
DOI 10.4171/JEMS/576

J. Eur. Math. Soc. 17, 2949–2975 c© European Mathematical Society 2015

Daniele Castorina ·Manel Sanchón

Regularity of stable solutions of p-Laplace
equations through geometric Sobolev type inequalities

Received January 26, 2012 and in revised form September 3, 2012 and February 11, 2013

Abstract. We prove a Sobolev and a Morrey type inequality involving the mean curvature and the
tangential gradient with respect to the level sets of the function that appears in the inequalities.
Then, as an application, we establish a priori estimates for semistable solutions of −1pu = g(u)
in a smooth bounded domain� ⊂ Rn. In particular, we obtain new Lr andW1,r bounds for the ex-
tremal solution u? when the domain is strictly convex. More precisely, we prove that u? ∈ L∞(�)

if n ≤ p + 2 and u? ∈ L
np

n−p−2 (�) ∩W
1,p
0 (�) if n > p + 2.

Keywords. Geometric inequalities, mean curvature of level sets, Schwarz symmetrization,
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1. Introduction

The aim of this paper is to obtain a priori estimates for semistable solutions of p-Laplace
equations. We will accomplish this by proving some geometric inequalities involving the
functionals

Ip,q(v;�) :=

(∫
�

{(
1
p′

∣∣∇T ,v|∇v|p/q ∣∣)q + |Hv|q |∇v|p} dx)1/p

, p, q ≥ 1, (1.1)

where � is a smooth bounded domain of Rn with n ≥ 2 and v ∈ C∞0 (�). Here, and in
the rest of the paper, Hv(x) denotes the mean curvature at x of the hypersurface {y ∈ � :
|v(y)| = |v(x)|} (which is smooth at points x ∈ � satisfying ∇v(x) 6= 0), and ∇T ,v is the
tangential gradient along a level set of |v|. We will prove a Morrey type inequality when
n < p + q and a Sobolev type inequality when n > p + q (see Theorem 1.3 below).

Then, as an application of these inequalities, we establish Lr and W 1,r a priori esti-
mates for semistable solutions of the reaction-diffusion problem−1pu = g(u) in �,

u > 0 in �,
u = 0 on ∂�.

(1.2)
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Here, the diffusion is modeled by the p-Laplace operator 1p (recall that 1pu :=
div(|∇u|p−2

∇u)) with p > 1, while the reaction term is driven by any positive C1 non-
linearity g.

As we will see, these estimates will lead to new Lr and W 1,r bounds for the extremal
solution u? of (1.2) when g(u) = λf (u) and the domain � is strictly convex. More
precisely, we prove that u? ∈ L∞(�) if n ≤ p + 2 and u? ∈ L

np
n−p−2 (�) ∩W

1,p
0 (�) if

n > p + 2.

1.1. Geometric Sobolev inequalities

In the last decades symmetrizations and rearrangements have been useful tools to prove
Sobolev inequalities as well as to obtain a priori estimates for solutions of elliptic and
parabolic equations.

Let v be a Lipschitz continuous function in � vanishing at the boundary and denote
by |E| the n-dimensional Hausdorff measure of any subset E of Rn. The Schwarz sym-
metrization (or spherically symmetric rearrangement) v∗ of v is a spherically symmetric
function, defined in the ball BR centered at the origin with the same measure as �, which
is decreasing with respect to |x| and satisfies |{x ∈ � : |v(x)| > t}| = |{x ∈ BR :

v∗(x) > t}| for every t ∈ (0, ‖v‖L∞(�)) (see Definition 2.1). Since v and v∗ are equidis-
tributed, we have(∫

BR

|v∗|r dx

)1/r

=

(∫
�

|v|r dx

)1/r

for all r ∈ [1,∞]. (1.3)

Another important property of this symmetrization is the Pólya–Szegö principle
(see [32]). It establishes that the Dirichlet integral decreases under Schwarz symmetriza-
tion: ∫

BR

|∇v∗|r dx ≤

∫
�

|∇v|r dx for all r ∈ [1,∞). (1.4)

See monographs by Bandle [5] and Kawohl [27] for this and other rearrangements and
symmetrizations, their main properties, and several applications.

In the seventies, Talenti [34] proved the Pólya–Szegö principle using the isoperimetric
inequality and, as a consequence, he obtained the optimal constant in the classical Sobolev
inequality. He also obtained in [35] a priori estimates for solutions of some nonlinear
elliptic equations with the aid of the Fleming–Rishel formula [24]. Since then several
authors have used the ideas and techniques behind [34, 35] to prove comparison results
for solutions of elliptic and parabolic equations (see for instance [2, 3, 4]) or Hessian
equations [8], to obtain the sharp extinction time in the flow by mean curvature [9], etc.

We proceed in the spirit of Talenti’s works to prove our geometric inequalities. We
first establish that the functional Ip,q defined in (1.1) decreases (up to a universal multi-
plicative constant) under Schwarz symmetrization, i.e., Ip,q(v∗;BR) ≤ CIp,q(v;�) for
some universal constant C depending only on n, p, and q. This property is analogous to
the Pólya–Szegö principle (1.4) for the Dirichlet integral.
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Theorem 1.1. Let � be a smooth bounded domain of Rn with n ≥ 2 and BR the ball
centered at the origin and with radius R = (|�|/|B1|)

1/n. Let v ∈ C∞0 (�) and v∗ its
Schwarz symmetrization. Let Ip,q be the functional defined in (1.1) with p, q ≥ 1. If
n > q + 1 then there exists a universal constant C, depending only on n, p, and q, such
that (∫

BR

1
|x|q
|∇v∗|p dx

)1/p

= Ip,q(v
∗
;BR) ≤ CIp,q(v;�). (1.5)

Remark 1.2. (i) In the proof of Theorem 1.1 we obtain the explicit admissible constant
C = Aq/pHn−1(∂B1)

q/((n−1)p) in (1.5), where A is the universal constant appearing
in the geometric Sobolev inequality (1.8) below and Hn−1(∂B1) denotes the (n − 1)-
dimensional Hausdorff measure of ∂B1. The best constant A in (1.8) is unknown: this is
the reason why we do not obtainC = 1 in (1.5) as in the Pólya–Szegö principle. However,
Theorem 1.1 will be enough to prove our geometric Sobolev inequalities.

(ii) Note that the Schwarz symmetrization of v is a spherically symmetric function,
i.e., its level sets are spheres. In particular, the mean curvature Hv∗(x) equals 1/|x| and
the tangential gradient ∇T ,v∗ |∇v∗|p/q is 0. This explains the equality in (1.5).

A related result was proved by Trudinger [38] when q = 1 for the class of mean con-
vex functions (i.e., functions for which the mean curvature of level sets is nonnegative).
More precisely, he proved Theorem 1.1 replacing the functional Ip,q by

Ĩp,q(v;�) :=

(∫
�

|Hv|
q
|∇v|p dx

)1/p

(1.6)

and considering the Schwarz symmetrization of v with respect to the perimeter instead
of the classical one like us. In order to define this symmetrization (with respect to the
perimeter) it is essential to know that the mean curvature Hv of the level sets of |v| is
nonnegative. Then using an Aleksandrov–Fenchel inequality for mean convex hypersur-
faces (see [37]) Trudinger proved Theorem 1.1 for this class of functions when q = 1.

We prove Theorem 1.1 using two ingredients. The first one is the classical isoperimet-
ric inequality

n|B1|
1/n
|D|(n−1)/n

≤ Hn−1(∂D) (1.7)

for any smooth bounded domainD of Rn. The second one is a geometric Sobolev inequal-
ity, due to Michael and Simon [29] and to Allard [1], on compact (n − 1)-hypersurfaces
M without boundary which involves the mean curvatureH ofM: for every q ∈ [1, n−1),
there exists a constant A depending only on n and q such that(∫

M

|φ|q
?

dσ

)1/q?

≤ A

(∫
M

(|∇φ|q + |Hφ|q) dσ

)1/q

(1.8)

for every φ ∈ C∞(M), where q? = (n − 1)q/(n − 1 − q) and dσ denotes the area ele-
ment in M . Using the classical isoperimetric inequality (1.7) and the geometric Sobolev
inequality (1.8) with M = {x ∈ � : |v(x)| = t} and φ = |∇v|(p−1)/q we will prove
Theorem 1.1.
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From Theorem 1.1 and well known 1-dimensional weighted Sobolev inequalities [6]
it is standard to prove Morrey and Sobolev geometric inequalities involving the func-
tional Ip,q . Indeed, by Theorem 1.1, and since Schwarz symmetrization preserves the Lr

norm, it is sufficient to prove the existence of a positive constant C independent of v∗

such that
‖v∗‖Lr (BR) ≤ CIp,q(v

∗
;BR).

