) announced in the title, and its byproducts:

Theorem 1.2. Let f0 2 L log L.R3/ \ L155.R
3/ \ PH 1.R3/ be a nonnegative initial

datum satisfying the normalization (1.14). Then there exist .explicitly computable/ con-
stants B�; C6 > 0, k2 > 7=2, k > 0 .depending only on K satisfying kf0kL1

55
.R3/ C

kf0kL logL.R3/ � K/ such that the following three statements hold:
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(i) (Monotonicity of a functional) Let T > 0 and denote by f WD f .t; v/ a smooth and
quickly decaying .C 2t .�// nonnegative solution on Œ0; T � to (1.1)–(1.3) with initial
datum f0. Define h WD f � �, where � is given by .1.15/ .recall also that H.t/ is
the relative entropy given by (1.12)/. Then the following a priori estimate .which we
call the monotonicity property) holds for t 2 Œ0; T �:

d

dt

�
H.t/ � 5

2

�
kh.t/k2

PH1
C B�.1C t /�k2C1

��2=5�
C C6.1C t /

k
� 0: (1.24)

(ii) (Global regularity for initial data below threshold) If in addition we have
H.0/.kh.0/k2

PH1
C B�/2=5 � 5=2, then (1.1)–(1.3) admits a .unique/ global and

strong .that is, lying in L1.RCIH 1.R3/// nonnegative solution satisfying

8t > 0; kh.t/k PH1

�
H.t/ C

C6

k C 1
Œ.1 C t /1Ck � 1�

�5=4
� .2=5/�5=4; (1.25)

where h; � and H are as in (i).

(iii) (No blowup after a finite time) If finally H.0/.kh.0/k2
PH1
C B�/2=5 > 5=2, set

T � WD

�
1C k

C6

�
H.0/ � 5

2
Œkh.0/k2

PH1
C B���2=5

�
C 1

� 1
kC1

� 1: (1.26)

Then one can construct a global weak (or H -) nonnegative solution of (1.1)–
(1.3) such that for t > T �, it becomes global and strong .that is, it lies in
L1..T �;1/IH 1.R3///, and satisfies the estimates

H.t/Œkh.t/k2
PH1
C B�.1C t /1�k2 ��2=5 � 5=2; (1.27)

kh.t/k PH1

�
C6

k C 1
Œ.1C t /1Ck � .1C T �/1Ck �

�5=4
� .2=5/�5=4; (1.28)

where h; � and H are as in (i).

1.3.1. Comment on the monotonicity formula (1.24). To the best of our knowledge,
inequality (1.24) of Theorem 1.2 (i) is a new monotonicity formula for the (smooth
solutions of the) Landau equation with Coulomb potential. The explicit increasing rate
C6.1C t /

k comes from the dissipation effect of the equation. We denote the monotone
functional by

M.t/ WD H.t/ � 5
2

�
kh.t/k2

PH1
C B�.1C t /�k2C1

��2=5
; (1.29)

and notice that the differential inequality (1.24) formally allows kh.t/k PH1 to blow up.
The global dynamics of M.t/ described by (1.24) gives clues about the global dynamics
for the original solution:

� When M.t0/ is below its critical value, (that is, M.t0/ � 0, cf. comment below), the
solution to equation (1.1)–(1.3) after time t0 will remain bounded in PH 1 and converge
to the equilibrium; this is indicated in Theorem 1.2 (ii). We call this the stable regime.
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� When M.t/ is above its critical value (that is, M.t0/� 0), some blowup may occur, but
there exists a computable time T � (strictly greater than the blowup time if it occurs)
such that M.t/ gets inside the stable regime for any t > T �; this is indicated in Theo-
rem 1.2 (iii).

Note that in Theorem 1.2 (i), the differential inequality (1.24) will be shown to rigorously
hold for (smooth and quickly decaying when jvj !1) solutions to an approximate prob-
lem (problem (2.42) described in §2.6) for (1.1)–(1.3). Finally, when it is integrated with
respect to time (see (5.8)), it is shown in the proof of Proposition 1.3 (in §1.4) that it also
rigorously holds for strong (that is, lying in L1t .H

1
m/ for m large enough) solutions to

the original equation (1.1)–(1.3), such as those appearing (on suitable time intervals) in
Propositions 1.1 and 1.2 (in §1.4).

1.3.2. Dissipation and nonlinearity. Our results shed some new light on the competition
between dissipation and nonlinearity for the Landau equation with Coulomb potential.
We present here the main ideas which are used in the proofs of Theorem 1.2 and the
related results. In particular, we point out that the mechanisms which enable us to build
global strong solutions to (1.1)–(1.3) when M.0/ � 0 (in Theorem 1.2 (ii)) and when
kh.0/h�i2k PH1 is small (in Proposition 1.2) are quite different.

Let us first recall that by a previous study of the large time behavior of the Landau
equation with Coulomb potential (cf. [4]), the L1 moments of h D f � � decrease with
a power law (cf. Theorem 1.1).

As a consequence, by interpolation, we see that the L2 norm of D2f typically
increases in time. Roughly speaking, for someC;k1 >0, this dissipation is lower bounded
in the following way:

kr
2hk2

L2
�3=2

� Ckhk
�4=5

L1
15=4

krhk
14=5

L2
� C.1C t /k1krhk

14=5

L2
:

� Initial data far from equilibrium (in terms of PH 1 norm): In this situation, the main
challenge is to show that the nonlinear terms can be controlled. Indeed, by interpolation,
the behavior of the nonlinear term with respect to the PH 1 energy is of the same order as
the dissipation term in the following sense:

Nonlinearity - D.f /krhk
14=5

L2
:

More precisely, a slightly simplified version of estimate (2.37) reads

d

dt
krhk2

L2
C C1.1C t /

k1krhk
14=5

L2
� C3D.f /krhk

14=5

L2
C C2.1C t /

�k2 :

It is expected that dissipation will dominate the nonlinear term after some time since
.1C t /k1 !C1 as t !1 and

R1
0
D.f /.s/ ds < C1. The detailed arguments are in

Section 2.

� Initial data close to equilibrium (in terms of PH 1 norm): In this situation, we have

Tail of linear term plus nonlinearity - krhk4
L2
C krhk2

L2
;
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as we can observe from (4.17) by neglecting the weights. Since we have assumed that
the PH 1 norm of the initial data is sufficiently small, we see that competition occurs
between .1C t /k1krhk14=5

L2
and krhk2

L2
.

Suppose now that krh0k2L2 � �. Then the smallness of krhk2
L2

can be kept at least
for an interval of time of length jlog �j (cf. the proof of Proposition 1.2). This implies that
at some point, dissipation will be lower bounded in the following way:

.1C t /k1krhk
14=5

L2
� C.1C jlog �j/k1krhk4=5

L2
krhk2

L2
:

Hence, when krhk4=5
L2

is not small, dissipation still prevails and prevents a blowup of
the PH 1 norm. We refer the readers to Section 4 for detailed arguments. Note however
that in the description above, weights are not taken into account, whereas they play a
significant role in the proof of Proposition 1.2 below. Finally, we refer to [16] for extra
considerations on competition between dissipation and nonlinearities.

1.3.3. No blowup after a finite time. This is a direct consequence of inequality (1.24)
since after time T �, the monotone functional M.t/ will enter the stable regime (defined
in Comment 1.4.1).

� If the solution has not blown up in PH 1 before time T �, then the solution will remain
strong (that is, will lie in PH 1) for all time thanks to inequality (1.28). Then thanks to
the uniqueness result established in [14] and the regularity obtained in Proposition 1.1,
the constructed solution is the unique strong solution with initial data f0 satisfying the
conditions stated in Theorem 1.2.

� Looking at definition (1.29), we see that M.t/ is still well-defined if kh.t/k PH1 D 1.
When such a blowup (in PH 1 norm) happens, the constructed solution is the unique
strong solution before the first blowup time, and becomes strong again after time T �.
Note that in order to give a rigorous proof of these facts, we apply the estimates
obtained in this paper to solutions of an approximate problem and then pass to the
limit.

Finally, combining our result with the previous result in [15], we see that the set of
singular times for weak solutions is included in a subset of the interval ŒT ; T �� whose
Hausdorff dimension is at most 1=2.

1.3.4. Dependence of the coefficients in the main theorem on L1 moments. We can pro-
vide estimates for the explicit dependence of all coefficients in Theorem 1.2. Moreover,
we can extend the validity of this theorem somewhat, when the initial data has less than
55 moments. Indeed, when f0 2 L1` ,

q`;� WD �
2`2 � 25`C 57

18.l � 2/

�
1 �

�

`

�
C
�

`
;

and choose ` > 31 and � 2 Œ31; `/ such that q`;99=4 > 7=4; q`;� > 0. Then one can check
that it is possible to take k WD min ¹k1; 25k2 �

7
5
º with k1 D 4

5
q`;14=5; k2 D q`;99=4 in
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such a way that estimate (1.24) holds. In our main theorem, we have selected ` D 55 and
� D 45 for the sake of readability.

1.4. Additional results

Using variants of the estimates in the main theorem, it is possible to get more standard
results of local (in time) well-posedness for large initial data (in PH 1 norm), and global
(in time) well-posedness for small initial data (in PH 1 norm). It is also possible to give
estimates concerning a possible blowup (of the PH 1 norm). These results are stated in the
following three propositions, where we recall that � is the Maxwellian given by (1.15),
and we denote h WD f � � and h0 WD f0 � �.

We begin with local well-posedness:

Proposition 1.1. Let f0 2 L log L.R3/ \ L155.R
3/ \ PH 1.R3/ be a nonnegative

initial datum satisfying the normalization (1.14). Then there exists a time T WD
5
4
.kh0k

2
PH1
C C�17 /�4=5 .where C7 > 0 only depends on K such that kf0kL1

55
C

kf0kL logL � K/ such that the Landau equation (1.1)–(1.3) admits a unique strong solu-
tion on the interval Œ0; T �. By strong solution, we mean here that f 2 C.Œ0; T �I PH 1/ \

L2.Œ0; T �IH 2
�3=2

/.

We then turn to global well-posedness for small initial data:

Proposition 1.2. Let f0 2 L logL.R3/ \ L155.R
3/ \H 1

2 .R
3/ be a nonnegative initial

datum satisfying the normalization (1.14), and h0 WD f0 � �. Then there exists a .small/
constant �0 > 0 .depending only on K > 0 such that kf0kL1

55
C kf0kL logL � K/ such

that if kh0h�i2k PH1 � �0, the Landau equation with Coulomb potential (1.1)–(1.3) admits
a .unique/ global smooth .that is, lying in L1.Œ0;C1/IH 1

2 .R
3/// and nonnegative

solution, denoted by f WD f .t; v/. Moreover, .under the same assumption on the initial
datum/ there exists a constant C > 0 only depending on K such that .with the notation
h WD f � �/

kh.t; �/kH1
2
� C.1C t /�15=4:

Finally, we give some clues about the behavior of solutions close to a potential blowup:

Proposition 1.3. Let f WD f .t; v/ be a nonnegative solution of the Landau equation
with Coulomb potential (1.1)–(1.3), corresponding to initial data satisfying the assump-
tions of Theorem 1.2. Suppose that f 2 L1.Œ0; t �IH 1.R3// for all t 2 Œ0; NT Œ, and that
krf .t/kL2.R3/ blows up at time NT . Then for NT � t � 1 and some explicitly computable
constants c;C;C1; C2 > 0 .depending only onK satisfying kf0kL logL C kf0kL1

55
� K/,

kh.t/k PH1 � C.H.t/ �
NH/�5=4 with H.t/ � NH � C. NT � t /.1C NT /kC1I

inf
s2Œt; NT �

kh.s/k PH1 �

�
B.c. NT � t //

2. NT � t /

C1
.1C NT /�.k1Ck2/

�5=14
;

where NH WD limt! NT�H.t/ and B.x/ WD C2x
�13 exp¹7x�450=14º.
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1.4.1. Description of the potential blowup. Proposition 1.3 describes a potential blowup
phenomenon for solutions to the Landau equation with Coulomb potential. We recall that
restrictions are given in [15, 17] on the possible appearance of such a blowup. Our lower
bound for the blowup rate is given in terms of relative entropy. Our upper bound enables
excluding a double exponential (that is, exponential of an exponential) growth of the H 1

norm of the solution close to the first blowup time. This bound heavily depends on the
number of initial moments which are assumed.

