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Abstract. We show that the compactly supported cohomology of Shimura varieties of Hodge type
of infinite �1.p1/-level (defined with respect to a Borel subgroup) vanishes above the middle
degree, under the assumption that the group of the Shimura datum splits at p. This generalizes
and strengthens the vanishing result proved in [A. Caraiani et al., Compos. Math. 156 (2020)]. As
an application of this vanishing theorem, we prove a result on the codimensions of ordinary com-
pleted homology for the same groups, analogous to conjectures of Calegari–Emerton for completed
(Borel–Moore) homology.
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1. Introduction

This paper proves a generalization of the main geometric result of [7], and gives an applic-
ation to the bounds on the codimensions of ordinary completed cohomology groups for
certain Shimura varieties. Along the way we prove results on finite group quotients of
adic spaces and diamonds, and a Poincaré duality spectral sequence for ordinary com-
pleted cohomology, which we consider to be of independent interest. Before giving a
brief introduction to our results, we refer the interested reader to the introduction of [7]
for further context.

Fix a prime p. We give an overview of the setup, referring to the main text for details.
Let G be a connected reductive group over Q admitting a Shimura datum of Hodge type.
Assume thatG is split at p and choose a split model over Zp . Choose a Borel subgroup B
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of G over Zp and let U � B be its unipotent radical. If K � G.Zp/ is a compact open
subgroup, we write XK for the complex Shimura variety for G of level K at p and some
fixed tame level1 Kp � G.Ap

f
/, viewed as an algebraic variety. We write XK.C/ for the

corresponding complex manifold. We may state our main vanishing theorem as follows:

Theorem 1.1 (Corollary 4.1.2, Remark 4.1.3). Let d be the complex dimension of the
Shimura varieties for G. Let H � U.Zp/ be a closed subgroup. Then

lim
�!
K�H

H i
c .XK.C/;Z=p

r / D 0 for all r � 1 and all i > d .

The cohomology here is singular cohomology with compact support. This theorem
generalizes [7, Theorem 1.1.2] in two ways. First, the latter only treats Shimura varieties
for quasi-split (general) unitary and symplectic groups over totally real fields – here we
generalize this to all Hodge type Shimura varieties (in both cases assuming the same
splitness conditon at p). Second, in [7, Theorem 1.1.2] we require the subgroup H to
be contained in the Zp-points of the unipotent radical of the Siegel parabolic; this is a
stronger assumption than the containment H � U.Zp/ in Theorem 1.1.

The method of proof is a variation of that of [7, Theorem 1.1.2], and we refer to the
introduction of [7] for a more elaborate sketch. Choosing an embedding C ,! C into an
algebraically closed nonarchimedean field C we may base change the XK to C and then
analytify to get rigid analytic varieties XK . As in [28], we make use of compactifications
XK of the XK which are closely related to the minimal compactifications. Through a
string of comparison theorems, one reduces Theorem 1.1 to proving

H i
Ket.X; jŠ.O

C

X
=p//a D 0 for i > d ,

where
j WXH WD lim

 �
K�H

XK ,! XH WD lim
 �
K�H

XK

is the inclusion, the inverse limits are taken as diamonds in the sense of [29], and �a

denotes the corresponding almost module with respect to OC and its maximal ideal. As
in [7], H i

Ket.XH ; jŠ.O
C

X
=p//a is analyzed using the Leray spectral sequence for a des-

cent � of the Hodge–Tate period map which goes from XH to a quotient of a partial flag
variety F`G;� for G, and the “Bruhat” stratification of F`G;� into Schubert cells for the
action of B .

Apart from the fact that we treat more general Shimura varieties, there are two prin-
cipal differences between the argument presented here and that of [7] that we wish to
point out. The first is that we need to adapt the results of [7, §4] on the Schubert cells
for the Siegel parabolic on F`G;� to the Schubert cells for B . In fact, it turns out that
the arguments flow more naturally in this setting. The second is that our analysis of the

1Kp is assumed to be sufficiently small in a way that we make precise in §3.2.
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fibers of � uses some new and different techniques. The argument in [7] relies heavily
on a general result about the existence of invariant rational neighborhoods for profinite
group actions on affinoid adic spaces [7, Proposition 5.2.1]. Here, we instead make use
of some new results on quotients of diamonds by finite groups, which we consider to be
of independent interest. A corollary is a strengthening of [14, Theorem 1.4] showing that
quotients of affinoid perfectoid spaces are affinoid perfectoid (Theorem 2.1.2). We dis-
cuss the differences between our argument and the argument of [7] in more detail in the
introduction to §4 and in Remark 4.2.8.

We give one application of Theorem 1.1 in this paper. Hida’s theory of the ordinary
projector and ordinary automorphic forms has played a key role in the p-adic study of
automorphic forms since its introduction in the 1980’s. Hida’s constructions come in dif-
ferent flavors, with the most general being in terms of the singular cohomology of locally
symmetric spaces. It was later realized by Emerton [11] that the ordinary projector is
closely related to the right adjoint of the parabolic induction functor in the mod p and
p-adic representation theory of p-adic reductive groups. Moreover, Hida’s construction
can be recovered2 by applying this right adjoint to Emerton’s completed cohomology,
which plays a prominent role in the p-adic Langlands program at present (see [6, 13] for
surveys).

In this paper we follow Hida’s approach and look at the ordinary “completed”3 (Borel–
Moore) homology groups

zH
.BM/;ord
i WD lim

 �
K�U.Zp/

H
.BM/
i .XK.C/;Zp/

ord;

where on the right hand sideH .BM/
i denotes i -th (Borel–Moore) homology and the super-

script �ord denotes the ordinary part (which is the image of the ordinary projector, i.e. the
direct summand where certain Up-like operators for G act invertibly4). These are direct
summands of the corresponding completed cohomology groups

zH
.BM/
i .U.Zp// WD lim

 �
K�U.Zp/

H
.BM/
i .XK.C/;Zp/

at unipotent level. The module zHi .U.Zp// is dual, in an appropriate sense, to the direct
limits appearing in Theorem 1.1 for H D U.Zp/; see (5.5.1) for the precise statement.
If T � B is a maximal split torus, then zH .BM/;ord

i is a finitely generated module over
the Iwasawa algebra D.T0/, where T0 WD T .Zp/. Our second main result is then the
following.

2This statement needs some care to be made precise. Since this statement is only for context
and will not be used in the paper, we will not elaborate on it.

3As is now common, we will occasionally use the term “completed (co)homology” to refer to
more general (co)limits of (co)homology groups of locally symmetric spaces, in the spirit of the
constructions in [6].

4We refer to §5.4 for a precise definition.
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Theorem 1.2 (Theorem 5.5.1). We have the following:

(1) zHBM;ord
i D 0 for i > d . In fact more is true: Let H � U.Zp/ be a closed subgroup.

Then
lim
 �
K�H

HBM
i .XK.C/;Zp/ D 0 for all i > d .

(2) We have
codimD.T0/

zH ord
i � d � i for all 0 � i � d .

The codimension function may be defined as

codimD.T0/
zH ord
i D inf

j
¹j j ExtjD.T0/.

zH ord
i ;D.T0// 6D 0ºI

we discuss it further in §5.5. Theorem 1.2 is an analogue of an important conjecture of
Calegari and Emerton for completed homology and completed Borel–Moore homology
[6, Conjecture 1.5]. The analogue of Theorem 1.2 in that setting was proved by Scholze
for Shimura varieties of Hodge type [28, Corollary 4.2.3]. The main ingredients in the
proof of Theorem 1.2 are Theorem 1.1 and a “Poincaré duality” spectral sequence relating
ordinary completed Borel–Moore homology to ordinary completed homology, which we
consider to be of independent interest. Such a result has previously been announced by
Emerton, though relying on a different method than ours.

The conjecture [6, Conjecture 1.5] is symmetric when swapping the roles of homology
and Borel–Moore homology. However, we remark that one will need more care when for-
mulating (conjectural) versions of Theorem 1.2 with homology and Borel–Moore homo-
logy swapped, or in analogus situations like eigenvarieties. When swapping homology and
Borel–Moore homology, one has to factor in contributions from ordinary boundary homo-
logy. In particular, we remark that Theorem 1.1 fails if one replaces compactly supported
cohomology with cohomology, and Theorem 1.2 (1) should fail if one replaces Borel–
Moore homology with homology due to the presence of boundary homology. For eigen-
varieties, conjectures on codimensions have been given by Urban [33, Conjecture 5.7.5],
with partial results by Hansen and Newton [15] that are somewhat orthogonal to our The-
orem 1.2.

Let us now give a short overview of the paper. Section 2 discusses results on quo-
tients of diamonds by (pro)finite groups which are used in the analysis of the fibers of
the Hodge–Tate period map. Section 3 introduces the Shimura varieties we consider in
this paper and proves the perfectoidness results needed for Theorem 1.1, and section 4
is devoted to the proof of Theorem 1.1. Finally, Section 5 introduces ordinary completed
(Borel–Moore) homology and proves Theorem 1.2.

2. Preliminaries on diamonds

In this section, we will prove some results on diamonds and v-sheaves that will be used
later in the paper. We use the notation, terminology and conventions regarding diamonds
and v-sheaves of [29]. Unless otherwise specified, v-sheaves are assumed to be on the
category Perf of perfectoid spaces of characteristic p.
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2.1. Quotients of diamond spectra and perfectoid spaces by finite groups

Proposition 2.1.1. Let A be a complete Tate Zp-algebra with a continuous left action
of a finite group G, and let AC be an open and integrally closed subring of A that is
preserved by G. Let

X D Spd.A;AC/ and XG D Spd.AG ; ACG/:

Then X �G � X is a presentation of XG as a v-sheaf.

Proof. We need to show that X ! XG and X � G ! X �XG X are surjections of v-
sheaves.

The diamonds X , XG , X � G, and X �XG X are spatial (in the last case we use
[29, Corollary 11.29]), hence qcqs. So X ! XG and X � G ! X �XG X are qc. So by
[29, Lemma 12.11], it suffices to show that jX j ! jXG j and jX �Gj ! jX �XG X j are
surjections. The former map is surjective by [14, Theorem 3.1].

To prove that the latter map is surjective, we use the characterization of the topological
space of a diamond given in [29, Proposition 11.13]. It suffices to show that if .K;KC/ is
a perfectoid field and �1;�2W .A;AC/! .K;KC/ have the same restriction to .AG ;ACG/,
then �1; �2 are related by an element of G. Let Y D Spec.A/ and YG D Spec.AG/. Let
y1, y2 be points of Y.K/ corresponding to �1, �2. By [26, Thm. V.4.1 (iii)], Y � G !
Y �YG Y is surjective. It follows that after extending K, y1 and y2 become related by an
element of G. But then they must already be related by an element of G over K. So �1
and �2 are related by an element of G.

Our main motivation for introducing the above result is to prove Proposition 3.2.2,
but we also mention the following generalization of [14, Theorem 1.4], which will not
be used in the rest of the paper. Recall that the category of adic spaces is, by Huber’s
definition, a full subcategory of a certain category of locally topologically ringed spaces
with valuations on the stalks of the structure sheaf. We follow Kedlaya–Liu in calling
such spaces locally v-ringed spaces; see [18, Definitions 8.2.1 and 8.2.2].

Theorem 2.1.2. Let X be a perfectoid space with a right action of a finite group G.
Suppose that X has a covering by G-stable open subspaces of the form Spa.A;AC/ with
A perfectoid Tate. Let X=G be the coequalizer of X �G � X in the category of locally
v-ringed spaces. Then X=G is perfectoid.

The theorem is an immediate consequence of item (2) of the following proposition.

Proposition 2.1.3. Let .A; AC/ be a perfectoid Tate–Huber pair with a continuous left
action of a finite group G. Let X D Spa.A;AC/, and let XG D Spa.AG ; ACG/. Then:

(1) X �G � X ! XG represents XG as a coequalizer in the category of v-sheaves on
Perfd.

(2) X �G�X!XG representsXG as a coequalizer in the category of locally v-ringed
spaces.
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Proof. In the statement of the proposition, we are implicitly using the fact that AG is
perfectoid [19, Thm. 3.3.25] and that any perfectoid space may be regarded as v-sheaf on
Perfd since the v-site is subcanonical [29, Thm. 8.7].

By the same argument as in Proposition 2.1.1, X ! XG and X �G! X �XG X are
v-covers. This proves item (1).

By the argument of [14, Thm. 3.3], to prove item (2), it is enough to show that if
U D XG.T=s/ is a rational subset of XG , then the natural map AGhT=si ! AhT=siG is
an isomorphism.

By item (1), in the category of v-sheaves on Perfd, Spa.AhT=siG ; AhT=siCG/
is the coequalizer of .X �XG U/ � G � X �XG U . In a topos, coequalizers com-
mute with base change, so this v-sheaf is canonically isomorphic to XG �XG U D

U D Spa.AGhT=si; AGhT=siC/. Therefore AGhT=si ! AhT=siG must be an isomor-
phism.

Remark 2.1.4. The above argument seems to indicate that for general A, the map
AGhT=si ! AhT=siG must be “totally inseparable” (since v-sheafifying generally loses
information about nilpotents and totally inseparable field extensions), but any “totally
inseparable” extension of perfectoid rings must be an isomorphism, giving the result.