Using this argument we prove the following geometric inequalities.

Theorem 1.3. Let � be a smooth bounded domain of Rn with n ≥ 2 and v ∈ C∞0 (�).
Let Ip,q be the functional defined in (1.1) with p, q ≥ 1 and

p?q :=
np

n− (p + q)
for n > p + q.

Assume n > q + 1. The following assertions hold:

(a) If n < p + q then

‖v‖L∞(�) ≤ C1|�|
p+q−n
np Ip,q(v;�) (1.9)

for some constant C1 depending only on n, p, and q.
(b) If n > p + q then

‖v‖Lr (�) ≤ C2|�|
1/r−1/p?q Ip,q(v;�) for every 1 ≤ r ≤ p?q , (1.10)

where C2 is a constant depending only on n, p, q, and r .
(c) If n = p + q then∫

�

exp
{(

|v|

C3Ip,q(v;�)

)p′}
dx ≤

n

n− 1
|�|, where p′ = p/(p − 1), (1.11)

for some positive constant C3 depending only on n and p.

Cabré and the second author [15] proved recently Theorem 1.3 under the assumption
q ≥ p using a different method (without the use of Schwarz symmetrization). More
precisely, they proved the theorem replacing the functional Ip,q(v;�) by the one de-
fined in (1.6), Ĩp,q(v;�). Therefore, our geometric inequalities are new only in the range
1 ≤ q < p.

Open Problem 1. Is Theorem 1.3 true for the range 1 ≤ q < p and with the functional
Ip,q(v;�) replaced by the one defined in (1.6), Ĩp,q(v;�)?

This question has a positive answer for the class of mean convex functions. Trudinger
[38] proved this result for this class of functions when q = 1 and can be easily extended
for every q ≥ 1. However, to our knowledge, for general functions (without mean convex
level sets) it is an open problem.
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1.2. Regularity of semistable solutions

The second part of the paper deals with a priori estimates for semistable solutions of prob-
lem (1.2). Remember that a regular solution u ∈ C1

0(�) of (1.2) is said to be semistable if
the second variation of the associated energy functional at u is nonnegative definite, i.e.,∫

�

(
|∇u|p−2

{
|∇φ|2 + (p − 2)

(
∇φ ·

∇u

|∇u|

)2}
− g′(u)φ2

)
dx ≥ 0 (1.12)

for every φ ∈ H0, whereH0 denotes the space of admissible functions (see Definition 4.1
below). The class of semistable solutions includes local minimizers of the energy func-
tional as well as minimal and extremal solutions of (1.2) when g(u) = λf (u).

Using an appropriate test function in (1.12) we prove the following a priori estimates
for semistable solutions. This result extends the ones in [12] and [15] for the Laplacian
case (p = 2) due to Cabré and the second author.

Theorem 1.4. Let g be any C∞ function and � ⊂ Rn any smooth bounded domain.
Let u ∈ C1

0(�) be a semistable solution of (1.2), i.e., a solution satisfying (1.12). The
following assertions hold:

(a) If n ≤ p + 2 then there exists a constant C depending only on n and p such that

‖u‖L∞(�) ≤ s +
C

s2/p |�|
p+2−n
np

(∫
{u≤s}

|∇u|p+2 dx

)1/p

for all s > 0. (1.13)

(b) If n > p + 2 then there exists a constant C depending only on n and p such that(∫
{u>s}

(u− s)
np

n−(p+2) dx

) n−(p+2)
np

≤
C

s2/p

(∫
{u≤s}

|∇u|p+2 dx

)1/p

(1.14)

for all s > 0. Moreover, there exists a constant C depending only on n, p, and r such
that ∫

�

|∇u|r dx ≤ C

(
|�| +

∫
�

|u|
np

n−(p+2) dx + ‖g(u)‖L1(�)

)
(1.15)

for all 1 ≤ r < r1 :=
np2

(1+p)n−p−2 .

To prove (1.13) and (1.14) we use the semistability condition (1.12) with the test function
φ = |∇u|η to obtain∫

�

(
4
p2

∣∣∇T ,u|∇u|p/2∣∣2 + n− 1
p − 1

H 2
u |∇u|

p

)
η2 dx ≤

∫
�

|∇u|p|∇η|2 dx (1.16)

for every Lipschitz function η in�with η|∂� = 0. Then, taking η = Tsu = min{s, u}, we
obtain (1.13) and (1.14) when n 6= p + 2 by using the Morrey and Sobolev inequalities
established in Theorem 1.3 with q = 2. The critical case n = p + 2 is more involved. In
order to get (1.13) in this case, we take another explicit test function η = η(u) in (1.16)
and use the geometric Sobolev inequality (1.8). The gradient estimate established in (1.15)
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will follow by using a technique introduced by Bénilan et al. [7] to get the regularity of
entropy solutions for p-Laplace equations with L1 data (see Proposition 4.2).

The rest of the introduction deals with the regularity of extremal solutions. Let us
recall the problem and some known results in this topic. Consider{

−1pu = λf (u) in �,
u = 0 on ∂�, (1.17)λ

where λ is a positive parameter and f is a C1 positive increasing function satisfying

lim
t→∞

f (t)

tp−1 = ∞. (1.18)

For the Laplacian case (p = 2), Crandall and Rabinowitz [17] proved, using the
Implicit Function Theorem, the existence of an extremal parameter λ? ∈ (0,∞) such that
problem (1.17)λ admits a minimal classical solution uλ ∈ C2

0(�) for λ ∈ (0, λ?) and
admits no classical solution for λ > λ?. Brezis et al. [10] proved that the limit of minimal
solutions

u? := lim
λ↑λ?

uλ

is a weak solution of (1.17)λ? . This solution is known as the extremal solution of (1.17)λ.
Moreover, they proved that problem (1.17)λ admits no weak solution for λ > λ?. Brezis
and Vázquez [11] gave (among other results) a characterization for singular extremal so-
lutions lying in the energy class H 1

0 (�) when the nonlinearity f is convex and raised
the question of determining the regularity of the extremal solution u? depending on
the dimension n of the domain. After this important work the study of the regularity
of u? started to increase dramatically. However, there are few results for general reaction
terms f and general domains �. Nedev [30, 31] proved, in the case of convex nonlinear-
ities, that u? ∈ L∞(�) if n ≤ 3, u? ∈ Lr(�) for all 1 ≤ r < n/(n − 4) if n ≥ 4, and
u? ∈ H 1

0 (�) independently of the dimension n of � if in addition � is convex. Recently,
Cabré [12] and Cabré and the second author [15] proved, in the case of convex domains
and general nonlinearities, that u? ∈ L∞(�) if n ≤ 4 and u? ∈ L2n/(n−4)(�) if n ≥ 5.
For more results and bibliography in this topic for p = 2 see the recent monograph by
Dupaigne [20].

Many of the above results for the Laplacian case have been extended to problem
(1.17)λ for arbitrary p > 1. Garcı́a-Azorero, Peral, and Puel [25, 26] considered the
exponential nonlinearity f (u) = eu. They proved the existence of minimal solutions
uλ ∈ C

1
0(�) for λ ∈ (0, λ?), and that problem (1.17)λ admits no regular solution for

λ > λ?, using a monotone iteration method instead of the Implicit Function Theorem
as in [17]. Cabré and the second author [14] extended this result to positive increasing
nonlinearities f satisfying (1.18). Moreover, they proved that every minimal solution uλ
is semistable for λ ∈ (0, λ?). In [25, 26] and [14] it is proved, for exponential and power-
type nonlinearities, that the limit of minimal solutions u? is a solution lying in the energy
class W 1,p

0 (�) independently of the dimension n and p > 1.
For p 6= 2, and without additional assumptions on f , it is unknown if u? is a (weak

or entropy) solution of (1.17)λ? . In the affirmative case, it is called the extremal solution
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of (1.17)λ? . However, in [33] it is proved that u? is a weak solution (in the distributional
sense) of (1.17)λ? whenever p ≥ 2 and f satisfies the additional condition:

there exists T ≥ 0 such that (f (t)− f (0))1/(p−1) is convex for all t ≥ T . (1.19)

Moreover,
u? ∈ L∞(�) if n < p + p′

and
u? ∈ Lr(�) for all r < r̃0 := (p − 1)

n

n− (p + p′)
if n ≥ p + p′.

