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Abstract. Green developed an arithmetic regularity lemma to prove a strengthening of Roth’s the-
orem on arithmetic progressions in dense sets. It states that for every � > 0 there is some N0.�/
such that for every N � N0.�/ and A � ŒN � with jAj D ˛N , there is some nonzero d such that A
contains at least .˛3 � �/N three-term arithmetic progressions with common difference d .

We prove that the minimumN0.�/ in Green’s theorem is an exponential tower of twos of height
on the order of log.1=�/. Both the lower and upper bounds are new. This shows that the tower-type
bounds that arise from the use of a regularity lemma in this application are quantitatively necessary.
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1. Introduction

A celebrated theorem of Roth [25] states that for each ˛ > 0 there is a least positive
integer N.˛/ such that if N � N.˛/ and A � ŒN � WD ¹1; : : : ; N º with jAj � ˛N , then
A contains a three-term arithmetic progression. Over the past six decades, there have been
great efforts by many researchers toward understanding the growth of this function, and
despite the introduction of important tools, the growth ofN.˛/ is still not well understood.
The upper bound was improved by Heath-Brown [21], Szemerédi [31], Bourgain [7, 8],
Sanders [27,28], and most recently Bloom [5] (see also [6]). The lower bound of Behrend
[2] was recently improved a bit by Elkin [10] (see also Green and Wolf [20] for a shorter
proof). The best known bounds are of the form ˛��.log.˛�1// � N.˛/ � 2O.˛

�1.log˛�1/4/.
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Szemerédi [29] extended Roth’s theorem to show that any dense set of integers con-
tains arbitrarily long arithmetic progressions. Szemerédi’s proof developed an early ver-
sion of Szemerédi’s regularity lemma [30], which gives a rough structural result for large
graphs and is arguably the most powerful tool developed in graph theory. It roughly
says that any graph can be equitably partitioned into a bounded number of parts so that
between almost all pairs of parts, the graph behaves randomly-like. Szemerédi’s proof
of the regularity lemma gives an upper bound on the number of parts which is tower-
type in an approximation parameter, which gives a seemingly poor bound for the various
applications of the regularity lemma. For over two decades there was some hope that a
substantially better bound might hold leading to better bounds in the many applications.
This hope was shattered by Gowers [16], who proved that the bound on the number of
parts in the regularity lemma must grow as a tower-type function. Further results improv-
ing on some aspects of the lower bound were obtained in [9, 11, 24].

It has been a major program over the last few decades to find new proofs of the various
applications of Szemerédi’s regularity lemma and its variants that avoid using the regu-
larity lemma and obtain much better quantitative bounds. This program, popularized by
Szemerédi and others, has been quite successful, leading to the development of powerful
new methods, such as in Gowers’ new proof of Szemerédi’s theorem [17] which intro-
duced higher order Fourier analysis [17], and in the resolution of many open problems in
extremal combinatorics using the powerful probabilistic technique known as dependent
random choice (see the survey [15]). However, until now it was unclear if one could avoid
using regularity methods and obtain much better bounds in all known applications of the
regularity lemma.

A simple averaging argument of Varnavides [33] shows that not only is there at least
one arithmetic progression in a subset of ŒN � of density ˛ with N sufficiently large, but
in fact it must contain a positive constant fraction c.˛/ of the three-term arithmetic pro-
gressions. It is not difficult to show that c.˛/ is rather small, with c.˛/ D ˛!.1/. In fact,
one can show that c.˛/ is closely related to N.˛/. This bound on the density of three-
term progressions is much smaller than the random bound of ˛3 one gets by considering
a random set of density ˛.

Green [18] developed an arithmetic analogue of Szemerédi’s regularity lemma and
used it to prove the following theorem, which answered a question of Bergelson, Host
and Kra [3]. It shows that while the total number of three-term arithmetic progressions
can be much smaller than the random bound, there is a nonzero d for which the number
of three-term arithmetic progressions with common difference d is at least roughly the
random bound.

Theorem 1.1 (Green’s popular progression difference theorem [18]). For each � > 0

there is an integerN0 such that for anyN �N0 and subsetA� ŒN � with jAj D ˛N , there
is a nonzero d such thatA contains at least .˛3 � �/N three-term arithmetic progressions
with common difference d .

Similar to the graph setting, the proof of the arithmetic regularity lemma gives a tower-
type upper bound on the size of the partition. Green [18] proved a tower-type lower bound
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for the arithmetic regularity lemma in the setting of vector spaces over F2, and Hosseini,
Lovett, Moshkovitz, and Shapira [22] later improved the tower height to�.��1/. Green’s
proof of Theorem 1.1 uses the arithmetic regularity lemma and consequently shows that
N0 can be taken to be an exponential tower of twos of height ��O.1/. It was unknown if
the tower-type bounds that come from any regularity lemma application like Theorem 1.1
are necessary. Our main theorem determines the growth of the minimum N0 for which
Theorem 1.1 holds, showing that it is an exponential tower of twos of height‚.log.1=�//.
Let tower.m/ denote an exponential tower of twos of height m.

Theorem 1.2. Let N0.�/ denote the smallest choice of N0 for which Theorem 1.1 holds.
There exist absolute constants c; C > 0 such that for all 0 < � < 1=2,

tower.c log.1=�// � N0.�/ � tower.C log.1=�//:

This result, and the considerably easier analogous result in vector spaces over a fixed
finite field [12,13], are the first examples of regularity lemma applications that require the
tower-type growth.

For investigations of popular differences for other patterns, including recent results on
higher-dimensional patterns, see [3, 4, 14, 19, 23, 26].

1.1. Detailed statement of results

Theorem 1.2 comes in two parts, an upper bound and a lower bound. The upper bound is
as follows.

Theorem 1.3 (Upper bound for intervals). There exists a constant C > 0 such that the
following is true. Let � > 0 and N � tower.C log.1=�//. For every A � ŒN �, setting
˛ D jAj=N , there exists some positive integer d such that x; x C d; x C 2d 2 A for at
least .˛3 � �/N integers x.

The main part of the proof is an analogous result in abelian groups of odd order.

Theorem 1.4 (Upper bound for abelian groups). There exists a constant C > 0 such
that the following is true. Let � > 0 and let G be a finite abelian group of odd order
with jGj � tower.C log.1=�//. For every A � G, setting ˛ D jAj=jGj, there exists some
d 2 G n ¹0º such that x; x C d; x C 2d 2 A for at least .˛3 � �/jGj values of x 2 G.

For the lower bound for intervals, we prove the following result, which is somewhat
stronger than that lower bound result claimed in Theorem 1.2.

Theorem 1.5 (Lower bound for intervals). There exist constants c; ˛0 > 0 such that for
every 0 < ˛ � ˛0, 0 < � � ˛12 and N � tower.c log.1=�//, there exists A � ŒN � with
jAj � ˛N such that for every positive integer d � N=2, one has x; x C d; x C 2d 2 A
for at most .˛3 � �/.N � 2d/ integers x.

Organization. In the next section, we introduce some helpful notation and preliminar-
ies including some basic facts from discrete Fourier analysis. In Section 3, we give an
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overview of the proof strategies for our results. In Section 4, we prove Theorems 1.3
and 1.4 giving the upper bound results. In Section 5, we give some auxiliary results for
the probabilistic lower bound construction. In Section 6, we give a lower bound construc-
tion for groups that can be written as a product of prime cyclic groups with fast growing
order. In Section 7, we then use this construction as an important ingredient to obtain the
lower bound construction in intervals.

We often omit floor and ceiling signs when they are not crucial for clarity of presen-
tation.

2. Notations and preliminaries

Averaging and expectation. We use E to denote the averaging operator: given a func-
tion f on a finite set S , denote

Ef D Ex2S Œf .x/� WD
1

jS j

X
x2S

f .x/:

We may write Ex instead of Ex2S if the domain of x is clear from context (usually over a
group).

The Lp norms are defined in the usual way:

kf kp WD .EŒjf j
p�/1=p:

As our lower bound construction is probabilistic, we will also need to consider expec-
tations of random variables, for which we use the usual notation E for expectation (note
the difference in font compared to the averaging operator E).

Fourier transform and convolutions. Given a finite abelian group G, let yG denote its
dual group, whose elements are characters of G, i.e., homomorphisms � W G ! S1 WD

¹z 2 C W jzj D 1º. The Fourier transform of f W G! C is a function yf W yG! C defined
by

yf .�/ WD EŒf �� D Ex2G Œf .x/�.x/�:

We write �1=2 to denote the character given by x 7! �.x=2/ (we will always work with
odd order abelian groups so that x=2 makes sense).

It is often convenient to explicitly identify the dual group yG with G (they are isomor-
phic for finite abelian groups). For example, for f W ZN ! C and r 2 ZN , we identify r
with the character �r .x/D e.xr=N / where we use the standard notation for the complex
exponential

e.t/ WD exp.2�it/; t 2 R:

Thus,
yf .r/ WD Ex Œf .x/e.�xr=N //�:
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Likewise, for f WFnp !C and r 2Fnp , we identify r with the character �r .x/D e.x � r=p/,
where x � r D x1r1 C � � � C xnrn 2 Fp is the dot product in Fnp . Thus,

yf .r/ WD Ex Œf .x/e.�x � r=p/�:

Given two functions f and g on G, their convolution f � g is defined by

.f � g/.x/ WD Ey2G Œf .y/g.x � y/�:

We recall several useful properties of the Fourier transform:

f .x/ D
X
�2 yG

Œ yf .�/�.x/�; [Fourier inversion formula]

1f � g D yf � yg; [Convolution identity]

Ex2G Œf .x/g.x/� D
X
�2 yG

yf .�/yg.�/; [Plancherel’s identity]

Ex2G Œjf .x/j
2� D

X
�2 yG

j yf .�/j2: [Parseval’s identity]

The Fourier transform is also fundamentally related to the count of 3-APs (or the count
of solutions to linear equations in general), as is evident in the following key identity
already used in the proof of Roth’s theorem [25] (it can be easily shown by substituting
the Fourier coefficients and expanding):

Ex;d2G Œf .x/f .x C d/f .x C 2d/� D
X
�2 yG

yf .�/2 yf .��2/: (1)

Densities. For an abelian group G with odd order and a function f W G ! Œ0; 1�, we
define the density of 3-APs of f as

Ex;d2G Œf .x/f .x C d/f .x C 2d/�:

We define the density of 3-APs with common difference d of f as

Ex2G Œf .x/f .x C d/f .x C 2d/�:

For a subset A of G, when we say “density of 3-APs” of A, we mean that of its indicator
function 1A, and likewise for “density of 3-APs with common difference d” of A.

Over the interval ŒN �, we have two possible notions for the density of 3-APs with
common difference d of a function f W ŒN �! Œ0; 1�. One can define the density of 3-APs
with common difference d of f asP

x2ŒN�2d�Œf .x/f .x C d/f .x C 2d/�

N
;

as used in Theorem 1.3. This defines the density of 3-APs with common difference d
as the average weight of the 3-APs .x; x C d; x C 2d/ for x 2 ŒN �, setting the value
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of f outside ŒN � to 0. The other possible definition of the density of 3-APs with common
difference d of f is

Ex2ŒN�2d�Œf .x/f .x C d/f .x C 2d/� D

P
x2ŒN�2d�Œf .x/f .x C d/f .x C 2d/�

N � 2d
;

as used in Theorem 1.5. In this case, we take the average only over 3-APs supported
in ŒN �. It is easy to see that the density from the second definition is always at least the
density from the first definition. In particular, the upper bound using the first definition
implies the upper bound using the second definition. Similarly, the lower bound using
the second definition implies the lower bound using the first definition. Thus, we give the
stronger result in each case.

Constants. We use c > 0 and C > 0 to denote small and large absolute constants, though
their values may differ at every instance. One could imagine attaching a unique subscript
to each appearance of c and C .

3. Overview of strategy

In this section we sketch the proof ideas of our main theorems, starting with the upper
bound (Theorems 1.4 and 1.3) and then followed by the lower bound (Theorem 1.5).