This observation led us to find a more direct proof of Proposition 2.1.3 (2), which we
now sketch. Again we show that AGhT=si ! AhT=siG is an isomorphism. By the tilting
correspondence, it is enough to consider the case where A has characteristic p. Since
AGhT=si ! AhT=siG induces a bijection of adic spectra and AGhT=si is uniform, the
map is injective andAGhT=si has the subspace topology. Let pm be the largest power of p
dividing the order ofG. Any a 2AhT=siG is a limit of elements ofAŒ1=s�; then

�
jGj
pm

�
ap

m

is a limit of the pmth elementary symmetric polynomials in the translates of each element.
So
�
jGj
pm

�
ap

m
is a limit of elements of AG Œ1=s�; hence

�
jGj
pm

�
ap

m
2 AGhT=si. Since

�
jGj
pm

�
is not divisible by p, ap

m
2 AGhT=si, implying a 2 AGhT=si since AGhT=si is perfect

and AhT=siG is reduced.

2.2. Inverse limits of surjections of v-sheaves

This short subsection consists of a single lemma we will need later. While we state the
lemma in its natural generality, in practice we will only need the case when the indexing
system I has a cofinal subsystem isomorphic to .Z�1;�/.

Lemma 2.2.1. Suppose we have cofiltered inverse systems of v-sheaves Xi ; Yi , i 2 I ,
with compatible morphisms Xi ! Yi that are qcqs and surjective. Let X WD lim

 �i
Xi and

Y WD lim
 �i

Yi . Then X ! Y is surjective.

Proof. It suffices to show that for any qcqs Z with a map Z ! Y , Z �Y X ! Z is
surjective. For each i , let Zi WD Z �Yi Xi ; then Z �Y X D lim

 �i
Zi . For each i < j , the

map Zj ! Zi is qcqs since it is a base change of Xj ! Xi �Yi Yj , and Xj ! Yj is qcqs
and Xi ! Yi is qs. By the argument of [29, Lemma 12.17], we can find a diagram Wi of
spatial diamonds with compatible qcqs surjectionsWi ! Zi . Then eachWi ! Z is qcqs
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and surjective. By the argument of loc. cit., lim
 �i

Wi ! Z is surjective. So lim
 �i

Zi ! Z

must be surjective.

2.3. Subsheaves and quotients

Recall that if S is any topological space, then S denotes the v-sheaf Z 7!Mapcts.jZj; S/

on Perf. In the following, subsets of topological spaces will be equipped with the subspace
topology.

Lemma 2.3.1. Let X be a spatial v-sheaf, and let S be a qc and generalizing subset
of jX j. Then:

(1) X �jX j S D lim
 �U�S

U , where U runs over qc open sheaves of X containing S .

(2) X �jX j S is spatial.

(3) If X is a diamond, then X �jX j S is a diamond.

Proof. The first claim follows from [29, Proposition 12.9] (since S D
T
jU j), and then

the remaining claims follow immediately from the first claim, [29, Lemma 12.17] and
[29, Lemma 11.22], respectively.

The following lemma will be key to the arguments of this paper.

Lemma 2.3.2. Let X be a spatial v-sheaf with a right action of a profinite group G. Let
X=G denote the quotient of X by G in the category of v-sheaves, and let � WX ! X=G

be the quotient map. Let S � jX j be a qc and generalizing subset. Suppose that the
multiplication map S � G ! S � G is a bijection. Then the natural map X �jX j S !
X=G �jX=Gj �.S/ is an isomorphism of v-sheaves.

Proof. The product X=G �jX=Gj �.S/ can be identified with .X �jX j S �G/=G. Since
..X �jX j S/ �G/=G Š X �jX j S , it is enough to show that .X �jX j S/ �G ! X �jX j
.S �G/ is an isomorphism, for which it is enough to show that S � G ! S �G is an
isomorphism. This, in turn, reduces to showing that S � G ! S � G is a homeomor-
phism. But this map is easily seen to be spectral and generalizing, and it is bijective by
assumption. It is then a homeomorphism by [31, Tag 09XU].

3. Shimura varieties

In this section we define the Shimura varieties that we will work with and prove the
perfectoidness results and results on flag varieties that we will need.

3.1. Setup

We start by setting up some notation and assumptions. We let .G;H / be a Shimura datum
of Hodge type, and we assume (crucially!) that G is split over Qp . Being split over Qp ,
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G has a natural split reductive model over Zp [9, Theorem 6.1.16], and we will use the
letterG for this model as well, or sometimesGZp for emphasis. LetE D E.G;H / be the
reflex field of .G;H /. Since G is split over Qp , Ep DQp for every prime p above p (the
local reflex field is the localization of the global reflex field). From now on we fix such
a prime p of E above p, or equivalently an embedding E ,! Qp . The remainder of this
subsection will be devoted to constructing a particular embedding .G;H / ,! . zG; zH / into
a Siegel Shimura datum . zG; zH / with certain convenient properties. We start by recalling
a lemma from [21].

Lemma 3.1.1. Let G be a reductive group over Zp . Let V be a finite-dimensional vector
space over Qp , and let �WGQp ,! GL.V / be a closed embedding of algebraic groups.
Then there exists a lattice ƒ � V such that � extends to a map G ! GL.ƒ/.

Proof. This is proved in [21, Lemma 2.3.1]. The statement of that lemma includes some
additional hypotheses when p D 2, but these are only used to guarantee that the map of
integral models is a closed embedding, which we do not need.

Next we recall a version of Zarkhin’s trick.

Lemma 3.1.2 (Zarkhin’s trick, [34, §2]). Let V be a finite-dimensional symplectic Q-
vector space and let .GSp.V /;HV / be the associated Siegel Shimura datum. Let ƒ � V
be a lattice. Then there is a symplectic form onW D V 4˚ .V _/4 preserved up to scaling
by GSp.V / that makes the lattice ƒ4 ˚ .ƒ_/4 � V 4 ˚ .V _/4 self-dual. Moreover, the
closed embedding GSp.V / ,! GSp.W / induces a closed embedding

.GSp.V /;HV / ,! .GSp.W /;HW /

of Siegel Shimura data.

For convenience, we make the following definition.

Definition 3.1.3. LetR be a principal ideal domain, and letƒ be a finite free module over
R equipped with a symplectic form. Let �W .Gm/R ! GSp.ƒ/ be a cocharacter. Recall
[26, Proposition I.4.7.3] that � induces a decomposition ƒ D

L
n2Z ƒn, where � acts

on ƒn by �.z/.v/ D znv.
We say that � is standard if ƒ0 and ƒ1 are nonzero and all other ƒi are zero.

For any cocharacter �W .Gm/R ! GSp.ƒ/, the composition of � with the similitude
factor GSp.ƒ/! .Gm/R must be of the form z 7! zn for some integer n. Then for each
i 2 Z, the symplectic form pairs ƒi with ƒn�i . If � is standard, then the nondegeneracy
of the symplectic form forces n D 1 and ƒ0 and ƒ1 to be maximal isotropic.

We now return to our Hodge type Shimura datum .G;H / and the split integral
model GZp . Let us fix a choice of Hodge cocharacter � for G, viewed as a cocharacter
over Zp . If �0W .G;H / ,! .GSp.V /;HV / is any closed embedding into a Siegel Shimura
datum, then �0 ı �Qp is standard (i.e. a Hodge cocharacter for .GSp.V /;HV /, over Qp).
The following proposition summarizes the extra conditions we would like to put on our
embedding and shows that they are possible to achieve.
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Proposition 3.1.4. Let .G;H /, GZp and � be as above. Then there exists a symplectic
Q-vector spaceW and a closed embedding �QW .G;H /! .GSp.W /;HW / satisfying the
following conditions: There exists a self-dual Zp-lattice ƒ � W ˝Q Qp such that �Qp

extends to a homomorphism �Zp WGZp ! GSp.ƒ/, and �Zp ı � is standard.
Under these conditions, let P� and Pz� be the parabolic subgroups of G and zG WD

GSp.ƒ/ corresponding to � and z� WD �Zp ı �, respectively, as defined in [8, §2.1] .we
remark that these are the parabolics opposite to the ones defined by the Hodge filtration/.
Then G.Zp/ D G.Qp/ \ zG.Zp/ and P�.Zp/ D P�.Qp/ \ zP�.Zp/.

Proof. Choose an arbitrary closed embedding �0W .G;H /! .GSp.V /;HV / into a Siegel
Shimura datum. By Lemma 3.1.1, we can find a Zp-lattice ƒVQp

� V ˝Q Qp such
that �0Qp extends to a map GZp ! GL.ƒVQp

/. There exists a Z-lattice ƒV � V such
that ƒVQp

D ƒV ˝Z Zp . Set W D V 4 ˚ .V _/4, ƒ D ƒ4VQp
˚ .ƒ_VQp

/4 and ƒW D

ƒ4V ˚ .ƒ
_
V /
4. Applying Lemma 3.1.2, we can choose a symplectic form on W giving us

an embedding of Shimura data �QW .G;H /! .GSp.W /;HW / such thatƒW is self-dual.
Then ƒ is also self-dual. The composition

GZp ! GL.ƒVQp
/! GL.ƒ/

maps GQp to GSp.W /, so since GQp is dense in the reduced scheme GZp , the image
of GZp is contained in GSp.ƒ/. This gives the �Zp in the statement of the theorem. The
cocharacter z� WD �Zp ı � is then standard since its generic fiber �Qp ı �Qp is.

Now set zG WD GSp.ƒ/. To prove the final part of the proposition, first note that it is
clear that G.Zp/ � G.Qp/ \ QG.Zp/. Equality must then hold since G.Zp/ is a maximal
compact subgroup of G.Qp/. Then we compute

P�.Zp/ D G.Zp/ \ P�.Qp/ D zG.Zp/ \ P�.Qp/ D zG.Zp/ \G.Qp/ \ Pz�.Qp/

D G.Qp/ \ Pz�.Zp/;

finishing the proof.

From now on, we fix an embedding .G;H / ,! . zG; zH / into a Siegel Shimura datum
satisfying the conditions of Proposition 3.1.4. As with G, we will use zG, or sometimes
zGZp for emphasis, to denote the split model of zG over Zp given by Proposition 3.1.4.
Composing our fixed � with GZp !

zGZp gives a Hodge cocharacter z� for zG, which by
Proposition 3.1.4 is conjugate over Zp to the standard cocharacter z 7!

�
zI 0
0 I

�
in zGZp .

We let P� and Pz� be the parabolic subgroups of G and zG, respectively, that are defined
in Proposition 3.1.4.

3.2. The anticanonical tower

We now start discussing Shimura varieties. Our notation and definitions will be similar
to those of [7], so we will occasionally be rather brief. From now on, we fix a complete
algebraically closed extension C of Qp . To start with, it will be more convenient to indic-
ate the full level subgroup in our notation but later we will fix the tame level and only
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specify the level at p. For any compact open subgroup K � G.Af /, always assumed to
be neat throughout this paper, we let XK denote the canonical model (defined over the
reflex field E) of the Shimura variety of .G;H / of level K. We set

XK WD .XK ˝E C/
an;

the analytification (as an adic space over C ) of the base change of XK to C , via our fixed
embedding E ! Qp . If H � G.Af / is an arbitrary compact subgroup, we set

XH WD lim
 �
K�H

X
˙

K ;

where �˙ denotes the diamondification functor on analytic adic spaces over Zp [29,
Definition 15.5], the inverse limit is taken over all open K � G.Af / containing H ,
and the inverse limit exists in the category of diamonds and is locally spatial by [29,
Lemma 11.22]. We note that this is a mild abuse of notation when H itself is open; see
[7, Remark 3.2.8 (1)] for more details. We define Shimura varieties zX zK (over E, not Q),
zX zK and zX zH for zG completely analogously whenever zK � zG.Af / is a compact open

subgroup and zH � zG.Af / is a compact subgroup.
Next, we introduce compactifications. WheneverK � zK, there is a natural finite étale

map XK ! zX zK , which extends to a finite map X�K ! zX�
zK

of minimal compactifica-

tions. When K D zK \G.Af / by [10, Proposition 1.15], the map XK ! zX zK is a closed
immersion but the extension X�K ! zX�

zK
need not be. Following [28, §4], we define the

ad hoc compactification X�K ! XK to be the universal finite map over which all the
X�K !

zX�
zK

factor (for varying zK satisfying K D zK \G.Af /); as noted by Scholze, XK
is the scheme-theoretic image of X�K ! zX�

zK
for sufficiently small zK. The right action

of G.Af / on the tower .XK/K extends to an action on .XK/K . We may then analytify:

Set XK D .X ˝E C/
an and, for H � G.Af / compact, set XH D lim

 �K�H
X

˙

K . The

latter is a spatial diamond by [29, Lemma 11.22]. We also define zX�
zK

and zX�
zH

analog-

ously for zG (we use minimal compactifications here). We collect some facts about these
diamonds.

Note that any compact subgroup H � G.Af / is also a compact subgroup of zG.Af /.

Lemma 3.2.1. (1) Let H2 � H1 be neat compact subgroups of G.Af /, with H2 normal
in H1. Then

jXH1 j D jXH2 j=.H1=H2/:

Moreover, jXH j is the closure of jXH j inside j zX�H j and XH D jXH j �j zX�
H
j
zX�H ,

for any neat compact subgroup H � G.Af /.

(2) Let zH2 � zH1 be neat compact subgroups of G.Af /, with zH2 normal in zH1. Then
j zX�
zH1
j D j zX�

zH2
j=. zH1= zH2/.

Proof. Part (2) is [7, Lemma 3.2.11]. For part (1), the first statement is essentially [7,
Proposition 3.2.15] and the second statement is essentially [7, Corollary 3.2.14]; in both
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cases the proofs of the cited results only use an embedding into a Siegel Shimura datum
and go through verbatim in our situation.

Proposition 3.2.2. (1) For any neat compact subgroups H2 � H1 � G.Af / with H2
normal in H1, XH2 �H1=H2� XH2 is a presentation of XH1 as a v-sheaf.

(2) For any neat compact subgroups zH2 � zH1 � zG.Af / with zH2 normal in zH1, zX�
zH2
�

zH1= zH2� zX�
zH2

is a presentation of zX�
zH1

as a v-sheaf.