This extends previous results of Nedev [30] for the Laplacian case (p = 2) and convex
nonlinearities.

Our next result improves the Lq estimate in [30, 33] for strictly convex domains. We
also prove that u? belongs to the energy class W 1,p

0 (�) independently of the dimension
extending an unpublished result of Nedev [31] for p = 2 to every p ≥ 2 (see also [15]).

Theorem 1.5. Let f be an increasing positive C1 function satisfying (1.18). Assume that
� is a smooth bounded and strictly convex domain of Rn. Let uλ ∈ C1

0(�) be the minimal
solution of (1.17)λ. There exists a constant C independent of λ such that:

(a) If n ≤ p + 2 then ‖uλ‖L∞(�) ≤ C‖f (uλ)‖
1/(p−1)
L1(�)

.

(b) If n > p + 2 then ‖uλ‖
L

np
n−p−2 (�)

≤ C‖f (uλ)‖
1/(p−1)
L1(�)

. Moreover ‖uλ‖W 1,p
0 (�)

≤ C′

where C′ is a constant depending only on n, p, �, f , and ‖f (uλ)‖L1(�).

Assume, in addition, that p ≥ 2 and that (1.19) holds. Then

(i) If n ≤ p + 2 then u? ∈ L∞(�). In particular, u? ∈ C1
0(�).

(ii) If n > p + 2 then u? ∈ L
np

n−p−2 (�) ∩W
1,p
0 (�).

Remark 1.6. If f (uλ) is bounded in L1(�) by a constant independent of λ, then parts
(a) and (b) will lead automatically to assertions (i) and (ii) (without the requirement that
p ≥ 2 and (1.19) hold true). However, as we said before, the estimate f (u?) ∈ L1(�)

is unknown in the general case, i.e., for arbitrary positive and increasing nonlinearities f
satisfying (1.18) and arbitrary p > 1.

Open Problem 2. Is it true that f (u?) ∈ L1(�) for arbitrary positive and increasing
nonlinearities f satisfying (1.18)?

Under the assumptions p ≥ 2 and (1.19) it is proved in [33] that f (u?) ∈ Lr(�) for all
1 ≤ r < n/(n − p′) when n ≥ p′ and f (u?) ∈ L∞(�) if n < p′. In particular, one
has f (u?) ∈ L1(�) independently of the dimension n and of the parameter p > 1. As
a consequence, assertions (i) and (ii) follow immediately from parts (a) and (b) of the
theorem.

The proof of the Lr a priori estimates stated in (a) and (b) is accomplished in three
steps. First, we use the strict convexity of the domain � to prove that

{x ∈ � : dist(x, ∂�) < ε} ⊂ {x ∈ � : uλ(x) < s}
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for a suitable s. This is done using a moving plane procedure for p-Laplace equations (see
Proposition 3.1 below). Then, we prove that the Morrey and Sobolev type inequalities,
stated in Theorem 1.3 for smooth functions, also hold for regular solutions of (1.2) when
1 ≤ q ≤ 2. Finally, taking a test function η related to dist(·, ∂�) in (1.16) and proceeding
as in the proof of Theorem 1.4 we will obtain the Lr a priori estimates established in the
theorem.

The energy estimate established in parts (b) and (ii) of Theorem 1.5 follows by ex-
tending the arguments of Nedev [31] for the Laplacian case (see also [15, Theorem 2.9]).
First, using a Pokhozhaev identity we obtain∫

�

|∇uλ|
p dx ≤

1
p′

∫
∂�

|∇uλ|
p x · ν dσ for all p > 1 and λ ∈ (0, λ?), (1.20)

where dσ denotes the area element in ∂� and ν is the outward unit normal to �. Then,
using the strict convexity of the domain (as in the Lr estimates) and standard regularity
estimates for −1pu = λf (uλ(x)) in a neighborhood of the boundary, we are able to
control the right hand side of (1.20) by a constant whose dependence on λ is given by a
function of ‖f (uλ)‖L1(�).

Remark 1.7. Let us compare our regularity results with the sharp ones proved by Cabré,
Capella, and the second author in [13] when� is the unit ball B1 of Rn. In the radial case,
the extremal solution u? of (1.17)λ? is bounded if the dimension n < p + 4p/(p − 1).
Moreover, if n ≥ p + 4p/(p − 1) then u? ∈ W 1,r

0 (B1) for all 1 ≤ r < r̄1, where

r̄1 :=
np

n− 2
√
n−1
p−1 − 2

.

In particular, u? ∈ Lr(B1) for all 1 ≤ r < r̄0, where

r̄0 :=
np

n− 2
√
n−1
p−1 − p − 2

.

It can be shown that these regularity results are sharp by taking the exponential and power
nonlinearities (see [14, 25, 26]).

Note that the Lr(�)-estimate established in Theorem 1.5 differs with the sharp ex-
ponent r̄0 defined above by the term 2

√
(n− 1)/(p − 1). Moreover, observe that r̄1 is

larger than p and tends to it as n goes to infinity. In particular, the best expected regularity
independent of the dimension n for the extremal solution u? isW 1,p

0 (�), which is the one
we obtain in Theorem 1.5.

1.3. Outline of the paper

The paper is organized as follows. In Section 2 we prove Theorem 1.1 and the geometric
type inequalities stated in Theorem 1.3. In Section 3 we prove that Theorem 1.3 holds for
solutions of (1.2) when 1 ≤ q ≤ 2. Moreover we establish boundary estimates when the
domain is strictly convex. In Section 4, we present the semistability condition (1.12) and
the space of admissible functions H0. The rest of the section deals with the regularity of
semistable solutions, proving Theorems 1.4 and 1.5.



p-Laplace equations and geometric Sobolev inequalities 2957

2. Geometric Hardy–Sobolev type inequalities

In this section we prove Theorems 1.1 and 1.3. As we said in the introduction, the geo-
metric inequalities established in Theorem 1.3 are new for the range 1 ≤ q < p since
the case q ≥ p was proved in [15]. However, we will give the proof in all cases using
Schwarz symmetrization, giving an alternative proof for the known range of parameters
q ≥ p.

We start by recalling the definition of Schwarz symmetrization of a compact set and
of a Lipschitz continuous function.

Definition 2.1. We define the Schwarz symmetrization of a compact set D ⊂ Rn as

D∗ :=

{
BR(0) with R = (|D|/|B1|)

1/n if D 6= ∅,
∅ if D = ∅.

Let v be a Lipschitz continuous function in � vanishing at the boundary ∂�, and set
�t := {x ∈ � : |v(x)| > t}. We define the Schwarz symmetrization of v as

v∗(x) := sup{t ∈ R : x ∈ �∗t }.

Equivalently, we can define the Schwarz symmetrization of v as

v∗(x) = inf{t ≥ 0 : V (t) < |B1| |x|
n
},

where V (t) := |�t | = |{x ∈ � : |v(x)| > t}| denotes the distribution function of v.

The Schwarz symmetrization v∗ of v is a spherically symmetric and Lipschitz continuous
function (see [27]). Moreover, it is equidistributed with v, i.e.,

|{x ∈ � : |v(x)| > t}| = |{x ∈ BR : v
∗(x) > t}| for every t ∈ (0, ‖v‖L∞(�)).

As a consequence, the Lr norm of v is preserved under this symmetrization for all r ∈
[1,∞] (i.e., identity (1.3) holds).

Talenti [34] proved the Pólya–Szegö principle (1.4) using the isoperimetric inequal-
ity. From these properties, the classical Sobolev inequality reduces to the existence of a
constant C depending only on n and q such that(∫

BR

|v∗|
nq
n−q dx

) n−q
nq

≤ C

(∫
BR

|∇v∗|q dx

)1/q

when n > q. At that point, noting that v∗ is a spherically symmetric function, the result
follows from the Bliss inequalities [6].