In both cases, we prove the “functional” versions of the theorems. That is, instead of
working with subsets A � G, we work with functions f W G ! Œ0; 1�, which can also
be viewed as subsets with weighted elements. A subset A � G can be represented by
its indicator function 1A. Conversely, given a function f W G ! Œ0; 1�, we can produce
from it a random subset A � G obtained by putting each element x 2 G independently
into A with probability f .x/. The resulting A has similar statistical properties to f due to
concentration. Working with functions affords us greater flexibility, which is convenient
for both parts of the proofs.

3.1. Upper bound

Theorems 1.3 and 1.4 follow from the functional forms below by setting f D 1A.

Theorem 3.1 (Upper bound for intervals, functional version). There exists a constant
C > 0 such that the following holds. Let � > 0 and N � tower.C log.1=�//. Let f W
ŒN �! Œ0; 1� with Ef D ˛. Then there exists d 2 G n ¹0º such that

Ex2ŒN �Œf .x/f .x C d/f .x C 2d/� � ˛
3
� �:

Theorem 3.2 (Upper bound for abelian groups, functional version). There exists a con-
stant C > 0 such that the following holds. Let � > 0 and let G be a finite abelian group
of odd order with jGj � tower.C log.1=�//. Let f W G ! Œ0; 1� with Ef D ˛. Then there
exists d 2 G n ¹0º such that

Ex2G Œf .x/f .x C d/f .x C 2d/� � ˛
3
� �:
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Green [18] proved the above theorems with a slightly worse bound of tower.C.1=�/C /
instead of tower.C log.1=�//. Let us first give a quick sketch of Green’s approach. It is
easier to first explain it for the finite field vector space setting G D Fnp with p fixed.

Green begins by establishing a regularity lemma. Given f W G ! Œ0; 1�, one finds a
subspace H of G D Fnp of codimension at most tower.C.1=�/C / such that inside almost
all translates of H , f behaves “pseudorandomly” in the sense of having small Fourier
coefficients (other than the principal “zeroth” Fourier coefficient that records the density).
This subspace H is obtained iteratively, similar to the standard energy-increment proofs
of regularity lemmas: starting withH0 D G, at each step one checks ifHi has the desired
properties, and if not, then one finds a bounded-codimensional subspace HiC1 of Hi
witnessing the nonuniformity. Each step increases the “energy”, or mean-squared density,
by at least �O.1/. As the energy can never exceed 1, the process terminates after at most
.1=�/O.1/ steps.

Once we have the above bounded-codimensional subspace H , let g be the function
obtained from f by averaging f inside each translate of H . In other words, consider the
convolution g D f � ˇH , where ˇH denotes the averaging measure on H (normalized
so that EˇH D 1). The regularity property of H , namely f � g having small Fourier
coefficients when restricted to most H -cosets, is enough to deduce that f and g have
similar densities of 3-APs with common differences lying in H , i.e.,

Ex2G;d2H Œf .x/f .x C d/f .x C 2d/� � Ex2G;d2H Œg.x/g.x C d/g.x C 2d/�:

On the other hand, g is constant along H -cosets, so that g.x/ D g.x C d/ D g.x C 2d/
for all d 2 H . Thus the final expression is EŒg3� � .Eg/3 by convexity, and we have
Eg � Ef . Putting everything together, we have

Ex2G;d2H Œf .x/f .x C d/f .x C 2d/� � .Ef /
3
� �=2: (2)

If G is large enough, so that H is large enough, then the above inequality implies that
there is some nonzero common difference d 2 H such that

Ex2G Œf .x/f .x C d/f .x C 2d/� � .Ef /
3
� �;

thereby showing that d is a popular common difference.

Let us now sketch how to improve the above bound to tower.C log.1=�// in the finite
field setting, which had been worked out in [13]. Instead of finding an H that regularizes
the function f , we simply seek to satisfy inequality (2). One then shows that if (2) is
violated, then we can find a bounded-codimensional subspace of H , via an application
of the weak regularity lemma at a “local” level, so that the corresponding mean-cube
density of f (after averaging along the subspace) nearly doubles at each step (instead of
merely increasing by ��O.1/), so that the iteration process must end after O.log.1=�//
steps (instead of .1=�/O.1/ steps). Once we obtain an H satisfying (2), the rest of the
argument is essentially identical.
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For general abelian groups G, unlike in the finite field setting Fnp , the group might not
have enough subgroups to run the above arguments. Instead, one uses Bohr sets, which
play an analogous role to subgroups. Bohr sets are defined in Section 4.1, and their manip-
ulations are much more delicate compared to subspaces, particularly as they do not have as
nice closure properties. Green proved his arithmetic regularity lemma for general abelian
groups using Bohr sets as basic structural objects. The strategy remains largely similar in
spirit to the finite field setting, though more challenging at a technical level (e.g., the group
cannot be partitioned into Bohr sets, unlike with subgroups). For instance, we obtain g
from f by setting g.x/ to be a certain “smooth average” of f around a certain carefully
chosen Bohr neighborhood of x. While the values g.x/, g.x C d/, and g.x C 2d/ are
no longer necessarily identical, they are hopefully approximately the same if d lies inside
some Bohr neighborhood of 0. The rest of Green’s argument is similar to the finite field
vector space case.

To obtain the corresponding result for intervals, one considers embedding ŒN � in ZN
and only consider Bohr sets whose elements d are all small in magnitude.

In order to improve the bound from tower..1=�/O.1// to tower.O.log.1=�/// for gen-
eral groups and for intervals, we carefully execute a combination of the above ideas. New
ideas are required to adapt the mean-cube density increment argument from [13] to Bohr
sets due to complications that do not arise in the finite field setting. The proof is carried
out in full detail in Section 4.

3.2. Lower bound

In this section, we give a brief overview of the proof of Theorem 1.5. We will deduce
Theorem 1.5 from its functional analogue given below, where we replace the subset A by
a function f W ŒN �! Œ0; 1� with density ˛ so that for any nonzero d , the density of 3-APs
with common difference d of f is at most ˛3.1 � �/.

Theorem 3.3 (Lower bound for intervals, functional version). There are positive absolute
constants c; ˛0 such that the following holds. If 0 � ˛ � ˛0, 0 � � � ˛7, and N �
tower.c log.1=�//, then there is a function f W ŒN �! Œ0; 1� with EŒf � D ˛ such that for
any integer 0 < d < N=2,

Ex2ŒN�2d�Œf .x/f .x C d/f .x C 2d/� � ˛
3.1 � �/:

We remark that we have replaced � by �˛3, which is more convenient to work with in
the lower bound construction. Since we treat ˛ as a constant throughout, this has no effect
on the behavior of the asymptotic bound we get. The proof of Theorem 1.5 assuming
Theorem 3.3 follows from a standard sampling argument, which we defer to Appendix A.
There, we also show that it suffices to prove Theorems 1.5 and 3.3 for N � ��15.

In the following subsections, we sketch the construction of the function f in Theo-
rem 3.3. This construction utilizes a construction over cyclic groups that can be factored
into a product of groups with appropriate growth in size. The construction in this case
is inspired by the recursive construction presented in [13] over finite field vector spaces.
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However, several important new ideas are needed. The construction of f for such prod-
uct groups is sketched in Section 3.2.1. Using this construction, we can construct f over
intervals, using ideas sketched in Section 3.2.2, thus proving Theorem 3.3.

We remark that in this section we only give proof sketches without complete detail.
The details of each construction and full proofs are presented in Sections 6 and 7.

3.2.1. Product groups. We first give the construction for groups that can be written as
a product of appropriately growing cyclic groups of prime order.

Theorem 3.4 (Lower bound for product of growing prime cyclic groups). Let 0 < ˛ �
1=4, 0 < � � 20�9, andG D Zn where n is a positive integer such that there exist distinct
primes m1; : : : ; ms with s � log150.�

�1=4˛6=8/ satisfying

� n D
Qs
jD1mj ,

� ��1=3=2 < m1 � �
�1=3, and

� for i � 2, n6i�1 < mi < exp.2�1 � 64�2 � 150i�1�1=4ni�1/=2 where ni D
Qi
jD1mj .

Then there exists a function f W G ! Œ0; 1� with EŒf � D ˛ such that for any d 2 G n ¹0º,

Ex Œf .x/f .x C d/f .x C 2d/� � ˛
3.1 � �/:

Furthermore, Ex Œf .x/3�� 3˛3=2 and there exists Q̨ 2 Œ˛;˛.1C �1=4/� such that f .x/D Q̨
for at least a 3=4 fraction of x 2 G.

Here, the product structure of G and the bound on the growth of mi allow us to
conduct an iterative construction. The basic framework of the construction builds on the
construction in [13], which took place in the setting of Fnp .

We build functions f1; f2; f3; : : : in this order. Here the domain of fi is Qi DQi
jD1 Zmj . We will maintain that Efi D ˛, and that for every d 2 Qi n ¹0º, we have

Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/� � .1 � �/.Efi /
3:

The function fs thus gives the desired construction.
Suppose we have already constructed fi�1. Here is how we construct fi WQi ! Œ0; 1�:

(i) Design a family F of functions Zmi ! Œ0; 1�.

(ii) Choose a subset Mi � Qi�1 (with some properties).

(iii) For each x 2Mi , fill in values of fi on the coset x C Zmi using a random function
chosen from F .

(iv) For each x …Mi , set all values of fi on the coset x C Zmi to be fi�1.x/.

We refer to this process as random modification (the word “perturbation” was used
in [13]). We will show that with positive probability, the random function fi satisfies the
desired properties.

The main difference from the finite vector space case is the choice of the family F .
In [13], we first choose g W Fp ! Œ0; 1� to be a multiple of the indicator of an interval of
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length 2p=3. We then choose the family F to be functions of the form g.x � v/ for some
nonzero v 2 Fmip .

Here, instead, we choose a nice model function g W Zmi ! Œ0; 1� satisfying certain
properties to be discussed later. We choose F to consist of functions ga;b W Zmi ! Œ0; 1�

defined by ga;b.x/ D g.ax C b/, indexed by a; b 2 Zmi with a ¤ 0.
We denote elements of Qi by x D .x1; : : : ; xi / where xj 2 Zmj . We write xŒi�1� D

.x1; : : : ; xi�1/ 2 Qi�1. We can prove that there is a constant c > 0 such that for any
x 2 Qi with xŒi�1� 2Mi , and d 2 Qi n ¹0º such that dŒi�1� D 0,

Ea;bŒga;b.x/ga;b.x C d/ga;b.x C 2d/� D Ey;z2Zmi ;z¤0
Œg.y/g.y C z/g.y C 2z/�

� .1 � c/.Eg/3;

where a; b vary uniformly over all elements of Zmi with a ¤ 0, and y; z vary uniformly
over all elements of Zmi with z ¤ 0. The final inequality is due to a property of the model
function g. It then follows via concentration that with positive probability,

Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/� � .1 � �/.Efi /
3

for every d 2 Qi n ¹0º with dŒi�1� D 0.
We are left with the task of bounding the density of 3-APs with common difference d

where dŒi�1� ¤ 0. Over Fnp , this is easy, as we can show, using the structure of vector
spaces, that under a mild condition, if dŒi�1� ¤ 0, then

Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/�

D Ex2Qi�1 Œfi�1.x/fi�1.x C dŒi�1�/fi�1.x C 2dŒi�1�/� � ˛
3.1 � �/:

Such equality does not hold in our current setting. Even though we do not need exact
equality, obtaining uniform control over all d 2 Qi with dŒi�1� ¤ 0 using standard con-
centration inequalities does not work because n1 is small compared to ��1. However, we
can indeed guarantee with high probability the equality

Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/�

D Ex2Qi�1 Œfi�1.x/fi�1.x C dŒi�1�/fi�1.x C 2dŒi�1�/�;

assuming that the model function g over Zmi satisfies some additional nice properties,
which we refer to as smoothness.

