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Abstract. For each given n � 2, we construct a family of entire solutions u".z; t/, " > 0, with
helical symmetry to the three-dimensional complex-valued Ginzburg–Landau equation

�uC .1 � juj2/u D 0; .z; t/ 2 R2 �R ' R3:

These solutions are 2�="-periodic in t and have n helix-vortex curves, with asymptotic behavior,
as "! 0,

u".z; t/ �

nY
jD1

W
�
z � "�1fj ."t/

�
;

where W.z/ D w.r/ei� , z D rei� , is the standard degree C1 vortex solution of the planar Ginz-
burg–Landau equation �W C .1 � jW j2/W D 0 in R2 and

fj .t/ D

p
n � 1eite2i.j�1/�=np

jlog "j
; j D 1; : : : ; n:

Existence of these solutions was previously conjectured by del Pino and Kowalczyk (2008), f.t/ D
.f1.t/; : : : ;fn.t// being a rotating equilibrium point for the renormalized energy of vortex filaments
derived there,

W".f/ WD �
Z 2�

0

 
jlog "j
2

nX
kD1

jf 0k.t/j
2
�

X
j¤k

logjfj .t/ � fk.t/j

!
dt;

corresponding to that of a planar logarithmic n-body problem. The modulus of these solutions
converges to 1 as jzj goes to infinity uniformly in t , and the solutions have nontrivial dependence
on t , thus negatively answering the Ginzburg–Landau analogue of the Gibbons conjecture for the
Allen–Cahn equation, a question originally formulated by H. Brezis.
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1. Introduction

This paper deals with constructing entire solutions to the complex Ginzburg–Landau
equation in the Euclidean space RN ,

�uC .1 � juj2/u D 0 in RN ; (1.1)

where uWRN ! C is a complex-valued function and N � 2. It is convenient for our
purposes to introduce a small parameter " > 0 and consider the equivalent scaled version
of (1.1) given by

"2�uC .1 � juj2/u D 0 in RN : (1.2)

When regarded in a bounded region � � RN , equation (1.2) corresponds to the Euler–
Lagrange equation for the functional

J".u/ D
1

2

Z
�

jruj2 C
1

4"2

Z
�

.1 � juj2/2; (1.3)

which for N D 2; 3 is often considered as a model for the energy arising in the standard
Ginzburg–Landau theory of superconductivity when no external applied magnetic field is
present. In that setting, the complex-valued state of the system u corresponds to a critical
point of J" in which juj2 represents the density of the superconductive property of the
sample � (Cooper pairs of electrons). The function u is expected to stay away from zero
except on a lower-dimensional zero set, the vortex set, corresponding to defects where
superconductivity is not present.

In their pioneering work [8], Bethuel–Brezis–Hélein analyzed in dimensionN D 2 the
behavior as "! 0 of a global minimizer u" of J" when subject to a boundary condition
gW@�! S1 of degree k � 1. They established that, away from a finite number of distinct
points a1; : : : ; ak 2 �, one has (up to subsequences)

u".x/ � e
i'.x/

kY
jD1

x � aj

jx � aj j
;

where '.x/ is a real harmonic function and the k-tuple .a1; : : : ; ak/ minimizes a func-
tional of points, the renormalized energy that measures through Green’s function the
mutual interaction between the points and the boundary. Using the results in [32, 36, 41],
one gets the validity of the global approximation

u".x/ � e
i'.x/

kY
jD1

W

�
x � aj

"

�
; (1.4)
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whereW.z/ is the standard degreeC1 vortex solution of equation (1.1) forN D 2, namely
its unique solution of the form

W.z/ D ei�w.r/; z D rei� ; (1.5)

where w > 0 solves8<:w00 C
w0

r
�
w

r2
C .1 � w2/w D 0 in .0;1/;

w.0C/ D 0; w.C1/ D 1I

(1.6)

see [10,25]. Thus, before reaching the limit, the vortex set of u" is constituted by exactly k
distinct points, each with local degreeC1. The mechanism of vortex formation in the two-
dimensional Ginzburg–Landau model from the action of an external constant magnetic
field has been extensively studied; see [38] and references therein. Critical points of the
renormalized energy are in fact in correspondence with other critical points of J" in (1.3)
of the form (1.4) for small ", as it has been found in [3, 14, 17, 29, 34]. In the higher-
dimensional case N � 3 and with suitable boundary conditions and energy levels, the
vortex set of minimizers and more general critical points have been described when "! 0

in [2,9,26,30,31,35,37] as a codimension-2 set with a generalized minimal submanifold
structure. In dimension N D 3, defects should typically assume the form of curves with
a winding number associated: these are called vortex filaments. The basic degree C1
vortex line is the solution u of (1.1) for N D 3 given by

u.z; t/ D W.z/; .z; t/ 2 R2 �R ' R3;

with W.z/ specified in (1.5). Its zero set is of course the t -axis, and a transversal winding
numberC1 is associated to it. In dimensionN D 3, under Neumann boundary conditions,
it was found in [33] a local minimizer with energy formally corresponding to multiple
vortex lines collapsing onto a segment. Motivated by this work, in [16], an expression
for the renormalized energy for the interaction of nearly parallel “degree +1 vortex lines”
collapsing onto the t -axis was derived. Considering n curves

t 7! .fi .t/; t/; 1 � i � n; f D .f1; : : : ; fn/;

which for simplicity we assume 2�-periodic, we look for an approximate solution of the
form

u".z; t/ � W".z; t I f/ WD ei'.z;t/
nY

jD1

W

�
z � fj .t/

"

�
: (1.7)

In the cylinder � D C D BR.0/ � .0; 2�/, with ' harmonic matching lateral zero Neu-
mann boundary conditions, it is found in [16] that

I".f/ WD J".W". � I f// � 2� � n�jlog "j CW".f/; (1.8)

where

W".f/ WD �
Z 2�

0

 
jlog "j

1

2

nX
kD1

jf 0k.t/j
2
�

X
j¤k

logjfj .t/ � fk.t/j

!
dt: (1.9)
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Equilibrium location of these curves should then correspond to an approximate criti-
cal point of the functional I" and hence of W", which is the action associated to the
n-logarithmic body problem in R2. This energy also appears in related problems in fluid
dynamics; see e.g. [27, 28]. If we set

f.t/ D
1p
jlog "j

Qf.t/; Qf D . Qf1; : : : ; Qfn/;

this corresponds to a 2�-periodic solution of the ODE system

� Qf 00k .t/ D 2
X
i¤k

Qfk.t/ � Qfi .t/

j Qfk.t/ � Qfi .t/j2
: (1.10)

The following n-tuple Qf0 is a standard rotating solution of system (1.10):

Qf 0k .t/ D
p
n � 1eite2i.k�1/�=n; k D 1; : : : ; n: (1.11)

It is shown in [16] that the functional I" in (1.8) does have a 2�-periodic critical point
f ".t/ such that

f ".t/ D f0.t/C
o.1/p
jlog "j

; f0.t/ WD
1p
jlog "j

Qf0.t/ (1.12)

uniformly as "! 0, and it is conjectured the existence of a solution u".z; t/ to the system

"2�uC .1 � juj2/u D 0; .z; t/ 2 R3; (1.13)

which is 2�-periodic in t and has the approximate form (1.7) for f as in (1.12). The
recent work [13] has established a rigorous connection, in the sense of �-convergence,
between minimizers of functional (1.9) and minimizers in cylinders with suitable Dirichlet
boundary condition, thus providing evidence towards the conjecture in [16]. In this paper,
we prove this conjecture.

Theorem 1. For every n � 2 and for " sufficiently small, there exists a solution u".z; t/
of (1.13), 2�-periodic in the t -variable, with the following asymptotic profile:

u".z; t/ D

nY
kD1

W

�
z � f "

k
.t/

"

�
C '".z; t/;

where f "
k
.t/ is 2�-periodic with the asymptotic behavior (1.12) and

j'".z; t/j �
C

jlog "j
:

Besides, we have
lim

jzj!C1
ju".z; t/j D 1 uniformly in t: (1.14)

We are also able to construct another family of solutions to (1.13). Until now, we have
dealt only with vortex filaments of degreeC1. However, it is believed that, in presence of
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several vortex filaments of different degrees dk 2 Z, the energy governing the interaction
of the filaments is

W".f/ WD �
Z 2�

0

 
jlog "j

1

2

nX
kD1

jf 0k.t/j
2
�

X
j¤k

djdk logjfj .t/ � fk.t/j

!
dt: (1.15)

There exist special critical points of (1.15) analogous to (1.11) for d1 D �1 and dk DC1
for k D 2; : : : ; n when n � 5. These critical points can be written as

g01.t/ D 0; g0k.t/ D
p
n � 4eite2i.k�1/�=.n�1/; k D 2; : : : ; n; n � 5: (1.16)

From these solutions, we can obtain the following theorem.

Theorem 2. For every n � 5 and for " sufficiently small, there exists a solution u".z; t/
of (1.13), 2�-periodic in the t -variable, with the following asymptotic profile:

u".z; t/ D W .z/

nY
kD2

W

�
z � g"

k
.t/

"

�
C '".z; t/;

where g"
k
.t/ is 2�-periodic with g"

k
.t/ D gk.t/C o".1/=

p
jlog "j, gk defined by (1.16)

and
j'".z; t/j �

C

jlog "j
:

Besides, we have
lim

jzj!C1
ju".z; t/j D 1 uniformly in t:

The proofs of both theorems give a precise answer to the existence question, with an
accurate description of the solution. They take specific advantage of the geometric setting:
the configuration predicted is one of multiple helix vortex curves periodically winding
around each other. The Ginzburg–Landau equation has a screw-driving symmetry which
we take advantage of to reduce the original problem to a planar one. For constructions of
solutions with helical vortex structures, we refer also to [11, 42].

We observe that, in terms of the parameterless equation (1.1) forN D 3, what we find
is a family of entire solutions u".z; t/, 2�="-periodic in t , with approximate form

u".z; t/ �

nY
jD1

W
�
z � "�1f "j ."t/

�
:

Equation (1.1) is the complex-valued version of the Allen–Cahn equation of phase transi-
tions,

"2�uC u � u3 D 0 in RN ; (1.17)

where uWRN ! R. The Allen–Cahn model describes transitions of two phases between
the values �1 and C1 essentially separated by a thick wall, which for small " should
lie close to a minimal hypersurface. Solutions with screw-driving symmetry whose zero
level set is precisely a helicoid have been built in [22] (and extended to the fractional case
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in [12]). Solutions with multiple interfaces whose interactions are governed by mechani-
cal systems (Toda systems) have been built in [1, 18, 19, 21]. The celebrated De Giorgi
conjecture states that, at least up to dimension N D 8, solutions of (1.17) which are
monotone in one direction must have one-dimensional symmetry, namely their level sets
must be parallel hyperplanes; see [4, 20, 24, 40] and references therein. A variant of this
statement is the Gibbons conjecture: an entire solution u of (1.17) such that

lim
jxN j!C1

ju.x0; xN /j D 1 uniformly in x0 2 RN�1

must necessarily be a function of xN only. This fact has been proven for any N � 2.
See [5, 7, 23]. The analogous question for the Ginzburg–Landau equation in RN , N � 3,
originally formulated by H. Brezis, is whether or not a solution u.z; t/, .z; t/ 2 R2 �
RN�2, with

lim
jzj!C1

ju.z; t/j D 1 uniformly in t 2 RN�2; (1.18)

must necessarily be a function of z. This turns out to be false since the solutions in Theo-
rem 1 satisfy (1.18). We observe that solutionsWn.z/ of (1.1) with total degree n, jnj � 1,
of the form

Wn.z/ D e
in�wn.r/; wn.0/ D 0; wn.C1/ D 1; z D rei� ;

are known to exist for each n� 2; see [10,25]. The solutions in Theorem 1 have transversal
total degree equal to n � 2. A natural question is whether or not Brezis’ statement holds
true under the additional assumption of total transversal degree equal to ˙1. See [32, 36,
41] for the corresponding question in dimension N D 2, and [39] for a conjecture on the
symmetry of entire solutions of (1.1) when N D 3.

We will devote the rest of this paper to the proof of Theorem 1. The proof of The-
orem 2 follows the same lines. As we have mentioned, the key observation is that the
invariance under screw-driving symmetry allows to reduce the problem to one in the
plane, for which the solution to be found has a finite number of vortices with degree 1.
For simplicity, we treat only the case n D 2 in the following, but the arguments can be
easily adapted. We will look for solutions that are close to the approximation

ud .x; y; t/ D W

�
x � d cos t

"
;
y � d sin t

"

�
W

�
x C d cos t

"
;
y C d sin t

"

�
(1.19)

when " is small. Here d is a parameter of size 1=
p
jlog "j.

It can be observed that the zero set of ud has the shape of a double helix and the
function Qud WD e2itud is screw-symmetric (see Definition 1). Thus Qud can be expressed
as a function of two variables, which reduces the problem to a two-dimensional case.
We will look for screw-symmetric perturbations of Qud . Our approach will be based on
the method in [17], devised to build up solutions with isolated vortices when N D 2

using a Lyapunov–Schmidt reduction. A major difficulty that we need to overcome is
the presence of very large terms in the error of approximation. In the two-dimensional
case, we immediately obtain errors that are of size O."/, while here it is O.1=jlog "j/.
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This is a major difficulty since the vortex-location adjustment arises at essentially "-order.
This is overcome by carefully decomposing the error created by the nonlinearity in “odd”
small and “even” large Fourier modes parts. The even part has at main order no effect in
the solvability conditions needed in the linear theory we devise in Proposition 5.1. These
steps are rather delicate, and we will carry them out in detail in what follows.

2. Reduction to a two-dimensional problem by using screw-symmetry

As a first step, we reduce our three-dimensional problem to a related two-dimensional
one. To do so, we work with a particular type of symmetry. To define this symmetry,
it is convenient to use cylindrical coordinates .r; �; t/ 2 RC � R � R and to work with
functions that are 2�-periodic in the second variable.

Definition 1. We say that a function u is screw-symmetric if u.r;� C h; t C h/Du.r;�; t/
for any h 2 R.

Notice that this condition is equivalent to u.r; �; t C h/D u.r; � � h; t/ for any h 2R,
and then a screw-symmetric function can be expressed as a function of two-variables.
Indeed, for any .r; �; t/ 2 RC �R �R,

u.r; �; t/ D u.r; � � t; 0/ DW U.r; � � t /:

Writing the standard vortex of degree one in polar coordinates .r;�/, i.e.,W.z/Dw.r/ei� ,
we can see that the approximation ud defined in (1.19) satisfies

ud .r; �; t C h/ D e
2ihud .r; � � h; t/

for any h in R. That is, ud is not screw-symmetric, but Qud .r; �; t/ WD e�2itud .r; �; t/ is.
Hence we can write ud as ud D e2it Qud , with Qud a screw-symmetric function.

This suggests to look for solutions u of (1.2) that can be written as

u.r; �; t/ D e2it Qu.r; �; t/

with Qu screw-symmetric. Thus Qu.r; �; t/ D U.r; � � t /, U WRC �R being 2�-periodic in
the second variable. Denoting U D U.r; s/, we can see that

@ru D e
2it@rU.r; s/; @2rru D e

2it@2rrU.r; s/;

@�u D e
2it@sU.r; s/; @2��u D e

2it@2ssU.r; s/;

@tu D Œ2iU � @sU �e
2it ; @2ttu D Œ@

2
ssU � 4i@sU � 4U �e

2it :

Recalling that the Laplacian in cylindrical coordinates is expressed by @2rr C
1
r
@r C

1
r2
@2
��
C @2tt , we conclude that u is a solution of (1.2) if and only if U is a solution of

"2
�
@2rrU C

1

r
@rU C

1

r2
@2ssU C @

2
ssU � 4i@sU � 4U

�
C .1 � jU j2/U D 0 in R�C �R:
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We will also work in rescaled coordinates, that is, we define V.r; s/ WD U."r; s/, and we
search for a solution to the equation

@2rrV C
1

r
@rV C

1

r2
@2ssV

C "2.@2ssV � 4i@sV � 4V /C .1 � jV j
2/V D 0 in R�C �R: (2.1)

From now on, we will work in the plane R2, and we will use the notation z D x1 C
ix2 D re

is . We denote by � the Laplace operator in two dimensions, meaning

� D @2x1x1 C @
2
x2x2
D @2rr C

1

r
@r C

1

r2
@2ss :

Then equation (2.1) can be written as

�V C "2.@2ssV � 4i@sV � 4V /C .1 � jV j
2/V D 0 in R2;

and the approximate solution (1.19) in the new coordinates is given by

Vd .z/ D W.z � Qd/W.z C Qd/; (2.2)

where

Qd WD
d

"
D

Od

"
p
jlog "j

for some new parameter Od D O.1/.

