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Abstract. For each given n > 2, we construct a family of entire solutions ug(z,t), € > 0, with
helical symmetry to the three-dimensional complex-valued Ginzburg-Landau equation

Au+(1—=uPu=0, (z,1)eR?xR ~R3.

These solutions are 277 /e-periodic in ¢ and have n helix-vortex curves, with asymptotic behavior,
ase — 0,

ue(z.) = [[ W(z =" fi(er)).

Jj=1
where W(z) = w(r)eie, z = rel? s the standard degree +1 vortex solution of the planar Ginz-
burg-Landau equation AW + (1 — |[W|?)W = 0in R? and
meitezi(j—l)ﬂ/n

Vlloge] ’

Existence of these solutions was previously conjectured by del Pino and Kowalczyk (2008), f(¢) =
(f1(2),..., fu(t)) being a rotating equilibrium point for the renormalized energy of vortex filaments
derived there,

fi@) = j=1,....n.

27 n
we(e) = [ (“",f‘g' SO = 3 logl £16) - fk(t)l) ar,

k=1 Jj#k

corresponding to that of a planar logarithmic n-body problem. The modulus of these solutions
converges to 1 as |z| goes to infinity uniformly in ¢, and the solutions have nontrivial dependence
on ¢, thus negatively answering the Ginzburg-Landau analogue of the Gibbons conjecture for the
Allen—Cahn equation, a question originally formulated by H. Brezis.
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1. Introduction

This paper deals with constructing entire solutions to the complex Ginzburg—Landau
equation in the Euclidean space R¥,

Au+(1—uPHu=0 inRY, (1.1)

where u: RY — C is a complex-valued function and N > 2. It is convenient for our
purposes to introduce a small parameter ¢ > 0 and consider the equivalent scaled version
of (1.1) given by

EAu+(1—uP)u=0 inRV. (1.2)

When regarded in a bounded region @ C R¥, equation (1.2) corresponds to the Euler—
Lagrange equation for the functional

1 1
Jo(u) = §/Q|Vu|2 4 4—52/90 Py, (1.3)

which for N = 2, 3 is often considered as a model for the energy arising in the standard
Ginzburg-Landau theory of superconductivity when no external applied magnetic field is
present. In that setting, the complex-valued state of the system u corresponds to a critical
point of J, in which |u|? represents the density of the superconductive property of the
sample €2 (Cooper pairs of electrons). The function u is expected to stay away from zero
except on a lower-dimensional zero set, the vortex set, corresponding to defects where
superconductivity is not present.

In their pioneering work [8], Bethuel-Brezis—Hélein analyzed in dimension N = 2 the
behavior as ¢ — 0 of a global minimizer u, of J, when subject to a boundary condition
2:9Q — S! of degree k > 1. They established that, away from a finite number of distinct
points ay, ..., ax € £2, one has (up to subsequences)

k

Uug(x) ~ '™ | | Sl By
. |x—aj|
j=1

where ¢(x) is a real harmonic function and the k-tuple (a, ..., a) minimizes a func-
tional of points, the renormalized energy that measures through Green’s function the
mutual interaction between the points and the boundary. Using the results in [32,36,41],
one gets the validity of the global approximation

k
Up(x) a2 /9™ 1_[ W(%), (1.4)

j=1
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where W (z) is the standard degree +1 vortex solution of equation (1.1) for N = 2, namely
its unique solution of the form

W(z) = eiew(r), z=re'f, (1.5)

where w > 0 solves
I

" w w 2 = i

w(0T) =0, w(+o0)=1;

see [10,25]. Thus, before reaching the limit, the vortex set of u, is constituted by exactly k
distinct points, each with local degree + 1. The mechanism of vortex formation in the two-
dimensional Ginzburg-Landau model from the action of an external constant magnetic
field has been extensively studied; see [38] and references therein. Critical points of the
renormalized energy are in fact in correspondence with other critical points of J, in (1.3)
of the form (1.4) for small ¢, as it has been found in [3, 14, 17,29, 34]. In the higher-
dimensional case N > 3 and with suitable boundary conditions and energy levels, the
vortex set of minimizers and more general critical points have been described when & — 0
in [2,9,26,30,31,35,37] as a codimension-2 set with a generalized minimal submanifold
structure. In dimension N = 3, defects should typically assume the form of curves with
a winding number associated: these are called vortex filaments. The basic degree +1
vortex line is the solution u of (1.1) for N = 3 given by

u(z,t) = W(z), (z,t) e R2xR ~R3,

with W(z) specified in (1.5). Its zero set is of course the ¢-axis, and a transversal winding
number +1 is associated to it. In dimension N = 3, under Neumann boundary conditions,
it was found in [33] a local minimizer with energy formally corresponding to multiple
vortex lines collapsing onto a segment. Motivated by this work, in [16], an expression
for the renormalized energy for the interaction of nearly parallel “degree +1 vortex lines”
collapsing onto the ¢-axis was derived. Considering n curves

te (fi),0), 1<i<n, f£=(fi..... fa)

which for simplicity we assume 27 -periodic, we look for an approximate solution of the
form

Ug(z,t) =~ We(z, t;f) = pdes) 1_[ W(Z_—f’([)) (1.7)
€

Jj=1
In the cylinder 2 = € = Bg(0) x (0, 27), with ¢ harmonic matching lateral zero Neu-
mann boundary conditions, it is found in [16] that

I.(f) == J.(We(-;f)) = 2 x nm|loge| + We(f), (1.8)
where

2 n
Wity = [ <|loge|§ YRR = Y togl /i) - fk<r)|> a9
k=1

Jj#k
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Equilibrium location of these curves should then correspond to an approximate criti-
cal point of the functional I, and hence of ‘W, which is the action associated to the
n-logarithmic body problem in R2. This energy also appears in related problems in fluid
dynamics; see e.g. [27,28]. If we set

f(r) = f(), f=A.... /),

1
V[loge|

this corresponds to a 2 -periodic solution of the ODE system

fk(t) fi)
= E 1.10
(t) i#k |fk(t)_fl(t)|2 ( )

The following n-tuple £ is a standard rotating solution of system (1.10):
£ty = Vn —1et 2 C=Dr/n e =1 n. (1.11)

It is shown in [16] that the functional I, in (1.8) does have a 2w -periodic critical point
fé(t) such that

o) pogy e —Lfop (1.12)

Viloge|’ Vlloge]

uniformly as ¢ — 0, and it is conjectured the existence of a solution u.(z, t) to the system

(1) =£0(r) +

EAu+ (1 —|uP)u=0, (z.t)eR3, (1.13)

which is 2z-periodic in ¢ and has the approximate form (1.7) for f as in (1.12). The
recent work [13] has established a rigorous connection, in the sense of I'-convergence,
between minimizers of functional (1.9) and minimizers in cylinders with suitable Dirichlet
boundary condition, thus providing evidence towards the conjecture in [16]. In this paper,
we prove this conjecture.

Theorem 1. For every n > 2 and for ¢ sufficiently small, there exists a solution ug(z,t)
of (1.13), 2mw-periodic in the t-variable, with the following asymptotic profile:

ue(z.0) = [ | W(Z_gﬂ) +0u(z.1),

k=1

where f£(t) is 2m-periodic with the asymptotic behavior (1.12) and

lpe(z. 1) = :
llog ¢

Besides, we have

lim |ug(z,t)| =1 uniformlyint. (1.14)
|z|>+o00

We are also able to construct another family of solutions to (1.13). Until now, we have
dealt only with vortex filaments of degree + 1. However, it is believed that, in presence of
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several vortex filaments of different degrees dy € 7Z, the energy governing the interaction
of the filaments is

27 n
1
We(f) = n/ <|loge|5 YIROP =) didi log| £;(1) — fk(z>|) . (1.15)
0 k=1 j#k
There exist special critical points of (1.15) analogous to (1.11) for dy = —1 and dy = +1
fork = 2,...,n when n > 5. These critical points can be written as

) =0, gt) = Vn—4de 2V p—0 n, n>5 (1.16)
From these solutions, we can obtain the following theorem.

Theorem 2. For every n > 5 and for ¢ sufficiently small, there exists a solution ug(z,t)
of (1.13), 2mw-periodic in the t-variable, with the following asymptotic profile:

wiey =W []w(=E) 4 g
k=2

where gi (1) is 2m-periodic with g;.(t) = gi(t) + 0:(1)/+/|loge|, gk defined by (1.16)
and

C
ez, )] < .
llog &

Besides, we have
lim |ug(z,t)| =1 uniformlyint.
|z| =400

The proofs of both theorems give a precise answer to the existence question, with an
accurate description of the solution. They take specific advantage of the geometric setting:
the configuration predicted is one of multiple helix vortex curves periodically winding
around each other. The Ginzburg—Landau equation has a screw-driving symmetry which
we take advantage of to reduce the original problem to a planar one. For constructions of
solutions with helical vortex structures, we refer also to [11,42].

We observe that, in terms of the parameterless equation (1.1) for N = 3, what we find
is a family of entire solutions u,(z, t), 27 /e-periodic in ¢, with approximate form

ug(z,t) ~ l_[ W(z— s_lfjs(st)).

J=1

Equation (1.1) is the complex-valued version of the Allen—Cahn equation of phase transi-
tions,
EAu+u—ul=0 inRY, (1.17)

where u: RY — R. The Allen—Cahn model describes transitions of two phases between
the values —1 and 41 essentially separated by a thick wall, which for small ¢ should
lie close to a minimal hypersurface. Solutions with screw-driving symmetry whose zero
level set is precisely a helicoid have been built in [22] (and extended to the fractional case
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in [12]). Solutions with multiple interfaces whose interactions are governed by mechani-
cal systems (Toda systems) have been built in [1, 18, 19,21]. The celebrated De Giorgi
conjecture states that, at least up to dimension N = 8, solutions of (1.17) which are
monotone in one direction must have one-dimensional symmetry, namely their level sets
must be parallel hyperplanes; see [4, 20, 24,40] and references therein. A variant of this
statement is the Gibbons conjecture: an entire solution u of (1.17) such that
lim |u(x’,xy)| =1 uniformlyinx’ € RN~!
[x N |—+o00

must necessarily be a function of xx only. This fact has been proven for any N > 2.
See [5,7,23]. The analogous question for the Ginzburg—Landau equation in RN, N >3,
originally formulated by H. Brezis, is whether or not a solution u(z, t), (z,¢) € R? x
RN=2, with

lim |u(z,t)] =1 uniformlyint e RVN72, (1.18)
|z|—>+o00

must necessarily be a function of z. This turns out to be false since the solutions in Theo-
rem | satisfy (1.18). We observe that solutions W,,(z) of (1.1) with total degree n, |n| > 1,
of the form

Wo(z) = e™w,(r), wp(0) =0, wy(+o00)=1, z=re?,

are known to exist for each n > 2; see [10,25]. The solutions in Theorem 1 have transversal
total degree equal to n > 2. A natural question is whether or not Brezis’ statement holds
true under the additional assumption of total transversal degree equal to 1. See [32, 36,
41] for the corresponding question in dimension N = 2, and [39] for a conjecture on the
symmetry of entire solutions of (1.1) when N = 3.

We will devote the rest of this paper to the proof of Theorem 1. The proof of The-
orem 2 follows the same lines. As we have mentioned, the key observation is that the
invariance under screw-driving symmetry allows to reduce the problem to one in the
plane, for which the solution to be found has a finite number of vortices with degree 1.
For simplicity, we treat only the case n = 2 in the following, but the arguments can be
easily adapted. We will look for solutions that are close to the approximation

wg(xoy 1) = W(x—dcost’ y —dsint)W(x +dcost’ y +dsint) (1.19)
& &

& &

when ¢ is small. Here d is a parameter of size 1/4/|log ¢|.

It can be observed that the zero set of uy; has the shape of a double helix and the
function iy = €2
as a function of two variables, which reduces the problem to a two-dimensional case.
We will look for screw-symmetric perturbations of i ;. Our approach will be based on
the method in [17], devised to build up solutions with isolated vortices when N = 2
using a Lyapunov—Schmidt reduction. A major difficulty that we need to overcome is
the presence of very large terms in the error of approximation. In the two-dimensional
case, we immediately obtain errors that are of size O(¢), while here it is O(1/[log ¢|).

ug is screw-symmetric (see Definition 1). Thus 4 can be expressed
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This is a major difficulty since the vortex-location adjustment arises at essentially e-order.
This is overcome by carefully decomposing the error created by the nonlinearity in “odd”
small and “even” large Fourier modes parts. The even part has at main order no effect in
the solvability conditions needed in the linear theory we devise in Proposition 5.1. These
steps are rather delicate, and we will carry them out in detail in what follows.

2. Reduction to a two-dimensional problem by using screw-symmetry

As a first step, we reduce our three-dimensional problem to a related two-dimensional
one. To do so, we work with a particular type of symmetry. To define this symmetry,
it is convenient to use cylindrical coordinates (r,8,7) € Rt x R x R and to work with
functions that are 2 -periodic in the second variable.

Definition 1. We say that a function u is screw-symmetric if u(r,6 + h,t + h) =u(r,6,t)
for any i € R.

Notice that this condition is equivalent to u(r, 0,¢ + h) = u(r,0 — h,t) forany h € R,
and then a screw-symmetric function can be expressed as a function of two-variables.
Indeed, for any (r,0,1) € Rt x R x R,

u(r, 0,t) =u(,0—1t,0)=U(r,0 —t).

Writing the standard vortex of degree one in polar coordinates (r,6), i.e., W(z) = w(r)e'?,
we can see that the approximation u4 defined in (1.19) satisfies

ug(r,0,t +h) = e* uy(r,0 —h, 1)

for any & in R. That is, ug4 is not screw-symmetric, but i (r, 0, 1) := e 2 uy(r, 0,1) is.