Proof. We first prove (2). Consider the case where zH1 and zH2 are open subgroups
of zG.Zp/. Then we can consider zX�

zH1
and zX�

zH2
as adic spaces. By [7, Lemma 3.2.2],

zX�
zH2
! zX�

zH1
identifies zX�

zH1
with zX�

zH2
=. zH1= zH2/ (here we take the quotient in the cat-

egory of locally v-ringed spaces). This morphism is finite, so we can cover zX�
zH1

with

affinoids whose pullbacks to zX�
zH2

are affinoids. Then the result follows from Proposition
2.1.1 and [14, Theorem 1.2].

In the general case, choose an open compact subgroup zK0 containing zH1 and let
¹ zKiºi�0 be a shrinking family of open normal subgroups of zK0 with

T
i
zKi D ¹1º. For

each i , we have shown that zX�
zKi zH2
� zKi zH1= zKi zH2� zX�

zKi zH2
is a presentation of zX�

zKi zH1

as a v-sheaf. The diamonds zX�
zKi zHj

are spatial, so by many applications of [29, Corollary

11.29], the relevant maps are qcqs. Applying Lemma 2.2.1 then finishes the proof of
part (2).

We now prove part (1). By Lemma 3.2.1, XH1 D jXH1 j �j zX�
H1
j
zX�H1 . Since coequal-

izers commute with fiber products, we conclude from part (2) that

jXH1 j �j zX�
H1
j
zX�H2 �H1=H2� jXH1 j �j zX�

H1
j
zX�H2

is a presentation of XH1 as a v-sheaf. It remains to show that jXH1 j �j zX�
H1
j
zX�H2 DXH2 ,

which in turns reduces to showing that jXH1 j �j zX�
H1
j
j zX�H2 j D jXH2 j. But this follows

directly from Lemma 3.2.1.

We will now start to only indicate the level at p in the notation for our Shimura variet-
ies. Let zKp � zG.bZp/ be a neat open subgroup, which we assume5 to be contained inside
the principal congruence subgroup of level N for some N � 3, p − N . The choice of zKp

is arbitrary but fixed, unless otherwise indicated. If zH � zG.Zp/ is a closed subgroup, we
now write zX�

zH
for what was previously denoted by zX�

zKp zH
, and so on. We make sim-

ilar conventions for the Shimura varieties, with Kp � G.Af / a compact open subgroup
contained in zKp , and H � G.Zp/ a closed subgroup.

5This (rather mild) assumption is imposed to be able to apply the perfectoidness results from
[28] later. It is possible to remove this assumption using the results of [14], but we do not go into
this. Also recall that the proof of Proposition 3.1.4 furnishes us with a split model of zG over Z, so
it makes sense to talk about zG.bZp/ and its principal congruence subgroups.
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Recall the parabolic subgroups P� � G and Pz� � zG defined at the end of §3.1. Let
zK0.p/ denote the parahoric subgroup of zG.Zp/with respect to the opposite parabolic P z�

of Pz�. The Shimura variety zX zK0.p/ is the moduli space of principally polarized abelian

varieties .A; �/ together with a zKp-level structure and a subspace W � AŒp� which is
Lagrangian with respect to the �-Weil pairing. For any � 2 Œ0; 1=2/, we let zX zK0.p/

.�/a �

zX zK0.p/
denote the anticanonical locus of level zK0.p/ and radius of overconvergence �,

which is defined in [28, Theorem 3.2.15 (iii)].6 We then set

zX zH .�/a WD
zX zK0.p/

.�/a � zX zK0.p/
zX zH

for all closed subgroups zH � zK0.p/ and similarly for minimal compactifications. Fur-
thermore, whenever H � G.Zp/ \ zK0.p/ is a closed subgroup, we set

XH .�/a WD zX zK0.p/
.�/a � zX zK0.p/

XH

and similarly for the ad hoc compactifications. We then have the following basic perfect-
oidness results.

Theorem 3.2.3. If zH � P z�.Zp/ is a closed subgroup, then the diamond zX�
zH
.�/a is

affinoid perfectoid, and the boundary zZ zH .�/a WD zX
�
zH
.�/a n zX zH .�/a is Zariski closed.

Proof. This is [7, Corollary 3.2.17], up to a minor difference in the level structure. In
[7] the anticanonical locus is defined on the Shimura variety whose level is contained in
the parahoric subgroup corresponding to the parabolic Pz� (following [28]), but Pz� and
P z� are conjugate (by the longest element of the Weyl group) and the anticanonical loci
correspond, so we may conjugate to get the result.

Corollary 3.2.4. If H � P�.Zp/, then the diamond XH .�/a is affinoid perfectoid, and
the boundary ZH .�/a WD XH .�/a nXH .�/a is Zariski closed.

Proof. This follows from Theorem 3.2.3 in exactly the same way as [7, Theorem 3.2.18]
follows from [7, Corollary 3.2.17].

We remark that at this stage we have not proved that XH .�/a is nonempty, but the
result and its proof still make sense. In fact we will not need to separately prove the
nonemptiness; it follows from Theorem 3.4.1.

3.3. Flag varieties and the Hodge–Tate period map

We begin by briefly recalling some material from [7, §4]. Let G be a split connected
reductive group over Qp with a split maximal torus T and a Borel subgroup B � T. Let
ˆ D ˆ.G;T/ be the roots of G with respect to T, let ˆC � ˆ (resp. ˆ� � ˆ) denote the

6Up to a minor difference in level structures; see the proof of Theorem 3.2.3 for more details.
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positive (resp. negative) roots with respect to B, and let � � ˆC be the simple roots. Let
P D PI � B be the standard parabolic corresponding to a subset I � �, with unipotent
radical N D NI , and let ˆP � ˆ be the root system of the Levi factor of P with respect
to (the image of) T. Let W WD W.G; T/ and WP WD W.P=N; T/ be the respective Weyl
groups.

Let U � B be the unipotent radical. As before, we use overlines to denote opposites:
We have B, the opposite Borel of B, with unipotent radical U. Recall that B D w0Bw0,
where w0 2 W is the longest element. We will look at the stratification of the flag variety
G=P into orbits for B. To this end, we recall the generalized Bruhat decomposition

G D
G

w2W=WP

BwP

from [5, Corollaire 5.20]. From this one easily deduces the decomposition

G D
G

w2W=WP

BwP

using the fact that BD w0Bw0. We note that BP is the “big cell”, which is open in G. The
following is [7, Lemma 4.3.1].

Lemma 3.3.1. For any w 2W, BwP � wBP. In particular, we have the open cover

G D
[

w2W=WP

wBP:

We now introduce some more notation. We let FlG WDG=P be the partial flag variety of
parabolics conjugate to P. For w 2W, we have affine open subsets wBP=P � FlG, whose
stabilizer is Pw WD wPw�1 (since BPD PP). The following is the analogue of [7, Lemma
4.3.2]; it is key to proving the stronger vanishing theorem in this article.

Lemma 3.3.2. We have dim U � dim.U \ Pw/C dim.BwP=P/ D dim N.

Proof. We start by observing that dim U D #ˆ�. Then, note that the second term
dim.U \ Pw/ is equal to #.ˆ� \ w.ˆ� [ˆP//. For the third term, we first observe that

BwP=P Š B=.B \ wPw�1/

and then the latter has dimension

.dim TC #ˆ�/ � .dim TC #.ˆ� \ w.ˆC [ˆP/// D #ˆ� � #.ˆ� \ w.ˆC [ˆP//:

The left hand side of the equality we want to prove is then

#ˆ� � #.ˆ� \ w.ˆ� [ˆP//C #ˆ� � #.ˆ� \ w.ˆC [ˆP//;

which is equal to

#.ˆ� n w.ˆ� [ˆP//C #.ˆ� n w.ˆC [ˆP//:
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But this is just #.ˆ� n w.ˆP//, and this is independent of w, since ˛ 2 ˆP if and only
if �˛ 2 ˆP, and hence precisely one of w.˛/ and w.�˛/ D �w.˛/ will be negative. In
particular, if we set w D 1, we get #.ˆ� nˆP/, which is equal to the dimension of N as
desired.

Next, we leave the setting above and discuss the Hodge–Tate period map for our
Shimura varieties. Let 1�G.Zp/� zG.Zp/ denote the trivial subgroup, and set F`G;� WD
.G=P� ˝Qp C/

an and F` zG;z� WD . zG=Pz� ˝Qp C/
an. These flag varieties have natural

models over Qp , and there is a natural Zariski closed embedding F`G;� � F` zG;z�. We
have Hodge–Tate period maps

�HTWX1 ! F`G;�; z�HTW zX
�
1 ! F` zG;z�

constructed in [8, 28]. When Kp � zKp , we have a commutative diagram

X1
�HT //

��

F`G;�

��
zX�1

z�HT // F` zG;z�

By [28, Theorem 4.1.1], X1 and zX�1 are perfectoid spaces. The existence of the com-
mutative diagram follows by combining the proof of [8, Theorem 2.1.3 (i)] with the proof
of [7, Theorem 3.3.1]. We remark that �HT is equivariant for the action of G.Qp/, where
X1 is given the standard right G.Qp/-action and F`G;� is given the right G.Qp/-action
that is inverse to the standard left action (the analogous remark applies to z�HT). Next, we
define some “topological” Hodge–Tate period maps, as in [7, §4.5]. By Lemma 3.2.1 we
may, for any closed subgroup H � G.Zp/, define a map

j�H jW jXH j ! jF`G;�j=H

by quotienting out the map j�HTj by H . Moreover, we define a morphism

�H W .XH /Ket ! jF`G;�j=H

of sites by precomposing j�H j with the natural map .XH /Ket ! jXH j.

3.4. Perfectoid loci

Choose a maximal split torus and a Borel subgroup T � B � P� of G, all over Qp . Let
W be the Weyl group of G with respect to T and let W� WD WP� in the notation of the
previous subsection. We will define two open covers of F`G;�. The first is by Zariski
open affine subsets. We set

Vw WD .wBP�=P� ˝Qp C/
an
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for any w 2 W ; this is an open cover by Lemma 3.3.1 and Vw only depends on the
coset wW�. The second cover is the analogous cover by open affinoid subsets Vw ,
w 2 W=W�. One way to define Vw is as the rigid generic fiber of the formal comple-
tion along p D 0 of the OC -scheme

.wBZpP�;Zp=P�;Zp /˝Zp OC ;

where we have added the subscript Zp to emphasize that we are considering the models
of these algebraic groups over Zp (all parabolic subgroups of G over Qp extend uniquely
to parabolic subgroups of GZp ). Set


 WD �.p/ 2 G.Qp/:

Then, by the definition of P�, it follows that

V1 D
[
k�0

V1

�k :

Moreover, the open subsets V1

k , for k � 0, form a basis of open neighborhoods of

the base point in F`G;�. For any closed subgroup H � P�.Zp/, we set XH;1 WD

��1H .jV1j=H/; this is a locally spatial diamond. Note that X1;1 is nonempty since its
translates by elements in W cover X1. It follows that XH;1 is nonempty as well, for all
H � P�.Zp/. Our next result generalizes [7, Theorem 4.5.2].

Theorem 3.4.1. For any closed subgroup H � P�.Zp/, the locally spatial diamond
XH;1 is a perfectoid space. More precisely, jXH;1j is covered by the increasing union
of quasi-compact open subsets jX1.�/aj


�k=H for k 2 Z�0 .and sufficiently small
� > 0/, and the corresponding spatial diamonds are affinoid perfectoid with Zariski closed
boundary.

Proof. We may identify jXH;1j with jX1;1j=H . The first step is to show that the
jX1.�/aj


�k cover jX1;1j. By [7, Proposition 3.3.4], j zX�1 .�/aj

�k cover j zX�1;1j. Then

we just need to observe that jX1.�/aj

�k D j zX�1 .�/aj


�k \ jX1j and jX1;1j �

j zX�1;1j \ jX1j. After this, it remains to show that the open subdiamonds of XH given
by the open subsets jX1.�/aj


�k=H are affinoid perfectoid with Zariski closed bound-
ary. But 
k induces an isomorphism


k WXH
�
�! X
�kH
k

which identifies jX1.�/aj

�k=H with jX
�kH
k .�/aj, and X
�kH
k .�/a is affinoid

perfectoid with Zariski closed boundary by Corollary 3.2.4, since


�kH
k � 
�kP�.Zp/

k
� P�.Zp/:

We now consider the situation for general w. In this case, the parabolic P�;w WD
wP�w

�1 stabilizes Vw . Note that P�;w.Zp/ D wP�.Zp/w�1 since G is split over Qp
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and we have chosen the natural split model over Zp , so w has a representative in G.Zp/.
For any closed subgroup H � P�;w.Zp/, we may define

XH;w WD �
�1
H .jVw j=H/:

Then these spaces are perfectoid.

Corollary 3.4.2. For any closed subgroup H � P�;w.Zp/, the locally spatial diamond
XH;w is a perfectoid space. More precisely, jXH;w j is covered by the increasing union
of quasi-compact open subsets jX1.�/aj


�kw�1=H for k 2 Z�0 (and sufficiently small
� > 0), and the corresponding spatial diamonds are affinoid perfectoid with Zariski closed
boundary.

Proof. This follows from Theorem 3.4.1 by looking at the commutative diagram

.Xw�1Hw/Ket
w�1 //

�
w�1Hw

��

.XH /Ket

�H

��

jF`G;�j=w�1Hw
w�1 // jF`G;�j=H

where the horizontal maps are isomorphisms, since Vw D V1w
�1 so X�

w�1Hw;1
w�1

D X�H;w .

In this paper, we will only use Corollary 3.4.2 in the situation when H � Uw.Zp/,
where Uw D U \ P�;w and we recall that U is the unipotent radical of B .

