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Abstract. Let k be a global field of characteristic not 2, and let f ∈ k[X] be an irreducible poly-
nomial. We show that a non-degenerate quadratic space has an isometry with minimal polynomial
f if and only if such an isometry exists over all the completions of k. This gives a partial answer to
a question of Milnor.
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Introduction

Let k be a field of characteristic not 2. A quadratic space is a non-degenerate symmetric
bilinear form q : V × V → k defined on a finite-dimensional k-vector space V , and an
isometry of (V , q) is an element of O(q), in other words an isomorphism t : V → V

such that q(tx, ty) = q(x, y) for all x, y ∈ V . In [M69], Milnor raised the following
question:

Question 1. Which quadratic spaces admit an isometry with a given irreducible minimal
polynomial?

The case of local fields is covered in [M69], and the present paper gives an answer to
Milnor’s question for global fields.

Let q be a quadratic space, and let f ∈ k[X] be an irreducible polynomial. The
following Hasse principle is proved in Section 9 (Th. 9.1):

Theorem. Suppose that k is a global field. The quadratic space q has an isometry with
minimal polynomial f if and only if such an isometry exists over all the completions of k.

In order to obtain a necessary and sufficient criterion, we need to consider the case of
reducible minimal polynomials over local fields and the field of real numbers. This leads
to a generalization of the above question. Note that any endomorphism t : V → V gives
rise to a torsion k[X]-module. We ask the following:
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Question 2. Which quadratic spaces admit an isometry with a given torsion module?

Note that this covers several special cases of interest:

• The “vertical” case: ifM = [k[X]/(f )]m where f ∈ k[X] is an irreducible polynomial
and m ∈ N, then Question 2 is precisely the question of Milnor mentioned above.
• The “horizontal” case: if M = k[X]/(f1 . . . fr) with fi ∈ k[X] distinct irreducible

polynomials, then Question 2 amounts to asking which orthogonal groups contain a
maximal torus of a given type (see for instance [BCM03], [G04], [PR10], [GR13],
[F12], [Lee14], [B14]).
• The case of “rational knot modules” (see for instance [Le80]).

Integral analogs of this question arise in connection with algebraic-geometric and arith-
metic applications (cf. Gross–McMullen [GM02] and [BMa13]).

Most of the results concern fields of cohomological dimension 1, local and global
fields; let us illustrate them by a few examples. LetM be a self-dual torsion k[X]-module
with characteristic polynomial FM ∈ k[X] (see §2), and suppose that dim(q) = dimk(M).
We shall see that it is sufficient to answer the question in the case of semisimple modules
(cf. Prop. 4.1). We have (see Cor. 6.3):

Proposition. Suppose that k is a field of cohomological dimension ≤ 1, and M is
semisimple. Then the quadratic space q has an isometry with module M if and only if
det(q)FM(1)FM(−1) ∈ k2.
[Note that if FM(1)FM(−1) = 0, then this means that any quadratic space q has an
isometry with module M , provided dim(q) = dimk(M).]

In the case of global fields, we give an answer to Milnor’s question. Suppose that f ∈
k[X] is an irreducible, monic polynomial such that f (X) = Xdeg(f )f (X−1) and that
f 6= X + 1. Let m ∈ N and set F = fm. Assume that dim(q) = deg(F ). Then we have
(see Cor. 9.2):

Theorem. Suppose that k is a global field. The quadratic space q has an isometry with
minimal polynomial f if and only if the signature condition and the hyperbolicity condi-
tion are satisfied (see §9), and det(q) = F(1)F (−1) in k∗/k∗2.

The paper is structured as follows. The first three sections contain some definitions and
basic facts, including some results of Milnor [M69]. Sections 4 and 5 are concerned with
isometries with a given module over an arbitrary ground field, and are used throughout
the paper. The following sections treat the case of fields of cohomological dimension 1
(§6), local fields (§7), the field of real numbers (§8), and global fields (§9–§12).

1. Quadratic spaces, isometries and symmetric polynomials

Let k be a field of characteristic not 2. A quadratic space is a pair (V , q), where V
is a finite-dimensional k-vector space, and q : V × V → k is a symmetric bilin-
ear form of non-zero determinant. The determinant of (V , q) is denoted by det(q). Let
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n = dim(V ). The discriminant of q is by definition disc(q) = (−1)(n−1)n/2 det(q). Any
quadratic space can be diagonalized, in other words there exist a1, . . . , an ∈ k

∗ such
that q ' 〈a1, . . . , an〉. Let us denote by Br(k) the Brauer group of k, considered as
an additive abelian group, and let Br2(k) be the subgroup of elements of order ≤ 2 of
Br(k). The Hasse invariant of q is by definition w(q) =

∑
i<j (ai, aj ) ∈ Br2(k), where

(ai, aj ) is the class of the quaternion algebra over k determined by ai, aj . For more in-
formation concerning basic results on quadratic spaces, see for instance [O’M73] and
[Sch85].

An isometry of a quadratic space (V , q) is an isomorphism t : V → V such that
q(tx, ty) = q(x, y) for all x, y ∈ V .

A monic polynomial f ∈ k[X] is said to be ε-symmetric for some ε = ±1 if f (X) =
εXdeg(f )f (X−1). We say that f is symmetric if it is 1-symmetric. The following is well-
known:

Proposition 1.1. The minimal polynomials and characteristic polynomials of isometries
of quadratic spaces are ε-symmetric, where ε is the constant term of the polynomial.

Proof. Let (V , q) be a quadratic space, and let t : V → V be an isometry of q. By defini-
tion, we have q(tx, y) = q(x, t−1y) for all x, y ∈ V . This implies that for any polynomial
p ∈ k[X], we have q(p(t)x, y) = q(x, p(t−1)y) for all x, y ∈ V . Let f ∈ k[X] be the
minimal polynomial of t . Applying the above equality to p = f , we see that the endo-
morphism tdeg(f )f (t−1) annihilates V . As f is the minimal polynomial of t , this implies
that f divides Xdeg(f )f (X−1), therefore we have f (X) = εXdeg(f )f (X−1) for some
ε = ±1. On the other hand, the coefficient of the leading term of Xdeg(f )f (X−1) is equal
to f (0). Therefore ε = f (0). The statement concerning the characteristic polynomial
follows from a straightforward computation (see for instance [Le69, Lemma 7(a)]). ut

If f ∈ k[X] is a monic polynomial such that f (0) 6= 0, set

f ∗(X) =
1

f (0)
Xdeg(f )f (X−1).

Note that f ∗ is also monic, f ∗(0) 6= 0, and f ∗∗ = f .

Definition 1.2. Let f ∈ k[X] be a monic, ε-symmetric polynomial with ε = ±1. We say
that f is of

• type 0 if f is a product of powers of X − 1 and of X + 1;
• type 1 if f is a product of powers of monic, symmetric, irreducible polynomials in k[X]

of even degree;
• type 2 if f is a product of polynomials of the form gg∗, where g ∈ k[X] is monic,

irreducible, and g 6= ±g∗.

Proposition 1.3. Every monic, ε-symmetric polynomial F ∈ k[X] is a product of poly-
nomials of type 0, 1 and 2.

Proof. Let f ∈ k[X] be a monic, irreducible factor of F . If f 6= ±f ∗, then f ∗ also
divides F , hence we get a factor of type 2. Suppose that f = ±f ∗. It suffices to show that
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if f (X) 6= X−1, X+1, then deg(f ) is even and ε = 1. We have f (X) = εXdeg f f (X−1)

for some ε = ±1. If ε = −1, then f (1) = 0, hence f is divisible by X − 1, and this
is impossible as f is supposed to be irreducible and f (X) 6= X − 1. Hence ε = 1. If
deg(f ) is odd, then this implies that f (−1) = 0, which contradicts the assumption that
f is irreducible and f (X) 6= X + 1. Therefore deg(f ) is even. ut

We say that a monic, ε-symmetric polynomial is hyperbolic if all its components of type 0
and 1 are of the form f e with e even.

2. Self-dual torsion modules

Let V be a finite-dimensional k-vector space, and let t : V → V be an endomorphism.
Then V has a structure of torsion k[X]-module obtained by setting X.v = t (v) for all
v ∈ V . Let us denote byM(t) the torsion k[X]-module associated to the endomorphism t .
The module M(t) will be called the module of the endomorphism t .

Any torsion k[X]-module is isomorphic to a direct sum of modules of the form
[k[X]/(f )]m for some f ∈ k[X] and m ∈ N. If M is a torsion k[X]-module, set
FM =

∏
fm for all f ∈ k[X] and m ∈ N as above. We call FM the characteristic

polynomial of M . Note that if M = M(t) for some endomorphism t , then FM is the
characteristic polynomial of t .

A torsion k[X]-module is said to be of type i, for i = 0, 1, 2, if M is a direct sum of
modules of the form [k[X]/(f )]m where f ∈ k[X] is of type i and m ∈ N. It is said to be
self-dual if it is a direct sum of modules of type 0, 1 and 2.

From now on, module will mean a self-dual torsion k[X]-module that is finite-dimen-
sional as a k-vector space.

A module is said to be hyperbolic if all its components of type 0 and type 1 are of the
form [k[X]/(f e)]n with e even. We will see that any quadratic space having an isometry
with hyperbolic module is hyperbolic.

3. Primary decomposition and transfer

The aim of this section is to recall some results of Milnor [M69]. Let (V , q) be a quadratic
space of dimension 2n, let t be an isometry of q and let F be the characteristic polynomial
of t . For each monic, irreducible factor f of F , set

Vf = {v ∈ V | f
i(t)(v) = 0 for some i ∈ N}.

Let U and W be two subspaces of V . We say that U and W are orthogonal to each other
if q(u,w) = 0 for all u ∈ U and w ∈ W . We say that (V , q) is hyperbolic if V has a
self-orthogonal subspace of dimension n.

Proposition 3.1. Let f and g be two monic, irreducible factors of F . If f 6= g∗, then Vf
and Vg are orthogonal to each other.

