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Abstract. We prove global well-posedness and scattering for the massive Dirac—Klein—-Gordon
system with small initial data of subcritical regularity in dimension three. To achieve this, we impose
a nonresonance condition on the masses.

Keywords. Global well-posedness, scattering, Dirac—Klein—Gordon system, nonresonance condi-
tion, null structure

1. Introduction

The Dirac—Klein—Gordon system is a basic model of proton-proton interactions (one pro-
ton is scattered in a meson field produced by a second proton) or neutron-neutron inter-
action (see Bjorken and Drell [4]). In physics these are known as the strong interactions
which are responsible for the forces which bind nuclei.

The mathematical formulation of the Dirac—Klein—Gordon system is as follows
(see e.g. [8]):
(=iy"ou + M)y = o, (L
@ +mH)p =yTyy.
Here, OJ denotes the d’Alembertian (0 = 8,2 — A, ¥ RT3 — C*is the spinor field
(column vector), and ¢ : R'*3 — R is a scalar field. For u = 0, ..., 3, y* are the 4 x 4
Dirac matrices given by

0 __ 12 0 j_ 0 O'j
”‘(0 -n) V" T\l o)

where for j = 1, 2, 3 the Pauli matrices o/ are

1 (01 2 (0 —i 5_ (10
oV—<1 o)’ "—(i 0)’ 7=\ -1)
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¥ T denotes the conjugate transpose of ¥/, i.e. T = Et. The matrices y# satisfy
vyl Py =21y, g% =diag(l, —1, —1, —1).
We will study the Cauchy problem with initial condition

V. ¢, 9:9)li=0 = (Yo, do, $1)- (1.2)

Before turning to the mathematical analysis of the Dirac—Klein—Gordon equations
we highlight a key property of the physical model presented in Bjorken and Drell [4,
Chapter 10.2]. The mass M is effectively 938 Niezv (proton) or 939 Niezv (neutron). There
are many types of meson fields, but those believed to be major contributors to the nuclear
force at large distances are the w-mesons (pions), and their masses are m = 14OMCZV

for 7%, m = 135% for 7. Heavier mesons such as K mesons (kaons) may also play a

role for small impact parameter collisions; the masses of kaons are m = 494% for K+

andm = 498% for KO. It is then reasonable to assume that in the Dirac—Klein-Gordon
equations
2M > m > 0.

We are not implying that all mesons are lighter than baryons (protons or neutrons in our
context), but that this is a reasonable assumption in the context of our model. Higher
energy (more massive) mesons were created momentarily in the Big Bang but are not
thought to play a role in nature today. Such particles are also regularly created in exper-
iments; for instance the heaviest meson created is the upsilon meson with mass 9.46%V
(roughly 10 times the mass of the proton/neutron). However, these heavy mesons do not
play a role in the model described by Dirac—Klein—Gordon equations.

We now turn our attention to the mathematical aspects of (1.1). The fundamental ques-
tion is that of global regularity of solutions. For smooth and small initial data endowed
with additional algebraic structure, Chadam and Glassey [6] established global regularity
for solutions of (1.1). The work of Klainerman [13] on nonlinear Klein—-Gordon equa-
tions paved the way of establishing a more general result. Following those ideas and tak-
ing advantage of the null structure present in the system, Bachelot [1] established global
regularity for (very) smooth and small initial data. The next direction of research was to
obtain a local in time result for rough data as close as possible to the critical space which
is

Yo €L (o, ¢1) € H'? x H'/2,

Beals and Bézard [2] proved that for small initial data (¢g, #1) € H?> x H' and
Yo € H' one has a local well-posedness theory for (1.1). Bournaveas [5] improved
this local in time result to (¢, ¢1) € H't€ x H€ and vo € H'/?T€ for any € > 0.
D’Ancona, Foschi and Selberg [8] established local well-posedness of (1.1) for data
(¢o, 1) € HY/7 5 H1/2+€ and g € HE, for any € > 0; hence the last result covers
the full subcritical regime.

Recently, Wang [20] proved a global in time result for small initial data in the critical
Besov space (¢o, ¢1) € 321/12 X Bﬁﬂ and Yo € Bg’l (for M = m = 0), additionally
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assuming that an angular derivative is bounded in the same space; the proof exploits the
observation of Sterbenz [19] that angular regularity acts as a null structure. The result is
then extended to nonzero masses under the condition 2M > m > 0.

It is worth mentioning that in all of the above results the masses M, m are arbitrary;
the result in [20] is an exception. In the context of a local in time result, the terms M,
m?>¢ can be treated as perturbations, thus allowing an analysis of (1.1) as a system of wave
equations. Obviously, this cannot be the case for a global in time theory which includes
scattering.

In the context of the cubic Dirac system [3] we proposed a different approach that
incorporates the terms M1 and m?¢ into the linear part of the operator, as they naturally
appear. This will help us treat (1.1) as a system of (half) Klein-Gordon equations after
using projectors which are adapted to our context from the work of D’ Ancona, Foschi and
Selberg [8]. Then we restrict our attention to the physically relevant case 2M > m > 0
and obtain a global (in time) result and scattering for small initial data in the subcritical
regime. The resolution spaces used here have a simpler structure compared to [3]. Our
main result is the following

Theorem 1.1. Assume that € > 0 and 2M > m > 0. Then the Cauchy problem (1.1)—
(1.2) is globally well-posed for small initial data

Yo HR:CH,  (do.¢1) € HPRUR) x H PR R),
and these solutions scatter to free solutions for t — =£oo.