3. Formulation of the problem

3.1. Additive-multiplicative perturbation

Let
S.v/ WD �v C "2.@2ssv � 4i@sv � 4v/C .1 � jvj

2/v:

The equation to be solved can be written as

S.v/ D 0: (3.1)

Recall the notation z D reis D x1 C ix2 and � D @2x1x1 C @
2
x2x2

. When using the coor-
dinates .x1; x2/, equation (3.1) is posed in R2, while if we use polar coordinates .r; s/,
the domain for (3.1) is r > 0, s 2 R with periodicity.

Following del Pino–Kowalczyk–Musso [17], we look for a solution to (3.1) of the
form

v D �Vd .1C i /C .1 � �/Vde
i ; (3.2)

where Vd is the ansatz (2.2) and  is the new unknown. The cut-off function � in (3.2) is
defined as

�.z/ D �1.jz � Qd j/C �1.jz C Qd j/; z 2 C D R2;

and �1WR! Œ0; 1� is a smooth cut-off function such that

�1.t/ D 1 for t � 1 and �1.t/ D 0 for t � 2: (3.3)
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The reason for the form of the perturbation term in (3.2) is the same as in [17]. On the
one hand, the nonlinear terms behave better for the norms that we consider when using
the multiplicative ansatz, but near the vortices, an additive ansatz is better since it allows
the position of the vortex to be adjusted.

Our objective here is to rewrite (3.1) in the form

L" CRCN . / D 0

and identify the linear operator L", the error R and the nonlinear terms N . /.
It will be convenient to write S D S0 C S1, where

S0.v/ WD �v C .1 � jvj
2/v; S1.v/ WD "

2.@2ssv � 4i@sv � 4v/: (3.4)

We have
S0.Vd C �/ D S0.Vd /C L0.�/CN0.�/;

S1.Vd C �/ D S1.Vd /C S1.�/;

where
L0.�/ WD �� C .1 � jVd j

2/� � 2Re.V d�/Vd ; (3.5)

N0.�/ WD �2Re.V d�/� � j�j2.Vd C �/:

Rewrite (3.2) as

v D Vd C �; � WD iVd C . /;

. / WD .1 � �/Vd .e
i 
� 1 � i /:

Then
S0.v/ D S0.Vd /C L0.iVd /C L0.. //CN0.iVd C . //;

S1.v/ D S1.Vd /C S1.iVd /C S1.. //:

We compute

L0.iVd / D iVd

�
QL0 C

S0.Vd /

Vd
 

�
;

where
QL0. / D � C 2

rVdr 

Vd
� 2i jVd j

2 Im. /;

and so

S0.v/ D iVd

�
�i
S0.Vd /

Vd
C QL0. /C

S0.Vd /

Vd
 

�
i

Vd
L0.. // �

i

Vd
N0.iVd C . //

�
: (3.6)

We note that, far from the vortices, we have

S0.v/ D S0.Vde
i / D iVde

i 

�
�i
S0.Vd /

Vd
C QL0. /C QN0. /

�
; (3.7)

where
QN0. / WD i.r /

2
C i jVd j

2.e�2 Im. /
� 1C 2 Im. //:
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Similarly, we compute

S1.iVd / D iVd

�
S1.Vd /

Vd
 C QL1. /

�
; (3.8)

where
QL1. / WD "

2

�
@2ss C

2@sVd

Vd
@s � 4i@s 

�
:

Far away from the vortices, we have

S1.Vde
i / D iVde

i 

�
�i
S1.Vd /

Vd
C QL1. /C "

2i.@s /
2

�
: (3.9)

We let
Q�.z/ D �1.jz � Qd j � 1/C �1.jz C Qd j � 1/

with �1 defined in (3.3). Then we write S.v/ D 0 as

0 D Q�iVd

�
�i
S0.Vd /

Vd
C QL0. /C

S0.Vd /

Vd
 �

i

Vd
L0.. // �

i

Vd
N0.iVd C . //

� i
S1.Vd /

Vd
C QL1. /C

S1.Vd /

Vd
 �

i

Vd
S1.. //

�
C .1 � Q�/iVde

i 

�
�i
S0.Vd /

Vd
C QL0. /C QN0. /

� i
S1.Vd /

Vd
C QL1. /C "

2i.@s /
2

�
;

that is, we use expressions (3.6), (3.8) near the vortices and (3.7), (3.9) far from them.
Hence S.v/ D 0 is equivalent to L". /CRCN . / D 0, where

L". / WD . QL0 C QL1/. /C Q�
S.Vd /

Vd
 ;

R WD �i
S.Vd /

Vd
; (3.10)

N . / WD Q�

�
1

Q�C .1 � Q�/ei 
� 1

�
S.Vd /

Vd
 

�
i

Vd

Q�

Q�C .1 � Q�/ei 
¹L0.. //C S1.. //CN0.iVd C . //º

C
.1 � Q�/ei 

Q�C .1 � Q�/ei 
¹ QN0. /C "

2i.@s /
2
º:

Note that explicitly

L". / D � C 2
rVdr 

Vd
� 2i jVd j

2 Im. /

C "2
�
@2ss C

2@sVd

Vd
@s � 4i@s 

�
C Q�

S.Vd /

Vd
 (3.11)
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and that, for jz ˙ Qd j � 3, the nonlinear terms take the form

N . / D QN0. /C "
2i.@s /

2

D i.r /2 C i jVd j
2.e�2 Im. /

� 1C 2 Im. //C "2i.@s /2:

3.2. Another form of the equation near each vortex

In order to analyze the equation near each vortex, it will be useful to write it in a translated
variable. Namely, we set Qdj WD .�1/1Cj Qd for j D 1; 2, and we define Qz WD z � Qdj and
the function �j . Qz/ through the relation

�j . Qz/ WD iW. Qz/ .z/; j Qzj < Qd: (3.12)

That is, so close to the vortices so that � � 1,

�.z/ D iVd .z/ D �j . Qz/ j̨ .z/; where j̨ .z/ D
Vd .z/

W.z � Qdj /
:

Hence, in the translated variable, the unknown (3.2) becomes, in j Qzj < Qd ,

v.z/ D j̨ . Qz/

�
W. Qz/C �j . Qz/C .1 � �1. Qz//W. Qz/

�
e
�j .Qz/

W.Qz/ � 1 �
�j . Qz/

W. Qz/

��
:

We set E WD S.Vd /. For �j ;  linked through formula (3.12), we define

L"j .�j /. Qz/ WD iW. Qz/L
". /. Qz C Qdj / D

L"
d
.�/.z/

j̨ .z/
C .�1 � 1/

E.z/

Vd .z/
�j . Qz/

D
L"
d
.�j j̨ /.z/

j̨ .z/
C .�1 � 1/

E.z/

Vd .z/
�j . Qz/; (3.13)

with L"
d

defined by

L"d .�/ WD �� C "
2.@2ss� � 4i@s� � 4�/C .1 � jVd j

2/� � 2Re.Vd�/Vd :

Let us also define

S2.V / WD @
2
rrV C

1

r
@rV C

1

r2
@ssV C "

2.@2ssV � 4i@sV � 4V /;

S3.V / WD @
2
rrV C

1

r
@rV C

1

r2
@ssV C "

2.@2ssV � 4i@sV /:

Notice that
E.z/ D S2. j̨ .z/W. Qz//C .1 � jW j

2
j j̨ j

2/W. Qz/ j̨ .z/;

and thus, using the equation satisfied by W ,

E D WS2. j̨ /C .1 � jW j
2
j j̨ j

2/ j̨W C 2r j̨rW C 2"
2@s j̨ @sW C j̨S3.W /

D WS3. j̨ / � 4"
2W j̨ C .1 � jW j

2
j j̨ j

2/ j̨W C 2r j̨rW C 2"
2@s j̨ @sW

C j̨ Œ"
2.@2ssW � 4i@sW / � .1 � jW j

2/W �:
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This allows us to conclude

L"j .�j / D L
0.�j /C "

2.@2ss�j � 4i@s�j � 4�j /C 2.1 � j j̨ j
2/Re.W �j /W

�

�
2
r j̨

j̨

rW

W
C 2"2

@s j̨

j̨

@sW

W
C "2

.@2ssW � 4i@sW /

W
C 4"2

�
�j

C 2
r j̨

j̨

r�j C 2"
2 @s j̨

j̨

@s�j C Q�
Ej

V
j

d

�j ; (3.14)

where V j
d
D Vd . Qz C dj /, Ej D S.V

j

d
/ and L0 is the linear operator defined by (3.5).

Let us point out that, for j Qzj < 2,

j j̨ . Qz/j D 1CO"."
2
jlog "j/;

r j̨ . Qz/ D O"."
p
jlog "j/; � j̨ D O"."

2
jlog "j/:

(3.15)

With this in mind, we can see that the linear operator L"j is a small perturbation of L0.

3.3. Symmetries assumptions on the perturbation

We end this section by making use of the symmetries of the problem. Using the notation
z D x1 C ix2 D re

is , we remark that Vd satisfies

Vd .�x1; x2/ D V d .x1; x2/ and Vd .x1;�x2/ D V d .x1; x2/:

We also remark that these symmetries are compatible with the solution operator S , that
is, if S.V / D 0 and U.z/ D V .�x1; x2/, then S.U / D 0, and the same for U.z/ D
V .x1;�x2/. Thus we look for a solution V satisfying

V.�x1; x2/ D V .x1; x2/; V .x1;�x2/ D V .x1; x2/;

which drives to ask

 .x1;�x2/ D � .x1; x2/;  .�x1; x2/ D � .x1; x2/: (3.16)

4. Error estimates of the approximated solution

In this section, we compute the error of the approximation Vd defined asRD�iS.Vd /=Vd
in (3.10).

In order to measure the size of the error of our approximation, we fix 0 < ˛; � < 1.
We recall that

Qdj WD .�1/
1Cj Qd; (4.1)

and we denote
�1e

i�1 WD reis � Qd; �2e
i�2 WD reis C Qd;

polar coordinates around each vortex. We define

R" D
˛0

"jlog "j1=2
; (4.2)
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where ˛0 > 0 is a small constant that will be fixed later, and the norm

khk�� WD

2X
jD1

kVdhkC˛.�j<3/

C sup
�1>2
�2>2

�
jRe.h/j

��21 C �
�2
2 C "

2
C

jIm.h/j
��2C�1 C ��2C�2 C "��2

�
C sup
2<jz� Qd1j<2R"

2<jz� Qd2j<2R"

ŒRe.h/�˛;Bjzj=2.z/

jz � Qd1j�2�˛ C jz � Qd2j�2�˛

C sup
2<jz� Qd1j<2R"

2<jz� Qd2j<2R"

ŒIm.h/�˛;B1.z/
jz � Qd1j�2C� C jz � Qd2j�2C�

; (4.3)

where kf kC˛.D/ D kf kC0;˛.D/ and where we have used the notation

Œf �˛;D WD sup
x;y2D
x¤y

jf .x/ � f .y/j

jx � yj˛
; (4.4)

kf kCk;˛.D/ WD

kX
jD0

kDjf kL1.D/ C ŒD
kf �˛;D : (4.5)

Proposition 4.1. Let Vd be given by (2.2), and denote

S.Vd / D E D iVdR D iVd .R1 C iR2/:

Then
kRk�� �

C

jlog "j
:

Proof. Let us write Vd DW aW b , whereW a.z/ WDW.z � Qd/ andW b.z/ WDW.z C Qd/.
We want to estimate E WD S.Vd /, i.e., how far our approximation is to be a solution.

By symmetry, it suffices to compute the error in the region .x1; x2/ 2 RC � R. We
recall that �.fg/ D g�f C f�g C 2rf rg, and thus, with S0 defined in (3.4),

S0.Vd / D .W
a
x1x1
CW a

x2x2
/W b

C .W b
x1x1
CW b

x2x2
/W a

C 2.W a
x1
W b
x1
CW a

x2
W b
x2
/C .1 � jW aW b

j
2/W aW b :

Using the fact that �W C .1 � jW j2/W D 0 in R2, we conclude that

S0.Vd / D 2.W
a
x1
W b
x1
CW a

x2
W b
x2
/

C .1 � jW aW b
j
2
C jW a

j
2
� 1C jW b

j
2
� 1/W aW b : (4.6)

We estimate the size of this error separately in two different regions, near the vortices and
far from them. Notice first that, since we work in the half-plane RC �R, we have

�2 � Qd �
C

"
p
jlog "j

for some C > 0 of order 1.
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Step 1: Estimate of S0.Vd / near one vortex, i.e., when jreis � Qd j < 3. Writing W D
W.�ei� /, we have

Wx1 D e
i�

�
w0.�/ cos � � i

w.�/

�
sin �

�
;

Wx2 D e
i�

�
w0.�/ sin � C i

w.�/

�
cos �

�
:

We define w1 WD w.�1/ and w2 WD w.�2/, and we obtain

W a
x1
W b
x1
D ei.�1C�2/

²
w01w

0
2 cos �1 cos �2 �

w1w2

�1�2
sin �1 sin �2

� i

�
w01w2

�2
cos �1 sin �2 C

w02w1

�1
cos �2 sin �1

�³
;

W a
x2
W b
x2
D ei.�1C�2/

²
w01w

0
2 sin �1 sin �2 �

w1w2

�1�2
cos �1 cos �2

C i

�
w01w2

�2
sin �1 cos �2 C

w02w1

�1
cos �1 sin �2

�³
:

Since w0.�/ D 1=�3 CO.1=�4/ when �!C1 (Lemma A.1) and �2 � C=."
p
jlog "j/,

we can see that
kW a

x1
W b
x1
CW a

x2
W b
x2
kL1.�1<3/ � C"

p
jlog "j

when " is small and for some C > 0. Using now that w.�/ D 1 � 1=.2�2/C O.1=�4/
when �!C1, we obtain

k.1 � jW aW b
j
2
C jW a

j
2
� 1C jW b

j
2
� 1/W aW b

kL1.�1<3/ � C"
2
jlog "j;

and thus
kE0kL1.�1<3/ D kS0.Vd /kL1.�1<3/ � C"

p
jlog "j: (4.7)

Similarly,
krE0kL1.�1<3/ � C"

p
jlog "j: (4.8)

Step 2: Estimate of S0.Vd / far away from the vortices, i.e., when jreis � Qd j > 2. We
write E0 D S0.Vd / D iVd .R10 C iR

2
0/ with

R10 D 2.sin �1 cos �2 � cos �1 sin �2/
�
w01
�2w1

�
w02
�1w2

�
D 2 sin.�1 � �2/

�
w01
�2w1

�
w02
�1w2

�
;

R20 D 2 cos.�1 � �2/
�
�w01w

0
2

w1w2
C

1

�1�2

�
�

�
1 � w21w

2
2 C w

2
2 � 1C w

2
1 � 1

�
:

Using that �1 � �2 and �2 � C=."
p
jlog "j/, along with Lemma A.1, we conclude

jR10j � C"
p
jlog "j

1

�31
: (4.9)
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Using again Lemma A.1, we obtain