Roughly speaking, g W Zmi ! Œ0; 1� is smooth if, for random a1; : : : ; ah 2 Zmi n ¹0º,
with high probability, one has

Ey
h hY
jD1

g.ajy C bj /
i
D EŒg�h for all b1; : : : ; bh 2 Zmi :

To see how this smoothness property helps, assume that we are given x0 2 Qi�1 and
d 0 2 Qi�1 n ¹0º such that



Tower-type bounds for Roth’s theorem with popular differences 3805

fi .x/ D g.a1xi C b1/ for all x such that xŒi�1� D x0;

fi .x/ D g.a2xi C b2/ for all x such that xŒi�1� D x0 C d 0;

fi .x/ D g.a3xi C b3/ for all x such that xŒi�1� D x0 C 2d 0:

Then, for all d with dŒi�1� D d 0,

Ex2Qi WxŒi�1�Dx0 Œfi .x/fi .x C d/fi .x C 2d/�

D Ey2Zmi
Œg.a1y C c1/g.a2y C c2/g.a3y C c3/�;

where c1; c2; c3 depend on x0 and d . Moreover, if g is smooth, then with high probability
over random a1; a2; a3, one has

Ey2Zmi
Œg.a1y C c1/g.a2y C c2/g.a3y C c3/� D EŒg�3 (3)

for all c1; c2; c3 2 Zmi . In that case, for all d with dŒi�1� D d 0,

Ex2Qi WxŒi�1�Dx0 Œfi .x/fi .x C d/fi .x C 2d/� D EŒg�3:

Thus, as long as the parameters a1; a2; a3 corresponding to each x0 2 Qi�1 and d 0 2
Qi�1 n ¹0º satisfy (3), we obtain the desired equality

Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/�

D Ex2Qi�1 Œfi�1.x/fi�1.x C dŒi�1�/fi�1.x C 2dŒi�1�/�:

We guarantee this property by applying the union bound over possible values of d 0 and x0

in Qi�1. Note that it is crucial here that the smoothness property allows us to avoid the
union bound over di , which takes mi � exp.O.jQi�1j// possible values.

The model function g over Zmi is constructed in Section 5. The essential idea behind
the construction is that g should be supported on only a few Fourier characters. The details
of the construction over product groups are included in Section 6.

3.2.2. Intervals. Using Theorem 3.4, we can prove Theorem 3.3, giving the desired lower
bound over intervals. The construction of the function f in Theorem 3.3 over intervals
consists of three steps.

In the first step, we construct a function f1 with density ˛ which is 0 in the interval
ŒN 0 C 1;N � for N 0 slightly smaller than N . This sets the density of 3-APs with common
difference d close to N=2 to 0.

In the second step, we let f2 be the function obtained from the following procedure
applied to f1:

(i) Partition ŒN 0� into N 0=q intervals I1; : : : ; IN 0=q of length q where q can be written
as a product of prime numbers as required in Theorem 3.4.

(ii) Using Theorem 3.4, construct a function g W Zq ! Œ0; 1� which satisfies EŒg� D ˛
and Ex2Zq Œg.x/g.x C d/g.x C 2d/� � ˛

3.1 � �/ for any d 2 Zq n ¹0º.
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(iii) For each j D 1; : : : ; N 0=q, identify each interval Ij with Zq and place a copy of g
on each of them.

For any d with 0 < d < N=2 and q − d , one can show that the density of 3-APs with
common difference d of f2 is at most ˛3.1 � �/. However, for d divisible by q, the
density of 3-APs with common difference d of f2 is larger than ˛3.

Note that the function f2 constructed in the second step is constant on each mod q
residue class in ŒN 0�. In the third step, we construct the function f3 as follows:

(i) Construct a subset X of ZN 0=q with much fewer 3-APs compared to the random
bound using a variant of the Behrend construction.

(ii) Let Pt D ¹x 2 ŒN 0� W x� t .mod q/º. With some appropriate T �Zq , for each t 2 T ,
take a random linear transformation of X inside set ZN 0=q , and set f3 on Pt to be
the indicator function of this randomly transformed X .

(iii) On ŒN 0� n
S
t2T Pt , set f3 to be equal to f2.

The function f3 has the property that in expectation, for a nonzero d divisible by q, the
density of 3-APs with common difference d of f3 is at most ˛3.1 � �/.

We let f D f3. Using concentration inequalities, we can show that with positive prob-
ability (over the randomness in the third step), for any d 2 ŒN=2�,

Ex2ŒN�2d�Œf .x/f .x C d/f .x C 2d/� � ˛
3.1 � �/;

proving Theorem 3.3. The details of this construction are contained in Section 7.

4. Upper bound

In this section, we prove Theorems 1.4 and 1.3, showing the existence of a popular dif-
ference for 3-APs when jGj � tower.C log.1=�// or N � tower.C log.1=�//. Here G
always denotes a finite abelian group of odd order. For x 2 G, we write x=2 to mean
the inverse of the isomorphism x 7! 2x. In Section 4.1, we give some preliminaries on
Bohr sets, which is an important tool to make Fourier analysis work over general abelian
groups. In Section 4.2, we give the complete proofs of Theorems 1.4 and 1.3.

4.1. Bohr sets

Denote the distance from x 2 R to the nearest integer by kxkR=Z WD minn2Z jx � nj. Let
arg.z/ denote the argument of z 2 C, so that arg.eit / 2 Œ0; 2�� and eit D ei arg.eit /.

Definition 4.1. LetG be an abelian group of odd order. For a subset S � yG and a parame-
ter � 2 Œ0; 1�, define the Bohr set B.S;�/D ¹x 2G W karg.�.x//=.2�/kR=Z � � 8� 2 Sº.
We call S the frequency set of the Bohr set B.S; �/ and � the radius. The codimension of
the Bohr set is jS j.

We often drop S and � from the notation and denote the Bohr set by B if it is clear
from context. Given a Bohr set B , we write S.B/ to denote the frequency set of B . For
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a real number � � 0, we denote by .B/� the Bohr set with the same frequency set and
scaled radius B.S; ��/.

Define the normalized indicator function of Bohr sets by

ˇB.x/ D
jGjB.x/

jBj
;

where we chose the normalization so that Ex ŒˇB.x/� D 1. Define

�B.x/ D ˇB � ˇB.x/:

Then we also have Ex Œ�B.x/�D 1. The functions ˇB can be thought of as the density with
respect to the uniform distribution on G of the uniform distribution on B , and �B is the
density of a smoothened version of the uniform distribution on B . In general, a function
� WG! Œ0;1/ with E� D 1 can be thought of as the density of a distribution with respect
to the uniform distribution on G. Note also that ˇB.x/D ˇB.�x/ and �B.x/D �B.�x/.

Conventions. For simplicity of notation, we often omit the subscript B and use consistent
subscripts throughout. For example, � D �B , ˇ D ˇB , �1 D �B1 , ˇ1 D ˇB1 .

As introduced by Bourgain [7], it is often useful to work with regular Bohr sets, those
for which a small change to the radius does not significantly change the size of the Bohr
set.

Definition 4.2. A Bohr set B D B.S; �/ of codimension d is regular if for all ı �
1=.80d/,

j.B/1Cı n .B/1�ı j � 160ıd jBj:

In the next proposition, we state some basic properties of Bohr sets, whose proofs
can be found in [32, Section 4.4]. Denote by 2 � X D ¹2x W x 2 Xº the dilation of X
by a factor 2. Recall that for a character �, we denote by �1=2 the character given by
x 7! �.x=2/.

Proposition 4.3. The following properties hold:

(i) jB.S; �/j � jGj�jS j.

(ii) B.S; �/C B.S; �0/ � B.S; �C �0/.

(iii) For every Bohr set B D B.S; �/, there exists � 2 Œ1=2; 1� such that .B/� is regular.

(iv) For every Bohr set B D B.S; �/, 2 � B is also a Bohr set with frequency set ¹�1=2 W
� 2 Sº and radius �. Furthermore, 2 � B � .B/2.

(v) For every Bohr set B D B.S; �/, .2 � B/� D 2 � .B/� . Hence, if .B/� is regular then
.2 � B/� is also regular.

Definition 4.4. Let � be a function on G with E� D 1. Define

f�.x/ D .f � �/.x/ D Ey Œf .x � y/�.y/�:
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The next estimate shows that regular Bohr sets are essentially invariant under convolu-
tions with a distribution whose support is contained in a Bohr set with the same frequency
set and smaller radius. This is analogous to the additive closure property of subgroups.

Proposition 4.5. Let B be a regular Bohr set of codimension d , ˇ D ˇB and � D �B .
Let � � 1=.80d/. Let � be a function supported in B� with E� D 1. Then

Ex Œj.ˇ � �/.x/ � ˇ.x/j� � 160�d; (4)

Ex Œj.� � �/.x/ � �.x/j� � 160�d: (5)

Furthermore, for any f W G ! Œ0; 1�, letting � be either ˇ or �,

Ex Œj.f� � �/.x/ � .f � �/.x/j� � 160�d: (6)

Proof. We have

.ˇ � �/.x/ D Ey Œˇ.x � y/�.y/� 2 Œ0; jGj=jBj�:

The support of ˇ � � is a subset of supp.ˇ/ C supp.�/ � B C .B/� � .B/1C� . Thus,
if x … .B/1C� , then .ˇ � �/.x/ D 0 D ˇ.x/. Furthermore, if x 2 .B/1�� , then for all
y 2 supp.�/, we have x � y 2 B , so .ˇ � �/.x/ D jGj=jBj D ˇ.x/. Hence,

Ex Œj.ˇ � �/.x/ � ˇ.x/j� �
1

jGj

X
x2.B/1C�n.B/1��

jGj

jBj
D
j.B/1C� n .B/1�� j

jBj
� 160�d;

giving (4).
For (5), note that

Ex Œj.� � �/.x/ � �.x/j�

D Ex Œj.ˇ � ˇ � �/.x/ � .ˇ � ˇ/.x/j�

D Ex ŒjEy Œˇ.y/..ˇ � �/.x � y/ � ˇ.x � y//�j�

� Ey Œˇ.y/Ex Œj.ˇ � �/.x � y/ � ˇ.x � y/j�� (by the triangle inequality)

� 160�dEy Œˇ.y/� (by (4))

D 160�d:

For (6), we have

Ex Œjf� � � � f� j� D Ex ŒjEy Œf .y/.� � �/.x � y/ � f .y/�.x � y/�j�

� Ex;y Œj.� � �/.x � y/ � �.x � y/j� (by the triangle inequality)

� 160�d: (by (4), (5))

The next lemma says that if B2 � .B1/�=2 and � D ˇB2 or � D �B2 , then the k-th
moment of f� is at least the k-th moment of f�B1 up to a small error term.
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Lemma 4.6. Let f W G ! Œ0; 1�. Let B1; B2 be regular Bohr sets such that B1 has
codimension d1. Let �1 D �B1 , ˇ2 D ˇB2 and �2 D �B2 . Let k � 1 be an integer and
� � 1=.80d1/. If B2 � .B1/�=2, then

Ex Œf�2.x/
k � � Ex Œf�1.x/

k � � 160�d1k: (7)

If B2 � .B1/� , then

Ex Œfˇ2.x/
k � � Ex Œf�1.x/

k � � 160�d1k: (8)

Proof. By (6) of Proposition 4.5, applied with B D B1, � D �2 (noting that supp.�2/ �
B2 C B2 � .B1/�) and � D �1,

Ex Œjf�1.x/ � Ed Œf�2.x � d/�1.d/�j� � 160�d1:

Thus,
Ex Œjf�1.x/

k
� .Ed Œf�2.x � d/�1.d/�/

k
j� � 160�d1k:

By Jensen’s inequality applied to the convex function t 7! tk , we obtain

Ex Œf�1.x/
k � � Ex Œ.Ed Œf�2.x � d/�1.d/�/

k �C 160�d1k

� Ex;d Œf�2.x � d/
k�1.d/�C 160�d1k

D Ex Œf�2.x/
k �C 160�d1k:

The proof of (8) is similar.