1.5. Additional comments

1.5.1. Nonoptimality of the results. We notice that the lifespan of local well-posedness
is not optimal in Proposition 1.1. For example, it can be extended by the effect of the
dissipation term C6.1C t /

k , which is not used in the proof of this proposition.
It is also possible to use Proposition 1.1 in order to relax the condition M.0/ � 0

in Theorem 1.2 (ii), recalling M.t/ is defined in (1.29). Using the fact that the Landau
equation with Coulomb interaction admits a local solution f 2 C.Œ0; T �I PH 1/ where T

depends only on the initial data f0 (see Proposition 1.1 for more details), this condition
can be transformed into

M.0/ �
C6

k C 1
..1C T /kC1 � 1/: (1.30)

Indeed, thanks to estimates (1.24) and (1.29), one gets

M.T /C C6

Z T

0

.1C t /k dt �M.0/;

so that M.T / � 0 and we can use Theorem 1.2 (ii) starting at time T (the equation being
invariant by translation in time).

1.5.2. Landau equation with very soft potentials. We can generalize the result of Theo-
rem 1.2 to the Landau equation with very soft potential in the range  2 ��3;�2�, that is,
when

a.z/ WD jzjC2
�

Id �
z ˝ z

jzj2

�
: (1.31)

Indeed, the main difference in the proof from the Coulomb case is the estimate of the term’
jv�v�j�1

f .v�/jv � v�j
C1jrh.v/j jr2h.v/j dv� dv, which appears in Proposition 2.3.

The Coulomb potential case  D �3 is critical in the sense that it requires (in order to
close the differential inequality (1.24)) the use of the Lorentz space L3;1, since“

jv�v�j�1

f .v�/jv � v�j
C1
jrh.v/j jr2h.v/j dv� dv � Ckf kL3krhkL2kr

2hkL2

holds when  > �3 but not when  D �3.
We think therefore that when  2 ��3;�2�, it is possible to avoid the use of Lorentz

spaces and still get a closed inequality in the same spirit as (1.24).
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We also believe that if  D�2� �with � > 0 sufficiently small, then the equation will
generate a global smooth and bounded solution if initially krh0k2L2 � .C1�/

�C2�
�1
�C3

for some C1, C2, C3 > 0 (depending on H.0/). This is coherent with the existing theory
of existence of global strong solutions when  2 Œ�2; 0Œ; cf. [41] for example.

1.5.3. Comparison with Leray’s work for 3D incompressible Navier–Stokes. We recall
that the 3D incompressible Navier–Stokes equations read8̂̂<̂

:̂
@tuC u � ru �4uCrp D 0;

divu D 0;

ujtD0 D u0:

(1.32)

In the classical work [29] (see also [32] and references therein), Leray proved the follow-
ing results:

(i) If ku0kL2kru0kL2 � 1, the 3D incompressible Navier–Stokes equations admit
global smooth solutions, which are nowadays called Leray solutions.

(ii) He also considered the potential blowup phenomenon. Using the lower bound of the
blowup rate for the potential singularity, one can show that the set of singular times
for suitable weak solutions has Hausdorff dimension at most 1=2.

For a result about long-time regularity, we refer to [28, 37].
We are in a position to compare our results with Leray’s.
If we consider that the relative entropyH plays for the Landau equation with Coulomb

interaction the same role as the energy kukL2 for the Navier–Stokes equations, it is natural
to compare the Leray condition ku0kL2kru0kL2 � 1 to the condition M.0/ � 0, written
in the form H.0/.kh.0/k2

PH1
C B�/2=5 � 5=2. We then see that as in the Navier–Stokes

equations, the L2 norm of a gradient of a solution plays a decisive role. Note however that
no equivalent of the term B� exists in Leray’s condition for the Navier–Stokes equations,
which constitutes a significant difference.

The condition M.0/ � 0 includes the case in which the initial relative entropy H.0/
is small, while kh.0/k PH1 may be large. Note that such (normalized) initial data exist.
Indeed, one can take initial data f .0/ close (in weighted L1) to the Maxwellian �, but
having quick oscillations, so that kh.0/k PH1 is large (see Proposition 6.6 for a concrete
example).

Note that in Proposition 1.3, we get not only a lower bound, but also an upper bound
for the rate at which a potential blowup occurs. However, the lower bound is given in
terms of relative entropy and thus probably cannot be used to estimate the size of singular
times. We recall that the size of that set for the Landau equation with Coulomb potential
is anyway estimated in [15].

1.5.4. Blowup of rf in L2.R3/. We remark that studying the blowup of rf in L2.R3/
is directly related to studying the blowup of f in L1.R3/. The results of [33] imply that
if rf is uniformly in time bounded in L2.R3/ (with suitable bounds of L1 moments),
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then f is also bounded, and therefore (1.1) is globally well-posed. On the other hand, if
rf becomes unbounded at a certain time, at that time f itself has to become unbounded.

2. PH 1 estimate and the proof of Theorem 1.2

This section is devoted to the PH 1 estimate for the Landau equation with Coulomb poten-
tial, which leads to the monotonicity formula (1.24). We first provide a set of a priori
estimates for the terms appearing in the equation (this is done in §§2.1–2.5). Then we
show that all estimates rigorously hold by passing to the limit in an approximate problem
(in §2.6), which enables us to complete the proof of Theorem 1.2.

2.1. Decomposition of the derivative in time of the PH 1 norm of solutions to the Landau
equation

To make full use of the results on the long-time behavior of the solution (cf. Theorem 1.1),
we write the Landau equation with Coulomb potential as follows (at the formal level),
setting h WD f � �, with � defined by (1.15):

@th D Q.f; h/CQ.h;�/: (2.1)

Then we focus (at the formal level) on the PH 1 norm of h. We write the equation (for
k D 1; 2; 3) satisfied by @kh:

@t .@kh/ D Q.f; @kh/CQ.@kf; h/CQ.@kh; �/CQ.h; @k�/: (2.2)

Then we multiply it by @kh, integrate with respect to v, and sum over all k. This gives

1

2

d

dt
krhk2

L2
D I1 C I2 C I3 C I4; (2.3)

where I1; I2; I3 and I4 are defined (and subdivided) as follows:

(1) I1 WD
P3
kD1

R
R3 Q.f; @kh/@kh dv. We also write

I1 WD �I1;1 C I1;2; (2.4)

where

I1;1 WD

3X
kD1

Z
R3
.a � f / W r@kh˝r@kh dv;

I1;2 WD

3X
kD1

Z
R3
.b � f / � r@kh@kh dv:

(2) I2 D
P3
kD1

R
R3 Q.@kf; h/@kh dv. We also write

I2 WD �I2;1 C I2;2; (2.5)
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where

I2;1 WD

3X
kD1

Z
R3
.a�@kf / Wr@kh˝rh dvD

3X
kD1

Z
R3
.@ka�f / Wr@kh˝rh dv;

I2;2 WD

3X
kD1

Z
R3
.b�@kf /�r@kh h dvD

3X
kD1

Z
R3
.@kb�f /�r@kh h dv

D

3X
kD1

3X
iD1

�
�

Z
R3
.@i@kbi �f /@kh h dv�

Z
R3
.@kbi �f /@kh@ih dv

�
D

3X
kD1

�
�8�

Z
R3
f .h@2khC.@kh/

2/ dvC

Z
R3
.b�f /�.rh@2khCr@kh@kh/ dv

�
�

3X
kD1

�
�8�

Z
R3
f h@2kh dvC

Z
R3
.b�f /�.rh@2khCr@kh@kh/ dv

�
:

(3) I3 WD
P3
kD1

R
R3 Q.@kh; �/@kh dv. We also write

I3 WD �I3;1 C I3;2; (2.6)

where I3;1 WD
P3
kD1

R
R3.a � @kh/ W r@kh˝r�dv and

I3;2 WD

3X
kD1

Z
R3
.b � @kh/ � r@kh�dv

D

3X
kD1

3X
iD1

�
�

Z
R3
.@ibi � @kh/@kh�dv �

Z
R3
.bi � @kh/@kh@i�dv

�
D

3X
kD1

�
8�

Z
R3
�j@khj

2 dv C

Z
R3
.b � h/ � .@kh@kr�C @

2
khr�/ dv

�
:

(4) I4 WD
P3
kD1

R
R3 Q.h; @k�/@kh dv. We also write

I4 WD �I4;1 C I4;2; (2.7)

where

I4;1 WD

3X
kD1

Z
R3
.a � h/ W r@kh˝r@k�dv; I4;2 WD

3X
kD1

Z
R3
.b � h/ � r@kh@k�dv:

In §§2.1–2.5, the a priori estimates are proven as if the functions considered are
smooth and quickly decaying (when jvj ! 1). They are used later for solutions of an
approximate problem which have those properties.
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2.2. Coercivity estimate for I1;1

In order to treat the term I1;1, we introduce the following classical coercivity estimates
(named here Proposition 2.1 and Corollary 2.1). Their proofs can be found in [2, Prop.
2.1, p. 4], or [33, Lemmas 3.1 and 3.2], or [4, 10].

Proposition 2.1. For all j 2 ¹1; 2; 3º, m 2 R, f � 0, p 2 W 1;1
loc .R

3/, we haveZ
R3
jrp.v/j2hvim�3 dv � 4kf kL1

5
.R3/Aj .f /

�2

�

Z
R3

Z
R3
jv�v�j

�3
¹jv�v�j

2
�.v�v�/˝.v�v�/º W rp.v/˝rp.v/f .v�/hvi

m dv dv�

(2.8)

where Aj .f / WD
R

R3 f v
2
j dv.

Corollary 2.1. Let f � 0 be such that
R

R3 f .v/ dv D 1,
R

R3 f .v/jvj
2 dv D 3, and such

that kf kL1
5
Ckf kL logL �K for someK >0. Set hD f ��. Then there exists a constant

C.K/ > 0 .depending only on K/ such that for all h 2 L1loc.R
3/ and m 2 R,

3X
kD1

Z
R3
.a � f / W r@kh˝r@khhvi

m dv � C.K/kr2hk2
L2
m=2�3=2

.R3/
: (2.9)

We now state another corollary which is an easy consequence of the above two results.

Corollary 2.2. Let f � 0 be such that
R

R3 f .v/ dv D 1,
R

R3 f .v/jvj
2 dv D 3, and such

that kf kL1
5
Ckf kL logL �K for someK > 0. Set hD f ��. Then there exist constants

C.K/; C �.K/ > 0, depending only on K, such that for all h 2 L1loc.R
3/ and m 2 R,

I1;1 � C.K/kr
2hk2

L2
�3=2

C C.K/khk
�4=5

L1
15=4

krhk
14=5

L2
� C �.K/khk2

L1
: (2.10)

Proof. Note first that by taking m D 0 in Corollary 2.1, we get

I1;1 � C.K/kr
2hk2

L2
�3=2

:

Then using Proposition 6.4, with m D 0, we see that for some constant C > 0,

krhkL2 � Ckhk
2=7

L1
15=4

.khkL1 C kr
2hkL2

�3=2
/5=7:

This inequality implies that (for some constant C � > 0)

kr
2hk2

L2
�3=2

� Ckhk
�4=5

L1
15=4

krhk
14=5

L2
� C �khk2

L1
;

which yields (2.10).
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2.3. Estimates for the remainder terms

2.3.1. Estimates for I3 and I4.

Proposition 2.2. Let f � 0 and h D f � �. Then for all � 2 �0; 1Œ,

I3 C I4 � C�
�1
khk2

L2
2

C Ckrhk2
L2
C
�

4
kr

2hk2
L2
�3=2

(2.11)

for some absolute constant C > 0.

Proof. Indeed, for some constant C > 0,

I3 C I4 � C

Z
R3
jrhj2�dv C C

“
R6
jv � v�j

�2
jh�j.jr

2hj C jrhj/�1=2 dv� dv

� C

Z
R3
jrhj2 dv C

�

4
kr

2hk2
L2
�3=2

C C��1
Z

R3

�Z
R3
jv � v�j

�2
jh�j dv�

�2
hvi3�dv

C C

Z
R3

�Z
R3
jv � v�j

�2
jh�j dv�

�2
�dv:

Then we see thatZ
R3

�Z
R3
jv � v�j

�2
jh�j dv�

�2
hvi3�dv

� 2

Z
R3

�Z
jv�v�j�1

jv�v�j
�2
jh�j dv�

�2
hvi3�dv

C2

Z
R3

�Z
jv�v�j�1

jv�v�j
�2
jh�j dv�

�2
hvi3�dv

� C

Z
v�2R3

jh�j
2

Z
jv�v�j�1

jv�v�j
�2
hvi3�dv dv�C2

�Z
R3
jh�j dv�

�2 Z
R3
hvi3�dv:

We conclude thanks to the Cauchy–Schwarz inequality.