We refer to Subsection 4.2 for more details. Our result is at the same level of regularity
as the one proved by D’Ancona, Foschi and Selberg [8]. Its strength lies in the global
in time and scattering parts. In terms of Sobolev regularity it is slightly more restrictive
than Wang’s result [20]. However, we do not assume additional angular regularity on the
initial data (cf. also Remark 4.2).

A key observation is that under the assumption 2M > m > 0 the system (1.1) has no
resonances. It was known from prior works on Klein—Gordon type systems with multiple
speeds that, under certain conditions between the masses, resonant interactions do not
occur and the well-posedness theory improves. We refer the reader to the works of Delort
and Fang [9], Schottdorf [17] and Germain [10] and to the references therein. We will
use this, together with some localized Strichartz estimates, to prove the key nonlinear
estimates.

Note that unlike many of the previous works which dealt with power type nonlineari-
ties for the Klein—-Gordon equation, the Dirac—Klein—Gordon system contains derivatives.
This is not apparent from our formulation of (1.1); however, if one wants to write (1.1) as
a system of Klein—Gordon equations, one should apply —iy*d,, — M to the first equation,
and then it is obvious that the right hand side contains derivatives.

We conclude this section with an overview of the paper. In Section 2 we introduce
some basic notation and rewrite the original system (1.1) in the equivalent form (2.2)
which has two advantages: it is first order in time and it unveils the null structure. The
gains from the null structure are quantified in Subsection 2.3 in a manner that fits our anal-
ysis. In Section 3 we define the resolution space in which we iterate our system. Without
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getting into technical details at this point, there is one particular aspect of this section
that deserves to be highlighted. Proving Strichartz estimates has become a standard type
argument due to the Christ—Kiselev Lemma [7]. However, proving localized versions of
the Strichartz estimates using Christ—Kiselev type arguments is not straightforward. In
Section 3 we provide an alternative argument for establishing (localized) Strichartz esti-
mates using U”, V7 spaces and we think that this part of the paper may be of independent
interest. In Section 4 we prove the trilinear estimates based on which we prove our main
result in Theorem 1.1.

2. Reductions

2.1. Notation

We write A < B if there is a harmless constant ¢ > 0 such that A < ¢B, and A 2 B iff
B < A. Further, we write A ~ B iff both A < B and B < A. Also, we write A < B if
the constant ¢ can be chosen such that ¢ < 2719, Also, A > B iff B < A.

Similarly, we write A < B iff 24 < 28, A = Biff 24 > 28, A ~ Biff 24 ~ 28,
A < Biff24 « 28, A - Biff 24 » 25.

Let p¥ € C2°(—2,2) be a fixed smooth, even, cutoff satisfying p%(s) = 1for|s| <1
and 0 < p < 1. Fork € Z we define p; : R? — R, pr(y) := p° Q2 *|y]) — p° @2 **1|y)),
such that Ay := supp(pr) C {y € R3: 2571 < |y| < 2871} Let fx = pr—1 + ok + pk+1
and Ay := supp(f). Fork > 1, let P, be the Fourier multiplication operators with respect
to pr,and Pp =1 — ) ;- Px. For j € Z we define

FIOF" f1(z,€) = pj(r + (E)n) Ff(x, 8).

Similarly, we define P and jSm

We also define P<x = D g<pr<i Pr's P<k = D _g<pr<k Pi's Pk = I — P<g, Pog =
I — P, and similarly Qi’jm, Qf’jm, Qi’jm, and ij.te”J" for an interval J. In the obvious
way we also define the analogous operators based on Py and jSm

In the case m = 1 we suppress the superscripts, e.g. Q;E’l = Q]j.t.

Further, for/ € Nlet K; denote a set of spherical caps of radius 2~/ which is a covering
of S? with finite overlap. For a cap k € K; we denote its center in S* by w (k). Let T
be the cone generated by « € K; and (1, ) ek, be a smooth partition of unity subordinate
to (I')cek;, - Let P denote the Fourier muliplication operator with symbol 7, such that
=%, K P, . Further, let ﬁK be with doubled support such that P, = f’K P, = P, ﬁK.

For notational convenience, we also define g = {S?} and P, = I if k € K.

2.2. Setup of the system and null structure

As written in (1.1), the cubic Dirac—Klein—Gordon system has a linear part whose coef-
ficients are matrices, and it is technically easier to work with scalar equations. To do so,
we adapt the setup introduced in [8, Section 2 and 3] to take into account the mass terms,
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similarly to our prior work on the cubic Dirac equation [3] (however, the sign convention
is in accordance with [8]). We repeat here the essential steps for the convenience of the
reader. As highlighted in [8], the new setup is able to identify a null structure in the non-
linearity, although the presence of mass terms alters the effectiveness of this structure at
very small scales.

For j = 1,2, 3 the matrices o/ := y%7, B := y° have the properties

a/B+Bal =0, aldk +akal =2871y;

see [8, p. 878] for more details.
We introduce the Fourier multiplication operators Hi” (D) with symbol

” 1 1

In the case M = 1 we suppress the superscript, i.e. [11(D) = Hli(D).

We then define o+ = Hi’[(D)w and split ¥ = ¥4 + ¥_. Also, define (D) =
/1 — A. By applying the operators Hi” (D) to the system (1.1) we obtain the following
system of equations:

(—id + (D)) Yy = (D) (9BY),
(—id — (D)) Y- = IM (D) (pBY), @2.1)
O +m>p = (¥, BY).

In order to have a fully first order system, we define ¢+ = ¢ i (D) ;1 0:¢, and thus

(=id + (D))py = (D), (W, BY).