1 � w21w
2
2 C w

2
2 � 1C w

2
1 � 1 D 1 � w

2
1 CO

�
1

�22

�
w21 CO

�
1

�22

�
C w21 � 1

� C
1

�2

1

�1
;

and hence

jR20j � C
1

�2�1
� C."jlog "j1=2/�

1

�2��1

for all 0 < � < 1: (4.10)

To see that the previous inequality holds, we can distinguish the cases 2 < �1 < Qd < �2
and Qd < �1 < �2. We remark that we also have

jrR10j �
C"
p
jlog "j
�41

; jrR20j �
C."

p
jlog "j/�

�3��1

:

Step 3: Estimates of S1.Vd /. We recall thatw1 WDw.�1/ andw2 WDw.�2/. Thus we have
Vd .r; s/ DW w1w2e

i.�1C�2/ with

�1 D

q
.r cos s � Qd/2 C r2 sin2 s; �2 D

q
.r cos s C Qd/2 C r2 sin2 s;

ei�1 D
.r cos s � Qd/C ir sin s

�1
; ei�2 D

.r cos s C Qd/C ir sin s
�2

:

We have

@sVd D Œ@s�1w
0
1w2 C @s�2w

0
2w1 C i@s.�1 C �2/w1w2�e

i.�1C�2/;

@2ssVd D
®�
@2ss�1w

0
1w2 C @

2
ss�2w

0
2w1 C .@s�1/

2w001w2 C .@s�2/
2w002w1

C 2@s�1@s�2w
0
1w
0
2 � Œ@s.�1 C �2/�

2w1w2
�

C i Œ2@s.�1 C �2/.@s�1w
0
1w2 C @s�2w

0
2w1/

C @2ss.�1 C �2/w1w2�
¯
ei.�1C�2/;

and thus

"2.@2ssVd � 4i@sVd � 4Vd /

D "2
®
.@s�1/

2w001w2 C .@s�2/
2w002w1 C 2.@s�1/.@s�2/w

0
1w
0
2

C @2ss�1w
0
1w2 C @

2
ss�2w

0
2w1

�
�
Œ@s.�1 C �2/�

2
� 4@s.�1 C �2/C 4

�
w1w2

¯
ei.�1C�2/

C i"2
®
@2ss.�1 C �2/w1w2

C
�
2Œ@s.�1 C �2/� � 4

�
Œ@s�1w

0
1w2 C @s�2w

0
2w1�

¯
ei.�1C�2/:

We also need to compute the following derivatives:

@s�1 D
r Qd sin s
�1

D Qd sin �1; @s�2 D
�r Qd sin s

�2
D � Qd sin �2;
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@2ss�1 D
r Qd cos s
�1

�
r2 Qd2 sin2 s

�31
D Qd cos �1 C Qd2

cos2 �1
�1

;

@2ss�2 D
�r Qd cos s

�2
�
r2 Qd2 sin2 s

�32
D � Qd cos �2 C Qd2

cos2 �2
�2

:

Now we can check that

@s�1 D 1C
Qd

�21
.r cos s � Qd/ D 1C

Qd cos �1
�1

;

@s�2 D 1 �
Qd

�22
.r cos s C Qd/ D 1 �

Qd cos �2
�2

@2ss�1 D
� Qdr sin s

�41

�
�21 C 2

Qd.r cos s � Qd/
�
D
� Qd sin �1

�1
�
2 Qd2 sin �1 cos �1

�21
;

@2ss�2 D
Qdr sin s
�42

�
�22 � 2

Qd.r cos s C Qd/
�
D

Qd sin �2
�2

�
2 Qd2 sin �2 cos �2

�22
;

and besides,

Œ@s.�1 C �2/�
2
� 4@s.�1 C �2/C 4 D Qd

2

�
cos �1
�1
�

cos �2
�2

�2
;

@2ss.�1 C �2/ D
Qd

�
sin �2
�2
�

sin �1
�1

�
� 2 Qd2

�
sin �1 cos �1

�21
C

sin �2 cos �2
�22

�
;

2@s.�1 C �2/ � 4 D 2 Qd

�
cos �1
�1
�

cos �2
�2

�
:

Hence we obtain

S1.Vd / D

²
Od2

jlog "j

�
w001w2 sin2 �1 C w002w1 sin2 �2 � w01w

0
2 sin �1 sin �2

C
cos2 �1
�1

w01w2 C
cos2 �2
�2

w02w1 �

�
cos �1
�1
�

cos �2
�2

�2
w1w2

�
C

" Odp
jlog "j

.cos �1w01w2 � cos �2w02w1/

C i

�
" Odp
jlog "j

�
sin �2
�2
�

sin �1
�1

�
w1w2

�
2 Od2

jlog "j

�
sin �1 cos �1

�21
C

sin �2 cos �2
�22

�
w1w2

C
2 Od2

jlog "j

�
cos �1
�1
�

cos �2
�2

�
� .sin �1w01w2 � sin �2w02w1/

�³
ei.�1C�2/: (4.11)

The conclusion of the proof follows from (4.7), (4.8), (4.9), (4.10) and Lemma 4.1. We
also use the symmetry of the problem.
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Lemma 4.1. Let S1.Vd /D iVdR1D iVd .R11 C iR
2
1/. In the half-plane RC �R, we have

kS1.Vd /kL1.�1<3/ �
C

jlog "j
; krS1.Vd /kL1.�1<3/ �

C

jlog "j
; (4.12)

and for �1 > 2,

jR11j �
C

jlog "j
1

�21
; jrR11j �

C

jlog "j
1

�31
;

jR21j �
C

jlog "j
1

�21
; jrR21j �

C

jlog "j
1

�31
:

(4.13)

Proof. By using Lemma A.1, we see that

kS1.Vd /kL1.�1<3/ �
C

jlog "j
; krS1.Vd /kL1.�1<3/ �

C

jlog "j
:

For �1 > 2, we have

�R21 D
Od2

jlog "j

�
w001
w1

sin2 �1 C
cos2 �1
�1

w01
w1
�

�
cos �1
�1
�

cos �2
�2

�2�
C

Od2

jlog "j

�
w002
w2

sin2 �2 � w01w
0
2 sin �1 sin �2 C

cos2 �2
�2

w02
w2

�
C

Od"p
jlog "j

�
cos �1

w01
w1
� cos �2

w02
w2

�
:

By using Lemma A.1 and the fact that �2 � �1 > 2, we can see that

Od2

jlog "j

ˇ̌̌̌
w001
w1

sin2 �1 C
cos2 �1
�1

w01
w1
�

�
cos �1
�1
�

cos �2
�2

�2 ˇ̌̌̌
�

C

jlog "j
1

�21
;

and
Od"p
jlog "j

ˇ̌̌̌
cos �1

w01
w1
� cos �2

w02
w2

ˇ̌̌̌
�

C"p
jlog "j

1

�31
:

Besides, by using also that �2 � Qd � Od=."
p
jlog "j/, we observe that

Od2

jlog "j

ˇ̌̌̌
w002
w2

sin2 �2 � w01w
0
2 sin �1 sin �2 C

cos2 �2
�2

w02
w2

ˇ̌̌̌
� C

"p
jlog "j

1

�21
:

Thus we obtain (4.12) and the third estimate in (4.13). By differentiating, we can also
obtain the fourth estimate.

Now, for �1 > 2, we see that

R11 D
Od"p
jlog "j

�
sin �2
�2
�

sin �1
�1

�
�

2 Od2

jlog "j

�
sin �1 cos �1

�21
C

sin �2 cos �2
�22

�
C

2 Od2

jlog "j

�
cos �1 sin �1w01

�1w1
�

cos �1 sin �2w02
�1w2

�
�

2 Od2

jlog "j
cos �2
�2

�
sin �1

w01
w1
� sin �2

w02
w2

�
:
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By using Lemma A.1 and the fact that �2 � �1, we can see that the two first estimates
of (4.13) hold. Actually, to prove the first estimate, the only difficult term to handle is

Od"p
jlog "j

�
sin �1
�1
�

sin �2
�2

�
:

In the region .RC � R/ \ ¹�1 < C=."
p
jlog "j/º, we have "

p
jlog "j=�1 < C=�21. By

using this and that �2 > �1, we find thatˇ̌̌̌
Qd"p
jlog "j

w1w2

�
sin �1
�1
�

sin �2
�2

�ˇ̌̌̌
�

C

jlog "j
1

1C �21
(4.14)

in .RC �R/ \ ¹�1 < 1=."
p
jlog "j/º.

Now we use �1 sin �1 D �2 sin �2 D r sin s to obtain�
sin �1
�1
�

sin �2
�2

�
D

sin �1
�1

�
1 �

�21
�22

�
:

But �22 D �
2
1 C 4

Qdr cos s D �21 C 4 Qd�1 cos �1 C Qd2. Thus, when j4 Qd�1 cos �1 C Qd2j < 1,
which is true when �1 � C=."

p
jlog "j/ for an appropriate constant C > 0, we find that

�21
�22
D 1C 4

Od

�1
cos �1 CO

�
Qd2

�21

�
:

Thus ˇ̌̌̌
Od"p
jlog "j

w1w2

�
sin �1
�1
�

sin �2
�2

�ˇ̌̌̌
�

C

jlog "j
1

�21
(4.15)

in .RC �R/\ ¹�1 > C=."
p
jlog "j/º. Combining estimates (4.14) and (4.15) and differ-

entiating, we arrive at the conclusion.

Recall the polar coordinates �j , �j about Qdj defined by the relation z D �j ei�j C Qdj .
We can decompose a function h satisfying h.z/ D �h.z/ in Fourier series in �j as

h D

1X
kD0

hk;j ; (4.16)

hk;j .�j ; �j / WD h
k;j
1 .�j / sin.k�j /C ih

k;j
2 .�j / cos.k�j /; h

k;j
1 .�j /; h

k;j
2 .�j / 2 R;

and define
he;j WD

X
k even

hk;j ; ho;j WD
X
k odd

hk;j :

The definitions above can also be expressed by the following. Let Rj denote the
reflection across the line Re.z/ D Qdj . Since Qdj 2 R, we have

Rj z D 2 Qdj � Re.z/C i Im.z/: (4.17)

Then he;j and ho;j have the symmetries

ho;j .Rj z/ D ho;j .z/; he;j .Rj z/ D �he;j .z/;
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and we can define equivalently

ho;j .z/ WD
1

2
Œh.z/C h.Rj z/�; he;j .z/ WD

1

2
Œh.z/ � h.Rj z/�:

It is convenient to consider a global function ho defined as follows. We introduce
cut-off functions �j;R as

�j;R.z/ WD �1

�
jz � Qdj j

R

�
; (4.18)

where �1WR! Œ0; 1� is a smooth function such that �1.t/ D 1 for t � 1 and �1.t/ D 0
for t � 2. Given hWC ! C, consider R" defined in (4.2) with ˛0 > 0 fixed small enough
so that R" � 1

2
Qd and

ho WD �1;R"h
o;1
C �2;R"h

o;2; (4.19)

he WD h � ho:

For a complex function h D h1 C ih2, we introduce the new seminorm

jhj]] WD

2X
jD1

kVdhkC0;˛.�j<4/ C sup
2<�1<R"
2<�2<R"

�
jh1j

��11 C �
�1
2

C
jh2j

��1C�1 C ��1C�2

�
;

where 0 < ˛; � < 1 are constants to be selected later. We then have the following propo-
sition.

Proposition 4.2. Let Vd be given by (2.2), and denote S.Vd / D E D iVdR. Then we
can write R D Ro CRe and Ro D Ro˛ CR

o
ˇ

with Ro defined analogously to (4.19) and

Ro.Rj z/ D Ro.z/ in BR". Qd/ [ BR".� Qd/,

jRo˛j]] � C
"p
jlog "j

; kRoˇk�� � C"
p
jlog "j; kRek�� C kRok�� �

C

jlog "j

Proof. The conclusion follows using the expression of S1.Vd / given by (4.11). More
precisely, we define

ro;1 WD �i
Od2

jlog "j

�
2 cos �1 cos �2

�1�2
C

cos2 �2
�22

�
C

²
Od"p
jlog "j

� sin �1
�1

�
2 Od2

jlog "j
sin �2 cos �2

�22

³
;

ro;2 WD �i
Od2

jlog "j

�
2 cos �1 cos �2

�1�2
C

cos2 �1
�21

�
C

²
Od"p
jlog "j

C sin �2
�2

�
2 Od2

jlog "j
sin �1 cos �1

�21

³
;

Rj;o˛ WD
1

2
Œro;1.z/C ro;2.Rj z/�; j D 1; 2;

Ro˛ WD �1;R"R
1;o
˛ C �2;R"R

2;o
˛ ;
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with R" defined by (4.2). We can check that Ro˛ and Ro
ˇ
WD Ro � Ro˛ satisfy the desired

properties.

In the last step of the proof of Theorem 1, when we aim at canceling the Lyapunov–
Schmidt coefficient, we will need the following.

Lemma 4.2. In the region B. Qd; Qd/, we have

S1.Vd / D
Od

jlog "j
W a
x2x2

W b
C

Od"p
jlog "j

W a
x1
W b
CG

with
Re
Z
B. Qd;

Od

"
p

jlog"j
/

W a
x2x2

W
a

x1
D 0;

Re
Z
B. Qd;

Od

"
p

jlog"j
/

G

W b
W
a

x1
D O"

�
"p
jlog "j

�
:

Proof. It suffices to observe that

S1.Vd / D E1 D
Od2w2e

i.�1C�2/

jlog "j

�
w001 sin2 �1 C cos2 �1

�
w01
�1
�
w1

�21

�
C 2i cos �1 sin �1

�
w01
�1
�
w1

�21

��
C

Od"p
jlog "j

�
w01w2 cos �1 � iw1w2

sin �1
�1

�
ei.�1C�2/ CG;

where

G WD
Od"ei.�1C�2/p
jlog "j

w1w
0
2 cos �2

C

Od2ei.�1C�2/

jlog "j

�
w002w1 sin2 �2 C w01w

0
2 sin �1 sin �2 C

cos2 �2
�2

w02w1

C

�
2 cos �1 cos �2

�1�2
C

cos2 �2
�22

�
w1w2

�
C iei.�1C�2/

Od"p
jlog "j

sin �2
�2

w1w2

� iei.�1C�2/
²
2 Od2

jlog "j
sin �2 cos �2

�22
w1w2

C
2 Od2

jlog "j
cos �2
�2

.sin �1w01w2 C sin �2w02w1/

C
2 Od2

jlog "j
cos �1
�1

sin �2w02w1

³
:
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5. A projected linear problem

Given h satisfying symmetries (3.16) and appropriate decay, our aim in this section is to
solve the linear equation8̂̂̂̂

<̂̂
ˆ̂̂̂:

L". / D hC c

2X
jD1

�j

iW.z � Qdj /
.�1/jWx1.z �

Qdj / in R2;

Re
Z
B.0;4/

��jWx1 D 0 with �j .z/ D iW.z/ .z C Qdj /;

 satisfies symmetry (3.16);

(5.1)

where

�.z/ WD �1

�
jzj

2

�
; �j .z/ WD �1

�
�j

2

�
D �1

�
jz � Qdj j

2

�
with �1 a smooth cut-off function such that �1.t/ D 1 if t � 1 and �1.t/ D 0 if t � 2.

Thanks to the symmetries imposed on  and h, it suffices to use one reduced param-
eter c and not six as it should be the case when working with two vortices, since the
linearized operator around each has three elements in its kernel.

In order to find estimates on the solution of (5.1), we introduce some norms, for which
we use the following notation. Let Qdj , j D 1;2, denote the center of each vortex as in (4.1).
We recall that .�j ; �j / are polar coordinates around Qdj , that is, z D �j ei�j C Qdj .