4.2. Proofs of Theorems 1.4 and 1.3

In the following, we prove two results that are used in the proof of Theorem 1.4, the
counting lemma (Lemma 4.7) and the mean-cube density increment (Lemma 4.9).

For a function � on G with E� D 1 and a function f W G ! Œ0; 1�, we denote

ƒ�.f / D Ex;d Œf .x/f .x C d/f .x C 2d/�.d/�:

Lemma 4.7 (Counting lemma). Let B1 D B.S1; �1/ and B2 D B.S2; �2/ be two Bohr
sets. Let �1 D �B1 and �2 D �B2 . Then

ƒ�1.f�2/ � ƒ�1.f / � 3 sup
�2 yG

j yf .�/ �bf�2.�/jEŒf .x/2�
jGj

jB1j
:

Proof. By expanding in the Fourier basis,

ƒ�1.f / D
X

�1�2�3D1

yf .�1/ yf .�2/ yf .�3/b�1.��12 ��23 /:
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By similar expansion for ƒ�1.f�2/, we can write ƒ�1.f / �ƒ�1.f�2/ asX
�1�2�3D1

. yf .�1/ �bf�2.�1// yf .�2/ yf .�3/b�1.��12 ��23 /
C

X
�1�2�3D1

bf�2.�1/. yf .�2/ �bf�2.�2// yf .�3/b�1.��12 ��23 /
C

X
�1�2�3D1

bf�2.�1/bf�2.�2/. yf .�3/ �bf�2.�3//b�1.��12 ��23 /:
Note thatˇ̌̌ X

�2�
2
3
D��1

yf .�2/ yf .�3/
ˇ̌̌
�

�X
�2

j yf .�2/j
2
�1=2�X

�3

j yf .�3/j
2
�1=2

(Cauchy–Schwarz)

D

X
�

j yf .�/j2

D EŒf .x/2�; (Parseval) (9)

and X
�

jb�1.�/j DX
�

j b̌1.�/j2
D Ex Œˇ1.x/

2�: (Parseval) (10)

We can now bound the first term asˇ̌̌ X
�1�2�3D1

. yf .�1/ �bf�2.�1// yf .�2/ yf .�3/b�1.��12 ��23 /ˇ̌̌
� sup

�
j yf .�/ �bf�2.�/j �

X
�

jb�1.�/jj X
�2�

2
3
D��1

yf .�2/ yf .�3/j

� sup
�
j yf .�/ �bf�2.�/j �

X
�

jb�1.�/jEŒf .x/2� (by (9))

� sup
�
j yf .�/ �bf�2.�/jEŒf .x/2�Ex Œˇ1.x/2� (by (10))

� sup
�
j yf .�/ �bf�2.�/jEŒf .x/2�

jGj

jB1j
;

where in the last inequality we use the fact that supx ˇ1.x/ � jGj=jB1j and Eˇ1 D 1.
The remaining two terms are bounded similarly.

We next state and prove the mean-cube density increment lemma. We make use of the
following classical inequality in the proof of the lemma:

Theorem 4.8 (Schur’s inequality). For real numbers a; b; c � 0, one has

a3 C b3 C c3 C 3abc � a2b C b2aC a2c C c2aC b2c C c2b: (11)
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Lemma 4.9 (Mean-cube density increment). Let f W G ! Œ0; 1�. Let B1 D B.S1; �1/

and B2 D B.S2; �2/ be two regular Bohr sets with codimension d1; d2 respectively. Let
�1 D �B1 and �2 D �B2 . Let � � 1=.1000d1/. Assume that B2 � .B1/�2=8 \ .2 �B1/�2=8.
For every regular Bohr set B D .B1/ı�=2 with ı 2 Œ1=2; 1� .Proposition 4.3 guarantees
the existence of such ı that makes B regular/, we have, setting � D �B ,

ƒ�.f�2/ � 2EŒf�1.x/
3� � EŒf�2.x/

3� � 1920�d1:

Proof. Let ˇ D ˇB and � D �B . We denote by Q̌ the normalized measure associated with
the Bohr set 2 � B , and denote Q� D Q̌ � Q̌.

Applying Schur’s inequality (Theorem 4.8) with a D f�2.x/; b D f�2.x C d/; c D
f�2.x C 2d/ for each x and d , and using linearity of expectation, we have

ƒ�.f�2/ D Ex;d Œf�2.x/f�2.x C d/f�2.x C 2d/�.d/�

�
4Ex;d Œf�2.x/

2f�2.x C d/�.d/�C 2Ex;d Œf�2.x/
2f�2.x C 2d/�.d/�

3

� Ex Œf�2.x/
3�:

By Proposition 4.3 (v), since B is a regular Bohr set, 2 � B is also a regular Bohr
set. The codimensions of 2 � B and B are d1. We have B2 � .B1/�2=8 \ .2 � B1/�2=8 �
.B/�=2 \ .2 �B/�=2. By (6) in Proposition 4.5, applied with the Bohr setB , �D �;� D �2,

Ex
�
jEd Œf�2.x C d/�.d/� � f�.x/j

�
D Ex

�
jEd Œf�2.x � d/�.d/� � f�.x/j

�
� 160�d1;

where we have used �.d/ D �.�d/. Hence,

Ex;d Œf�2.x/
2f�2.x C d/�.d/� � Ex Œf�2.x/

2f�.x/� � 160�d1:

Similarly,

Ex;d Œf�2.x/
2f�2.x C 2d/�.d/� � Ex Œf�2.x/

2f Q�.x/� � 160�d1:

We have

Ex Œf�2.x/
2f�.x/� D Ex;y Œf�2.x/

2ˇ.y/fˇ .x � y/�

D Ex;y Œf�2.x/
2ˇ.y/fˇ .x C y/� (using ˇ.�y/ D ˇ.y/)

D Ex
�
fˇ .x/Ey Œf�2.x � y/

2ˇ.y/�
�

� Ex
�
fˇ .x/Ey Œf�2.x � y/ˇ.y/�

2
�
: (Cauchy–Schwarz)

By (6) in Proposition 4.5, applied with the Bohr set B , � D ˇ; � D �2,

Ex
�
jEy Œf�2.x � y/ˇ.y/� � fˇ .x/j

�
� 160�d1:

Thus,

Ex
�
fˇ .x/Ey Œf�2.x � y/ˇ.y/�

2
�
� Ex Œfˇ .x/

3� � 320�d1:
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Hence,
Ex Œf�2.x/

2f�2.x C d/�.d/� � Ex Œfˇ .x/
3� � 480�d1:

Similarly, noting that B2 � .2 � B/�=2, we have

Ex;d Œf�2.x/
2f�2.x C 2d/�.d/� D Ex;d Œf�2.x/

2f�2.x C d/
Q�.d/�

� Ex Œf Q̌.x/
3� � 480�d1:

Since B � .B1/ı� , by (8) of Lemma 4.6 applied to the Bohr sets B1 and B ,

Ex Œfˇ .x/
3� � Ex Œf�1.x/

3� � 480�d1:

Thus,
Ex Œf�2.x/

2f�2.x C d/�.d/� � Ex Œf�1.x/
3� � 960�d1:

Similarly, since 2 � B � .B/2 � .B1/ı� , by (8) of Lemma 4.6 applied with the Bohr
sets B1 and 2 � B ,

Ex Œf Q̌.x/
3� � Ex Œf�1.x/

3� � 480�d1:

Thus,
Ex Œf�2.x/

2f�2.x C 2d/�.d/� � Ex Œf�1.x/
3� � 960�d1:

Combining, we get

ƒ�.f�2/ � 2EŒf 3�1 � � EŒf 3�2 � � 1920�d1:

Lemma 4.10. Let ˛; � > 0. Let a1; a2; : : : be a sequence of positive real numbers such
that ˛3 � ai � 1 for all i . Then for some i � 2 log2.2=�/, 2ai � aiC1 > ˛

3 � �=2.

Proof. Assume for the sake of contradiction that for all i � 2 log2.2=�/,

aiC1 � 2ai � ˛
3
C �=2:

Then a2 � ˛3 C �=2 since a1 � ˛3. For 2 � i � 2 log2.2=�/, aiC1 � ˛
3 � 2.ai � ˛

3/,
so aiC1 � ˛3 C 2i�=2: Since aiC1 � 1 for all i , we arrive at a contradiction since
22 log2.2=�/�=2 > 1.

Proof of Theorem 1.4. We inductively define parameters �i such that �1 D �10, and for
i � 2, �i D exp.���5i�1/. Let �i D 10�5��2i .

Let S1 D ¹� 2 yG W j yf .�/j � �1=2º, and for i � 2, Si D ¹� 2 yG W j yf .�/j � �i=2º [
¹�1=2 W � 2 Si�1º. Note that S1 � S2 as �1 � �2, and inductively, if Si�1 � Si for some
i � 2, then

SiC1 D ¹� 2 yG W j yf .�/j � �iC1=2º [ ¹�
1=2
W � 2 Siº

� ¹� 2 yG W j yf .�/j � �i=2º [ ¹�
1=2
W � 2 Si�1º D Si :

Thus Si � SiC1 for all i � 1.
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By Parseval’s identity, j¹� 2 yG W j yf .�/j � �i=2ºj � 4��2i , so jSi j �
Pi
jD1 4�

�2
j

< 5��2i . Let Bi D B.Si ; �i=.4�//. We first note that for � 2 Si ,

j1 � b̌i .�/j D j1 � Ex Œˇi .x/�.x/�j � Ex Œˇi .x/j�.x/ � 1j� � �i=2;

since karg.�.x//=.2�/kR=Z � �i=.4�/ for all x such that ˇi .x/ ¤ 0. Hence,

j1 � b�i .�/j D j1 � b̌i .�/2j � �i :
Thus, for � 2 Si ,

j4.f � f�i /.�/j � �i ;
and for � … Si , j yf .�/j � �i=2 so

j4.f � f�i /.�/j � �i :

Observe that EŒf 3�i �� ˛
3 by convexity, and EŒf 3�i �� 1 for all i . By Lemma 4.10, there

exists i � 2 log2.2=�/ such that

2EŒf�i .x/
3� � EŒf�iC1.x/

3� � ˛3 � �=2:

Fix such an i . We have BiC1 � .Bi /�2
i
=8 \ .2 � Bi /�2

i
=8 since for any � 2 Si � SiC1

and x 2 BiC1,
karg.�.x//=.2�/kR=Z � �iC1 � �2i �i=8;

and furthermore �1=2 2 SiC1 so

karg.�1=2.x//=.2�/kR=Z � �iC1 � �2i �i=8:

By Lemma 4.9, there exists a regular Bohr set B D .Bi /ı�i=2 for ı 2 Œ1=2; 1� such that

ƒ�.f�iC1/ � 2EŒf�i .x/
3� � EŒf�iC1.x/

3� � 1920�i jSi j � ˛
3
� �=2 � 1920�i jSi j:

By Lemma 4.7,

ƒ�.f�iC1/ � ƒ�.f /C sup
�
j yf .�/ �1f�iC1.�/jEŒf .x/2�

jGj

jBj

� ƒ�.f /C �iC1.16��
�1
i ��1i /5�

�2
i :

By our choice of �i ; �i , we have

�iC1.16��
�1
i ��1i /5�

�2
i � exp.5��2i � log.108��1��3i // exp.���5i / < �=8;

noting that �i � �1 � �10. Hence,

ƒ�.f / � ˛
3
� �=2 � 1920�idi � �iC1.16��

�1
i ��1i /5�

�2
i > ˛3 � �=2 � �=4 � �=8

D ˛3 � 7�=8:
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Observe that there exists an absolute constant C 0 > 0 such that �i � 1=tower.C 0i/.
Furthermore, the codimension of Bi is bounded above by 5��2i and the radius of Bi is
�i=.4�/. Hence, we obtain a Bohr set B with size at least jGj=tower.10C 0 log.1=�//
such that ƒ�.f / � ˛3 � 7�=8. Hence, for a sufficiently large constant C > 0, assuming
that jGj � tower.C log.1=�//, we have