Then we observe that for some constant C > 0,

I1;2 C I2 � C

“
R6
jv � v�j

�2f�jrhj jr
2hj dv� dv

C C

Z
f jr2hj jhj dv; (2.12)

and we define (with C being the same as above)

I WD C

“
R6
jv � v�j

�2f�jrhj jr
2hj dv� dv; (2.13)

II WD C

Z
R3
f jr2hj jhj dv: (2.14)
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2.3.2. Estimate for I. We state

Proposition 2.3. Let f � 0 .and hD f ��/ be such that kf kL1
2
D 4 and kf kL1� .R3/C

kf kL logL � K for some K > 0, � > 31. Then for all � 2 �0; 1Œ and A > 1,

I �
�

2
kr

2hk2
L2
�3=2

C
�
C�C C.K/��1.logA/�

��31
5�

�
.D.f /C 1/krhk

14=5

L2

C C.�C ��1 C ��3A2/krhk2
L2
6

C C.K/��1.logA/�
��31
5� krhk2

L2
;

where C.K/ > 0 is a constant depending only on K, and C > 0 is an absolute constant.

Proof. We write I D I1 C I2 with

I1 WD

“
jv�v�j�1

jv � v�j
�2f�jrhj jr

2hj dv� dv;

I2 WD

“
jv�v�j�1

jv � v�j
�2f�jrhj jr

2hj dv� dv:

(2.15)

We see that

I2 � C

“
hv � v�i

�2f�jrhj jr
2hj dv� dv

� C

“
hvi�2hv�i

2f�jrhj jr
2hj dv� dv

� Ckf kL1
2
krhkL2kr

2hkL2
�2

�
�

4
kr

2hk2
L2
�2

C C��1krhk2
L2
: (2.16)

We now turn to I1. We first note that in the region ¹jv � v�j � 1º we have the estimate
1p
3
hvi � hv�i �

p
3 hvi. Thus by the Cauchy–Schwarz inequality, we have

I1 � C

�“
jv�v�j�1

jv � v�j
�2.f�hv�i

�3/jrhj jr2hhvi�3=2j dv� dv„ ƒ‚ …
DWI1a

�1=2

�

�“
jv�v�j�1

jv � v�j
�2.f�hv�i

6/jrhj jr2hhvi�3=2j dv� dv„ ƒ‚ …
DWI1b

�1=2
:

We observe that for k 2 �0; 3Œ, 1¹j�j�1ºj � j�k 2 L3=k;1. Therefore, we get

I1a � Ckf kL3;1
�3

krhkL2kr
2hkL2

�3=2
;

thanks to the O’Neil inequality (Proposition 6.2 in the Appendix).
Concerning I1b (and for any A > 1), we split f into two parts: fA D f�.f=A/ and

f A WD f � fA, where � is a nonnegative C 1 function with �D 1 inB1 and �D 0 outside
of B2. Thanks to this decomposition, we get

I1b � Ckf
A
k
L
3;1
6

krhkL2kr
2hkL2

�3=2
C CAkrhkL2

6
kr

2hkL2
�3=2

:
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Here we again use the O’Neil inequality (Proposition 6.2) for f A, and the bound
fA � CA.

Putting together the estimates for I1a and I1b yields

I1 � C
�
kf k

1=2

L
3;1
�3

kf Ak
1=2

L
3;1
6

krhkL2kr
2hkL2

�3=2

C A1=2kf k
1=2

L
3;1
�3

krhk
1=2

L2
krhk

1=2

L2
6

kr
2hkL2

�3=2

�
�
�

4
kr

2hk2
L2
�3=2

C �kf k2
L
3;1
�3

krhk2
L2

C C
�
��1kf k

L
3;1
�3

kf Ak
L
3;1
6

krhk2
L2
C ��3A2krhk2

L2
6

�
: (2.17)

In what follows, we estimate kf k2
L
3;1
�3

krhk2
L2

and kf k
L
3;1
�3

kf Ak
L
3;1
6

krhk2
L2

.

Estimate of kf k2
L
3;1
�3

krhk2
L2

. Remembering that kf kL1
2
D 4 and using Proposition 6.3,

we get the estimate

kf k
L
3;1
�3

� Ckf h�i�3k
4=5

H1
� C.krhk

4=5

L2
C 1/; (2.18)

where we have used the interpolation estimate

khkL2 � C.khkL1 C krhkL2/ � C.1C krhkL2/: (2.19)

This yields
kf k2

L
3;1
�3

krhk2
L2
� C.krhk

4=5

L2
C 1/kf k

L
3;1
�3

krhk2
L2
: (2.20)

We end up with the bound

kf k2
L
3;1
�3

krhk2
L2
� C.kf k

L
3;1
�3

krhk
14=5

L2
C kf k

L
3;1
�3

krhk2
L2
/

� C.D.f /krhk
14=5

L2
C krhk

14=5

L2
C krhk2

L2
/;

where we have used the estimates (1.23) for the first term, and (2.18) for the second.

Estimate of kf k
L
3;1
�3

kf Ak
L
3;1
6

krhk2
L2

. Thanks to the definition of f A and the interpo-
lation estimate (2.19), we first see that

kf AkH1 � C
p
1C A�2 .krhkL2 C 1/: (2.21)

For R > 0 and A > 1, we know that

kf AkL1
31
� R31.logA/�1

Z
f�1

f logf dv CR�.��31/kf kL1� ;

so that
kf AkL1

31
� C.K/.logA/�.��31/=� : (2.22)



A new monotonicity formula for Landau equation 19

Using Proposition 6.3, one gets

kf k
L
3;1
�3

kf Ak
L
3;1
6

krhk2
L2
� Ckf k

L
3;1
�3

kf Ak
1=5

L1
31

kf Ak
4=5

H1
krhk2

L2
:

Then, by (2.21) and (2.22),

kf k
L
3;1
�3

kf Ak
L
3;1
6

krhk2
L2
� C.K/.logA/�.��31/=.5�/kf k

L
3;1
�3

.krhk
14=5

L2
C krhk2

L2
/:

(2.23)
Using both estimates (1.23) and (2.18), we end up with

kf k
L
3;1
�3

kf Ak
L
3;1
6

krhk2
L2
� C.K/.logA/�.��31/=.5�/Œ.D.f /C1/krhk14=5

L2
Ckrhk2

L2
�:

(2.24)
Finally, we see that

I1 �
�

4
kr

2hk2
L2
�3=2

CC��3A2krhk2
L2
6

CC�
�
D.f /krhk

14=5

L2
Ckrhk

14=5

L2
Ckrhk2

L2

�
CC.K/��1.logA/���31=5� Œ.D.f /C 1/krhk14=5

L2
Ckrhk2

L2
�

�
�

4
kr

2hk2
L2
�3=2

C
�
C�CC.K/��1.logA/�.��31/=.5�/

�
.D.f /C 1/krhk

14=5

L2

CC.�C ��3A2/krhk2
L2
6

CC.K/��1.logA/�.��31/=.5�/krhk2
L2
: (2.25)

We deduce the desired result by combining this estimate with the estimate for I2.

2.3.3. Estimate for II. We now prove the following bound:

Proposition 2.4. Consider f � 0 .and h D f � �/ such that kf kL1
2
D 4 and kf kL1� C

kf kL logL � K for some K > 0, � > 31. Then for all � 2 �0; 1Œ and A > 1,

II �
�

4
kr

2hk2
L2
�3=2

C C.K/��1.logA/�.��31/=.5�/.D.f /C 1/krhk14=5
L2

C C��1A2khk2
L2
3=2

C C.K/��1.logA/�.��31/=.5�/krhk2
L2
;

where C.K/ > 0 only depends on K .and �/, and C > 0 only depends on � .

Proof. We recall that

II �

Z
f @2i h h dv D

Z
fA@

2
i h h dv C

Z
f A@2i h h dv:

Then

II � CAkr2hkL2
�3=2
khkL2

3=2
C Ckf AkL3

3=2
kr

2hkL2
�3=2
khkL6

�
�

4
kr

2hk2
L2
�3=2

C C��1.A2khk2
L2
3=2

C kf kL3
�3
kf AkL3

6
krhk2

L2
/: (2.26)

The desired result is obtained by using an estimate almost identical to that of (2.24).
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2.3.4. Summary of the estimates for the remainder terms. We combine the results of
Propositions 2.2–2.4:

Proposition 2.5. Let f � 0 .and h D f � �/ be such that kf kL1
2
D 4 and kf kL1� C

kf kL logL � K with K > 0, � > 31. Then for all � 2 �0; 1Œ and A > e,

I1;2 C I2 C I3 C I4 � �kr
2hk2

L2
�3=2

C
�
C�C C.K/��1.logA/�.��31/=.5�/

�
.D.f /C 1/krhk

14=5

L2

C C��1A2khk2
L2
2

C C.K/.��1 C ��3A2/krhk2
L2
6

;

where C.K/ > 0 only depends on K and � , and C > 0 only depends on � .

Proof. This estimate is directly obtained from Propositions 2.2–2.4, remembering that
� < 1, logA > 1 and �.� � 31/=.5�/ < 0.

2.3.5. Summary of the estimates for all terms. We now combine the results of Proposi-
tion 2.5 and Corollary 2.2. From now on, we typically denote by C � constants which can
be replaced by a larger constant, and by C constants which can be replaced by a smaller
(strictly positive) constant. We get

Proposition 2.6. Let f � 0 .and h D f � �/ with
R

R3 f .v/ dv D 1,
R

R3 f .v/jvj
2 dv

D 3, and kf kL1� C kf kL logL � K with � > 31. Then for all � 2 �0; 1Œ,

I1 C I2 C I3 C I4 � �
C.K/

2
kr

2hk2
L2
�3=2

�
C.K/

2
khk
�4=5

L1
15=4

krhk
14=5

L2

C C �.K/��13 exp.7��
10�
��31 /khk2

L1
99=4

C C �.K/�.1CD.f //krhk
14=5

L2
; (2.27)

where C.K/; C �.K/ > 0 only depend on K and � .

Proof. Using Proposition 2.5 and Corollary 2.2, we see that

I1 C I2 C I3 C I4 � �C.K/kr
2hk2

L2
�3=2

� C.K/khk
�4=5

L1
15=4

krhk
14=5

L2
C C �.K/khk2

L1

C �kr2hk2
L2
�3=2

C .C ��C C �.K/��1.logA/�.��31/=.5�//.D.f /C 1/krhk14=5
L2

C C ���1A2khk2
L2
2

C C �.K/.��1 C ��3A2/krhk2
L2
6

: (2.28)

Using Proposition 6.4 for m D 6, we see that

krhkL2
6
C khkL2

6
� C �khk

2=7

L1
99=4

khk
5=7

L1
C C �khk

2=7

L1
99=4

kr
2hk

5=7

L2
�3=2

;

so that thanks to Young’s inequality, for any � > 0,

krhk2
L2
6

C khk2
L2
2

� C �.1C ��7=2/khk2
L1
99=4

C C ��7=5kr2hk2
L2
�3=2

:
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Taking � WD C ��10=7A�10=7, we see that

C ���1A2khk2
L2
2

� C ���1A2.1C ��5A5//khk2
L1
99=4

C
�

2
kr

2hk2
L2
�3=2

; (2.29)

while taking � WD C �.K/�20=7A�10=7 (and observing that ��1 � ��3A2), we see that

C �.K/.��1C ��3A2/krhk2
L2
6

�C �.K/��3A2.1C ��10A5/khk2
L1
99=4

C
�

2
kr

2hk2
L2
�3=2

:

(2.30)
Making use of this bound in estimate (2.28), we see that

I1 C I2 C I3 C I4 � .2� � C.K//kr
2hk2

L2
�3=2

� C.K/khk
�4=5

L1
15=4

krhk
14=5

L2

C ŒC �.K/C C ���1A2.1C ��5A5/C C �.K/��3A2.1C ��10A5/�khk2
L1
99=4

C .C ��C C �.K/��1.logA/�.��31/=.5�//.D.f /C 1/krhk14=5
L2

; (2.31)

so that when � < C.K/=4,

I1 C I2 C I3 C I4 � �
C.K/

2
kr

2hk2
L2
�3=2

� C.K/khk
�4=5

L1
15=4

krhk
14=5

L2

C C �.K/��13A7khk2
L1
99=4

C .C ��C C �.K/��1.logA/�.��31/=.5�//.D.f /C 1/krhk14=5
L2

: (2.32)

We now select A > e such that .logA/�.��31/=.10�/ D � , and get (changing the names of
the constants) estimate (2.27).