We will define two sets of norms. The first one is the following: given ˛; � 2 .0; 1/
and  WC ! C, we define

k k� WD

2X
jD1

kVd kC2;˛.�j<3/ C kRe. /k1;� C kIm. /k2;�;

where, with Re D  1; Im D  2,

k 1k1;� WD sup
�1>2
�2>2

j 1j C sup
2<�1<

2
"

2<�2<
2
"

jr 1j

��11 C �
�1
2

C sup
r> 1"

�
1

"
j@r 1j C j@s 1j

�

C sup
2<�1<R"
2<�2<R"

jD2 1j

��21 C �
�2
2

C sup
2<jz� Qd1j<R"

2<jz� Qd2j<R"

ŒD2 1�˛;Bjzj=2.z/

jz � Qd1j�2�˛ C jz � Qd2j�2�˛
;

k 2k2;� WD sup
�1>2
�2>2

j 2j

��2C�1 C ��2C�2 C "��2
C sup
2<�1<

2
"

2<�2<
2
"

jr 2j

��2C�1 C ��2C�2

C sup
r> 1"

Œ"��2j@r 2j C "
��1
j@s 2j�C sup

2<�1<R"
2<�2<R"

jD2 2j

��2C�1 C ��2C�2

C sup
2<jz� Qd1j<R"

2<jz� Qd2j<R"

ŒD2 2�˛;B1.z/

jz � Qd1j�2C� C jz � Qd2j�2C�
:
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Here we have used notation (4.4)–(4.5). We recall also that the norm for the right-hand
side h of (5.1) is defined by (4.3). One of the main results in this section is the following.

Proposition 5.1. If h satisfies (3.16) and khk�� <C1, then, for " > 0 sufficiently small,
there exists a unique solution  D T".h/ to (5.1) with k k� < 1. Furthermore, there
exists a constant C > 0 depending only on ˛; � 2 .0; 1/ such that this solution satisfies

k k� � Ckhk��:

The proof of Proposition 5.1 is in Section 5.1.
Although the existence and estimate in Proposition 5.1 are sufficient to solve a nonlin-

ear projected problem, the estimates for  are too weak to enable us to solve the reduced
problem. This means that they are too weak to justify that we can choose the parameter d
such that the Lyapunov–Schmidt coefficient c in (5.1) vanishes. In order to address this
difficulty, we use that the largest part of the error and  have a symmetry that makes
them orthogonal to the kernel. To state the extra (partial) symmetry involved, let us con-
sider  WC ! C. Recall the polar coordinates �j , �j about Qdj defined by the relation
z D �j e

i�j C Qdj . We can decompose  in Fourier series in �j as in (4.16) and define

 e;j WD
X
k even

 k;j ;  o;j WD
X
k odd

 k;j :

The intuitive idea is that  o;j is not orthogonal to the kernel near Qdj but small, while
 e;j is large but orthogonal to the kernel near Qdj by symmetry. With Rj defined in (4.17),
we have

 o;j .Rj z/ D  o;j .z/;

 e;j .Rj z/ D � e;j .z/;

and we can define equivalently

 o;j .z/ WD
1

2
Œ .z/C  .Rj z/�;

 e;j .z/ WD
1

2
Œ .z/ �  .Rj z/�:

It is convenient to consider a global function  o defined as follows: with R" given by
(4.2) and �j;R defined in (4.18), we set

 o WD �1; 12R" 
o;1
C �2; 12R" 

o;2; (5.2)

That is,  o represents the odd part of  around each vortex Qdj , localized with a cut-off
function.

The part of  that will be small, namely  o, will be estimated in norms that allow for
growth up to a certain distance. We do this because that part arises from terms in the error
Ro that are small, but decay slowly. To capture this behavior, we define

j j] WD

2X
jD1

jlog "j�1kVd kC2;˛.�j<3/ C jRe. /j];1 C jIm. /j];2;
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where

j 1j];1 WD sup
2<�1<R"
2<�2<R"

�
j 1j

�1 log.2R"=�1/C �2 log.2R"=�2/

C
jr 1j

log.2R"=�1/C log.2R"=�2/

�
; (5.3)

j 2j];2 WD sup
2<�1<R"
2<�2<R"

�
j 2j C jr 2j

��1C�1 C ��1C�2 C ��11 log.2R"=�1/C ��12 log.2R"=�2/

�
; (5.4)

and we recall

jhj]] WD

2X
jD1

kVdhkC0;˛.�j<4/ C sup
2<�1<R"
2<�2<R"

�
jh1j

��11 C �
�1
2

C
jh2j

��1C�1 C ��1C�2

�
:

Proposition 5.2. Suppose that h satisfies symmetries (3.16) and khk�� < 1. Suppose
furthermore that ho defined by (4.19) is decomposed as ho D ho˛ C h

o
ˇ

, where jho˛j]] <1
and ho˛ , ho

ˇ
satisfy

hok.Rj z/ D h
o
k
.z/; jz � Qdj j < R"; j D 1; 2; k D ˛; ˇ;

and have support in B2R". Qd1/ [ B2R". Qd2/. Let us write  D  e C  o with  o defined
by (5.2). Then  o can be decomposed as  o D  o˛ C  

o
ˇ

, with each function supported

in BR". Qd1/ [ BR". Qd2/ and satisfying

j o˛ j] . jho˛j]] C "jlog "j1=2.kho˛k�� C kh � h
o
k��/ (5.5)

k oˇk� . khoˇk��; (5.6)

k o˛k� C k 
o
ˇk� . khk�� C kho˛k�� C kh

o
ˇk��

and
 ok .Rj z/ D  

o
k
.z/; jz � Qdj j < R"; j D 1; 2; k D ˛; ˇ:

The proof of Proposition 5.2 is in Section 5.2.

5.1. First a priori estimate and proof of Proposition 5.1

Here we obtain a priori estimates for solutions to8̂<̂
:

L". / D h in R2;

Re
Z
B.0;4/

�j�jWx1 D 0 with �j .z/ D iW.z/ .z C Qdj /;

 satisfies symmetry (3.16):

(5.7)

Lemma 5.1. There exists a constant C > 0 such that, for all " sufficiently small and any
solution  of (5.7) with k k� <1, one has

k k� � Ckhk��: (5.8)
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Proof. To prove Lemma 5.1, we will use first weaker norms. For  WC ! C, we define

k k�;0 WD

2X
jD1

kVd kL1.�j<3/ C kRe. /k1;�;0 C kIm. /k2;�;0

where

k 1k1;�;0 WD sup
�1>2
�2>2

j 1j C sup
2<�1<

2
"

2<�2<
2
"

jr 1j

��11 C �
�1
2

C sup
r> 1"

�
1

"
j@r 1j C j@s 1j

�
;

k 2k2;�;0 WD sup
�1>2
�2>2

j 2j

��2C�1 C ��2C�2 C "��2
C sup
2<�1<

2
"

2<�2<
2
"

jr 2j

��2C�1 C ��2C�2

C sup
r> 1"

Œ"��2j@r 2j C "
��1
j@s 2j�:

In the expressions above, the gradient of  j is .@x1 j ; @x2 j /, where z D .x1; x2/.
Since z D x1 C ix2 D reis D �1ei�1 C Qd D �2ei�2 � Qd , we have

jr j j
2
D .@x1 j /

2
C .@x2 j /

2
D .@r j /

2
C
1

r2
.@s j /

2

D .@�1 j /
2
C

1

�21
.@�1 j /

2
D .@�2 j /

2
C

1

�22
.@�2 j /

2:

We define also the norm for the right-hand side h D h1 C ih2 of (5.1),

khk��;0 WD

2X
jD1

kVdhkL1.�j<3/ C sup
�1>2
�2>2

�
jRe.h/j

��21 C �
�2
2 C "

2
C

jIm.h/j
��2C�1 C ��2C�2 C "2��

�
:

We claim that there exists a constant C > 0 such that, for all " sufficiently small and
any solution of (5.7), one has

k k�;0 � Ckhk��;0: (5.9)

To prove this, we assume by contradiction that there exist "n! 0 and  .n/; h.n/ solutions
of (5.7) such that

k .n/k�;0 D 1; kh
.n/
k��;0 D on.1/: (5.10)

We first work near the vortices Qdj , and work with the function

�
.n/
j .z/ D iW.z/ .n/.z C Qdj /:

The uniform bounds (5.10) imply directly that kr�.n/j kL
1.R2n.B. Qd1;2/[B. Qd2;2/// is

uniformly bounded. In the region B. Qd1; 2/ [ B. Qd2; 2/, the equation can be rewritten in
the form

��.n/ C "2nŒy
2@2xx�

.n/
� 2xy@2xy�

.n/
C x2@2yy�

.n/

� 4i.x@y�
.n/
� y@x�

.n// � 4�.n/�

C .1 � jVd j
2/�.n/ � 2Re. NVd�.n//Vd D iVdh.n/ (5.11)
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with �.n/ D iVd .n/. We have used the expression in Cartesian coordinates of the opera-
tor "2.@2ss � 4i@s � 4/. We remark that the linear operator in (5.11) is uniformly elliptic.
The uniform bounds (5.10) and standard elliptic estimates imply that

kr�.n/kL1.B. Qd1;2/[B. Qd2;2//

is uniformly bounded. As a consequence, kr�.n/j kL1.R2/ is uniformly bounded for j D
1; 2. We then can apply Arzela–Ascoli’s theorem to extract a subsequence such that
�
.n/
j ! �0 in C 0loc.R

2/. Passing to the limit in (5.7) (we use (3.14) and (3.15)), we con-
clude thatL0.�0/D 0 in R2, withL0 defined in (3.5). Moreover, �0 inherits the symmetry
�0. Nz/ D �0.z/. From the estimate k .n/k�;0 D 1, we deduce that �0 2 L1.R2/ and that
 1 D Re.�0=iW /,  2 D Im.�0=iW / satisfy

j 1j C jzjjr 1j � C; j 2j C jr 2j �
C

jzj2��
; jzj > 1:

By Lemma A.2, we deduce that �0 D c1Wx1 for some c1 2 R.
On the other hand, we can pass to the limit in the orthogonality condition

Re
Z
B.0;4/

� N�
.n/
j Wx1 D 0

and obtain necessarily c1 D 0. Hence �.n/j ! 0 in C 0loc.R
2/. Therefore,

 .n/ ! 0 uniformly on compact subsets of ¹�1 � 2; �2 � 2º: (5.12)

Next we derive estimates far away from the vortices. In the following we drop the
superscript n for simplicity. In ¹�1 > 2º \ ¹�2 > 2º, we have that  .n/ D  solves

h D � C 2
rVdr 

Vd
� 2i jVd j

2 2 C "
2@2ss C "

2

�
2
@sVd

Vd
� 4i

�
@s ;

which for  1 D Re. /,  2 D Im. / translates into the following system:

h1 D � 1 C

�
rw1

w1
C
rw2

w2

�
r 1 � r.�1 C �2/r 2 C "

2@2ss 1

C 2"2
��
@sw1

w1
C
@sw2

w2

�
@s 1 � @s.�1 C �2/@s 2

�
C 4"2@s 2; (5.13)

h2 D � 2 C

�
rw1

w1
C
rw2

w2

�
r 2 Cr.�1 C �2/r 1 � 2jVd j

2 2 C "
2@2ss 2

C 2"2
��
rw1

w1
C
rw2

w2

�
@s 2 C @s.�1 C �2/@s 1

�
� 4"2@s 1: (5.14)

We start by estimating  2. Since  2 satisfies

 2.x1;�x2/ D  2.x1; x2/ and  2.�x1; x2/ D  2.x1; x2/;

it is sufficient to obtain estimates for  2 in the quadrant ¹x1 > 0; x2 > 0º.
LetR > 0 be large fixed andDR D ¹x1 > 0; x2 > 0º \ ¹�1 >Rº. By the symmetries,

 2 satisfies a homogeneous Neumann boundary condition at x1 D 0 or x2 D 0.
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In DR, we have jVd j2 � c > 0 for some fixed positive constant c. We consider (5.14)
in DR and rewrite it as � 2 C "2@ss 2 � 2jVd j2 2 D p2 in DR, where

p2 D h2 �

�
rw1

w1
C
rw2

w2

�
r 2 � r.�1 C �2/r 1

� 2"2
��
@sw1

w1
C
@sw2

w2

�
@s 2 C @s.�1 C �2/@s 1

�
C 4"2@s 1:

We use polar coordinates .�1; �1/ around Qd and .�2; �2/ around � Qd , that is,

reis D �1e
i�1 C Qd D �2e

i�2 � Qd:

From this, we get

@r D
1

r
.�1 C Qd cos �1/@�1 �

Qd sin �1
r�1

@�1 ; @s D Qd sin �1@�1 C
�
1C

Qd cos �1
�1

�
@�1 ;

@r D
1

r
.�2 � Qd cos �2/@�2 C

Qd sin �2
r�2

@�2 ; @s D � Qd sin �2@�2 C
�
1 �
Qd cos �2
�2

�
@�2 :

With these expressions and the asymptotic behavior stated in Lemma A.1, we see thatˇ̌̌̌�
rw1

w1
C
rw2

w2

�
r 2

ˇ̌̌̌
�
C

R3

�
1

�2��1

C "2��
�
k 2k2;�;0;

jr.�1 C �2/r 1j � C.R
��
C "� /

�
1

�2��1

C "2��
�
k 1k1;�;0;

"2
ˇ̌̌̌�
@sw1

w1
C
@sw2

w2

�
@s 2

ˇ̌̌̌
� C.R�3 C "/

�
1

�2��1

C "2��
�
k 2k2;�;0;

"2j@s.�1 C �2/@s 1j � C.R
��
C "� /

�
1

�2��1

C "2��
�
k 1k1;�;0;

"2j@s 1j � C.R
��
C "� /

�
1

�2��1

C "2��
�
k 1k1;�;0

Since we assumed k k�;0 D 1, we get

jp2j � C.khk��;0 CR
��
C "� /

�
1

�2��1

C "2��
�
:

We use a barrier of the form

B2 DM

�
1

�2��1

C "2��
�

withM DC.khk��;0CR�� C "� Ck 2kL1.BR. Qd/// andC >0 is a large fixed constant.
Note that

@2ssB2 D
@2B2

@�21

Qd2 sin.�1/2 C
@B2

@�1
Qd cos.�1/

�
1C

Qd

�1
cos.�1/

�
DM.� � 2/.� � 3/

Qd2 sin.�1/2

�4��1

CM.� � 2/ Qd
cos.�1/
�3��1

�
1C

Qd

�1
cos.�1/

�
;
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and so

�B2 C "
2@ssB2 � 2jVd j

2B2 � �QcM

�
1

�2��1

C "2��
�

in DR

for some fixed Qc > 0. Thanks to a comparison principle in DR (a slight variant of Lem-
ma A.5) and standard elliptic estimates, we get

j 2j � C

�
1

�2��1

C "2��
�
.khk��;0 CR

��
C "� C k 2kL1.BR. Qd/// in DR: (5.15)

Standard elliptic estimates imply

jr 2j � C

�
1

�2��1

C "2��
�
.khk��;0 CR

��
C "�

C k 2kL1.BR. Qd/// in DR \
²
�1 �

2

"

³
: (5.16)

For points in DR with �1 > 1=", we use the scaling Q . Qr; s/ D  ."�1r; s/, and we get the
estimate

"�1j@r j C j@s j � C"
2�� .khk�� CR

��
C "� C k 2kL1.BR. Qd/// (5.17)

for points in DR with �1 > 1=".
Combining (5.15), (5.16) and (5.17), we get

k 2k2;�;0 � C.khk��;0 CR
��
C "� C k 2kL1.BR. Qd///: (5.18)

We next estimate  1. We also use the symmetries satisfied by  1, that is,

 1.�x1; x2/ D � 1.x1; x2/;  1.x1;�x2/ D � 1.x1; x2/;

to look at the equation for  1 in the quadrant ¹x1 > 0; x2 > 0º. Let us rewrite (5.13) as
� 1 C "

2@2ss 1 D p1, where

p1 D h1 �

�
rw1

w1
C
rw2

w2

�
r 1 Cr.�1 C �2/r 2

� 2"2
��
@sw1

w1
C
@sw2

w2

�
@s 1 � @s.�1 C �2/@s 2

�
� 4"2@s 2:

We have, in DR,ˇ̌̌̌�
rw1

w1
C
rw2

w2

�
r 1

ˇ̌̌̌
�

C

R�21
k 1k1;�;0;

jr.�1 C �2/r 2j � CR
��1

�
1

�21
C "2

�
kr 2k2;�;0;

2"2
ˇ̌̌̌�
@sw1

w1
C
@sw2

w2

�
@s 1

ˇ̌̌̌
�
C

R2

�
1

�21
C "2

�
k 1k1;�;0;

2"2j@s.�1 C �2/@s 2j � C

�
"1�� CR��1

��
"2 C

1

�21

�
k 2k2;�;0;

"2j@s 2j � C

�
"1�� CR��1

��
"2 C

1

�21

�
k 2k2;�;0:
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Using that k k�;0 D 1, we get

jp1j � C.khk��;0 CR
��1
C "1�� /

�
1

�21
C "2

�
:

We use the comparison principle with the barrier

B1 DM�1.� � �1/

with M D C.khk��;0 C R��1 C "1�� C k 1kL1.BR. Qd/// and C a large fixed constant.
We note that

@2ssB1 D �
Qd sin �1

Qd cos �1
�21

M.� � 2�1/

C

�
1C

Qd cos �1
�1

��
�

Qd sin �1
�1

M.� � 2�1/ � 2

�
1C

Qd cos �1
�1

�
M

�
From this, we get

�B1 C "
2@2ssB1 � �QcM

�
1

�21
C "2

�
for some fixed Qc > 0.

