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Abstract. We prove global well-posedness and scattering for the massive Dirac–Klein–Gordon
system with small initial data of subcritical regularity in dimension three. To achieve this, we impose
a nonresonance condition on the masses.
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1. Introduction

The Dirac–Klein–Gordon system is a basic model of proton-proton interactions (one pro-
ton is scattered in a meson field produced by a second proton) or neutron-neutron inter-
action (see Bjorken and Drell [4]). In physics these are known as the strong interactions
which are responsible for the forces which bind nuclei.

The mathematical formulation of the Dirac–Klein–Gordon system is as follows
(see e.g. [8]): {

(−iγ µ∂µ +M)ψ = φψ,

(�+m2)φ = ψ†γ 0ψ.
(1.1)

Here, � denotes the d’Alembertian � = ∂2
t − 1x , ψ : R1+3

→ C4 is the spinor field
(column vector), and φ : R1+3

→ R is a scalar field. For µ = 0, . . . , 3, γ µ are the 4× 4
Dirac matrices given by

γ 0
=

(
I2 0
0 −I2

)
, γ j =

(
0 σ j

−σ j 0

)
,

where for j = 1, 2, 3 the Pauli matrices σ j are

σ 1
=

(
0 1
1 0

)
, σ 2

=

(
0 −i

i 0

)
, σ 3

=

(
1 0
0 −1

)
.
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ψ† denotes the conjugate transpose of ψ , i.e. ψ†
= ψ

t . The matrices γ µ satisfy

γ αγ β + γ βγ α = 2gαβI4, gαβ = diag(1,−1,−1,−1).

We will study the Cauchy problem with initial condition

(ψ, φ, ∂tφ)|t=0 = (ψ0, φ0, φ1). (1.2)

Before turning to the mathematical analysis of the Dirac–Klein–Gordon equations
we highlight a key property of the physical model presented in Bjorken and Drell [4,
Chapter 10.2]. The mass M is effectively 938 MeV

c2 (proton) or 939 MeV
c2 (neutron). There

are many types of meson fields, but those believed to be major contributors to the nuclear
force at large distances are the π -mesons (pions), and their masses are m = 140 MeV

c2

for π±, m = 135 MeV
c2 for π0. Heavier mesons such as K mesons (kaons) may also play a

role for small impact parameter collisions; the masses of kaons are m = 494 MeV
c2 for K±

andm = 498 MeV
c2 forK0. It is then reasonable to assume that in the Dirac–Klein–Gordon

equations
2M > m > 0.

We are not implying that all mesons are lighter than baryons (protons or neutrons in our
context), but that this is a reasonable assumption in the context of our model. Higher
energy (more massive) mesons were created momentarily in the Big Bang but are not
thought to play a role in nature today. Such particles are also regularly created in exper-
iments; for instance the heaviest meson created is the upsilon meson with mass 9.46 GeV

c2

(roughly 10 times the mass of the proton/neutron). However, these heavy mesons do not
play a role in the model described by Dirac–Klein–Gordon equations.

We now turn our attention to the mathematical aspects of (1.1). The fundamental ques-
tion is that of global regularity of solutions. For smooth and small initial data endowed
with additional algebraic structure, Chadam and Glassey [6] established global regularity
for solutions of (1.1). The work of Klainerman [13] on nonlinear Klein–Gordon equa-
tions paved the way of establishing a more general result. Following those ideas and tak-
ing advantage of the null structure present in the system, Bachelot [1] established global
regularity for (very) smooth and small initial data. The next direction of research was to
obtain a local in time result for rough data as close as possible to the critical space which
is

ψ0 ∈ L
2, (φ0, φ1) ∈ H

1/2
×H−1/2.

Beals and Bézard [2] proved that for small initial data (φ0, φ1) ∈ H 2
× H 1 and

ψ0 ∈ H 1 one has a local well-posedness theory for (1.1). Bournaveas [5] improved
this local in time result to (φ0, φ1) ∈ H

1+ε
× H ε and ψ0 ∈ H

1/2+ε , for any ε > 0.
D’Ancona, Foschi and Selberg [8] established local well-posedness of (1.1) for data
(φ0, φ1) ∈ H

1/2+ε
× H−1/2+ε and ψ0 ∈ H

ε , for any ε > 0; hence the last result covers
the full subcritical regime.