Ex;d Œf .x/f .x C d/f .x C 2d/�.d/I.d ¤ 0/� � ƒ�.f / �
1

jBj
� ˛3 � �:

Here I.d ¤ 0/ is the indicator function which evaluates to 1 if d ¤ 0 and evaluates to 0
otherwise. Thus, there exists d ¤ 0 such that

Ex Œf .x/f .x C d/f .x C 2d/� � ˛
3
� �:

Proof of Theorem 1.3. We can assume without loss of generality that N is odd by pos-
sibly increasing N by 1. Let G D ZN . We repeat the proof of Theorem 1.4 with the
inclusion of the character �0.x/ D e2�ix=N in the sets Si . We then obtain a Bohr set B
whose frequency set contains �0 such that B has size at least jGj=tower.C 0 log.1=�//
andƒ�.f / � ˛3 � 7�=8. Assuming thatN � tower.C log.1=�// for sufficiently large C ,
following the last step in the proof of Theorem 1.4, we obtain a positive integer d < N=2
such that d 2 supp.�/ when viewed as an element in ZN and

Ex Œf .x/f .x C d/f .x C 2d/� � ˛
3
� 15�=16:

Since d 2 supp.�/ � B C B and �0 is in the frequency set defining B ,
karg.�0.d//=.2�/kR=Z � 2� � 2�10. Thus, as d is a positive integer less than N=2, we
have d < 2�10N . Thus, restricting to x 2 ŒN � 2d� in the above expectation, we haveX

x2ŒN�2d�

f .x/f .x C d/f .x C 2d/ � N.˛3 � 15�=16/ � 2d � N.˛3 � �/:

5. Lower bound construction: preparations

We assume throughout this section that N is an odd prime number. As a building block
in our construction, we will make use of a function g which has relatively low 3-AP den-
sity (considerably smaller than the random bound given the density of g), but behaves
randomly-like in the following way. If a1; : : : ; ah are chosen independently and uni-
formly at random from the nonzero elements of ZN , then with high probability, for all
b1; : : : ; bh 2 ZN ,

Ex
h hY
jD1

g.ajx C bj /
i
D EŒg�h: (12)

In the following, we identify bZN with ZN , so that we write

bg.r/ D Ex2ZN Œg.x/e.�rx=N /�:



Tower-type bounds for Roth’s theorem with popular differences 3815

Lemma 5.1. Suppose g W ZN ! Œ0; 1� and a1; : : : ; ah 2 ZN n ¹0º satisfy the following
properties:

(i) The support of yg has size at most `.

(ii) For all r1; : : : ; rh 2 ZN such that
Ph
jD1 rjaj D 0 and .r1; : : : ; rh/¤ .0; : : : ; 0/, there

is some j 2 Œh� such that rj is not contained in the support of yg.

Then for all b1; : : : ; bh 2 ZN ,

Ex
h hY
jD1

g.ajx C bj /
i
D EŒg�h:

Furthermore, if a1; : : : ; ah are chosen from ZN n ¹0º uniformly and independently at
random, then property (ii) is satisfied with probability at least 1 � `h=.N � 1/.

Proof. By the Fourier inversion formula,

Ex
h hY
jD1

g.ajx C bj /
i
D Ex

� hY
jD1

� X
rj2ZN

yg.rj /e

�
rjajx C rj bj

N

���

D

X
r1;:::;rh2ZN

hY
jD1

e

�
rj bj

N

�
yg.rj / � Ex

�
e

�Ph
jD1 rjajx

N

��

D

X
r1:::;rh2ZNPh
jD1 rj ajD0

hY
jD1

e

�
rj bj

N

�
yg.rj /:

Note that
Qh
jD1 yg.0/D EŒg�h. Consider .r1; : : : ; rh/¤ .0; : : : ; 0/ where

Ph
jD1 rjaj D 0.

Property (ii) guarantees that yg.rj / D 0 for some j 2 Œh�, so
Qh
jD1 yg.rj / D 0. Hence, if

a1; : : : ; ah satisfy (ii), then

Ex
h hY
jD1

g.ajx C bj /
i
D yg.0/h D EŒg�h:

Next, we show that if a1; : : : ; ah are chosen uniformly and independently at random
from ZN n ¹0º, then (ii) is satisfied with probability at least 1 � `h=.N � 1/. Indeed,
consider a fixed .r1; : : : ; rh/¤ .0; : : : ;0/ such that rj is in the support of yg for each j 2 Œh�.
There exists i 2 Œh� such that ri ¤ 0. For each fixed choice of aj for j 2 Œh� n ¹iº, there is a
unique choice of ai such that

Ph
jD1 rjaj D 0. Hence, the probability that

Ph
jD1 rjaj D 0

is at most 1=.N � 1/. By the union bound over the choice of rj in the support of yg, we
conclude that (ii) is violated with probability at most `h=.N � 1/.

Next, for each ˛ � 1=2, we construct a function g˛ with mean ˛ and prove that g˛
has the desired properties in Lemma 5.1. We recall that the 3-AP density of a function g
is denoted by ƒ.g/ D Ex;d Œg.x/g.x C d/g.x C 2d/�.
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Lemma 5.2. For ˛ � 1=2, define a function g˛ W ZN ! Œ0; 1� by

g˛.x/ D ˛ �
˛ cos.2�x=N/

2
�
˛ cos.4�x=N/

2
:

Then g˛ satisfies the following properties:

(i) EŒg˛� D ˛ � 1=2 and g˛.x/ 2 Œ0; 2˛� for all x 2 ZN .

(ii) ƒ.g˛/D Ex;d Œg˛.x/g˛.xC d/g˛.xC 2d/�D .1�
1
32
/˛3, and Ex Œg˛.x/3��

3
2
˛3.

(iii) For h a positive integer, if we choose a1; : : : ; ah uniformly and independently at
random from ZN n ¹0º, then with probability at least 1� 5h=.N � 1/, for all choices
of b1; : : : ; bh 2 ZN ,

Ex
h hY
jD1

g˛.ajx C bj /
i
D EŒg˛�

h:

(iv) Ex¤y Œg˛.x/g˛.y/� � ˛2.

(v) Ex Œg˛.x/2� D
5
4
˛2.

Proof. We first observe that

cg˛.0/ D ˛; cg˛.1/ Dcg˛.N � 1/ Dcg˛.2/ Dcg˛.N � 2/ D �˛=4;
and for all r … ¹0; 1; 2;N � 1;N � 2º,

cg˛.r/ D 0:
Furthermore, it is clear from the definition of g˛ that for all x 2 ZN , g˛.x/ 2 Œ0; 2˛�.

Moreover, EŒg˛� Dcg˛.0/ D ˛. This proves (i).
From (1),

ƒ.g˛/ D
X
r

cg˛.r/2cg˛.�2r/ D ˛3 � 2�˛
4

�3
D

�
1 �

1

32

�
˛3;

and

Ex Œg˛.x/
3� D Ex

��X
r

yg˛.r/e

�
rx

N

��3�
D

X
r1;r2;r32ZN

cg˛.r1/cg˛.r2/cg˛.r3/Ex�e�r1x C r2x C r3x
N

��
D

X
r1;r2;r32ZN
r1Cr2Cr3D0

cg˛.r1/cg˛.r2/cg˛.r3/
D ˛3 C 6˛

˛2

16
� 6

˛3

64
<
3

2
˛3:

This proves (ii).
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Property (iii) follows directly from Lemma 5.1 applied to the function g˛ and ` D 5.
To prove (iv), notice that

P
x g˛.x/

2 �
1
N
.
P
x g˛.x//

2 D ˛2N so

Ex¤y Œg˛.x/g˛.y/� �
˛2N 2 � ˛2N

N.N � 1/
D ˛2:

Finally, (v) follows from Parseval’s identity,

Ex Œg˛.x/
2� D

X
r

jcg˛.r/j2 D 5˛2

4
:

6. Lower bound construction for product groups

In this section, we prove Theorem 3.4. For convenience, we recall the theorem statement
here.

Theorem. Let 0 < ˛ � 1=4, 0 < � � 20�9, and G D Zn where n is a positive integer
such that there exist distinct primes m1; : : : ; ms with s � log150.�

�1=4˛6=8/ satisfying

� n D
Qs
jD1mj ,

� ��1=3=2 < m1 � �
�1=3, and

� for i � 2, n6i�1 < mi < exp.2�1 � 64�2 � 150i�1�1=4ni�1/=2 where ni D
Qi
jD1mj .

Then there exists a function f W G ! Œ0; 1� with EŒf � D ˛ such that for any d 2 G n ¹0º,

Ex Œf .x/f .x C d/f .x C 2d/� � ˛
3.1 � �/:

Furthermore, Ex Œf .x/3�� 3˛3=2 and there exists Q̨ 2 Œ˛;˛.1C �1=4/� such that f .x/D Q̨
for at least a 3=4 fraction of x 2 G.

We first make a few notation conventions. Note that if n D
Qs
iD1 mi for distinct

primes mi , then

G D Zn Š
sY
iD1

Zmi :

Each element of G can be represented by an s-tuple .x1; : : : ; xs/ where xi 2 Zmi . Let
Qi D

Qi
jD1Zmi . We can think of Qi as a quotient of G by the subgroup Hi D ¹x 2 G W

xj D 0 for all j � iº. We identify Zmi as the subgroup of Qi consisting of elements
with xj D 0 for j < i , and we identify the quotient Qi=Zmi with Qi�1. We hence use
elements ofQi�1 to index Zmi -cosets inQi . For an element x 2G or x 2Qj with j � i ,
we denote xŒi� D .x1; : : : ; xi /. For j < i , we say that an element x of Qi is a lift of an
element y in Qj if xŒj � D y. In the following discussion, when the level i is clear from
context, if not specified otherwise, the 3-APs would refer to 3-APs in Qi .

6.1. The construction

Let s D dlog150.�
�1=4˛6=8/e. In each level i , for i 2 Œs�, we construct a function fi W

Qi ! Œ0; 1�. Finally, we let f D fs W G ! Œ0; 1�.
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We introduce parameters �1 D �1=4 and �i D 150i�1 Q̨�6�1=4 for i � 2, where Q̨ D
˛.1C 1

m1�1
/.

In the first level, define f1 WQ1! Œ0; 1� by f1.0/ D 0 and f1.x/ D ˛.1C 1
m1�1

/ for
each x 2 Q1 n ¹0º.

For i � 2, let Mi�1 be any set of �ini�1 elements of Qi�1 so that fi�1.x/ D Q̨ for
any x 2Mi�1. In level i , we define fi to be a random function as follows.

For each x 2Mi�1, we choose ax 2 Zmi n ¹0º and bx 2 Zmi uniformly and indepen-
dently at random. For each y 2 Qi such that yŒi�1� D x, we define

fi .y/ D g Q̨ .axyiCbx/ D Q̨ �
Q̨ cos.2�.axyiCbx/=mi /

2
�
Q̨ cos.4�.axyiCbx/=mi /

2
;

where g Q̨ is the function with density Q̨ and with low 3-AP density defined earlier in
Lemma 5.2. Otherwise, for x …Mi�1 and y 2 Qi such that yŒi�1� D x, we define

fi .y/ D fi�1.x/:

We refer to this as the random modification in level i . This defines (random) fi W Qi !
Œ0; 1�. Finally, we let f D fs W G! Œ0; 1�. We will show that with positive probability, for
each level i , we can pick fi such that the function f has the desired properties claimed
in Theorem 3.4.