Hence we can write ug as ug = e>''iiy, with 7iy a screw-symmetric function.

This suggests to look for solutions u of (1.2) that can be written as
u(r,0,1) = e*i(r, 0,1)

with @ screw-symmetric. Thus #(r, 0,1) = U(r, 0 —t), U:R* x R being 27r-periodic in
the second variable. Denoting U = U(r, s), we can see that

du =e*0,U(r,s), OZu = e U(r,s),
dou = >3, U(r,s), 85914 = eZitafsU(r, s),
dou = [2iU —0,Ue",  3?u = [02,U — 4id;U — 4U]e*".

Recalling that the Laplacian in cylindrical coordinates is expressed by 92, + }8, +
%2859 + 9?%,, we conclude that u is a solution of (1.2) if and only if U is a solution of

1 1
ez(af,U + -0, U + r—zaﬁsU + 32,U — 4id,U — 4U)

+(1=|UPU =0 inR% xR.
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We will also work in rescaled coordinates, that is, we define V(r, s) := U(er, s), and we
search for a solution to the equation

1 1
2V + ~0,V + r—zagsv
+&2(0%V —4idV —4V)+ (1= |VHV =0 inR* xR. 2.1
From now on, we will work in the plane R2, and we will use the notation z = x; +
ix, = re'S. We denote by A the Laplace operator in two dimensions, meaning

1 1
A = a)ZC]X] + 8)262)62 = 8%1‘ + ;ar + r_28§~9
Then equation (2.1) can be written as
AV + 202V —4idsV —4V) + (1= |VIP)V =0 inR?,

and the approximate solution (1.19) in the new coordinates is given by

Vi(z) = Wz —d)W(z + d), (2.2)
where R
j=%__9
€ g4/|loge|

for some new parameter d = o(l).

3. Formulation of the problem

3.1. Additive-multiplicative perturbation

Let
S() = Av + e2(3%,v — 4id5v — 4v) + (1 — [v]*)v.

The equation to be solved can be written as
Sw) =0. (3.1)

Recall the notation z = re’s = x; +ix; and A = 92 ., + 9%,,,- When using the coor-
dinates (x1, x3), equation (3.1) is posed in R2, while if we use polar coordinates (r, s),
the domain for (3.1) is r > 0, s € R with periodicity.

Following del Pino—Kowalczyk—Musso [17], we look for a solution to (3.1) of the
form

v=nVa(l+iy)+ (1 —n)Vge'?, (3.2)

where V; is the ansatz (2.2) and ¢ is the new unknown. The cut-off function 7 in (3.2) is
defined as

n(z) = m(z—d|) +m(z +d|), zeC=R?

and n1: R — [0, 1] is a smooth cut-off function such that

m@)=1fort <1 and n(t) =0fors > 2. (3.3)



Interacting helical Ginzburg—Landau filaments 4151

The reason for the form of the perturbation term in (3.2) is the same as in [17]. On the
one hand, the nonlinear terms behave better for the norms that we consider when using
the multiplicative ansatz, but near the vortices, an additive ansatz is better since it allows
the position of the vortex to be adjusted.

Our objective here is to rewrite (3.1) in the form

£Y+R+NW) =0

and identify the linear operator £¢, the error R and the nonlinear terms N (V).
It will be convenient to write S = Sy + S, where

So() == Av+ (1 —[v®)v, S;(v) = 82(8?sv —4idsv — 4v). (3.4)
We have
So(Va + ¢) = So(Va) + Lo(¢) + No(9),
S1(Va + ¢) = S1(Va) + S1(9),
where

Lo(¢) = Ap + (1 = |Va|))p —2Re(V 49) Va4, (3.5)
No(¢) == —2Re(V19)¢ — 91> (Va + ¢).

Rewrite (3.2) as

v="V;+ ¢, ¢ =iVyy +yW),

y(@) ==V —1—iy).
Then
So(v) = So(Va) + Lo(iVayy) + Lo(y(¥)) + No(iVa¥ + y(¥)),
S1(v) = 81(Vg) + S1G@Vay) + Si(y(¥)).
We compute
Lo(iVay) =iVy [Lollf + SOI(/Vd)llf}
d
where vV, v
Low) = Ay + 2;—d‘” — 20|V, Im(y),
and so
So(0) = iV =i 20 o Loy + 2204y
Va
- 7Lo(y<w>> L NoGiVay + y(w»}. (3.6)
d d
‘We note that, far from the vortices, we have
0( Va)

So(v) = So(Vge'V) = sze””[ + Lo(y) + No(l//)] (3.7)

where
No(W) := i (V)2 +i[Va)?(e2™W) — 1 4+ 2Im(y)).
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Similarly, we compute

S1GVay) =iVy (Sl( S, Ll(x//)) (3.8)
where
Li(y) = ez(afsw 4 2 "’8 ¥ — 4id; w)
Far away from the vortices, we have
S1(Vge'V) = iVge “”[ ‘(Vd) + L) + % (0sy) } (3.9)

We let 5 5
nz)=m(z—d|-1)+m(z+d|-1)

with 77 defined in (3.3). Then we write S(v) = 0 as

0 = iiVy [ 2D 1 Loy + 2y = Loy ) = - NaliVa ¥+ v()
- S‘évd) L)+ 2 ‘”w - —Sl(y(w»}
+ —n)sze””[ 20 1 Lo() + o)
- Slév‘” + L1l + 00|

that is, we use expressions (3.6), (3.8) near the vortices and (3.7), (3.9) far from them.
Hence S(v) = 0 is equivalent to £5(y¥) + R + N (¥) = 0, where

L) = (Lo + L)) + nsg/d)%”’
I Si/:d) (3.10)
N =i = 1) Sy
B %M%{Lo(y(w)) + S1(y(¥) + No(iVayr + y(¥))}
N %{No(w) +e%i (959)%).

Note that explicitly

—2i|V; > Im(y)

£49) = Ay + 2W§ﬂ

¢ 20,7V,
&2 (8§S1// +

) i (V"’)w (3.11)
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and that, for |z + d | > 3, the nonlinear terms take the form

NW) = No(y) + &% (35%)*
=i(VY)2 4|V [2(e72™W) — 1 4 2Im(y)) + €% (ds¥)>.

3.2. Another form of the equation near each vortex

In order to analyze the equatlon near each vortex, it will be useful to write it in a translated
variable. Namely, we set d = (— 1)1+Jd for j = 1,2, and we define Z := z — d and
the function ¢; (Z) through the relation

9 () =iWSy(z), |Z]< d. (3.12)
That is, so close to the vortices so that n = 1,
B() = iVay () = 6By (2),  where a(z) = MZ‘—%

Hence, in the translated variable, the unknown (3.2) becomes, in |Z| < d ,

'(f) (>
v(z)—a,<z)(W(z)+¢,(z>+(1—m(z))W(z)[ —1—"”@])

()
We set £ := S(Vy). For ¢;, ¥ linked through formula (3.12), we define
o o T P | L; E <
L@@ = WOEWE +d) = L0 1 1))
Lg(¢je))(z) E(z)
- — 3.13
) I Do) (3.13)

with L% defined by
£() = Ap + (92,0 — 4id5p — 4¢) + (1 — [Va|*)p — 2Re(Va) V.

Let us also define
1
Sy(V) =02,V + -0, V+- assv+82(a V —4idsV —4V),
r
1
S3(V) =02,V + -0, V- amv+e2(a V —4idsV).
r

Notice that
E(z) = S2(a;()WE) + (1 = [W P D)W (E)e; (2),
and thus, using the equation satisfied by W,
E = WSy(aj) + (1 — |WPa;[P)a; W + 2Va; VW + 26?5005 W + a; S3(W)
= WSs(a;) — 4 Wa; + (1 — W[ a; |P)o; W + 2Va; VWV + 2620505 W
+ ;[ (02, W — 4ids W) — (1 — [WHW].
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This allows us to conclude

Li(¢)) = LO(¢j) + €% (92,¢p) — 4i0sj — 4¢)) + 2(1 — |et; ) Re(Wepj )W

Va, VIV ,0sa; 3W (02 W — 4idsW)

o R 2 s 4 2 i

( o W + 2¢ T +e W + 4e” |,
Vo; 0s0; _E;

+2—LV¢; + 262 =L os¢; + i1—29;, (3.14)
o) o) vy

where Vdj =Vy(Z+d)) E; = S(Vdj) and L is the linear operator defined by (3.5).
Let us point out that, for |Z| < 2,

loj (2)] = 1 4 Oc(e?|log ),
Va;(Z) = Os(ey/|logel), Aa; = O(e?|logel).

With this in mind, we can see that the linear operator Lj is a small perturbation of L°.

(3.15)

3.3. Symmetries assumptions on the perturbation

We end this section by making use of the symmetries of the problem. Using the notation
z = x1 + ix, = re's, we remark that V; satisfies

Va(=x1.x2) = Va(x1,x2) and  Vg(x1,—x2) = Vg(x1,x2).

We also remark that these symmetries are compatible with the solution operator .S, that
is, if S(V) = 0 and U(z) = V(—x1, x2), then S(U) = 0, and the same for U(z) =
V(x1,—x2). Thus we look for a solution V' satisfying

V(=x1,%x2) = V(x1,%2), V(x1,—x2) = V(x1,x2),
which drives to ask

Y(x1,—x2) = =Y (x1,Xx2), Y (—x1,%2) = =P (x1, X2). (3.16)

4. Error estimates of the approximated solution

In this section, we compute the error of the approximation V; definedas R=—iS(Vz)/Vy
in (3.10).
In order to measure the size of the error of our approximation, we fix 0 < a,0 < 1.
We recall that
d; = (-1)'"d, .1

and we denote

,016’91 =re'’ —d, ,026’92 =re'’ +d,
polar coordinates around each vortex. We define

L — 4.2)
ellog g|1/2
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where g > 0 is a small constant that will be fixed later, and the norm

2
IAllax =D " IVahlcep, <3
e [ [Re(h)| [Im(h)| ]
=2 Lo bt et T T o0
N sup ~[Re(h)]ot,B|:|/2(z~)
2<|z—d}|<2R. |z —di|727% + |z — da| 727

2<|z—d>|<2R¢ [Im(h)]a,Bl (2)

+ sup = = , 4.3)
2<|z-di|<2R, 12 = 1|70 + |z — dp|72H0
2<‘Z_L§2|<2Rg
where || fllce(p) = || f llco.«(py and where we have used the notation
i s SO SO )
o,D -— s .
x,yeD |x - y|a
xX#y
k
| flckapy = Y _I1D? o) + [P fla.p- (45)
j=0

Proposition 4.1. Let V; be given by (2.2), and denote
S(Vyg) =E =iVzR =iVi(Ry + iR3).

Then
[ Rlxs <

lloge|

Proof. Letus write V; = W2W?, where W4 (z) := W(z — c?) and W2 (z) .= W(z + c?)
We want to estimate £ := S(V), i.e., how far our approximation is to be a solution.

By symmetry, it suffices to compute the error in the region (x1, x;) € RT x R. We
recall that A(fg) = gAf + fAg + 2V f Vg, and thus, with Sy defined in (3.4),

So(Vd) = (W)le + W)?zxz )Wa

+2WEWE + WEWE)+ (1= |WeWPPHywew?.

2

WP+ Wl + W

X2X2
Using the fact that AW + (1 — |W|?)W = 0 in R?, we conclude that
So(Va) =20W2 W + we wp)

+ (= [WAWEP 4 (W2 — 1+ (W22 - hywew?. (4.6)

We estimate the size of this error separately in two different regions, near the vortices and
far from them. Notice first that, since we work in the half-plane Rt x R, we have

C

e+/|loge|

pr>d >

for some C > 0 of order 1.
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Step 1: Estimate of So(V,;) near one vortex, i.e., when |re’s — c?| < 3. Writing W =
W(pe'?), we have

Wy, = e'? (w’(p) cosf —i wip) sin 9),
0

W, = e'® (w’(p) sin@ + i wip) cos 9).
0

We define w; := w(p;) and w, = w(pz), and we obtain

wiwz . .
W;l Wfl = ’(91+92){w w5 cos 0 cos B — sin 0; sin 6,
P102
/ /
| wiwa . W,H W1 .
—1|: L= cos O sinf, + —2 coststI]},
P2 P1
wiwz
W)fz W)f’z = ’(61+92){w wh sin 6 sin 6, — cos 01 cos 6,
, P1P2 )
| Wyw2 . W, W1 .
+ z|: L= §in 64 cos 0, + —2— cos 6 sin 92:“.
02 P1

Since w’(p) = 1/p* + O(1/p*) when p — +o00 (Lemma A.1) and p, > C/(e+/|logze|),
we can see that

[WE WL + WEWE || Loo(py<3) < Cev/|loge]

when ¢ is small and for some C > 0. Using now that w(p) = 1 — 1/(2p?) + O(1/p*)
when p — 400, we obtain

[(1 = WIWPPR + WP =1+ W22 = DWW || 1oo(p, <3) < Ce*[loge],
and thus
| Eollzo0(o; <3) = [1So(Va)llLoo(p, <3) < Cey/|logel. 4.7

Similarly,
[VEollLoo(p, <3) < Cey/[logel. (4.8)

Step 2: Estimate of So (V) far away from the vortices, i.e., when |res — c?| > 2. We
write Eg = So(Vg) = lVd(R1 +iR? ¢) with

) ] . wi w)
Ry = 2(sin 0 cos 8, — cos 0, sin 65) -
p2wW1  P1W2

/ /
— 2sin(6; — 92)( ol B &)

P2W1 P1W2

1
R3 = 2cos() — 02)(M + —) - (1 —wiw? +wl -1+ w?— 1).
wiw2 P102

Using that p; < p, and p; > C/(e+/|loge|), along with Lemma A.1, we conclude

1
|Ry| < Cey/lloge|—. (4.9)
P1
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Using again Lemma A.1, we obtain

1 1
l—wfwg—l—w%—l—l—wf—l:1—wf+0(—2)wf+0(—2)+wf—1
2 P2
<ctt
P2 P1

and hence

1
|R2| < C — < C(g|loge|'/?)° forall0 < o < 1. (4.10)
P21

2—0
P1

To see that the previous inequality holds, we can distinguish the cases 2 < p; < d < 02
and d < p; < p2. We remark that we also have

C 1 C 1 g
wrY| < CEvIloge] g pay  Clevlloge)”
Pq 1

Step 3: Estimates of S; (V). We recall that wy := w(p1) and w, := w(p2). Thus we have
Va(r,s) = wiwse' @1102) with

p1 = \/(rcoss—c?)2 +r2sins,  pp, = \/(rcoss +d)? + r2sin®s,
10, (rcoss—d~)+irsins i05 (rcoss+d~)+irsins
e = e = .