4. The vanishing theorem

In this section we prove Theorem 4.1.1, our main result. Our arguments follow those
of [7, §5] closely, with a few differences. As these are somewhat technical, we discuss
them in Remark 4.2.8 when all necessary objects have been introduced. For the sake of
readability, we have elected to reproduce some arguments that appear in identical form
in [7].

4.1. First reductions

We start by stating our main theorem. To state it, we define, for m 2 Z�1,

K1.p
m/ WD ¹g 2 G.Zp/ j .g mod p/ 2 U.Z=pm/º:

Note that
T
m�1K1.p

m/ D U.Zp/. We let d be the dimension of the Shimura varieties
for our Shimura datum .G;H /; we have d D dimN�.

Theorem 4.1.1. Let K � G.Zp/ be an open compact subgroup. Then

lim
�!
m

H i
c .XK\K1.pm/.C/;Z=p

r / D 0 for all r � 1 and all i > d .
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Here the cohomology is singular cohomology (with compact supports) of the complex
manifold XK\K1.pm/.C/. The following more general version follows directly.

Corollary 4.1.2. Let H � U.Zp/ be a closed subgroup. Then

lim
�!
K�H

H i
c .XK.C/;Z=p

r / D 0 for all r � 1 and all i > d .

Remark 4.1.3. This is Theorem 1.1. In the formulation of Theorem 1.1, the U used there
was the unipotent radical of an arbitrarily chosen Borel subgroup of G over Zp , whereas
Corollary 4.1.2 is formulated in terms of a specific choice (depending on the choice of �).
The two formulations are easily seen to be equivalent, since all Borel subgroups over Zp
are conjugate by elements of G.Zp/ (see e.g. [9, Corollary 5.2.13]). Equivalently, it is
possible to conjugate the choice of � to make U arbitrary.

In this subsection we make a series of arguments, as in [7, §5.1], to reduce Theorem
4.1.1 to a particular statement in p-adic geometry. First, note that by dévissage it suffices
to treat the case r D 1, and that by applying comparison theorems (between singular and
étale cohomology of varieties over C, between étale cohomology of varieties over C and
their analytification, and also invariance of algebraically closed field for étale cohomology
of varieties), Theorem 4.1.1 is equivalent to

lim
�!
m

H i
Ket.XK\K1.pm/; jŠFp/ D 0

for i > d . Here and in the rest of this section we write j for any open immersion
Y ! Y where Y is a locally spatial diamond with a (fixed) map to XG.Zp/, Y D
Y �XG.Zp/

XG.Zp/ and Y ! Y is the projection onto the first factor. Applying the prim-
itive comparison theorem [27, Theorem 3.13] and [7, Lemma 5.1.3] gives us

lim
�!
m

H i
Ket.XK\K1.pm/; jŠFp/

a
˝Fp OC =p D lim

�!
m

H i
Ket.XK\K1.pm/; jŠ.O

C

XK\K1.p
m/
=p//a;

where �a denotes the almost setting with respect to the maximal ideal of OC . Applying
the almost version of [7, Proposition 2.2.1] and some results from [7, §2.3] (see [7, para-
graph after Proposition 5.1.4] for more details), we get

lim
�!
m

H i
Ket.XK\K1.pm/; jŠ.O

C

XK\K1.p
m/
=p//a D H i

Ket.XK\U.Zp/
; jŠ.O

C

X
K\U.Zp/

=p//a:

From here on we make the following convention: For any quasi-pro-étale Y ! XG.Zp/,
we write OC

X
=p for the étale sheaf OCY =p; this is somewhat justified by [7, Lemmas 2.3.2

and 2.3.3].
From now on, we set Hw WD K \ Uw.Zp/ for any w 2 W=W�, and we let H WD

H1 D K \ U.Zp/ for simplicity. We consider the morphism

�H W .XH /Ket ! jF`G;�j=H
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and its Leray spectral sequence

Ers2 D H
r .jF`G;�j=H;R

s�H;�jŠ.O
C

X
=p/a/ H) H rCs

Ket .XH ; jŠ.O
C

X
=p/a/:

Define, for w 2 W=W�,

F`wG;� WD .BwP�=P� ˝Qp C/
an:

These are generalized Schubert cells, and they form a Zariski stratification of F`G;�.
Note also that they are stable under H . The following is the key result.

Theorem 4.1.4. Let w 2 W=W� and let x 2 jF`wG;�j=H . Then

.Ri�H;�jŠ.O
C

X
=p/a/x D 0 for i > d � dim F`wG;�.

Proof of Theorem 4.1.1. By the Leray spectral sequence for �H it suffices to prove that
H r .jF`G;�j=H;Rs�H;�jŠ.O

C

X
=p/a/D 0 for r C s > d . Fix r and assume that s > d � r .

Let Sr be the set of w 2 W=W� for which dim F`wG;� < r , set Yr WD
S
w2Sr

F`wG;� and
let Y r be the Zariski closure of Yr . Since Yr is U.Zp/-invariant and has dimension < r ,
the same holds for Y r . By [3, Lemma 3.2.3], jY r j=H is a spectral space of dimension
< r . Set F s WD Rs�H;�jŠ.O

C

X
=p/a; we claim that it is supported on jY r j=H . Take x …

jY r j=H ; by construction x … jF`wG;�j=H for all w 2 Sr . It follows that x 2 jF`w
0

G;�j=H

for somew0 such that dimF`w
0

G;� � r . Hence F s
x D 0 by Theorem 4.1.4 since s > d � r �

d � dim F`w
0

G;�, so F s is indeed supported on jY r j=H . By [25, Corollary 4.6],

H r .jF`G;�j=H;F
s/ D H r .jY r j=H;F

s/ D 0;

since jY r j=H is a spectral space of dimension < r .

4.2. Proof of Theorem 4.1.4

The rest of this section is devoted to the proof of Theorem 4.1.4. Our argument differs
from that in [7, §5.3] in that we make no use of [7, Proposition 5.2.1]. Instead we use the
results from §2 of this paper.

Fix w and x as in the statement of Theorem 4.1.4. As in the proof of Theorem 4.1.1,
we write F i forRi�H;�jŠ.OCX=p/

a. Recall the notion of a rank 1 point on the topological
space of a locally spatial diamond from [3, Definition 3.2.1]; this means that the point
has no proper generalizations. We further recall further a slight generalization of some
comments from the end of [7, §2.1]. Let Y be a spatial diamond, S a spectral space and
qW jY j ! S a spectral map. If T � S is quasicompact and closed under generalizations,
then the preimage q�1.T / carries a natural structure of a spatial diamond, defined as
follows: The conditions on T are equivalent to T D

T
T�U U , where U runs through the

quasicompact open subsets of S containing T , by [31, Tag 0A31]. We may then define

q�1.T / WD lim
 �
T�U

q�1.U /:
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As mentioned, this naturally yields a spatial diamond by [29, Proposition 11.18, Lemma
11.22], with an injective quasi-pro-étale morphism q�1.T /! Y . When T D Gen.s/ is
the set of generalizations of a point s 2 S , we simply write q�1.s/ for q�1.Gen.s//. By
[7, Proposition 2.2.5, Lemma 2.2.6], we have

F i
x Š H

i
Ket.�
�1
H .x/; jŠ.O

C

X
=p/a/:

Lemma 4.2.1. It suffices to prove Theorem 4.1.4 for points x with no proper generaliza-
tions.

Proof. This is the precise analogue of [7, Lemma 5.3.1] in our situation, and the same
proof works.

From now on, we assume that x 2 jF`wG;�j=H has no proper generalizations. Let
zx 2 jF`wG;�j be any lift of x; this is a rank 1 point. By Lemma 3.3.1, we have F`wG;� � Vw
and we let xw WD zxHw 2 jF`wG;�j=Hw (recall that Hw � H ). Now consider the set
.zxH/=Hw � jF`

w
G;�j=Hw (which contains xw ), equipped with the subspace topology.

On the one hand, .zxH/=Hw consists only of points with no proper generalizations in
the spectral space jF`wG;�j=Hw , so it is Hausdorff. It is also compact, since it is the
image of zxH � jF`G;�j. Finally, it is spectral, since it is the preimage of x under the
map jF`wG;�j=Hw ! jF`

w
G;�j=H . Therefore it is profinite, e.g. by [31, Tag 0905, Lemma

5.23.7]. By our earlier remarks, ��1Hw ..zxH/=Hw/ is naturally a spatial diamond. Our first
goal is to prove that ��1Hw ..zxH/=Hw/ is an affinoid perfectoid space. As emphasized by
a referee, the fact that F`wG;� � Vw implies that

��1Hw ..zxH/=Hw/ � XHw ;w D �
�1
Hw
.jVw j=Hw/:

The latter is a perfectoid space by Corollary 3.4.2, and that corollary moreover shows that
��1Hw ..zxH/=Hw/ is contained in some affinoid perfectoid open subset of XHw ;w . How-
ever, proving that ��1Hw ..zxH/=Hw/ itself is affinoid perfectoid requires a more intricate
argument. We prove this in Corollary 4.2.7 below, but first we require some preliminary
results.

Lemma 4.2.2. Let Y be a spatial diamond, let S be a profinite set and assume that we
have a spectral map qW jY j ! S . If q�1.s/ is affinoid perfectoid for all s 2 S , then Y is
affinoid perfectoid.

Proof. This is a direct consequence of [29, Lemma 11.27].

As xw 2 .zxH/=Hw is arbitrary by construction, it therefore suffices to prove that
��1Hw .xw/ is affinoid perfectoid. To show this, we will use the following simple group-
theoretical lemma.

Lemma 4.2.3. In this lemma and its proof only, let G be a group, let H � G be a sub-
group and let Z0 � Z1 � � � � � Zr D G be a sequence of normal subgroups of G such
that ZiC1=Zi is central in G=Zi . Then HZ0 � HZ1 � � � � � HZr D G is a sequence
of subgroups of G, and HZi is normal in HZiC1.
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Proof. That the HZi are subgroups is clear. For the final assertion, take z1 2 Zi ,
z2 2 ZiC1 and h1; h2 2 H . Since ZiC1=Zi is central in G=Zi , we can write z2h1 D
h1z2w for some w 2 Zi . Then we compute

.h2z2/.h1z1/.h2z2/
�1
D h2h1.z2.wz1/z

�1
2 /h�12 ;

which is in HZi as desired.

Lemma 4.2.4. There is a sequence of normal subgroups 1 D Z0 � Z1 � � � � � Zr D U
such that ZiC1=Zi is central in U=Zi and each Zi is a product .as a subscheme, not
necessarily as a subgroup/ of root subgroups of G with respect to T . Moreover, the
product UwZi is a product of root subgroups and UwZi is normal in UwZiC1, and
UwZiC1=UwZi is isomorphic to Gdi

a for di D dimUwZiC1=UwZi .

Proof. The first part follows from [9, Proposition 5.1.16 (2)]; one can take theZi to be the
groups called U�n in there, with ‰ D ˆC in the notation of [9]. The fact that ZiC1=Zi is
central in U=Zi follows from the same calculation that shows that U�n=U�nC1 is abelian
in [9, proof of Proposition 5.1.16].

For the second part, first note thatUwZi is a product of root subgroups as a subscheme
since Uw and Zi are, and it is a subgroup since Zi is normal. The normality of UwZi
in UwZiC1 then follows by applying Lemma 4.2.3 to the functors of points. Finally,
UwZiC1=UwZi is isomorphic to ZiC1=.ZiC1 \ UwZi / � ZiC1=Zi and the latter is
isomorphic, as groups, to the product of the root subgroups in ZiC1 but not in Zi by
construction (i.e. [9, Proposition 5.1.16 (2)]), soUwZiC1=UwZi is isomorphic as a group
to the product of root subgroups in ZiC1 but not in UwZi .

Proposition 4.2.5. Let �x;w WD StabHw .zx/ and consider the point zx� D zx�x;w 2
jF`G;�j=�x;w . Then the natural map

��1�x;w .zx�/! ��1Hw .xw/

is an isomorphism.