Note that ¢ = R+ and ¢_ = ¢ since ¢ is real-valued. The system which we will study
is

(=8 + (D)) ¥4 = Y (D) ).
(=i, — (D)a)¥— = T (D) Ny BY), 2.2
(=i + (D)m)ps = (D), (W, ).
We aim to provide a global theory for this system for initial data (Y¥'+ 0, ¢+ 0) €
H¢ x H'/7*€ Tt is an easy exercise that this translates back into a global theory for
the original system with (Y, ¢o, ¢1) € HE x H/Z+e 5 g=1/7+e,
There is a null structure in the system (2.2), which we describe next. This is again
inspired by the work in [8] and was adapted to the current setup in [3]. For more details,

we refer the reader to [8, 3].
We decompose (i, BY) as

(W, BY) = (MY (D)yry, BT (DY) + (MM (DY, pTIY (D))
+ (MY (DY, pNM(DYy_) + (M DYy, BT (DY),
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We have
i (D) = pNI¥ (D) + M(D)}; B. (2.3)

The following lemma, which corresponds to [3, Lemma 3.1] and [8, Lemma 2], analyzes
the symbols of the bilinear operators above.

Lemma 2.1. For fixed M > 0,
e &nY o = 0LE ) +0E) ™ + (™,
n¥ @ nd m = 0L(—& ) +0wE) ™ + ™.

We now explain heuristically why this is useful here; see Lemma 3.3 for the technical
result which will be used in the nonlinear analysis. By (2.3), for 51, 52 € {4+, —},

2.4)

Fu (g1, Bl ¥2) (§) = fs—s : (M, EDY1(E1), BT, (E2)V2(E2)) dEy dEs

= /g BT )T, GV 6. Y2 (6) dér di

+s:M (€)1 (BT (EDV1(E1). Y2 (82)) d&) dEs.
§=61—-6
Hence, smallness of the angle Z(s;&1, s2&>) can be exploited as long as it exceeds
max((gl);;, (Ez);,ll). See [8, p. 885] for the analogue of this in the massless case, where
we have 1% (£)T1%. (&) = 0 if Z(&1, &) = 0, which makes the null structure effective
at all angular scales. In the massive case M > 0 the null structure does not bring gains
beyond max((&; );,11 , (52);,11). To compensate for this we need to use the fact that there are
no resonances present in (2.2).
In fact, as observed in [8], there is a second and similar null structure in the nonlin-
earities present in the equations for ¥+, which will be exploited by duality in Section 4.

2.3. Modulation analysis

A key aspect in the nonlinear analysis is the lack of resonant terms. Arguments of similar
nature are contained in [17, Lemma 2] (see also [9, 10]). Additionally, we will prove that
smallness of the maximal modulation induces angular constraints. In the context of the
cubic Dirac equation a similar result is contained in [3, Lemma 6.5]. We first provide
lower bounds for the resonance function.

Lemma 2.2. Fix0 < m < 2M. For s1, sp € {4+, —} define the resonance function

w2 (€1, &) == (&1 — E)m + 5151 M — 52(82) M- (2.5)
Then we have the following bounds:
e Case I: If

@ si1=+s20=—or
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() s1=—, 52 =+ and (§1 — &) LK min((§1)um, (§2)m),
then
|2 (&1, £2)] 2 max((§1 — &2), (§1), (€2)). (2.6)
o Case 2: If

(@) sy =spor
(b) 51 =—, 52 =+ and (& — &) 2 min((E1)m, (£2) M),

then
16 el 2 S e ey @)
(61 — &2)
With any choice of signs, we have both
|52 (&1, £2)| 2 min((E1), (E2))Z (5181, $262)7, (2.8)
and the non-resonance bound
W21, E2)| 2o max((81 — &)1, (1) (E)7h). (2.9)

Proof. In Case 1 the lower bound (2.6) is obvious, which implies all other claims.
Suppose now that we are in Case 2(a). Then

(&1 — &2)m — 1EDM — (E)MD{EL — E2)m + [(E1D M — (E2) m])
=2(1&11 18] — &1 - &) + m* + 2(E) m(E)m — &1 182] — M),

Now, we compute

(&1] — 1&2])?
EDVmE)m + &1 &2 + M2

ENmiE)m — (8] 18]+ M) = M? (2.10)

Since this is nonnegative, we conclude that

(&1 — E2)m — [{ED M — (E2)MDEL — & + 1EDM — (E2) M)
> 21&1|1621(1 — cos Z(&1, £)) +m? 2 |&1 1621 £ (E1, £2)* + m?.
Now, because of m > 0 and (&1 — &) + [(E1) — (E2)m| S (&1 — &) the estimates

(2.8) and (2.7) follow. Also, (2.9) follows if (§; — &) < min((&]), (£2)). Otherwise, we
have max({£1), (£2)) > min({&1), (£2)), and the estimate (2.9) follows from

(&1 — &2)m — 1) — (E2)MD (51 — E2)m + [(E1) M — (E2)m )

) (€11 — 1621
T EDmEIm + &8l + M2

where we have used (2.10) again.
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Suppose now that we are in Case 2(b). A computation similar to the above yields

(Em + (E2dm — (&1 — E)m)(E1)m + (E2)m + (51 — E2)m)
= 2(1&1] [&2] + &1 - &) +2M% —m® +2((E1)m (&) — 1511 182])
2 611l (—61, £)7 +4M7 —m?,
By assumption 4M? — m? > 0, so the estimate (2.8) is proved, and due to (&§] — &) &

max((&1), (£2)) the claim (2.7) follows, too. Also, if |&1] =~ |&], then (2.9) follows.
Otherwise, we use the lower bound provided by (2.10) to obtain (2.9). ]

Remark 2.3. From now on we fix M = m = 1 in oder to simplify the exposition. In view
of Lemma 2.2 it will be obvious that all arguments carry over to the case 2M > m > 0
with modified (implicit) constants depending on m, M.