’

P1 P2

We have

dsVa = [dsprwiwa + dspawhwy + i d5(01 + O2)wywy)e’ @1 +02),

8§SVd = {[8§sp1w’1w2 + B?szw'zwl + (05p1)>w{wy + (dsp2)*whwy
+ 205105 p2wiwh — [05(61 + 62)]>wiwy]
+ i[205(01 + 62)(0sp1wiwz + dsprwywy)
+ 02,(61 + O2)wyw,] el @1 102),
and thus
e2(02,Vy — 4id,Vy — 4Vy)
= e*{(35p1)*wi w2 + (Bsp2)>whwy + 2(35p1) (D5 p2) Wi w)h
+ 8?5,0111)'1 wy + afs,ozw’zwl
— ([95(61 + 62)]> — 40,(61 + 62) + 4)w1w2}€i(€‘ +62)
+ isz{afs(el + 62)wiws
+ (2[05(61 + 62)] — 4)[dsprwiwa + dsprwhwy]}e! @102,

We also need to compute the following derivatives:

d si - —rd si -
rasms _ dsinfy, 0dsp2 = Zrasms —d sin 6,,
P1 P2

aslol =
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rdcoss r2d?sin%s ~ ~, cos2 6
8§Sp1 = - 3 =dcosb; +d> 1,
P1 P1 P1
—rdcoss r2dZsin®s ~ ~, cos2 @
8§Sp2: - 3 = —d cos b, + d? =)
P2 P> P2

Now we can check that

d . d cos
ds6h = 1+ —(rcoss —d) =1+ o L

P1 P1

d . d cos 6
0500 =1 — —(rcoss +d) =1-— cos b2

P37 P2

—drsi ) i dsing 202sin6 cosd
0561 = ﬂ(ﬂ% +2d(rcoss —d)) = Smby _ £d7sin L cos O
P P1 P1
Jrs i T PN
92,0, = TS (2 i(rcoss + dy) = 1502 247 sinbacosby
P2 P2 P35

and besides,
~ 0 0 2
[05 (61 + 62)] — 40, (61 + ) + 4 = dz(cos 1 cos 2) ’
p1 P2

sinf, sin 91) B 2Jz(sin 61 cos 01 n sin 6 cos 02)’

32,61 + 62) = J(

P2 P1 P p3
- 0 (%)
20,(6) + 6) — 4 = zd(“’s L_ oo 2).
P1 P2

Hence we obtain

52
S1(Vy) = {@ (w’l’wz sin? 0; + wywy sin? 6, — w)w) sin f; sin 6,
cos 6y cos? 6, cosf;  cosby\?
+ wiwy + WHWy — - wiWsy
~ P P2 P1 P2
ed

(cos Bywiwy — cos brwywy)

_|_ -
v/ |log e

[ ed (sin@z sin91)
+1 — wiWs

V|loge| \ p2 p1
2d? [sin®; cosO;  sinBcos b,
— wi1Wr
lloge] P 03
242 (cos 0; cosB, )
llogel \' p1 P2
X (sin 6y wjw, — sin 92w;w1)}}ei(91+92). (4.11)

The conclusion of the proof follows from (4.7), (4.8), (4.9), (4.10) and Lemma 4.1. We
also use the symmetry of the problem. ]
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Lemmad.l. Let S1(Vy) =iV4 Ry =iV4 (R} +iR?). Inthe half-plane Rt x R, we have

C C
1S1(Va)llLoo (o <3) < Togel’ IVS1(Va)llLoo (o, <3) < Toge]’ (4.12)
and for p1 > 2,
C 1 C 1
|R}| < —. |VR]| < =
llogel 23 logel 2} s
. C 1 , . C 1 '
[R| < —. |VR{| < —-
llog ] 7 loge] 17

Proof. By using Lemma A.1, we see that

C
Sy (V) oo < —— [IVSi(Va)llpeo
IS1Valeeqor<n = joos IVSIVloegu<s) = o

For p; > 2, we have

T d? (w’l/ 20 +c05291 wi (00591 cosﬁz)z)
—R] = — sin” 0, —4 - —

[log e| \ w1 p1 Wi p1 P2
622 ” 20, !
(& sin? 6, — w, w), sin Oy sin O + cos B2 &)
1W2
i : /
+ —S(COS QIE —cos 02&).
v |log g| w1 wo

By using Lemma A.1 and the fact that pp > p; > 2, we can see that

d? |w! 26, w) 0 6,\? c 1
&Sin291+cos 1&_(005 1 cos 2)‘5 iy
[loge| | wy p1 Wi 1 P2 |log &] pi
and R
de P wy P w) C 1
cos 1——cos 2—
|log €| w1 ,/|log5 ,01
Besides, by using also that p, > d> cf/(ew/ |log €|), we observe that
d? 5 cos? 6, w} 1
—2 sin® O — w) wh sin Oy sin O + it o
[loge| | wa P2 ‘/|10g8 o3

Thus we obtain (4.12) and the third estimate in (4.13). By differentiating, we can also
obtain the fourth estimate.
Now, for p; > 2, we see that

1 de (sin 6, sinb, ) 2d? (sin 61 cos 0, sin 6, cos 05 )

Y /loge| \ p2 p1 log ] %5 3
2d? |:cos 6y sin6yw)  cos by sin sz’zi|
|log €| pP1W1 P1W2

2d? cos® ! !
— cos2 (sin 6, B sin 92&).
[loge| p2 wq wo
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By using Lemma A.1 and the fact that p, > p;, we can see that the two first estimates
of (4.13) hold. Actually, to prove the first estimate, the only difficult term to handle is

de (sin91 B sin92)
v [loge|

P1 P2
In the region (Rt x R) N {p; < C/(e+/|loge|)}, we have e/|loge|/p1 < C/p?. By
using this and that p, > p1, we find that

sinf; sinf, )

C 1
= 2
[loge| 1 + p3

de (
———wiws
v |loge| 01 P2
in (Rt xR) N {p; < 1/(e+/|loge|)}.

Now we use p; sin 8] = p; sinf, = r sin s to obtain

(sin01 sin@z) _sinf, (l pf)
p1 P2 p1 03]
But p2 = p2 + 4dr coss = p> + 4d p; cos 0 + d>. Thus, when |4d p; cos 0; + d2| < 1,
which is true when p; > C/(g/|log¢|) for an appropriate constant C > 0, we find that

4.14)

A

2 d d‘z
'D—; =144—cosb; + 0(—2)
P2 p1 P
Thus R
d in 0 in 6 c 1
£ wlwz(sm 1 sin 2) < L @.15)
V|loge| p1 02 llog e[ i

in (RT x R) N{p; > C/(s+/|loge|)}. Combining estimates (4.14) and (4.15) and differ-
entiating, we arrive at the conclusion. [

Recall the polar coordinates p;, 6, about d ; defined by the relation z = p;e’% + d ;.

We can decompose a function 4 satisfying h(Z) = —h(z) in Fourier series in 0, as
e .
h=> ho, (4.16)
k=0

W5 (p7, 07) == W5 (o) sin(k ) + ih57 (p7) cos(k;), W (py), hs7 (0j) € R,

hed =" WS R0 =Y Rk

k even k odd

and define

The definitions above can also be expressed by the following. Let R; denote the
reflection across the line Re(z) = d;. Since d; € R, we have

Rjz =2d; —Re(z) + i Im(z). (4.17)
Then 7€/ and 7%/ have the symmetries

ho (Rjz) = hoJ (), h®I(Rjz) = —h®(2),
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and we can define equivalently
. 1 [ . 1 [
W (2) = 1) + AR 7 (@) = 5 [h(:) ~hR;2))

It is convenient to consider a global function #° defined as follows. We introduce
cut-off functions 7; g as

_d
n.r(z) = m('Z . -"), (4.18)

where n1: R — [0, 1] is a smooth function such that n1(¢) = 1 for# < 1 and n;(¢) =0
fort > 2. Given~h: C — C, consider R, defined in (4.2) with «g > 0 fixed small enough
so that R, < %d and
h® =0y, R h>" + n2,R K7, (4.19)
he =h—h°.

For a complex function & = hy + ih,, we introduce the new seminorm

2 || |hs|
1 2
s = Y Wahllcous, <+ sop_ | " i

o —1+o , —1+o
= <p<R:LP1" P P1 + P2

2<pr<Rg

where 0 < o, 0 < 1 are constants to be selected later. We then have the following propo-
sition.

Proposition 4.2. Let V; be given by (2.2), and denote S(Vy) = E = iVzR. Then we
can write R = R° + R® and R° = R{ + Rg with R° defined analogously to (4.19) and
R°(Rjz) = R°(z) in Bg,(d) U Bg.(—d),

e C
|Rglg = C o IRGllex = Cey/llogel,  [[R[lax + IR [l4x <
Vv |logel [log ¢|

Proof. The conclusion follows using the expression of S1(V;) given by (4.11). More
precisely, we define

ol o d? (200591 cos 6, 4 cos? 92)
llog e] 0102 03
de —sin 01 2d? sin 6, cos 0,
{ [loge| p1 - |log ¢ 03 }
02 ._ d? (ZCos 0; cos 6 N cos? 91)
|log ¢ P12 P%
de +sinf,  2d? sinfcosf;
{ [loge| P2 - |log ¢ 5 }

. 1 -
R = E[r”’l(z) +ro2(R;z)], j =12,

. 1, 2,
RZ = nlsRsRao + nzsRsRao’
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with R, defined by (4.2). We can check that R, and Rg = R° — R satisfy the desired

properties. ]

In the last step of the proof of Theorem 1, when we aim at canceling the Lyapunov—
Schmidt coefficient, we will need the following.

Lemma 4.2. In the region B, ci), we have

d de
S1(Vy) = —WE Wby ——wewl +G
1Va) loge| %2 lloge| ™'
with
—a
RG/BJ i Mo Wi =0,
Clv e
G —a &
RC/ B P WWXI = 05(1—)
B, ) |log |

Proof. 1t suffices to observe that

d2wsei01+62) /
SiVa) =E1 = L(w'{ sin? 0, + cos? 01(& _ w_21)
loge] o 7
w,w
+ 2i cos 6y sin 6, (—1 - —21))
12 U 5
de sin 6 )
+ ﬁ(wiwwos@l —iwiw, p 1)6,(9]+92) + G,
oge 1
where

5 o, i(01+6
. deei(01+62) ,
= ————wjw5cos b

V [log el

dZei(91+92) cos2 6, ,
WoW1q

(w’z’wl sin? 6, + w)w) sin Oy sin 6, +

log ¢ 02
2cos by cosf,  cos? 6,
+ + 5 w1 w2
A P12 P2
4 ioiE1+6) de s1n92w1w2
|loge| P2
ie[(91+92){ 242 sin9200592w »
— 1W2
[log ] 1%
2d? cos 6
loge] » 2(sin91w’lw2+sin92w’2w1)
2

2d? cosb | ,
—— ——sinhw,w . [ ]
llogel p1
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5. A projected linear problem

Given /& satisfying symmetries (3.16) and appropriate decay, our aim in this section is to
solve the linear equation

2
W) =h+cy.
j=1
Re/ xP; We, =0 with¢j(z) = iW(2) ¥ (z + d)),
B(0,4)

Y satisfies symmetry (3.16),

. _ g
x(z) = m(?), xj(z) = m(%’) =n1(|z 5 ")

with 77 a smooth cut-off function such that ny(¢) = 1if¢t < 1 and n;(t) = 0ift > 2.

Thanks to the symmetries imposed on ¥ and £, it suffices to use one reduced param-
eter ¢ and not six as it should be the case when working with two vortices, since the
linearized operator around each has three elements in its kernel.

In order to find estimates on the solution of (5.1), we introduce some norms, for which
we use the following notation. Let d; , j = 1,2, denote the center of each vortex as in (4.1).
We recall that (p;, 6,) are polar coordinates around d;, that is, z = p;e'% + d;.

We will define two sets of norms. The first one is the following: given o, o € (0, 1)
and ¥: C — C, we define

Xj i 7N i 2
— (=) Wy, (z — d; R=,
We—dp ) e .

where

2
Wl = D IVav llc2aqo, <3 + IR 1 + Tm(y) 12,5

j=1

where, with Re = ¢y, Im ¢ = 95,

V| 1
[Vill1, == sup [¥1| + sup ———— + sup| |0, ¥1| + [3sV1]
01>2 2<p1<2 Pt 0y r>1 €
p2>2 2<p2<%
D2 [D*V1]a.B,.