Proof. See Milnor [M69, Lemma 3.1]. ut
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Corollary 3.2. If f is not symmetric, then (Vf ⊕ Vf ∗ , q) is hyperbolic.
Proof. See [M69, §3, Case 3]. ut

Proposition 3.3. We have the orthogonal decomposition

(V , q) '
⊕

(Vf , q)⊕H

where the sum is taken over all distinct monic, symmetric and irreducible factors of F,
and H is a hyperbolic space. The orthogonal factors are stable by the isometry.
Proof. This follows from Prop. 3.1 and Cor. 3.2. ut

Proposition 3.4. Let f ∈ k[X] be monic, symmetric and irreducible. The quadratic
space (Vf , q) decomposes as an orthogonal sum of factors, each having an isometry with
module

[k[X]/(f e)]m

for some integers e and m. If e is even, then this orthogonal factor is hyperbolic. If e is
odd, then it is the orthogonal sum of a hyperbolic space and a quadratic space having
an isometry with module [k[X]/(f )]m. Conversely, let Q be a quadratic space having
an isometry with module [k[X]/(f )]m and let e ∈ N. Then there exists a quadratic space
having an isometry with module [k[X]/(f e)]m that admitsQ as an orthogonal summand.
Moreover, this quadratic space is the orthogonal sum of Q and of a hyperbolic space if e
is odd, and it is hyperbolic if e is even.
Proof. See [M69, Ths. 3.2–3.4]. ut

Recall that module means a self-dual torsion k[X]-module which is finite-dimensional as
a k-vector space, and see §2 for the definition of a hyperbolic module.

Corollary 3.5. A quadratic space having an isometry with hyperbolic module is hyper-
bolic.
Proof. This follows from Props. 3.3 and 3.4. ut

Proposition 3.6. Let f ∈ k[X] be a monic, symmetric and irreducible polynomial, and
set K = k[X]/(f ). Then sending X to X−1 induces a k-linear involution of K denoted
by x 7→ x. Let ` : K → k be a non-trivial k-linear map such that `(x) = `(x) for all
x ∈ K . Then for every quadratic space (V , q) over k and every isometry having minimal
polynomial f , there exists a non-degenerate hermitian form (V , h) over K such that for
all x, y ∈ V , we have

q(x, y) = `(h(x, y)).

Conversely, if V is a finite-dimensional vector space over K and if h : V → V is a non-
degenerate hermitian form, then setting q(x, y) = `(h(x, y)) for all x, y ∈ V we obtain
a quadratic space (V , q) over k together with an isometry with minimal polynomial f .
Proof. This is proved in [M69, Lemmas 1.1 and 1.2] in the case where f is separable and
` = TrK/k is the trace of the extension K/k. The proof is the same for any non-trivial
linear map ` with `(x) = `(x) for all x ∈ K , as pointed out in [M69, Remark 1.4]. ut

Corollary 3.7. Let M be a module. Then there exists a quadratic space q having an
isometry t such that M(t) ' M .
Proof. This follows from Props. 3.3, 3.4 and 3.6. ut
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This implies the following well-known fact:

Corollary 3.8. Let F ∈ k[X] be a monic, ε-symmetric polynomial. Then there exists a
quadratic space having an isometry with characteristic polynomial F .

Note that a new proof of this result, based on Bezoutians, is given in [JRV14, Th. 4.1].
Integral analogs of this question are investigated in [JRV14, §3], as well as in [B84],
[BMar94] and [B99].

4. Isometries with a given module

We keep the notation of the previous sections. In particular, module means a self-dual
torsion k[X]-module which is a finite-dimensional k-vector space.

The aim of this paper is to investigate the following question:

Question. Which quadratic spaces admit an isometry with a given module?

This is a generalization of Milnor’s question quoted in the introduction. Let us fix some
notation. For any module M , we have

M = M0
⊕M1

⊕M2,

with M i of type i. Note that dim(M2) is even, and let 2m2 = dim(M2). Let us write
M0
= M+ ⊕M− with M+ = [k[X]/(X + 1)e+ ]m+ and M− = [k[X]/(X − 1)e− ]m− for

some e+, e−, m+, m− ∈ N. Set n+ = e+m+ and n− = e−m−. Note that dim(M0) =

n+ + n−.
Let us first prove that it is sufficient to consider semisimple modules. For any mod-

ule M , let us denote by rad(M) its radical, and set M = M/rad(M). Any module M is
the direct sum of modules of the form Mf,e = [k[X]/(f

e)]n for some f ∈ k[X] with f
irreducible and e, n ∈ N. Let Modd be the direct sum of the modules Mf,e with e odd and
f symmetric.

Proposition 4.1. Let q be a quadratic space and letM be a module. Then q has an isom-
etry with module M if and only if q is isomorphic to the orthogonal sum of a quadratic
space q with module Modd and of a hyperbolic space.

Proof. Suppose that q has an isometry with module M . Then by Props. 3.3 and 3.4
and Cor. 3.5, the quadratic space q is isomorphic to the orthogonal sum of a quadratic
space qodd having an isometry with module Modd and of a hyperbolic space. Moreover,
by Prop. 3.4 the quadratic space qodd is isomorphic to the orthogonal sum of quadratic
spaces qf,e having isometries with modules Mf,e. Further, Prop. 3.4 also implies that
qf,e ' qf,e ⊕ Hf,e, where Hf,e is a hyperbolic space and qf,e has an isometry with
moduleMf,e. Note thatModd is the direct sum of the modulesMf,e for e odd and f sym-
metric. Let q be the orthogonal sum of the quadratic spaces qf,e. Then q has an isometry
with module Modd, and q is the orthogonal sum of q and of a hyperbolic space.

Conversely, suppose that q ' q⊕H , where q is a quadratic space having an isometry
with module M , and H is a hyperbolic space. Then q is the orthogonal sum of quadratic
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spaces qf,e having isometries with modules Mf,e. By Prop. 3.4 we get quadratic spaces
qf,e ' qf,e ⊕Hf,e having isometries with modules Mf,e, and q is the orthogonal sum of
the spaces qf,e and of a hyperbolic space. Hence q has an isometry with module M . ut

Recall that the Witt index of a quadratic space q is the number of hyperbolic planes con-
tained in the Witt decomposition of q.

Lemma 4.2. If q is a quadratic space having an isometry with module M , then the Witt
index of q is ≥ m2.

Proof. Indeed, by Cor. 3.5, any quadratic space having an isometry with a module of
type 2 is hyperbolic.

For the remainder of this section, let us assume that M is a semisimple module. Then the
converse also holds if M1

= 0:

Proposition 4.3. Let q be a quadratic space such that dim(q) = dim(M). Suppose that
M1
= 0. Then q has an isometry with module M if and only if the Witt index of q is at

least m2.

Proof. We already know that if q has an isometry with module M , then the Witt index of
q is at least m2. Conversely, suppose that the Witt index of q is at least m2, and write q as
the orthogonal sum of a quadratic space (V0, q0) and a hyperbolic form of dimension 2m2.
Then dim(V0) = dim(M0) = n+ + n−. Let us decompose (V0, q0) as an orthogonal sum
of (V+, q+) and (V−, q−) with dim(V+) = n+, dim(V−) = n−, and let t : V0 → V0 be
defined by t (x) = −x if x ∈ V+ and t (x) = x if x ∈ V−. Then t is an isometry of q0,
hence we obtain an isometry of q with module M . ut

This proposition has some useful consequences. In order to state the first one, we need
the notion of u-invariant of a field. Recall that a quadratic space (V , q) is said to be
isotropic if there exists a non-zero v ∈ V with q(v, v) = 0, and anisotropic otherwise.
The u-invariant of k, denoted by u(k), is the largest dimension of an anisotropic quadratic
form over k.

Corollary 4.4. Let q be a quadratic space with dim(q) = dim(M). Suppose that u(k) ≤
dim(M0). Then q has an isometry with module M .

Proof. Let q1 be a quadratic space having an isometry with module M1 (cf. Cor. 3.7).
As u(k) ≤ dim(M0), we have q ⊕ (−q1) ' q0 ⊕ H , where H is hyperbolic and q0
is a quadratic space with dim(q0) = dim(M0). Let q2 be the hyperbolic space of di-
mension 2m2. Then the quadratic space q0 ⊕ q2 has dimension dim(M0

⊕ M2) and
Witt index ≥ m2. Therefore by Prop. 4.3 the quadratic space q0 ⊕ q2 has an isometry
with module M0

⊕M2; hence q0 ⊕ q1 ⊕ q2 has an isometry with module M . We have
q ⊕ q2 ⊕ q1 ⊕ (−q1) ' q0 ⊕ q1 ⊕ q2 ⊕H . Since q1 ⊕ (−q1) and q2 are hyperbolic, and
dim(q) = dim(M) = dim(q0⊕q1⊕q2), Witt cancellation implies that q ' q0⊕q1⊕q2.
Therefore q has an isometry with module M . ut

Let us recall that two quadratic spaces q and q ′ are Witt-equivalent if there exist hyper-
bolic spaces H and H ′ such that q ⊕H ' q ′ ⊕H ′.
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Corollary 4.5. Suppose that M1
= 0, and let q be a quadratic space with dim(q) =

dim(M0). Then any quadratic space of dimension equal to dim(M) and Witt-equivalent
to q has an isometry with module M .

Proof. Indeed, as M1
= 0 we have M = M0

⊕M2, hence dim(M) = dim(M0)+ 2m2.

Let q ′ be a quadratic space with dim(q) = dim(M) and Witt-equivalent to q. Then the
Witt index of q ′ is at least m2, hence by Prop. 4.3 the quadratic space q ′ has an isometry
with module M . ut

The next corollary will be used several times.

Corollary 4.6. Suppose that M0
6= 0, and let d ∈ k∗. Then there exists a quadratic

space q having an isometry with module M and determinant d.

Proof. We have M = M0
⊕M1

⊕M2. If M1
6= 0, let q1 be a quadratic space having an

isometry with module M1 (cf. Cor. 3.7), and let d1 = det(q1). If M1
= 0, set d1 = 1.