Recently, Wang [20] proved a global in time result for small initial data in the critical
Besov space (φ0, φ1) ∈ Ḃ

1/2
2,1 × Ḃ

−1/2
2,1 and ψ0 ∈ Ḃ

0
2,1 (for M = m = 0), additionally
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assuming that an angular derivative is bounded in the same space; the proof exploits the
observation of Sterbenz [19] that angular regularity acts as a null structure. The result is
then extended to nonzero masses under the condition 2M > m > 0.

It is worth mentioning that in all of the above results the masses M,m are arbitrary;
the result in [20] is an exception. In the context of a local in time result, the terms Mψ ,
m2φ can be treated as perturbations, thus allowing an analysis of (1.1) as a system of wave
equations. Obviously, this cannot be the case for a global in time theory which includes
scattering.

In the context of the cubic Dirac system [3] we proposed a different approach that
incorporates the terms Mψ and m2φ into the linear part of the operator, as they naturally
appear. This will help us treat (1.1) as a system of (half) Klein–Gordon equations after
using projectors which are adapted to our context from the work of D’Ancona, Foschi and
Selberg [8]. Then we restrict our attention to the physically relevant case 2M > m > 0
and obtain a global (in time) result and scattering for small initial data in the subcritical
regime. The resolution spaces used here have a simpler structure compared to [3]. Our
main result is the following

Theorem 1.1. Assume that ε > 0 and 2M > m > 0. Then the Cauchy problem (1.1)–
(1.2) is globally well-posed for small initial data

ψ0 ∈ H
ε(R3
;C4), (φ0, φ1) ∈ H

1/2+ε(R3
;R)×H−1/2+ε(R3

;R),

and these solutions scatter to free solutions for t →±∞.

We refer to Subsection 4.2 for more details. Our result is at the same level of regularity
as the one proved by D’Ancona, Foschi and Selberg [8]. Its strength lies in the global
in time and scattering parts. In terms of Sobolev regularity it is slightly more restrictive
than Wang’s result [20]. However, we do not assume additional angular regularity on the
initial data (cf. also Remark 4.2).

A key observation is that under the assumption 2M > m > 0 the system (1.1) has no
resonances. It was known from prior works on Klein–Gordon type systems with multiple
speeds that, under certain conditions between the masses, resonant interactions do not
occur and the well-posedness theory improves. We refer the reader to the works of Delort
and Fang [9], Schottdorf [17] and Germain [10] and to the references therein. We will
use this, together with some localized Strichartz estimates, to prove the key nonlinear
estimates.

Note that unlike many of the previous works which dealt with power type nonlineari-
ties for the Klein–Gordon equation, the Dirac–Klein–Gordon system contains derivatives.
This is not apparent from our formulation of (1.1); however, if one wants to write (1.1) as
a system of Klein–Gordon equations, one should apply−iγ µ∂µ−M to the first equation,
and then it is obvious that the right hand side contains derivatives.

We conclude this section with an overview of the paper. In Section 2 we introduce
some basic notation and rewrite the original system (1.1) in the equivalent form (2.2)
which has two advantages: it is first order in time and it unveils the null structure. The
gains from the null structure are quantified in Subsection 2.3 in a manner that fits our anal-
ysis. In Section 3 we define the resolution space in which we iterate our system. Without
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getting into technical details at this point, there is one particular aspect of this section
that deserves to be highlighted. Proving Strichartz estimates has become a standard type
argument due to the Christ–Kiselev Lemma [7]. However, proving localized versions of
the Strichartz estimates using Christ–Kiselev type arguments is not straightforward. In
Section 3 we provide an alternative argument for establishing (localized) Strichartz esti-
mates usingUp, V p spaces and we think that this part of the paper may be of independent
interest. In Section 4 we prove the trilinear estimates based on which we prove our main
result in Theorem 1.1.