+ sup —|72 1ﬁ1|72 + su R a ”/2({) e
2<p1<Re P1” T P2 2<|z—d |<Re |z —di| + |z — da
2<p2<R. 2<|z—d>|<Re

[¥2] |Vira|
[¥2ll2,« == sup — - + S e s
* p1>2 P 2+0 4 05 240 4 go0—2 2<m<% 07 2+0 4 05 240
p2>2 2<p2<%
_ _ | D>y |

+ sup[e7 2|0, V2| + &7 Osyal] +  sup R e i

r>1 2<p1<R P + Py
e 2<pr<Rg

+ sup [D2Y2)a,B, ()
2<|z—d|<Rs |Z - d1|_2+0 + |Z - d2|_2+0
2<|z—d>|<Re
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Here we have used notation (4.4)—(4.5). We recall also that the norm for the right-hand
side & of (5.1) is defined by (4.3). One of the main results in this section is the following.

Proposition 5.1. If h satisfies (3.16) and ||h || «x < +00, then, for ¢ > 0 sufficiently small,
there exists a unique solution v = Tg(h) to (5.1) with |||« < oo. Furthermore, there
exists a constant C > 0 depending only on a, 0 € (0, 1) such that this solution satisfies

[¥ 1« < Cllllxx.

The proof of Proposition 5.1 is in Section 5.1.

Although the existence and estimate in Proposition 5.1 are sufficient to solve a nonlin-
ear projected problem, the estimates for ¥ are too weak to enable us to solve the reduced
problem. This means that they are too weak to justify that we can choose the parameter d
such that the Lyapunov—Schmidt coefficient ¢ in (5.1) vanishes. In order to address this
difficulty, we use that the largest part of the error and ¥ have a symmetry that makes
them orthogonal to the kernel. To state the extra (partial) symmetry involved, let us con-
sider ¥: C — C. Recall the polar coordinates p;, §; about d /; defined by the relation
z=pjelt + d ;. We can decompose v in Fourier series in §; as in (4.16) and define

l/fe’j — Z wk,j’ Iﬂo’j — Z wk,j.

k even k odd

The intuitive idea is that ¥/ is not orthogonal to the kernel near d /; but small, while
V€7 is large but orthogonal to the kernel near d ; by symmetry. With R; defined in (4.17),
we have

YO (Rjz) = Yo (2),
Ve (Rz) = =y (2),
and we can define equivalently

VoI ) = S ) + TR

VeI (2) = S ()~ PR

It is convenient to consider a global function ¢ defined as follows: with R, given by
(4.2) and n;, g defined in (4.18), we set

YO =RV + R YO, (5.2)

That is, ¢ represents the odd part of ¥ around each vortex d;, localized with a cut-off
function.

The part of i that will be small, namely ¥°, will be estimated in norms that allow for
growth up to a certain distance. We do this because that part arises from terms in the error
R? that are small, but decay slowly. To capture this behavior, we define

2
Wls =Y lloge[ ™ [Vavllc2a(p, <3) + IRe(W)lg.1 + Im()]g.2.
j=1
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where
PR S
2<p1 <R L P110g(2Re/p1) + p210g(2R:/ p2)
2<pr<Rg \v4
V] ] (5.3)
log(2R:/p1) + log(2R:/p2)
V2| + |V
[¥alg2 = sup [ —1to , —1+0 , -1 —1 - 54
2<p1<R:LPy +p3 77 4 py 10g(2R:/p1) + p3 " 10g(2R:/ p2)
<p2<Kg

and we recall

2
|hil |ha|
|h|gy = Vahllcoap, <ay +  sup |: - - t = — :
A T
2 &

Proposition 5.2. Suppose that h satisfies symmetries (3.16) and ||h||«« < 00. Suppose
furthermore that h° defined by (4.19) is decomposed as h® = hl, + h§, where |hd |y < 00
and hY, h% satisfy

O(Rjz) =h3(2), |z—dj|<Re. j=12.k=0ap,

and have support in Bag, (c?l) U Bg, (572). Let us write = ¢ + ¥° with ¥° defined
by (5.2). Then ¥° can be decomposed as y° = 3 + wg, with each function supported

in BR, (c?l) U Bg, (&2) and satisfying
WSl < 1hS 1y + ellog el 2(1hS [lax + I1h — B° 1) (5.5)
AP LA (5.6)
W3l + 15l < Ihlles + 18S ex + 175 [l

and §
w,?({RjZ) = %?(Z)v lz—dj| <Re, j=12k=0obp.

The proof of Proposition 5.2 is in Section 5.2.

5.1. First a priori estimate and proof of Proposition 5.1
Here we obtain a priori estimates for solutions to
LE(Y) =h inR?

Re xidiWx, =0 withg;(z) =iW(z)¥(z + c?j), (5.7)
B(0, .
© Y satisfies symmetry (3.16).

Lemma 5.1. There exists a constant C > 0 such that, for all ¢ sufficiently small and any
solution W of (5.7) with |V ||« < 0o, one has

1V« < Cllhllex. (5.8)
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Proof. To prove Lemma 5.1, we will use first weaker norms. For ¥: C — C, we define

2
¥ lle0 =Y _IIVa¥lLoo(o; <3) + IRe(¥) 1,20 + IIM(¥) 12,40

i=1
where !
— | Y1l
[Villis0 == sup [Y1]| + sup ———— —Ia Vil + 19s¥] |,
p1>2 2<p1<f pit + 3t r>1
p2>2 2<py<2
[¥2] [V
l¥21l2,%,0 := su + su B S —— i
* p1>pz '01 +G + )O 2+0 + 80 2 2<p122 +0 + )O 2+6
p2>2 2<p2<
+ SUP[S" 210, v2] + 792 l].

r>

In the expressions above, the gradient of v; is (O, w,, x, ¥j), where z = (x1, x2).
Since z = x1 + ix, = rels = ple’91 +d = pze‘92 -

d, we have
1
IV 12 = 0x, V)% + 0o ¥) = (0,97)% + r—2(3s1/fj)2
1 1
= (00, ¥)> + 506, ¥)% = 0, V)% + — (09,¥/)°.
P1 P32
We define also the norm for the right-hand side 2 = hy + ihy of (5.1),

[ [Re(h)] n |Im(h)| :|
,Ol_2 +p2—2 +82 p1—2+0' +p2—2+0' +82_0—

Allsx,0 = E VahllLee o, <3) + SUP2
>
j=1 p;>2

We claim that there exists a constant C > 0 such that, for all ¢ sufficiently small and
any solution of (5.7), one has

[¥llx.0 = Cll7]lsx,0- (5.9)

To prove this, we assume by contradiction that there exist &, — 0 and ™, 1" solutions
of (5.7) such that
19 @0 = 1. 12 ax0 = 0n(1). (5.10)

We first work near the vortices d i, and work with the function
¢ (2) = iW@)Y ™ +d)).

The uniform bounds (5.10) imply directly that ||V¢;")||LOO(R2\(B(JI 2)UB(d>,2))) 18
uniformly bounded. In the region B(d,2) U B(d3,2), the equation can be rewritten in
the form

MM + e y207.9™ —2xy03,0™ + x205,0")
—4i(xdyp™ — ya ™) — 49"
+ (1= |Va|»)p™ —2Re(Vyp™)Vy = iVygh™ (5.11)
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with ¢ = iV;y . We have used the expression in Cartesian coordinates of the opera-
tor £2(d2, — 4id5 — 4). We remark that the linear operator in (5.11) is uniformly elliptic.
The uniform bounds (5.10) and standard elliptic estimates imply that

Vo™ || (B, 20B@.2)

is uniformly bounded. As a consequence, || V(ﬁ](-") || oo (r2) is uniformly bounded for j =
1, 2. We then can apply Arzela—Ascoli’s theorem to extract a subsequence such that
¢;") — ¢ in ClgC(Rz). Passing to the limit in (5.7) (we use (3.14) and (3.15)), we con-
clude that L%(¢o) = 0in R2, with L° defined in (3.5). Moreover, ¢y inherits the symmetry
$0(Z) = ¢o(z). From the estimate [0 = 1, we deduce that ¢pg € L°°(R?) and that

Y1 = Re(go/iW), Y2 = Im(¢o/i W) satisfy
C
Vil + 12lIVY ] = C, 2] + [VY2| = EEa |z| > 1.

By Lemma A.2, we deduce that ¢9 = ¢1 Wy, for some ¢; € R.
On the other hand, we can pass to the limit in the orthogonality condition

Re / )(¢_>j(.") Wy, =0
B(0,4)

and obtain necessarily ¢; = 0. Hence ¢;”) — 0in C2_(R?). Therefore,

loc
Y™ — 0 uniformly on compact subsets of {p; > 2, p» > 2}. (5.12)
Next we derive estimates far away from the vortices. In the following we drop the
superscript 71 for simplicity. In {p; > 2} N {p2 > 2}, we have that ™ = ¢ solves
VVaVy
|7
which for ¥y = Re(V), > = Im(y) translates into the following system:

\Y \Y
U TNy - V6 + 6T + 20
2

AY
h=Ay+2 —zi|Vd|2w2+aza§sw+82(2V—d—4i)asw,
d

h1=AW1+(

w1

0 0
+ 282[(3—”” + Sl“z)asl/q — 3561 + ez)aswz] + 4820y, (5.13)
w1 Wwao
. le sz 2 292
hy = Alﬂz + w— + w— Vlﬂz + V(Ql + QZ)VWI - 2|Vd| Vate 8ssw2
1 2

Vw, | V
+ 282|:(—w1 + wz)asl/fz + 9561 + 92)831//1:| — 4205y, (5.14)

w1 1%

We start by estimating v,. Since ¥, satisfies

Va(x1,—x2) = Ya(x1,x2) and  Ya(—x1,X2) = ¥2(x1, X2),

it is sufficient to obtain estimates for v, in the quadrant {x; > 0, x, > 0}.
Let R > 0 be large fixed and Dg = {x; > 0, x5 > 0} N {p; > R}. By the symmetries,
Y, satisfies a homogeneous Neumann boundary condition at x; = 0 or x, = 0.
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In Dy, we have |V;|?> > ¢ > 0 for some fixed positive constant c. We consider (5.14)
in D g and rewrite it as Ay, + £2055%2 — 2|V |?>Y¥2 = po in Dg, where

Vw Vw
P2 =hy — ( L+ Z)V% — V(61 + 02)Vyn
w1 Wao

3, 3,
- 232[(ﬂ T wz)aswz +0,(0) + ez)aswl] + 4629,
w1 W2

We use polar coordinates (p1, 61) around d and (p2, 82) around —d , that is,

re’s = p1e!® +d = pye'® —d.

From this, we get

1 ~ d sinf - d cos 0

8y = ~(p1 +d cosB1)dy, — a0 9y = dsin6d,, + (1+ cos 1)391,
r rp1
1 - d sin 6 - d cos 0

By = ~(py —d c0802)dp, + 02y 8y = —d sin a0, + (1 _aeo 2)392.
r rp2 P2

With these expressions and the asymptotic behavior stated in Lemma A.1, we see that

VUM Vuu C 1 _
( + )Vl/fz < F(pf—" + & U)||1/f2||2,*,0,

w1 w2

_ 1 _
IW%+%Wmmcmo+f(ﬁw+¥“ﬁmhw,
1

8sw asw — 1 —
(_1 + 2)3s1ﬁ2 <C(R +8)( s + & 0)||¢2||2,*,0v
w1 wo L1

82

e%u&+%wwuscmﬂwwﬂ( +§*)WAM@

2—0
P1

ﬁwwuscMﬂwwﬂ( +¥*)wmup

2—0
P1

Since we assumed ||/ ||«,0 = 1, we get

1
Mﬂiawmw+Rw+§%2w+ﬁw)
P1

We use a barrier of the form

1 _
By = A{( o + &2 U)
P1

with M = C(||h]|sx,0 + R™% + €% + ||[¥2]|Lo°(Br(d))) and C > 0is a large fixed constant.
Note that

2

B, - 3B, - d
2,8, = —2d?sin(6))? + —=d cos(@l)(l + = cos(@l))
ap? dp1 p1

T 5 ~
= M(U—Z)(O'—:;)dsttﬂ _I_M(O,_z)d‘cos(el) (1 + iCOS(Ql)),
P1 o P1

—0 3—0
1
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and so

1
ABy + 20558y — 2|V > B, < —5M( o
P1
for some fixed ¢ > 0. Thanks to a comparison principle in Dr (a slight variant of Lem-

ma A.5) and standard elliptic estimates, we get

+ 82_0) in Dg

1 _ _ .
[¥al| < C(pZ—a +e? ")(||h||**,0 + R™% 4+ &% + |Y2llLeeoBr(@y) inDr. (5.15)
1

Standard elliptic estimates imply

#8270 )l + R 4

1
V] < c( L
P . 2
+aliaan) inDen{o <) 610

1

For points in Dg with p; > 1/¢, we use the scaling ¥ (7, s) = ¥ (¢~ 'r, s), and we get the
estimate

e 0| + 1959 ] < Ce7 (Il + R77 + &% + Y2l Lo Br(@)) (5.17)

for points in D with p; > 1/e.
Combining (5.15), (5.16) and (5.17), we get

V202,40 < C|Allxx,0 + R77 + €7 + [[Y2]l Lo (BR(d)))- (5.18)
We next estimate 1. We also use the symmetries satisfied by ¥, that is,
Yi(=x1,x2) = —=¥1(x1,x2), VY1(x1,—x2) = —¥1(x1, x2),

to look at the equation for 1 in the quadrant {x; > 0, x, > 0}. Let us rewrite (5.13) as
Ay + €202,y = pi1, where

\% \%
p1=h1— (ﬂ + wz)VI/fl + V(61 + 62)Vyr,
w1 Wwo

9, 9,
_ z&[(ﬂ + wwz)aswl —3,(61 + ez)aswz] —4628,y,.
2

wq

We have, in Dg,
Vw Vw
(G + 22w <

w1 w

||1/f1||1*0»

<2
_ 1
V(6) + 02V < CR 1(? + 82) 19 %2201
1
dgw 8 w C (1
2 ( ! Z)a vl < ( 82)||w1||1,*,o,
w1 Wy R p
1
26219561 + 62)052] < C (sl—“ + R"—l) (82 + —2) 1Wallamo.