Thanks to a comparison principle in DR (a slight variant of Lemma A.5), we get

j 1j � C.khk��;0 CR
��1
C "1�� C k 1kL1.BR. Qd/// in DR: (5.19)

Elliptic estimates and a standard scaling give

�1jr 1j � C.khk��;0 CR
��1
C "1�� C k 1kL1.BR. Qd/// (5.20)

for points in DR with 2 < �1 < 2=". To estimate the gradient for points in DR with
�1 > 1=", we use the scaling Q .r; s/ D  ."�1 Qr; s/ and see that

"�1j@r 1j C j@s 1j � C.khk��;0 CR
��1
C "1�� C k 1kL1.BR. Qd/// (5.21)

in this region.
Combining (5.19), (5.20) and (5.21), we get

k 1k1;�;0 � C.khk��;0 CR
��1
C "1�� C k 1kL1.BR. Qd///:

Then, using (5.18), we conclude that

k k�;0 � C.khk��;0 CR
��
C "� CR��1 C "1��

C k 1kL1.BR. Qd// C k 2kL1.BR. Qd///:

Using then (5.12) and khk�� D o.1/, from the previous inequality, we get k k�;0 < 1=2
if from the start R is fixed large and we take " > 0 small. This is a contradiction and
proves (5.9).

The full estimate (5.8) follows from (5.9) and Schauder estimates.
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Proof of Proposition 5.1. We first solve the problem in bounded domains. We consider
the equation8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

L". / D hC c

2X
jD1

�j

iW.z � Qdj /
.�1/jWx1.z �

Qdj / in BM .0/;

 D 0 on @BM .0/;

Re
Z
B.0;4/

��jWx1 D 0 with �j .z/ D iW.z/ .z C Qdj /; j D 1; 2;

 satisfies symmetry (3.16):
(5.22)

with M > 10 Qd . We set

H WD

²
� D iVd 2 H

1
0 .BM .0/;C/ WRe

Z
B.0;4/

� N�jWx1 D 0; j D 1; 2;

 satisfies (3.16)
³
:

We equip H with the inner product

Œ�; '� WD Re
Z
BM .0/

.r�r' C "2@s�@s'/:

With this, H is a Hilbert space. Indeed, it is a closed subspace of H 1
0 .BM .0/;C/ and

Œ � ; � � is an inner product on H 1.BM .0/;C/ thanks to the Poincaré inequality. In terms
of �, the first equation of (5.22) can be rewritten as

�� C .1 � jVd j
2/� � 2Re.�Vd /Vd C "2.@2ss� � 4i@s� � 4�/C .� � 1/

E

Vd
�

D iVdhC iVdc

2X
jD1

Q�.�1/j�j .z/
Wx1.z �

Qdj /

iW.z � Qdj /
:

We can express this equation in its variational form. Namely, for all ' 2 H ,

� Re
Z
BM .0/

.r�r' C "2@s�@s'/C "
2 Re

Z
BM .0/

.4i�@s' � 4�'/

� 2Re
Z
BM .0/

Re.�Vd /Vd' C Re
Z
BM .0/

Œ.� � 1/
E

Vd
C .1 � jVd j

2/��'

D Re
Z
BM .0/

iVd

 
h � c

2X
jD1

�j .�1/
j Wx1.z �

Qdj /

iW.z � Qdj /

!
':

We now denote by hk.x/�; � i the linear form on H defined by

hk.x/�; 'i WD "2 Re
Z
BM .0/

.4i�@s' � 4�'/ � 2Re
Z
BM .0/

Re.�Vd /Vd'

C Re
Z
BM .0/

�
.� � 1/

E

Vd
C .1 � jVd j

2/

�
�':
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In the same way, we denote by hs; � i the linear form defined by

hs; 'i WD Re
Z
BM .0/

iVd

 
h � c

2X
jD1

�j .�1/
j Wx1.z �

Qdj /

iW.z � Qdj /

!
':

Thus the equation can be rewritten as

Œ�; '� � hk.x/�; 'i D hs; 'i for all ' 2 H :

By using the Riesz representation theorem, we can find a bounded linear operatorK on H

and S , an element of H depending linearly on s, such that the equation has the operational
form

� �K.�/ D S: (5.23)

Besides, thanks to the compact Sobolev injectionsH 1
0 .BM .0/;C/ ,! L2.BM .0/;C/, we

know thatK is compact. We can then apply Fredholm’s alternative to deduce the existence
of � such that (5.23) holds if the homogeneous equation only has the trivial solution. To
prove this last point, we establish an a priori estimate on c. In order to do that, we use
the following equivalent form of the equation in the region B. Qd; Qd/; with the translated
variable, it becomes

L"j .�j / D hj C c�Wx1 in B.0; Qd/;

where L"j is defined in (3.13), �j . Qz/ D iW. Qz/ .z � Qdj / and hj . Qz/ D iW. Qz/ .z � Qdj /
for j Qzj < Qd .

We can test this equation against W x1 to find

c D �
1

c�

�
Re
Z
B.0; Qd/

hjW x1 � Re
Z
B.0; Qd/

L"j .�j /W x1

�
;

with c� WD Re
R
B.0; Qd/

�jWx1 j
2 D Re

R
B.0;R/

�jWx1 j
2 ' C for some C > 0 of order 1 and

L"j defined in (3.13). Integrating by parts, we obtain

Re
Z
B.0; Qd/

L"j .�j /W x1 D Re
Z
B.0; Qd/

�j .L
"
j � L

0/.Wx1/

C Re
²Z

@B.0; Qd/

@�j

@�
W x1 � �j

@

@�
W x1

³
:

In the previous equality, we used that L0.Wx1/ D 0. However, using the expansion of
L"j � L

o in (3.14) and estimates (3.15), we can see thatˇ̌̌̌
Re
Z
B.0; Qd/

�j .L
"
j � L

0/.Wx1/

ˇ̌̌̌
D O"."

p
jlog "j/k k�: (5.24)

By using the decay of �j ;r�j and Wx1 ;rWx1 , we can also check thatˇ̌̌̌
Re
²Z

@B.0; Qd/

@�j

@�
W x1 � �j

@

@�
W x1

³ˇ̌̌̌
D O"."

p
jlog "j/k k�:
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Therefore, we arrive at

c D �
1

c�
Re
Z
B.0; Qd//

hjW x1 CO"."
p
jlog "j/

k k�

c�
:

To conclude the proof, we note that we can apply Lemma 5.1 to conclude that a solution
of the homogeneous equation satisfies

k k� � C

c
2X

jD1

�j .z/.�1/
j Wx1.z �

Qdj /

iW.z � Qdj /


��

� C"
p
jlog "jk k�;

and thus  D 0. Then, for any M > 10 Qd , we obtain the existence of a solution of (5.22)
satisfying k Mk� � Ckhk��, with C independent of M . Note that, in the previous argu-
ment, the norms k � k�, k � k�� are slightly adapted to deal with the fact that we work on
bounded domains. We can extract a subsequence such that  M *  in H 1

loc.R
2/ with  

solving (5.1). From Lemma 5.1, we deduce k k� � Ckhk��.

5.2. Second a priori estimate and proof of Proposition 5.2

Lemma 5.2. Let ˛ 2 .0; 1/, � 2 .0; 1/. Then there exists a constant C > 0 such that, for
all " sufficiently small and any solution  of (5.7) with k k� <1, one has

j j] � C.jhj]] C "jlog "j1=2khk��/: (5.25)

Proof. We work with the weaker seminorms

j j];0 WD

2X
jD1

jlog "j�1kVd kL1.�j<3/ C jRe. /j];1 C jIm. /j];2;

where j � j];1, j � j];2 are defined in (5.3), (5.4) and

jhj]];0 WD

2X
jD1

kVdhkL1.�j<4/ C sup
2<�1<R"
2<�2<R"

�
jh1j

��11 C �
�1
2

C
jh2j

��1C�1 C ��1C�2

�
:

We claim that there exists a constant C > 0 such that, for all " sufficiently small and any
solution of (5.7), one has

j j];0 � C.jhj]];0 C "jlog "j1=2khk��/: (5.26)

We argue by contradiction and assume that there exist "n! 0 and  .n/; h.n/ solutions
of (5.7) such that

j .n/j];0 D 1; .jh.n/j]];0 C "njlog "nj1=2kh.n/k��/! 0 (5.27)

as n!1.
We first work near the vortices and notice that, by symmetry, it is enough to consider

the vortex at C Qd . We work with the function �.n/j .z/ D i jlog "j�1W.z/ .n/.z C Qdj /.
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Using (5.27), from Arzela–Ascoli’s theorem, we can extract a subsequence such that
Q�
.n/
j ! �0 in C 0loc.R

2/. Passing to the limit in (5.7), we see that

L0.�0/ D 0 in R2;

with L0 defined in (3.5). The function �0 inherits the symmetry �0. Nz/ D �0.z/ and
satisfies �0 2 L1loc. Moreover, writing �0 D iW  0,  0 D  10 C i 

2
0 , we have

j 10 .z/j � jzj; j 
2
0 .z/j � 1; jzj > 2:

Thanks to the above estimate and Lemma A.3, we deduce �0 D c1Wx1 for some c1 2 R.
On the other hand, we can pass to the limit in the orthogonality condition

Re
Z
B.0;4/

� N�
.n/
j Wx1 D 0

and obtain necessarily c1 D 0. Hence �.n/j ! 0 in C 0loc.R
2/. We can also apply the same

argument near � Qd and get
 .n/

jlog "nj
! 0

uniformly on compact sets of ¹�1 � 1; �2 � 1º as "n ! 0.
In what follows in this proof, we work in the region

QDR0 D ¹R0 < �1 < R"º \ ¹x2 > 0º;

where R0 > 0 is fixed large and R" is given by (4.2).
We use barriers to estimate  .n/2 .z/ in QDR. By the symmetries of  .n/2 , we get the

estimates for all 2 < �1 < R". Let us write equation (5.14) as

� 2 C

�
rw1

w1
C
rw2

w2

�
r 2 � 2jVd j

2 2

C "2@2ss 2 C 2"
2

�
@sw1

w1
C
@sw2

w2

�
@s 2 D Qp2;

where
Qp2 D h2 � r.�1 C �2/r 1 � 2"

2@s.�1 C �2/@s 1 C 4"
2@s 1:

We observe that, in QDR0 , it holds

jr.�1 C �2/r 
.n/
1 j �

C

�1
log
�
2R"

�1

�
j 
.n/
1 j];1;

"2nj@s.�1 C �2/@s 1j �
C

�1jlog "nj
log
�
2R"

�1

�
j 
.n/
1 j];1;

"2nj@s 
.n/
1 j �

C

�1jlog "nj
log
�
2R"

�1

�
j 
.n/
1 j];1:

Using the a priori estimate of Lemma 5.1, we find that

k .n/k� � Ckh
.n/
k�� D o.1/"

�1
n jlog "nj�1=2: (5.28)
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Thus, writing  .n/ D  .n/1 C i 
.n/
2 , we have

j 
.n/
1 .z/j � o.1/"�1n jlog "nj�1=2;

j 
.n/
2 .z/j C jr 

.n/
2 .z/j � o.1/"�1n jlog "nj�1=2

�
1

�2��1

C
1

�2��2

�
for 2 < jzj < 1="n with o.1/! 0 as n!1. We note that, for jz � Qdj j D R",

j 
.n/
2 .z/j �

k .n/k�

R2��"

D
o.1/R"

R2��"

D o.1/

as n!1 by (5.28). We use as a barrier the function

QB2 D
C

�1C�1

.jh.n/j]];0 C k 
.n/
2 kL1.�1DR"n /

/

C
C

�1
log
�
2R"

�1

��
j 
.n/
1 j];1 C

k 
.n/
2 kL1.�1DR0/

jlog "nj

�
;

where C > 0 is a large fixed constant. We note that

QB2 �
bn

�1��1

C
1

�1
log
�
2R"

�1

�
.C j 

.n/
1 j];1 C bn/ (5.29)

in QDR0 , where bn ! 0 as n!1. By the maximum principle and elliptic estimates, we
get

j 
.n/
2 j C jr 

.n/
2 j �

QB2 (5.30)

in QDR0 .
Next we use barriers to estimate  .n/1 in QDR0 . By the symmetries of  .n/1 , we get the

estimates for all 2 < �1 < R". Let us write equation (5.13) as

� 1 C

�
rw1

w1
C
rw2

w2

�
r 1 C "

2@2ss 1 C 2"
2

�
@sw1

w1
C
@sw2

w2

�
@s 1 D p1;

where p1 D h1 Cr.�1 C �2/r 2 C 2"2@s.�1 C �2/@s 2 � 4"2@s 2.
We find that, in QDR, the following estimates hold:

jr.�1 C �2/r 
.n/
2 j �

C

�1
QB2;

"2nj@s.�1 C �2/@s 
.n/
2 j �

C

�1jlog "nj
QB2;

"2nj@s 
.n/
2 j �

C

�1jlog "nj
QB2

Hence, using (5.29) and (5.30), we get

jp1j �
bn

�1
C

1

�21
log
�
2R"

�1

�
.C j 

.n/
1 j];1 C bn/

for a new sequence bn ! 0.
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Using Lemma A.8 for part of the right-hand side and the supersolution

log
�
2R"

�1

�
.C j 

.n/
1 j];1 C bn/;

we conclude that

j 
.n/
1 .z/j � Cbn�1 log

�
2R"

�1

�
C log

�
2R"

�1

�
.C j 

.n/
1 j];1 C bn/

� C�1 log
�
2R"

�1

��
bn C

j 
.n/
1 j];1

R0

�
:

This and standard elliptic estimates yield

j 
.n/
1 j1;] � C

�
bn C

j 
.n/
1 j];1

R0

�
:

Choosing R0 > 0 large and fixed, we get j .n/1 j1;]! 0 as n!1. Using this and (5.29),
(5.30), we obtain j .n/2 j2;] ! 0 as n!1. This contradicts assumption (5.27), and we
obtain (5.26). With this inequality and standard Schauder estimates, we deduce (5.25).