To prove our Theorems 1.1 and 1.3 we proceed in the same way. The first ingredient
in the proof of Theorem 1.1 is the isoperimetric inequality (1.7). More precisely, let v ∈
C∞0 (�) and note that ∂{x ∈ � : |v(x)| > t} = {x ∈ � : |v(x)| = t} is a C∞ immersed
(n−1)-dimensional compact hypersurface of Rn without boundary for every regular value



2958 Daniele Castorina, Manel Sanchón

t ∈ (0, ‖v‖L∞(�)). Since, by Sard’s theorem almost every t ∈ (0, ‖v‖L∞(�)) is a regular
value of |v|, we can apply (1.7) to {x ∈ � : |v(x)| > t} to obtain

n|B1|
1/nV (t)(n−1)/n

≤ P(t) := Hn−1({x ∈ � : |v(x)| = t}) for a.e. t > 0. (2.1)

The second ingredient is the following Sobolev inequality on compact hypersurfaces
without boundary due to Michael and Simon [29] and to Allard [1].

Theorem 2.2 ([1, 29]). Let M ⊂ Rn be a C∞ immersed (n − 1)-dimensional compact
hypersurface without boundary and φ ∈ C∞(M). If q ∈ [1, n − 1), then there exists a
constant A depending only on n and q such that(∫

M

|φ|q
?

dσ

)1/q?

≤ A

(∫
M

(|∇φ|q + |Hφ|q) dσ

)1/q

, (2.2)

whereH is the mean curvature ofM , dσ denotes the area element inM , and q? = (n−1)q
n−1−q .

Let us prove that Schwarz symmetrization reduces (up to a multiplicative constant) the
functional Ip,q defined in (1.1) using the isoperimetric inequality (2.1) and the geometric
inequality (2.2) applied to M = Mt = {x ∈ � : |v(x)| = t} and φ = |∇v|(p−1)/q .

Proof of Theorem 1.1. Let v ∈ C∞0 (�), p ≥ 1, and 1 ≤ q < n− 1. Applying inequality
(2.2) to M = Mt = {x ∈ � : |v(x)| = t} and φ = |∇v|(p−1)/q we obtain(∫

Mt

|∇v|(p−1)q?/q dσ

)q/q?
≤ Aq

∫
Mt

(∣∣∇T ,v|∇v|(p−1)/q ∣∣q + |Hv|q |∇v|p−1) dσ (2.3)

for a.e. t ∈ (0, ‖v‖L∞(�)), where Hv denotes the mean curvature of Mt , dσ is the area
element in Mt , A is the constant in (2.2) which depends only on n and q, and

q? :=
(n− 1)q
n− 1− q

.

Recall that the distribution function V (t), being a nonincreasing function, is differentiable
almost everywhere and, thanks to the coarea formula (see for instance [21]) and the fact
that almost every t ∈ (0, ‖v‖L∞(�)) is a regular value of |v|, we have

−V ′(t) =

∫
Mt

1
|∇v|

dσ and P(t) =

∫
Mt

dσ for a.e. t ∈ (0, ‖v‖L∞(�)).

Therefore applying the Jensen inequality and then using the isoperimetric inequality (2.1),
we obtain(∫

Mt

|∇v|(p−1)q?/q+1 dσ

|∇v|

)q/q?
≥
P(t)p−1+q/q?

(−V ′(t))p−1 ≥
(A1V (t)

(n−1)/n)p−1+q/q?

(−V ′(t))p−1 (2.4)
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for a.e. t ∈ (0, ‖v‖L∞(�)), where A1 := n|B1|
1/n. Integrating the previous inequality

with respect to t in (0, ‖v‖L∞(�)) and using (2.3) and the coarea formula, we obtain∫
‖v‖L∞(�)

0

(A1V (t)
(n−1)/n)p−1+q/q?

(−V ′(t))p−1 dt

≤ Aq
∫
�

{(
1
p′

∣∣∇T ,v|∇v|p/q ∣∣)q + |Hv|q |∇v|p} dx. (2.5)

At this point, we proceed as in [34, proof of Lemma 1]. Since the Schwarz sym-
metrization v∗ of v is spherically symmetric, is equidistributed with v, and is Lipschitz
continuous (see for instance [34]), the inequalities in (2.4) are equalities when we replace
v by v∗, i.e.,∫

‖v‖L∞(�)

0

(A1V (t)
n−1/n)p−1+q/q?

(−V ′(t))p−1 dt

=

∫
‖v‖L∞(�)

0

(∫
{v∗=t}

|∇v∗|(p−1)q?/q dσ

)q/q?
dt

= Hn−1(∂B1)
−q/(n−1)

∫
‖v‖L∞(�)

0

∫
{v∗=t}

|Hv∗ |
q
|∇v∗|p−1 dσ dt.

Combining the previous identity with inequality (2.5) and using the coarea formula, we
obtain inequality (1.5) with the explicit constant C = Aq/pHn−1(∂B1)

q/((n−1)p). ut

Now, to prove Theorem 1.3 we proceed as in the proof of the classical Sobolev inequality.
From (1.3) and Theorem 1.1 it will be enough to prove the result for spherically symmetric
functions v∗ in a ball BR . Then using the Bliss inequalities [6] we conclude the proof.
While the method is standard, we have decided to include the proof for convenience to
the reader.

Proof of Theorem 1.3. Let v ∈ C∞0 (�) and v∗ its Schwarz symmetrization. Recall that
v∗ is defined in BR with R = (|�|/|B1|)

1/n.
(a) Assume 1+ q < n < p + q. Using the Hölder inequality we obtain

v∗(s) =

∫ R

s

|(v∗)′(τ )| dτ

≤

(∫ R

0
|(v∗)′(τ )|pτ−qτn−1 dτ

)1/p(∫ R

s

τ
1+q−n
p−1 dτ

)1/p′

(2.6)

for a.e. s ∈ (0, R). In particular,

v∗(s) ≤ Hn−1(∂B1)
−1/p

(
p − 1

p + q − n

)1/p′(
|�|

|B1|

) p+q−n
np

Ip,q(v
∗
;BR)

for a.e. s ∈ (0, R). We conclude this case, by Theorem 1.1, noting that ‖v‖L∞(�) = v∗(0).
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(b) Assume n > p + q. We use the following 1-dimensional weighted Sobolev in-
equality:(∫ R

0
|ϕ(s)|p

?
q sn−1 ds

)1/p?q
≤ C(n, p, q)

(∫ R

0
s−q |ϕ′(s)|psn−1 ds

)1/p

(2.7)

with optimal constant

C(n, p, q) :=

(
p − 1

n− (p + q)

)1/p′

n−1/p?q

[
0
( np
p+q

)
0
(

n
p+q

)
0
(
1+ n(p−1)

p+q

)] p+qnp (2.8)

proved by Bliss [6] in 1930 (see also [38]). Applying inequality (2.7) to ϕ = v∗, we
obtain

Hn−1(∂B1)
−1/p?q

(∫
�

|v|p
?
q dx

)1/p?q

≤ C(n, p, q)Hn−1(∂B1)
−1/p

(∫
BR

|x|−q |∇v∗|p dx

)1/p

.

Using Theorem 1.1 again and noting that the Lp
?
q norm is preserved under Schwarz sym-

metrization, we prove (1.10) for r = p?q . The remaining cases, 1 ≤ r < p?q , now follow
easily from the Hölder inequality.

(c) Assume n = p + q. From (2.6) and Theorem 1.1 we obtain

v∗(s) ≤

(∫ R

0
|(v∗)′(τ )|pτ−qτn−1 dτ

)1/p(∫ R

s

τ−1 dτ

)1/p′

≤ Hn−1(∂B1)
−1/pCIp,q(v;�)

(
ln
(
R

s

))1/p′

for a.e. s ∈ (0, R). Equivalently

exp
{(

v∗(s)

Hn−1(∂B1)−1/pCIp,q(v;�)

)p′}
Hn−1(∂B1)s

n−1
≤
R

s
Hn−1(∂B1)s

n−1

for a.e. s ∈ (0, R). Integrating the previous inequality with respect to s in (0, R) we
obtain∫

BR

exp
{(

v∗

Hn−1(∂B1)−1/pCIp,q(v;�)

)p′}
dx ≤ Hn−1(∂B1)

Rn

n− 1
=

n

n− 1
|�|.