6.2. Proof of Theorem 3.4

We first claim that the construction is feasible with the above choice of parameters. Note
that �1 � 1=m1, so f1.x/ D Q̨ for all but a �1 fraction of elements x 2 Q1. For i � 2,
observe that if fi .y/¤ Q̨ , then we must have yŒ1� D 0 or yŒj � 2Mj for some j < i . Thus,
the fraction of y 2 Qi for which fi .y/ ¤ Q̨ is at most

Pi
jD1 �j . Since

sX
jD1

�j < 2�s D 2 � 150
s�1�1=4 Q̨�6 < 1=4 (13)

as s � 1 � log150.�
�1=4˛6=8/ < log150.�

�1=4 Q̨6=8/, it is possible to choose Mi for each
i � s � 1 such that fi .x/ D Q̨ for all x 2Mi .

We next prove that the function fi has density ˛ and fi mapsQi to Œ0; 1�. This is true
for i D 1. Assume that fi�1 has density ˛ and takes values in Œ0; 1�, we show that fi also
has these properties. For x 2 Qi such that xŒi�1� …Mi�1, fi .x/ D fi�1.xŒi�1�/ 2 Œ0; 1�.
If xŒi�1� 2 Mi�1 then fi�1.xŒi�1�/ D Q̨ � 1=2. Hence, if xŒi�1� 2 Mi�1 then fi .x/ D
g Q̨ .axi C b/ for some a 2 Zmi n ¹0º and b 2 Zmi . Since g Q̨ also has density Q̨ and takes
values in Œ0; 1�, we have fi .x/ D g Q̨ .axi C b/ 2 Œ0; 1� and the density of fi over the
Zmi -coset xŒi�1� is fi�1.xŒi�1�/ D Q̨ . Hence, the density of fi is the same as the density
of fi�1, and fi takes values in Œ0; 1�. By induction, the density of fi is ˛ and the values
of fi are in Œ0; 1� for all i 2 Œs�.

We denote by Efi the expectation over the randomness of fi (the local modifications
in level i ), conditioned on a fixed choice of fi�1. Furthermore, all of the probability we
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consider will be conditioned on this fixed choice of fi�1, hence in level i we only consider
the randomness of the random modification in level i .

The random modification in level i has the following key property. For any x D
.x1; : : : ; xi / 2 Qi such that xŒi�1� D .x1; : : : ; xi�1/ 2Mi�1 and d 2 Qi n ¹0º such that
dŒi�1� D 0 2 Qi�1, we have

Efi Œfi .x/fi .x C d/fi .x C 2d/�

D Ea2Zmi n¹0º; b2Zmi
Œg Q̨ .axi C b/g Q̨ .axi C adi C b/g Q̨ .axi C 2adi C b/�

� ƒ.g Q̨ / D
31
32
Q̨
3: (14)

This is since when a is chosen uniformly at random from Zmi n ¹0º and b is chosen uni-
formly at random from Zmi , then for any fixed xi and nonzero di , .axi C b; axi C adi C
b; axi C 2adi C b/ is distributed uniformly among all 3-APs with nonzero common dif-
ference in Zmi .

We now proceed to prove that there exists a choice of the modification in each level
so that for any d 2 G n ¹0º,

Ex Œf .x/f .x C d/f .x C 2d/� � ˛
3.1 � �/:

The main idea is to maintain by induction that for any i 2 Œs�, we can choose fi which is
a random modification of fi�1 so that for any d 2 Qi n ¹0º,

Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/� � ˛
3.1 � �/:

For all d such that dŒi�1� D 0, the above property follows from observation (14)
and concentration inequalities. On the other hand, if dŒi�1� ¤ 0 2 Qi�1, then
Ex2Qi�1 Œfi�1.x/fi�1.x C dŒi�1�/fi�1.x C 2dŒi�1�/� is small by the induction hypoth-
esis. We guarantee that with large probability,

Ex2Qi Œfi .x/fi .xCd/fi .xC2d/� D Ex2Qi�1 Œfi�1.x/fi�1.xCdŒi�1�/fi�1.xC2dŒi�1�/�

for all d such that dŒi�1� ¤ 0, so that Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/� is small. Com-
bining these two cases, we obtain a modification fi of fi�1 whose density of 3-APs with
common difference d is small for all nonzero d 2 Qi .

We now give the proof of Theorem 3.4.

Proof of Theorem 3.4. It is easy to see that

Ex2Q1 Œf1.x/
3� D ˛3

�
1C 1

m1�1

�3
.m1 � 1/

m1

< ˛3
�
1C

3

m1

�
� ˛3.1C 6�1=3/ � ˛3.1C 2�1=4/

< Q̨3.1C 2�1/

for � � 20�9. Inductively, if

Ex2Qi�1 Œfi�1.x/
3� � Q̨3.1C 2�i�1/;
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then
Ex2Qi Œfi .x/

3� � Q̨3.1C 2�i�1/C
1
2
�i Q̨

3 < Q̨3.1C 2�i /; (15)

where the first inequality is by (ii) in Lemma 5.2 as we apply the local modification to
a �i fraction of the Zmi -cosets, getting at most a 1

2
Q̨3 increment in the mean-cube density

over each of them, and the second inequality follows from our choice of parameters �i �
150�i�1 for all i � 2.

Let P .i/ be the property that for all d 2 Qi n ¹0º,

Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/� � ˛
3.1 � �/:

We will prove by induction that in level i , the modifications can be chosen so that P .i/

holds.
Consider the base case i D 1. Recall that ��1=3=2�m1� ��1=3. For any d 2Q1 n ¹0º,

Ex2Q1 Œf1.x/f1.x C d/f1.x C 2d/� D ˛
3

�
1C 1

m1�1

�3
.m1 � 3/

m1

D ˛3
m21.m1 � 3/

.m1 � 1/3
D ˛3

�
1 �

3m1 � 1

.m1 � 1/3

�
� ˛3

�
1 �

1

m21

�
� ˛3.1 � �/:

This establishes P .1/. Next, we continue with the inductive step. Assume that
P .i � 1/ holds. We prove that we can choose the modification in level i so that P .i/

also holds. This follows from the following two claims.

Claim 6.1. With probability larger than 1=2 .over the randomness of fi /, conditioned on
a fixed choice of fi�1 satisfying P .i � 1/, for all d 2 Qi n ¹0º with dŒi�1� D 0,

Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/� � ˛
3.1 � �/:

Claim 6.2. With probability larger than 1=2 .over the randomness of fi /, conditioned on
a fixed choice of fi�1 satisfying P .i � 1/, for all d 2 Qi n ¹0º with dŒi�1� ¤ 0,

Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/�

D Ex2Qi�1 Œfi�1.x/fi�1.x C dŒi�1�/fi�1.x C 2dŒi�1�/�:

Combining Claims 6.1 and 6.2, by the union bound, the modification in level i fails
to satisfy P .i/ with probability strictly less than 1. Thus we can choose a modification
satisfying P .i/ in level i . This completes the induction. Thus, there exists f D fs which
satisfies P .s/, so for any nonzero d in G,

Ex2G Œf .x/f .x C d/f .x C 2d/� D Ex2G Œfs.x/fs.x C d/fs.x C 2d/� � ˛
3.1 � �/:

This completes the proof of Theorem 3.4.
Now we turn to the proofs of Claims 6.1 and 6.2.
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Proof of Claim 6.1. Let d 2 Qi n ¹0º be such that dŒi�1� D 0. By (14), for any x 2 Qi
with xŒi�1� 2Mi�1,

Efi Œfi .x/fi .x C d/fi .x C 2d/� �
31
32
Q̨
3:

Hence, for y 2Mi�1,

EfiEx2Qi ;xŒi�1�Dy Œfi .x/fi .x C d/fi .x C 2d/� �
31
32
Q̨
3:

Note that the random variables Ex2Qi ;xŒi�1�Dy Œfi .x/fi .x C d/fi .x C 2d/�, for
y 2 Mi�1, are independent (under the randomness of the modification in level i , con-
ditioned on a fixed choice of fi�1). Thus the probability that

Ey2Mi�1Ex2Qi ;xŒi�1�Dy Œfi .x/fi .x C d/fi .x C 2d/� �
63
64
Q̨
3

is at most exp.�2�1 � 64�2�ini�1 Q̨6/ by Hoeffding’s inequality.
For d 2 Qi such that dŒi�1� D 0, we have

Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/�

D Ey2Qi�1 Œfi�1.y/
3�

C
jMi�1j

jQi�1j

�
Ey2Mi�1Ex2Qi ;xŒi�1�Dy Œfi .x/fi .xCd/fi .xC2d/��Ey2Mi�1 Œfi�1.y/

3�
�

� Q̨
3.1C 2�i�1/C �i �

�
Ey2Mi�1Ex2Qi ;xŒi�1�Dy Œfi .x/fi .x C d/fi .x C 2d/� � Q̨

3
�

where the equality follows from fi .x/D fi .xC d/D fi .xC 2d/D fi�1.y/ if dŒi�1�D 0
and xŒi�1� D y … Mi�1, and the inequality follows from (15) and fi�1.y/ D Q̨ for
y 2Mi�1. Thus, if

Ey2Mi�1Ex2Qi ;xŒi�1�Dy Œfi .x/fi .x C d/fi .x C 2d/� �
63
64
Q̨
3;

then
Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/� � Q̨

3.1C 2�i�1/ � �i Q̨
3=64:

Since
˛3.1 � �/ � Q̨3.1 � �1=4/ > Q̨3.1C 2�i�1/ � �i Q̨

3=64;

by the union bound, the probability that there exists d 2 Qi n ¹0º with dŒi�1� D 0 and

Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/� � ˛
3.1 � �/

is at most
mi exp.�2�1 � 64�2�ini�1 Q̨6/ < 1=2;

where we have used the upper bound on mi in the theorem statement.

Proof of Claim 6.2. Recall that for a Zmi -coset represented by w 2 Qi�1, fi is either a
constant function on w if w …Mi�1, or otherwise fi .x/ D g Q̨ .awxi C bw/ where

g Q̨ .x/ D Q̨ �
Q̨ cos.2x=mi /

2
�
Q̨ cos.4x=mi /

2
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as defined in Lemma 5.2 and aw 2 Zmi n ¹0º and bw 2 Zmi are chosen uniformly and
independently for each w 2 Mi�1. For each 3-AP .w; w C d 0; w C 2d 0/ with common
difference d 0 2 Qi�1 n ¹0º, and for any lift d of d 0, we have

Ex2Qi ;xŒi�1�Dw Œfi .x/fi .x C d/fi .x C 2d/�

D Ey2Zmi
Œg.1/.a1y C b1/g.2/.a2y C a2di C b2/g.3/.a3y C 2a3di C b3/�

D Ey2Zmi
Œg.1/.a1y C c1/g.2/.a2y C c2/g.3/.a3y C c3/�; (16)

where g.j / W Zmi ! Œ0; 1� can be either the function g Q̨ or a constant function, aj 2
Zmi n ¹0º; bj 2 Zmi are chosen uniformly and independently at random, and c1 D b1,
c2 D a2di C b2, c3 D 2a3di C b3. Note that if we fix the modification (i.e., fixing each
aj and bj ), changing d to a different lift of d 0 would only change cj in (16), and would
not change the coefficients of y in g.1/; g.2/; g.3/ in the last line of (16). Let J � Œ3�
be the set of indices such that g.j / D g Q̨ . By Lemma 5.1 applied to the function g Q̨ and
h D jJ j � 3, with probability at least 1 � 125=.mi � 1/,

Ey2Zmi

Y
j2J

g.j /.ajy C uj / D
Y
j2J

Ey2Zmi
Œg.j /.y/�

for all uj 2 Zmi . Since g.j / is a constant function for j … J , we find that with probability
at least 1 � 125=.mi � 1/,

Ey2Zmi
Œg.1/.a1y C c1/g.2/.a2y C c2/g.3/.a3y C c3/�

D Ey2Zmi
Œg.1/.y/�Ey2Zmi

Œg.2/.y/�Ey2Zmi
Œg.3/.y/�

D fi�1.w/fi�1.w C d
0/fi�1.w C 2d

0/:

Thus, by the union bound, with probability at least 1 � 125n2i�1=.mi � 1/, for every
3-AP .w;wC d 0;wC 2d 0/ inQi�1 with nonzero common difference d 0, and for all lifts
d of d 0 in Qi ,

Ex2Qi ;xŒi�1�Dw Œfi .x/fi .x C d/fi .x C 2d/�

D fi�1.w/fi�1.w C d
0/fi�1.w C 2d

0/:

For i � 2,mi � n6i�1, andmi �m2 � ��2=64 > 106, so 125n2i�1=.mi � 1/ < 1=2. Hence
with probability larger than 1=2, for all d 2 Qi such that dŒi�1� ¤ 0,

Ex2Qi Œfi .x/fi .x C d/fi .x C 2d/�

D Ex2Qi�1fi�1.x/fi�1.x C dŒi�1�/fi�1.x C 2dŒi�1�/:

Thus, assuming that P .i � 1/ holds, we can choose the modification in level i so that
P .i/ holds. By induction, we can find a function fs which satisfies P .s/. Notice that
fs.x/ D Q̨ for at least a 3=4 fraction of x 2 G by (13), and Ex Œfs.x/3� � 3˛3=2 by (15)
with i D s. The function f D fs then satisfies the conclusion of Theorem 3.4.
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7. Lower bound construction for intervals

In this section we prove Theorem 3.3, restated below for convenience.