I:er{lma 2.4. Let 51,57 € {+, —}. Consider k,k1,ky € No, J, j1,j» € Z, and ¢ =
Py Q;-rfﬁ, u; = Py Q;’u,
(i) If max(j, ji1, ja) < —min(k, k1, k2), we have

¢ - ujuydtdx = 0. 2.11)
RI+3
(i1) Case 1: Suppose that either
e 5| =+,8=—o0r
e 51 = —, 5o =+ and k < min(ky, ky).

If max(j, ji1, jo) < max(k, k1, k2), then (2.11) holds true.
Case 2: Suppose that either

e 5| =89, Or

e 51 = —, 50 =+ and k > min(ky, kp).
If 1l > 1, k1, k2 € K; withd(s1k1, s262) > 2! and max(j, ji1, jo) < k1 +ko —k —2I,
then
¢ - Pe,u1 Poyus dt dx = 0. (2.12)
RI+3

Proof. We have
¢-u1u_2dtdx=/ bt dr d&
RI+3

RI+3

and, with ¢ = (1, &),
wun (L) = / ur(¢in @ —¢hde = / n(=¢Hi (¢ —¢hde,
hence, with §; = (7, §;),

/R ¢ wimdidy = / / $ — OREBE) dade. (213
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The assumptions imply that we must have
m—n+E-I*2, |ut+siE)~2, ntnE)~ 2k
in order to obtain a nontrivial contribution. This implies
(&2 = &1) + s1(E1) — 52(52)] S 2T, 2.14)
(i) By assumption we have 2MX(.j172) « 2= min(k.kik2) g6 that (2.14) contradicts
(2.9).

(ii) By assumption we have 2MaX(/:j1./2) « pmax(k.k1.k2) in Case 1, hence (2.14) con-
tradicts (2.6). Similarly, in Case 2 the estimate (2.14) contradicts (2.7). ]

3. Function spaces and linear estimates

For1 < p < oo and b € R, we define

1 fizen = |@YIQF Fllp2)jez]

2

The low frequency part will be treated as a whole, that is, we define
1 llss, = 0oz + 1/ U zps + 1 f licsarne:

By interpolation, the space above provides all the Strichartz estimates for the Schrédinger
equation on R3. This is natural since the Klein—-Gordon equation in low frequency behaves
like the Schrodinger equation.

In high frequency, the Klein—Gordon equation is of wave type and the Strichartz es-
timates should reflect that. Moreover we need some refinement of the standard Strichartz
estimates.

Ford =3andk € Zy let 8y = 2.7 Let y(U : R — [0, 1] denote an even smooth
function supported in the interval [—-2/3, 2/3] with the property that

Zy“)(g —n)=1 forgeR.

nez

Lety :R? — [0,1], &) = yD(g) -...- yWD(&y). Fork € Z, and n € Ey let

Vin(€) = y (€ — n)/2%).

Clearly, Zn egy Vin = 1 on R4, Now, we define I'y , to be the Fourier multiplication
operator with symbol yx p.

There is the following refinement of the classical Strichartz estimate. In the context of
Strichartz—Pecher inequalities for the wave equation, the underlying decay estimate after
localization to cubes has been proved in [14, (A.59)]; see also [18, Theorem 4.1] for the
case p =q =4.
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Lemma 3.1. Letd =3and 1/p+1/q = 1/2 with p > 2. Then

172
sup 274 (32 I P P 1) S W s G

0<k’'<k negy
Proof. By orthogonality, it suffices to prove
||Fk/,nPk€iit<D>f”L{’LZ 5 2(k/+k)/P||f||L2(R3)’

uniformly inn € Ep. Let T = Fk,’npkgiiMD)

lution operator with kernel

. The operator TT* is a space-time convo-

Kprgon (1, %) = /R I a0 6 de.

By the T T*-argument, it suffices to prove

* , < 2(k+k)/p
ITT Ny S2

which reduces to proving the kernel bound
|Kpon (1 01 S 2% (14 22Ky~ (3.2)
Indeed, by interpolation and Young’s inequality, we obtain

1Kt in () % Bl gy < 2O+ 2Ky~

and Hardy-Littlewood—Sobolev with 1/r =2/p = 1 — 2/q implies

Lf’,Lq L S
Finally, we give a proof of (3.2): Rescaling yields
K kn(t, x) = 2% Ky g 1.0-kn (zkt, ka),

where, for (&) := (|&|> +272K)1/2,

Kita(s.y) = /R EOE )2 ) .
For |a] &~ 1, we claim
1Kj1a(s, I S 2% (1+2% s~ (3.3)

For |s| < 272/ this is immediate because the domain of integration has volume 23/,

and in the remaining case it can be proved as for the wave equation in [14, (A.70)].
. o . 3 . . 2 2

We provide an explicit proof: By a simple covering argument we may replace p; Yja by

a smooth cutoff ¢ with respect to a thickened spherical cap of size 2/ and denote the
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corresponding kernel by K j,a- By rotation, we may assume that y = (0, 0, |y|). We use
spherical coordinates:

B oo 2w pmo
Kjals, y) = / / / e/ P eost+si0h ¢ g, o, p) sin(9)p* d6 de dp.
0 0 0

We may choose ¢ (¢, 0, p) = ¢1(0)%2(¢)¢3(p). The phase of the oscillatory integral is
stationary only if |y| = |s|, and the cap is centered near the north pole or south pole,
otherwise we get arbitrarily fast decay. We discuss only the first case, where we may
further assume that [¢{| < 27/, ¢ is supported in an interval of length < 2/ in [0, ), and
¢3 is supported in an interval of length < 2/ in (1/4, 4), with 1231 < 27/, We integrate by
parts with respect to 6:

i£1(0)
[yl

i

&) 2 T
-4 /0 /0 /0 (HIDOsI5010) 1 (9) 4 £ (92 (0)p dp dip,
and the properties of {1 and ¢3 imply

1Kja(s, I S 270y,

which completes the proof of (3.3), which implies (3.2). O

Kjal(s,y) =

oo 2w
/ / ! P00 15 (9)3(p) p dep dp
0 0

Remark 3.2. The generalization of Lemma 3.1 to general dimension and nonsharp ad-
missible pairs is obvious, but we do not need it here.