We conclude the proof noting that the integral in inequality (1.11) is preserved under
Schwarz symmetrization. ut
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Remark 2.3. Note that we have obtained explicit admissible constants C1, C2, and C3 in
inequalities of Theorem 1.3. More precisely, we obtained

C1 = Hn−1(∂B1)
−1/p

(
p − 1

p + q − n

)1/p′(
|�|

|B1|

) p+q−n
np

Aq/pHn−1(∂B1)
q

(n−1)p ,

C2 = C(n, p, q)Hn−1(∂B1)
1/p?q−1/pAq/pHn−1(∂B1)

q
(n−1)p ,

C3 = Hn−1(∂B1)
−1/pAn−p/pHn−1(∂B1)

n−p
(n−1)p ,

where A is the universal constant appearing in (2.2) and C(n, p, q) is defined in (2.8).
All the constants Ci depend only on n, p, and q. However, the best constant A in (2.2)

is unknown (even for mean convex hypersurfaces). Behind the Sobolev inequality (2.2)
there is the following geometric isoperimetric inequality:

|M|
n−2
n−1 ≤ A2

∫
M

|H(x)| dσ. (2.9)

Here, M ⊂ Rn is a C∞ immersed (n − 1)-dimensional compact hypersurface without
boundary andH is the mean curvature ofM as in Theorem 2.2. The best constant in (2.9)
is also unknown, even for mean convex hypersurfaces.

3. Properties of solutions of p-Laplace equations

In this section, we first establish an a priori L∞ estimate in a neighborhood of the bound-
ary ∂� for any regular solution u of (1.2) when the domain � is strictly convex. More
precisely, we prove that there exist positive constants ε and γ , depending only on the
domain �, such that

‖u‖L∞(�ε) ≤
1
γ
‖u‖L1(�), where �ε := {x ∈ � : dist(x, ∂�) < ε}. (3.1)

Then we establish that the geometric inequalities of Theorem 1.3 still hold for solutions
of (1.2) in the smaller range 1 ≤ q ≤ 2. In the next section, these two ingredients will
allow us to obtain a priori estimates for semistable solutions.

Let u ∈ W 1,p
0 (�) be a weak solution (i.e., a solution in the distributional sense) of the

problem −1pu = g(u) in �,
u > 0 in �,
u = 0 on ∂�,

(3.2)

where � is a smooth bounded domain of Rn, with n ≥ 2, and g is any positive smooth
nonlinearity.

We say that u is a regular solution of (3.2) if it satisfies the equation in the distri-
butional sense and g(u) ∈ L∞(�). By well known regularity results for degenerate el-
liptic equations, every regular solution u belongs to C1,α(�) for some α ∈ (0, 1] (see
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[18, 36]). Moreover, u ∈ C1(�) (see [28]). This is the best regularity that one can expect
for solutions of p-Laplace equations. Therefore, equation (3.2) is always meant in the
distributional sense.

We prove the boundary a priori estimate (3.1) through a moving plane procedure for
the p-Laplacian which is developed in [19].

Proposition 3.1. Let � be a smooth bounded domain of Rn and g any positive smooth
function. Let u be any positive regular solution of (3.2). If � is strictly convex, then there
exist positive constants ε and γ depending only on the domain � such that for every
x ∈ � with dist(x, ∂�) < ε, there exists a set Ix ⊂ � with the following properties:

|Ix | ≥ γ and u(x) ≤ u(y) for all y ∈ Ix .

As a consequence,

‖u‖L∞(�ε) ≤
1
γ
‖u‖L1(�), where �ε := {x ∈ � : dist(x, ∂�) < ε}. (3.3)

Proof. First let us observe that by the regularity of the solution u up to the boundary ∂�
and the fact that 1pu ≤ 0, we can apply the generalized Hopf boundary lemma [39] to
deduce that the normal derivative ∂u

∂ν
is negative on ∂�. Thus, if we let Zu := {x ∈ � :

∇u(x) = 0} be the critical set of u, then Zu ∩ ∂� = ∅. By the compactness of both sets,
there exists ε0 > 0 such that Zu ∩�ε = ∅ for any ε ≤ ε0.

We will now prove that this neighborhood of the boundary is in fact independent of
the solution u. In order to begin a moving plane argument, we need some notation. Let
e ∈ Sn−1 be any direction and for λ ∈ R let us consider the hyperplane

T = Tλ,e = {x ∈ Rn : x · e = λ}

and the corresponding cap

6 = 6λ,e = {x ∈ � : x · e < λ}.

Set
a(e) = inf

x∈�
x · e

and, for any x ∈ �, let x′ = xλ,e be its reflection with respect to the hyperplane T , i.e.,

x′ = x + 2(λ− x · e)e.

For any λ > a(e) the cap
6′ = {x ∈ � : x′ ∈ 6}

is the (nonempty) reflected cap of 6 with respect to T .
Furthermore, consider the function v(x) = u(x′) = u(xλ,e), which is just the reflec-

tion of u with respect to the same hyperplane. By the boundedness of �, for λ − a(e)
small, the corresponding reflected cap 6′ is contained in �. Moreover, by the strict con-
vexity of �, there exists λ0 = λ0(�) (independent of e) such that 6′ remains in � for
any λ ≤ λ0.
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Let us now compare u and its reflection v for such values of λ in the cap6. First of all,
both functions solve the same equation since 1p is invariant under reflection; secondly,
on the hyperplane T the functions coincide, whereas for any x ∈ ∂6 ∩ ∂� we have
u(x) = 0 and v(x) = u(x′) > 0, since x′ ∈ �. Hence

1p(u)+ f (u) = 1p(v)+ f (v) in 6, u ≤ v on ∂6.

Again by the boundedness of �, if λ − a(e) is small, the measure of the cap 6 will
be small. Therefore, from the Comparison Principle in small domains (see [19]) we have
u ≤ v in 6. Moreover, by the Strong Comparison Principle and Hopf Lemma, we see that
u ≤ v in 6λ,e for any a(e) < λ ≤ λ0. In particular, this spells that u(x) is nondecreasing
in the e direction for all x ∈ 6.

Now, fix x0 ∈ ∂� and let e = ν(x0) be the outward unit normal to ∂� at x0. By
the convexity assumption, Ta(ν(x0)),ν(x0) ∩ ∂� = {x0}. If we let θ ∈ Sn−1 be another
direction close to the outer normal ν(x0), the reflection of the cap6λ,θ with respect to the
hyperplane Tλ,θ (which is close to the tangent one) would still be contained in � thanks
to its strict convexity. So the above argument could also be applied to the new direction θ .
In particular, we see that we can get a neighborhood 2 of ν(x0) in Sn−1 such that u(x) is
nondecreasing in every direction θ ∈ 2 and for any x such that x · θ < λ0/2.

By eventually taking a smaller neighborhood 2, we may assume that

|x · (θ − ν(x0))| < λ0/8

for any x ∈ 6λ0,θ and θ ∈ 2. Moreover, noticing that

x · θ = x · (θ − ν(x0))+ x · ν(x0)

and
λ0/2 = λ0/8+ 3λ0/8 > x · θ > λ0/8− λ0/8 = 0,

it is then easy to see that u is nondecreasing in any direction θ ∈ 2 on 60 = {x ∈ � :

λ0/8 < x · ν(x0) < 3λ0/8}.
Finally, let us choose ε = λ0/8. Fix any point x ∈ �ε and let x0 be its projection onto

∂�. From the above arguments we see that

u(x) ≤ u(x0 − εν(x0)) ≤ u(y)

for any y ∈ Ix , where Ix ⊂ 60 is a truncated cone with vertex at x0, opening angle 2,
and height λ0/4. Hence, there exists a positive constant γ = γ (�, ε) such that |Ix | ≥ γ
and u(x) ≤ u(y) for any y ∈ Ix . Finally, choosing xε as the maximum point of u in �ε,
we get

‖u‖L∞(�ε) = uε(xε) ≤
1
γ

∫
Ixε

u(y) dy ≤
1
γ
‖u‖L1(�),

which proves (3.3). ut

We will now prove that the inequalities in Theorem 1.3 are also valid for a positive solu-
tion u of (3.2) in the smaller range 1 ≤ q ≤ 2. To do this, we will construct an approxi-
mation of u by smooth functions and see that, thanks to strong uniform estimates on this
approximation, we can pass to the limit in all of the inequalities.
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Proposition 3.2. Let � be a smooth bounded domain of Rn and g any positive smooth
function. Let u be any positive regular solution of (3.2). If 1 ≤ q ≤ 2, then inequalities
in Theorem 1.3 hold for v = u. Given s > 0, the same holds true also for v = u − s

and � replaced by �s := {x ∈ � : u > s}.
Proof. Let Zu = {x ∈ � : ∇u(x) = 0}. Recall that by standard elliptic regularity
u ∈ C∞(� \ Zu) and that |Zu| = 0 by [19]. Therefore, u is smooth almost everywhere
in �. Let x ∈ � \ Zu and observe that for the mean curvature Hu of the level set passing
through x we have the explicit expression

−(n− 1)Hu = div
(
∇u

|∇u|

)
=

1u

|∇u|
−
〈D2u∇u,∇u〉

|∇u|3
, (3.4)

whereas for the tangential gradient term we have

∇T ,u|∇u| =
D2u∇u

|∇u|
−
〈D2u∇u,∇u〉∇u

|∇u|3
, (3.5)

where all the terms in these expressions are evaluated at x. Hence, there exists a positive
constant C = C(n, p, q) such that(

1
p′

∣∣∇T ,u|∇u|p/q ∣∣)q + |Hu|q |∇u|p ≤ C|D2u|q |∇u|p−q for a.e. x ∈ �. (3.6)

From [19] we recall the following important estimate: for any 1 ≤ q ≤ 2,∫
�

|D2u|q |∇u|p−q dx <∞. (3.7)

Thanks to (3.6) and (3.7), all of the integrals in the geometric Hardy–Sobolev inequalities
are well defined for any 1 ≤ q ≤ 2.