Theorem. There are positive absolute constants c; ˛0 such that the following holds. If
0 � ˛ � ˛0, 0 < � � ˛7, and N � tower.c log.1=�//, then there is a function f W ŒN �!
Œ0; 1� with EŒf � D ˛ such that for any 0 < d < N=2,

Ex2ŒN�2d�Œf .x/f .x C d/f .x C 2d/� � ˛
3.1 � �/:

By Appendix A, in order to prove Theorem 3.3, we can (and will) assume that
N � ��15.

Before proving Theorem 3.3, we first need an auxiliary construction of a set with
relatively low 3-AP density given its density. Recall from the introduction that N.˛/ is
the least positive integer such that if N � N.˛/ and A � ŒN � with jAj � ˛N , then A
contains a 3-AP.

Lemma 7.1. For ˛ > 0 sufficiently small, there is a subset T � Zn with jT j � ˛n and
with 3-AP density at most max.1=n; 2˛=N.6˛//.

Proof. Let N D N.6˛/ � 1, so there is A � ŒN � with jAj D d6˛N e which has no non-
trivial 3-AP.

First assume n� 4N . Partition ŒN � into at most 2N=nC 1� 6N=n intervals of length
at most dn=2e. The set A contains at least jAj=.6N=n/ � ˛n elements in one of these
intervals. Viewed as a subset of Zn, we have a subset of Zn with density at least ˛ and
with no nontrivial 3-AP, and hence 3-AP density at most 1=n.

So we may assume n > 4N . Integers x;y; z form an approximate 3-AP if j2y � x � zj
� 1. Let S WD ¹2a W a 2 Aº, so S has no approximate 3-AP. Let t D b n

4N
c. Consider the

set Ii WD ¹.i � 1/t C 1; .i � 1/t C 2; : : : ; .i � 1/t C tº of t consecutive integers. Let T
be the union of the sets Ii with i 2 S . The set T has size jT j D jAjt � ˛n. Also, every
element of T is a positive integer at most .2N � 1/t C t � n=2. So if x; y; z 2 T are
such that .x; y; z/ .mod n/ form a 3-AP in Zn, then .x; y; z/ is also a 3-AP of integers.
Since S has no approximate 3-AP, it follows that the only 3-APs in T are those where the
three terms are in the same interval Ii . In each interval Ii , which has size t , the number
of 3-APs (with any integer difference allowed) is t C 2b t

2�1
4
c. There are jAj intervals Ii

whose union is T . The number of 3-APs in Zn is n2. Hence, the 3-AP density of T as a
subset of Zn is �

t C 2

�
t2 � 1

4

��
jAj=n2 �

2˛

N.6˛/
:

The Behrend construction [2] implies that if ˛ > 0 is sufficiently small, thenN.6˛/ �
2
1
9 .log2.1=˛//

2
. Together with the previous lemma, we have the following immediate

corollary.

Lemma 7.2. If ˛ > 0 is sufficiently small, then for any positive integer n, there is a subset
of Zn with density at least ˛ and 3-AP density at most max.1=n; 2�

1
9 .log2.1=˛//

2
/.
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7.1. The construction and proof of Theorem 3.3

We next construct a function f W ŒN �! Œ0; 1� with Ex Œf .x/� D ˛ such that for any 0 <
d < N=2, Ex2ŒN�2d�Œf .x/f .x C d/f .x C 2d/� � ˛3.1 � �/. The construction is done
in three steps.

Step 1: Choose ˇ so that ˇ � �2 and N 0 D N.1 � ˇ/ has a divisor q such that N 1=5 <

q <
p
ˇ˛3.1 � �/N , N 0=q is prime, and q satisfies the condition in Theorem 3.4 with

parameters ˛3:4 D ˛ and �3:4 D 4�. Here, for clarity, we include the theorem index in
the subscript of the parameters in the theorem. Note that if q satisfies the condition in
Theorem 3.4 with parameters ˛3:4 D ˛ and �3:4 D 4�, then for any ˛1 2 Œ˛; 1=4�, q also
satisfies the condition in Theorem 3.4 with parameters ˛3:4 D ˛1 and �3:4 D 4�. The
existence of ˇ; N 0; q is guaranteed by Lemma 7.4, which is deferred to the end of the
section. Let

Q̨ WD .1 � ˇ/�1˛:

Step 2: Since Q̨ 2 Œ˛; 1=4�, we can apply Theorem 3.4 withG D Zq , ˛4:4 D Q̨ , �4:4 D 4�.
We obtain g W Zq ! Œ0; 1� with density Q̨ , and mean-cube density at most 3

2
Q̨3, such that

for each d 2 Zq n ¹0º,

Ex Œg.x/g.x C d/g.x C 2d/� � Q̨
3.1 � 4�/ � ˛3.1 � 3�/;

and there exists ˛� 2 Œ Q̨ ; Q̨ .1C �1=4/� such that j¹x 2 Zq W g.x/ D ˛�ºj � 3q=4. For an
integer x, denote Nxq D x mod q 2 Zq . Define f2 W ŒN �! Œ0; 1� by f2.x/ D g. Nxq/ for
x 2 ŒN 0� and f2.x/ D 0 for x > N 0.

Step 3: Let n D N 0=q, which is prime. Apply Lemma 7.2 to find X � Zn with density at
least ˛� and 3-AP density at most max.1=n;2� log2.1=˛�/

2=9/. We use � to denote the char-
acteristic function of X scaled by ˛�n=jX j, so �.x/ D ˛�nX.x/=jX j. Then Ex2Zn Œ�.x/�

D ˛� and since jX j=n � ˛�,

Ex;d2Zn Œ�.x/�.x C d/�.x C 2d/� � Ex;d2Zn ŒX.x/X.x C d/X.x C 2d/�

� max.1=n; 2� log2.1=˛�/
2=9/:

For each t 2 Zq , we define Pt D ¹x 2 ŒN 0� W Nxq D tº, which forms an arithmetic pro-
gression of length n. Let x1 < : : : < xn be the elements of Pt in increasing order. We
define a bijection �t W Pt ! Zn such that �t .xi / D i mod n. Observe that if .x; y; z/ is a
3-AP in Pt , then .�.x/; �.y/; �.z// is a 3-AP in Zn. For each t 2 Zq , we choose inde-
pendently and uniformly at random at 2 Zn n ¹0º; bt 2 Zn, with independent choices for
different t . Define f3 by f3.x/D �.at�t .x/C bt / for x such that Nxq D t and g.t/D ˛�,
and f3.x/ D f2.x/ otherwise.

We let f D f3. It is easy to see that Ex Œf3.x/� D ˛. We now prove that there exists a
choice of randomness (in Step 3) such that for each positive integer d < N=2,

Ex2ŒN�2d�Œf .x/f .x C d/f .x C 2d/� � ˛
3.1 � �/:
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Proof of Theorem 3.3. We reuse the notations from the description of the construction.
For a 3-AP .x; x C d; x C 2d/ in ŒN �, we refer to f3.x/f3.x C d/f3.x C 2d/ as its
weight. For any common difference d � N 0=2, all the 3-APs .x; x C d; x C 2d/ in ŒN �
have zero weight since x C 2d > N 0. Hence the density of 3-APs with common differ-
ence d of f3 is 0. For any common difference d � N 0�ˇN˛3.1��/

2
, let uD N 0 � 2d . Then

u � ˇN˛3.1 � �/. The number of 3-APs with common difference d in ŒN 0� is at most u,
and hence the number of 3-APs in ŒN � with nonzero weight is at most u. The number of
3-APs with common difference d in ŒN � is N � 2d D ˇN C u, so the density of 3-APs
with common difference d in ŒN � is at most u

ˇNCu
< ˛3.1 � �/ since u � ˇN˛3.1��/

1�˛3.1��/
.

For d such that 0 < d < N 0�ˇN˛3.1��/
2

, the number of 3-APs of common difference d
in ŒN 0� is at least ˇN˛3.1 � �/. Partition the 3-APs with common difference d in ŒN 0�
into different classes according to the congruence class modulo q of the 3-AP (so the class
a 3-AP belongs to is determined by the congruence class modulo q of the first element
of the 3-AP). Since ˇN˛3.1 � �/ > q2, all classes of 3-APs modulo q with common
difference Ndq appear, each class with at least q elements, and any two classes differ in
size by at most 1. Hence,ˇ̌
Ex2ŒN 0�2d�Œf2.x/f2.x C d/f2.x C 2d/�� Ey2Zq Œg.y/g.y C

Ndq/g.y C 2 Ndq/�
ˇ̌
� 1=q:

By the construction, if Ndq ¤ 0 then

Ey2Zq Œg.y/g.y C
Ndq/g.y C 2 Ndq/� � ˛

3.1 � 3�/;

and if Ndq D 0 then

Ey2Zq Œg.y/g.y C
Ndq/g.y C 2 Ndq/� �

3
2
Q̨
3:

Thus, for d nonzero modulo q,

Ex2ŒN 0�2d�Œf2.x/f2.x C d/f2.x C 2d/� � ˛
3.1 � 3�/C 1=q < ˛3.1 � 2�/;

and for d divisible by q,

Ex2ŒN 0�2d�Œf2.x/f2.x C d/f2.x C 2d/� �
3
2
Q̨
3
C

1
q
: (17)

In the third step, suppose d is nonzero and divisible by q and let t 2 Zq with
g.t/ D ˛�. For x 2 ŒN 0 � 2d� with Nxq D t , one has .f3.x/; f3.x C d/; f3.x C 2d// D
.�.at�t .x/ C bt /; �.at�t .x C d/ C bt /; �.at�t .x C 2d/ C bt //. Recall that at is
uniformly distributed over Zn n ¹0º and bt is uniformly distributed over Zn, so
.at�t .x/C bt ; at�t .x C d/C bt ; at�t .x C 2d/C bt / is uniformly distributed over the
3-APs in Zn with nonzero common difference. Thus,

Ef3E NxqDt;x2ŒN 0�2d�Œf3.x/f3.x C d/f3.x C 2d/� D �.�/ � ƒ.�/

� max.1=n; 2� log2.1=˛�/
2=9/ � ˛3�=10;
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where �.�/ is the density of 3-APs with nonzero common difference of �, ƒ.�/ is the
density of 3-APs of �, and we have used that n �

p
N=2 � ��15=2=2 � ˛�10 and ˛ � ˛0

is sufficiently small. Thus, for each t 2 Zq such that g.t/ D ˛�,

Ef3E NxqDt;x2ŒN 0�2d�Œf3.x/f3.x C d/f3.x C 2d/�

� E NxqDt;x2ŒN 0�2d�Œf2.x/f2.x C d/f2.x C 2d/� � 9˛
3
�=10: (18)

For each t 2 Zq such that g.t/ ¤ ˛�,

Ef3E NxqDt;x2ŒN 0�2d�Œf3.x/f3.x C d/f3.x C 2d/�

D E NxqDt;x2ŒN 0�2d�Œf2.x/f2.x C d/f2.x C 2d/�: (19)