Since M0
6= 0, there exists a quadratic space q0 with determinant dd1(−1)m2 and

dim(q0) = dim(M0). Let H be the hyperbolic form of dimension 2m2 = dim(M2), and
set q2 = q0 ⊕ H . Then dim(q2) = dim(M0

⊕ M2) and det(q2) = dd1. Moreover, q2
is Witt-equivalent to q0. Therefore Cor. 4.5 implies that the quadratic space q0 has an
isometry with moduleM0

⊕M2. Set q = q1⊕ q2. Then det(q) = d in k∗/k∗2, and q has
an isometry with module M . ut

5. Determinants and values of the characteristic polynomial

We have a relationship between the determinant of a quadratic space and the values of the
characteristic polynomials of its isometries:

Proposition 5.1. Let (V , q) be a quadratic space, and let F ∈ k[X] be the characteristic
polynomial of an isometry t of q. Then

det(q)F (1)F (−1) ∈ k2.

Proof. Let us define q ′ : V × V → k by q ′(x, y) = q(x, (t − t−1)(y)). Then q ′ is
skew-symmetric, hence det(q ′) ∈ k2. On the other hand, we have

det(q ′) = det(q) det(t) det(t + 1) det(t − 1) = det(q) det(t)F (1)F (−1).

If F(1)F (−1) = 0, then the statement is clear, so we can assume that F(1)F (−1) 6= 0.
It is easy to see that F(1) 6= 0 implies that F(X) = Xdeg(F )F(X−1), and F(−1) 6= 0
implies that deg(F ) is even. Hence det(t) = 1, and so det(q)F (1)F (−1) ∈ k2, as stated.

ut

The following corollary is well-known (see for instance [Le69, Lemma 7(c)], or [GM02,
appendix]):

Corollary 5.2. Let q be a quadratic space, and let F ∈ k[X] be the characteristic poly-
nomial of an isometry of q. Suppose that F(1)F (−1) 6= 0. Then

det(q) = F(1)F (−1) in k∗/k∗2.

Proof. This is an immediate consequence of Prop. 5.1. ut
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The following lemma will be useful in the next sections.

Lemma 5.3. Let M be a semisimple module, and let d ∈ k∗ with dFM(1)FM(−1)
∈ k2. Then there exists a quadratic space q of determinant d having an isometry with
module M .
Proof. Suppose first that FM(1)FM(−1) 6= 0; then the hypothesis implies that d =
FM(1)FM(−1) in k∗/k∗2. Let q be any quadratic space with moduleM (cf. Cor. 3.7). By
Cor. 5.2 we have det(q) = FM(1)FM(−1) in k∗/k∗2, hence det(q) = d in k∗/k∗2. Sup-
pose now that FM(1)FM(−1) = 0, and note that this implies that M0

6= 0. By Cor. 4.6,
there exists a quadratic space q ′ with determinant d having an isometry of moduleM , and
this completes the proof of the lemma. ut

6. Fields with I (k)2 = 0

We keep the notation introduced in §4. In particular, module means a self-dual torsion
k[X]-module that is a finite-dimensional k-vector space. Recall that by Prop. 4.1 it is
sufficient to consider the case of semisimple modules. LetW(k) be the Witt ring of k, and
let I (k) be the fundamental ideal of W(k). Let q be a quadratic space, and let M be a
semisimple module such that dim(q) = dim(M).

Proposition 6.1. Suppose that I (k)2 = 0. Then the quadratic space q has an isometry
with module M if and only if

det(q)FM(1)FM(−1) ∈ k2.

Proof. The condition is necessary by Prop. 5.1. Let us show that it is sufficient. By
Lemma 5.3 there exists a quadratic space q ′ having an isometry with module M and
such that det(q ′) = det(q). Then q and q ′ have the same dimension and determinant.
As I (k)2 = 0, this implies that they are isomorphic, therefore q has an isometry with
module M . ut

Corollary 6.2. Suppose that I (k)2 = 0 and FM(1)FM(−1) 6= 0. Then the quadratic
space q has an isometry with module M if and only if

det(q) = FM(1)FM(−1) in k∗/k∗2.
Proof. This follows from Prop. 6.1. ut

Let ks be a separable closure of k, and set 0k = Gal(ks/k). We say that the 2-cohomo-
logical dimension of k, denoted by cd2(k), is at most 1 if H r(0k, A) = 0 for all finite
2-primary 0k-modules A and for all r > 1.

Corollary 6.3. Suppose that cd2(k) ≤ 1. Then the quadratic space q has an isometry
with module M if and only if

det(q)FM(1)FM(−1) ∈ k2.

If moreover FM(1)FM(−1) 6= 0, then q has an isometry with module M if and only if

det(q) = FM(1)FM(−1) in k∗/k∗2.
Proof. It is well-known that if cd2(k) ≤ 1, then I (k)2 = 0, hence the corollary follows
from Prop. 6.1 and Cor. 6.2. ut
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7. Local fields

We keep the notation of §4. In particular, module means a self-dual torsion k[X]-module
that is a finite-dimensional k-vector space. For any module M , we have M = M0

⊕

M1
⊕M2, whereM i is of type i. Let us suppose thatM is semisimple (this is possible by

Prop. 4.1). Note that if M1
= 0, then a quadratic space has an isometry with module M

if and only if its Witt index is ≥ m2, where 2m2 = dim(M2) (cf. Prop. 4.3). Therefore
from now on we can restrict ourselves to modules M with M1

6= 0.
Suppose that k is a local field. Let q be a quadratic space, and letM be a module with

M1 6= 0. Suppose that dim(q) = dim(M).

Theorem 7.1. The quadratic space q has an isometry with module M if and only if

det(q)FM(1)FM(−1) ∈ k2.

The proof of Th. 7.1 uses the following result of Milnor. Let K be an extension of k of
finite degree endowed with a non-trivial k-linear involution x 7→ x. Let ` : K → k be
a non-trivial linear form such that `(x) = `(x) for all x ∈ K . For any non-degenerate
hermitian form h : V × V → K , let us denote by qh : V × V → k the quadratic space
defined by qh(x, y) = `(h(x, y)) for all x, y ∈ V . We have

Theorem 7.2. If the hermitian spaces h and h′ have the same dimension but different
determinants, then the quadratic spaces qh and qh′ have the same dimension and deter-
minant but different Hasse invariants.

Proof. See [M69, Th. 2.7]. ut

Proof of Theorem 7.1. If q has an isometry with module M , then by Prop. 5.1 we have
det(q)FM(1)FM(−1) ∈ k2.

Conversely, suppose that

det(q)FM(1)FM(−1) ∈ k2.

By Lemma 5.3, there exists a quadratic space q ′ having an isometry with moduleM such
that det(q ′) = det(q). It is well-known that two quadratic spaces over a local field are
isomorphic if and only if they have the same dimension, determinant and Hasse–Witt
invariant. Therefore if the Hasse–Witt invariants of q and q ′ are equal, then q ' q ′, hence
we are done.

Suppose that this is not the case. As M1
6= 0, there exists a monic, symmetric, irre-

ducible polynomial f ∈ k[X] of even degree such that for some n ∈ N and for some odd
integer e, the moduleMf = [k[X]/(f e)]n is a direct summand ofM1. SetM = Mf ⊕M̃ .
By Props. 3.3 and 3.4, we have an orthogonal decomposition q ′ ' qf ⊕ q̃, where qf has
an isometry with module Mf and q̃ has an isometry with module M̃ .

Set K = k[X]/(f ), and consider the k-linear involution of K induced by X 7→ X−1.
Let E be the fixed field of this involution. Set V = Kn. Then by Props. 3.4 and 3.6, there
exists a hermitian form h : V×V → K such that the quadratic space qf has an orthogonal
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decomposition qf ' qh ⊕ H , where H is a hyperbolic space and qh : V × V → k is
defined by

qh(x, y) = `(h(x, y)).

Let α1, . . . , αn ∈ E
∗ be such that h ' 〈α1, . . . , αn〉. Let us denote by NK/E : K → E

the norm map, and let α ∈ E∗ be such that α 6∈ NK/E(K∗). Let h′ : V × V → K be the
hermitian form defined by h′ = 〈αα1, . . . , αn〉. Let us define qh′ : V × V → k by

qh′(x, y) = `(h
′(x, y)).

Then h and h′ have the same dimension but different determinants. Therefore by Th. 7.2,
the quadratic forms qh and qh′ have the same dimension and determinant but different
Hasse–Witt invariants.

Set q ′f = qh′ ⊕ H . By Prop. 3.4, the quadratic space q ′f has an isometry with mod-
ule Mf . Let q ′′ = q ′f ⊕ q̃. Then q ′′ has an isometry with module M , and the quadratic
spaces q and q ′′ have equal dimension, determinant and Hasse–Witt invariants. Therefore
q ' q ′′, hence q has an isometry with module M as claimed. ut

Recall that we are assuming that M1
6= 0. The following corollary shows that if in ad-

dition M0
6= 0, then any quadratic form of dimension dim(M) has an isometry with

module M .

Corollary 7.3. Suppose that M0
6= 0. Then any quadratic space of dimension dim(M)

has an isometry with module M .

Proof. Let q be a quadratic space with dim(q) = dim(M). As M0
6= 0, we have

FM(1)FM(−1) = 0, therefore the condition det(q)FM(1)FM(−1) ∈ k2 holds indepen-
dently of the value of det(q). Hence by Th. 7.1 the quadratic form q has an isometry with
module M . ut

Corollary 7.4. Suppose that FM(1)FM(−1) 6= 0. Then the quadratic space q has an
isometry with module M if and only if

det(q) = FM(1)FM(−1) in k∗/k2.

Proof. This is a consequence of Th. 7.1. ut

8. The field of real numbers

In this section the ground field k is the field of real numbers R. Let q be a quadratic space
over R. It is well-known that q is isomorphic to

X2
1 + · · · +X

2
r −X

2
r+1 − · · · −X

2
r+s

for some natural numbers r and s. These are uniquely determined by q, and we have
r + s = dim(V ). The couple (r, s) is called the signature of q.
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Let M be a module. Recall that M = M0
⊕M1

⊕M2 with M i of type i. Let FM be
the characteristic polynomial of M , and let 2σ be the number of roots of FM off the unit
circle. Note that dim(M2) = 2σ .

Let us introduce some notation. For any integers n,m, n′, m′, we write (n,m) ≥
(n′, m′) if n ≥ n′ and m ≥ m′, and we write (n,m) ≡ (n′, m′) (mod 2) whenever
n ≡ n′ (mod 2) and m ≡ m′ (mod 2).