However, since the solution u is not smooth around Zu, we need to regularize it in or-
der to apply the inequalities of Theorem 1.3. We will now describe an approximation ar-
gument due to Canino, Le, and Sciunzi [16] for the p(·)-Laplacian (in our case p(x) ≡ p
constant).

Lemma 3.3 ([16]). Let D be a smooth bounded domain of Rn, 1 ≤ q ≤ 2, and ε ∈
(0, 1). Let u ∈ C1(�) be a local solution of −1pu = g(u) where g is any positive
smooth nonlinearity. Set h := g(u) and let hε ∈ C∞(D) be any sequence converging to h
in C1(D) as ε ↓ 0. Then there exists a unique solution uε ∈ W 1,p(D) of the regularized
problem {

−div
(
(ε2
+ |∇uε|

2)(p−2)/2
∇uε

)
= hε(x) in D,

uε = u on ∂D,
(3.8)

Moreover, uε is smooth, uε → u strongly in W 1,p(D) and there exists a constant C
independent of ε such that∫

D

|D2uε|
q(ε2
+ |∇uε|

2)(p−q)/2 dx ≤ C

and
lim
ε→0

∫
D

|D2uε|
q(ε2
+ |∇uε|

2)(p−q)/2 dx =

∫
D

|D2u|q |∇u|p−q dx. (3.9)
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Applying Lemma 3.3 withD = � we obtain a smooth regularization uε of u. We can
then apply Theorem 1.3 to any uε to get the appropriate inequality (a), (b), or (c). From
[18, 28] we know that the regularization uε will converge to u, as ε ↓ 0, in C1(�). Hence
we can easily pass to the limit as ε ↓ 0 in the left hand side of (1.9) and (1.10).

We will now see that also the remaining terms Ip,q(uε;�), which involve tangen-
tial gradient and mean curvature, behave well under this approximation. By the uniform
convergence of |∇uε| to |∇u| as ε→ 0, we can choose an ε0 > 0 such that

1
2
≤

|∇uε|√
ε2 + |∇uε|2

≤ 2

for any ε ≤ ε0 and for all x ∈ �. In particular we see that

|∇uε|
p−q
≤ max{2p−q , 2q−p}(ε2

+ |∇uε|
2)(p−q)/2. (3.10)

Hence from (3.6) and (3.10) we see that for a sufficiently small ε0 > 0 there exists a
constant K = K(n, p, q, ε0) > 0 such that for any ε ≤ ε0 we have(

1
p′

∣∣∇T ,uε |∇uε|p/q ∣∣)q + |Huε |q |∇uε|p ≤ K|D2uε|
q(ε2
+ |∇uε|

2)(p−q)/2. (3.11)

Moreover, by the fact that uε → u in C2(� \ Zu) and |Zu| = 0, almost everywhere
in � we have

lim
ε→0

{(
1
p′

∣∣∇T ,uε |∇uε|p/q ∣∣)q + |Huε |q |∇uε|p} = ( 1
p′

∣∣∇T ,u|∇u|p/q ∣∣)q + |Hu|q |∇u|p.
(3.12)

Now, thanks to (3.9), (3.11), and (3.12), by dominated convergence we see that

lim
ε→0

∫
�

{(
1
p′

∣∣∇T ,uε |∇uε|p/q ∣∣)q + |Huε |q |∇uε|p} dx
=

∫
�

{(
1
p′

∣∣∇T ,u|∇u|p/q ∣∣)q + |Hu|q |∇u|p} dx.
Thus, the assertions of Theorem 1.3 hold for v = u.

To conclude the proof let us fix any s > 0 and consider v = u− s on �s = {x ∈ � :
u > s}. It is clear that the integrands in the inequalities remain unchanged in this case,
so the only problem comes from the fact �s might not be smooth. If this is the case,
let us consider two sequences εn → 0 and sn → s, with the corresponding regulariza-
tions of v given by vn := vεn = uεn − sn. Thanks to the smoothness of any vn and the
Sard Lemma, we can choose each sn to be a regular value of vn, so that the level set
{vn > 0} = {un > sn} is smooth. Moreover, from the C1 convergence, it is clear that
for the characteristic functions we have χ{un>sn} → χ{u>s}. Hence we can conclude the
proof using the same dominated convergence argument as above. ut
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4. Regularity of stable solutions. Proof of Theorems 1.4 and 1.5

We are now ready to establish Lr and W 1,r a priori estimates of semistable solutions to
p-Laplace equations proving Theorems 1.4 and 1.5.

Before the proof of our regularity results let us recall some known facts on the lin-
earized operator associated to (1.2) and on semistable solutions.

4.1. Linearized operator and semistable solutions

This subsection deals with the linearized operator at any regular semistable solution
u ∈ C1

0(�) of −1pu = g(u) in �,
u > 0 in �,
u = 0 on ∂�,

(4.1)

where � is a smooth bounded domain of Rn, with n ≥ 2, and g is any positive C1

nonlinearity.
The linearized operator Lu associated to (4.1) at u is defined by duality as

Lu(v, φ) :=

∫
�

|∇u|p−2
{
∇v · ∇φ + (p − 2)

(
∇v ·

∇u

|∇u|

)(
∇φ ·

∇u

|∇u|

)}
dx

−

∫
�

g′(u)vφ dx

for all (v, φ) ∈ H0 × H0, where the Hilbert space H0 is defined according to [19] as
follows.

Definition 4.1. Let u ∈ C1
0(�) be a regular semistable solution of (4.1). We introduce

the following weighted L2 norm of the gradient:

|φ| :=

(∫
�

ρ|∇φ|2 dx

)1/2

where ρ := |∇u|p−2.

According to [19], the space

H 1
ρ (�) := {φ ∈ L

2(�) weakly differentiable : |φ| <∞}

is a Hilbert space and is the completion of C∞(�) with respect to the | · |-norm.
We define the Hilbert space H0 of admissible test functions as

H0 :=

{
{φ ∈ H 1

0 (�) : |φ| <∞} if 1 < p ≤ 2,

the closure of C∞0 (�) in H 1
ρ (�) if p > 2.

Note that for 1 < p ≤ 2, H0 is a subspace of H 1
0 (�) and since∫

�

|∇φ|2 ≤ ‖∇u‖
2−p
L∞(�)|φ|

2,

we see that (H0, | · |) is a Hilbert space. For p > 2, the weight ρ = |∇u|p−2 is in L∞(�)
and satisfies ρ−1

∈ L1(�), as shown in [19].
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Now, thanks to the above definition, the operator Lu is well defined for φ ∈ H0, and
therefore the semistability condition for the solution u reads

Lu(φ, φ) =

∫
�

[
|∇u|p−2

{
|∇φ|2 + (p− 2)

(
∇φ ·

∇u

|∇u|

)2}
− g′(u)φ2

]
dx ≥ 0 (4.2)

for every φ ∈ H0.
On the one hand, considering φ = |∇u|η as a test function in the semistability condi-

tion (4.2) for u, we obtain∫
�

[
(p−1)|∇u|p−2∣∣∇T ,u|∇u|∣∣2+B2

u|∇u|
p
]
η2 dx ≤ (p−1)

∫
�

|∇u|p|∇η|2 dx (4.3)

for any Lipschitz continuous function η with compact support. Here, B2
u denotes the L2

norm of the second fundamental form of the level set of |u| through x (i.e., the sum of the
squares of its principal curvatures). The fact that φ = η|∇u| is an admissible test function
derives from the estimate (3.7), whereas the computations behind (4.3) are done in [22]
(see also [23, Theorem 1]).