Hence,

Ef3Ex2ŒN 0�2d�Œf3.x/f3.x C d/f3.x C 2d/� �
3˛3�
2
C
1

q
�
3

4
�
9˛3�
10
�
5˛3�
6
;

where in the first inequality we used (17)–(19) together with the fact that g.t/D ˛� for at
least a 3=4 fraction of t 2 Zq , and in the second inequality we used q > N 1=5 � ��3 �

˛�21 > 120=˛3�. Notice that for fixed nonzero d divisible by q, the random variables
E NxqDt;x2ŒN 0�2d�Œf3.x/f3.x C d/f3.x C 2d/�, for t 2 Zq , are independent. By Hoeff-
ding’s inequality, the probability that

Ex2ŒN 0�2d�Œf3.x/f3.x C d/f3.x C 2d/� � ˛
3
� � ˛

3
�=12

is at most exp.�2 � .12�1˛3�/
2q/D exp.�72�1˛6�q/. Noting that ˛3� � ˛

3
�=12� ˛

3.1� �/,
by the union bound, the probability that there exists a nonzero common difference d
which is divisible by q such that

Ex2ŒN 0�2d�Œf3.x/f3.x C d/f3.x C 2d/� � ˛
3.1 � �/

is at most .N=q/ exp.�72�1˛6�q/ < q
4 exp.�72�1˛6�q/ < 1=2, as N < q5, q > ��3 and

� � ˛7.
If d is not divisible by q, each 3-AP with common difference d occupies three differ-

ent modulo q classes, and hence the weights of the elements in the 3-AP are independent
random variables. By construction, for each x 2 ŒN 0�, Ef3 Œf3.x/� D f2.x/. Hence, by
independence, if .x; x C d; x C 2d/ 2 ŒN 0�3,

Ef3 Œf3.x/f3.x C d/f3.x C 2d/� D f2.x/f2.x C d/f2.x C 2d/:

Thus,

Ef3Ex2ŒN 0�2d�Œf3.x/f3.x C d/f3.x C 2d/�

D Ex2ŒN 0�2d�Œf2.x/f2.x C d/f2.x C 2d/� � ˛
3.1 � 2�/:

For this fixed d , we can partition Zq into five sets S1; : : : ; S5 such that for each 1� i � 5,
the 3-APs .t; t C Nd; t C 2 Nd/; t 2 Si , are disjoint, and jSi j � q=10. For each set Si , the ran-
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dom variables E NxqDt;x2ŒN 0�2d�Œf3.x/f3.xC d/f3.xC 2d/�, for t 2 Si , are independent.
By Hoeffding’s inequality, the probability that

Et2SiE NxqDt;x2ŒN 0�2d�Œf3.x/f3.x C d/f3.x C 2d/�

� Ef3Et2SiE NxqDt;x2ŒN 0�2d�Œf3.x/f3.x C d/f3.x C 2d/�C �˛
3

is at most exp.�2.�˛3/2q=10/D exp.�5�1 � �2˛6q/. By the union bound, the probability
that there exists a common difference d not divisible by q with

Ex2ŒN 0�2d�Œf3.x/f3.x C 2d/f3.x C 2d/� � ˛
3.1 � 2�/C �˛3 D ˛3.1 � �/

is at most 5N exp.�5�1�2˛6q/ < 1=2, where we use N < q5, q > ��3 and � � ˛7.
Since f3.x/ D 0 for all x … ŒN 0�,

Ex2ŒN�2d�Œf3.x/f3.x C 2d/f3.x C 2d/� � Ex2ŒN 0�2d�Œf3.x/f3.x C 2d/f3.x C 2d/�:

Hence, with positive probability, the function f3 satisfies the required properties in Theo-
rem 3.3.

To finish the proof, we prove that the parameters in Step 1 of the construction
described at the beginning of the subsection can be chosen. We first prove that we can
approximate any large integer with one satisfying the conditions in Theorem 3.4.

Lemma 7.3. There exist constants c; ˛0 > 0 such that if 0 � ˛ � ˛0, 0 < � � ˛7,
and r is an integer satisfying ��15 � r � tower.c log.1=�//, then we can choose s 2
Œ2; dlog150.�

�1=4˛6=8/e� and primes m1; : : : ; ms and q satisfying the following proper-
ties:

� ��1=3=2 � m1 � �
�1=3,

� for i � 2, n6i�1 < mi < exp.2�1 � 64�2 � 150i�1�1=4ni�1/ where ni D
Qi
jD1mj ,

� for n D ns , we have n 2 Œr.1 � �2/; r�.

Proof. Choose a sequence of s real numbers Qm1; : : : ; Qms satisfying the following proper-
ties: Qm1 is a prime number with ��1=3=2 � Qm1 � ��1=3, Qn6i�1 < Qmi < exp.2�1 � 64�2 �
150i�1�1=4 Qni�1/ for i � 2 with Qni D

Qi
jD1 Qmj , and

Qs
iD1 Qmi D r . The existence of Qm1

is guaranteed by Bertrand’s postulate. Since ��15 � r � tower.c log.1=�// and � � ˛7,
if we choose c; ˛0 sufficiently small, it is easy to see that there exists a choice of s and
Qm1; : : : ; Qms satisfying these properties.

For each i let mi be the largest prime such that mi � Qmi . So m1 D Qm1, and from [1],
for all Qmi large enough, mi � Qmi � Qm0:525i . Hence

n D

sY
iD1

mi � Qm1

sY
iD2

. Qmi � Qm
0:525
i / � r

sY
iD2

.1 � Qm�0:475i / � r exp
�
�

sX
iD2

2

Qm0:475i

�
� r exp

�
�

4

Qm0:4752

�
� r exp.��2:5/ � r.1 � �2:5/;
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where we have applied the inequality exp.�x/ � 1 � x � exp.�2x/ for 0 � x � 1=2,Ps
iD2

1

Qm0:475
i

�
1

Qm0:475
2

P
i�0

1

2i
�

2

Qm0:475
2

as QmiC1� Qm6i �2
1=0:475 Qmi�� � ��2

.i�1/=0:475 Qm2

and Qmi � Qm2 � ��6 for i � 2. Thus we can choose nD
Qs
iD1mi and r.1� �2/ � n � r .

Using Lemma 7.3, we prove that the parameters N 0; q in Step 1 of the construction
can be chosen.

Lemma 7.4. Let N � ��15. There exist q; N 0 such that N 0=q is prime, q satisfies the
conditions in Theorem 3.4, and .1 � �2/N � N 0 � N .

Proof. We choose p to be a prime number in .N 1=5;
p
�4˛3.1 � �/N /. Let r D

bN.1� �2=4/=pc � N.1� �2=2/=p � ��7. Applying Lemma 7.3 with the above choice
of r and with �7:3 D 4�, we find n such that .1 � �2:5/r � n � r and n further satisfies
the conditions in Theorem 3.4, applied with ˛3:4 2 Œ˛; ˛.1C �/� and �3:4 � 4�. Then we
let N 0 D pn and q D n.

We have

N 0 D pn � .1 � �2:5/rp � .1 � �2=2/.1 � �2:5/N � .1 � �2/N;

thus .1 � �2/N � N 0 � N , finishing the proof.

Appendix A. Proof of Theorem 1.5 from Theorem 3.3

In this appendix, we show how to deduce Theorem 1.5 from its functional version, Theo-
rem 3.3.

We first show that Theorem 1.5 holds if it holds in the case N � ��15. Assume that
N < ��15. Recall that N.˛/ denotes the least positive integer such that if N � N.˛/ then
anyA� ŒN �with jAj � ˛N contains a nontrivial 3-AP. IfN <N.˛/, there exists a subset
A of ŒN � with jAj � ˛N and A does not contain a nontrivial 3-AP. In this case, for all
d ¤ 0,

Ex2ŒN�2d�ŒA.x/A.x C d/A.x C 2d/� D 0;

so the conclusion of Theorem 1.5 holds. By Behrend’s bound [2,10], we find thatN.˛/ �
exp..log.1=˛//2=6/ for ˛ > 0 sufficiently small. ForN � N.˛/ � exp..log1=˛/2=6/, let
�0DN

�1=15 soN D ��150 . We have �0 > � and �0 � exp.�.log1=˛/2=90/� ˛12 (assum-
ing ˛0 is small enough). By choosing ˛0 in Theorem 1.5 small enough, we may assume
that for all x � ˛0, x�15 < tower.c log.1=x//. Then N D ��150 < tower.c log.1=�0// as
�0 < ˛ � ˛0. Thus, ��150 � N � tower.c log.1=�0//, so we can apply Theorem 1.5 with
�0 in place of � to obtain the desired set A. The same argument also shows that we only
need to prove Theorem 3.3 when N � ��15.

We next discuss how to obtain a set A with the properties in Theorem 1.5 from
Theorem 3.3 when N � ��15. This follows via a standard sampling argument which is
essentially similar to that in [13, Lemma 9]. However, there are some small differences
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to the argument which we now highlight. Given a function f W ŒN � ! Œ0; 1� such that
the density of 3-APs with common difference d of f is small for all 0 < d < N=2, we
sample a set A where each element x 2 ŒN � is in A with probability f .x/ independent of
each other. If the density of 3-APs with common difference d in A is concentrated around
its expectation, which is the density of 3-APs with common difference d of f , then it
is small with high probability. However, for d near N=2, there are very few 3-APs with
common difference d , and we do not have sufficiently strong concentration to be able to
take a union bound over all such d . To get around this, we define a function f 0 which is 0
for all x close to N , and which is equal to f elsewhere, and sample the set A from f 0.
This ensures that for common differences d which are close to N=2, the set A contains
very few 3-APs with common difference d .

We now carry out the details. By Theorem 3.3 applied with ˛ replaced by ˛ C 2� and
� replaced by 12�=˛3 � ˛7, we can find a function f W ŒN �! Œ0; 1� such that for any
0 < d < N=2,

Ex2ŒN�2d�Œf .x/f .x C d/f .x C 2d/� � .˛ C 2�/
3.1 � 12�=˛3/:

Define f 0 W ŒN �! Œ0; 1� by f 0.x/D 0 if x � N.1� �/ and f 0.x/D f .x/ otherwise. We
define A to be a random subset of ŒN � where each x 2 ŒN � is in A with probability f 0.x/,
independently of the other elements. In particular, A does not contain x if x � N.1 � �/.
Hence, if the common difference d is larger than N.1 � �/=2 then

Ex2ŒN�2d�ŒA.x/A.x C d/A.x C 2d/� D 0:

If d is at most N.1 � �/=2, then N � 2d � �N , so by Hoeffding’s inequality, with prob-
ability at least 1 � exp.��2.N � 2d// � 1 � exp.��3N/,ˇ̌
Ex2ŒN�2d�ŒA.x/A.xCd/A.xC2d/��Ex2ŒN�2d�Œf

00.x/f 00.xCd/f 00.xC2d/�
ˇ̌
� �:

Furthermore, note that

Ex2ŒN�2d�Œf
00.x/f 00.x C d/f 00.x C 2d/� � Ex2ŒN�2d�Œf .x/f .x C d/f .x C 2d/�

� .˛ C 2�/3.1 � 12�=˛3/ � ˛3 � 2�:

By Hoeffding’s inequality, with probability at least 1� exp.��2N/, the density of A is at
least

Ex Œf
0.x/� � � � Ex Œf .x/� � �N=N � � D ˛:

Thus, by the union bound, with probability at least 1 � N exp.��3N/ � exp.��2N/,
A is a set with density at least ˛ such that for all 0 < d < N=2,

Ex2ŒN�2d�ŒA.x/A.x C d/A.x C 2d/� � ˛
3
� �:

Since N > ��15, for � sufficiently small we have 1 �N exp.��3N/ � exp.��2N/ > 0.
This gives Theorem 1.5, assuming Theorem 3.3.
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