We have seen in §4 that it suffices to consider semisimple modules (cf. Prop. 4.1). We
first give the criterion in the semisimple case (see Prop. 8.1 below), and then use Prop. 4.1
to treat the case of arbitrary modules.

Proposition 8.1. Assume that M is semisimple and dim(q) = dim(M).

(a) Suppose that the quadratic space q has an isometry with module M . Then

(r, s) ≥ (σ, σ ).

If moreover M0
= 0, then

(r, s) ≡ (σ, σ ) (mod 2).

(b) Conversely, suppose that (r, s) ≥ (σ, σ ), and if moreover M0
= 0, then (r, s) ≡

(σ, σ ) (mod 2). Then q has an isometry with module M .

Proof. (a) Suppose that the quadratic space q has an isometry with module M . By
Prop. 3.3, we have an orthogonal decomposition

(V , q) '
⊕

(Vf , qf )⊕H

where the sum is taken over all distinct monic, symmetric and irreducible factors of FM ,
and H is a hyperbolic space. Note that dim(H) = dim(M2) = 2σ . This implies that
(r, s) ≥ (σ, σ ). IfM0

= 0, then every irreducible and symmetric polynomial f appearing
in the above decomposition is of degree two. LetKf = k[X]/(f ). Then Vf has a structure
of Kf -vector space, and by Prop. 3.6, there exists a hermitian form hf : Vf × Vf → Kf
such that

qi(x, y) = TrK/R(hf (x, y))

for all x, y ∈ Vf,. Let (uf , vf ) be the signature of hf . Then the signature of qf is
(2uf , 2vf ), and this implies that (r, s) ≡ (σ, σ ) (mod 2).

(b) Conversely, suppose that r+s = dim(M) and (r, s) ≥ (σ, σ ). Note that dim(M)−
2σ = dim(M)−dim(M2) ≥ dim(M0), therefore r+ s−2σ ≥ dim(M0). As dim(M1) is
even, we also have dim(M) = r + s ≡ dim(M0) (mod 2). Set r ′ = r −σ and s′ = s−σ .
Then r ′ + s′ ≡ r + s ≡ dim(M0) (mod 2), and r ′ + s′ ≥ dim(M0). Let us write

r ′ = 2u+ u+ and s′ = 2v + v−

with u, v, u+, v− ∈ N such that u++v− = dim(M0). This is clearly possible if dim(M0)

> 0. On the other hand, if dim(M0) = 0 then M0
= 0, hence by hypothesis (r, s) ≡

(σ, σ ) (mod 2). This implies that r ′ and s′ are even. In this case, set u = r ′/2 and
v = s′/2.
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Note that dim(M1) = 2u + 2v. Recall that M1 is a direct sum of modules of the
type [k[X]/(f )]nf with f ∈ R[X] symmetric, irreducible and deg(f ) = 2. Note that
u + v =

∑
nf , where the sum is taken over all f as above. Let uf , vf ∈ N be such that

0 ≤ uf , vf ≤ nf , uf + vf = nf , and∑
uf = u,

∑
vf = v,

the sums being taken over all the f as above.
Set Kf = k[X]/(f ) and Vf = K

nf
f . Let hf : Vf × Vf → Kf be a hermitian form

of signature (uf , vf ), and let qf : Vf × Vf → R be the quadratic space defined by
qf (x, y) = TrKf /R(hf (x, y)) for all x, y ∈ Vf . Then the signature of qf is (2uf , 2vf ).
Let q1 be the orthogonal sum of the spaces qf for all f as above. Then the signature of q1
is (2u, 2v).

Let q0 be the quadratic space of signature (u+, v−), and let q2 be the hyperbolic
space of dimension 2σ . Let q ′ = q0 ⊕ q1 ⊕ q2. Then q ′ has an isometry with module
M = M0

⊕M1
⊕M2.

Note that sign(q ′) = (u+ + 2u+ σ, v− + 2v + σ) = (r, s) = sign(q), hence q ′ ' q.
This implies that q has an isometry with module M . ut

Corollary 8.2. Let F ∈ R[X] be a symmetric polynomial such that F(1)F (−1) 6= 0.
Then the quadratic space q has a semisimple isometry with characteristic polynomial F
if and only if (r, s) ≥ (σ, σ ) and (r, s) ≡ (σ, σ ) (mod 2).

Proof. Let M be the semisimple module with characteristic polynomial F = FM . As
FM(1)FM(−1) 6= 0, we have M0

= 0, and the corollary follows from Prop. 8.1. ut

A special case of this corollary is proved by Gross and McMullen in [GM02, Cor. 2.3].
Props. 8.1 and 4.1 lead to a criterion for arbitrary modules:

Corollary 8.3 Suppose that dim(q) = dim(M), and set 2τ = dim(M)− dim(M
0
odd).

(a) Suppose that the quadratic space q has an isometry with module M . Then

(r, s) ≥ (τ, τ ).

If moreover M
0
odd = 0, then

(r, s) ≡ (τ, τ ) (mod 2).

(b) Conversely, suppose that (r, s) ≥ (τ, τ ), and if moreover M
0
odd = 0, then (r, s) ≡

(τ, τ ) (mod 2). Then q has an isometry with module M .

Proof. (a) As q has an isometry with module M , by Prop. 4.1 the quadratic space q
is isomorphic to the orthogonal sum of a quadratic space q ′ having an isometry with
moduleModd and of a hyperbolic space H of dimension 2τ . The signature of H is (τ, τ ),
hence (r, s) ≥ (τ, τ ). Let (r ′, s′) be the signature of q ′. Note that all the roots of the
polynomial FModd

are on the unit circle. Therefore if M
0
odd = 0, by Prop. 8.1 we have

(r ′, s′) ≡ (0, 0) (mod 2), hence (r, s) ≡ (τ, τ ) (mod 2).
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(b) Since (r, s) ≡ (τ, τ ) (mod 2), we have q ' q ′ ⊕ H , where H is a hyperbolic
space of dimension 2τ and q ′ is a quadratic space of dimension equal to dim(Modd). Let
(r ′, s′) be the signature of q ′. If M

0
odd = 0, then by hypothesis we have

(r, s) ≡ (τ, τ ) (mod 2).

Since the signature of H is (τ, τ ), this implies that (r ′, s′) ≡ (0, 0) (mod 2). Since all the
roots of the polynomial FModd

are on the unit circle, Prop. 8.1 implies that the quadratic
space q ′ has an isometry with module Modd, and by Prop. 4.1 this implies that q has an
isometry with module M . ut

9. Global fields—the case of an irreducible minimal polynomial

The aim of this section is to give an answer to Milnor’s question stated in the introduction
in the case of global fields. Suppose that k is a global field, let q be a quadratic space, and
let f ∈ k[X] be an irreducible and symmetric polynomial. We have the following Hasse
principle:

Theorem 9.1. The quadratic space q has an isometry with minimal polynomial f if and
only if such an isometry exists over every completion of k.

The case f (X) = X + 1 is trivial, hence we may assume that f (1)f (−1) 6= 0. Before
proving Th. 9.1, let us use the results of the previous two sections to obtain necessary and
sufficient conditions for an isometry to exist. Let F be a power of f such that deg(F ) =
dim(V ) = 2n.

For every real place v of k, let (rv, sv) denote the signature of q over kv , and let σv be
the number of roots of F ∈ kv[X] that are not on the unit circle.

We say that the signature condition is satisfied for q and F if for every real place v
of k, we have (rv, sv) ≥ (σv, σv) and (rv, sv) ≡ (σv, σv) (mod 2).

We say that the hyperbolicity condition is satisfied for q and F if for all places v
of k such that F ∈ kv[X] is a hyperbolic polynomial, the quadratic form qv over kv is
hyperbolic.

Corollary 9.2. The quadratic space q has an isometry with minimal polynomial f if and
only if the signature condition and the hyperbolicity condition are satisfied, and

det(q) = F(1)F (−1) in k∗/k∗2.

Proof. The necessity of the conditions follows from Corollaries 8.2, 3.5 and 5.2. Con-
versely, suppose that the signature condition is satisfied and det(q) = F(1)F (−1)
in k∗/k∗2. Then by Cor. 8.2 and Th. 7.4, the quadratic space q has an isometry with
minimal polynomial f over kv for every place v of k. By Th. 9.1, this implies that q has
an isometry with minimal polynomial f . ut

The following reformulation of Cor. 9.2 shows that it suffices to check a finite number
of conditions. Let q and F be as above, with dim(q) = deg(F ) = 2n. Let S be the set
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of places of k at which the Hasse invariant of q is not equal to the Hasse invariant of the
2n-dimensional hyperbolic space. Note that S is a finite set.

Corollary 9.3. The quadratic space q has an isometry with minimal polynomial f if and
only if the following conditions are satisfied:

(i) F(1)F (−1) = det(q) in k∗/k∗2.
(ii) The signature condition holds.

(iii) If v ∈ S, then F ∈ kv[X] is not hyperbolic.

Proof. It suffices to prove that (i)–(iii) imply the hyperbolicity condition. Let v be a place
of k such that F ∈ kv[X] is hyperbolic. Then there exists G ∈ kv[X] such that F =
GG∗. Note that deg(G) = n. We have F(1) = G(1)2 and F(−1) = (−1)nG(−1)2.
By (i), we have F(1)F (−1) = det(q), hence (−1)n det(q) = disc(q) ∈ k2

v . On the
other hand, (iii) implies that v 6∈ S, hence q has the same Hasse invariant at v as the
2n-dimensional hyperbolic space. Therefore over kv , the quadratic space q has the same
dimension, discriminant and Hasse invariant as the 2n-dimensional hyperbolic space. If
v is an infinite place, then by (ii) the signature of q at v coincides with the signature of
the 2n-dimensional hyperbolic space. Hence q is hyperbolic over kv , in other words the
hyperbolicity condition is satisfied. ut

The following lemmas will be used in the proof of Th. 9.1, and also in §10.
Let K = k[X]/(f ), and let : K → K be the involution induced by X 7→ X−1. Let

E be the fixed field of the involution.