Proof. We will apply Lemma 2.3.2 repeatedly (once is not enough, since �x;w might not
be normal in Hw ). The group Hw is nilpotent, so let Z0 D 1 � Z1 D Z.Hw/ � Z2 �
� � � � Zr D Hw be the upper central series of Hw and set Hi D �x;wZi . Consider the
points zxHi 2 jF`G;�j=Hi . We claim that the natural maps

��1Hi .zxHi /! ��1HiC1.zxHiC1/

are isomorphisms for all i D 0; : : : ; r � 1. Since the composition of all these maps is the
map in the statement of the proposition, this suffices. But this is a direct application of
Lemma 2.3.2, setting (in the notation of that lemma) G D HiC1=Hi , X D XHi , S D
j��1Hi

.zxHi /j, X �jX j S D ��1Hi .zxHi / (note that Hi is normal in HiC1 by Lemma 4.2.3,
and that X=G can be identified with XHiC1 by Lemma 3.2.2).
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We now study ��1�x;w .zx�/. First, consider ��11 .zx/. Recall the standard affinoid open
V1 � F`G;� from §3.4. By Corollary 3.4.2 and the definitions, we have

��11 .zx/ � ��11 .Vw/ D
[
k0�0

��11 .V1

�k0w�1/ D

[
k�0

X1.�/a

�kw�1:

It follows that we may choose k and k0 such that zx � V1

�k0w�1 and

��11 .zx/ � X1.�/a

�kw�1 � ��11 .V1


�k0w�1/:

Using that V1 is stable under P�.Zp/ and that 
k
0

P�.Zp/
�k
0

� P�.Zp/, we see that
V1


�k0w�1 is stable under P�;w.Zp/, and hence a fortiori stable under Hw and �x;w .
Since �x;w stabilizes the rank 1 point zx, we may choose a basis of open neighborhoodsUt ,
t 2 T (some index set), of zx such that, for all t , Ut is a �x;w -stable rational subset
of V1


�k0w�1 and ��11 .Ut / � X1.�/a

�kw�1. (Any rational subset of V1


�k0w�1has
finitely many �x;w -translates by [30, Lemma 2.2] or [7, Lemma 5.2.2], so their intersec-
tion is again a rational subset.) Then we see that

zx� D
\
t2T

jUt j=�x;w

and hence
��1�x;w .zx�/ D lim

 �
t2T

��1�x;w .jUt j=�x;w/;

so to prove that ��1�x;w .zx�/ is affinoid perfectoid it suffices to prove that each
��1�x;w .jUt j=�x;w/ is affinoid perfectoid. For convenience, we introduce the principal con-
gruence subgroups

K.pm/ WD ¹g 2 G.Zp/ j .g mod p/ D 1º:

Note that we may write

��11 .Ut / D lim
 �
m�0

��1�x;w\K.pm/.jUt j=.�x;w \K.p
m///;

and that ��11 .Ut / is a rational subset of X1.�/a

�kw�1 by construction. Since rational

subsets come from finite level in an inverse limit, it follows that there is an m such that
��1
�x;w\K.pm/

.jUt j=.�x;w \ K.p
m/// is a rational subset of jX1.�/aj


�kw�1=.�x;w \

K.pm// (which is affinoid perfectoid by Corollary 3.4.2), hence affinoid perfectoid. Let
Gm WD �x;w=.�x;w \K.p

m//; this is a finite group. Note that ��1�x;w .jUt j=�x;w/, being
a quasicompact open subset of jX�1 .�/aj


�kw�1=�x;w , is a quasicompact perfectoid
space.

Proposition 4.2.6. ��1�x;w .jUt j=�x;w/ is the quotient of ��1
�x;w\K.pm/

.jUt j=.�x;w \

K.pm/// by the finite group Gm. Hence it is affinoid perfectoid.

Proof. The first claim follows from Proposition 3.2.2, and then the second follows from
Proposition 2.1.1 and [19, Theorem 3.3.25].
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We now summarize our discussion so far.

Corollary 4.2.7. ��1Hw ..zxH/=Hw/ is affinoid perfectoid with Zariski closed boundary.

Proof. We begin by showing that ��1Hw ..zxH/=Hw/ is affinoid perfectoid, summarizing
the arguments above. First, by Lemma 4.2.2 it is enough to show that ��1Hw .xw/ is affinoid
perfectoid, which by Proposition 4.2.5 is equivalent to showing that ��1�x;w .jUt j=�x;w/ is
affinoid perfectoid, and this is Proposition 4.2.6. That the boundary is Zariski closed is
then immediate.

Remark 4.2.8. Let us now make a few remarks on the differences between the arguments
of this paper and those of [7]. Thanks to the results in §2, our results on the fibers of ��1Hw
are slightly stronger in the sense that we can prove Corollary 4.2.7; in [7] we could essen-
tially only prove that it is affinoid perfectoid after a possible modification of the boundary,
which was enough to deduce the cohomological consequences that we needed. We also
note that Proposition 4.2.5, where Lemma 2.3.2 is the key ingredient, allows us to bypass
the technical but powerful [7, Proposition 5.2.1]. Indeed, for our argument here it suf-
fices to produce neighborhoods of points which are stable under the stabilizer of the point
rather than stable under the whole group. The former is almost trivial in comparison to
the latter.

From here, we wish to compute cohomology on ��1H .x/ using the cover
��1Hw ..zxH/=Hw/. Again, we are faced with the issue that Hw may not be normal in H ,
but the fact that H is nilpotent comes to the rescue. Recall that, by Lemma 4.2.1 and the
paragraph preceding it, we need to show that

H i
Ket.�
�1
H .x/; jŠ.O

C

X
=p/a/ D 0

for all i > d � dim F`wG;�. Choose a series of subgroups 1 D Z0 � � � � � Zr D U

as in Lemma 4.2.4, and set Hw;i D H \ Uw.Zp/Zi .Zp/ for i D 0; : : : ; r . Note
that we have Hw;0 D Hw and Hw;r D H . Moreover, Hw;i is normal in Hw;iC1 and
Hw;iC1=Hw;i embeds naturally as a finite index subgroup of .UwZiC1=UwZi /.Zp/ D
UwZiC1.Zp/=UwZi .Zp/ (this equality follows by looking at the decomposition into
root spaces), so it is isomorphic to Zdip (in the notation of Lemma 4.2.4). By [7, Theorem
2.2.7], we have Hochschild–Serre spectral sequences with E2-page

H s
cts.Hw;iC1=Hw;i ;H

t
Ket.�
�1
Hw;i

.zxH=Hw;i /; jŠ.O
C

X
=p/a//

H) H sCt
Ket .��1Hw;iC1.zxH=Hw;iC1/; jŠ.O

C

X
=p/a/

for all i D 0; : : : ; r � 1. By Corollary 4.2.7 and [7, Proposition 5.1.4], we have

H t
Ket.�
�1
Hw
.zxH=Hw/; jŠ.O

C

X
=p/a/ D 0 for all t > 0.

Remark 4.2.9. Here we use the fact that the notions of Zariski closed and strongly Zariski
closed subsets of affinoid perfectoid spaces are now known to agree, by [2, Remark 7.5]. It
is perhaps worth noting that, just as in [7], one may prove directly that the sets relevant to
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our arguments are strongly Zariski closed; the general result from [2] is strictly speaking
not needed.

From this, we deduce by induction using the Hochschild–Serre spectral sequences
above and the fact that Hw;iC1=Hw;i Š Zdip has cohomological dimension di for con-
tinuous cohomology that

H i
Ket.�
�1
H .x/; .jŠO

C

X
=p/a/ D 0

for all i > d0 C � � � C dr�1 D dimU � dimUw . We then finish the proof of Theorem
4.1.4 by noting that, by Lemma 3.3.2,

dimU � dimUw D dimN� � dim F`wG;� D d � dim F`wG;�:

5. Bounds on codimensions for ordinary parts

In this section, we deduce an application of Theorem 4.1.1, namely we bound the codi-
mension over the Iwasawa algebra of the ordinary part of completed homology of the
Shimura varieties forG. The application is Theorem 5.5.1 and it relies on a Poincaré dual-
ity spectral sequence for the ordinary part of the homology of locally symmetric spaces;
most of the work in this section is in constructing this spectral sequence.

We work with a group G=Q which is split at p since we can only prove our main
result, Theorem 5.5.1 under this assumption (and the additional assumption thatG admits
a Shimura variety of Hodge type), though we believe that the weaker assumption that G
is only quasi-split at p should suffice for Sections 5.1 to 5.4. We also do not need to know
that G admits a Shimura variety of Hodge type until we appeal to Theorem 4.1.1, as we
only need to consider the locally symmetric spaces associated to G.

We note that the existence of such a spectral sequence has been previously announced
by Emerton, relying on his theory of ordinary parts [11,12]. In this paper, we give a differ-
ent construction relying on computations of (co)homology using singular and simplicial
chains, in the style of Ash–Stevens [1], as well as ideas of Hill [16].

5.1. Completed cohomology and distributions

We begin by recalling some standard material; the reader is referred to [4] for more details
and to [24, §3.1] for a useful summary. Let G be a connected reductive group over Q and
assume it admits a flat affine model over Z which is split at p. LetX denote the symmetric
space for G.R/ in the sense of [4, §2]. Let D WD dimRX .

For simplicity, we will consider neat compact open subgroups K � G.Af / which
are of the form K D

Q
`K`, where ` runs over finite primes and K` � G.Z`/. Let Gad

denote the adjoint group of G, and let Gad.R/C denote the identity component of Gad.R/
in the real topology. We let G.R/C denote the preimage of Gad.R/C under the natural
map G.R/! Gad.R/, and we set G.Q/C D G.Q/\G.R/C. ForK as above, we define
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a locally symmetric space

XK WD G.Q/CnX �G.Af /=K:

As is well known, the fact that K is neat implies that XK is a smooth manifold; XK is
orientable because X is and G.R/C acts by orientation-preserving maps.

Remark 5.1.1. The reader familiar with the literature on adelic locally symmetric spaces
will know that other sources use slightly different definitions. For example, it is common
to quotient out on the left either by the full G.Q/ or the smaller G.Q/ \ G.R/C, where
G.R/C � G.R/ is the identity component. Roughly speaking, the difference between
these definitions is only in the structure of the set of components and the theory developed
here could be developed for either of these choices (at least for sufficiently small K). The
reason for our convention is that, when G admits a Shimura datum of Hodge type, XK is
exactly the complex points of the Shimura variety for G with level K. This follows from
[22, Lemma 5.11] and the fact that in this case, the maximal R-split torus in the center
of G is Q-split.

Following [24], we will also make use of the space

X WD G.Q/CnX �G.Af /;

where G.Af / is given the discrete topology prior to taking the quotient. As a topological
space, this is an uncountable disjoint union of copies of X .

The symmetric spaceX admits a partial (Borel–Serre) compactificationXBS, to which
the G.Q/-action extends, and we set

XBS
K WD G.Q/CnX

BS
�G.Af /=KI

this is a compactification ofXK and the inclusionXK ,!XBS
K is a homotopy equivalence.

We also consider the boundaries @XBS WD XBS n X and @XBS
K WD XBS

K n XK . We also
consider the space

XBS
WD G.Q/CnX

BS
�G.Af /

where again G.Af / is given the discrete topology. We set @XBS D XBS nX, and note that
all these spaces carry right actions of G.Af /, whose restrictions to neat compact opens
K � G.Af / are free. In other words, X ! XK etc. are K-covers. We let C� and @C�
denote the complexes of singular chains with Z-coeffcients on XBS and @XBS respectively;
these are right ZŒG.Af /�-modules. There is a natural morphism of complexes @C�! C�
and we define C BM

� to be the cone of this morphism. Given a left ZŒK�-module M , we
define

CA;�.K;M/ WD C� ˝ZŒK�M

and
C BM

A;�.K;M/ WD C BM
� ˝ZŒK�M:

These complexes compute the homology, respectively the Borel–Moore homology, ofXK
with coefficients in the local system zM determined by M via the K-cover XBS ! XBS

K ;
we record this as a proposition.
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Proposition 5.1.2. Let M be a left K-module. There are canonical isomorphisms

H�.XK ; zM/ ' H�.CA;�.K;M// and HBM
� .XK ; zM/ ' H�.C

BM
A;�.K;M//:

Remark 5.1.3. Choose a finite (combinatorial) triangulation of XBS
K such that @XBS

K is a
simplicial subcomplex (XBS

K is homeomorphic to a smooth compact manifold with bound-
ary [4, §11.1], so this can be done using e.g. [23, Theorem 10.6]). Pulling back these
triangulations to XBS and @XBS we obtain bounded complexes F� and @F� of finite free
right ZŒK�-modules which are homotopy equivalent to C� and @C�, respectively. We let
F BM
� denote the cone of @F� ! F�, which is then homotopy equivalent to C BM

� .
This allows us to construct complexes C�.K;M/ and C BM

� .K;M/ which have good
finiteness properties and are homotopy equivalent to CA;�.K; M/ and C BM

A;�.K; M/,
respectively,7 by setting

C .BM/
� .K;M/ WD F .BM/

� ˝ZŒK�M:

Here and elsewhere we write .BM/ to mean that one can either make the same construc-
tion for the complexes with no superscript or with the BM superscript.

Analogous constructions can be made for cohomology and cohomology with compact
support. If M is a right K-module, define

C
�;.BM/
A .K;M/ WD HomZŒK�.C

.BM/
� ;M/:

We have the following analogue of Proposition 5.1.2, which once again is an instance of
descent.

Proposition 5.1.4. Let M be a right K-module. There are canonical isomorphisms

H�.XK ; zM/ ' H�.C �A.K;M// and H�c .XK ;
zM/ ' H�.C

�;BM
A .K;M//:

We also have complexes C �;.BM/.K;M/DHomZŒK�.F
.BM/
� ;M/with good finiteness

properties as in Remark 5.1.3.
We now discuss the action of G.Af / on the adelic complexes we have defined above.

Let S be a finite set of finite primes, not necessarily containing p. Assume that M is a
left ZŒG.AS / �KS �-module. For any g 2 G.AS /, we have an isomorphism

g�WC
.BM/
A;� .K;M/

�
�! C

.BM/
A;� .g

�1Kg;M/; � ˝m 7! �g ˝ g�1m:

This can be translated into a Hecke action of the double coset ŒKgK� for g 2 G.AS / by
taking the composition

C
.BM/
A;� .K;M/!C

.BM/
A;� .K \gKg

�1;M/

g�
�
��!C

.BM/
A;� .g

�1Kg\K;M/!C
.BM/
A;� .K;M/;

(5.1.1)

7The resulting complexes are called Borel–Serre complexes in [15], though they are constructed
slightly differently there.
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where the first morphism is the trace map

� ˝m 7!
X

�k ˝ k�1m;

where the sum runs over a set of coset representatives k for K=.K \ gKg�1/, and the
last morphism is restriction � ˝m 7! � ˝m. One can check that this recovers the usual
Hecke action on homology / Borel–Moore homology.