Now, we consider functions f € L°(R; L2(R3; C4)). We will use d = 1 for the Klein—
Gordon part and d = 4 for the Dirac part. Fork € Z, k > 0,and [, k' € Z,0 < k', 1 <k,

we define 12
. 2
1 0ep g = (22 D ITkanPefI2p,)

KE’C[ neEk/
Note that the above norm for / = 0 is similar to the one in (3.1). The general case 0 <
| < k is needed for technical reasons.
For k > 0, we define

Iflse = NFlpeors + 1Ll gsn/200

+ sup QTP Fl e F 2N s i) B4
0<k',I<k e e
Note that if ¥’ = k and [ = 0, that is, no additional localization is provided, the last two
norms are simply the standard Strichartz estimates L3 L% and LSL3 available for the wave
equation in R3.

In the nonlinear estimates we will use the fact that || P<o f || st also dominates (by
interpolation and the Sobolev embedding) the localized Strichartz norms (with k = 0)
available in the high frequency structure.

Next, we consider boundedness properties of certain multipliers.
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Lemma 3.3. (i) Let s1, sy €{+, —}. For any k1, k € Ny with 1 <l <min(ky, k) + 10,
K1, ky € Ky with d(s1k1, s2k2) S 27! and vy, vy € C*, we have

(M, @Yo ), BT, 22w ()2} | S 27 w1l val. (3.5)
Fix k € No. All the statements below are made for functions localized at frequency 2K ie.
they satisfy f = P f.
(ii) Forany1 <1 <k+10,x € K, and f € S,it, we have

IML(D) = M@ P fllge S 27 1P f g2 (3.6)

and similarly in LY L-norms.
(iii) For any j € Z, the operators Q]j-[ are uniformly bounded on S,f.

@iv) Foranyl € No, k € Kj, and j € Z with j > k — 2] — 100, the operators Qi[j P,
and Q:;L j Py are uniformly bounded on Ski.

(V) Forany k' € Ny and j € Z satisfiying k' < k and j > 2k’ — k, the operators Qi[j
and Qi jare uniformly disposable in the sense that

—(k'+k)/3 + —(k'+k)/6 +
sup (27CFOPN0T L Fll s pepr iy 27 CTONQT S Flls i) S 1SN
O=i=k [<J] ’ [<j]

Further, similar estimates for Q;—L j and Q;—L ; hold with a bound (k') as long as
j =K.
Proof. The identity (2.3) implies
(M, 24 @ (kr)vr, BT, (220 (2))v2)
= (BT, 22w (k)T QY @ (k1)) v1, v2) + 52(22) 71 (BT, @M w (k1)) v, v2),

hence (3.5) follows from estimates (2.4) and Cauchy—Schwarz.
In order to prove (3.6), it suffices to consider the case of the + sign. We write the
matrix-valued symbol p of 2[T1 (D) — 1'I+(2ka>(/<))]PkPK as

p(E) =204 (§) — M1 2" ())15k (§)7e (§)

P i_zkw(")] = (EV7 [L_L]
—Pk(é)’?x(é)[<€> oh) o+ pp(E)7 (§) RS B
=: p1(§) + p2().

We further decompose

p16) = ﬁk(E)ﬁK(é)[E - 1}w(K) o ﬁk(é)ﬁx(é)ﬁ[i - w(K)} o
& 25 (&) LIEI

=: p11(§) + p12(§).
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We denote the Fourier multiplication operators defined by the symbols above by P>(D),
P11(D), P12(D). Obviously, the properties of px imply that

IPaD)lprp S275 NPy 275 forany 1< p < oo,
and the properties of 7, imply that
IPr2(D)lpr_ypp < 27" forany 1 < p < co.
The claim follows from the definition of the space S,j.

Part (iii) needs to be proved for the Strichartz norms only. For the operator jS this is
an easy consequence of the well-known transference principle. Indeed,

0F 1) = [ ETHPIF (P )00 d
hence by Lemma 3.1 we obtain
27 EHOINQE Fllp g sy SIFi @™ D)hil g1z S 2PNQF Flle X 1 f gsnoe

In order to prove (iv), we apply Sobolev inequalities to obtain, for any ¥’ € Ky and
ne gy,

2 CHOIP Ty, P OF P fllp
_1 ; _ ’ : _ / _ +
<2 K'+k/pj(1/2=1/p)o(kK'+min(2k—21,2k"))(1/2 l/q)||rk/,nPK/ Qj Pefll .

Summing the squares with respect to «’, n yields

min(k—21,2k" —k)—j

2 EHINOEP fll e S22 7 2P0 fllge, 3.7)
which we finally sum with respect to j > jo > k — 2/ — 100 to obtain

— (k' +k +
27 EHI0F Pefllprpaper i S I g zce

+

The remaining claim in (iv) follows from Qf/. =1- Q>/"

Part (v) follows similarly from (3.7). The last claim for ij follows by applying (iii)
and (v) to
+ + +
Q>j =0t Z Qj”
J<j'<2k'—k
because the number of terms in the second sum is bounded by (k’). The claim for Qi ;=
I — ij follows, too. O

The next lemma shows why the Ski-seminorms are useful in the context of the evolution
equation.
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Lemma 3.4. Foranyk €Ny, ug= Pruoe L>(R*; C%) and f = P, f € L1(R; L*(R3; C%)),
let

t
u(t) = e Py + i / ejF’(’_mD)f(s) ds.
0
Then u = Pyu is the unique solution of
—idiu = (D)u = f,
and u € C(R, L*(R%; C%)) and
lullg < Nuoll2r3) + sup ‘/ (f. g)cadxdt (3.8)
geG RI+3
provided that the right hand side of (3.8) is finite, where G is defined as the set of all
g = Prg € L®(R; L*(R3; C)) such that lgllsz = 1.