2. Reductions

2.1. Notation

We write A . B if there is a harmless constant c > 0 such that A ≤ cB, and A & B iff
B . A. Further, we write A ≈ B iff both A . B and B . A. Also, we write A � B if
the constant c can be chosen such that c < 2−10. Also, A� B iff B � A.

Similarly, we write A � B iff 2A . 2B , A � B iff 2A & 2B , A ∼ B iff 2A ≈ 2B ,
A ≺ B iff 2A � 2B , A � B iff 2A � 2B .

Let ρ0
∈ C∞c (−2, 2) be a fixed smooth, even, cutoff satisfying ρ0(s) = 1 for |s| ≤ 1

and 0 ≤ ρ ≤ 1. For k ∈ Z we define ρk : R3
→ R, ρk(y) := ρ0(2−k|y|)−ρ0(2−k+1

|y|),
such that Ak := supp(ρk) ⊂ {y ∈ R3

: 2k−1
≤ |y| ≤ 2k+1

}. Let ρ̃k = ρk−1 + ρk + ρk+1
and Ãk := supp(ρ̃k). For k ≥ 1, let Pk be the Fourier multiplication operators with respect
to ρk , and P0 = I −

∑
k≥1 Pk . For j ∈ Z we define

F[Q±,mj f ](τ, ξ) = ρj (τ ± 〈ξ〉m)Ff (τ, ξ).

Similarly, we define P̃k and Q̃±,mj .
We also define P≤k =

∑
0≤k′≤k Pk′ , P≺k =

∑
0≤k′≺k Pk′ , P>k = I − P≤k , P�k =

I − P≺k , and similarly Q±,m
≤j , Q±,m

≺j , Q±,m
�j , and Q±,mj∈J for an interval J . In the obvious

way we also define the analogous operators based on P̃k and Q̃±,mj .

In the case m = 1 we suppress the superscripts, e.g. Q±,1j = Q±j .
Further, for l ∈ N let Kl denote a set of spherical caps of radius 2−l which is a covering

of S2 with finite overlap. For a cap κ ∈ Kl we denote its center in S2 by ω(κ). Let 0κ
be the cone generated by κ ∈ Kl and (ηκ)κ∈Kl

be a smooth partition of unity subordinate
to (0κ)κ∈Kl

. Let Pκ denote the Fourier muliplication operator with symbol ηκ such that
I =

∑
κ∈Kl

Pκ . Further, let P̃κ be with doubled support such that Pκ = P̃κPκ = Pκ P̃κ .
For notational convenience, we also define K0 = {S2

} and Pκ = I if κ ∈ K0.

2.2. Setup of the system and null structure

As written in (1.1), the cubic Dirac–Klein–Gordon system has a linear part whose coef-
ficients are matrices, and it is technically easier to work with scalar equations. To do so,
we adapt the setup introduced in [8, Section 2 and 3] to take into account the mass terms,
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similarly to our prior work on the cubic Dirac equation [3] (however, the sign convention
is in accordance with [8]). We repeat here the essential steps for the convenience of the
reader. As highlighted in [8], the new setup is able to identify a null structure in the non-
linearity, although the presence of mass terms alters the effectiveness of this structure at
very small scales.

For j = 1, 2, 3 the matrices αj := γ 0γ j , β := γ 0 have the properties

αjβ + βαj = 0, αjαk + αkαj = 2δjkI4;

see [8, p. 878] for more details.
We introduce the Fourier multiplication operators 5M± (D) with symbol

5M± (ξ) =
1
2

[
I ±

1
〈ξ〉M

(ξ · α +Mβ)

]
.

In the case M = 1 we suppress the superscript, i.e. 5±(D) = 51
±(D).

We then define ψ± = 5M± (D)ψ and split ψ = ψ+ + ψ−. Also, define 〈D〉 =
√

1−1. By applying the operators 5M± (D) to the system (1.1) we obtain the following
system of equations: 

(−i∂t + 〈D〉M)ψ+ = 5
M
+ (D)(φβψ),

(−i∂t − 〈D〉M)ψ− = 5
M
− (D)(φβψ),

(�+m2)φ = 〈ψ, βψ〉.