&|0s2| < C(Sl_(r +RU_1)( —2)||1/f2||2*0
P

2¢e
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Using that ||[{[|«,0 = 1, we get
o—1 1—-o 1 2
|p1l = Cllhllsx0 + R +67°%) e +¢&7).
1
We use the comparison principle with the barrier

By = M0 (wr —0)

with M = C(||h]lsx0 + RO + &% + ||¥1 || Lo (Br(d))) and C a large fixed constant.
We note that

- d cos 0
928, = —d sin6; CZZS LM —26))
1
d cos 0 d sin 6 d cos®
+(1+ cos 1)[— i 1M(n—291)—2(1+ cos I)M}
P1 p1 P

From this, we get

1
AB + 82833581 < —C~M(—2 + 82)
P1

for some fixed ¢ > 0.
Thanks to a comparison principle in Dg (a slight variant of Lemma A.5), we get

V1l < C(llhllxo + R + &' ™7 + [[¥1llLoBr@y) in Dr. (5.19)
Elliptic estimates and a standard scaling give
p1IVY1] < C(lAllex0 + R7™H + 77 + Y1l Lo (BR (@) (5.20)

for points in Dg with 2 < p; < 2/e. To estimate the gradient for points in Dy with
p1 > 1/e, we use the scaling ¥/ (r, s) = ¥ (¢~ '7, s) and see that

e 0, v1] + [0sv1] < C(hllsx0 + RO+ 677 + Y1 llLooBr(@)) (5.21)
in this region.
Combining (5.19), (5.20) and (5.21), we get
111150 < CU-lexo + RO + 677 + Y1 | Loo(BR(@))-
Then, using (5.18), we conclude that
[V )ls0 < C(llAllax0 + R+ &7 + RT 4+ £'7°
+ 1¥1ll oo Br@) + V2]l LooBR@))-

Using then (5.12) and |||+« = o(1), from the previous inequality, we get ||/ ||«,0 < 1/2
if from the start R is fixed large and we take ¢ > O small. This is a contradiction and
proves (5.9).

The full estimate (5.8) follows from (5.9) and Schauder estimates. ]
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Proof of Proposition 5.1. We first solve the problem in bounded domains. We consider
the equation

1e(w)—h+czm( 1)/ Wy, (z —d;) in Bpy(0),

v =0 on 0B (0),

Re/ Xﬁb_ijl =0 with (]5](2) = ZW(Z)W(Z + jj), j=12,
B(0,4)

Y satisfies symmetry (3.16).

y (5.22)
with M > 10d. We set

H = {¢ =iVy¥ € Hy (Bp(0),C) :Re/ xPiWe, =0, j = 1,2,
B

s

Y satisfies (3.16)}.
We equip # with the inner product
polimRe [ (Vg + 2000
B (0)

With this, # is a Hilbert space. Indeed, it is a closed subspace of Hg (B (0),C) and
[-,-]is an inner product on H!(By(0), C) thanks to the Poincaré inequality. In terms
of ¢, the first equation of (5.22) can be rewritten as

A+ (1= |VaP)p — 2Re(@Va)Va + 62029 — 4idsd — ) + (1 — I)V%p
Wy, (z — d))

2
= iVah+iVac ) (=17 x;(2) W)
— 4

Jj=1

We can express this equation in its variational form. Namely, for all ¢ € J,

~Re / (VoVg + 620,67,9) + & Re / (4i$T5g — 467)
Bz (0)

By (0)

_ E
—2Re/ Re(@Va)Vaw + Re/ (1= 1)+ (1 = Va7
By (0) BM(O) d

_ . _ Jle(Z )
Re/BM(O)lVd( CZX/( 1) W —d) [

We now denote by (k(x)¢, - ) the linear form on J¢ defined by

(k(x)¢p, ) = &> Re/

(4ipdsp — 4¢P) —2Re / Re(pVa)Vio
Bz (0) B (0)

nE La_w.nles
+Re/BM(m[(n D+ |Vd|)}¢<o.
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In the same way, we denote by (s, - ) the linear form defined by

. Wy, (z — d) _
toyimre [ iva(h-e ) gy PuES g
Bar (0) Z ! W(z —dj)
Thus the equation can be rewritten as

(¢, 9] — (k(x)p,p) = (s,9) forally € K.

By using the Riesz representation theorem, we can find a bounded linear operator K on #
and S, an element of & depending linearly on s, such that the equation has the operational
form

¢ —K(p)=S. (5.23)

Besides, thanks to the compact Sobolev injections H} (B (0), C) < L?(Bp(0),C), we
know that K is compact. We can then apply Fredholm’s alternative to deduce the existence
of ¢ such that (5.23) holds if the homogeneous equation only has the trivial solution. To
prove this last point, we establish an a priori estimate on c. In order to do that, we use
the following equivalent form of the equation in the region B(cﬁl~ d ); with the translated
variable, it becomes

LE($;) = hj + cxWy, in B(0.d),

where LS is defined in (3.13), ¢; (Z) = iW )y (z — d yand h; (Z) = iWE@)Y(z — d i)
for |Z| < d
We can test this equation against Wy, to find

1 _
c = ——[Re/ _hiWy, —Re[ L8(¢,)le:|,
Cx B(0,d) B(0,d)

with ¢4 = Re [ gy X[Wx, > = Re o gy X|Wx,|* 2= C for some C > 0 of order I and
Lf. defined in (3.13). Integrating by parts, we obtain

Re/ L)Wy, = Re/ ¢ (Ls — LO(Wy))
B(0,d) B(0,d)

¢J
R W
* e{/BB(O,d) CE BAZEN v

In the previous equality, we used that LO(le) = 0. However, using the expansion of
L? — L?in (3.14) and estimates (3.15), we can see that

= Og(ey/[loge]) ||V |+ (5.24)

& 0
Re/B( ¢, (LS — LOY(Wyx,)

By using the decay of ¢;, V¢; and Wy, VW, , we can also check that

A — d—
Re{/ , —’Wx1—¢j—Wx1} = Og(ev/[loge)[|¥ |+
dB(0,d) Jdv dv
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Therefore, we arrive at

1 — *
c= ——Re/ _ hiWi, 4+ Og(e+/|logel) vl .
B(0,d))

Cx Cx

To conclude the proof, we note that we can apply Lemma 5.1 to conclude that a solution
of the homogeneous equation satisfies

Wy, (z — d;)
iW(z—d))

< Cey/[logell|¥|«.

¥l = C

2 .
¢ 1Y
j=1 ok

and thus ¥ = 0. Then, for any M > 10d , we obtain the existence of a solution of (5.22)
satisfying || ¥as ||« < C ||/ ]|«%, with C independent of M. Note that, in the previous argu-

ment, the norms || - ||«, || - ||+« are slightly adapted to deal with the fact that we work on
bounded domains. We can extract a subsequence such that yps — ¥ in Hkl)C (R?) with v/
solving (5.1). From Lemma 5.1, we deduce ||{/ ||« < C ||/ ]]sx. |

5.2. Second a priori estimate and proof of Proposition 5.2

Lemma 5.2. Let o € (0,1), 0 € (0, 1). Then there exists a constant C > 0 such that, for
all ¢ sufficiently small and any solution v of (5.7) with | Y|« < oo, one has

W]y < C(lhlyy + ellog el |12 x). (5.25)

Proof. We work with the weaker seminorms

2

[Wlho =) _llogel ™ [Va¥rllLoogo; <3) + IReW)lg1 + [Im(¥) s,
j=1

where |- |y 1, | - |42 are defined in (5.3), (5.4) and

2
|71 |h2]
T L R [ LI )
; ’ 2<p<RLPT P20 pr Ty
/ 2<p2<R¢

We claim that there exists a constant C > 0 such that, for all ¢ sufficiently small and any
solution of (5.7), one has

¥ lgo < C(|hlyo + ellogel/? (A s). (5.26)

We argue by contradiction and assume that there exist &, — 0 and ¥, 1™ solutions
of (5.7) such that

W @leo =1, (BP0 + enllogen|2|h™ ] x) = 0 (5.27)

asn — oo.
We first work near the vortices and notice that, by symmetry, it is enough to consider
the vortex at +d. We work with the function ¢;")(z) = illoge| "' W)y ™ (z + d;).
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Using (5.27), from Arzela—Ascoli’s theorem, we can extract a subsequence such that
431(") — ¢ in C2 (R?). Passing to the limit in (5.7), we see that

loc
L%(¢o) =0 inR?,

with LO defined in (3.5). The function ¢ inherits the symmetry ¢o(Z) = ¢o(z) and
satisfies g9 € L°. Moreover, writing ¢po = i Wi, Yo = 1//& +1 1//3, we have

o @I <lzI. W@ =<1, |z >2.

Thanks to the above estimate and Lemma A.3, we deduce ¢g = ¢; Wy, for some ¢; € R.
On the other hand, we can pass to the limit in the orthogonality condition

Re/ )(qgj(.n)le =0
B(0,4)

and obtain necessarily ¢; = 0. Hence qu( ™ 5 0in CcL.

loc*

(R?). We can also apply the same
argument near —d and get
w(n)
-0
|log x|

uniformly on compact sets of {p; > 1, p» > 1} as e, — 0.

In what follows in this proof, we work in the region
Dpr, = {Ro < p1 < R} N{x2 >0},

where Ry > 0 is fixed large and R, is given by (4.2).
We use barriers to estimate wén)(z) in Dg. By the symmetries of wz(n), we get the
estimates for all 2 < p; < R,. Let us write equation (5.14) as

le sz

Ay + (— + —)V% —2|V4|*y
w Wy

dswa

dsw -
+ 205 Y2 + 282(;—11 + )3s1ﬁ2 = D2,

w2

where
P2 =hy — V(01 + 02) Vi — 2620561 + 62)0591 + 4e20,91.

‘We observe that, in D Ry» it holds

C 2R
V(6 + 6,)Vy ™| < Elog( j)wf"’m,n

2R
)h”l(n)hi 1,

)|w(”’| :

1Y@ < CIA® e = 0(1)e, [log e | 712, (5.28)

2105(01 + 62)05y1| <

C (
/: |1:g8n|
219,y <

<—— 1o
p1llog e | (

Using the a priori estimate of Lemma 5.1, we find that
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Thus, writing ¢ = wf") + iwy’), we have
WP (2)] < o(1)ey ! logen| 772,

_ _ 1 1
W (2)] + [V (2)] < o(1)e, [log en| l/z(pz—_g + pz—_)
1 2

for2 < |z| < 1/e, with o(1) — 0 as n — co. We note that, for |z —dj| = R,,

¥ ®@lls — o(DRe
R20 ~ R20

W (2)| <

=o(1)

as n — oo by (5.28). We use as a barrier the function

~ C
B = p1+0(|h(n)|¢m,o + 19 Lo (py =R, )
1

C . (2R 1 | Loo (o =k
+EIOg(_g)(|1/f1(n)|ﬂ,l+ 2 (p1=Rop) ’

P1 [log en |
where C > 0 is a large fixed constant. We note that
~ b 1 2R
By o+ — log(—”‘)(cwf")m,l + bn) (5.29)
P1 01 P1

in D Ry» Where b, — 0 as n — oo. By the maximum principle and elliptic estimates, we
get
i1+ Vsl < B (5.30)
in [)RO'
Next we use barriers to estimate wl(") in D R,- By the symmetries of wf"), we get the
estimates for all 2 < p; < R,. Let us write equation (5.13) as

Vw Vw dgw dsw
Ay + ( -+ 2)VW1 + 205,y + 282(3—1 + =2
w Wo wi

)3s1/f1 = D1,

w2

where p; = hy + VS@] + 92)V1//2 + 28235(01 + 92)85102 — 48283W2.
We find that, in D g, the following estimates hold:

n C -
VO +6)v3"| < B2,
1

210501 + 023,y | < —————Bs,
p1llog ex|

2 (n)
0 <—8
8n| SI/IZ |— 01|]()g8n| 2

Hence, using (5.29) and (5.30), we get

b 1 2R
Ip1] < p_? + ;log( plg)(CIWf")ln,l + bu)
1

for a new sequence b, — 0.
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Using Lemma A8 for part of the right-hand side and the supersolution

2R
o225 ) 197 + ).
P1
we conclude that

2R 2R
91700 = Chuprion( S ) + a2 €19l
1 1

(n)
2R
< Cp IOg( S)(bn + W e |“’1).
P1 Ry

This and standard elliptic estimates yield

(n)
WP < C(bn + —WIR |”’1).
0
(n

Choosing Ry > 0 large and fixed, we get |y, )|1,ﬂ — 0 as n — oo. Using this and (5.29),
(5.30), we obtain |1//§”)| 24 — 0 as n — oo. This contradicts assumption (5.27), and we
obtain (5.26). With this inequality and standard Schauder estimates, we deduce (5.25). m

As an intermediate step to obtain Proposition 5.2, we consider the symmetry proper-
ties of the solution constructed in Proposition 5.1, when the right-hand side has symme-
tries. More precisely, let us consider the local symmetry condition

h(R;z) = —h(z), |z—d;| <2R.. j=1,2. (5.31)

Lemma 5.3. Suppose h satisfies symmetries (3.16) and (5.31). We assume |7+ < 00.
Then there exist ¥*, W™ such that the solution  to (5.1) with || ||« < oo can be written
as ¥ = ¥* + ¥* with the estimates

1ol + 195l < Cllkllass 1971g < Cellogel 1] s

Moreover, (Y*,y*) define linear operators of h, * has its support in B, (d~1) U Bg, (622)
and satisfies }
VI(R;z) = —y¥S(z), |z—dj| <R.. (5.32)

Proof. To construct the function ¥*, we split the operator £° (cf. (3.11)) into a part
£¢ preserving symmetry (5.32) and a remainder £¢. This splitting depends on which

vortex d; we are considering for symmetry (5.32), and thus we write £ ;, £7 ., j = 1,2.