Proof. Without the localization in L3 LS, LOL? the linear theory above is standard us-
ing X*” theory and the Christ—Kiselev Lemma [7]. It is likely that one can adapt the
Christ-Kiselev Lemma to cover the localized versions of L1, LSL? and their dual
structures as well, but we do not pursue this strategy here. Instead, we will give a rather
short proof using the theory of U? and V2 spaces; see e.g. [15, 11, 16] for details. We
recall that for 1 < p < oo the atomic space U i (D) is defined via its atoms

K K
at) = A ®eT Pl Y ligellh, =1,
k=1 k=1

where {#;} is a partition, tx = oo.
As a companion space we use the space V£ (D) of right-continuous functions v such

that r > eT{P)y(z) is of bounded p-variation. We have Viw) SN Ui’(D) for p > 2.

For 0 < [, k' < k we define

1/2
o 2
gz, = (2 2 ITeaPaulys ) (3.9)

KEIC] neEk/

Then we have

1/2
N 2
lullyz .—(Z > ||Fk/,nPKu||Vi<m) S lullgz, - (3.10)

kel nety

It is easy to show that the U kj,cl w-norms are decreasing if we localize to smaller scales, i.e.
ullyr  Slully=  ifl<landk' > K,
U ~ U
kLK Lk
and the Vk#l -norms are increasing if we localize to smaller scales, i.e.
lullye < lully+ ifl >landk <k
kil k' kLK

+ _ gt + ot
Set U, = Uk;k,o and V- = Vk;k,O'
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Strichartz estimates for admissible pairs (p, g) hold for U i) ( D)—functions (which is
easily verified for atoms), hence also for V}E ( D>-functions. For any 0 < k’,I < k we have

/ 1/2
2_(k+k)/p( Ty, Peul? ) < ullyvx < lully+-
> 2 ITenPaulpg) S lullye S llly,

KE’C[ l’lEEk/

We also have VkjE — Vi (py and the Vi (py~norm dominates both the L>®L2-norm
and the X*1/2:%°_geminorm. Hence,

el S ullye S Nl

Now, we can use the U? duality theory (see e.g. [11, Prop. 2.10], and [12, Prop. 2.11] for
a frequency-localized version) to conclude that

f (f, h)ca dx dt|,
RI+3

”M”UI:t S, ”u0||L2(R3) + sup
heH

where H is defined as the set of all & = Pyh such that ||A|| yE = 1. The claim now follows
by using again lgllg S llgllyz- :

Remark 3.5. In fact, we have proved a stronger result: In the setting of Lemma 3.4,
provided that the right hand side of (3.8) is finite, we can upgrade this estimate to

lully < llwoll 2, + sup ‘ /R L @cadxd
geG

Our resolution space S*¢ corresponding to Sobolev regularity c—used in Subsection
4.2—will be the space of functions in C(R, H° (R?; C%)) such that

1/2
1£lls20 = I1P<0f N5z, + (322 IPfIE:) T < oo,

k>1

which is obviously a Banach space.

4. Nonlinear estimates and the proof of the main result

Recall (2.2) with the convention M = m = 1 and use the decomposition ¥ = I14(D)y+
[1_ (D) in the nonlinearity (for all three terms). It then suffices to prove

'/(HSZ(D)[SW Bl (D)Yr1], Y2) dx dit| S M@l s+aoe ¥ llsore 192l gsz—e s

‘/(D>l(ﬂs.(D)¢1, BTls, (DY) @ dx dt| S ||l ge-12-e ¥t llsone 12l soae,
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for any choice of signs s1, 52 € {+, —}. By symmetry, this follows from

‘/d’<Hs1(D)1/f1,,3Hs2(D)W2>dx di| S lpllgeqlVillsiallvnlisae (41

where €, €1, €2 € {£e€} are such that €y + €] + €2 = €. More precisely, we will prove this
first on the dyadic level, where all integrals are clearly finite (see Lemma 3.4).

4.1. Estimates for dyadic pieces
Our aim will be to identify a function G : N?) — (0, 00) such that

G(k, ki, ka)ayby, cx,
< b 4.2
K72 (mintk. k1. ka) + D10 ~ lall2lbl2llcllz (4.2)

k,k] ,szNo
max(k,kq,ky)~med(k,ky,kp)

for all sequences a = (a;)jeN, etc. in 12(Np). We write k = (k, k1, k2).
Clearly, (4.1) is implied by the following key result of this section:

Proposition 4.1. Let 51, 52 € {4+, —}. There exists a function G satisfying (4.2) such that
forall = Prp and y; = Py, T, (D), i = 1,2,

’/Wlﬁhﬂwz)dx di| S G(k)”¢”5/?”‘/””82{ IIWzllslg- (4.3)

Proof. We denote the integral on the left hand side of (4.3) by I/ (k). Without restricting
the generality of the argument we can assume that k; < k>. We decompose

1(k) = Ip(k) + 11 (k) + I>(k)
where

Ip(k) :

Z/ 0 d(Q%L v, BQZ yn) dx dt,

JEZ
k=Y / 0t ¢ (0. BOZ, Yo) dx dt,
J1EZ
b= 3 [ 0F,0(0%, v pO7va) dx ar
J2€Z
Given the symmetry of the estimate in k1 and k», we split the argument into two cases.
Case 1: |k — kp| < 10.