As an intermediate step to obtain Proposition 5.2, we consider the symmetry proper-
ties of the solution constructed in Proposition 5.1, when the right-hand side has symme-
tries. More precisely, let us consider the local symmetry condition

h.Rj z/ D �h.z/; jz � Qdj j < 2R"; j D 1; 2: (5.31)

Lemma 5.3. Suppose h satisfies symmetries (3.16) and (5.31). We assume khk�� <1.
Then there exist  s ,  � such that the solution  to (5.1) with k k� <1 can be written
as  D  s C  � with the estimates

k sk� C k 
�
k� � Ckhk��; j 

�
j] � C"jlog "j1=2khk��:

Moreover, . s; �/ define linear operators of h, s has its support inBR". Qd1/[BR". Qd2/
and satisfies

 s.Rj z/ D � s.z/; jz � Qdj j < R": (5.32)

Proof. To construct the function  s , we split the operator L" (cf. (3.11)) into a part
L"
s preserving symmetry (5.32) and a remainder L"

r . This splitting depends on which
vortex Qdj we are considering for symmetry (5.32), and thus we write L"

s;j , L"
r;j , j D 1; 2.

It is sufficient to consider the vortex at Qd1. We set

L"
s;1. / WD � C 2

rW ar 

W a
� 2i jW a

j
2 Im. /

C "2
�
Qd2@2�1�1 sin.�1/2 C

Qd2

�1
@2�1�1 sin.�1/ cos.�1/

C @2�1�1 

�
1C

Qd2

�21
cos2.�1/

�
C @�1 

Qd2

�1
cos2.�1/ � 2@�1 

Qd2

�21
sin.�/ cos.�1/

�
;
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L"
r;1. / WD 2

rW br 

W b
� 2i.jVd j

2
� jW a

j
2/ Im. /

C "2
�
2 Qd@2�1�1 sin.�1/C 2@2�1�1 

Qd

�1
cos.�1/

C @�1 
Qd cos.�1/ � @�1 

Qd

�1
sin.�1/

�
C "2

�
2@sVd

Vd
� 4i

��
@�1 

Qd sin.�1/C
�
1C

Qd

�1
cos.�1/@�1 

��
:

We use the same cut-off functions defined in (4.18) and solve8̂̂̂<̂
ˆ̂:

L"
s. 

2;1/ D h�1;2R" in R2;

Re
Z
B.0;4/

��2;1Wx1 D 0 with �2;1.z/ D iW.z/ 2;1.z C Qd1/;

 2;1 satisfies  2;1. Nz/ D � 2;1.z/:

This is obtained as variant of Proposition 5.1 with the same proof. Note that there is no
need to project the right-hand side since it is automatically orthogonal to the kernel by
symmetry, and note also that the orthogonality condition for the solution holds also by
symmetry. Recall that h satisfies (5.31), and we get a solution  2; 1 satisfying (5.32)
with the estimate k 2;1k� � Ckhk��. In a similar way, we construct  2;2 centered at the
vortex Qd2 and define

 s WD �1; 12R" 
2;1;C�2; 12R" 

2;2: (5.33)

Note that we have the estimate k sk� � Ckhk��.
Let

Qh WD h �L"
s;1.�1; 12R" 

2;1/ �L"
r;1.�1; 12R" 

2;1/

�L"
s;2.�2; 12R" 

2;2/ �L"
r;2.�2; 12R" 

2;2/:

Some lengthy but direct calculations show that

k Qhk�� � Ckhk��; j Qhj]] � C"jlog "j1=2khk��:

Then we solve, using Proposition 5.1,8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

L". Q / D QhC Qc

2X
jD1

�j

iW.z � Qdj /
.�1/jWx1.z �

Qdj / in R2;

Re
Z
B.0;4/

� Q�jWx1 D 0 with Q�j .z/ D iW.z/ Q .z C Qdj /;

Q satisfies symmetry (3.16)

and obtain, using also Lemma 5.2,

k Q k� � Ck Qhk��; j Q j] � C.j Qhj]] C "jlog "j1=2k Qhk��/:
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Finally, we set
 � D Q : (5.34)

The functions  s ,  � defined in (5.33), (5.34) satisfy the stated properties.

Proof of Proposition 5.2. Let us define Qh WD h� ho so that hD QhC ho˛ C h
o
ˇ

. Let Q , Q ˛ ,
Q ˇ be the solution with finite k � k�-norm of (5.1) with right-hand sides Qh, ho˛ , ho

ˇ
given

by Proposition 5.1. Then  D Q C Q ˛ C Q ˇ , and we have the estimates

k Q k� . k Qhk��; k Q j k� . khoj k��; j D ˛; ˇ:

We have  o D Q o C Q o˛ C Q 
o
ˇ

. We define

 o˛ WD
Q o C Q o˛ ;  oˇ WD

Q oˇ :

Note that, by Lemma 5.2,

j Q o˛ j] . j Q ˛j] . jho˛j]] C "jlog "j1=2kho˛k��:

According to Lemma 5.3, we can write Q D  s C  � with  s ,  � satisfying the
properties stated in that lemma, from which we get

j Q oj] D j. 
�/oj] . j �j] . "jlog "j1=2k Qhk��:

Therefore,
j o˛ j] . jho˛j]] C "jlog "j1=2.kho˛k�� C k Qhk��/;

and this proves (5.5).
On the other hand,

k o˛k� � k
Q ok� C k Q 

o
˛k� . k Q k� C k Q ˛k� . k Qhk�� C kho˛k��;

k oˇk� D k
Q oˇk� . k Q ˇk� . khoˇk��;

and from here, (5.6) follows.

6. A projected nonlinear problem

We consider now the nonlinear projected problem8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

L". / D RCN . /C c

2X
jD1

�j .z/

iW.z � Qdj /
.�1/jWx1.z �

Qdj / in R2;

Re
Z

R2
��jWx1 D 0 with �j .z/ D iW.z/ .z C Qdj /; j D 1; 2;

 satisfies (3.16):

(6.1)

Using the operator T" introduced in Proposition 5.1, we can rewrite this equation in the
form of a fixed-point problem as  D T".RCN . // DW G". /.
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Proposition 6.1. There exists a constant C > 0 depending only on 0 < ˛; � < 1, such
that, for all " sufficiently small, there exists a unique solution  " of (6.1) that satisfies

k "k� �
C

jlog "j
:

Furthermore,  " is a continuous function of the parameter Od WD
p
jlog "jd and

j o" j] � C"
p
jlog "j;

where  o" is defined according to (5.2).

Proof. We let

F WD

²
 W  satisfies (3.16); Re

Z
R2
�j�jWx1 D 0; j D 1; 2;

k k� �
C

jlog "j
; j oj] � C"

p
jlog "j

³
:

Endowed with the norm k �k�, F is a closed subset of the Banach space ¹ W k k�<C1º.
We will show that, for " small enough, G" maps F into itself. Indeed, we need to check
that if k k� � C=jlog "j, then kT".E CN . //k� � C=jlog "j.

Note first that, from Proposition 4.1,

kRk�� �
C

jlog "j
:

Let us now estimate the size of the nonlinear term. For �1 > 3 and �2 > 3, the nonlinear
terms are

i.r /2 C i jVd j
2.e�2 2 � 1C 2 2/C i"

2.@s /
2:

Let us work in the right half-plane (so �1 � �2). We start with .r /2. For 3 < �1 < 2=",
we have

j.r /2j � jr j2 �
k k2�

�21
:

For r > 1=", we use

.r /2 D .@r /
2
C
1

r2
.@s /

2

and estimate
j.@r /

2
j D .@r 1/

2
C .@r 2/

2
� "2k k2�

and
1

r2
j.@s /

2
j �

1

r2

�
.@s 1/

2
C .@s 2/

2
�
�
1

r2
k k2�:

It follows that ki.r /2k�� � Ck k2�.
Next we consider i jVd j2.e�2 2 � 1C 2 2/. We note that the real part of this function

is zero. Again, we work in the right half-plane. We have, for �1 > 3,ˇ̌
jVd j

2.e�2 2 � 1C 2 2/
ˇ̌
� C j 2j

2
� C.��2C�1 C "2�� /2k 2k

2
2;�;
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and hence
ki jVd j

2.e�2 2 � 1C 2 2/k�� � Ck k
2
�;

Finally, we consider i"2.@s /2. We have, for 3 < �1 < 2=",

j"2.@s /
2
j � "2 Qd2j@�1 j

2
C

�
"C

" Qd

�1

�2
j@�1 j

2
� C."2 C ��21 /k k2�:

For r > 1=",
j"2.@s /

2
j � "2k k2�:

It follows that ki"2.@s /2k�� � k k2�.
In ¹�1 � 3º [ ¹�2 � 3º, it can be checked that

jiVdN . /j � C
�
jD2 j C jD j C j j C j C �jj�j

C j C �j2.1C j C �j C j j/C jEd jj�j C jr�j
2
�

with  D .1 � �/Vd .ei � 1 � i /. Thus we obtain that, for any j D 1; 2,

kiVdN . /kC˛.¹�j<3º/ � Ck k
2
� C jEjj�j �

C

jlog "j2
:

Thus, for an appropriate constant C , we have thatG"W 7! T".E CN . //maps the ball
¹ I k k� � C=jlog "jº into itself.

Let us now see the precise estimates on the “odd parts” and “even parts”. From Propo-
sition 4.2, we know thatRo, defined as in (4.19), can be decomposed intoRo DRo˛ CR

o
ˇ

with
jRo˛j]] �

C"p
jlog "j

kRoˇk�� � C"
p
jlog "j:

It remains to prove that

jN . /oj]] � C
�
.j oj] C "jlog "j1=2/k ek� C j oj2]

�
: (6.2)

In order to do that, we recall that, in the decomposition of a function f in odd and even
modes, we have that, nearC Qd , the function f e is exactly �-periodic in �1, whereas f o is
exactly 2�-periodic in �1. An analogous statement is true near � Qd . Now we can express
the product of two functions as

fg D .f e C f o/.ge C go/ D f ege C f ego C gef o C gof o:

We see that f ege is exactly �-periodic, and hence .fg/o D Œf ego C gef o C f ogo�o.
Thus we arrive at

j.fg/oj � .jf ojjgej C jf ejjgoj C jf ojjgoj/: (6.3)

To estimate N . /, we use a change of variables .r; s/! .�j ; �j /D .�;�/, and we observe
that

.r /2 D .@r /
2
C
1

r2
.@s /

2
D .@� /

2
C

1

�2
.@� /

2;
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and

"2.@s /
2
D "2.@� /

2
C "2 Qd

�
sin �@� @� C

cos �
�

.@� /
2

�
C "2 Qd2

�
sin2 �.@� /2 C

4 cos � sin �
�

@� @� C
cos2 �
�2

.@� /
2

�
:

Thus, component-wise, we obtain

. QN . //1 D 2.@� 1/.@� 2/C 2.@� 1/.@� 2/

�
"2 C

1

�2

�
C "2 Qd

�
sin �Œ@� 1@� 2 C @� 1@� 2�C

2 cos �
�

@� 1@� 2

�
C "2 Qd2

�
2 sin2 �@� 1@� 2

C
4 sin � cos �

�
Œ@� 1@� 2 C @� 1@� 2�

C
2 cos2 �
�2

@� 1@� 2

�
;

. QN . //2 D �.@� 1/
2
C .@� 2/

2
�

�
"2 C

1

�2

��
.@� 2/

2
� .@� 1/

2
�

C "2 Qd

�
sin �.@� 1@� 1 C @� 2@� 2/C

cos �
�

Œ.@� 2/
2
� .@� 1/

2�

�
C "2 Qd2

�
sin2 �

�
.@� 2/

2
� .@� 1/

2
�

C
4 cos � sin �

�
.@� 1@� 1 C @� 2@� 2/

C
cos2 �
�2

Œ.@� 2/
2
� .@� 1/

2�

�
C jVd j

2.1 � e2 2 � 2 2/:

We define

A1. / WD 2.@� 1/.@� 2/C 2.@� 1/.@� 2/

�
"2 C

1

�2

�
;

B1. / WD "
2 Qd

�
sin �Œ@� 1@� 2 C @� 1@� 2�C

2 cos �
�

@� 1@� 2

�
;

C1. / WD "
2 Qd2

�
2 sin2 �@� 1@� 2 C

4 sin � cos �
�

Œ@� 1@� 2 C @� 1@� 2�

C
2 cos2 �
�2

@� 1@� 2

�
:

We have .N . //1 D A1. /CB1. /C C1. /. Besides, we can see that

jB1. /j

��11 C �
�1
2

�
C"p
jlog "j

�
jr 1j

��11 C �
�1
2

�
jr 2j

��11 C �
�1
2

�
�

C"p
jlog "j

k k2�
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for 3 < �1 < R". Now, by using the argument that a product of two �-periodic functions
is �-periodic and the products of one �-periodic function and one 2�-periodic function
is 2�-periodic and (6.3), we find that

jŒA1. /C C1. /�
oj

��11 C �
�1
2

� C.k k�j 
o
j] C j 

o
j
2
] /:

Thus we obtain

j.N . //o1j

��11 C �
�1
2

� C

�
k k�j 

o
j] C j 

o
j
2
] C

C"p
jlog "j

k k2�

�
for 3 < �1 < R". We also have

1 � e2 2 � 2 D .1 � e2 
e
2 � 2 e2 /C .1 � e

2 o
2 � 2 o2 /e

2 e
2 C 2 o2 .e

2 e
2 � 1/:

We notice that 1 � e2 
e
2 � 2 e2 is a �-periodic function. Thus we find that

j.1 � e2 2 � 2 2/
o
j � C.j o2 jj 

e
j C j oj2/:

By using again that a product of two �-periodic functions is �-periodic and the products
of one �-periodic function and one 2�-periodic function is 2�-periodic and (6.3), we can
obtain

j.N . //o2j � C

�
k k�j 

o
j] C j 

o
j
2
] C

C"p
jlog "j

k k2�

�
We proceed in the same way to estimate the other terms in N . / when �1 < 3 or �2 < 3,
and we use repeatedly (6.3) to arrive at (6.2).

We now show thatG" is a contraction for " small enough. Indeed, if k j k��C=jlog "j
for j D 1; 2, then

kN . 1/ �N . 2/k�� �
C

jlog "j
k 1 �  2k�:

This is mainly due to the fact that N. / is quadratic and cubic in  , and in the first and
second derivatives of  . Then we can use a2 � b2 D .a � b/.a C b/ and a3 � b3 D
.a� b/.a2C abC b2/. We finally apply the Banach fixed-point theorem, and we find the
desired solution.

By definition, the error function E, the coefficients of L" and of N " depend con-
tinuously on the parameter Od . Thus we also have that the operator T" defined in Propo-
sition 5.1 depends continuously on Od . Underlying the dependence on Od and using the
fixed-point characterization of  , we find that, for Od1; Od2 > 0,

 . Od1/ �  . Od2/ D T". Od1/.E. Od1// � T". Od2/.E. Od2//

C T". Od1/.N . . Od1// � T". Od2/.N . . Od2//

D T". Od1/ŒE. Od1/ �E. Od2/�C .T". Od1/ � T". Od2//.E. Od2//

C T". Od1/ŒN . . Od1// �N . . Od2//�

C .T". Od1/ � T". Od2//.N . . Od2///:
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Thus, by using that, for " small, T" ıN is a contraction, we find that

k . Od1/ �  . Od2/k� �
1

1 � k

�
kT". Od1/ŒE. Od1/ �E. Od2/�k�

C k.T". Od1/ � T". Od2//.E. Od2//k�

C k.T". Od1/ � T". Od2//.N . . Od2///k�
�
;

where k is a Lipschitz constant strictly less than 1. We can conclude that  D  " inherits
the continuous dependence on Od .