Lemma 9.4. Let v be a place of k. The following properties are equivalent:

(i) Every place of E above v splits in K .
(ii) The polynomial f ∈ kv[X] is hyperbolic.

(iii) For any m ∈ N, the module [kv[X]/(f )]m is hyperbolic.

Proof. Letw1, . . . , wr be the places of E above v, and set Ei = Ewi andKi = K⊗EEi .
ThenKi is a field if wi is inert or ramified inK , a product of two fields if wi is split inK ,
and kv[X]/(f ) ' K1 × · · · ×Kr .

(i)⇒(ii). Since every wi splits in K , all the Ki’s are products of two fields. This
implies that f = f1f

∗

1 . . . frf
∗
r with fi ∈ kv[X] monic and irreducible and fi 6= f ∗i for

all i = 1, . . . , r . Therefore f ∈ kv[X] is hyperbolic.
(ii)⇔(iii) is clear.
(ii)⇒(i). Since f ∈ k[X] is irreducible and f ∈ kv[X] is hyperbolic, we have f =

f1f
∗

1 . . . frf
∗
r with fi ∈ kv[X] monic and irreducible and fi 6= f ∗i for all i = 1, . . . , r .

Therefore all the Ki’s are products of two fields, hence (i) holds.

Lemma 9.5. Let v be a place of k satisfying the equivalent conditions of Lemma 9.4.
Then:

(i) Any quadratic space over kv having an isometry with minimal polynomial f is hy-
perbolic.

(ii) For any m ∈ N, every quadratic space over kv having an isometry with module
[kv[X]/(f )]

m is hyperbolic.
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Proof. Both assertions follow from Lemma 9.4 and Cor. 3.5. ut

Recall that for any quadratic space Q, we denote by w(Q) its Hasse invariant.

Lemma 9.6. Let m ∈ N, let v be a finite place of k, and letM = [kv[X]/(f )]m. Suppose
that M is not hyperbolic. Let ε ∈ {0, 1}. Then there exists a quadratic space Q over kv
such that Q has an isometry with module M and w(Q) = ε.

Proof. Note that M is hyperbolic if and only if f ∈ kv[X] is hyperbolic, that is, if it is a
product of polynomials of type 2 over kv . As we are assuming that M is not hyperbolic,
the polynomial f ∈ kv[X] has at least one irreducible factor of type 1. Hence we have
f = f1f2 with f1, f2 ∈ kv[X] and f1 irreducible, symmetric of even degree.

Recall that K = k[X]/(f ), : K → K is the involution induced by X 7→ X−1, and
E is the fixed field of this involution. Set Kv = K ⊗k kv . Then Kv ' K1 × K2 with
Ki = kv[X]/(fi), the involution preserves K1 and K2, and we have E = E1 × E2. Note
that K1 is a field, and E1 is the fixed field of the restriction of the involution to K1, hence
K1/E1 is a quadratic extension.

We haveM ' M1⊕M2 withM1 ' K
m
1 andM2 ' K

m
2 . Let h : M×M → Kv be the

unit hermitian form. Then h ' h1 ⊕ h2, where hi : Mi ×Mi → Kv , with i = 1, 2, is the
restriction of h to Mi . Let ` : Kv → kv be a non-zero linear form such that `(x) = `(x)
for all x ∈ Kv . For any hermitian form H , set qH (x, y) = `(H(x, y)). The quadratic
space qh has an isometry with module M by construction. If w(qh) = ε, then we set
Q = qh and the lemma is proved.

Suppose that w(qh) 6= ε, and let α = det(h1); then α ∈ E∗1 . Since K1/E1 is a
quadratic extension, there exists β ∈ E∗1 such that β 6∈ NK1/E1(K

∗

1 ). Let h′1 : M1 ×M1
→ K1 be a hermitian form of determinant αβ. Then h1 and h′1 have same dimension
and different determinants, hence by Th. 7.2 the quadratic spaces qh1 and qh′1 have equal
dimension, determinant and different Hasse invariants. Let h′ = h′1⊕h2, and setQ = qh′ .
Then Q ' qh′1 ⊕ qh2 , hence w(Q) = ε. Since Q has an isometry with module M , this
concludes the proof of the lemma. ut

Proof of Theorem 9.1. Let F = fm and deg(f ) = 2d, and recall that n = md. Let
K = k[X]/(f ), and let : K → K be the involution induced by X 7→ X−1. Let E be
the fixed field of the involution. Let θ ∈ E∗ be such that K = E(

√
θ), and for any place

w of E, let ( , )w denote the Hilbert symbol at Ew.
Let v be a real place of k. Then the signature (rv, sv) of q at kv satisfies (rv, sv) ≥

(σv, σv) and (rv, sv) ≡ (σv, σv) (mod 2). In particular, rv−σv is even. Set rv−σv = 2uv .
Then sv − σv = 2(n− σv − uv), and n− σv − uv ≥ 0. Therefore 0 ≤ uv ≤ n− σv . Let
us denote by 2τv the number of roots of f that are not on the unit circle. Then σv = mτv .
Let us write uv = u1

v + · · · + u
m
v for some integers uiv such that 0 ≤ uiv ≤ d − τv .

Let w1, . . . , wd−τv be the real places of E above v that extend to complex places
of K . Let αi ∈ E∗ be such that (αi, θ)wj = 1 if j = 1, . . . , ui , and that (αi, θ)wj = −1
if j = ui + 1, . . . , d − τiv.

Let ` : K → k be a non-zero linear form such that `(x) = `(x) for all x ∈ K;
if char(K) = 0, then we choose ` to be the trace map, ` = TrK/k : K → k. Let



Isometries of quadratic spaces 1645

h′ : V × V → K be the hermitian form defined by h′ = 〈α1, . . . , αm〉 and let qh′ :
V × V → k be the quadratic space defined by qh′(x, y) = `(h′(x, y)) for all x, y ∈ V .
By construction, the signature at v of qh′ is (rv, sv).

Let S be the set of finite places of k at which the Hasse invariants of q and qh′ are not
equal. This is a finite set of even cardinality: indeed, the Hasse invariants of two quadratic
spaces over k differ at an even number of places, and q and qh′ are isomorphic at all the
infinite places.

Let T be the set of finite places of k such that every place of E above v splits in K .
Note that both quadratic spaces q and qh′ have isometries with minimal polynomial f
over every completion of k (by hypothesis for q, by construction for qh′ ). Therefore if
v ∈ T , then both q and qh′ are hyperbolic over kv (cf. Lemma 9.5). Hence q and qh′ are
isomorphic over kv , and this implies that v does not belong to S. Therefore S and T are
disjoint.

For each v ∈ S, let us choose a placew ofE which does not split inK; this is possible
because S and T are disjoint. Let us denote by SE the set of those places. Then SE is a
finite set of even cardinality.

For all w ∈ SE , let βw ∈ E∗w be such that (βw, θ)w = −1; note that such a βw exists
asw does not split inK . By Hilbert’s reciprocity, there exists β ∈ E∗ such that (β, θ)w =
(βw, θ)w = −1 if w ∈ SE , and (βw, θ)w = 1 for all the other places w of E (see for
instance [O’M73, 71:19], or [PR10, Lemma 6.5]). Let h : V × V → K be the hermitian
form given by h = 〈βα1, . . . , αd〉 and let qh : V ×V → k be the quadratic space defined
by qh(x, y) = `(h(x, y)) for all x, y ∈ V . Then by Th. 7.2, the Hasse invariants of qh
and q are equal. This implies that q and qh have equal dimension, determinant, signatures
and Hasse invariants, therefore these quadratic spaces are isomorphic. Note that qh has an
isometry with minimal polynomial f by construction, hence q also has such an isometry,
and this concludes the proof of the theorem. ut

10. A necessary and sufficient condition

Suppose that k is a global field, and denote by 6k the set of all places of k. Let q be
a quadratic space over k, and let M be a module. The aim of this section is to give
some necessary and sufficient conditions for q to have an isometry with module M (see
Th. 10.11(b)). This was already started in the previous section. One of the results of §9
can be reformulated as follows:

Theorem 10.1. Let f ∈ k[X] be a symmetric, irreducible polynomial of even degree (in
other words, an irreducible polynomial of type 1). Let m ∈ N, letM = [k[X]/(f )]m, and
let q be a quadratic space over k. Then q has an isometry with module M if and only if
such an isometry exists over all the completions of k.

Proof. As f is irreducible, a quadratic space q of dimension m deg(f ) has an isometry
with minimal polynomial f if and only if q has an isometry with module M . Hence the
result follows from Th. 9.1. ut
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We have M = M0
⊕M1

⊕M2 with Mi of type i. Recall that a quadratic space has an
isometry with a module of type 2 if and only if it is hyperbolic (cf. Cor. 3.5). Hence q
has an isometry with module M if and only it is isomorphic to an orthogonal sum of a
quadratic space having an isometry with module M0

⊕ M1 and of a hyperbolic space.
Therefore it suffices to consider modules with M2

= 0.
On the other hand, we have seen that a quadratic space has an isometry with moduleM

if and only if it is the orthogonal sum of a quadratic space having an isometry with module
Modd and of a hyperbolic space. SinceModd is semisimple, it is sufficient to treat the case
of semisimple modules.

Suppose that M is semisimple and M2
= 0. We have M = M0

⊕M1 with M0
=

[k[X]/(X + 1)]n+ ⊕ [k[X]/(X − 1)]n− for some n+, n− ∈ N, and

M1
' [k[X]/(f1)]

n1 ⊕ · · · ⊕ [k[X]/(fr)]
nr ,

where f1, . . . , fr ∈ k[X] are distinct irreducible polynomials of type 1 and ni ∈ N. Recall
from §1 that this implies that deg(fi) is even, and fi(1)fi(−1) 6= 0 for all i = 1, . . . , r .
Set Mi = [k[X]/(fi)]

ni .
Set M0 = M0. Then M = M0 ⊕ M1 ⊕ · · · ⊕ Mr . Set I = {1, . . . , r}, and I0 =

I ∪ {0} = {0, . . . , r}.