2.4. Application of the estimates to solutions of the Landau equation

Lemma 2.1. Let ` > 19=2, f0 2 L1` \ L log L be a nonnegative function such thatR
R3 f0.v/ dv D 1,

R
R3 f0.v/jvj

2 dv D 3. Let f WD f .t; v/ a weak .well-constructed/
nonnegative solution to the Landau equation with Coulomb potential (1.1)–(1.3), and
h D f � �. Then for all � 2 Œ0; `� and q < q`;� with

q`;� WD �
2`2 � 25`C 57

18.l � 2/

�
1 �

�

`

�
C
�

`
; (2.33)

there exists C > 0 .depending on � , ` and K such that kf0kL1
l
C kf0kL logL � K/ such

that
8t � 0; kh.t; �/kL1

�
� C.1C t /q : (2.34)

More specifically, if ` � 55, then for some r1 > 7=4, r2 > 0,

8t � 0; kh.t; �/kL1
99=4
� C.1C t /�r1 ; kh.t; �/kL1

45
� C.1C t /�r2 : (2.35)
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Proof. We first recall that thanks to Theorem 1.1, for ˇ < 2`2�25`C57
9.`�2/

, the relative entropy
decays according to the inequality

8t > 0; H.t/ � Cˇ .1C t /
�ˇ ;

where Cˇ > 0 only depends on ` and K such that kf0kL1
`
C kf0kL logL � K.

Using the Cziszár–Kullback–Pinsker inequality (cf. [8, 27]), we see that

8t > 0; kh.t; �/kL1 � Cˇ .1C t /
�ˇ=2:

Then (using Theorem 1.1 again) for all ` > 2, there exists C` > 0 (which only depends
on ` and K such that kf0kL1

2
C kf0kL logL � K) such that

8t > 0; kh.t; �/kL1
`
� C`.1C t /:

Finally, we interpolate between the previous two inequalities, for � 2 Œ0; `�:

khkL1
�
� khk

1��=`

L1
khk

�=`

L1
`

� C.1C t /q (2.36)

for q < q�;`, and C > 0 as described in the lemma.
The special case (when � D 99=4, or � D 45) is directly obtained thanks to this esti-

mate.

We now write the H 1 estimate that will yield the differential inequality (1.24).

Proposition 2.7. Let f0 2 L155.R
3/ \ L logL.R3/ be a nonnegative function such thatR

R3 f0.v/ dv D 1 and
R

R3 f0.v/jvj
2 dv D 3. Let f WD f .t; v/ be a nonnegative smooth

and quickly decaying .when jvj ! 1/ C 2t .�/ solution .on a time interval Œ0; T �/ to
the Landau equation (1.1)–(1.3), and h D f � �. Then for some k1 > 0, k2 > 7=2,
C1; C2; C3 > 0 .depending only on K such that kf0kL1

55
C kf0kL logL � K/, the follow-

ing differential inequality holds .on Œ0; T �/ for all � 2 �0; 1Œ sufficiently small .depending
on K/:

d

dt
krhk2

L2
C C1.1C t /

k1krhk
14=5

L2

� �C3D.f /krhk
14=5

L2
C C2�

�13 exp¹7��450=14º.1C t /�k2 : (2.37)

Proof. We consider a smooth and quickly decaying (when jvj ! 1) solution f WD
f .t; v/ � 0 to (1.1)–(1.3) (on a given time interval Œ0; T �). According to Lemma 2.1
(more precisely to the special case described in this lemma), this solution is bounded in
L145.R

3/ (with a bound controlled by K such that kf0kL1
55
C kf0kL logL � K).

Recalling the computation (2.3), which rigorously holds, we can use Proposition 2.6
with � D 45 (for a smooth solution to (1.1)–(1.3)), and we see that (for someC;C4;C5 >0
depending only on K such that kf0kL1

55
C kf0kL logL � K),

d

dt
krhk2

L2
C Ckhk

�4=5

L1
15=4

krhk
14=5

L2

� C4�
�13 exp.7��450=14/khk2

L1
99=4

C C5�.1CD.f //krhk
14=5

L2
: (2.38)
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Using again the special case described at the end of Lemma 2.1 (and observing that
khkL1

15=4
� khkL1

99=4
), we complete the proof of the differential inequality (2.37).

Thanks to Proposition 2.7, we can now reduce the main results in Theorem 1.2 to the
analysis of some ordinary differential inequality.

2.5. Analysis of a differential inequality

We start with the following lemma, which corresponds to the special case �DC�13 ,B� WD
B.�/, B.x/ WD C2x

�13 exp¹7x�450=14º of Proposition 2.7.

Lemma 2.2. Let X;H be C 1 functions from Œ0; T � to RC . for T 2 �0;C1�/, C1;B�; k1
> 0, k2 > 7=2, and D WD �H 0 such that

8t 2 Œ0; T �;
d

dt
X.t/2 C C1.1C t /

k1X.t/14=5 � D.t/X.t/14=5 C B�.1C t /�k2 :

(2.39)

Then for k WD min ¹2k2�7
5

; k1º and some constant C6 > 0 depending only on C1; B�; k2,

8t 2 Œ0; T �;
d

dt

�
H.t/� 5

2
ŒX.t/2 CB�.1C t /1�k2 ��2=5

�
C C6.1C t /

k
� 0: (2.40)

Proof. We first observe that denoting Y.t/ WDB�.1Ct /�k2C1 and c1 WD.B�/�2=5.k2�2/,
we have

8t 2 Œ0; T �;
d

dt
Y.t/C c1.1C t /

2k2�7=5Y.t/7=5 � �B�.1C t /�k2 :

Therefore for some C6 > 0 depending only on C1; B�; k2,

8t 2 Œ0; T �;
d

dt
ŒX.t/2 C B�.1C t /1�k2 �C C6.1C t /

k ŒX.t/2 C B�.1C t /1�k2 �7=5

� D.t/ŒX.t/2 C B�.1C t /1�k2 �7=5:

The differential inequality stated in the lemma is then obtained by dividing this differential
inequality by ŒX.t/2 C B�.1C t /1�k2 �7=5.

Next we turn to the following consequence of Lemma 2.2:

Lemma 2.3. Let X;H be C 1 functions from Œ0; T � to RC . for T 2 �0;C1�/, C1;B�; k1
> 0, k2 > 7=2, and D WD �H 0, such that the differential inequality (2.39) holds.

� If H.0/ŒX.0/2 C B��2=5 � 5=2, then for some constant C6 > 0 depending only on
C1; B

�; k2,

8t 2 Œ0; T �; X.t/ � .2=5/�5=4
�
H.t/C

C6

k C 1
Œ.1C t /1Ck � 1�

��5=4
I
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� If H.0/ŒX.0/2 C B��2=5 > 5=2, then for

T � WD

�
1C k

C6

�
H.0/ �

5

2
ŒX.0/2 C B���2=5

�
C 1

�1=kC1
� 1;

one has . for T > T �/ H.T �/ � 5
2
ŒX.T �/2 C B�.1 C T �/1�k2 ��2=5 and for t 2

Œ0; T � T ��,

X.T � C t / � .2=5/�5=4
�
H.T �/C

C6

k C 1
Œ.1C T � C t /1Ck � .1C T �/1Ck �

��5=4
:

Proof. By integrating both sides of (2.40) on Œt1; t2�; T > t2 > t1 � 0, we see that

H.t2/ �
5
2
ŒX.t2/

2
C B�.1C t2/

1�k2 ��2=5 C
C6

1C k
Œ.1C t2/

1Ck
� .1C t1/

1Ck �

� H.t1/ �
5
2
ŒX.t1/

2
C B�.1C t1/

1�k2 ��2=5: (2.41)

Taking t1 D 0; t2 D t , and using the condition 5
2
ŒX.0/2 C B���2=5 � H.0/, we rewrite

the above inequality as

5
2
ŒX.t/2 C B�.1C t /1�k2 ��2=5 � H.t/C

C6

1C k
Œ.1C t /1Ck � 1�:

From this, we get

X.t/ �

�
.2=5/�5=2

�
H.t/C

C6

k C 1
Œ.1C t /1Ck � 1�

��5=2
� B�.1C t /1�k2

�1=2
;

which proves the first result.
The second result follows from estimate (2.41) by taking t1 D 0 and t2 D T �, and

solving (for T �) the equation

C6

1C k
Œ.1C T �/1Ck � 1� D H.0/ � 5

2
ŒX.0/2 C B���2=5:

Now let t1DT � and t2DT �C t; t >0. ThenH.T �/� 5
2
ŒX.T �/2CB�.1CT �/1�k2 ��2=5

� 0 implies that

X.T � C t / � .2=5/�5=4
�
H.T �/C

C6

k C 1
Œ.1C T � C t /1Ck � .1C T �/1Ck �

��5=4
;

which gives the estimate for X after time T � described in the lemma.

2.6. End of the proof of Theorem 1.2

We are now in a position to prove Theorem 1.2. We show that the a priori estimates
obtained in §§2.1–2.5 can be used to build a solution to (1.1)–(1.3), thanks to their appli-
cation to smooth solutions of an approximate equation.
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We introduce therefore the unique solution f � WD f �.t; v/ � 0 to the approximate
equation

@tf
�
D Q�.f �; f �/; (2.42)

where Q� is defined by

Q�.g; h/ D rv � .Œa
�
� g�rvh � Œa

�
� rg�h/

with

a�.z/ D .jzj2 C �2/�1=2
�

Id �
z ˝ z

jzj2

�
: (2.43)

Thus we are still considering a Landau equation, but with a regularized cross section.
We also introduce smooth and quickly decaying (when jvj ! 1) initial data, converg-
ing when � ! 0 towards the original initial data f0. The problem (2.42)–(2.43) satisfies
the same conservation properties (propagation of nonnegativity, conservation of mass,
momentum and kinetic energy, decay of entropy) as the original equation (1.1)–(1.3).

Next we briefly explain how to prove

Proposition 2.8. For � > 0, estimates (1.24), (1.25) and (1.27)–(1.28) hold for the unique
smooth .C 2t .�// solution of (2.42)–(2.43) .with smoothed initial data/, with constants
which do not depend on �.

Proof. Step 1. Since (for � > 0) there is no singularity in a� , equation (2.42)–(2.43)
behaves (from the point of view of regularity) like the Landau equation with Maxwell
molecules (that is, when  D 0 in (1.31)). Hence, smoothness and moments can be proved
to be propagated globally for this equation. This is easily checked by following the strat-
egy used in [19,20]. Thus equation (2.42)–(2.43) admits a unique (global) smooth solution
(the initial data being themselves smooth).

Step 2. Using [9, Theorem 3], we see that estimates (1.22) and (1.23) hold when a is
replaced by a� , with a constant that does not depend on �. It is then possible to show,
using the same method as in [4], that the long-time behavior estimates are the same for the
solution to (2.42)–(2.43) as those for the solution to the Landau equation with Coulomb
potential (1.1)–(1.3). In other words, Theorem 1.1 holds for the unique smooth solutions
to (2.42)–(2.43), with constants which do not depend on �.

Step 3. We show that Proposition 2.7 holds for the unique smooth solutions of (2.42)–
(2.43), with constants in the estimate which do not depend on �.

This amounts to showing that the estimates in the proof still hold when a is replaced
by a� . Noticing that b�i .z/ WD

P3
jD1 @ja

�
ij .z/D�2zi jzj

�2.jzj2C �2/�1=2,
P3
iD1 @ib

�
i .z/

D�2��3j��1zj�2.j��1zj2C 1/�3=2, we see that ja�j � jaj, jb�i j � jbi j, and those inequal-
ities can be used to show that the estimates from above in §§2.3, 2.4 can be reproduced
with the same constants for the approximate problem as for the original problem.
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We can then directly check by inspecting the proofs that the coercivity estimate
appearing in Proposition 2.1 and Corollary 2.1 can be reproduced when a is replaced
by a� , with constants that do not depend on �.

Since for � > 0, the solution f � is smooth and quickly decaying when jvj ! 1,
the assumptions of Proposition 2.7 are fulfilled, so that estimate (2.37) holds (for this
solution), with constants in the estimate which do not depend on �.

Step 4. We can now apply Lemmas 2.2 and 2.3 toX Dkrh�kL2 , and obtain the estimates
of Theorem 1.2 for the unique smooth solution of (2.42)–(2.43), with constants in the
estimate which do not depend on �.

End of the proof of Theorem 1.2. Note first that Theorem 1.2 (i) is immediately obtained
(without using the approximate problem) by the use of Proposition 2.7 and Lemma 2.2.

We now turn to parts (ii) and (iii). As in [9], we let f � be the unique smooth solution
of (2.42)–(2.43) with initial data strongly converging to f 0. It is then possible to pass to
the limit (in a weighted weak L1 space, and up to extracting a subsequence) when "! 0

in f � , and get in this way a (well-constructed) weak solution f to the original equation
(1.1)–(1.3) with initial data f 0.