Assume now thatM is a right ZŒG.AS /�KS �-module. For any g 2 G.AS /, we have
an isomorphism

g�WC
�;.BM/
A .K;M/

�
�! C

�;.BM/
A .gKg�1;M/; g�.�/.�/ D �.�g/g�1:

This can be translated into a Hecke action of the double coset ŒKgK� for g 2 G.AS / by
taking the composition

C
�;.BM/
A .K;M/! C

�;.BM/
A .K \ g�1Kg;M/

g�

�
��! C

�;.BM/
A .gKg�1 \K;M/

! C
�;.BM/
A .K;M/; (5.1.2)

where the first morphism is restriction and the third morphism is the trace map

� 7!  .�/ WD
X

�.�k/k�1;

where the sum runs over a set of coset representatives k for K=.K \ g�1Kg/. One can
check that this recovers the usual Hecke action on cohomology / cohomology with com-
pact support.

If R is a commutative ring and M;N are R-modules, we have a canonical isomor-
phism

RHomR.C
.BM/
A;� .K;M/;N / ' C

�;.BM/
A .K;RHomR.M;N //; (5.1.3)

from the adjunction between tensor products and homomorphisms. For example, if R D
N DZ, we obtain the universal coefficient isomorphism between homology and cohomo-
logy, respectively between Borel–Moore homology and cohomology with compact sup-
port. One can check from the explicit descriptions (5.1.1) and (5.1.2) that the universal
coefficient isomorphism is equivariant for the Hecke action of ŒKgK�.

Our goal is now to use these explicit adelic complexes to describe ordinary completed
(co)homology. Let K 0p � Kp be a compact open subgroup; set K 0 WD KpK 0p , this is a
compact open subgroup of K.

Lemma 5.1.5. (1) For any n 2 Z�1, there is a canonical isomorphism

C
.BM/
A;� .K

0;Z=pnZ/ ' C .BM/
A;� .K;Z=p

nZŒKp=K
0
p�/;

where Kp acts trivially and Kp acts by left translation on Z=pnZŒKp=K 0p�.

(2) As Kp varies, this isomorphism is equivariant for the action of gp 2 G.Ap
f
/.
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(3) If g 2G.Qp/ andKi;p �Kp for i D 1;2 with g�1K1;pg�K2;p andKi WDKpKi;p ,
the morphism

g�WC
.BM/
A;� .K1;Z=p

n/! C
.BM/
A;� .K2;Z=p

n/; g�.� ˝ �/ D �g ˝ �;

corresponds to the morphism

g�WC
.BM/
A;� .K;Z=p

nŒKp=K1;p�/! C
.BM/
A;� .K;Z=p

nŒKp=K2;p�/;

g�.� ˝ �k/ D �kg ˝ �:

(4) If K2;p � K1;p � Kp , and Ki WD KpKi;p for i D 1; 2, the trace morphism
C
.BM/
A;� .K1;Z=p

n/! C
.BM/
A;� .K2;Z=p

n/ corresponds to the morphism

C
.BM/
A;� .K;Z=p

nŒKp=K1;p�/! C
.BM/
A;� .K;Z=p

nŒKp=K2;p�/

induced by the natural trace map trWZ=pnŒKp=K1;p�! Z=pnŒKp=K2;p�.

Proof. The first assertion is a simple adjunction, but to make the verification of formulas
easier for the reader we give explicit isomorphisms. So, define morphisms

�WC
.BM/
A;� .K

0;Z=pn/! C
.BM/
A;� .K;Z=p

nŒKp=K
0
p�/

given by � ˝ � 7! � ˝ � and

�WC
.BM/
A;� .K;Z=p

nŒKp=K
0
p�/! C

.BM/
A;� .K

0;Z=pn/

given by � ˝ �k 7! �k ˝ �. It is not hard to check that � and � are well-defined, and
that they are mutual inverses. The Hecke equivariance away from p is immediate, and the
Hecke equivariance at p can be checked by direct computation:

.�2 ı g� ı �1/.� ˝ �k/ D �kg ˝ �:

Finally, the last assertion can also be checked by direct computation.

We now begin to describe ordinary completed homology in this language. We fix the
tame level Kp and denote all locally symmetric spaces of this fixed tame level by XKp ,
where Kp � G.Zp/ is a compact open subgroup. Similarly, we will often omit the tame
level when using the complexes defined above; for example, we will write C .BM/

A;� .Kp;M/

for C .BM/
A;� .K

pKp;M/. Recall the assumption that GZp is split. Choose a split Borel sub-
group B � GZp , with Levi decomposition B D T Ë U , where T is the split torus and
U is the unipotent subgroup, with opposite unipotent subgroup U . Let T0 WD T .Zp/,
and, for i 2 Z�1, set Ti WD ker.T .Zp/ ! T .Z=pi //. Similarly, for j 2 Z�1, define
Nj WD ker.U.Zp/ ! U.Z=pj // and Nj WD ker.U .Zp/ ! U.Z=pj //. For j � 0 and
i � max.j; 1/, set Kij WD N iTjN1 � G.Zp/. To simplify notation, we will also set
K1 WD K10.
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Define the completed homology / Borel–Moore homology at level N1 by

zH .BM/
� .N1/ WD lim

 �
i;j;n

H .BM/
� .XKij ;Z=p

n/:

This is equipped with a Hecke action of ŒKpgpKp� for gp 2 G.Ap
f
/ in the usual way.

There is also a Hecke action at p. Let

TC WD ¹t 2 T .Qp/ j tN1t
�1
� N1º:

Also define
T � WD ¹t 2 T .Qp/ j tN 1t

�1
� N 1º:

For t 2 TC, set N t WD t
�1N 1t , and Nt WD tN1t�1. For any t 2 TC, we have a Hecke

action of ŒN1tN1� on zH .BM/
� .N1/ given by the composition

zH .BM/
� .N1/

tr
�! zH .BM/

� .Nt /

t�
�
�! zH .BM/

� .N1/;

where the first map is the natural trace map. Here zH .BM/
� .Nt / is defined as

zH .BM/
� .Nt / WD lim

 �
i;j;n

H .BM/
� .XtKij t�1 ;Z=p

n/:

The Hecke action above is compatible with the Hecke action of ŒKij tKij � on each
H
.BM/
� .XKij ;Z=p

nZ/ as described in (5.1.1).

We wish to describe zH .BM/
� .N1/ with its Hecke actions in terms of the adelic com-

plexes defined above, with coefficients in a certain algebra of Zp-valued distributions.
If X is a profinite set, let D.X/ denote the space of continuous Zp-valued distributions
on X ; if X is a profinite group then this carries a natural Zp-algebra structure. In particu-
lar, we have

D.K1=N1/ D ZpJK1=N1K D lim
 �
i;j;n

Z=pnŒK1=Kij �: (5.1.4)

Set K 0t WD K1 \ tK1t
�1 and Kt WD K1 \ t�1K1t . For t 2 TC, we have an isomor-

phism

�Kt ;K1 ı t� ı �K1;K0t WC
.BM/
A;� .K1;D.K1=Nt //

�
�! C

.BM/
A;� .K1;D.K1=N1//; (5.1.5)

which we describe explicitly as the composition of three isomorphisms. The first is an
isomorphism

�K1;K0t WC
.BM/
A;� .K1;D.K1=Nt //

�
�! C

.BM/
A;� .K

0
t ;D.K

0
t=Nt //:

Choose a set S of coset representatives for K1=K 0t . Any � 2 D.K1=Nt / can be written
uniquely as

P
s2S s�s with �s 2 D.K 0t=Nt /. Set

�K1;K0t .� ˝ �/ WD
X
s2S

�s ˝ �s :
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This is well-defined, independent of the choice of S , and it is an isomorphism since it has
the inverse �K0t ;K1.� ˝ �/ WD � ˝ �. The second is the isomorphism

t�WC
.BM/
A;� .K

0
t ;D.K

0
t=Nt //

�
�! C

.BM/
A;� .Kt ;D.Kt=N1//

given by � ˝ � 7! �t ˝ t�1�t . Finally, the third is the isomorphism

�Kt ;K1 WC
.BM/
A;� .Kt ;D.Kt=N1//

�
�! C

.BM/
A;� .K1;D.K1=N1//:

Note that K1=K 0t ' N1=Nt . We obtain

�Kt ;K1 ı t� ı �K1;K0t .� ˝ �/ D
X

s2N1=Nt

�st ˝ t�1�st:

Theorem 5.1.6. There exist canonical isomorphisms

zH .BM/
� .N1/ ' H�

�
C
.BM/
A;� .K1;D.K1=N1//

�
:

These are equivariant for the Hecke action of ŒKpgpKp� for all gp 2G.Ap
f
/. For t 2 TC,

the Hecke action of ŒN1tN1� on zH .BM/
� .N1/ is induced from the composition

C
.BM/
A;� .K1;D.K1=N1//

tr
�! C

.BM/
A;� .K1;D.K1=Nt //

�
�! C

.BM/
A;� .K1;D.K1=N1//;

where tr is induced from the natural trace map D.K1=N1/! D.K1=Nt / and the iso-
morphism is given by �Kt ;K1 ı t� ı �K1;K0t .

Proof. We claim first that the natural map of complexes

C
.BM/
A;� .K1;D.K1=N1//! lim

 �
i;j;n

C
.BM/
A;� .K1;Z=p

nŒK1=Kij �/

is a homotopy equivalence. Up to homotopy equivalences,8 we can replace the above
complexes with the corresponding Borel–Serre complexes as in Remark 5.1.3, and we
have a natural map

C .BM/
� .K1;D.K1=N1//! lim

 �
i;j;n

C .BM/
� .K1;Z=p

nŒK1=Kij �/;

which can be seen by inspection to be an isomorphism using (5.1.4).
We now claim that the homology of the complex lim

 �i;j;n
C
.BM/
A;� .K1;Z=p

nŒK1=Kij �/

computes zH .BM/
� .N1/. By combining Lemma 5.1.5 and Proposition 5.1.2, we have an

isomorphism

H .BM/
� .XKij ;Z=p

nZ/
�
�! H�.C

.BM/
A;� .K1;Z=p

nŒK1=Kij �//

8These can be chosen to be functorial in the coefficients, and compatible with the transition
morphisms between different levels.
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for every n 2 Z�1 and at each finite level Kij . To conclude, we replace each finite level
complex by the corresponding Borel–Serre complex. We obtain complexes of abelian
compact Hausdorff groups with continuous differentials. We conclude by noting that the
category of abelian compact Hausdorff groups is abelian, and inverse limits exist and are
exact in this category.

The Hecke equivariance away from p is clear. To prove that the isomorphism is
equivariant for the action of ŒN1tN1�, it is enough to show that it is equivariant for tr
and t�. The equivariance for tr follows from Lemma 5.1.5 (4). The equivariance for t�
follows from Lemma 5.1.5 (1, 3).

5.2. The universal coefficient isomorphism at infinite level

For t 2 TC, recall that Kt D K1 \ t
�1K1t D N tT0N1. We consider D.Kt=N1/ as a

D.Kt /˝Zp D.T0/-module, where Kt acts by multiplication on the left and T0 acts by
multiplication on the right. D.T0/ is a semi-local ring and is complete with respect to its
J -adic topology, where we let J denote its Jacobson radical. Define

C .Kt=N1/ WD Homcont
D.T0/

.D.Kt=N1/;D.T0//I

this is a D.T0/˝Zp D.Kt /-module. Here D.Kt=N1/ carries the inverse limit topology
from equation (5.1.4), and we give C .Kt=N1/ the J -adic topology.

Lemma 5.2.1. We have a natural isomorphism

HomD.T0/.C .Kt=N1/;D.T0// ' D.Kt=N1/:

and, for all i > 0,
ExtiD.T0/.C .Kt=N1/;D.T0// D 0:

.We note that all D.T0/-linear homomorphisms are automatically continuous for J -adic
topology./

Proof. From the definition, we have

C .Kt=N1/Š lim
 �
j;k

lim
�!
i

HomD.T0=Tj /

�
D.Kt=N iTjN1/;D.T0=Tj /

�
˝Zp Z=pk : (5.2.1)

Since T0 normalizes N i , there is an isomorphism of profinite sets with T0-action

N t=N i � T0=Tj
�
�! Kt=N iTjN1

where T0 acts trivially on N t=N i . Consequently, as a D.T0/-module,

D.Kt=N iTjN1/ Š D.N t=N i /˝Zp D.T0=Tj /;

where D.T0/ acts trivially on D.N t=N i /. In particular, D.Kt=N iTjN1/ is a finite free
D.T0=Tj /-module, hence it is also reflexive. This, together with the explicit descrip-
tion (5.2.1), proves the first claim of the lemma.
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For the second claim, observe that C .Kt=N1/ is the J -adic completion of D.T0/ of
the free D.T0/-module

lim
�!
i

lim
 �
j;k

HomD.T0/

�
D.Kt=N iTjN1/;D.T0=Tj /

�
˝ Z=pk :

Then by [31, Tag 06LE], C .Kt=N1/ is a flat D.T0/-module. Hence, by [17, Theorem 1],
ExtiD.T0/.C .Kt=N1/;D.T0// D 0 for i > 0.

Corollary 5.2.2. We have a natural isomorphism

RHomD.T0/

�
CA;�.Kt ;C .Kt=N1//;D.T0/

�
' C �A.Kt ;D.Kt=N1//:

Proof. This follows from combining the isomorphism (5.1.3) with Lemma 5.2.1.

5.3. Poincaré duality

We start by recalling Poincaré duality between Borel–Moore homology and cohomology;
recall thatXBS

K is homeomorphic to a smooth compact orientable manifold with boundary.

Lemma 5.3.1. Let K � G.Af / be a compact open subgroup. There are homotopy equi-
valences of complexes of ZŒK�-modules

F BM
� ŒD� ' HomZŒK�.F�;ZŒK�/; F�ŒD� ' HomZŒK�.F

BM
� ;ZŒK�/:

On the right hand sides, F .BM/
� is viewed as a leftK-module by inverting the natural right

K-module structure.