Proposition 10.2. The quadratic space q has an isometry with module M over k if and
only if there exist quadratic spaces q0, . . . , qr defined over k such that

q ' q0 ⊕ · · · ⊕ qr ,

and for all i ∈ I0, the quadratic space qi has an isometry with module Mi over all the
completions of k.

Proof. Suppose that q has an isometry with module M over k. Then by Prop. 3.3 there
exist quadratic spaces q0, . . . , qr defined over k such that q ' q0 ⊕ · · · ⊕ qr and that the
quadratic space qi has an isometry with module Mi over k for all i ∈ I0.

Let us prove the converse. By hypothesis there exist quadratic spaces q0, . . . , qr de-
fined over k such that q ' q0 ⊕ · · · ⊕ qr , and for all i ∈ I0, the quadratic space qi has
an isometry with module Mi over all the completions of k. By Th. 10.1 this implies that
the quadratic space qi has an isometry with module Mi over k for all i ∈ I . As M0 is of
type 0 and dim(q0) = dim(M0), the quadratic space q0 has an isometry with module M0.
Since q is the orthogonal sum of the qi’s, this proves the proposition. ut

Suppose that q has an isometry with module M over all the completions of k. Then by
Prop. 3.3 there exist quadratic spaces q̃vi having an isometry with moduleMi for all i ∈ I0
and for all places v of k such that we have an isomorphism over kv

q ' q̃v0 ⊕ · · · ⊕ q̃
v
r .

The quadratic spaces q̃vi are not uniquely determined by q and M . The strategy used
in this section is to investigate under what condition one can modify them and obtain
quadratic spaces qv0 , . . . , q

v
r defined over kv such that that there exist quadratic spaces
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q0, . . . , qr defined over k which are isomorphic to qv0 , . . . , q
v
r over kv for all places v

of k. By Prop. 10.2, the Hasse principle holds precisely when this is possible. We start
with some definitions and lemmas.

Let us consider collections C = {qvi }, for i ∈ I0 and v ∈ 6k , of quadratic spaces
defined over kv , and let us denote by CM the set of C = {qvi } of collections satisfying the
condition

(i) For all v ∈ 6k and all i ∈ I0, the quadratic space qvi has an isometry with moduleMi

over kv .

Further, let us denote by CM,q the set of C = {qvi } ∈ CM of collections satisfying the
additional condition

(ii) For all v ∈ 6k , we have q ' qv0 ⊕ · · · ⊕ q
v
r over kv .

The above considerations show that if q has an isometry with module M over kv for all
the places v of k, then there exist quadratic spaces qvi satisfying (i) and (ii), in other words
such that C = {qvi } ∈ CM,q . Hence we have

Lemma 10.3. Suppose that the quadratic space q has an isometry with moduleM over kv
for all v ∈ 6k . Then CM,q is not empty.

Note that if C = {qvi } ∈ CM,q , then dim(qvi ) = dim(Mi) and det(qvi ) = [fi(1)fi(−1)]ni

in k∗v/k
∗2
v for all places v of k, and for all i ∈ I . Therefore the collections in CM,q can

only differ by the Hasse invariants and the signatures of the quadratic spaces.
For any C = {qvi } ∈ C and any v ∈ 6k , set

Sv(C) = {i ∈ I | w(q
v
i ) = 1}.

For all i ∈ I , set di = [fi(1)fi(−1)]ni , and let d0 = det(q)d1 . . . dr . Set D =∑
i<j (di, dj ) ∈ Br2(k). Recall that w(q) ∈ Br2(k) is the Hasse invariant of q. For any

x ∈ Br2(k) and any v ∈ 6k , let us denote by xv ∈ {0, 1} the image of x in Br2(kv).

Proposition 10.4. Let C = {qvi } ∈ CM . Then C ∈ CM,q if and only if det(qv0 ) = d0,

|Sv(C)| ≡ w(q)v +Dv (mod 2)

for all v ∈ 6k , and sign(q) = sign(qv0 ⊕ · · · ⊕ q
v
r ) for all real places v of k.

Proof. Suppose that C ∈ CM,q . Then q ' qv0 ⊕ · · · ⊕ q
v
r for all v ∈ 6k . In particular, if v

is a real place, then sign(q) = sign(qv0 ⊕ · · · ⊕ q
v
r ). For all v ∈ 6k and all i ∈ I , we have

det(qvi ) = di , hence det(qv0 ) = det(q)d1 . . . dr = d0. Moreover, for all v ∈ 6k ,

w(q)v = w(q
v
0 ⊕ · · · ⊕ q

v
r ) = w(q

v
0 )+ · · · + w(q

v
r )+

∑
i<j

(di, dj ) = |Sv(C)| +Dv,

as claimed.
Let us prove the converse. Let v ∈ 6k be a finite place, and let us check that q '

qv0⊕· · ·⊕q
v
r over kv . As C ∈ CM , the quadratic space qvi has an isometry with moduleMi
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over kv for all i ∈ I0. Therefore det(qvi ) = di for all i ∈ I . By hypothesis, det(qv0 ) =
d0 = det(q)d1 . . . dr . Thus

w(qv0 ⊕ · · · ⊕ q
v
r ) = w(q

v
0 )+ · · · + w(q

v
r )+

∑
i<j

(di, dj ) = |Sv(C)| +D = w(q)v.

Therefore qv and qv0 ⊕ · · · ⊕ q
v
r have equal dimension, determinant and Hasse–Witt in-

variant, hence these quadratic spaces are isomorphic over kv . If v is a real place, then we
are assuming that sign(q) = sign(qv0 ⊕ · · · ⊕ q

v
r ), hence q ' qv0 ⊕ · · · ⊕ q

v
r over kv .

Thus condition (ii) holds. Since C ∈ CM , condition (i) holds as well, therefore we have
C ∈ CM,q . ut

Corollary 10.5. Let C̃ = {q̃vi } ∈ CM,q , and let C = {qvi } ∈ CM . Let u ∈ 6k be a finite
place, and let α, β ∈ I0 with α 6= β be such that

(a) qvi ' q̃
v
i for all v 6= u and for all i ∈ I0;

(b) qui ' q̃
u
i for all i 6= α, β;

(c) w(quα) 6= w(q̃
u
α) and w(quβ) 6= w(q̃

u
β);

(d) det(q0) = det(q)d1 . . . dr .

Then C ∈ CM,q .

Proof. By (b) and (c), we have |Su(C)| = |Su(C̃)|. By (a), we have |Sv(C) = |Sv(C̃)|
for all v 6= u, and sign(qv0 ⊕ · · · ⊕ q

v
r ) = sign(q̃v0 ⊕ · · · ⊕ q̃

v
r ) if v is a real place. Since

C̃ ∈ CM,q , by Prop. 10.4 we have |Sv(C̃)| ≡ w(q)v + Dv (mod 2) for all v ∈ 6k ,
and sign(q) = sign(q̃v1 ⊕ · · · ⊕ q̃

v
r ) if v is a real place. Hence we also have |Sv(C)| ≡

w(q)v + Dv (mod 2) for all v ∈ 6k , and sign(q) = sign(qv0 ⊕ · · · ⊕ q
v
r ) for all real

places v of k. By Prop. 10.4, this implies that C ∈ CM,q . ut

Lemma 10.6. Let v be a finite, non-dyadic place of k, let i ∈ I0, and let Q a quadratic
space over kv with module Mi .

(a) Suppose that i 6= 0. Then there exists a quadratic space Q′ over kv having an isome-
try with module Mi such that w(Q′) = 0.

(b) Suppose that i = 0, and let d ∈ k∗/k∗2. Then there exists a quadratic space Q′ over
kv having an isometry with module M0 such that w(Q′) = 0 and det(Q′) = d .

Proof. (a) If w(Q) = 0, there is nothing to prove. Suppose that w(Q) = 1. Since v
is non-dyadic, this implies that the quadratic space Q is not hyperbolic. Therefore by
Cor. 3.5 the module Mi is not hyperbolic over kv . By Lemma 9.6, there exists a quadratic
space Q′ over kv having an isometry with module Mi such that w(Q′) = 0.

(b) Set n0 = dim(M0), and let Q′ be the n0-dimensional quadratic space

Q′ = 〈1, . . . , 1, d〉.

Then det(Q′) = d and w(Q′) = 0. As any quadratic space of dimension n0 has an
isometry with module M0, this completes the proof of the lemma. ut

In order to give a necessary and sufficient condition for the Hasse principle to hold, the
first step is to show that CM,q contains a collection C = {qvi } in CM,q such thatw(qvi ) = 0
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for almost all places v of k and all i ∈ I0. Recall that D =
∑
i<j (di, dj ) ∈ Br2(k). Let T

be the set of places v of k such that Dv 6= 0, and let S be the set of places of k at which
the Hasse invariant of q is not equal to the Hasse invariant of the hyperbolic space of
dimension equal to dim(q). Let 62 be the set of dyadic places and 6∞ the set of infinite
places of k. Set 6 = S ∪ T ∪62 ∪6∞. Note that 6 is a finite subset of 6k .

Proposition 10.7. The set CM,q contains a collection C = {qvi } of quadratic forms de-
fined over kv such that w(qvi ) = 0 for all v 6∈ 6 and all i ∈ I0.

Proof. Let C̃ = {q̃vi } ∈ CM,q . Let v be a place of k such that v 6∈ 6 and suppose that
|Sv(C̃)| 6= 0. It suffices to show that there exists a collection C ∈ CM,q with |Sv(C)| <
|Sv(C̃)|.

Set wvi = w(q̃vi ). We are supposing that |Sv(C̃)| 6= 0, hence there exists an i with
wvi = 1. Since v 6∈ S ∪ 62, we have w(q)v = 0. Moreover v 6∈ T , hence w(q)v =
wv0 + · · · + w

v
r . Thus there exists j 6= i such that wvj = 1.

By Lemma 10.6 there exist quadratic spaces qvi and qvj over kv having isometries
with module Mi respectively Mj such that det(qvi ) = di , det(qvj ) = dj and w(qvi ) =
w(qvj ) = 0. Set qvα = q̃

v
α if α 6= i, j .