Due to the convexity of x 7! x log x and the lower semicontinuity of weak conver-
gence in PH 1, we obtain

H.t/ � lim inf
�!0

H �.t/; krhkL2 � lim inf
�!0

krh�kL2 ;

where H �.t/ is the relative entropy of f � at time t .
Thanks to these properties, we can pass to the limit in the following estimates:

� for the initial data under the threshold,

8t � 0; kh�.t/k PH1 � .2=5/
�5=4

�
H �.t/C

C6

k C 1
Œ.1C t /1Ck � 1�

��5=4
I

� for general suitable initial data and t > T �,

H �.t/ � 5
2
Œkh�.t/k2

PH1
C B�.1C t /1�k2 ��2=5;

kh�.t/k PH1 � .2=5/
�5=4

�
C6

k C 1
Œ.1C t /1Ck � .1C T �/1Ck �

��5=4
:

We thus conclude the proof of Theorem 1.2 (ii, iii).

3. Local solutions: proof of Proposition 1.1

We start the proof of Proposition 1.1 with the following proposition, which is a variant of
Proposition 2.6:



A new monotonicity formula for Landau equation 27

Proposition 3.1. Let f � 0 .and hD f ��/ be such that kf kL1
2
.R3/ D 4 and kf kL1� C

kf kL logL � K with K > 0 and � > 31. Then

I1 C I2 C I3 C I4 � �
C.K/

4
kr

2hk2
L2
�3=2

�
C.K/

2
khk
�4=5

L1
15=4

krhk
14=5

L2
�
1

2
I1;1

C C �.K/khk2
L1
99=4

C krhk
18=5

L2
; (3.1)

where C �.K/; C.K/ > 0 only depend on K and � .

Proof. Using estimates (2.18) and (2.20), we see that

kf k2
L
3;1
�3

krhk2
L2
� C.krhk2

L2
C krhk

18=5

L2
/:

Then, recalling estimates (2.18) and (2.23), we also see that (for A > e)

kf k
L
3;1
�3

kf Ak
L
3;1
6

krhk2
L2
� C.K/.logA/�.��31/=.5�/.krhk2

L2
C krhk

18=5

L2
/:

Using the notation (2.13) and bounds (2.16) and (2.17), this leads to the bound (for all
� 2 �0; 1Œ and A > e)

I �
�

2
kr

2hk2
L2
�3=2

C
�
C�C C.K/��1.logA/�.��31/=.5�/

�
krhk

18=5

L2

C C.�C ��1 C ��3A2/krhk2
L2
6

C C.K/��1.logA/�.��31/=.5�/krhk2
L2
:

Using the notation (2.14) and estimate (2.26), we also get the estimate (for all �2 �0;1Œ
and A > e)

II �
�

4
kr

2hk2
L2
�3=2

C C.K/��1.logA/�.��31/=.5�/krhk18=5
L2
C C��1A2khk2

L2
3=2

C C.K/��1.logA/�.��31/=.5�/krhk2
L2
;

where C.K/ > 0 only depends on K and � , and C > 0 only depends on � .
Recalling now estimates (2.11) and inequality (2.12) (together with notations (2.13)

and (2.14)), and remembering that � < 1, logA > 1 and �.� � 31/=.5�/ < 0, we end up
with the estimate

I1;2 C I2 C I3 C I4 � �kr
2hk2

L2
�3=2

C .C�C C.K/��1.logA/�.��31/=.5�//krhk18=5
L2

C C��1A2khk2
L2
2

C C.K/.��1 C ��3A2/krhk2
L2
6

; (3.2)

where C.K/ > 0 only depend on K (and � ) and C > 0 only depends on � .
Using estimates (2.10), (2.28) and (2.38), we see that (using C � for constants which

can be replaced by larger constants, and C for constants which can be replaced by smaller
constants)

I1 C I2 C I3 C I4 �
�
2� � 1

2
C.K/

�
kr

2hk2
L2
�3=2

�
1
2
C.K/khk

�4=5

L1
15=4

krhk
14=5

L2
�
1
2
I1;1

C
�
1
2
C �.K/C C ���1A2.1C ��5A5//C C �.K/��3A2.1C ��10A5/

�
khk2

L1
99=4

C .C ��C C �.K/��1.logA/�.��31/=.5�//krhk18=5
L2

; (3.3)
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so that when � < C.K/=8,

I1 C I2 C I3 C I4 � �
C.K/

4
kr

2hk2
L2
�3=2

�
C.K/

2
khk
�4=5

L1
15=4

krhk
14=5

L2
�
1
2
I1;1

C C �.K/��13A7khk2
L1
99=4

C
�
C ��C C �.K/��1.logA/�.��31/=.5�/

�
krhk

18=5

L2
:

(3.4)

Selecting � > 0 sufficiently small, and A > e such that .logA/�.��31/=.10�/ D �, we see
that estimate (3.1) holds.

End of the proof of Proposition 1.1. We observe that inequality (3.1) still holds when the
kernel of the Landau equation is replaced by the kernel of the approximate equation
(2.42)–(2.43), with all constants independent of �. Then, when f � (and h� D f � � �)
is the unique smooth solution of (2.42)–(2.43) (with regularized initial data), and pro-
ceeding as in the proof of Proposition 2.7, we get the estimate

d

dt
krh�k2

L2
C C12kr

2h�k2
L2
�3=2

C
1
4
I �1;1 C

1
4
C10.1C t /

k1krh�k
14=5

L2

� krh�k
18=5

L2
C C11.1C t /

�k2 ; (3.5)

where k1 > 0 and k2 > 7=2 are defined as in Proposition 2.7, and C10, C11, C12 > 0 only
depend on K such that kf0kL1

55
C kf0kL logL � K.

This differential inequality implies that

d

dt
krh�k2

L2
� krh�k

18=5

L2
C C11;

so that
d

dt
.krh�k2

L2
C C

5=9
11 / � .krh

�
k
2
L2
C C

5=9
11 /

9=5:

Therefore, for t � T WD 5
4
.krh�.0/k2

L2
C 2C

5=9
11 /

�4=5,

krh�.t/k2
L2
�
�
.krh�.0/k2

L2
C C

5=9
11 /

�4=5
�
4
5
t
��5=4

� C
5=9
11 : (3.6)

Passing to the limit when � ! 0 as at the end of the proof of Theorem 1.2, we get the
existence of a weak solution of the Landau equation (1.1)–(1.3) on Œ0; T � which is in fact
strong in the sense that it lies in L1.Œ0; T �IH 1.R3//. Note indeed that the first time of
blowup (in H 1 norm) is strictly greater than T since part of the dissipative terms were
not used in the differental inequality in order to get the bound (3.6).

We now focus on the regularity of the solution obtained, and the consequences con-
cerning the issue of uniqueness. Using Theorem 1.1, we see that on the time interval
Œ0;T �, one has h 2L1t .L

1
55/. Then the estimates (3.6) and (3.5) imply thatrh 2L1t .L

2/

andr2h2L2t .L
2
�3=2

/. Thanks to a Sobolev embedding, we see that h2L1t .L
6/. Interpo-

lating with the estimate stating that h 2L1t .L
1
55/, we see that h 2L1t .L

2
22/. Interpolating

again this estimate with the statement r2h 2 L2t .L
2
�3=2

/, we see that h 2 L16=7t .H
7=4

23=16
/.
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Thanks to yet another Sobolev embedding, we find that h 2 L2t .L
1/, which is sufficient

to apply the stability result in [14], and get the uniqueness of the strong solution built
above on the relevant time interval.

We finally prove that f 2 C.Œ0; T �I PH 1/. Using estimate (3.5), we see that r2h 2
L2.Œ0; T �IL2

�3=2
/ and I1;1 2 L1.Œ0; T �/. Recalling identities (2.3), (2.4) and estimate

(3.2), we observe that d
dt
krhk2

L2
2 L1.Œ0; T �/, so that t 7! krh.t/k2

L2
is continuous

on Œ0; T �.
Remembering the weak formulation (1.6) and the fact rh 2 L1t .L

2/, it is not diffi-
cult to check that t 7!

R
R3 @ih.t; v/�.v/ dv is continuous on Œ0; T � for any smooth and

compactly supported function �. We conclude that h 2 C.Œ0; T �I PH 1/ by combining the
above facts. Indeed, thanks to the continuity of t 7! krh.t/k2

L2
, we know that

lim
s!t
kr.h.t/ � h.s//k2

L2
D 2krh.t/k2

L2
� 2 lim

s!t
.rh.s/;rh.t//:

We conclude by approximating rh.t/ in L2 by a sequence �n 2 C1c . Note finally that
the formula appearing in the definition of T in Proposition 1.1 is obtained by defining
C7 WD

1
2
C
�5=9
11 .

4. Weighted H 1 estimates and proof of Proposition 1.2

The main goal of this section is to get estimates for weighted H 1 norms of solutions to
(1.1)–(1.3), and then to use them in order to prove Proposition 1.2.

4.1. Weighted PH 1 estimate

Multiplying the equation for the derivatives of the Landau equation (1.1)–(1.3), that is
(remembering that h D f � � and that � is the normalized Maxwellian given by (1.15)),

@t .@kh/ D Q.f; @kh/CQ.@kf; h/CQ.@kh; �/CQ.h; @k�/; (4.1)

by hvim@kh, integrating with respect to v and summing for k D 1; 2; 3, we obtain (at the
formal level)

1

2

d

dt
krhk2

L2
m=2

D W1 CW2 CW3 CW4; (4.2)

where W1; W2; W3 and W4 correspond to the terms of the right-hand side of (4.1).
We start our study by estimating the most significant terms, that is, W1 and W2.

4.1.1. Estimate forW1 andW2. The following proposition enables us to treat a large part
of terms coming from W1 and W2:

Proposition 4.1. Let f be a nonnegative function with normalization (1.14), and h D
f � �. Then, for all m � 0 and some .absolute/ constant C > 0,“

Œjv � v�j
�1
C jv � v�j

�2�f .v�/jrh.v/j
2
hvim dv� dv � C.1C krhkL2/krhk

2

L2
m=2

(4.3)
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and“
jv � v�j

�2
jrf .v�/j jh.v/j jrh.v/jhvi

m dv� dv

� C.1C krhk2
L2
/khkH1

m=2
krhkL2

m=2
: (4.4)

Proof. For (4.3), we bound the integral over jv � v�j � 1 in the following way:“
jv�v�j�1

Œjv � v�j
�1
C jv � v�j

�2�f .v�/jrh.v/j
2
hvim dv� dv

�
.j � j�1

j�j�1 C j � j
�2
j�j�1/ � f


L1
krhk2

L2
m=2

�
j � j�1

j�j�1 C j � j
�2
j�j�1


L6=5
kf kL6krhk

2

L2
m=2

� Ckrf kL2krhk
2

L2
m=2

� C.1C krhkL2/krhk
2

L2
m=2

: (4.5)

The integral over jv � v�j � 1 satisfies“
jv�v�j�1

Œjv � v�j
�1
C jv � v�j

�2�f .v�/jrh.v/j
2
hvim dv� dv � Ckf kL1krhk

2

L2
m=2

:

(4.6)
Now, estimate (4.3) is a consequence of (4.5) and (4.6).

For (4.4), using 1p
3
hvi � hv�i �

p
3 hvi when jv � v�j � 1, we see that the integral

over jv � v�j � 1 is bounded by“
jv�v�j�1

jv � v�j
�2
jrf .v�/j jh.v/j jrh.v/jhvi

m dv� dv

�
j � j�2

j�j�1 � jh�i
m=2
rf j


L3

jhj jrhjh�im=2
L3=2

� krf kL2
m=2

j � j�2
j�j<1


L6=5
khkL6krhkL2

m=2

� C.1C krhkL2
m=2
/krhkL2krhkL2

m=2
: (4.7)

Since j � j�2
j�j�1

lies in L2, the integral over jv � v�j � 1 is bounded in the following way:“
jv�v�j�1

jv � v�j
�2
jrf .v�/j jh.v/j jrh.v/jhvi

m dv� dv

� Ckrf kL2khkL2
m=2
krhkL2

m=2

� CkhkL2
m=2
krhkL2

m=2
C CkrhkL2khkL2

m=2
krhkL2

m=2
: (4.8)

We get (4.4) by collecting the bounds (4.7) and (4.8).