Contribution of Ip(k): We split Io(K) = Ip1 (k) 4 Ip2(K) according to j < kj and j > k.
Then, due to Lemma 2.4, there is no contribution if j < k; in the case s1 = +, s = —.
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For all other choices of signs, we estimate

&S Y, Y ITnQf ol QL v, BOZ Thy w¥2) 12,

—ki=j<ki n.n'cgy
|n—n'|=<k

where we have used orthogonality, and the nonresonance bound (2.9) to restrict the sum
to the range j > —kj. We conclude from Lemma 2.4 with 2] = ky + k» — k — j and
Lemma 3.3 that

Il (Q;l]l//l s ,BQSSZij,n/WﬁHLZ
S Y QY Pl sl Q2 P Ty w3

K1,K2€K;
d(sire,5260) 527!

By Lemma 3.3(v), the operators 0% < are disposable up to a factor (k). Then, we apply
Cauchy—-Schwarz and perform the cube and cap summation to obtain

@) S Y 27els 2 MRN8 ) g | g 20O ) gl g
—ki=j<ki ! 2

S (k)20 =B g )| 4y g2l g2

In the range j > ki, the operators ij j are disposable and a similar argument to the one
above with [ = 0, i.e. no cap decomposition and no gain from the null structure, gives the
bound

Iop(k) < 2872 2l g 1yl g 1l g
1 2

Contribution of I1(k): We split 11 (k) = I11(K) 4 I12(K) according to j; < k1 and j; >
k1. Again, by Lemma 2.4 there is no contribution if j; < kj in the case 51 = +, s = —.
For all other choices of signs, we can restrict the sum in /j; to j; > —kj, so that by
Lemma 2.4 with 2] = k1 + ko — k — j1 ~ k1 — ji we have

nk= Y Z /Fkan<,l¢

—ki=j1<ki n,n’ eukl K1, K2€IC[
In—n'|<k; d(s1k1,5262) 27

(P Q1. BP Tty Q) W2) dix dt.
In view of Lemma 3.3, we decompose
My, (D) P, = [M; (D) — M 2% ()] Pe; + My, 2w (ki) Py,
and obtain
1Py Q5 W15 B P Tt Q2 Y2l 32 675
S 27NPe Q5 2l P Tty O W2 53
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By Holder’s inequality and Cauchy—Schwarz we obtain

. ‘ 172
meos Y {2 Rt (Y IMa 0t o1 )

—k]jj| <k nEEkl

1/2
(X X 1w vall,y) |

n'€8y, k2eky

S Y TR gy g 20 () ) 2R Ok ) g
—ki1%ji<ki : ’

S 220 Nl Il 2l g2
1 2

where we have used Lemma 3.3(v).
In the range j; > k1, we forego the gain from the null structure in the above argument
and obtain

In®) < ) 22yl 20H0R g g 2C Ry o
J1=ky ! 2

k/2
S 2Pl Il 12l g
1 2

since the operators Qf ; are disposable.

Contribution of I(K): As above, we split I5(K) = I1(K) + I22(Kk) according to j, < ki
and jp > k. Again, by Lemma 2.4 there is no contribution if j, < kj in the case 51 = +,
s» = —, whereas for all other choices of signs, we can restrict the sum in /71 (k) to
J2 > —ki, so that by Lemma 2.4 with 2] = k1 + ko — k — j» ~ k1 — j» we repeat the
argument for /11 (K) to obtain

bk s Yy, 29Ok 52”22 ) g g 2722 g
1 2

—k1=ja<k

< 222000 gl g I g 2l g
1 2

For the range j» > ki, the same argument as above, but with no gain from the null
structure, gives the bound

< (ki+k)/3 ki /3 L —ia/2 R
Izz(k)wj;;z 1911525 19l 2722 g2l g

S 292000 ) gl g 192l g
ky kp
Case 2: |k; — kp| < 10.

Contribution of In(kK): We split Io(k) = Iy (K) + Ip2(K) according to j < k and j > k.
Then, due to Lemma 2.4, there is no contribution if j < k in the case s1 = +, so = — or
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s1 = —, 52 = + and k < min(ky, k2). In all remaining cases, we can restrict the sum in
Ip1 to j > —k, so that

i S Y Y Qb2 IQY Tenti, BOZ Thw i)l 2.
—k=j<k n.n'eBy
In—n'|=<k

We conclude from Lemma 2.4 with 2/ = k| + kp — k — j and Lemma 3.3 that

Q2 Thntrt, BOZ T ¥a)l 2
S22 Y QL Pa Tkl 36l Q2 P Tl s

K1 ,KzeK[
dsyrer,s202) S27

By Lemma 3.3(v), the operators Q< are disposable up to a factor (k). Then, we apply
Cauchy-Schwarz and perform the cube and cap summation to obtain

Ink) S Y 272 g g 27 CHmkmD2aEHR0B oy |y || 6 260 () 2| o2
~ kq ko
—k=<j<k

1 2

Let us now consider the range j > k. Now, by Lemma 3.3(v), the operators Qf j are
disposable. In the case s; = +, s = — and in the case 51 = —, 5o = + and k <
min(ky, k2), Lemma 2.4 implies that there is only a contribution if j > k;. Then, the
above argument with [ = 0 yields