It is sufficient to consider the vortex at d 1- We set

Vwev
£5,0) 1= Ay + 20 i W )

P1P1 0101

. a2
+ &2 [d282 ¥ sin(61)% + — 32, ¥ sin(6;) cos(6;)
P1
jz
+ 05,0,V (1 + 7 Cosz(Gl))

1

d? d?
+ 0o, ¥ — cos?(6y) — 209, ¥ — sin(0) cos(@l)],
P1 P1
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VWbVy

s~ 21 Val? = W) Im(y)

xi,l(‘ﬁ) =2

d
+e [20182191 V¥ sin(6y) + 280161 p_ cos(61)
1

+ 3,5, d cos(81) — dg, wpi sin(@l):|
1
82(—2as Va _ 4i) [am ¥d sin(6;) + (1 - 4 cos(6;1)dg, w)]
Va P1

We use the same cut-off functions defined in (4.18) and solve
LEW>"Y) = hnipr, inR?,
Re/ O Way =0 with 9! (2) = iW @Y (z + do),
B(0,4)

Y21 satisfies Y2 1(2) = —y>1(2).

This is obtained as variant of Proposition 5.1 with the same proof. Note that there is no
need to project the right-hand side since it is automatically orthogonal to the kernel by
symmetry, and note also that the orthogonality condition for the solution holds also by
symmetry. Recall that & satisfies (5.31), and we get a solution 2, 1 satisfying (5.32)
with the estimate ||1/2'!||« < C||/| ««. In a similar way, we construct ¥r2-> centered at the
vortex a72 and define

V=R Y A LR Y (5.33)

Note that we have the estimate |5 ||« < C||/]|xx-
Let

hi=h—25 (i irv>") — L5 (1R, V)
— &5, ARV — £5,(2, 1R, YP).

Some lengthy but direct calculations show that
Illesx < Cllhllas. |z < Cellogel"/? ] wx.

Then we solve, using Proposition 5.1,

N

L) =h+ Z W(Z_d)( 1)/ Wy, (z —d;) inR2,

Re/ X‘l;_ijl =0 with q~5j (z) =iWE)V(z + Jj),
B(0,4)

1/~/ satisfies symmetry (3.16)

and obtain, using also Lemma 5.2,

[0 < Cllallex.  |¥ly < C(lhlgy + ellog e[|l x).
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Finally, we set
v = . (5.34)
The functions *, ¥* defined in (5.33), (5.34) satisfy the stated properties. ]

Proof of Proposition 5.2. Let us define h:=h—h°sothath=h+ hS + h;. Let ¥, Vg,
1,7/5 be the solution with finite || - | x-norm of (5.1) with right-hand sides h, hd, hg given
by Proposition 5.1. Then ¥ = ¥ + ¥4 + ¥, and we have the estimates

1l S Walluws 19505 < U Nlwwn J = . B.
We have ¢/ = ¥° + ¥ + 1/7/‘3? We define
Ve =V +Vg. Vi =g
Note that, by Lemma 5.2,
W2l < 1Wals S 1S 148 + ellog /(|G .

According to Lemma 5.3, we can write ¥ = ¥ + ¥* with ¥, ¥* satisfying the
properties stated in that lemma, from which we get

[WOls = 1)Ly < [y*ly < ellog el |1 s

Therefore,
[Wely < 1hS s + ellog el 2 (1A llax + [l/2]]4).

and this proves (5.5).
On the other hand,

gl < 1920 + 19SS Il + 1l < 1Al + g s
IWgls = 1¥gls < 1¥plls S 1hgllws.

and from here, (5.6) follows. ]

6. A projected nonlinear problem
We consider now the nonlinear projected problem

_ LB gy Wy, (z —d;) inR2,

2
xS(w)=R+N(w)+cZiW(Z 7
-4

Jj=1
Re [ @We =0 with;(5) = iWCW (G +d). j=1.2
R

Y satisfies (3.16).

6.1)

Using the operator T, introduced in Proposition 5.1, we can rewrite this equation in the
form of a fixed-point problem as ¥ = T,(R + N (V)) =: G¢(¥).
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Proposition 6.1. There exists a constant C > 0 depending only on 0 < a,0 < 1, such
that, for all ¢ sufficiently small, there exists a unique solution V¥, of (6.1) that satisfies

Vel < :
llog &

Furthermore, V. is a continuous function of the parameter d = V|loge|d and
[Y2ly = Cev/llogel,
where ¢ is defined according to (5.2).

Proof. We let
F = {w : ¥ satisfies (3.16), Re/ 1idiWe, =0, j =12,
R2
W7l = CoTog .

Endowed with the norm || - ||«, & is a closed subset of the Banach space { : |/ ||« <+00}.
We will show that, for ¢ small enough, G, maps ¥ into itself. Indeed, we need to check
that if ||/ [lx < C/[loge, then || T(E + N (¥))[lx = C/[loge].

1Yl <
|log &]

Note first that, from Proposition 4.1,

c

[Rlsx < —.
[log &

Let us now estimate the size of the nonlinear term. For p; > 3 and p, > 3, the nonlinear
terms are
IVY)? +ilVal? (7272 — 1+ 29) + 6% (959)%.

Let us work in the right half-plane (so p; < py). We start with (Vir)2. For 3 < p; < 2/s,
we have

2
(V)2 < [VYP? < %
1

For r > 1/¢, we use
(V) = 0 + 5 @9’
and estimate
1@ 9)? = (3,91) + (3,92)* < [V
and

1 1 1
r_2|(as1/f)2| = r_z((asl/fl)2 + (8S1//2)2) =< r_2||w||i

It follows that [|i (V{)? |« < C |V |12
Next we consider i |V |?(e72¥2 — 1 4 2y/,). We note that the real part of this function
is zero. Again, we work in the right half-plane. We have, for p; > 3,

IVal?(e7"2 =1 4+ 2y)| < Clyal? < Clo7* + 272 [yl 0
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and hence
1i1Val?(e72V2 = 1 + 2yn) |lax < Cll¥|I.

Finally, we consider i £2 (951 )2. We have, for 3 < p; < 2/s,

] N .
20,90 < 23210,y + (e + E) 96,0 2 < C + o)V
Forr > 1/¢,
8205907 < 212,

It follows that ||i e2(0sy)? ||wx < [|¥/]|2.
In {p; <3} U{p2 < 3}, it can be checked that

[iVaN ()| < C(ID?*y| + |Dy| + |yl + |y + 89|
+ 1y + oL+ |y + ¢l + ly]) + |Eallp] + [Vo|?)

with y = (1 — n)Vz(e'¥ — 1 —iy). Thus we obtain that, for any j = 1,2,

Vg N atp: <3y < CllV|? + |E||p| < )
I#VaN Dllcedtp,<sp = CIVIE +IElIB] <
Thus, for an appropriate constant C, we have that G¢: ¥ — T.(E + N (¢)) maps the ball
{¥; ¥« < C/|logel} into itself.

Let us now see the precise estimates on the “odd parts” and “even parts”. From Propo-
sition 4.2, we know that R, defined as in (4.19), can be decomposed into R° = R? + Rg
with

Ce
IR lgy < Toge] R |lx < Cev/[loge].

It remains to prove that
IV (W)l = C (Vs + ellogel ") 1V [l + 1¥715). (62)

In order to do that, we recall that, in the decomposition of a function f in odd and even
modes, we have that, near +d, the function f€ is exactly w-periodic in 6, whereas f© is
exactly 2 -periodic in 6;. An analogous statement is true near —d. Now we can express
the product of two functions as

fe=(f"+f)g+g)=re+ /e +gf +g°r°

We see that f¢g€ is exactly m-periodic, and hence (fg)? = [f€g° + g°f° + f°g°]°.
Thus we arrive at

(/)1 = (/21T + 174118 + 1/ °11g°D- (6.3)

To estimate N (), we use a change of variables (r,s) — (p;,0;) = (p, 0), and we observe
that

(V9% = @) + — 0s)® = 0,0)? + — (9 1)>.
r p
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and
2 2 2 2, 25 cos 6 2
e7(0sY)° = e (dg¥)” + ¢ d(sm%,)wagl// + P (D) )
- ; 2
n ezdz(sinz 8(0,0)° + 4coszsm08pwaew N co;2 9(891&)2).
Thus, component-wise, we obtain
~ 1
(N = 20,91)(0p¥2) + 2(0991) (99 Y2) (82 + ?)
~( . 2cos 6
+¢%d (Slﬂ 0[0,¥109V2 + 09¥10,¥2] + 39%39%)
+ 2d? (2 sin 00,10,V
4 sin 6 cos 0

[0,V109V2 + 09Yr10,Y2]

2 cos?

6
+ > 39‘#1391/&),
P

- 1
KW = =01 + (p2)* — (82 + ;)((aewz)z — (Gev1)?)
4620 sin 60, Ydoti + Dpsdova) + 2 [y ~ o))

23 (sin2 0((0,92)% = (9p91)?)

4 cos 0 sin 6

(01091 + 0o Y209 V2)

cos? 6

@) - (aewl)z])

+ V4P (1 = V2 — 295).

+

We define

ALY = 20,91) (3,1) + 2(301/f1)(391/f2)(82 + %)

~( . 2cos b
Bi(y) = e*d (Sln 0[0o¥109V2 + 09V10,¥2] + ’ 391/f130W2),
Y P 4sinf cos 0
C1(Y) = e"d”| 2sin” 00,Y10pY2 + T[aplhael//z + 0g¥10,Y2]

2cos? 6

2 dg Y109 I//2)-

We have (N ()1 = A1(¥) + B1(¥) + €1 (¥). Besides, we can see that

|B1(¥)| - Ce ( [V « [V, | )< Ce
pit 03t T llogel \pit 03t prt 03t ) T llogel

(K4 F
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for 3 < p; < R.. Now, by using the argument that a product of two m-periodic functions
is m-periodic and the products of one m-periodic function and one 2w -periodic function
is 2 -periodic and (6.3), we find that

|[A1(¥) + C1(¥)]°| 0 0
lpl_l +pl_1 < CUIY l«lv°ls + [v° ).
Thus we obtain
[CAS2H S ( Ce )
,01 —1 + p_l = ”‘WH hﬂ |ﬁ + hﬂ |ﬁ |10g{;‘| *

for 3 < p; < R,. We also have
1—e®2 -2y = (1 —e®2 —29%) + (1 — e2V2 —2y9)e?V2 4 299 (e — 1).
We notice that 1 — %2 — 2y¢ is a -periodic function. Thus we find that
(1 =272 =295)°] < C(W3 11| + v ).

By using again that a product of two m-periodic functions is w-periodic and the products
of one m-periodic function and one 2 -periodic function is 2 -periodic and (6.3), we can
obtain

Wl = C (Il + 1R + <= Iv12)
V [logé|
We proceed in the same way to estimate the other terms in () when p; < 3 or p, < 3,
and we use repeatedly (6.3) to arrive at (6.2).
We now show that G is a contraction for & small enough. Indeed, if ||/ ||« < C/|log ¢
for j = 1,2, then

IN @) = N @2 lex <

_Il €l

This is mainly due to the fact that N () is quadratic and cubic in i, and in the first and
second derivatives of ¥. Then we can use a> — b%> = (a — b)(a + b) and a3 — b3 =
(a — b)(a® + ab + b?). We finally apply the Banach fixed-point theorem, and we find the
desired solution.