Next we estimate the terms W1 and W2. We start with
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Proposition 4.2. Let f � 0 be such that
R

R3 f .v/ dv D 1,
R

R3 f .v/jvj
2 dv D 3, and

kf kL1
15=2
C kf kL logL � K for some K > 0. Set h D f � �. Then for all m � 0 and

some constants C �.K/, C.K/ > 0 depending only on K,

W1 WD hQ.f; @kh/; hvi
m@khi

� �
7
8
C.K/kr2hk2

L2
m=2�3=2

C C �.K/.1C krhk2
L2
/krhk2

L2
m=2

: (4.9)

Proof. Using an integration by parts, we see that

W1 D hQ.f; @kh/; h�i
m@khi

D �

�X
k;i;j

Z
.aij � f /.@j @kh/Œ@i .h�i

m@kh/� dv

�
C

�X
k;i

Z
.bi � f /.@kh/Œ@i .h�i

m@kh/� dv

�
D �

�X
k

Z
.a � f / W .r@kh/˝ .r@kh/h�i

m dv�
1

2

X
k;i

Z
.bi � f /Œ@kh�

2@i h�i
m dv

�
1

2

Z X
i;j;k

.aij � f /Œ@kh�
2@j @i h�i

m dv

�
C

�
1

2

X
k;i

Z
.bi � f /Œ@kh�

2@i h�i
m dv

C 4�
X
k

Z
f Œ@kh�

2
h�i
m dv

�
:

Thanks to Corollary 2.1, the first term of the expression above satisfiesX
k

Z
.a � f / W .r@kh/˝ .r@kh/h�i

m dv � C.K/kr2hk2
L2
m=2�3=2

:

Then, thanks to Hölder’s inequality and Sobolev embedding ( PH 1 � L6),

ˇ̌̌̌X
k

Z
f Œ@kh�

2
h�i
m dv

ˇ̌̌̌
� C �kf kL3

3=2
krhkL2

m=2
kr..rh/h�im=2�3=2/kL2

� C �kf k
1=5

L1
15=2

kf k
4=5

L6
krhkL2

m=2
.kr2hkL2

m=2�3=2
C krhkL2

m=2�5=2
/

� C �.K/krf k
4=5

L2
krhkL2

m=2
kr

2hkL2
m=2�3=2

C C �.K/krf k
4=5

L2
krhk2

L2
m=2

�
C �.K/

8
kr

2hk2
L2
m=2�3=2

C C �.K/.1C krhkL2/
8=5
krhk2

L2
m=2

C C �.K/.1C krhkL2/
4=5
krhk2

L2
m=2

:

Using the estimates above and (4.3), we end up with estimate (4.9).
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Proposition 4.3. Let f � 0 be such that
R

R3 f .v/ dv D 1,
R

R3 f .v/jvj
2 dv D 3, and

kf kL1
45
C kf kL logL � K for some K > 0. Set h D f � �. Let C.K/ be as in Proposi-

tion 4.2 and 0 � m � 76. Then there exists some constant C �.K/ depending only on K
such that

W2 WD hQ.@kf; h/; hvi
m@khi

�
3C.K/

8
kr

2hk2
L2
m=2�3=2

C C �.K/.1C krhk2
L2
/khkH1

m=2
krhkL2

m=2
: (4.10)

Proof. Using integration by parts, we see that

W2 D hQ.@kf; h/; hvi
m@khi

D

X
k;i;j

Z
�.@kaij � f /.@jh/Œ.@i@kh/h�i

m
C .@kh/@i h�i

m� dv

C

X
k;i

Z
.bi � @kf /.h/Œ.@i h�i

m/@khC .@i@kh/h�i
m� dv:

Using first (4.3) of Proposition 4.1, we obtain the estimateˇ̌̌̌ X
k;i;j

Z
.@kaij � f /.@jh/.@kh/h�i

m dv

ˇ̌̌̌
� C.1C krhkL2/krhk

2

L2
m=2

:

Also, still treating separately jv � v�j � 1 and jv � v�j> 1, and observing that j � j�2
j�j<1

2 L4=3, we computeˇ̌̌̌ X
k;i;j

Z
.@kaij � f /.@jh/.@i@kh/h�i

m dv

ˇ̌̌̌
� C �

�
kf kL4

3=2
krhkL2

m=2
kr

2hkL2
m=2�3=2

C kf kL1
2
krhkL2

m=2�1=2
kr

2hkL2
m=2�3=2

�
� C �

�
kf k

1=10

L1
15

kf k
9=10

L6
krhkL2

m=2
C krhkL2

m=2�1=2

�
kr

2hkL2
m=2�3=2

�
C.K/

8
kr

2hk2
L2
m=2�3=2

C C �.K/.1C krhkL2/
9=5
krhk2

L2
m=2

:

Then, thanks to Proposition 4.1 again,ˇ̌̌̌X
k;i

Z
.bi � @kf /.h/.@i h�i

m/@kh dv

ˇ̌̌̌
� C �.1C krhk2

L2
/khkH1

m=2
krhkL2

m=2
:

Finally, we estimate j
P
k;i

R
.bi � @kf /.h/.@i@kh/h�i

m dvj. Recall that f D hC �.
Thanks to integration by parts, we haveX

k;i

Z
.bi � @k�/.h/.@i@kh/h�i

m dv

D �

X
k;i

Z
.bi � @k�/.@kh/@i .hh�i

m/ dv C 8�
X
k

Z
.@k�/.@kh/.hh�i

m/ dv:
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Therefore, ˇ̌̌̌X
k;i

Z
.bi � @k�/.h/.@i@kh/h�i

m dv

ˇ̌̌̌
� C �khkH1

m=2
krhkL2

m=2
:

We now turn to the term j
P
k;i

R
.bi � @kh/.h/.@i@kh/h�i

m dvj. The integral over
jv � v�j � 1 is bounded by

C �
“
jv�v�j�1

jv � v�j
�2
jrh.v�/j jh.v/j jr

2h.v/jhvim dv� dv

� C �
j � j�2

j�j�1 � jh�i
m=2
rhj


L4

jhj jr2hjh�im=2
L4=3

� C �krhkL2
m=2

j � j�2
j�j<1


L4=3
khkL4

3=2
kr

2hkL2
m=2�3=2

� C �krhkL2
m=2
khk

1=10

L1
15

krhk
9=10

L2
kr

2hkL2
m=2�3=2

�
C.K/

8
kr

2hk2
L2
m=2�3=2

C C �.K/.1C krhk2
L2
/krhk2

L2
m=2

:

Notice now that j � j�2
j�j�1
2 L14=9. Thus, the integral over jv � v�j � 1 is bounded by

C �
“
jv�v�j�1

jv � v�j
�2
jrh.v�/j jh.v/j jr

2h.v/jhvim dv� dv

�
j � j�2

j�j�1 � jrhj

L7

jhj jr2hjh�im
L7=6

� krhkL2
j � j�2

j�j�1


L14=9

khk
L
14=5

m=2C3=2

kr
2hkL2

m=2�3=2

� C �krhkL2khk
8=35

L1
m=2C105=16

krhk
27=35

L2
m=2

kr
2hkL2

m=2�3=2

�
C.K/

8
kr

2hk2
L2
m=2�3=2

C C �.K/.1C krhk2
L2
/krhk2

L2
m=2

;

since m=2C 105=16 < 45 when m � 76.
Finally, we get estimate (4.10) by regrouping all the estimates above.

4.1.2. Estimates for W3 and W4. We now estimate jointly the terms W3 and W4.

Proposition 4.4. Let f � 0 be such that
R

R3 f .v/dvD 1 and
R

R3 f .v/jvj
2 dvD 3. Then

for all m � 2, and some .absolute/ constant C > 0,

W3 CW4 WD hQ.@kh; �/; h�i
m@khi C hQ.h; @k�/h�i

m@khi

� CkrhkL2khkH1
m=2
: (4.11)

Proof. Using integrations by parts, we compute

W3 D hQ.@kh; �/; h�i
m@khi

D

X
k;j

Z
.bj � @kh/.@j�/h�i

m@kh dv C
X
k;i;j

Z
.@kaij � h/.@i@j�/h�i

m@kh dv

C

X
k

8�

Z
�j@khj

2
h�i
m dv �

X
k;i

Z
.bi � @kh/.@i�/.@kh/h�i

m dv;
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and

W4 D hQ.h; @k�/; h�i
m@khi

D

X
k;j

Z
.bj � h/.@j @k�/.@kh/h�i

m dv C
X
k;i;j

Z
.aij � h/.@i@j @k�/.@kh/h�i

m dv

�

X
k;i

� Z
.bi � @ih/.@k�/.@kh/h�i

m dv C

Z
.bi � h/.@i@k�/.@kh/h�i

m dv
�
:

Hence, using the elementary inequality hv�i21jv�v�j�1 � jv � v�j
2ev

2=41jv�v�j�1, we get

W3 CW4 � C

�Z
jbj � jrhj jrhj�1=2 C

Z
jbj � jhj jrhj�1=2 C

Z
jrhj2�1=2

�
� CkŒjbj1j�j�1� � .jhj C jrhj/kL2krhkL2

C C

“
jv�v�j�1

hv�i
�2Œjh.v�/j C jrh.v�/j�jrh.v/j�.v/

1=2 dv dv� C Ckrhk
2
L2

� Ckrhk2
L2
C CkhkL2krhkL2 C CkrhkL2.khkL2

1
C krhkL2

1
/

� CkrhkL2.khkL2
m=2
C krhkL2

m=2
/ � CkrhkL2khkH1

m=2
;

remembering that m � 2.

4.2. L2 estimate

Proposition 4.5. Let f � 0 be such that
R

R3 f .v/ dv D 1,
R

R3 f .v/jvj
2 dv D 3, and

kf kL1
45
C kf kL logL � K for some K > 0. Set h D f � �. Let C.K/ be as in Proposi-

tion 4.2. Then for all m � 4, and some constant C �.K/ depending only on K

hQ.f; h/; h�imhi C hQ.h;�/; h�imhi

� �C.K/krhk2m=2�3=2 C C
�.K/.1C krhkL2/.krhk

2

L2
m=2

C khk2
L2
m=2

/: (4.12)

Proof. Using integration by parts, we obtain the decomposition

hQ.f; h/; h�imhi D �

Z
.a � f / W .rh/˝ .rh/h�im dv

�

X
i;j

Z
.aij � f /.@jh/h.@i h�i

m/ dv C
X
i

Z
.bi � f /.h/Œ@i .h�i

mh/� dv

DW �E1 � E2 C E3:

Using Proposition 2.1 (and keeping in mind the arguments used in the proof of Corol-
lary 2.1), we see that

E1 � C.K/krhk
2
m=2�3=2: (4.13)
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Using then the same computations as in the proof of Proposition 4.1, we see that

jE2j � Ckrf kL2khkL2
m=2
krhkL2

m=2
C Ckf kL1khkL2

m=2
krhkL2

m=2

� C.1C krhkL2/khkL2
m=2
krhkL2

m=2
: (4.14)

Similarly,
jE3j � C.1C krhkL2/.khkL2

m=2
krhkL2

m=2
C khk2

L2
m=2

/: (4.15)

Using again integration by parts, we also see that

jhQ.h;�/; h�imhij

D

ˇ̌̌̌X
i

Z �X
j

�.aij � h/.@j�/Œ@i .h�i
mh/�C .bi � h/.�/Œ@i .h�i

mh/�
�
dv

ˇ̌̌̌
� C

Z
.jaj C jbj/ � jhj.jhj C jrhj/�1=2 dv

� C
Œ.jaj C jbj/1j�j�1� � jhjL2.khkL2 C krhkL2/
C C

“
jv�v�j�1

hv�i
�1
jh.v�/jŒjh.v/j C jrh.v/j��.v/

1=4 dv dv�

� C.khkL2 C krhkL2/khkL2
2
; (4.16)

where jv � v�j�11jv�v�j�1 � hv�i
�1hvi is used.

Collecting all terms and remembering that m � 4, we conclude the proof of Proposi-
tion 4.5.

4.3. End of the proof of Proposition 1.2

To end the proof, we perform the computations for a smooth C 2t .�/ solution f � 0 of the
Landau equation with Coulomb potential (1.1)–(1.3). We should in fact repeat here the
process of approximation presented in the proofs of Theorem 1.2 and Proposition 1.1. We
do not write it for the sake of readability, since no new argument is used to deal with the
approximate process.