Set C = {qvi }. Then C satisfies the conditions of Cor. 10.5, hence C ∈ CM,q . Note that
C = {qvi } satisfies w(qvi ) = w(q

v
j ) = 0, therefore |Sv(C)| < |Sv(C̃)|. This completes the

proof of the proposition. ut

For any collection C = {qvi } ∈ CM,q and all i ∈ I0, set

Ti(C) = {v ∈ 6k | w(q
v
i ) = 1}.

Let FM,q be the subset of CM,q consisting of the collections C = {qvi } of quadratic spaces
over kv such that for all i ∈ I0, the set Ti(C) is finite.

Theorem 10.8. Suppose that q has an isometry with module M over kv for all places v
of k. Then q has an isometry with module M if and only if there exists a collection C =
{qvi } ∈ FM,q such that for all i ∈ I0, the cardinality of Ti(C) is even.

Proof. Suppose that q has an isometry with module M . Then by Prop. 10.2, there exist
quadratic spaces q0, . . . , qr defined over k such that q ' q0⊕ · · ·⊕ qr , and the quadratic
space qi has an isometry with module Mi over all the completions of k for all i ∈ I0. Let
qvi = qi ⊗k kv , and let C = {qvi }. Then C ∈ Cq,M , and for all i = 0, . . . , r , the set Ti(C)
is finite of even cardinality.

Conversely, let C = {qvi } ∈ FM,q be such that Ti(C) has even cardinality for all
i ∈ I0. Recall that as the quadratic space qvi has an isometry with module Mi , we have
dim(qvi ) = dim(Mi) and det(qvi ) = di ∈ k

∗
v/k
∗2
v for all places v of k, and all i ∈ I0.

Therefore by [O’M73, Chapter VII, Th. 72.1], for all i ∈ I0 there exists a quadratic
space qi such that qi ⊗k kv ' qvi for all v ∈ 6k . We have q ' q0 ⊕ · · · ⊕ qr over kv for
all v, hence by the Hasse–Minkowski theorem we have q ' q0 ⊕ · · · ⊕ qr . Therefore by
Th. 10.1, the quadratic space q has an isometry with module M . ut
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For any module N and any d ∈ k∗, let �(N, d) be the set of finite places v of k such
that for any ε ∈ {0, 1}, there exists a quadratic space Q over kv with disc(Q) = d and
w(Q) = ε having an isometry with module N ⊗k kv .

For all i, j ∈ I0, let �i,j = �(Mi, di) ∩�(Mj , dj ).

Remark 10.9. Note that if i, j ∈ I , then �i,j does not depend on q. If M0 6= 0 and
i = 0, then �i,j depends on d0 = det(q)d1 . . . dr .

Recall that for any collection C = {qvi } ∈ FM,q and all i ∈ I0, we have

Ti(C) = {v ∈ 6k | w(q
v
i ) = 1}.

Definition 10.10. We say that C = (qvi ) ∈ FM,q is connected if for all i ∈ I such
that |Ti(C)| is odd, there exist j ∈ I with j 6= i such that |Tj (C)| is odd, and a chain
i = i1, . . . , im = j of elements of I with �it ,it+1 6= ∅ for all t = 1, . . . , m − 1. We say
that FM,q is connected if it contains a connected element.

Theorem 10.11. (a) The quadratic space q has an isometry with module M over kv for
all v ∈ 6k if and only if FM,q is not empty.

(b) The quadratic space q has an isometry with module M over k if and only if FM,q is
connected.

Proof. (a) It is clear that if FM,q 6= ∅, then the quadratic space q has an isometry with
module M over kv all v ∈ 6k . The converse follows from Lemma 10.3 and Th. 10.7.

(b) If the quadratic space q has an isometry with moduleM , then there exist quadratic
spaces q0, . . . , qr over k such that q ' q0 ⊕ · · · ⊕ qr and qi has an isometry with mod-
uleMi for all i ∈ I0. Set qvi = qi⊗k kv , and let C = (qvi ). Then C ∈ FM,q , and |Ti(C)| is
even for all i ∈ I0. ThereforeC is a connected element of FM,q , hence FM,q is connected.

Conversely, suppose that FM,q is connected, and let C = (qvi ) ∈ FM,q be a connected
element. Suppose that for some i ∈ I0, the integer |Ti(C)| is odd. Since C is connected,
there exist j ∈ I0 with j 6= i such that |Tj (C)| is odd, and a chain i = i1, . . . , im = j
of elements of I with �it ,it+1 6= ∅ for all t = 1, . . . , m− 1. Let vt ∈ �it ,it+1 . Then there
exist quadratic spaces q̃vtt over kv with w(q̃vtt ) 6= w(q

vt
t ) and det(q̃vtt ) = dt having an

isometry with module Mt . Set q̃us = q
u
s if (u, s) 6= (vt , t). Set C̃ = (q̃vi ); then C̃ ∈ FM,q .

We have |Ti(C̃)| ≡ 0 (mod 2), |Tj (C̃)| ≡ 0 (mod 2), and |Ts(C̃)| ≡ |Ts(C)| (mod 2)
if s 6= i, j . Repeating this procedure we obtain a family of quadratic spaces C′ ∈ FM,q
such that |Ti(C)| is even for all i ∈ I0. By Th. 10.8 this implies that q has an isometry
with module M . ut

Note that condition (a) does not imply condition (b) in general (in other words, there are
counter-examples to the Hasse principle): this follows from the examples of Prasad and
Rapinchuk [PR10, Example 7.5].

11. The case of modules of mixed type

The aim of this section and the next is to give some applications of Th. 10.11. We keep
the notation of the previous section; in particular, k is a global field and 6k is the set of
places of k. Recall that M is semisimple, and M ' M0

⊕M1 with M0 of type 0 and M1



Isometries of quadratic spaces 1651

of type 1. If M1
= 0, then we already have a complete criterion for the existence of an

isometry with moduleM (see Prop. 4.3). In this section, we consider the case where both
M0 and M1 are non-zero. As we will see, the case where dim(M0) ≥ 3 is especially
simple, and will be considered first. Then we examine the case where dim(M0) = 2 or 1.
Let q be a quadratic space over k, and assume that dim(q) = dim(M).

Definition 11.1. For every real place v of k, let (rv, sv) denote the signature of q over kv ,
and let σv be the number of roots of FM ∈ kv[X] that are not on the unit circle. We
say that the signature conditions are satisfied if for every real place v of k, we have
(rv, sv) ≥ (σv, σv), and if moreover M0

= 0, then (rv, sv) ≡ (σv, σv) (mod 2).

Proposition 11.2. Suppose that dim(M0) ≥ 3. Then the quadratic space q has an isom-
etry with module M if and only if the signature conditions are satisfied.

The proof of Prop. 11.2, as well that of several other results of Sections 11 and 12, is
based on Prop. 11.3 below. With the notation of §10, we have:

Proposition 11.3. Suppose that there exists i0 ∈ I0 such that �i0,i(q) 6= ∅ for all i ∈ I0.
Suppose that the quadratic space q has an isometry with moduleM over every completion
of k. Then q has an isometry with module M .

For the proof of Prop. 11.3, we need the following lemmas. We use the notation of §10.

Lemma 11.4. Let C ∈ FM,q . Then∑
v∈6k

|Sv(C)| ≡ 0 (mod 2).

Proof. By Prop. 10.4, we have

|Sv(C)| ≡ w(q)v +Dv (mod 2)

for all v ∈ 6k . Hence∑
v∈6k

|Sv(C)| ≡
∑
v∈6k

w(q)v +
∑
v∈6k

Dv (mod 2).

As w(q) and D are elements of Br2(k), we have∑
v∈6k

w(q)v ≡ 0 (mod 2),
∑
v∈6k

Dv ≡ 0 (mod 2).

This implies that
∑
v∈6k
|Sv(C)| ≡ 0 (mod 2), as claimed. ut

Lemma 11.5. Let C ∈ FM,q . Then∑
i∈I0

|Ti(C)| ≡ 0 (mod 2).
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Proof. Indeed, we have ∑
i∈I0

|Ti(C)| =
∑
v∈6k

|Sv(C)|.

By Lemma 11.4,
∑
v∈6k
|Sv(C)| ≡ 0 (mod 2), hence

∑
i∈I |Ti(C)| ≡ 0 (mod 2).

Proof of Proposition 11.3. By Th. 10.11(a), the set FM,q is not empty. Let C = (qvi )

∈FM,q , and let i∈I0 be such that |Ti(C)| is odd. By Lemma 11.5, we have
∑
i∈I0
|Ti(C)|

≡ 0 (mod 2), hence there exists j ∈ I0 with j 6= i such that |Ti(C)| is odd. By hypothesis,
we have �i,i0 6= ∅ and �j,i0 6= ∅, hence C is connected. Therefore FM,q is connected,
hence by Th. 10.11(b) the quadratic space q has an isometry with module M .

Lemma 11.6. Let N be a module of type 0, and let d ∈ k∗.

(a) If dim(N) ≥ 3, then every finite place of k is in �(N, d).
(b) If dim(N) = 2 and d 6= −1 in k∗/k∗2, then every finite place of k is in �(N, d).

Proof. Since N is of type 0, every quadratic space of dimension equal to dim(N) has an
isometry with module N . Therefore the result follows from [O’M73, 63:23]. ut

Proposition 11.7. Suppose that dim(M0) ≥ 3, or dim(M0) = 2 and det(q) 6= −d1 . . . dr
in k∗/k∗2. If the quadratic space q has an isometry with moduleM over every completion
of k, then q has an isometry with module M over k.