7. Solving the reduced problem

The solution  " of (6.1) previously found depends continuously on Od WD
p
jlog "jd . We

want to find Od such that the Lyapunov–Schmidt coefficient in (6.1) satisfies c D c. Od/D 0.
We let

'" WD �iVd " C .1 � �/Vde
i " and �" WD iVd ";

where � was defined in (3.3). By symmetry, we work only in RC �R. From the previous
section, we have found  " such that

iW.z/ŒL". "/CRCN . "/�.z C Qd/ D c�Wx1 :

For R" defined in (4.2), we set

c� WD Re
Z
B.0;R"/

�jWx1 j
2
D Re

Z
B.0;4/

�jWx1 j
2;

and we remark that this quantity is of order 1. We find that

cc� D Re
Z
B.0;R"/

iW.z/R.z C Qd/W x1.z/

C Re
Z
B.0;R"/

iW.z/L". "/.z C Qd/W x1.z/

C Re
Z
B.0;R"/

iWN . "/.z C Qd/W x1 :

We recall that iW.z/L". /.z C Qd/ D L"j .�j / for j D 1 and Lj defined in (3.13). Inte-
grating by parts, we find

Re
Z
B.0;R"/

L"j .�j /W x1 D Re
Z
B.0;R"/

�j .L
"
j � L

0/.Wx1/

C Re
²Z

@B.0;R"/

�
@�j

@�
W x1 � �j

@W x1

@�

�³
:

Proceeding like in (5.24), we concludeˇ̌̌̌
Re
Z
B.0;R"/

L"j .�j /W x1

ˇ̌̌̌
� C"

p
jlog "jk k� �

C"p
jlog "j

:
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Now we estimate the inner product of Wx1 and iW.z/N . /.z C Qd/. We use the
orthogonality of the Fourier modes to write

Re
Z
B.0;R"/

iW.z/N . /.z C Od/W x1

D Re
Z
B.0;R"/

iW W x1.N . //o

D Re
Z
B.0;R"/

iw

�
w0 cos � �

iw

�
sin �

�
ŒN . /o1 C iN

o
2 . /�

D �

Z
B.0;R"/

�
ww0 cos �N . /o2 �

w2

r
N . /o1 sin �

�
:

We use that

j.N . //o2j � j.N . //o2j]] � Ck 
e
k�j 

o
j] C j 

o
j
2
] � C"jlog "j�1=2;

j.N . //o1j � C

�
j o2 j]k 

e
1k�

1C �2
C
j o1 j]k 2k�

1C �2��
C
j o1 j]j 

o
2 j]

1C �2��

�
� C

"jlog "j�1=2

1C �2��

to obtain ˇ̌̌̌
Re
Z
B.0;R"/

iW.z/N . /.z C Qd/W x1

ˇ̌̌̌
� C

"p
jlog "j

:

Now we claim

Re
Z
B.0;R"/

iW.z/R.z C Qd/W x1 D �"
p
jlog "j

�
a0

Od
� a1 Od

�
C o"."

p
jlog "j/:

We set
B0 WD Re

Z
B.0;R"/

iW.z/R.z C Qd/0W x1 ;

B1 WD Re
Z
B.0;R"/

iW.z/R.z C Qd/1W x1 ;

where we recall that S0.Vd / D iVdR0, S1.Vd / D iVdR1 and S0; S1 are given by (3.4).
From Lemma A.1 and Lemma 4.2, we find that

B1 D
Od"p
jlog "j

Re
Z
¹�1<R"º

jWx1 j
2
CO"

�
"p
jlog "j

�
D Od"

p
jlog "ja1 C o"."

p
jlog "j/;

where we set

a1 WD
1

jlog "j

Z 2�

0

Z QR"

0

w21 sin2 �1
�1

d�1 d�1;

with QR" which is of order "�1jlog "j�1=2 and which does not depend on Od .
Because lim�!C1 w.�/ D 1, we can see that 0 < c < a1 < C for some constants

c; C > 0, and a1 is independent of Od .



Interacting helical Ginzburg–Landau filaments 43

On the other hand, by (4.6), we have

B0 D Re
Z
¹�1<R"º

2
.W a

x1
W b
x1
CW a

x2
W b
x2
/

W b
W a
x1

C Re
Z
¹�1<R"º

.1 � jW aW b
j
2
C jW a

j
2
� 1C jW b

j
2
� 1/W aW a

x1
:

The second integral is equal to

Re
Z
¹�1<R"º

�
1 � .w1w2/

2
C w21 � 1C w

2
2 � 1

��
w01 cos �1 C

iw1

�1
sin �1

�
w1

D O"."
2
jlog "j/;

where we used that .1 � .w1w2/2 C w21 � 1 C w
2
2 � 1/ D O."2jlog "j/ and w0.�/ D

1=�3 CO�.1=�
4/. We can also see that

Re
Z
¹�1<R"º

W a
x1
W b
x1

W b
W a
x1

D Re
Z
¹�1<R"º

�
w01 cos �1 C i

w1

�1
sin �1

��
w01
w02
w2

cos �1 cos �2

�
w1

�1�2
sin �1 sin �2 � i

�
w01
�2

cos �1 sin �2 C
w02w1

w2�1
cos �2 sin �1

��
D �

Z
¹�1<R"º

w1w
0
1 cos �1 sin �1 sin �2

d�1
�2

d�1

C

Z
¹�1<R"º

w01w1 cos �1 sin �1 sin �2
d�1
�2

d�1 CO."2jlog "j/:

In the previous equality, we used w02 � C"
3jlog "j3=2. Hence we get

Re
Z
¹�1<R"º

W a
x1
W b
x1

W b
W a
x1
D O"."

2
jlog "j/:

Finally, we have

Re
Z
¹�1<R"º

W a
x2
W b
x2

W b
W a
x1

D Re
Z
¹�1<R"º

�
w01 cos �1 C i

w1

�1
sin �1

��
w01
w02
w2

sin �1 sin �2

�
w1

�1�2
cos �1 cos �2 C i

�
w01
�2

sin �1 cos �2 C
w02w1

w2�1
cos �1 sin �1

��
D �

Z
¹�1<R"º

w1w
0
1

�1�2
cos2 �1 cos �2�1 d�1 d�1

�

Z
¹�1< Qdº

w1w
0
1

�1�2
sin2 �1 cos �2�1 d�1 d�1 CO."2jlog "j/

D

Z
¹�1<R"º

w1w
0
1

�2
cos �2 d�1 d�1 CO."2jlog "j/:
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Using the properties of w1; w01 and that, in this region,

cos �2 > 0 and 0 < c <
�2"

p
jlog "j
Od

< C

for some constants c; C > 0 and �2"
p
jlog "j= Od is independent of Od in the region 0 <

�1 < R", we find

Re
Z
¹�1<R"º

W a
x2
W b
x2

W b
W a
x1
D �

a0

Od
"
p
jlog "j C o"."

p
jlog "j/;

with c < a0 < C for some constants c; C > 0 and independent of Od .
Therefore, we conclude that

cc� D "
p
jlog "j

�
a0

Od
� a1 Od

�
C o"."

p
jlog "j/:

Let us point out that, in this expression, o"."
p
jlog "j/ is a continuous function of the

parameter Od . By applying the intermediate value theorem, we can find Od0 near
p
a0=a1

such that c D c. Od0/ D 0. For such Od0, we obtain that Vd C '" is a solution of (1.1).
To conclude the proof of Theorem 1, thanks to the helical symmetry, it suffices to show
that the solutions of the two-dimensional problem we found satisfy limjzj!C1jV".z/j D
1. But this is because, far away from the vortices, our solution takes the form V".z/ D

W.z � Qd/W.zC Qd/ei " . Thus jV"j D jW.z � Qd/W.zC Qd/je� Im " . Thanks to the decay
estimates obtained on  ", we have

jIm j �
C

jlog "j

�
1

1C jz � Qd j2��
C

1

1C jz C Qd j2��

�
:

This proves that limjzj!C1jV".z/j D 1 and thus that the solution of the three-dimensional
problem satisfies (1.14).

Appendix A.

A.1. The standard vortex and its linearized operator

As stated in the introduction, the building block used to construct our solutions to equation
(2.1) is the standard vortex of degree one, W , in R2. It satisfies

�W C .1 � jW j2/W D 0 in R2

and can be written as

W.x1; x2/ D w.r/e
i� ; where x1 D r cos �; x2 D r sin �:

Here w is the unique solution of (1.6). In this section, we collect useful properties of w
and of the linearized Ginzburg–Landau operator around W .
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Lemma A.1. The following properties hold:

(1) w.0/ D 0, w0.0/ > 0, 0 < w.r/ < 1 and w0.r/ > 0 for all r > 0;

(2) w.r/ D 1 � 1=.2r2/CO.1=r4/ for large r;

(3) w.r/ D ˛r � ˛r3=8CO.r5/ for r close to 0 for some ˛ > 0;

(4) if we define T .r/ D w0.r/ � w=r , then T .0/ D 0 and T .r/ < 0 in .0;C1/;

(5) w0.r/ D 1=r3 CO.1=r4/, w00.r/ D O.1=r4/.

For the proof of this lemma, we refer to [10, 25].
An object of special importance to construct our solution is the linearized Ginzburg–

Landau operator around W , defined by

L0.�/ WD �� C .1 � jW j2/� � 2Re.W �/W:

This operator does have a kernel, as the following result states.

Lemma A.2. Suppose that � 2 L1.R2/ satisfies L0.�/ D 0 in R2 and the symmetry
�. Nz/ D N�.z/. Assume furthermore that, when we write � D iW  and  D  1 C i 2
with  1;  2 2 R, we have

j 1j C .1C jzj/jr 1j � C; j 2j C jr 2j �
C

1C jzj
; jzj > 1:

Then � D c1Wx1 for some real constant c1.

Proof. The equation L0.�/ D 0 in B.0; 1/c translates into

� C 2
rW

W
r � 2i jW j2 Im D 0 in B.0; 1/c :

This reads

0 D � 1 C
2w0

w
@r 1 C

2

r2
@� 2 in B.0; 1/c ;

0 D � 2 C
2w0

w
@r 2 �

2

r2
@� 1 � 2jW j

2 2 in B.0; 1/c :

We thus have, by using the decay assumption on  1;  2, thatˇ̌
� 2 � 2jW j

2 2
ˇ̌
�

C

1C r2
in B.0; 1/c :

Since jW j2 � C > 0 in B.0; 1/c , we can use a barrier argument and elliptic estimates to
obtain

.1C jzj2/.j 2j C jr 2j/ � C: (A.1)

We can then use the previous estimate to obtain

j� 1j �
C

1C r3
in B.0; 1/c :

We use that  1.z D x1 C ix2/ D 0 for x2 D 0, a barrier argument in the half-plane and
elliptic estimates to obtain

j 1j C .1C jzj/jr 1j �
C

.1C jzj/˛
(A.2)
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for any ˛ 2 .0; 1/. From (A.1) and (A.2), we get

j�.z/j C .1C jzj/jr�j �
C

.1C jzj/˛
; jzj > 1: (A.3)

From the fact L0.�/ D 0 in R2, we know that

Re
Z
BR.0/

��� C

Z
BR.0/

.1 � jW j2/j�j2 � 2

Z
BR.0/

jRe.W �/j2 D 0

for any R > 0. Then, integrating by parts, we getZ
BR.0/

jr�j2 � Re
Z
@BR.0/

�@�� �

Z
BR.0/

.1 � jW j2/j�j2 C 2

Z
BR.0/

jRe.W �/j2 D 0:

Using (A.3), we find jRe.�@��/j � C=.1C jzj2˛C1/. Thusˇ̌̌̌
Re
Z
@BR.0/

�@��

ˇ̌̌̌
�

C

R2˛
:

Making R!1, we concludeZ
R2
jr�j2 �

Z
R2
.1 � jW j2/j�j2 C 2

Z
R2
jRe.W �/j2 D 0:

Thanks to the decay estimates (A.3), we also haveZ
R2
Œjr�j2 C .1 � jW j2/j�j2 C jRe. NW �/j2� < C1:

We can then apply [15, Theorem 1] to obtain that there exists c1; c2 2 R such that � D
c1Wx1 C c2Wx2 . Using the symmetry assumption �. Nz/ D N�.z/, we can conclude that
actually � D c1Wx1 for some c1 2 R.

Lemma A.3. Suppose that � 2 L1loc.R
2/ satisfies L0.�/ D 0 in R2 and the symmetry

�. Nz/ D �.z/. Assume furthermore that, when we write � D iW  and  D  1 C i 2
with  1;  2 2 R, we have

j 1j C .1C jzj/jr 1j � C.1C jzj/
˛; j 2j C jr 2j �

C

1C jzj
; jzj > 1;

for some ˛ < 3. Then � D c1Wx1 for some real constant c1.

Proof. Here we work with the change of variables � D ei� . Then L0.�/ D 0 becomes

0 D � �
1

r2
 C

2i

r2
@� C .1 � w

2/ � 2iw2 Im. /:

Writing  D  1 C i 2 with  1;  2 2 R, we get the system8̂<̂
:
0 D � 1 �

1

r2
 1 �

2

r2
@� 2 C .1 � w

2/ 1

0 D � 2 �
1

r2
 2 C

2

r2
@� 1 C .1 � 3w

2/ 2;

which holds in R2 n ¹0º with the symmetry condition  1. Nz/ D � 1.z/,  2. Nz/ D  2.z/.
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We decompose in Fourier modes

 1 D

1X
kD1

 21;k.r/ sin.k�/;  2 D

1X
kD0

 12;k.r/ cos.k�/

and obtain

0 D @rr 
2
1;k C

1

r
@r 

2
1;k �

k2 C 1

r2
 21;k C 2

k

r2
 12;k C .1 � w

2/ 21;k ; (A.4)

0 D @rr 
1
2;k C

1

r
@r 

1
2;k �

k2 C 1

r2
 12;k C 2

k

r2
 21;k C .1 � 3w

2/ 12;k : (A.5)

In particular, equation (A.4) for k D 1 can be written as

@rr 
2
1;1 C

1

r
@r 

2
1;1 �

1

r2
 21;1 D g0;

where

g0.r/ D �2
1

r2
 12;1 C

�
w2 � 1C

1

r2

�
 21;1 D O.r

˛�4/

as r !1. The variation of parameters formula yields a function

 0.r/ D �
1

r

Z r

0

�

Z 1
�

g0.s/ ds d�;

which satisfies

@rr 0 C
1

r
@r 0 �

1

r2
 0 D g0 for r > 1;

j 0.r/j � Cr
˛�2; j@r 0.r/j � Cr

˛�3 for r > 1: (A.6)

Hence
 21;1.r/ D  0.r/C ˛1r C ˛2r

�1; r > 1; (A.7)

for some ˛1; ˛2 2 R. We claim that ˛1 D 0. To prove this, we note that, for k D 1, system
(A.4)–(A.5) has the explicit solution

N D

�
N 1
N 2

�
; N 1 D

w.r/

r
; N 2 D �w

0.r/

Let

 D

�
 21;1
 12;1

�
;

and define the Wronskian W.r/ D  � N r �  r � N . We claim that

W.r/ D
c

r
(A.8)

for some c 2 R. To prove this, note that system (A.4)–(A.5) for  can be written as

0 D  rr C
1

r
 r C B ;
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where B is the 2 � 2 matrix

B D
2

r2

�
�1 1

1 �1

�
C
2

r2

�
1 � w2 0

0 1 � 3w2

�
:

Then
Wr D �

1

r
W C  T .B � BT / N D �

1

r
W

because the matrix B is symmetric, and we get (A.8). Using decomposition (A.7), decay
(A.6) and the explicit form of N , we see that

W.r/ D �
2˛1

r
:

On the other hand, from the smoothness of � near the origin, we get that  21;1.r/,
 12;1.r/ and their derivatives remain bounded as r ! 0. Since the same is true for N ,
we see thatW.r/ is bounded as r ! 0, which implies that ˛1 D 0 as claimed. This in turn
implies that

j 21;1j � Cr
˛0

; j@r 
2
1;1j � Cr

˛0�1 for r > 1;

where ˛0 D max.�1; ˛ � 2/ < 1. Using barriers for ODE (A.5), we get, for k D 1,

j 21;1j � C for r > 1:

and for k � 2,

j 21;k.r/j �
C

k2r
for r > 1:

Adding these inequalities, we see that j 1.z/j � C , jzj > 1, and then a standard scaling
and elliptic estimates show that

jr 1.z/j �
C

jzj
; jzj > 1:

Now we can apply Lemma A.2 and conclude that � D c1Wx1 for some constant c1 2 R.