On the other hand, noting that (n− 1)H 2
u ≤ B

2
u and

|∇u|p−2∣∣∇T ,u|∇u|∣∣2 = 4
p2

∣∣∇T ,u|∇u|p/2∣∣2,
we obtain the key inequality to prove our regularity results for semistable solutions:∫

�

(
4
p2

∣∣∇T ,u|∇u|p/2∣∣2 + n− 1
p − 1

H 2
u |∇u|

p

)
η2 dx ≤

∫
�

|∇u|p|∇η|2 dx (4.4)

for any Lipschitz continuous function η with compact support.

4.2. A priori estimates of stable solutions. Proof of Theorem 1.4

In order to prove the gradient estimate (1.15) stated in Theorem 1.4(b) we will use the
following result. Its proof is based on a technique introduced by Bénilan et al. [7] to obtain
the regularity of entropy solutions for p-Laplace equations with L1 data.

Proposition 4.2. Assume n ≥ 3 and h ∈ L1(�). Let u be the entropy solution of{
−1pu = h(x) in �,
u = 0 on ∂�. (4.5)

Let r0 ≥ (p−1)n/(n−p). If
∫
�
|u|r0 dx <∞, then the following a priori estimate holds:∫

�

|∇u|r dx ≤ r|�| +

(
r1

r
− 1

)−1(∫
�

|u|r0 dx + ‖h‖L1(�)

)
for all r < r1 := pr0/(r0 + 1).
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Remark 4.3. Bénilan et al. [7] proved the existence and uniqueness of entropy solutions
to problem (4.5). Moreover, they proved that |∇u|p−1

∈ Lr(�) for all 1 ≤ r < n/(n−1)
and |u|p−1

∈ Lr(�) for all 1 ≤ r < n/(n − p). Proposition 4.2 establishes an improve-
ment of the previous gradient estimate if we know an a priori estimate of

∫
�
|u|r0 dx for

some r0 > (p − 1)n/(n− p).

Proof of Proposition 4.2. Multiplying (4.5) by Tsu = max{−s, min{s, u}} we obtain∫
{|u|≤s}

|∇u|p dx =

∫
�

h(x)Tsu dx ≤ s‖h‖L1(�).

Let t = s(r0+1)/p. From the previous inequality, recalling that V (s) = |{x ∈ � : |u| > s}|,
we deduce

sr0 |{|∇u| > t}| ≤ sr0
∫
{|∇u|>t}∩{|u|≤s}

(|∇u|/t)p dx + sr0
∫
{|u|>s}

dx

≤ ‖h‖L1(�) + s
r0V (s) for a.e. s > 0.

In particular

t
pr0
r0+1 |{|∇u| > t}| ≤ ‖h‖L1(�) + sup

τ>0
τ r0V (τ) for a.e. t > 0. (4.6)

Moreover, since

τ r0V (τ) ≤ τ r0
∫
{|u|>τ }

(|u|/τ)r0 dx ≤

∫
�

|u|r0 dx for a.e. τ > 0,

we have supτ>0 τ
r0V (τ) ≤

∫
�
|u|r0 dx.

Let r < r1 := pr0/(r0 + 1). From (4.6) and the previous inequality, we have∫
�

|∇u|r dx = r

∫
∞

0
t r−1
|{|∇u| > t}| dt

≤ r|�| + r

(∫
�

|u|r0 dx + ‖h‖L1(�)

)∫
∞

1
t r−1t

−
pr0
r0+1 dt,

proving the proposition. ut

Now, we have all the ingredients to prove the a priori estimates stated in Theorem 1.4 for
semistable solutions. These will follow from Theorem 1.3 and Propositions 3.2 and 4.2
by choosing suitable test functions in the semistability condition (4.4).

First, we prove Theorem 1.4 when n 6= p + 2. We will take η = Tsu = min{s, u}
as a test function in (4.4) and then, thanks to Proposition 3.2, we apply our Morrey and
Sobolev inequalities (1.9) and (1.10) with q = 2.
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Proof of Theorem 1.4 for n 6= p+ 2. Assume n 6= p+ 2. Let u ∈ C1
0(�) be a semistable

solution of (1.2). By taking η = Tsu = min{s, u} in the semistability condition (4.4) we
obtain∫

{u>s}

(
4
p2

∣∣∇T ,u|∇u|p/2∣∣2 + n− 1
p − 1

H 2
u |∇u|

p

)
dx ≤

1
s2

∫
{u<s}

|∇u|p+2 dx

for a.e. s > 0. In particular,

min
(

4
(n− 1)p

, 1
)
Ip,2(u− s; {x ∈ � : u > s})p ≤

p − 1
(n− 1)s2

∫
{u<s}

|∇u|p+2 dx

for a.e. s > 0, where Ip,2 is the functional defined in (1.1) with q = 2. By Proposition 3.2
we can apply Theorem 1.3 with � replaced by {x ∈ � : u > s}, v = u − s, and q = 2.
Then, the Lr estimates established in parts (a) and (b) follow directly from the Morrey
and Sobolev type inequalities (1.9) and (1.10).

Finally, the gradient estimate (1.15) follows directly from Proposition 4.2 with r0 =
np/(n− p − 2). ut

Now, we deal with the proof of Theorem 1.4(a) when n = p+2. This critical case follows
from Theorem 2.2 and the semistability condition (4.4) with the test function η = η(u)
defined in (4.11) and (4.10) below.

Proof of Theorem 1.4 when n = p + 2. Assume n = p + 2 (and hence n > 3). Taking a
Lipschitz function η = η(u) (to be chosen later) in (4.4) and using the coarea formula we
obtain

C

∫
∞

0

∫
{u=t}

{∣∣∇T ,u|∇u|(p−1)/2∣∣2 + ∣∣Hu|∇u|(p−1)/2∣∣2} η(t)2 dσ dt
≤

∫
∞

0

∫
{u=t}

|∇u|p+1η̇(t)2 dσ dt, (4.7)

where dσ denotes the area element in {u = t} and C, here and in the rest of the proof, is
a constant depending only on p.

To apply the Sobolev inequality (2.2) in the left hand side of the previous inequal-
ity we need to make an approximation argument. Consider the sequence uk of smooth
regularizations of u introduced in the proof of Proposition 3.2 and note that {uk = t}

is a smooth hypersurface for a.e. t ≥ 0. Then, from the Sobolev inequality (2.2) with
φ = |∇uk|

(p−1)/2, q = 2, and M = {uk = t}, and noting that

(p − 1)
n− 1
n− 3

= p + 1 when n = p + 2,

we obtain

C

∫
∞

0

(∫
{uk=t}

|∇uk|
p+1

) n−3
n−1
η(t)2 dσ dt

≤

∫
∞

0

∫
{uk=t}

{∣∣∇T ,uk |∇uk|(p−1)/2∣∣2 + ∣∣Huk |∇uk|(p−1)/2∣∣2} η(t)2 dσ dt. (4.8)



2970 Daniele Castorina, Manel Sanchón

Now, we will pass to the limit in the previous inequality. Note that, if η is bounded,
through a dominated convergence argument as in Proposition 3.2 we have

lim
k→∞

∫
∞

0

∫
{uk=t}

{∣∣∇T ,uk |∇uk|(p−1)/2∣∣2 + ∣∣Huk |∇uk|(p−1)/2∣∣2}η(t)2 dσ dt
=

∫
∞

0

∫
{u=t}

{∣∣∇T ,u|∇u|(p−1)/2∣∣2 + ∣∣Hu|∇u|(p−1)/2∣∣2}η(t)2 dσ dt.
Moreover, from the C1 convergence of uk to u we obtain

lim
k→∞

∫
∞

0

(∫
{uk=t}

|∇uk|
p+1

) n−3
n−1
η(t)2 dσ dt =

∫
∞

0

(∫
{u=t}

|∇u|p+1
) n−3
n−1
η(t)2 dσ dt.