Proof. If dim(M0) ≥ 3, then Lemma 11.6(a) implies that every finite place of k is in
�(M0, d0). Therefore �0,i 6= ∅ for all i ∈ I0. Suppose that dim(M0) = 2 and det(q) 6=
−d1 . . . dr in k∗/k∗2. Recall that d0 = det(q)d1 . . . dr in k∗/k∗2. Hence d0 6= −1 in
k∗/k∗2, and therefore by Lemma 11.6(b) every finite place of k is in �(M0, d0). This
implies that �0,i 6= ∅ for all i ∈ I0 in this case as well, and hence the proposition follows
from Prop. 11.3. ut

Proof of Proposition 11.2. The necessity of the signature conditions follows from
Prop. 8.1. Let us show that they are also sufficient. By Prop. 11.7, it suffices to show
that q has an isometry with module M over kv for all v ∈ 6k . For real places, this is
a consequence of Prop. 8.1. Let v be a finite place. If M1

= 0, then M is of type 0,
and every quadratic space of dimension equal to dim(M) has an isometry with mod-
ule M . Suppose that M1

6= 0, and note that this implies that dim(M1) ≥ 2. We have
M1
⊗k kv ' Nv

1 ⊕ N
v
2 where Nv

1 is of type 1 and Nv
2 of type 2. If Nv

1 6= 0, then
the result follows from Th. 7.1. Suppose that Nv

1 = 0, and let 2m2 = dim(Nv
2 ). Since

dim(M1) ≥ 2, we have dim(M) ≥ 5, hence q is isotropic over kv , and its Witt index is
≥ m2. By Prop. 4.3, this implies that q has an isometry with module M over kv . This
concludes the proof of the proposition. ut

Proposition 11.9. Suppose that dim(M0) = 2 and det(q) 6= −d1 . . . dr in k∗/k∗2. Then
q has an isometry with module M if and only the following two conditions hold:

(a) The signature conditions are satisfied.
(b) If v is a finite place and if M1

⊗k kv is hyperbolic, then the Witt index of q over kv is
≥

1
2 dim(M1).
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Proof. By Prop. 11.7, we have to show that the conditions hold if and only if q has
an isometry with module M over kv for all v. For real places, this is a consequence of
Prop. 8.1. Let v be a finite place. Recall that M1

6= 0, and let M1
⊗k kv ' Nv

1 ⊕ N
v
2

where Nv
1 is of type 1 and Nv

2 of type 2. If Nv
1 6= 0, then the result follows from Th. 7.1.

Suppose that Nv
1 = 0, and note that this means thatM1

⊗k kv is hyperbolic. By Prop. 4.3,
this implies that q has an isometry with module M over kv if and only if the Witt index
of q over kv is ≥ 1

2 dim(M1), and this is precisely condition (b). ut

Proposition 11.10. Suppose that dim(M0) = 2 and det(q) = −d1 . . . dr in k∗/k∗2. Then
q has an isometry with module M if and only if q ' q0 ⊕ q

′ where q0 is a hyperbolic
plane, and q ′ is a quadratic space over k having an isometry with module M1.

Proof. If q ' q0 ⊕ q
′ with q0 a hyperbolic plane and q ′ a quadratic space having an

isometry with module M1, then q has an isometry with module M .
Conversely, suppose that q has an isometry with moduleM . Then q ' q0⊕q

′ with q0
having an isometry with module M0, and q ′ having an isometry with module M1. As M1

is of type 1, we have det(q ′) = d1 . . . dr in k∗/k∗2. By hypothesis, det(q) = −d1 . . . dr
in k∗/k∗2. Therefore det(q0) = −1 in k∗/k∗2. Since dim(q0) = 2, this implies that q0 is
isomorphic to a hyperbolic plane. ut

Recall that d0 = det(q)d1 . . . dr in k∗/k∗2.

Proposition 11.11. Suppose that dim(M0) = 1. Then q has an isometry with module M
if and only if q ' q0⊕q

′ where q0 ' 〈d0〉 and q ′ is a quadratic space having an isometry
with module M1.

Proof. If q ' q0⊕ q
′ with q0 ' 〈d0〉 and q ′ having an isometry with module M1, then q

has an isometry with module M .
Conversely, suppose that q has an isometry with module M . Then q ' q0 ⊕ q

′ with
q0 having an isometry with module M0, and q ′ having an isometry with module M1. As
M1 is of type 1, we have det(q ′) = d1 . . . dr in k∗/k∗2. Since dim(q0) = dim(M0) = 1
and d0 = det(q)d1 . . . dr in k∗/k∗2, we have q0 ' 〈d0〉. ut

12. Modules of type 1

We keep the notation of Sections 10 and 11. In particular, k is a global field and 6k is the
set of places of k. In this section, we assume that M is a semisimple module of type 1.
Recall that this means that M ' M1 ⊕ · · · ⊕Mr , where Mi = [k[X]/(fi)]

ni for some
symmetric, irreducible polynomials fi ∈ k[X] of even degree, and for some ni ∈ N. We
use the notation I = {1, . . . , r}, and Ki = k[X]/(fi). Let q be a quadratic space over k
such that dim(q) = dim(M). Recall that we denote by FM ∈ k[X] the characteristic
polynomial of M . If v is a real place of k, then we denote by (rv, sv) the signature of q
at v, and by σv the number of roots of FM off the unit circle.

Recall that the signature conditions are satisfied for q and M if for all real places v
of k, we have (rv, sv) ≥ (σv, σv), and (rv, sv) ≡ (σv, σv) (mod 2).
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We say that the hyperbolicity conditions are satisfied for q and M if for all places v
of k such that M ⊗k kv is a hyperbolic module (that is, a module of type 2), the quadratic
form qv over kv is hyperbolic.

We have the following

Theorem 12.1. The quadratic space q has an isometry with moduleM over all the com-
pletions of k if and only if the signature conditions and the hyperbolicity conditions are
satisfied and det(q) = FM(1)FM(−1) in k∗/k∗2.

Proof. This follows from Cor. 3.5, Cor. 7.4, and Prop. 8.1. ut

We will see that the necessary and sufficient conditions of Th. 10.11 can be interpreted in
terms of splitting properties of the fieldsKi . We start with a few lemmas. Let us recall that
for any module N and any d ∈ k∗, we denote by �(N, d) the set of finite places v of k
such that for any ε ∈ {0, 1}, there exists a quadratic space Q over kv with disc(Q) = d
and w(Q) = ε having an isometry with module N .

Lemma 12.2. Let f ∈ k[X] be a symmetric, irreducible polynomial of even degree, and
m ∈ N. Set N = [k[X]/(f )]m and let d = [f (1)f (−1)]m. Let v be a finite place of k.
Then v ∈ �(N, d) if and only if N ⊗k kv is not hyperbolic.

Proof. If N ⊗k kv is hyperbolic, then every quadratic space with module N ⊗k kv is
hyperbolic (cf. Cor. 3.5), therefore v 6∈ �(N, d). Conversely, suppose that N ⊗k kv is
not hyperbolic. Then by Lemma 9.6, for any ε ∈ {0, 1} there exists a quadratic space Q
having an isometry with module N ⊗k kv such that w(Q) = ε. By Cor. 5.2, we have
det(Q) = d , hence v ∈ �(N, d). ut

Notation 12.3. Let E be an extension of finite degree of k, let K be a quadratic exten-
sion of E, and let x 7→ x be the non-trivial automorphism of K over E. Let us denote
by 6s(K) the set of v ∈ 6k such that every place of E above v splits in K . Let 6ns(K)

be the complement of 6s(K) in 6k; in other words, the set of v ∈ 6k such that there
exists a place of E above v that is not split in K .

Let 6′k be the set of finite places of k. Then we have

Lemma 12.4. For all i ∈ I , we have �(Mi, di) = 6
ns(Ki) ∩6

′

k .

Proof. Let v ∈ 6′k . By Lemma 9.4, we have v ∈ 6ns(Ki) if and only if Mi ⊗k kv is not
hyperbolic, and by Lemma 12.2 this is equivalent to v ∈ �(Mi, di). ut

For all i, j ∈ I , set 6ns
i,j = 6

ns(Ki) ∩6
ns(Kj ).

Theorem 12.5. Assume that there exists i0 ∈ I such that6ns
i0,i
6= ∅ for all i ∈ I . Suppose

that q has an isometry with module M over all the completions of k. Then q has an
isometry with module M .

Proof. Let i ∈ I , and let us show that there exists a finite place v of k such that v ∈ 6ns
i0,i

.
Indeed, let u be a real place of k with u ∈ 6ns

i0,i
. Let L be a Galois extension of k con-

taining the fields Ki0 and Ki , and let G = Gal(L/k). Let us denote by c the conjugacy
class of the complex conjugation in G corresponding to an extension of the place u to L.



Isometries of quadratic spaces 1655

By the Chebotarev density theorem, there exists a finite place v of k such that the conju-
gacy class of the Frobenius automorphism at v is equal to c. Let v be such a place. Then
all the places of Ei0 , respectively Ei , above v are inert in Ki0 , respectively Ki . There-
fore, v ∈ 6ns

i0,i
= 6ns(Ki0) ∩ 6

ns(Ki). Since v ∈ 6′k , by Lemma 12.4 this implies that
v ∈ �(Mi0 , di0) ∩ �(Mi, di) = �i0,i . Thus �i0,i 6= ∅ for all i ∈ I . Since here I = I0,
Prop. 11.3 gives the desired result. ut

Corollary 12.6. Suppose that there exists i0 ∈ I such that6ns
i0,i
6= ∅ for all i ∈ I . Then q

has an isometry with module M if and only if the hyperbolicity and signature conditions
are satisfied and det(q) = FM(1)FM(−1) in k∗/k∗2.

Proof. This follows from Ths. 12.1 and 12.5. ut

The hypotheses of Th. 12.5 and Cor. 12.6 are often satisfied; for instance, we have

Corollary 12.7. Suppose that there exists a real place v of k such that all the roots of
FM ∈ kv[X] are on the unit circle. Then q has an isometry with module M if and only
if the hyperbolicity and signature conditions are satisfied and det(q) = FM(1)FM(−1)
in k∗/k∗2.

Proof. Indeed, we have v ∈ 6ns(Ki) for all i ∈ I , hence v ∈ 6ns
i,j for all i, j . Therefore

the result follows from Cor. 12.6. ut

Recall that a number field is CM if it is a totally imaginary quadratic extension of a totally
real number field. We say that the moduleM is of type CM if k = Q and the fields Ki are
CM fields for all i ∈ I . ut

Corollary 12.8. Suppose that M is a module of type CM. Then the quadratic space q
has an isometry with module M if and only if the hyperbolicity conditions are satisfied,
det(q) = FM(1)FM(−1) in k∗/k∗2, and the signature of q is even.

Proof. Indeed, the hypothesis of Cor. 12.7 is satisfied, and the signature condition
amounts to saying that the signature of q is even. ut
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