A.2. Elliptic estimates used in the linear theory

In this subsection, we prove elliptic estimates that we needed in Section 3 to develop the
linear theory. More specifically, we prove estimates of solutions to some model equations.

We use the notation zD .x1; x2/D reis , and throughout this section, " > 0 is a param-
eter. We also use

� D @2x1x1 C @
2
x2x2
D @2rr C

1

r
@r C

1

r2
@2ss :

Furthermore, in the equations, the following term will appear:

@2ssu D x
2
2@
2
x1x1

uC x21@
2
x2x2

u � 2x1x2@
2
x1x2

u � x1@x1u � x2@x2u:

We start with recalling the statement and the proof of the comparison principle in the
half-plane for the operator �C "2@2ss with Dirichlet boundary condition.
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Lemma A.4. Let uWR � R�C ! R be a bounded function which is in C 2.R � R�C/ \
C 0.R �R�C/ and which satisfies´

�uC "2@2ssu � 0 in R �R�C;

u � 0 on R � ¹0º:

Then u � 0 in R �R�C.

Proof. We adapt the proof of [6, Lemma 2.1].
Let us use polar coordinates .r; s/ 2 .0;C1/ � .0; �/, and let ' > 0 be the first

eigenfunction of @2ss in .��
4
; 5�
4
/ associated to the eigenvalue � > 0, i.e.,8̂<̂

:
@2ss' C �' D 0 on

�
�
�

4
;
5�

4

�
;

'

�
�
�

4

�
D '

�
5�

4

�
D 0:

We define ˇ WD
p
�, and we set g.r; s/ WD rˇ'.s/ in .0;C1/ � .��

4
; 5�
4
/, and hence

@2rrg C
1

r
@rg C

�
1

r2
C "2

�
@2ssg D ��"

2g � 0 in .0;C1/ �
�
�
�

4
;
5�

4

�
:

Consider � WD u=g in .0;C1/ � .0; �/ (note that g > 0 in this domain). Since �uC
"2@2ssu � 0, we find

�� C "2@2ss� C
2

g

�
@rg@r� C

�
1

r2
C "2

�
@sg@g�

�
C
�g C "2@2ssg

g
� � 0:

We note that .�g C "2@2ssg/=g � � 0 and, since u is bounded, lim supr!C1 � D 0. We
can thus apply the maximum principle to deduce that � � 0 in .0;C1/ � .0; �/. Hence
u � 0 as well in .0;C1/ � .0; �/.

In the same spirit, we have the following comparison principle for the Neumann
boundary condition.

Lemma A.5. Let uWR � R�C ! R be a bounded function which is in C 2.R � R�C/ \
C 1.R �R�C/. Let c � 0. We assume that u satisfies´

�uC "2@2ssu � cu � 0 in R �R�C;

@�u � 0 on R � ¹0º:

Then u � 0 in R �R�C.

For a function f WR2 ! R and � 2 N�; ˛ > 0, we introduce the norms

kf k�;˛ WD k.1C jzj
�/f kL1.R2/ C sup

z2R2
jzj�C˛Œf �z;˛

with

Œf �z;˛ WD sup
jhj<1

jf .z C h/ � f .z/j

jhj˛
:
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Our first goal is to prove the following proposition.

Proposition A.1. Let f WR2! R be such that f .z/ D �f .z/ and kf k2;˛ < C1. Then
there exists a unique bounded solution of

�uC "2@2ssu D f in R2;

which satisfies u.z/ D �u.z/ and

ju.z/j � Ckf k2;˛; jru.z/j � C
kf k2;˛

1C jzj
for all z in R2; (A.9)

j"@su.z/j � C
kf k2;˛

jzj
for jzj �

C

"
; kD2uk2;˛ � Ckf k2;˛: (A.10)

We first prove the following lemma.

Lemma A.6. Let f W R2 ! R be such that f .z/ D �f .z/ and kf k2;˛ < C1. Let
uWR2 ! R be a bounded function such that u. Nz/ D �u.z/ and

�uC "2@2ssu D f in R2:

Then there exists C > 0 independent of u; f; " such that (A.9), (A.10) hold.

Proof. Thanks to the symmetry u.z/ D �u.z/, it is sufficient to consider the problem´
�uC "2@2ssu � f .z/ D 0; z 2 R �R�C;

u.x1; 0/ D 0 for all x1 2 R;
(A.11)

which we can alternatively write as´
�uC "2@2ssu � f D 0; .r; s/ 2 .0;C1/ � .0; �/;

u.r; 0/ D u.r; �/ D 0:

Let us assume
jf .z/j �

1

1C jzj2
:

We want to prove that, for an absolute constant C , we have ju.z/j � C . We define

v.z/ D v.r; s/ WD s.� � s/:

We can check that

�v C "2@2ssv C
1

1C r2
D
�2

r2
� 2"2 C

1

1C r2
< 0 for all z D reis 2 R �R�C:

Hence v is a positive supersolution (and�v a subsolution) for (A.11) in .0;C1/� .0;�/,
and in this set, for any bounded solution u of (A.11), we have, from Lemma A.4,

ju.z/j � jv.z/j in R �R�C:

The decay estimates in (A.9)–(A.10) follow by Schauder estimates and a standard scaling
argument.
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Lemma A.7. If u is a bounded function that satisfies

�uC "2@2ssu D 0 in R2; u.Nz/ D �u.z/;

then u � 0.

Proof. Suppose u 6� 0, and assume without loss of generality that supR2 u D 1. By the
strong maximum principle, the supremum cannot be attained in R2 n ¹0º. Let zn 2 R2 be
a sequence such that u.zn/! 1. Up to a subsequence, we have two possibilities: zn ! 0

or jznj ! 1.
Case zn!1. Let us write znDRnei�n , whereRn!1 and �n 2 .0;�/. We express

u in polar coordinates .r; s/ and define Qun.r; s/ WD u.r CRn; s/. Up to a subsequence, we
have Qun ! Qu uniformly in compact sets of R2, where Qu � 1, Qu.p/ D 1 for some point
p D .1; s/ with s 2 Œ0; ��, and @2rr QuC "

2@2ss Qu D 0 in R2, with the additional condition
Qu.r; 0/ D Qu.r; �/ D 0. This contradicts the strong maximum principle.

Case zn ! 0. Let us write zn D Rne
i�n , where Rn ! 0 and �n 2 .0; �/. Define

Qun.�/ WD u.Rn�/. Up to a subsequence, Qun ! Qu uniformly in compact sets of R2, where
Qu � 1 attains its maximum at some point and satisfies � Qu D 0 in R2. This is a contradic-
tion.

Proof of proposition A.1. We use v WD kf k2;˛s.� � s/ as a supersolution to solve the
problem in large half-balls centered at the origin. More precisely, for any M > 0, there
exists a solution of ´

�uM C "
2@2ssuM D f in BCM .0/;

uM D 0 on @BCM .0/;

where BCM .0/ WD ¹.x1; x2/ 2 R�RC W jzj <M º. Thanks to gradient estimates (A.9), we
have

jruM j �
C jvj

1C jzj
in BCM .0/;

for some C > 0 independent of M , and thus we can apply the Arzela–Ascoli theorem
to take the limit of uM along a suitable subsequence, obtaining a solution of (A.11). The
uniqueness is proved in Lemma A.7, and the estimates follow from Lemma A.6.

Proposition A.1 is a model for the treatment of  1, the real part of  in Lemma 5.1.
To deal with  2, we have to use an analogous proposition.

Proposition A.2. Let gWR2!R be such that g. Nz/D g.z/ and kgk1;˛ <C1 Then there
exists a unique bounded vWR2 ! R such that v. Nz/ D v.z/ and �v C "2@2ssv � v D g.
Furthermore, there exists a constant C > 0 such that

.1C jzj/
�
jv.z/j C jrv.z/j

�
� Ckgk1;˛; kD

2vk1;˛ � Ckgk1;˛;ˇ̌
"jzj@sv.z/

ˇ̌
� Ckgk1;˛ for jzj > 1=":

Proof. The symmetry assumption allows us to work in the half-plane R�R�C with homo-
geneous Neumann condition on the boundary. We can then apply a barrier argument and
rescaled Schauder estimates to prove the proposition.
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In the course of the linear theory for our problem, when we separate even and odd
modes, we need an analogue of the following lemma.

Let us consider R0 > 0 fixed and R0 < R" < "�1, and let �, �0 be the regions

� WD ¹z 2 R2 W R0 < jzj < R"º; �0 WD

²
z 2 R2 W 2R0 < jzj <

1

2
R"

³
;

and recall the polar coordinates notation z D reis , r > 0, s 2 R.

Lemma A.8. Let f WR2 ! R be such that f . Nz/ D �f .z/ and jf .z/j � 1=jzj. Let u be
a solution of �uC "2@2ssu D f in � such that u. Nz/ D �u.z/ and

ju.z/j � R0jlog "j; jzj D R0;

ju.z/j � R"; jzj D R":

Then there is C such that

ju.z/j � C jzj log
�
2R"

jzj

�
for all z 2 �0:

Proof. We use a Fourier series decomposition which, thanks to the symmetries, we can
take of the form

f .r; s/ D
X
k�1

fk.r/ sin.ks/; u.r; s/ D
X
k�1

uk.r/ sin.ks/:

The equations on the Fourier coefficients are

u00k C
1

r
u0k � k

2

�
1

r2
C "2

�
uk D fk in .R0; R"/:

We estimate each uk using barriers. For k D 1, we define

Nu1.r/ WD r log
�
3R"

r

�
The function Nu1 satisfies

Nu001 C
1

r
Nu01 �

�
1

r2
C "2

�
Nu1 < �

1

r
for r < R":

Thus we can use Nu1 as a barrier for u1 in the interval .R0; R"/ and deduce that

ju1.r/j � r log
�
3R"

r

�
; r 2 .R0; R"/: (A.12)

For k � 2, we use the barrier

Nuk.r/ D C

�
r

k2
C C jlog "j

�
r

R0

��k
CR"

�
r

R"

�k�
;

where C is a large fixed constant (the last two terms in Nuk solve almost the homogeneous
equation and are there for the boundary conditions). By the maximum principle, jukj � Nuk
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in .R0; R"/, and for r 2 .2R0; R"=2/, we get

1X
kD2

Nuk.r/ � C
jlog "j
r
C Cr � Cr log

�
2R"

r

�
:

This and (A.12) imply the desired conclusion.

Summary of general notation and norms

For the sake of clarity, in this section, we collect the definitions of the different norms and
the common notation used along the paper.

In rescaled variables, we denote the distance Qd of the vortices to the origin as

Qd WD
d

"
D

Od

"
p
jlog "j

;

where Od D O.1/. For every specific vortex, we write Qdj WD .�1/1Cj Qd and

�1e
i�1 WD reis � Qd; �2e

i�2 WD reis C Qd;

the polar coordinates around each one. Defining R" WD ˛0=."jlog "j1=2/, with ˛0 > 0

a fixed small constant, the norm we require in the right-hand side for the general invert-
ibility theory is

khk�� WD

2X
jD1

kVdhkC˛.�j<3/

C sup
�1>2
�2>2

�
jRe.h/j

��21 C �
�2
2 C "

2
C

jIm.h/j
��2C�1 C ��2C�2 C "��2

�
C sup
2<jz� Qd1j<2R"

2<jz� Qd2j<2R"

ŒRe.h/�˛;Bjzj=2.z/

jz � Qd1j�2�˛ C jz � Qd2j�2�˛

C sup
2<jz� Qd1j<2R"

2<jz� Qd2j<2R"

ŒIm.h/�˛;B1.z/
jz � Qd1j�2C� C jz � Qd2j�2C�

;

where ˛; � 2 .0; 1/, kf kC˛.D/ D kf kC0;˛.D/ and

Œf �˛;D WD sup
x;y2D
x¤y

jf .x/ � f .y/j

jx � yj˛
; kf kCk;˛.D/ WD

kX
jD0

kDjf kL1.D/ C ŒD
kf �˛;D :

Likewise, the solution  WC ! C lies in a space determined by the norm

k k� WD

2X
jD1

kVd kC2;˛.�j<3/ C kRe. /k1;� C kIm. /k2;�;
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where, with Re D  1; Im D  2,

k 1k1;� WD sup
�1>2
�2>2

j 1j C sup
2<�1<

2
"

2<�2<
2
"

jr 1j

��11 C �
�1
2

C sup
r> 1"

�
1

"
j@r 1j C j@s 1j

�

C sup
2<�1<R"
2<�2<R"

jD2 1j

��21 C �
�2
2

C sup
2<jz� Qd1j<R"

2<jz� Qd2j<R"

ŒD2 1�˛;Bjzj=2.z/

jz � Qd1j�2�˛ C jz � Qd2j�2�˛
;

k 2k2;� WD sup
�1>2
�2>2

j 2j

��2C�1 C ��2C�2 C "��2
C sup
2<�1<

2
"

2<�2<
2
"

jr 2j

��2C�1 C ��2C�2

C sup
r> 1"

Œ"��2j@r 2j C "
��1
j@s 2j�C sup

2<�1<R"
2<�2<R"

jD2 2j

��2C�1 C ��2C�2

C sup
2<jz� Qd1j<R"

2<jz� Qd2j<R"

ŒD2 2�˛;B1.z/

jz � Qd1j�2C� C jz � Qd2j�2C�

for ˛; � 2 .0; 1/.
Given a complex function gWC ! C satisfying g. Nz/ D � Ng.z/, we write its decom-

position in even and odd Fourier modes in �j as g D
P1
kD0 g

k;j , where

gk;j .�j ; �j / WD g
k;j
1 .�j / sin.k�j /C ig

k;j
2 .�j / cos.k�j /; g

k;j
1 .�j /; g

k;j
2 .�j / 2 R:

We define
ge;j WD

X
k even

gk;j ; go;j WD
X
k odd

gk;j

and
go WD �1;R"g

o;1
C �2;R"g

o;2; ge WD g � go;

where

�j;R.z/ WD �1

�
jz � Qdj j

R

�
;

and �1WR! Œ0; 1� is a smooth function such that �1.t/ D 1 for t � 1 and �1.t/ D 0 for
t � 2.

Finally, in order to have specific control of the odd parts of the functions involved, we
introduce the following seminorms: given h D h1 C ih2 and  D  1 C i 2, we denote

jhj]] WD

2X
jD1

kVdhkC0;˛.�j<4/ C sup
2<�1<R"
2<�2<R"

�
jh1j

��11 C �
�1
2

C
jh2j

��1C�1 C ��1C�2

�
;

j j] WD

2X
jD1

jlog "j�1kVd kC2;˛.�j<3/ C j 1j];1 C j 2j];2;



Interacting helical Ginzburg–Landau filaments 55

where

j 1j];1 WD sup
2<�1<R"
2<�2<R"

�
j 1j

�1 log.2R"=�1/C �2 log.2R"=�2/

C
jr 1j

log.2R"=�1/C log.2R"=�2/

�
;

j 2j];2 WD sup
2<�1<R"
2<�2<R"

�
j 2j C jr 2j

��1C�1 C ��1C�2 C ��11 log.2R"=�1/C ��12 log.2R"=�2/

�
:
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