Proof. We sketch a proof of the second quasi-isomorphism; the proof of the first is
completely analogous. As mentioned in Remark 5.1.3, the complex F� comes from a
combinatorial triangulation T of XBS

K , which can even be chosen such that @XBS
K is a

simplicial subcomplex. For such a T , we can construct the dual T _ of this triangulation
(this construction and the remaining assertions in this paragraph seem to be well known
in topology, see for example [32, Ch. 14]), which is a CW decomposition of XBS

K . Let
S�.T / denote the simplicial homology complex attached to T and let S�.T _; T _@ / denote
the relative cellular homology complex of T _ with respect to the boundary T _

@
(which is

a CW subcomplex). There are natural perfect pairings

SD�k.T / � Sk.T
_; T _@ /! Z

where a simplex pairs to 1 with its dual cell and to 0 with the other cells. The induced
map S�.T /ŒD�! HomZ.S�.T

_; T _
@
/;Z/ is an isomorphism of complexes.

Now pull back T _ to a K-equivariant CW decomposition of XBS, and let F _� denote
the corresponding relative cellular homology complex with respect to the boundary. Note
that the pullback of T _ is the dual cell decomposition of the pullback of T . Define a
pairing

FD�k � F
_
k ! ZŒK�
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by declaring that a simplex � in FD�k pair to 0 with a cell � in F _
k

unless � D �_k

for some k 2 K, in which case we pair them to k�1. From the definitions this pairing
induces a map FD�k ! HomZŒK�.F

_
k
;ZŒK�/, where we view F _� as a left K-module

by inverting the natural right K-module structure. Using the fact that S�.T /ŒD� !
HomZ.S�.T

_; T _
@
/;Z/ is an isomorphism, one sees that the maps above form a chain iso-

morphism F�ŒD�! HomZŒK�.F
_
� ;ZŒK�/ of complexes of right K-modules. The proof

is then finished by noting that F _� is chain homotopic to F BM
� , since they come from

K-equivariant CW decompositions of the same manifold with boundary.

Corollary 5.3.2. For any compact open K � G.Af / and any left K-module M .which
we also view as a right K-module by inverting the left K-module structure/, there is a
natural quasi-isomorphism

C BM
A;�.K;M/ŒD� ' C �A.K;M/:

Proof. Recall that we have homotopy equivalences

C
.BM/
A;� .K;M/ ' F .BM/

� ˝ZŒK�M:

Then the result follows from Lemma 5.3.1 along with the fact that F�, F BM
� are com-

plexes of finite free ZŒK�-modules and, for any finite free ZŒK�-module F and any
ZŒK�-module N , HomZŒK�.F;N / Š HomZŒK�.F;ZŒK�/˝ZŒK� N .

Let w 2 G.Zp/ be a representative of the longest element of the Weyl group. We have
an involution t 7! w�1t�1w of TC. Let � WK1 ! T0 be the map that sends Nntn 7! t

for Nn 2 N 1, t 2 T0 and n 2 N1. Note that � is not a homomorphism, but it satisfies
�.bkb/D �.b/�.k/�.b/ for any b 2N 1T0, k 2K1 and b 2 T0N1. We consider the pairing

D.K1=N1/�D.K1=N1/!D.T0/; hk1N1; k2N2i WD �.wk
�1
2 w�1k1/;8k1; k2 2K1;

where theK1 acts on the LHS by left multiplication and on the RHS by left multiplication
by the inverse. This induces a morphism of left K1-modules

�WD.K1=N1/! .w�1/�C .K1=N1/;

where .w�1/�C .K1=N1/ denotes C .K1=N1/with theK1 action twisted such that k 2K1
acts by wkw�1. In turn, � induces a morphism of complexes

��WCA;�.K1;D.K1=N1//! CA;�.K1; .w
�1/�C .K1=N1// ' CA;�.K1;C .K1=N1//:

We now consider the composition of morphisms

�w WC
BM
A;�.K1;D.K1=N1//ŒD�

�
�! C �A.K1;D.K1=N1//
�
�! RHomD.T0/.CA;�.K1;C .K1=N1//;D.T0//

! RHomD.T0/.CA;�.K1;D.K1=N1//;D.T0//:

The first morphism is the Poincaré duality isomorphism of Corollary 5.3.2, the second
is the isomorphism in Corollary 5.2.2 in the case t D 1, and the third is the morphism
induced by precomposition with ��.
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Proposition 5.3.3. For any t 2 TC, the morphism

�w WC
BM
A;�.K1;D.K1=N1//ŒD�! RHomD.T0/.CA;�.K1;D.K1=N1//;D.T0//

is equivariant for the Hecke action of ŒN1tN1� on the RHS and the Hecke action of
ŒN1w

�1t�1wN1� on the LHS.
The morphism �w is also equivariant for the Hecke action of ŒKp.gp/�1Kp� on the

LHS and the Hecke action of ŒKpgpKp� on the RHS.

Proof. By translating the Hecke action of ŒN1w�1t�1wN1� onC BM
A;�.K1;D.K1=N1//ŒD�,

as described in Theorem 5.1.6, under the inverse of the isomorphism

RHomD.T0/.CA;�.K1;C .K1=N1//;D.T0//
�
�! C BM

A;�.K1;D.K1=N1//ŒD�;

we obtain the following composition:

CA;�.K1;C .K1=N1//

�K1;Kt
�

�����! CA;�.Kt ;C .Kt=N1//

�
K0t ;K1

ı.w�1tw/�

������������! CA;�.K1;C .K1=Nt //
tr
�! CA;�.K1;C .K1=N1//:

We have to check that the Hecke action of ŒN1tN1� on CA;�.K1;D.K1=N1// corresponds
to this composition under the morphism

CA;�.K1;D.K1=N1//! CA;�.K1;C .K1=N1//

induced by �w . Again, using the explicit description of the Hecke action in Theorem 5.1.6,
we obtain the composition

CA;�.K1;D.K1=N1//
tr
�! CA;�.K1;D.K1=Nt //

t�ı�K1;K
0
t

�������! CA;�.Kt ;D.Kt=N1//
�Kt ;K1
�

�����! CA;�.K1;D.K1=N1//:

We now define a morphism �t WD.Kt=N1/! ..t�1w/�1/�C .Kt=N1/ from the pair-
ing

D.Kt=N1/ �D.Kt=N1/! D.T0/; hk1N1; k2N1i 7! �.wk�12 w�1tk1t
�1/;

where note that wk�12 w�1tk1t
�1 2 tKt t

�1 � K1. We obtain an induced map

�t�WCA;�.Kt ;D.Kt=N1//! CA;�.Kt ;C .Kt=N1//:

The Hecke equivariance at p now follows from Lemmas 5.3.4 and 5.3.5 below.
The Hecke equivariance away from p is clear, taking into account that the Poin-

caré duality isomorphism matches ŒKp.gp/�1Kp� on C BM
A;�.K1;D.K1=N1//ŒD� with

ŒKpgpKp� on CA;�.K1;D.K1=N1//, and that the other morphisms are Hecke equivari-
ant away from p.
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Lemma 5.3.4. The following diagram is commutative:

CA;�.K1;D.K1=N1//
tr //

��

��

CA;�.K1;D.K1=Nt //
t�ı�K1;K

0
t // CA;�.Kt ;D.Kt=N1//

�t�

��

CA;�.K1;C .K1=N1//
�K1;Kt // CA;�.Kt ;C .Kt=N1//

Proof. We have the Cartesian diagram

XKt

t�1

��

t�1w // XKt

1

��

XK1
w // XK1

(5.3.1)

where the horizontal arrows are isomorphisms, the left vertical arrow is right multiplica-
tion by t�1 followed by the natural projection, and the right vertical arrow is the natural
projection. Using the maps in this diagram, we obtain the following diagram of local
systems on XK1 :

D.K1=N1/
tr //

�

��

D.K1=Nt /
t� // .t�1/�D.Kt=N1/

.t�1/�.�t /

��

.w�1/�C .K1=N1/
� // .w�1/�1�C .Kt=N1/

� // .t�1/�..t
�1w/�1/�C .Kt=N1/

(5.3.2)

Note that .t�1/�..t�1w/�1/� D .w�1/�1� by (5.3.1). We will prove that this diagram
commutes.

To see this, we claim that the map D.K1=Nt / ! .w�1/�C .K1=N1/ obtained by
going clockwise around (5.3.2) is induced from the pairing

D.K1=Nt / � .w
�1/�D.K1=N1/

given by

hk1Nt ; k2N1i D

´
�.wk�12 w�1k1/ if wk�12 w�1k1 2 N 1T0Nt ;

0 otherwise:
(5.3.3)

Indeed, the map t�WD.K1=Nt /! .t�1/�D.Kt=N1/ factors as

D.K1=Nt /
�
�! IndK1

K0t
D.K 0t=Nt /

�
�! .t�1/�D.Kt=N1/;

where the first map is given by �D
P
s2K1=K

0
t
s�s 7! .�s/s2K1=K0t and the second map is

given by .�s/s 7! .t�1�st /s . Similarly, the map C .K1=N1/
�
�! 1�C .Kt=N1/ identifies

C .K1=N1/ with IndK1Kt C .Kt=N1/. Recall that K 0t D N 1T0Nt D wKtw
�1. The map

IndK1
K0t

D.K 0t=Nt /! .w�1/� IndK1Kt C .Kt=N1/
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obtained by going clockwise around (5.3.2) is simply induced from the map D.K 0t=Nt /!

.w�1/�C .Kt=N1/ determined by the pairing

hk1Nt ; k2N1i D �.wk
�1
2 w�1k1/:

The claim now follows from the definition of the two inductions.
Now that this claim is established, we notice that any left coset k1N1 with k1 2 K1

gets sent to ŒN1 W Nt � left Nt -cosets under tr, and precisely one of these pairs nontrivially
with k2N1 with k2 2 K1 under the pairing in (5.3.3). This proves that the diagram (5.3.2)
commutes and therefore proves the lemma.

Lemma 5.3.5. The following diagram is commutative:

CA;�.Kt ;D.Kt=N1//
�Kt ;K1 //

�t�

��

CA;�.K1;D.Kt=N1//

��

��

CA;�.Kt ;C .Kt=N1//
�
K0t ;K1

ı.w�1tw/�
// CA;�.K1;C .K1=Nt //

tr // CA;�.K1;C .K1=N1//

Proof. The proof is analogous to that of Lemma 5.3.4.

5.4. Ordinary parts

The goal of this section is to show that the morphism �w in Proposition 5.3.3 induces an
isomorphism on ordinary parts.

We start by defining the ordinary part of homology at finite level, through the means
of a projector. We focus on what we need; the interested reader may consult [20, §2] for
an abstract viewpoint. Let j 2 Z�1 and t 2 TC. Assume that the compact open subgroup
N tTjN1 � K1 admits an Iwahori factorization; this can always be ensured by choosing t
large enough with respect to j . For any s 2 TC, we letUs denote the double coset operator
ŒN tTjN1sN tTjN1� acting on C .BM/

A;� .N tTjN1;Zp/ ' C
.BM/
A;� .K1;D.K1=N tTjN1//.

Lemma 5.4.1. (1) For s1; s2 2 TC we have Us1s2 D Us1 ı Us2 . In particular, all these
operators commute.

(2) For t 0 � t , j 0 � j , the restriction morphism

res W C .BM/
A;� .K1;D.K1=N t 0Tj 0N1//! C

.BM/
A;� .K1;D.K1=N tTjN1//

is Us-equivariant for all s 2 TC.

(3) For any s 2 TC, we have a commutative diagram

C
.BM/
A;� .K1;D.K1=N tsTjN1//

Us

��

res // C
.BM/
A;� .K1;D.K1=N tTjN1//

Us

��
s�ıtr

tt

C
.BM/
A;� .K1;D.K1=N tsTjN1//

res // C
.BM/
A;� .K1;D.K1=N tTjN1//
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Proof. The first part follows from the explicit description of the Hecke operators Us1 ,
Us2 , and Us1s2 (cf. (5.1.1)) and from the same computation as in [11, Lemma 3.1.4]. The
second part again follows from the explicit description in (5.1.1) and from the fact that the
Iwahori factorization gives a bijection N tTjN1=N tTjNs

�
�! N1=Ns , which shows that

the coset representatives can be chosen independently of j and t .
We now prove the third part. The commutativity of the lower triangle follows from

the definition of Us . For the upper triangle, we write the definition of Us acting on
CA;�.K1;D.K1=N tsTjN1// ' CA;�.N tsTjN1;Zp/. By definition, this is equal to

CA;�.N tsTjN1;Zp/
tr
�! CA;�.N tsTjNs;Zp/

s�
�! CA;�.N ts2TjN1;Zp/

res
�! CA;�.N tsTjN1;Zp/;

which can be rewritten as

CA;�.N tsTjN1;Zp/
tr
�! CA;�.N tsTjNs;Zp/

res
! CA;�.N tTjNs;Zp/

s�
�! CA;�.N tTjN1;Zp/: (5.4.1)

We claim that the diagram of locally symmetric spaces with natural projection morphisms

XN tsTjNs

��

// XN tTjNs

��

XN tsTjN1
// XN tTjN1

is Cartesian. To see this, it is enough to see that the morphism

XN tsTjNs ! XN tsTjN1 �XNtTjN1
XN tTjNs

induces an isomorphism of the fibers over XN tsTjN1 . Indeed, the fibers on the RHS can

be identified with N tsTjN1=N tsTjNs and the fibers on the LHS can be identified with
N tTjN1=N tTjNs [7, Lemma 6.2.1]. The claim now follows from the Iwahori factor-
ization, since all the fibers are identified with N1=Ns . Using proper base change, we
rewrite (5.4.1) as

CA;�.N tsTjN1;Zp/
res
�! CA;�.N tTjN1;Zp/

tr
�! CA;�.N tTjNs;Zp/

s�
�! CA;�.N tsTjN1;Zp/:

This completes the proof.