By definition, the error function E, the coefficients of £° and of N ¢ depend con-
tinuously on the parameter d. Thus we also have that the operator T, defined in Propo-
sition 5.1 depends continuously on d. Underlylng the dependence on d and using the
fixed-point characterization of ¥, we find that, for dy.dy >0,

¥ (d1) — ¥ (d2) = To(d1)(E(d1)) — Te(d2)(E(d2))
+ To(d) (N (¥ (d1)) — Te(da) (N (¥ (d2))
= T.(d)[E(d1) — E(da)] + (To(dy) — Te(d2))(E(d>))
+ To(d)N (¥ (d) — N (W (d2))]
+ (Te(d1) — Te(d2)) (N (¥ (d2))).
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Thus, by using that, for & small, T, o N is a contraction, we find that

A N 1 ~ ~ ~
[V (d1) — ¥ (d2)l« < m[”Ts(dl)[E(dl) — E(d2)]|l«
+ [[(Te(d1) — Te(d2))(E(da)) |«
+ (Te(dr) — Te(d2)) (N (¥ (d2)|l],

where k is a Lipschitz constant strictly less than 1. We can conclude that ¢ = . inherits
the continuous dependence on d. ]

7. Solving the reduced problem

The solution ¥, of (6.1) previously found depends continuously on d =, [loge|d. We
want to find d such that the Lyapunov—Schmidt coefficient in (6.1) satisfies ¢ = c(d )=
We let

0e = niVaye + (1 —mVze'Ve and ¢, =iV,

where 7 was defined in (3.3). By symmetry, we work only in R* x R. From the previous
section, we have found v, such that

iWE)[LEWe) + R+ N W)z +d) = cxWy,.
For R, defined in (4.2), we set

Cx = Re/ X|Wx1|2:Re/ X|Wx1|27
B(0,R;¢) B(0,4)

and we remark that this quantity is of order 1. We find that
ccs = Re / iW()R(z 4+ d)W, (z)
B(0,R¢)
FRe [ WL WIE + DT ()
B(0,R;)
+ Re/ iWNWe)(z + d)W o, .
B(0,R:)

We recall that i W(z) 25 (¥)(z + d) = L%(¢;) for j =1 and L; defined in (3.13). Inte-
grating by parts, we find

Re/ L;((f’j)Wm = Re/ E(Lf - LO)(le)
B(0,R;) B(0,R¢)

A — Wy,
R W, — ¢ .
* e{/amo,Rg)( dv Wor =9 v )}

Proceeding like in (5.24), we conclude

< Cey/|logelll¥ ]|« <

Re / LE(¢pj)W x,
B(0,R;)

Ce
Viloge]
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Now we estimate the inner product of Wy, and iW(z)N (¥)(z + d ). We use the
orthogonality of the Fourier modes to write

Re / IWEN )z + DTy,
B(0,R:)
— Re / IWW y, (N (1))°
B(0,R;)
= Re/ iw(w’cos 6 — w sin 9)[</V(‘ﬂ)(1) + i Ny (¥)]
B(0,R;) p

2
= —/ (ww’cos ON ()5 — w—N(I//)‘l’ sin 9).
B(0,R;) r

We use that
(N @NI] <IN W@)3les < CIYC[1lv°ls + [¥°]F < Celloge| /2,

o e 0 0 0 L1
(N W))?] < C |3 lgllf I« n [V Il 2l " Lz - CEllOg8|
I+ p? I+ p? 1+ p2© 1+ p2=°

to obtain

Re / IWRNW) + D)Wy, | <
B(0,R;)

B ,/ loge

Now we claim

Re/ iW(EZ)R(z + c?)le = |log &| (— — ald) + o.(e+/|logel).
B(0,R)

We set
By = Re/ iWE)R(z +d)° Wy,
B(0,R;)

By = Re/ iWE)R(z +d)' Wy,
B(0,R¢)

where we recall that So(Vy) = iVzR®, S;(Vy) = iVzR! and Sy, S; are given by (3.4).
From Lemma A.l and Lemma 4.2, we find that

& &
c ] waro( )
V|loge| e S ’ v |log g|
= 628\/|10g5|a1 + 0.(e+/|logel),

1 2 pRe .2 in2o
a) = _/ f wdpl dé,.
[log el Jo 0 P1

with R, which is of order e~ |log €| ~'/2 and which does not depend on d.
Because lim,_ o, wW(p) = 1, we can see that 0 < ¢ < a; < C for some constants
¢,C > 0, and a; is independent of d.

where we set
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On the other hand, by (4.6), we have

(W“ W+ we Wb)_
B() = Re/ b
{p1<Rs} w

+Re/ (L= [WEWP2 4 (W42 — 1 4 W2 — yWeaTTe,
{p1<R:}

The second integral is equal to
Re/ (1—(w1wz)2~|—wf—1+w§—l)(w'1 cos 61 ~|—ﬂsin01)w1
{pP1<R:} P1
= Ox(?|loge]),

where we used that (1 — (wiw2)? + w? — 1 + w? — 1) = O(e?|log ¢]) and w'(p) =
1/p> + 0,(1/p*). We can also see that

Re / W, xl we,
<k WP

w w)
= Re/ (w’l cos 0 + i — sin 91) |:w/l —2 ¢os 61 cos B,
{o1<Rc} p1 w2

wi
P12

li /
. . [ w . w,oW1q .
sin 6 sin @, — i (—1 cos 6y sin 0, + —2— cos 6, sin 91)]
P2 w201

d
= —/ wiw] cos By sin By sin Gzﬂ do;
{p1<R¢} P2
d
+/ w]wj cos By sin Oy sin QZﬁ df; + O(e?|loge]).
{p1<Rg} 02
In the previous equality, we used w), < C&3[log €|/2. Hence we get

wa wbh
Re/{ . );Vbx‘ W“ = 0,(¢*[logg]).
pP1<Kg

Finally, we have

wq w),
= Re/ (wlcos 01 +t—51n91)|:w’1—2 sin 6; sin 6,
{p1<R¢} P1 L)

w) wh,w
! cos 6 cos O, —i—i(—l sin 0; cos 0y + —2 L cos 01 sin91)]
P1P2 P2 W2 01

/
- / Py cos? 61 cos B, p1 dpy d6y
{p1<Re} P1P2

_/ wlw ——Lsin? ) cos 6,01 dpy Ay + O(e?[loge])
{o1<d} P1P2

_ / WL s 8 dpy By + O(e2[loge]).
{p1<Re} P2
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Using the properties of wy, w} and that, in this region,

VIl
cosf, >0 and O<c<ngTlOg8|<C
for some constants ¢, C > 0 and poe+/|loge|/ d is independent of d in the region 0 <

p1 < R, we find

b

WeEWw? el /
Re/ MW“ = —ad—,\oé‘ |10g8| + 03(8 |10g8|)’
{p1<R¢}

Wb X1

with ¢ < ag < C for some constants ¢, C > 0 and independent of d.
Therefore, we conclude that

CCx = €4/ |10g£|(6;—A0 — alci) + 0s(e+/|logg|).

Let us point out that, in this expression, o.(e+/|log¢|) is a continuous function of the
parameter d. By applylng the intermediate value theorem, we can find do near +/dag/a;
such that ¢ = c(do) = 0. For such do, we obtain that V; + ¢, is a solution of (1.1).
To conclude the proof of Theorem 1, thanks to the helical symmetry, it suffices to show
that the solutions of the two-dimensional problem we found satisfy lim;|, 1 oo |Ve(2)| =
1. But this is because, far away from the vortices, our solution takes the form V (z) =
W(z—d)W(z +d)e'Ve. Thus |Vs| = |W(z — d)W(z + d)|e~™V¢. Thanks to the decay
estimates obtained on ¥/, we have

1 1
Imy| < ( — + = )
llogel\1+|z—d>° 1+|z+d|>°

This proves that lim|;|— 4 | V¢ (2)| = 1 and thus that the solution of the three-dimensional
problem satisfies (1.14).

Appendix A.

A.l. The standard vortex and its linearized operator

As stated in the introduction, the building block used to construct our solutions to equation
(2.1) is the standard vortex of degree one, W, in R2. It satisfies

AW + (1= |WH)W =0 inR?
and can be written as
W(x1,x2) = w(r)eie, where x; = rcos 9, x, = rsinf.

Here w is the unique solution of (1.6). In this section, we collect useful properties of w
and of the linearized Ginzburg—Landau operator around W'.
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Lemma A.1. The following properties hold:
(1) w) =0, w'(0)>00<wr)<1landw'(r) > 0foralr > 0;
Q) w(r) =1—1/2r2) + O1/r*) for large r;
(3) w(r) =ar —ar3/8 4+ O(r?) for r close to 0 for some o > 0;
4) if we define T(r) = w'(r) —w/r, then T(0) = 0 and T (r) < 0 in (0, +00);
G) w'(r)=1/r3+01/r*), w"(r) = O(1/r*).

For the proof of this lemma, we refer to [10,25].

An object of special importance to construct our solution is the linearized Ginzburg—
Landau operator around W, defined by

L%(¢) = Ad + (1 = |W[*)p —2Re(W)W.

This operator does have a kernel, as the following result states.

Lemma A.2. Suppose that ¢ € L>®(R?) satisfies L°(¢) = 0 in R? and the symmetry
#(Z) = ¢(2). Assume furthermore that, when we write ¢ = iWy and ¥ = Yy + i
with 1, ¥» € R, we have

Yl + (U EDIVY S . ol + 199 < 1 21> 1
Then ¢ = c1 Wy, for some real constant cy.
Proof. The equation Lo(¢p) = 0in B(0, 1)¢ translates into
vw
AY + 27V1p —2i|W)*Imy =0 in B(0, 1)°.
This reads
2w’ 2 . ¢
0= Ay, + 0rY1 + — 002 in B(0, 1),
w r
2w’ 2 .
0= Ayz + =0,y = = d9y1 —2AW[*y> in BO,1)".

We thus have, by using the decay assumption on ¥y, ¥, that

| Ay = 2|W Py, <

<1 mBO.DC
p

Since |[W|? > C > 0in B(0, 1), we can use a barrier argument and elliptic estimates to
obtain
(1 + 1z (Iy2l + [Vya)) < C. (AD)

We can then use the previous estimate to obtain

[AYy| <

C
in B(0, 1).
1+r3 ©.1
We use that Y1 (z = x; + ixz) = 0 for x, = 0, a barrier argument in the half-plane and
elliptic estimates to obtain

[Yil + (1 + 2DV (A2)

|§ L
(I + [z
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for any @ € (0, 1). From (A.1) and (A.2), we get

C
)]+ (1 +[z)IVe]| < m |z| > 1. (A.3)

From the fact L(¢) = 0 in R2, we know that

Re/ $A¢>+/ (1—|W|2)|¢|2—2/ Re(T)|? = 0
Br(0) Br(0) BR(0)

for any R > 0. Then, integrating by parts, we get

/ |V¢|2—Re/ aavqs—/ (1—|W|2>|¢|2+2/ Re()> = 0.
BRr(0) dBR(0) BRr(0) BRr(0)

Using (A.3), we find [Re(¢d,¢)| < C/(1 + |z|**T1). Thus

Re/ 0 ¢‘ < ¢
Br) | R

Making R — oo, we conclude

2 12y (412 T A2 —
Lver = [ a-wpier 2 [ R =o.

Thanks to the decay estimates (A.3), we also have
/}RZ[IWﬁI2 + (1= W) + Re(W¢)[*] < +00.

We can then apply [15, Theorem 1] to obtain that there exists ¢1, ¢» € R such that ¢ =
c1Wx, + c2Wy,. Using the symmetry assumption ¢(Z) = ¢(z), we can conclude that
actually ¢ = ¢y Wy, for some ¢; € R. |

Lemma A.3. Suppose that ¢ € L2(R?) satisfies L°(¢p) = 0 in R? and the symmetry
¢(2) = ¢(2). Assume furthermore that, when we write ¢p = iWy and ¥ = Y1 + iy,
with Y1, ¥» € R, we have

[l + A+ [2DIVYnl = CA +[zD% V2| + V2| =

< .zl > 1,
1+ |z|

for some o < 3. Then ¢ = c1 Wy, for some real constant c.
Proof. Here we work with the change of variables ¢ = e¢’. Then L°(¢p) = 0 becomes
1 2§
0=Ay -y + r—zaew + (1 —w?)y — 2iw? Im(y).
Writing ¥ = ¥y + iy, with ¥, ¥, € R, we get the system
1 2 5
0=Aay1—3¥1 - r—zaelﬁz + (1 —w)yn
1 2
0= Ay, — r—zlﬁz + r—zaelﬂl + (1= 3wy,

which holds in R? \ {0} with the symmetry condition ¥1(Z) = —V{(2), ¥2(2) = ¥2(2).
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We decompose in Fourier modes

Y=Y Yie()sinkf), Y2 =Y ¥, (r)cos(kb)

k=1 k=0
and obtain
1 k? + 1
0= 8”1//12,k + ;3r‘ﬁ12,k ‘/fl kT 2 sz pt+ (1= 2)Wf,k’ (A4)
1 k2 + 1
0=0rYpp+ ~0r¥pp — —5— Vo 2r—2wf’k +1=3w)yl,.  (AS)

In particular, equation (A.4) for k = 1 can be written as

1 1
Or¥iy + ;3r‘ﬁ12,1 - r—Z‘/flzl = go,

s

where :
go(r)=—2r—21ﬁ21,1+(w -1+ )1//11 =0 4)
as r — oo. The variation of parameters formula yields a function

1 r o0
Yolr) = — fo , / go(s) ds dp.
o

which satisfies

1 1
8rrw0+;arW0—r—2W0 = 8o for r > 1,
[Wo(r)| < Cr*2, |3,%o(r)| < Cr* 3 forr > 1. (A.6)
Hence
Y, = Yo(r) +aur +oor™t, 1> 1, (A7)

for some o1, p € R. We claim that ; = 0. To prove this, we note that, for k = 1, system
(A.4)—(A.5) has the explicit solution

i=[] B =t =

1)
_ %2,1}
v [wé,l’

and define the Wronskian W(r) = ¥ - ¥, — ¥, - ¥. We claim that

Let

W(r) = ; (A8)

for some ¢ € R. To prove this, note that system (A.4)—(A.5) for ¥ can be written as

1
OZWrr"‘;Wr"i‘Bwv
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where B is the 2 x 2 matrix
B 2 [-1 1 n 2 [1—w? 0
Szl 1 -1 2 00 1-3w?)

1 - 1
We=——W+ yI(B-BT)y = —-W

Then

because the matrix B is symmetric, and we get (A.8). Using decomposition (A.7), decay
(A.6) and the explicit form of i, we see that

W) =——.

On the other hand, from the smoothness of ¢ near the origin, we get that Wf,l(r),
wzl,l(r) and their derivatives remain bounded as r — 0. Since the same is true for ¥,
we see that W(r) is bounded as r — 0, which implies that @1 = 0 as claimed. This in turn
implies that

W2 =<CrY, 19,93, <Cr*™" forr > 1,

where &’ = max(—1, « — 2) < 1. Using barriers for ODE (A.5), we get, for k = 1,
|1//12,1| <C forr>1.

and for k > 2, c
|W12,k(”)| < = forr > 1.