Inn(k) S ) 277211l g 240y | nz“‘*"z)“nwzn sz
=k

k/2
S 2Pl vl 2l g
1 2

In the case s1 = s», (2.13) implies that the integral is nonzero only if the frequencies in
the supports of Wl and 1&2 make an angle of at most 21 hence, we choose [ = kj — k.
In the remaining case where s; = —, so = + and k > mln(kl, ko) we choose [ = 0.
Again, arguing as for Ip; (k) we obtain

Ip(k) S D272 g 5,27 25D B 1y ) g 2<"+"2>/6||w2|| sz
izk

k/2
S 2P0l Il 2l g
1 2

Contribution of I1(k): Again, we split I1(k) = I11(K) + I12(k) according to j; < k and
J1 = k. Then, due to Lemma 2.4, there is no contribution if j; < k in the case s; = +,
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§» = —,ors; = —, 50 = + and k < min(ky, k). In all remaining cases, we can restrict
the sum in /1 to j; > —k, so that by Lemma 2.4 with 2/ = k1 + k» — k — j; we have

I (k) =

> Z > / QL& (P Qi Tintt, BPoTiw Q2 ¥2) dx dt.

—k=ji<k n,n'cB K1,k2€K;
|n—n |-<k d(sky,s0k0) 271

Using Lemma 3.3, we obtain

s s
{Pe; @i Teon W1, BP Tiew Q25 W)l 32 605
- t X
—1 K Ky
5 2 ” PK] Q“] 1—‘k,n 1/fl ||L2 ” sz 1—‘k,n’ Q§2j1 1ﬁ2||L16L§-

By Holder’s inequality and Cauchy—Schwarz we obtain

LS Y 1L, @le2” O 200y 1121102 Yol 163001 41
—k=ji<k
S 2 PPN 2T T IRy g 260 ) ) g
—k=<ji <k &

k/2A5(k—k1)/6 11\3 , ,
S 29Tk ||¢||Sk+||1ﬁ1||521||1ﬁ2||S;é,

where we have also used Lemma 3.3(v).
Let us now consider the case j; > k. We use a dichotomy as for /oy (k). In the case
=4,50 = —,ors; = —, 50 = + and k < min(ky, k2), Lemma 2.4 implies that there
is only a contribution if j; > k». In that case, from the above argument with [ = 0 we
obtain

In® s Y 2 gl “/2||w1||Ss.2<’<+"2>/6||wz|| 2

J1zka

k/2~(k—k)/3
S22 gl lvnlign 2l g
1 2

In the case 51 = s, (2.13) implies that the integral is nonzero only if the frequencies
in the supports of Wl and ¢2 make an angle of at most 28%1 hence, we choose | = kj —k.
In the remaining case where s1 = —, 5o = + and k > min(ky, k2), we choose [ = 0. By
the argument above we obtain

ha0 S 3 2Pl 2727 2l 20yl o
1=k “

S 2PPERR ) vl g vl ge.
1 2

Contribution of I>(k): This is treated in the same way as 7 (k). ]
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Remark 4.2. Using V2-based spaces one can avoid the logarithmic divergencies in
Lemma 3.3(v). We expect that one could obtain a result in the critical Besov space
Bgf X 321/12’6 x B; 11 /2€ where € > 0 accounts for a bit of angular regularity (some-
what strengthening the null structure and this way eliminating any logarithmic factors).
This would improve the result in [20] (which corresponds to € = 1) in the massive case;

however, we will not pursue these matters here.

4.2. Proof of Theorem 1.1

Again, for notational convenience, let m = M = 1. Fix ¢ > 0. We will construct a
solution

Wi, U, ¢y) € SE€ = §T¢€ « §7€ x S+,l/2+e
of the system (2.2) in integral form, i.e.

t
Y (1) = e P (D) Yo + i / e TP (D) [Ny By + )] ds,
0
t
Yo (1) = "D (D)o + i / ¢TI (D) [Ny B4 + ¥)]ds,
0

t
60 = Pt [ TIOUD) N ), B+ Y,
provided that the initial data satisfy

||¢O||H6(R3) <3, ||¢+,0||H1/2+6(R3 <4,
for sufficiently small § > 0. Let 7' (¥, ¥_, ¢4 ) denote the operator defined by the right

hand sides of the above formulas.
By the results of the previous subsection and Lemma 3.4 we conclude that

IT (g, ¥y d) s
S8+ lprllgrarzee Wi llsre + 1Ylls—o) + (s llste + Y- lls-e)

S8+ N, Yoy ) e

and similar estimates for differences. Hence, in a small closed ball in the complete
space S¢ we can invoke the contraction mapping principle to obtain a unique solution.
Further, continuous dependence on the initial data is an easy consequence.

It remains to prove that these solutions scatter, which we will only do for t — oo,
the other case being similar. It suffices to show that for a solution (Y4, ¥_, ¢1) € S€ we
have convergence of the integrals, i.e.

t

lim [ e "CYPIIL(D) [Ny B4 + ¥)lds € HR),

—>0o0 0

t
lim [ TP (D) [Ny By + ¥o)lds € HE(R?),

—>00 0
t

lim [ e CVPHUDY (Y + yo), By + o)) ds € HYPHERY).

—0o0 0
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We simply observe that this is a by-product of the linear theory provided by Lemma 3.4.
Indeed, by Remark 3.5 it follows that at the dyadic level these integrals are in fact in U ,:E
and this is square-summable. From this it follows that they are in the space

V2(R; HE(R?)) x V2(R; HE(R?)) x VX(R; H'/?T¢(R?)).

Functions of bounded 2-variation have limits at infinity [11, Prop. 2.2], which proves the
scattering claim.
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