Therefore, taking the limit as k goes to infinity in (4.8) and using (4.7), we get

C

∫
∞

0
ψ(t)

n−3
n−1 η(t)2 dt≤

∫
∞

0
ψ(t)η̇(t)2 dt=

∫
∞

0

∫
{u=t}

|∇u|p+1 dσ η̇(t)2 dt, (4.9)

where

ψ(t) :=

∫
{u=t}

|∇u|p+1 dσ. (4.10)

Now, let M̄ := ‖u‖L∞(�). Given s > 0, choose

η(t) = ηs(t) :=


t/s if 0 ≤ t ≤ s,

exp
(

1
√

2

∫ t

s

(
Cψ(τ)

n−3
n−1

ψ(τ)

)1/2

dτ

)
if s < t ≤ M̄

η(M̄) if t > M̄.

(4.11)

It is then clear that

∫ M̄

0

∫
{u=t}

|∇u|p+1 dσ η̇s(t)
2 dt =

1
s2

∫
{u≤s}

|∇u|p+2 dx +
C

2

∫ M̄

s

ψ(t)
n−3
n−1 ηs(t)

2 dt.

Therefore, from (4.9) we obtain

C

2

∫ M̄

s

ψ(t)
n−3
n−1 ηs(t)

2 dt ≤
1
s2

∫
{u≤s}

|∇u|p+2 dx. (4.12)

Let us choose α = 2
n−2 , β = n−3

(n−2)(n−1) , and m = n− 2. Note that α, β > 0, m > 1,
and βm′ = 1/(n− 1). Moreover, using the definition of ηs we have

1
ψ(t)βm

′
ηs(t)αm

′
=

√
2
C

η̇s(t)

ηs(t)αm
′+1 (4.13)
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for all t > s. By (4.13), the Hölder inequality, and (4.12), we see that

M̄ − s =

∫ M̄

s

ψ(t)βηs(t)
α

ψ(t)βηs(t)α
dt

≤

(∫ M̄

s

ψ(t)βmηs(t)
αm dt

)1/m(∫ M̄

s

dt

ψ(t)βm
′
ηs(t)αm

′

)1/m′

≤

(∫ M̄

s

ψ(t)
n−3
n−1 ηs(t)

2 dt

) 1
n−2
(√

2
C

∫ M̄

s

η̇s(t)

ηs(t)m
′α+1 dt

) n−3
n−2

≤

(
2
Cs2

∫
{u≤s}

|∇u|p+2 dx

) 1
n−2
(√

2
C

n− 3
2

) n−3
n−2
,

which is exactly (1.13) (note that n− 2 = p and η(M̄) ≥ 1). ut

4.3. Regularity of the extremal solution. Proof of Theorem 1.5

In this subsection we will prove the a priori estimates for minimal and extremal solutions
of (1.17)λ stated in Theorem 1.5. Let us remark that in the proof of Theorem 1.5 we will
assume the nonlinearity f to be smooth. However, if it is only C1 we can proceed with
an approximation argument as in [12, proof of Theorem 1.2].

The W 1,p estimate established in Theorem 1.5 has as main ingredient the following
result.

Lemma 4.4. Let f be an increasing positive C1 function satisfying (1.18) and λ ∈
(0, λ?). Let u = uλ ∈ C1

0(�) be the minimal solution of (1.17)λ. Then∫
�

|∇u|p dx ≤
(

max
x∈�

|x|
) 1
p′

∫
∂�

|∇u|p dσ. (4.14)

Proof. Let G′(t) = g(t) = λf (t). First, we note that

x · ∇ug(u) = x · ∇G(u) = div(G(u)x)− nG(u)

and that almost everywhere on � we can evaluate

x · ∇u1pu− div(x · ∇u |∇u|p−2
∇u) = −|∇u|p−2

∇u · ∇(x · ∇u)

= −|∇u|p −
1
p
∇|∇u|p · x

=
n− p

p
|∇u|p −

1
p

div(|∇u|px).

As a consequence, multiplying (1.17)λ by x · ∇u and integrating on �, we have

n

∫
�

G(u) dx −
n− p

p

∫
�

|∇u|p dx =
1
p′

∫
∂�

|∇u|p x · ν dσ, (4.15)

where ν is the outward unit normal to �.
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Noting that u is an absolute minimizer of the energy functional

J (u) =
1
p

∫
�

|∇u|p dx −

∫
�

G(u) dx

in the convex set {v ∈ W 1,p
0 (�) : 0 ≤ v ≤ u} (see [14]), we see that J (u) ≤ J (0) = 0.

Therefore, from (4.15) we obtain∫
�

|∇u|p dx = nJ (u)+
1
p′

∫
∂�

|∇u|p x · ν dσ ≤
(

max
x∈�

|x|
) 1
p′

∫
∂�

|∇u|p dσ,

proving the lemma. ut

Finally, we prove Theorem 1.5 (using the semistability condition (4.4) with an appropriate
test function), Theorem 1.3, and Lemma 4.4.

Proof of Theorem 1.5. Let uλ be the minimal solution of (1.17)λ for λ ∈ (0, λ?). From
[14] we know that minimal solutions are semistable. In particular, uλ satisfies the semista-
bility condition (4.4) for all λ ∈ (0, λ?).

Assume that � is strictly convex. Let δ(x) := dist(x, ∂�) be the distance to the
boundary and �ε := {x ∈ � : δ(x) < ε}. By Proposition 3.1 there exist positive con-
stants ε and γ such that for every x0 ∈ �ε there exists a set Ix0 ⊂ � satisfying |Ix0 | > γ

and
uλ(x0)

p−1
≤ uλ(y)

p−1 for all y ∈ Ix0 . (4.16)

Let xε ∈ �ε be such that uλ(xε) = ‖uλ‖L∞(�ε). Integrating inequality (4.16) with respect
to y in Ixε and using (1.18), we obtain

‖uλ‖
p−1
L∞(�ε)

≤
1
γ

∫
Ixε

u
p−1
λ dy ≤

1
γ

∫
�

u
p−1
λ dy ≤

C

γ
‖f (uλ)‖L1(�), (4.17)

where C, here and in the rest of the proof, is a constant independent of λ. Letting s =
((C/γ )‖f (uλ)‖L1(�))

1/(p−1), we deduce

�ε ⊂ {x ∈ � : uλ(x) ≤ s}. (4.18)

Now, choose

η(x) :=

{
δ(x) if δ(x) < ε,

ε if δ(x) ≥ ε,

as a test function in (4.4) and use (4.18) to obtain

ε2
∫
{uλ>s}

(
4
p2

∣∣∇T ,uλ |∇uλ|p/2∣∣2 + n− 1
p − 1

H 2
uλ
|∇uλ|

p

)
dx ≤

∫
{uλ≤s}

|∇uλ|
p dx.

Multiplying equation (1.17)λ by Tsuλ = min{s, uλ} we have∫
{uλ≤s}

|∇uλ|
p dx = λ

∫
�

f (uλ)Tsu dx ≤ λ
?s‖f (uλ)‖L1(�) = C‖f (uλ)‖

p′

L1(�)
.
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Combining the previous two inequalities we obtain∫
{uλ>s}

(
4
p2

∣∣∇T ,uλ |∇uλ|p/2∣∣2 + n− 1
p − 1

H 2
uλ
|∇uλ|

p

)
dx ≤ C‖f (uλ)‖

p′

L1(�)
.

At this point, proceeding exactly as in the proof of Theorem 1.4, we deduce the Lr esti-
mates stated in parts (a) and (b).

In order to prove the W 1,p estimate of (b), recall that by (4.14) we have∫
�

|∇uλ|
p dx ≤ C

∫
∂�

|∇uλ|
p dσ.

Therefore, we need to control the right hand side of the previous inequality. Since the
nonlinearity f is increasing by hypothesis, we obtain

f (uλ) ≤ f
(
C‖f (uλ)‖

1/(p−1)
L1(�)

)
in �ε

by (4.17), where C is a constant independent of λ.
Now, since −1puλ = λf (uλ) ∈ L∞(�ε) in �ε, we have

‖uλ‖C1,β (�ε)
≤ C′

for some β ∈ (0, 1) by [28], where C′ is a constant depending only on n, p, �, f , and
‖f (uλ)‖L1(�), proving the assertion.

Finally, assume that p ≥ 2 and (1.19) holds. From [33] we know that f (u?) ∈ Lr(�)
for all 1 ≤ r < n/(n − p′). In particular, f (u?) ∈ L1(�). Therefore, parts (i) and (ii)
follow directly from (a) and (b). ut
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