We first observe that thanks to the assumptions of Theorem 1.2 and Lemma 2.1, there
exists a constant K > 0 such that

sup
t>0

.kf .t/kL1
45
C kf .t/kL logL/ � K:

Then we compute (for 4 � m � 76) the quantity 1
2
d
dt
krhk2

L2
m=2

. By using the computa-

tions (4.1), (4.2) and Proposition 4.2–4.4, we end up with the estimate

1

2

d

dt
krhk2

L2
m=2

C
C.K/

2
kr

2hk2
L2
m=2�3=2

� C �.K/.1C krhk2
L2
/khkH1

m=2
krhkL2

m=2
:

(4.17)
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Then, multiplying (2.1) by h�im, and integrating with respect to v, we compute

1

2

d

dt
khk2

L2
m=2

D hQ.f; h/; h�imhi C hQ.h;�/; h�imhi: (4.18)

Using Proposition 4.5 and (4.18), we get the differential inequality

1

2

d

dt
khk2

L2
m=2

C C.K/krhk2m=2�3=2 � C
�.K/.1C krhkL2/.krhk

2

L2
m=2

C khk2
L2
m=2

/:

(4.19)
Combining (4.19) and (4.17), we finally obtain the differential inequality

1

2

d

dt
khk2

H1
m=2

C
C.K/

2
krhk2

H1
m=2�3=2

� C �.K/.1C krhk2
L2
/khk2

H1
m=2

: (4.20)

We emphasize that from the proofs of Propositions 4.2–4.5, the constants C �.K/, C.K/
> 0 in the above inequality only depend on K such that kf0kL1

55
C kf0kL logL � K.

Thanks to Proposition 6.4, we know that, for some C;C3;C4 > 0, and some k3 > 2=5
(we take l D 55, � D 15=4C 7 and ql;� � �3:79 with the notations of Lemma 2.1, then
k3 > 3),

C.K/

2
krhk2

H1
1=2

�C3khk
14=5

H1
2

khk
�4=5

L1
15=4C7

�Ckhk2
L1
�3=2

�C4.1Ct /
k3khk

14=5

H1
2

�Ckhk2
L2
2

:

In the inequality above and in the rest of the proof, we do not make explicit the (existing)
dependence of C;C3; C4 > 0, and k3 > 2=5 on K.

Denoting Y.t/ WD kh.t/kH1
2

, we therefore get (for some C5 > 0 only depending onK)

d

dt
Y.t/2 C C4.1C t /

k3Y.t/14=5 � C5.Y.t/
4
C Y.t/2/: (4.21)

Remembering that kh0kL1
45

is bounded and that the initial condition is supposed to satisfy
kh0h�i

2k PH1
� �0 � 1, we see that by interpolation, the differential inequality (4.21) is

complemented with the initial datum Y.0/2 D Q� � 1 (note that here and below, the way
in which Q� is small depends in fact (only) on K).

We now consider T � WD sup ¹t > 0 j Y.t/4 � Y.t/2º D sup ¹t > 0 j Y.t/ � 1º. For
t 2 Œ0; T ��, the differential inequality

d

dt
Y.t/2 � 2C5Y.t/

2

holds. It implies that for all t 2 Œ0; T1 WD .2C5/
�1jlog.1

2
jlog Q�j�1 Q�/�1j�, the inequality

Y.t/2 � 1
2
jlog Q�j�1 � 1 also holds. Thus, T � � T1.

We now use a contradiction argument in order to show that solutions of (4.21) globally
exist. If the set ¹t > 0 j Y.t/2 D jlog Q�j�1º is empty, then this is automatically true. If not,
we define T �� WD inf ¹t > 0 j Y.t/2 D jlog Q�j�1º. Then there exists a time T2 defined by
T2 WD sup ¹t � T �� j Y.t/2 D 1

2
jlog Q�j�1º. Because of the definition of T1 and T2, we see
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that T � > T �� > T2 � T1, and Y.t/2jlog Q�j 2 Œ1=2; 1� when t 2 ŒT2; T ���. In particular,
in the interval ŒT2; T ���, we have

d

dt
Y.t/2 C C4.1C T1/

k3Y.t/4=5Y.t/2 � 2C5Y.t/
2;

where
.1C jlog Q�j/k3 jlog Q�j�2=5 D OQ�!0ŒC4.1C T1/k3Y.t/4=5�:

This implies that if k3 > 2=5 and Q� > 0 is sufficiently small (depending on K again),
then C4.1 C T1/k3Y.t/4=5 � 2C5. Thus Y 2 is decreasing on the interval ŒT2; T ���, so
that Y.T ��/2 � Y.T2/2 D 1

2
jlog Q�j�1. This is not compatible with the definition of T ��,

which entails that the set ¹t > 0 j Y.t/2 D jlog Q�j�1º is empty. As a consequence, we
get the global existence for solutions of (4.21), and those solutions moreover satisfy
supt�0 Y.t/

2 � jlog Q�j�1.
The solutions therefore satisfy the following modified differential inequality:

d

dt
Y.t/2 C C4.1C t /

k3Y.t/14=5 � 2C5Y.t/
2:

Splitting the interval .0;1/ into the two sets ¹t > 0 j C4.1C t /k3Y.t/14=5 � 4C5Y.t/2º
and ¹t > 0 jC4.1C t /k3Y.t/14=5 > 4C5Y.t/2º, we conclude that for some constantC > 0
(remembering that k3 > 3)

Y.t/ � C.1C t /�5k3=4 � C.1C t /�15=4:

We recall that the estimates obtained in this subsection hold for a smooth solution of
the Landau equation (1.1)–(1.3), and that, as in Proposition 2.8, they also hold uniformly
with respect to � 2 �0; 1Œ for smooth solutions of the approximate equation (2.42)–(2.43),
with suitably mollified initial datum (we recall that such solutions are known to exist and
be unique). It is then possible to pass to the (weak weighted L1) limit in the final estimate

kh�kH1
2
� C.1C t /�5k3=4 � C.1C t /�15=4;

and get the existence of the unique strong global nonnegative solution to (1.1)–(1.3)
announced in Proposition 1.2. The uniqueness is obtained thanks to a variant of the argu-
ments used in the proofs of Theorem 1.2 and Proposition 1.1.

5. Investigation of a potential blowup

Here, we prove Proposition 1.3, which provides estimates describing the potential blowup
(in PH 1) of solutions to (1.1)–(1.3).

We first present the following (abstract) lemma:
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Lemma 5.1. Let NT > 0, X; H be C 1 functions from Œ0; NT Œ to RC, C1; C3; k1 > 0,
k2 > 7=2, and D WD �H 0. Suppose that X is a solution to the following ordinary dif-
ferential inequality for all � > 0 small enough:

d

dt
X.t/2 C C1.1C t /

k1X.t/14=5 � �C3D.t/X.t/
14=5
CB.�/.1C t /�k2 ; (5.1)

and that limt! NT X.t/ D C1. In the estimate above, B is a continuous decreasing non-
negative function.

Then the following quantitative estimates hold for some c; C > 0 .depending on
C1; C3; k1; k2 and B/ and k WD min ¹2k2�7

5
; k1º, when NT � t > 0 is small enough:

X.t/ � C.H.t/ � NH/�5=4 while H.t/ � NH � C. NT � t /.1C NT /k ; (5.2)

inf
s2Œt; NT �

X.s/ �

�
B.cŒ NT � t �/

2

C1
.1C NT /�.k1Ck2/

�5=14
: (5.3)

In the estimates above, we use the notation NH WD limt! NT H.t/.

Proof. We can first use Lemma 2.2 with � D C�13 (up to choosing C3 > 0 large enough)
and B� WD B.�/. Estimate (2.40) implies that for ı > 0 small enough, and some C6 > 0
given by Lemma 2.2,

H. NT � ı/C C6

Z NT�ı

t

.1C s/kds � H.t/ � 5
2
ŒX.t/2 C B�.1C t /1�k2 ��2=5; (5.4)

which is enough to get the first part of estimate (5.2), by letting ı ! 0.
Using again estimate (5.4) and letting ı ! 0, we see that

X.t/2 C B�.1C t /1�k2 �
�
2
5
.H.t/ � NH/

��5=2
:

By definition, limt! NT H.t/ D
NH so that .1C t /1�k2 D ot! NT .H.t/ � NH/

�5=2, and we
get the second part of (5.2).

In order to prove estimate (5.3), we go back to assumption (5.1). Dividing it
by X�14=5, we get

�
5

2

d

dt
X.t/�4=5 C C1.1C t /

k1 � �C3D.t/CB.�/.1C t /�k2X.t/�14=5;

which gives

5
2
X.t/�4=5 � 5

2
X. NT � ı/�4=5 C C1

Z NT�ı

t

.1C s/k1 ds

� �C3H.0/CB.�/

Z NT�ı

t

.1C s/�k2X.s/�14=5 ds: (5.5)

From this, we deduce (remember that limt! NT X.t/ D C1)�
sup
s2Œt; NT �

X.s/�14=5
�
.1C t /�k2. NT � t /B.�/ � C1.1C t /

k1. NT � t / � �C3H.0/:
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Let � WD c. NT � t /, for c > 0 chosen small enough. Then for NT � t small enough, we get

sup
s2Œt; NT �

X.s/�1 �

�
.B.cŒ NT � t �//�1

C1

2
.1C NT /k1Ck2

�5=14
;

which yields estimate (5.3).

Remark 5.1. The entropy H plays an important role in the estimates, giving hints about
the way that a possible blowup could occur for (1.1). We observe that this quantity is
continuous (with respect to time, on Œ0; NT /) under our assumptions (namely when f WD
f .t; v/ is a nonnegative solution to (1.1) lying in C.Œ0; NT /I PH 1/\L1loc.Œ0;

NT /IL15/). From
the inequality

ja log a � b log bj � Cpja � bj1=p C ja � bjlogC.ja � bj/C 2
p
a ^ b

p
ja � bj;

which is proved in Proposition 6.5 (for p >1,Cp Dp=.e.p� 1// and a^ bDmin¹a;bº),
used when p WD 4=3, we see that (for 0 � t1; t2 < NT )

jH.t1/ �H.t2/j

�C
�
kf .t1/�f .t2/k

3=4

L
3=2
3

Ckf .t1/�f .t2/k
2
L2
Ckf .t1/�f .t2/k

1=2

L3=2
kf .t1/Cf .t2/k

1=2

L
3=2
3

�
:

Thanks to the interpolation inequalities (based on Hölder’s inequality and Sobolev embed-
dings),

kf k
L
3=2
3

� kf k
3=5

L1
5

kf k
2=5

L6
� Ckf k

3=5

L1
5

krf k
2=5

L2
; kf kL2 � kf k

2=5

L1
krf k

3=5

L2
;

we finally get the estimate (for some C depending on kf kL1t .L15/ and kf kL1t . PH1/, the
norms being taken on Œ0; sup.t1; t2/�)

jH.t1/ �H.t2/j

� C.kf .t1/ � f .t2/k
3=10

PH1
C kf .t1/ � f .t2/k

6=5

PH1
C kf .t1/ � f .t2/k

1=5

PH1
/; (5.6)

which is sufficient to conclude.

Proof of Proposition 1.3. We begin with the case when f is a smooth and quickly decay-
ing (when jvj ! 1) solution to (1.1)–(1.3) on a time interval Œ0; NT Œ. Thanks to estimate
(2.37), we see that assumption (5.1) holds with B.x/ WD C2x

�13 exp¹7x�450=14º. We can
then apply Lemma 5.1 to X.t/ WD krf .t/kL2 .

We now briefly explain how to prove Proposition 1.3 without assuming that f is
smooth and quickly decaying (when jvj !1). We consider a time interval on which f 2
L1t .H

1 \L155/. We first observe that thanks to Proposition 1.1, we have f 2L2t .H
2
�3=2

/.
Since f 2 L1t .L

1
55/, we see that thanks to Proposition 6.4, f 2 L2t .H

1
12/. Using now

estimate (4.20) and the uniqueness result, we see that f 2 L1t .H
1
19=2

/ \ L2t .H
2
8 / on all

compact subintervals of Œt0; NT Œ where t0 > 0.
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Using the equation satisfied by second order derivatives of f and computing the time
derivative of the square of theH 2 norm of f , we can use Corollary 2.1 and estimates like
those in Propositions 4.1–4.4 to end up with the bound

1

2

d

dt
kf k2

PH2
C C.K/krf k2

PH2
�3=2

� C.kf k2
H2
C kf k4

L2
/kf k2

H2
9=2

:

Since f 2 L2t .H
2
8 /, we see that f 2 L1t .H

2/\L2t .H
3
�3=2

/ on all compact subintervals
of Œt0; NT Œ where t0 > 0.