We call s 2 TC a controlling element if
T
i�1 s

iN1s
�i D ¹1º. Such a controlling

element always exists, for example by taking s D
Q
˛ p

˛ , where the product runs over the
positive coroots of G.
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Lemma 5.4.2. Let s 2 TC be a controlling element. For any s1 2 TC, there exists i 2Z�1
such that s1s2 D si for some s2 2 TC.

Proof. Since
T
i�1 s

iN1s
�i D ¹1º, there exists i 2 Z�1 such that siN1s�i � s1N1s�11 .

This shows that s2 WD s�11 si 2 TC.

Let s0 be a controlling element. Using homotopy equivalences, we transport Us0 on
C
.BM/
A;� .K1;D.K1=N tTjN1/ ˝ Z=pk/ to an operator zUs0 on the corresponding Borel–

Serre complex C .BM/
� .K1;D.K1=N tTjN1/˝Z=pk/, which acts as Us0 up to homotopy

and, in particular, induces the same action on homology. Since the latter is a complex of
finite projective Z=pk-modules, zUNŠs0

stabilizes to an idempotent. We denote the corres-

ponding direct summand by C .BM/
� .K1;D.K1=N tTjN1/˝ Z=pk/T

C-ord. We define

C .BM/
� .K1;D.K1=N tTjN1//

TC-ord
WD lim
 �
k

C .BM/
� .K1;D.K1=N tTjN1/˝Z=pk/T

C-ord:

By [20, Lemma 2.13], this is a direct summand of C .BM/
� .K1;D.K1=N tTjN1// whose

homology recovers the ordinary part of homology / Borel–Moore homology with respect
to s0.

Note that the homotopy equivalences between the adelic and the Borel–Serre com-
plexes are functorial in the coefficients. Therefore, the formation of the direct summands
is compatible with the transition morphisms between different levels, and we can also
define the ordinary part

C .BM/
� .K1;D.K1=N1//

TC-ord
WD lim
 �
j;t

C .BM/
� .K1;D.K1=N tTjN1//

TC-ord

of C
.BM/
� .K1; D.K1=N1// with respect to s0. This is a direct summand of

C
.BM/
� .K1;D.K1=N1// and its homology recovers H .BM/

� .N1/
TC-ord by [20, Lemma

2.13] and Theorem 5.1.6.
Using Lemma 5.4.2, one can check that all this is independent of the choice of con-

trolling element s0. By Lemmas 5.4.2 and 5.4.1 (1), we see that Us acts as a quasi-
isomorphism on C .BM/

� .K1;D.K1=N tTjN1//
TC-ord for any s 2 TC. As a result, we

obtain the following horizontal control theorem.

Proposition 5.4.3. For any s 2 TC, the transition morphisms

C .BM/
� .K1;D.K1=N tsTjN1//

TC-ord
! C .BM/

� .K1;D.K1=N tTjN1//
TC-ord

are quasi-isomorphisms.

Proof. It is enough to show that the transition morphisms induce an isomorphism on
the ordinary part of homology / Borel–Moore homology. Surjectivity follows from the
commutativity of the lower triangle in Lemma 5.4.1 (3), since Us acts as an isomor-
phism on homology. Injectivity follows from the commutativity of the upper triangle in
Lemma 5.4.1 (3).



A. Caraiani, D. R. Gulotta, C. Johansson 906

Assume again that N tTjN1 admits an Iwahori factorization. Set

C .K1=N tTjN1/ WD HomD.T0/

�
D.K1=N tTjN1/;D.T0=Tj /

�
:

We also have an action of s 2 T � on each CA;�.K1;C .K1=N tTjN1// via a double coset
operator Us . We define the analogous notion of controlling element and use it to define
the ordinary part C�.K1;C .K1=N tTjN1//

T�-ord with respect to T �. In this setting, we
have the following horizontal control theorem.

Proposition 5.4.4. For any s 2 T �, the transition morphisms

C�.K1;C .K1=N tTjN1//
T�-ord

! C�.K1;C .K1=N tsTjN1//
T�-ord

are quasi-isomorphisms.

Proof. This is proved analogously to Proposition 5.4.3.

Set C .K1=N tTjN1;Z=pk/ WD C .K1=N tTjN1/˝Z Z=pk . We have

C .K1=N1/ ' lim
 �
j;k

lim
�!
t

C .K1=N tTjN1;Z=p
k/;

where the inverse limit runs over j; k 2 Z�1 and the direct limit runs over those t 2 TC

that are sufficiently large with respect to j . We define

C�.K1;C .K1=N1//
T�-ord

WD lim
 �
j;k

lim
�!
t

C�.K1;C .K1=N tTjN1;Z=p
k//T

�-ord;

the ordinary part of C�.K1;C .K1=N1// with respect to T �.
Also set

.w�1/�C .K1=N tTjN1/ WD HomD.T0/

�
.w�1/�D.K1=N tTjN1/;D.T0=Tj /

�
:

For each j 2 Z�1, the map �WD.K1=N1/ ! .w�1/�C .K1=N1/ induces a finite level
map

�j WD.K1=N tTjN1/! .w�1/�C .K1=N tTjN1/;

whenever t 2 TC is such that N tTjN1 admits an Iwahori factorization.

Lemma 5.4.5. The morphism

.�j /�WCA;�.K1;D.K1=N tTjN1//! CA;�.K1;C .K1=N tTjN1//

induces a quasi-isomorphism

.�j /
ord
� WC�.K1;D.K1=N tTjN1//

TC-ord �
�! C�.K1;C .K1=N tTjN1//

T�-ord:
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Proof. We have the following finite-level version of (5.3.2):

D.K1=N tTjN1/ //

�j

��

D.K1=N 1TjNt /
t� � // .t�1/�D.Kt=N tTjN1/

.t�1/�.�j;t /

��

.w�1/�C .K1=N tTjN1/
� // .w�1/�1�C .Kt=N tTjN1/

� // .t�1/�..t
�1w/�1/�C .Kt=N tTjN1/

(5.4.2)

where the top row is part of the definition of the double coset operator correspond-
ing to t . More precisely, in order to get the double coset operator Ut acting on
CA;�.K1;D.K1=N tTjN1//, one needs to apply CA;�.K1; / to the top row and compose
with the isomorphism

�Kt ;K1 WCA;�.Kt ;D.Kt=N tTjN1//
�
�! CA;�.K1;D.K1=N tTjN1//:

We claim that the right vertical arrow in (5.4.2) is an isomorphism. For this, observe
that the natural map Kt=N tTjN1 ! T0=Tj is a bijection, so the pairing

D.Kt=N tTjN1/ � ..t
�1w/�1/�D.Kt=N tTjN1/! D.T0=Tj /;

ht1N tTjN1; t2N tTjN1i D wt
�1
2 w�1t t1t

�1Tj D wt
�1
2 w�1t1Tj ;

is perfect. All of this implies that .�j /� is the composite of the double coset operator Ut
acting on CA;�.K1;D.K1=N tTjN1// with an isomorphism.

In order to prove the lemma, it suffices to check that .�j /� induces an isomorphism on
the ordinary part of homology. The map induced by .�j /� on homology induces a morph-
ism of ordinary parts of homology (where the ordinary part is taken with respect to TC on
the RHS and T � on the LHS), which factors as Ut composed with an isomorphism. Since
Ut acts as an isomorphism on the ordinary part of homology, the lemma follows.

Proposition 5.4.6. The map

��WCA;�.K1;D.K1=N1//! CA;�.K1;C .K1=N1//

induces a quasi-isomorphism

�ord
� WC�.K1;D.K1=N1//

TC-ord �
�! C�.K1;C .K1=N1//

T�-ord:

Proof. This follows by combining Lemma 5.4.5 and Propositions 5.4.3 and 5.4.4.

Theorem 5.4.7. The morphism �w induces a quasi-isomorphism of ordinary parts

�ord
w WC

BM
� .K1;D.K1=N1//

TC-ordŒD�

! RHomD.T0/

�
C�.K1;D.K1=N1//

TC-ord;D.T0/
�
:
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Proof. By Proposition 5.4.6, we have a quasi-isomorphism

RHomD.T0/

�
C�.K1;C .K1=N1//

T�-ord;D.T0/
�

�
�! RHomD.T0/

�
C�.K1;D.K1=N1//

TC-ord;D.T0/
�
:

For each k; j 2 Z�1, Poincaré duality and the universal coefficient isomorphism (at each
level N tTjN1) induce quasi-isomorphisms

lim
 �
t

C BM
� .K1;D.K1=N tTjN1/˝Z=pk/T

C-ordŒD�
�
�!

RHomD.T0=Tj /˝Z=pk

�
lim
�!
t

C�.K1;C .K1=N tTjN1/˝Z=pk/T
�-ord;D.T0=Tj /˝Z=pk

�
;

where the transition morphisms in both the inverse and the direct limit are isomorphisms
by the horizontal control theorems. The morphism is a quasi-isomorphism, since on per-
fect complexes of Z=pk-modules, the ordinary part is simply the largest direct summand
on which Us0 acts invertibly, and this commutes with

RHomD.T0=Tj /˝Z=pk .�;D.T0=Tj /˝ Z=pk/:

Taking inverse limits with respect to j; k, we obtain a quasi-isomorphism

C BM
� .K1;D.K1=N1//

TC-ordŒD�
�
�! RHomD.T0/

�
C�.K1;C .K1=N1//

T�-ord;D.T0/
�
:

The theorem follows.

5.5. An application of Theorem 4.1.1

We will give some implications of Theorem 4.1.1 for completed homology and completed
Borel–Moore homology groups. In the cases we will be interested in below, T is split
over Zp and hence T0 Š .Z�p /

dimT . The ring D.T0/ is then easily seen to be a semi-local
complete intersection ring. For any such ring A, and a finitely generated A-module M ,
one may define

codimAM D inf
j
¹j j ExtjA.M;A/ ¤ 0º:

Geometrically, codimAM is the minimum of the codimensions of the support ofM at the
maximal ideals of A. For a closed subgroup H � G.Zp/, we let

zHi .H/ WD lim
 �

n;K�H

Hi .XK ;Z=p
n/:

Theorem 5.5.1. Assume that G admits a Shimura datum of Hodge type and that GQp is
split. Recall that d D D=2 is the complex dimension of the Shimura varieties for G.

(1) Let H � U.Zp/ be a closed subgroup. Then

lim
 �
K�H

HBM
i .XK ;Z=p

r / D 0 for all r � 1 and i > d .
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(2) We have
codimD.T0/

zHi .N1/
TC-ord

� d � i for all 0 � i � d .

Remark 5.5.2. The slightly unusual level N1 was chosen for convenience. The groups
zHi .N /

TC-ord for N a compact open subgroup of U.Zp/ are all isomorphic. For N 0 �
N � U.Zp/, the trace map zHi .N /T

C-ord ! zHi .N
0/T
C-ord is an isomorphism for the

following reason. We can find s 2 TC so that sNs�1 � N 0. Consider the diagram

zHi .N /
TC-ord tr1

�! zHi .N
0/T
C-ord tr2

�! zHi .sNs
�1/T

C-ord tr3
�! zHi .sN

0s�1/T
C-ord:

The maps tr2 ı tr1 D ŒNsN �s�1 and tr3 ı tr2 D ŒN 0sN 0�s�1 are isomorphisms. Then
.tr2 ı tr1/�1 ı tr2 is both a left and right inverse of tr1 since

tr1 ı .tr2 ı tr1/�1 ı tr2 D .tr3 ı tr2/�1 ı tr3 ı tr2 ı tr1 ı .tr2 ı tr1/�1 ı tr2 D id:

Lemma 5.5.3. For each compact open subgroup K � G.Zp/, there is an isomorphism
of Z=pr -modules

HomZ=pr .H
�
c .XK ;Z=p

r /;Z=pr / ' HBM
� .XK ;Z=p

r /;

and these isomorphisms are compatible with changing the level.

Proof. The result can be obtained by applying the functor HomZ=pr .�;Z=p
r / to the

universal coefficient isomorphism

H �c .XK ;Z=p
r / ' HomZ=pr .H

BM
� .XK ;Z=p

r /;Z=pr /;

and using the fact that any finite Z=pr -module is naturally isomorphic to its double dual.
The universal coefficient isomorphism can be proved as follows. We have isomor-

phisms

HBM
� .XK ;Z=p

r / ' H�.F
BM
� ˝ZŒKpK� Z=pr /;

H�c .XK ;Z=p
r / ' H�.HomZŒKpK�.F

BM
� ;Z=pr //:

By the adjunction between tensor products and homomorphisms,

HomZŒKpK�.F
BM
� ;Z=pr / ' HomZ=pr .F

BM
� ˝ZŒKpK� Z=pr ;Z=pr /:

Then the universal coefficient isomorphism follows by taking cohomology and observing
that Z=pr is an injective Z=pr -module. All of these isomorphisms are compatible with
changing the level.

Proof of Theorem 5.5.1. To prove the first claim, we use Lemma 5.5.3 to write

lim
 �
K�H

HBM
i .XK ;Z=p

r / ' HomZ=pr

�
lim
�!
K�H

H i
c .XK ;Z=p

r /;Z=pr
�

(5.5.1)
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and then apply Corollary 4.1.2. From Theorems 5.4.7 and 5.1.6, we obtain the Poincaré
duality spectral sequence

ExtiD.T0/.
zHj .N1/

TC-ord;D.T0// H) zHBM
2d�i�j .N1/

TC-ord:

Then the second claim follows from the first claim and the above spectral sequence by
the same argument as in [28, Corollary 4.2.3] (note that D from Theorem 5.4.7 can be
identified with 2d ).
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