Adding these inequalities, we see that |{1(z)| < C, |z| > 1, and then a standard scaling
and elliptic estimates show that

C
V()] < —

El |z| > 1.

Now we can apply Lemma A.2 and conclude that ¢ = ¢y Wy, for some constant ¢; € R.
L]

A.2. Elliptic estimates used in the linear theory

In this subsection, we prove elliptic estimates that we needed in Section 3 to develop the
linear theory. More specifically, we prove estimates of solutions to some model equations.
We use the notation z = (x1,x2) = re’s and throughout this section, ¢ > 0 is a param-

eter. We also use ) {
AN=02, +0%,,, =0, + 0, + — 0%,

X1X
1X1 r

Furthermore, in the equations, the following term will appear:

2. _ 292 292 2
Oggtt = X50% x U + X705, U — 2X1X20%, ., U — X105, U — X20x,U.

We start with recalling the statement and the proof of the comparison principle in the
half-plane for the operator A + ¢2932; with Dirichlet boundary condition.



Interacting helical Ginzburg—Landau filaments 4191

Lemma A4. Let u:R x R} — R be a bounded function which is in C%(R x R%) N
CO%(R x R* ) and which satisfies
Au+&*Zu>0 inRxRY,
u<0 onRx{0}.
Thenu <0inR x RY.

Proof. We adapt the proof of [6, Lemma 2.1].
Let us use polar coordinates (r, s) € (0, +00) x (0, ), and let ¢ > 0 be the first
eigenfunction of 32, in (—Z, 37 associated to the eigenvalue i > 0, i.e.,

iy
T 5w
8?s¢ +ue =0 on (_Z’ T),

T\ Sm\ 0
P\N™2) =%\ )"
We define B := /i1, and we set g(r, s) = rB(s) in (0, +00) x -7 57”), and hence

1 1 . n Sm
2,¢ + ;Brg + (r—2 + sz)fﬁsg =—ue’g <0 in (0, 400) x (_Z’ T)
Consider 0 := u/g in (0, +00) x (0, ) (note that g > 0 in this domain). Since Au +
€292.u > 0, we find
2 1 A 292
Ao + 2020 + —|:8,g8r0 + (—2 + 82)8sg8g01| + BEF I8, > 0.
g r g

We note that (Ag + e?9%,g)/g o < 0 and, since u is bounded, limsup,_, | ., 0 = 0. We

S
can thus apply the maximum principle to deduce that ¢ < 0 in (0, +00) x (0, ). Hence

u < 0as wellin (0, +00) x (0, 7). n

In the same spirit, we have the following comparison principle for the Neumann
boundary condition.

Lemma A.5. Let u: R x R} — R be a bounded function which is in C%(R x R%) N
C'(R x R%). Let ¢ > 0. We assume that u satisfies

Au—i—ezafsu—cuzo inR xRY,
dyu <0 onR x{0}.
Thenu <0inR x RY.

For a function f: R2 - Rand v € N*, o > 0, we introduce the norms

£l = I+ 121") fll o2y + sup 2] T[]z

zeR2

with
s i sup LCHED = S@

lhl<1 7]
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Our first goal is to prove the following proposition.

Proposition A.1. Let f:R? — R be such that f(Z) = — f(z) and || f ||2.¢ < +00. Then
there exists a unique bounded solution of

Au+ 2% u=f inR?

which satisfies u(z) = —u(z) and
u@)| <Cllfll2.e, [Vu(z)| =<C q];_”Tui forall z in RZ, (A.9)
z
C
ledsu(2)] < c% forlzl 2 S0 IDPuloe < Cll e (A10)

We first prove the following lemma.
Lemma A.6. Let f:R? — R be such that f(Z) = — f(z) and || f 2. < +o00. Let
u:R? — R be a bounded function such that w(z) = —u(z) and
Au+&2P2u=f inR%
Then there exists C > 0 independent of u, f, e such that (A.9), (A.10) hold.

Proof. Thanks to the symmetry u(z) = —u(z), it is sufficient to consider the problem

(A.11)

Au—i—ezafsu—f(z)zo, ze RxRY,
u(x1,0) =0 forall x; € R,

which we can alternatively write as

Au + 828§Su —f=0, (r,s) € (0,400)x(0,1),
u(r,0) =u(r,m) =0.

Let us assume

[ f(2)] = m

We want to prove that, for an absolute constant C, we have |u(z)| < C. We define
v(z) = v(r,s) :=s(T —s).

We can check that

1 -2
Av+ &P v+ —— = — — 27 +

1 : "
2 e l+r2<0 forallz =re'* e R x RY.

Hence v is a positive supersolution (and —v a subsolution) for (A.11) in (0, +00) x (0, 1),
and in this set, for any bounded solution u of (A.11), we have, from Lemma A .4,

lu(z)] < lv(z)] inRxRL.

The decay estimates in (A.9)—(A.10) follow by Schauder estimates and a standard scaling
argument. |
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Lemma A.7. Ifu is a bounded function that satisfies
Au + 828§Su =0 inR?, u(z) = —u(z),
thenu = 0.

Proof. Suppose u # 0, and assume without loss of generality that supg2 u = 1. By the
strong maximum principle, the supremum cannot be attained in R? \ {0}. Let z, € R? be
a sequence such that u(z,) — 1. Up to a subsequence, we have two possibilities: z, — 0
or |z,| — oo.

Case z, — 0o. Letus write z, = R,e’°", where R,, — oo and 0, € (0, 7). We express
u in polar coordinates (r, s) and define i, (r,s) := u(r + R, s). Up to a subsequence, we
have ii,, — @ uniformly in compact sets of R2, where & < 1, #i(p) = 1 for some point
p = (1,s5) with s € [0, 7], and 82,5 + €292 % = 0 in R?, with the additional condition
u(r,0) = u(r, w) = 0. This contradicts the strong maximum principle.

Case z, — 0. Let us write z, = R,e'°", where R, — 0 and o, € (0, ). Define
i1, () == u(R, ). Up to a subsequence, ii,, — i uniformly in compact sets of R?, where
u < 1 attains its maximum at some point and satisfies A = 0 in R2. This is a contradic-
tion. |

Proof of proposition A.1. We use v := || f||2,«5( — 5) as a supersolution to solve the
problem in large half-balls centered at the origin. More precisely, for any M > 0, there
exists a solution of
Aup + sZa;uM =f in B;}(O),
uy =0 ondB;;(0),

where B;, (0) := {(x1,x2) € R xR™ :|z| < M}. Thanks to gradient estimates (A.9), we

have ol
v
Vuy| <
Vuml = 5 R
for some C > 0 independent of M, and thus we can apply the Arzela—Ascoli theorem
to take the limit of u s along a suitable subsequence, obtaining a solution of (A.11). The
uniqueness is proved in Lemma A.7, and the estimates follow from Lemma A.6. ]

in B} (0),

Proposition A.1 is a model for the treatment of v, the real part of ¥ in Lemma 5.1.
To deal with yr», we have to use an analogous proposition.

Proposition A.2. Let g:R? — R be such that g(Z) = g(z) and ||g||1,e < +00 Then there
exists a unique bounded v:R? — R such that v(Z) = v(z) and Av + *3%>v —v = g.
Furthermore, there exists a constant C > 0 such that

A+ 1zD(lv@I+ Vo)) = Clighie.  I1D?*v1e = Cliglhe
|8|z|8sv(z)\ <Clgl,e for|z| >1/e.
Proof. The symmetry assumption allows us to work in the half-plane R x R* with homo-

geneous Neumann condition on the boundary. We can then apply a barrier argument and
rescaled Schauder estimates to prove the proposition. ]
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In the course of the linear theory for our problem, when we separate even and odd
modes, we need an analogue of the following lemma.
Let us consider Ry > 0 fixed and Ry < R, < ¢ 1, and let 2, Q' be the regions

1
Q:={zeR?>:Ry<|z] <R}, Q= {ZGRZZZRQ <lz| < ERE}’

and recall the polar coordinates notation z = retsS,r>0,s €R.

Lemma A.8. Let f:R? — R be such that f(Z) = —f(z) and | f(z)| < 1/|z|. Let u be
a solution of Au + €20 u = f in Q such that u(Z) = —u(z) and

[u(z)| = Rollogel, |z| = Ro,

lu(z)| < R, |z| = Re.

Then there is C such that

2R
lu(z)| < C|Z|log(|—r) forallz € Q.
z

Proof. We use a Fourier series decomposition which, thanks to the symmetries, we can
take of the form

fr.s) =" fi(r)sin(ks), u(r.s) =Y ug(r)sin(ks).
k>1 k>1
The equations on the Fourier coefficients are
" 1 / 2 1 2 :
“k+;uk_k r_2+8 Uf :fk n (R(),Rs).

We estimate each uy using barriers. For k = 1, we define

ui(r) = rlog(3fs)

=7/ l—/ 1 215 1
uy + -y — |+ Jur <—— forr <R,.
r r r

The function u; satisfies

Thus we can use % as a barrier for u; in the interval (R, R,) and deduce that

3R
lui(r)| < rlog( 8), r € (Ro, R;). (A.12)
r
For k > 2, we use the barrier

—k k
_ r r r
uk(r)zC(k—2+C|log8|(R—0) +R8(R_6) ),

where C is a large fixed constant (the last two terms in ;. solve almost the homogeneous
equation and are there for the boundary conditions). By the maximum principle, |uy | < g
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in (Ro, R;), and for r € (2Ry, R;/2), we get

o0
1 2R
Zﬁk(r)SC—|Og8|+Cr§Crlog( 8).
r r
k=2

This and (A.12) imply the desired conclusion. ]

Summary of general notation and norms

For the sake of clarity, in this section, we collect the definitions of the different norms and
the common notation used along the paper.
In rescaled variables, we denote the distance d of the vortices to the origin as

A

~ d d

e 8\/|10g8|,

where d = O(1). For every specific vortex, we write cz i = (=Dt d and

pre = reS —d, pre'® =re’s +d,
the polar coordinates around each one. Defining R, = oo/ (e[log e|'/?), with ag > 0
a fixed small constant, the norm we require in the right-hand side for the general invert-
ibility theory is

2
”h”** = Z”th”ca(pj<3)
/= Re(h)] Im(h)|

+ sup [ =) =) >t s o 0_2]
p=2Lpr” " e o 0 e
02>
’ [Re()]a, By, 2(2)

+ sup — -
2<|z—d;|<2Rs |z —d|727% + |z — dp| 27
2<|z—d>|<2R¢

Im(h
+  swp [(Im()]a,, (2)

~ J -2 g 1—2+40’
2<|z—d|<2R. |7 = d1[72T0 + |z — da| 2 FC
2<|z—d>|<2R¢

where o, 0 € (0, 1), || fllcapy = | fllco.e(py and

k
Hlop = sup LTI flchaqy = YN0 ooy + (D flu
ey v j=0

Likewise, the solution ¥: C — C lies in a space determined by the norm

2
Wl = D IVavllcraqo, <3 + IR 1 + Tm(y) 12,5

j=1
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where, with Re ¥ = ¢, Im ¢ = 5,

| 121
Vil = sup |1+ sup ——— P —|3 Vil + 051l
p1>2 2<p1<2 Py 't P2 >1
p2>2 2<p2<,
4+ swp |D21ﬁ1| u ~[D21//1]%B\z\/z(z~)
2<P1<§5 Py 2+ pEZ 2<|z—d |<Re |z — dll_z_a +z— d2|—2—a
2<p2<Re 2<|z—d>|<Re
[V V|
[¥2ll2,« == sup — - + S s
* p1>2 Py 2to + p, 2o + &2 2<p1< P 2o + 0o, 2o
p2>2 2<p2<
-2 1 |D2W2|
+ SUP[ 70 Y + 7 05Vl + sup s
r>1 2<p1<R¢ P1 + P
D ] 2<p2<R;
+ sup [D*Y2]a.B,(2)

2<|z—d|<Rs |Z - d1|_2+0 + |Z - d2|_2+0
2<\z—a72|<R5

fora,o € (0,1).
Given a complex function g: C — C satisfying g(z) = —g(z), we write its decom-
position in even and odd Fourier modes in 6; as g = Y 32 gX*/, where

&5 (07, 67) = &5/ (p;) sin(k6;) + igh’ (0)) cos(kb;), &5 (p;). €57 (p)) € R.

We define
gl = Y g, g =3 gk
k even k odd
and
g =n.r8"" +mrg”’ ¢ =g-g%
where

z—d;
nj,r(2) = 771(' R j|),

and n1: R — [0, 1] is a smooth function such that n;(¢) = 1 for r < 1 and n;(¢) = 0 for
t>2.

Finally, in order to have specific control of the odd parts of the functions involved, we
introduce the following seminorms: given 1 = hy + ihy and ¢ = Y1 + i {,, we denote

2
|71 |12
Ihlgg = ) _IWVahlcowq; <4y +  sup [_ 7+ —= 75 |
,Z; o= 2:21:§8 B R R S
2 3

W]y = Zuogerl||Vd1/f||cz.a(p,.<3) + Wl + [V2lgo.
j=1
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where
PR S
2<p1 <R L P110g(2Re/p1) + p210g(2R:/ p2)
2<pr<Rg |V1ﬂ1|
log(2R./p1) + l0g(2R¢/p2) }
|W2|n2 — sup [ W2| + |VW2| i|
T nick P17+ 0717 + pit 10g(2Re/ p1) + 05 ' 1og(2Re/ p2)
<p2<Kg
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