Using the estimates above for solutions f � of the approximate problem (2.42)–(2.43),
we find that f � is bounded in L1.H 2/ on any interval Œt1; t2� � �0; NT Œ. Using also (5.6),
this is sufficient to pass to the limit in the inequality

M�.t2/C C6

Z t2

t1

.1C t /k dt �M�.t1/; (5.7)

where M.t/ D H �.t/ � 5
2
.kh�.t/k2

PH1
C B�.1 C t /�k2C1/�2=5. We end up with the

inequality (1.24) “integrated in time”:

M.t2/C C6

Z t2

t1

.1C t /k dt �M.t1/: (5.8)

The same construction can be used to obtain estimates (5.4) and (5.5) and conclude the
proof of Proposition 1.3 when f 2 L1t .H

1 \L155/ on all compact subintervals of Œ0; NT Œ.

6. Appendix

In this appendix, we present some results which are used in the paper. We start with
interpolation results and properties of Lorentz spaces.

6.1. Dyadic decompositions

We start by recalling some aspects of the Littlewood–Paley decomposition. Let B4=3 WD
¹x 2 R3 j jxj < 4=3º and R3=4;8=3 WD ¹x 2 R3 j 3=4 < jxj < 8=3º. Then one introduces
two radially symmetric functions  2 C10 .B4=3/ and ' 2 C10 .R3=4;8=3/ which satisfy

 ; ' � 0;  .x/C
X
j�0

'.2�jx/ D 1; x 2 R3: (6.1)

The dyadic operator Pj is defined for j � �1 by

P�1f .x/ WD  .x/f .x/; Pjf .x/ WD '.2
�jx/f .x/ .j � 0/:

We recall that PjPk D 0 if jj � kj > N0 for some N0 2 N.
We present a norm based on the dyadic decomposition which is equivalent to the usual

norm of the weighted Sobolev spaces H s
l
.R3/:

Proposition 6.1 ([22]). Let s; l 2R. Then for f 2H s
l

,
P1
kD�1 2

2klkPkf k
2
H s � kf k

2
H s
l

:



A new monotonicity formula for Landau equation 41

6.2. Definition, norms and quasi-norms of Lorentz spaces

For the convenience of the readers and for self-containment, we collect some useful facts
about Lorentz spaces from [1,34]. Consider Rn with Lebesgue measure j � j. In Section 1,
we have defined the norm in the Lorentz spaceLp;q;p 2 Œ1;1Œ;q 2 Œ1;1� (or pD qD1,
using the convention t1=1 D 1; t � 0), by

kf kLp;q WD

8<:
�R1
0
.t1=pf ��.t//q dt

t

�1=q
; 1 � q <1;

sup
t>0

t1=pf ��.t/; q D1;
(1.16)

which is different from the commonly used definition

kf k�Lp;q WD

8<:
�R1
0
.t1=pf �.t//q dt

t

�1=q
; 1 � q <1;

sup
t>0

t1=pf �.t/; q D1:
(6.2)

Here

f ��.t/ D
1

t

Z t

0

f �.s/ ds; f �.s/ D inf ¹t � 0 W af .t/ � sº;

where af is the distribution function of f given by

af .t/ D j¹x 2 Rn W jf .x/j > tºj:

For p 2 .1;1/ and q 2 Œ1;1�, we note that the functional k � k�Lp;q is a norm only
when q � p and a quasi-norm otherwise; on the other hand, k � kLp;q is always a norm.
For p 2 .1;1/ and q 2 Œ1;1�, the following comparison inequality holds:

kf k�Lp;q � kf kLp;q �
p

p � 1
kf k�Lp;q :

Clearly for 1 < p <1, we have kf k�Lp;p D kf kLp and thus Lp;p D Lp . For p D 1 the
situation is different (see also [1, p. 224]); one can indeed check that

kf kL1;1 D sup
t>0

tf ��.t/ D sup
t>0

Z t

0

f �.s/ ds D

Z 1
0

f �.s/ ds D kf kL1 :

Finally, for p D1 (see also [1, p. 224]), one can also check that

kf kL1;1 D sup
t>0

f ��.t/ D sup
t>0

1

t

Z t

0

f �.s/ ds D f �.0/ D kf kL1 :

6.3. Inequalities and interpolation

We begin with a Sobolev embedding theorem and the O’Neil inequality in Lorentz spaces.

Proposition 6.2 (see [1, 31]). (i) If f 2 H 1.R3/, then f 2 L6;2.R3/ and

kf kL6;2.R3/ � Ckf kH1.R3/:
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(ii) For p1; p2; q1; q2 2 Œ1;1� with 1=p D 1=p1 C 1=p2 and 1=q � 1=q1 C 1=q2, there
exists a computable constant C depending only on p1; q1; p2; q2 such that

kfgkLp;q � Ckf kLp1;q1 kgkLp2;q2 :

(iii) If f 2 Lp;q1 ; g 2 Lp
0;q2 where p;p0; q1; q2 2 Œ1;1� are such that 1=p C 1=p0 D 1

and 1=q1 C 1=q2 � 1, then f � g 2 L1 and

kf � gkL1 � kf kLp;q1 kgkLp0;q2 :

Next we will prove some useful interpolation inequalities which are widely used
throughout the paper.

Proposition 6.3. For m 2 R, and some constant C > 0 depending only on m,

kf k
L
3;1
m
� Ckf k

1=5

L1
5mC1

kf k
4=5

H1
:

Proof. We split the proof into two parts. The first step is devoted to showing that

kf kL3;1 � kf k
1=5

L1
kf k

4=5

L6;2
� Ckf k

1=5

L1
kf k

4=5

H1
:

By the definition of Lorentz spaces, one gets

kf kL3;1 D

Z 1
0

t1=3f ��.t/
dt

t

�

�Z R

0

.t1=6f ��.t//2
dt

t

�1=2�Z R

0

t1=3
dt

t

�1=2
C

�
sup
t>0

tf ��.t/
� Z 1

R

t�2=3
dt

t

� kf kL6;2R
1=6
C kf kL1;1R

�2=3:

We conclude by optimizing R and by using the identity kf kL1;1 D kf kL1 (see §6.2
and [1, p. 224]).

In the next step, we extend the above result to the general case (the one with weights
appearing in the norms) using a dyadic decomposition. We observe that

kf k
L
3;1
m
D kf h�imkL3;1 �

1X
kD�1

kPkf h�i
m
kL3;1 � C

1X
kD�1

kPkf kL3;1kPkh�i
m
kL1;1

� C

1X
kD�1

kPkf kL3;12
km
� C

1X
kD�1

.25kmkPkf kL1/
1=5
kPkf k

4=5

H1

� C
� 1X
kD�1

25km=3kPkf k
1=3

L1

�3=5� 1X
kD�1

kPkf k
2
H1

�2=5
;

where we use the O’Neil inequality (Proposition 6.2) and the identity kf kL1;1Dkf kL1
(see §6.2 and [1, p. 224]). From this together with the computation

1X
kD�1

2
5
3kmkPkf k

1=3

L1
� C

1X
kD�1

25km=32�.5mC1/k=3kf k
1=3

L1
5mC1

� Ckf k
1=3

L1
5mC1

;
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we finally get the inequality

kf k
L
3;1
m
� Ckf k

1=5

L1
5mC1

kf k
4=5

H1
:

Proposition 6.4. For m 2 R,

kf kH1m � Ckf k
2=7

L1
15=4C7m=2

.kf kL1
�3=2
C kr

2f kL2
�3=2

/5=7;

kf kH1m � Ckf k
2=7

L1
5=4C7m=2

.kf kL1
�1=2
C kr

2f kL2
�1=2

/5=7;

where C > 0 is a constant depending only on m.

Proof. We first claim that

kf kH1 � Ckf k
2=7

L1
.kf kL1 C kr

2f kL2/
5=7:

Indeed, since kf k2
H1
�
R

R3.1C j�j/
2 Of .�/2 d�, we have (for R � 1)

kf k2
H1
� C.R5kf k2

L1
CR�2kf k2

H2
/:

We conclude by taking R7 D kf k2
H2
=kf k2

L1
C 1, recalling that kf kH2 � kf kL1 C

kr2f kL2 . Thanks to Proposition 6.1, we see that

kf k2
H1m
�

1X
kD�1

22kmkPkf k
2
H1
� C

1X
kD�1

22kmkPkf k
4=7

L1
.kPkf k PH2CkPkf kL1/

10=7

� C
� 1X
kD�1

2.7mC15=2/kkPkf k
2
L1

�2=7� 1X
kD�1

2�3k.kPkf k
2
PH2
C kPkf k

2
L1
/
�5=7

� Ckf k
4=7

L1
15=4C7m=2

.kf kL1
�3=2
C kr

2f kL2
�3=2

/10=7:

The proof of the second inequality is similar.

Proposition 6.5 ([23]). For a; b � 0 and 1 < p <1, the following inequality holds:

ja loga � b logbj � Cpja � bj1=p C ja � bjlogC.ja � bj/C 2
p
a ^ b

p
ja � bj; (6.3)

where a ^ b D min ¹a; bº; Cp WD p
e.p�1/

and

logC jxj D

´
log x if x � 1;

0 if x < 1:

Proof. We first observe that

log.1C x/ �
p
x; x � 0I jlog xj �

1

e˛
x�˛; 0 < x � 1; ˛ > 0: (6.4)

Then, let q > 1 satisfy 1=p C 1=q D 1. In what follows, we assume that a > b > 0.
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We first observe that

ja log a � b log bj � .a � b/jlog aj C b log
�
a

b

�
:

Using estimate (6.4), we see that

b log
�
a

b

�
D b log

�
1C

a � b

b

�
� b

r
a � b

b
D
p
b
p
a � b:

Next we compute

jlog aj D
ˇ̌̌̌
log
�
.a � b/

�
1C

b

a � b

��ˇ̌̌̌
�
q

e
.a � b/�1=q C logC.a � b/C

r
b

a � b
;

where in the case when a � b � 1, we use estimate (6.4) with ˛ D 1=q. This gives

.a � b/jlog aj �
q

e
.a � b/1=p C .a � b/ logC.a � b/C

p
b
p
a � b;

which enables one to conclude.

6.4. A remark on initial data

Finally we show that there exist initial data for Theorem 1.2 whose initial relative entropy
H.0/ is not large, while their PH 1 norm is large. See also the last comment of Theorem 1.2
in the introduction.

Proposition 6.6. Let �; �� 1 and � WD �11=9. Assume the Maxwellian � and a smooth
�0 � 0 both satisfy the normalization (1.14). Then

f0.v/ WD .1 � �C ��
2/3=2

�
�
.1 � �/�..1 � �C ��2/1=2v/C ���3�0.�

�1.1 � �C ��2/1=2v/
�

(6.5)

also satisfies the normalization (1.14), and

M.0/ WD H.0/ � 5
2
.kh.0/k2

PH1
C B/�2=5 � 0;

while kh0k PH1=2 � �
�7=9 .where h0 D f0 � �, and H.0/ is the relative entropy of f0/.

Proof. We check that f0 satisfies the third condition of (1.14) since the other two are
easier to check. Thanks to a change of variables,

.1 � �C ��2/3=2
�
.1 � �/

Z
�..1 � �C ��2/1=2v/jvj2 dv

C ���3
Z
�0.�

�1.1 � �C ��2/1=2v/jvj2 dv

�
D

1 � �

1 � �C ��2

Z
�.v/jvj2 dv C

��2

1 � �C ��2

Z
�0.v/jvj

2 dv D 3:
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Next let us estimate M.0/. We first observe that ���3=2 � 1. Then for any s > 0,
kh0k PH s � ��

�s�3=2. The relative entropy H.0/ is bounded from above by

H.0/ D

Z
R3

�
f0

�
log
�
f0

�

�
�
f0

�
C 1

�
�dv

�

Z
R3

Z 1

0

ˇ̌̌̌
log
�
f�

�

�ˇ̌̌̌ ˇ̌̌̌
f0

�
� 1

ˇ̌̌̌
�d� dv

for some � 2 Œ0; 1�, with the notation f� D .1 � �/f0 C ��. From now on we denote
by C any strictly positive constant.

At points where f0 � �, we see that

jlog.f�=�/j D log.f�=�/ � C.jvj2 C log.���3//;

while at points where f0 � �,

jlog.f�=�/j D log.�=f� / � log.�=f0/ � C.jvj2 C 1/:

From these estimates, we deduce that

H.0/ � C.1C log.���3//kf0 � �kL1
2
� C�.1C log.���3//:

Thus,
M.0/ � C�.1C log.���3// � C��4=5�2:

Remembering that � � �11=9, and � � 1, we see that

M.0/ � C�11=9 log.��1/ � C�46=45 � 0:

Finally, kh0k PH1=2 � �
�7=9, so that h0 is a large initial datum for the Landau equation in

PH 1=2 (the critical space for incompressible Navier–Stokes equations).
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