(2.1)

In order to have a fully first order system, we define φ± = φ ± i〈D〉−1
m ∂tφ, and thus

(−i∂t + 〈D〉m)φ+ = 〈D〉
−1
m 〈ψ, βψ〉.

Note that φ = <φ± and φ− = φ+ since φ is real-valued. The system which we will study
is 

(−i∂t + 〈D〉M)ψ+ = 5
M
+ (D)(<φ+βψ),

(−i∂t − 〈D〉M)ψ− = 5
M
− (D)(<φ+βψ),

(−i∂t + 〈D〉m)φ+ = 〈D〉
−1
m 〈ψ, βψ〉.

(2.2)

We aim to provide a global theory for this system for initial data (ψ±,0, φ+,0) ∈
H ε
× H 1/2+ε . It is an easy exercise that this translates back into a global theory for

the original system with (ψ0, φ0, φ1) ∈ H
ε
×H 1/2+ε

×H−1/2+ε .
There is a null structure in the system (2.2), which we describe next. This is again

inspired by the work in [8] and was adapted to the current setup in [3]. For more details,
we refer the reader to [8, 3].

We decompose 〈ψ, βψ〉 as

〈ψ, βψ〉 = 〈5M+ (D)ψ+, β5
M
+ (D)ψ+〉 + 〈5

M
− (D)ψ−, β5

M
− (D))ψ−〉

+ 〈5M+ (D)ψ+, β5
M
− (D)ψ−〉 + 〈5

M
− (D)ψ−, β5

M
+ (D)ψ+〉.
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We have
5M± (D)β = β5

M
∓ (D)±M〈D〉

−1
M β. (2.3)

The following lemma, which corresponds to [3, Lemma 3.1] and [8, Lemma 2], analyzes
the symbols of the bilinear operators above.

Lemma 2.1. For fixed M ≥ 0,

5M± (ξ)5
M
∓ (η) = O(∠(ξ, η))+O(〈ξ〉−1

+ 〈η〉−1),

5M± (ξ)5
M
± (η) = O(∠(−ξ, η))+O(〈ξ〉−1

+ 〈η〉−1).
(2.4)

We now explain heuristically why this is useful here; see Lemma 3.3 for the technical
result which will be used in the nonlinear analysis. By (2.3), for s1, s2 ∈ {+,−},

Fx〈5s1ψ1, β5s2ψ2〉(ξ) =

∫
ξ=ξ1−ξ2

〈5s1(ξ1)ψ̂1(ξ1), β5s2(ξ2)ψ̂2(ξ2)〉 dξ1 dξ2

=

∫
ξ=ξ1−ξ2

〈β5−s2(ξ2)5s1(ξ1)ψ̂1(ξ1), ψ̂2(ξ2)〉 dξ1 dξ2

+ s2M

∫
ξ=ξ1−ξ2

〈ξ1〉
−1
M 〈β5s1(ξ1)ψ̂1(ξ1), ψ̂2(ξ2)〉 dξ1 dξ2.

Hence, smallness of the angle ∠(s1ξ1, s2ξ2) can be exploited as long as it exceeds
max(〈ξ1〉

−1
M , 〈ξ2〉

−1
M ). See [8, p. 885] for the analogue of this in the massless case, where

we have 50
−(ξ1)5

0
+(ξ2) = 0 if ∠(ξ1, ξ2) = 0, which makes the null structure effective

at all angular scales. In the massive case M > 0 the null structure does not bring gains
beyond max(〈ξ1〉

−1
M , 〈ξ2〉

−1
M ). To compensate for this we need to use the fact that there are

no resonances present in (2.2).
In fact, as observed in [8], there is a second and similar null structure in the nonlin-

earities present in the equations for ψ±, which will be exploited by duality in Section 4.

2.3. Modulation analysis

A key aspect in the nonlinear analysis is the lack of resonant terms. Arguments of similar
nature are contained in [17, Lemma 2] (see also [9, 10]). Additionally, we will prove that
smallness of the maximal modulation induces angular constraints. In the context of the
cubic Dirac equation a similar result is contained in [3, Lemma 6.5]. We first provide
lower bounds for the resonance function.

Lemma 2.2. Fix 0 < m < 2M . For s1, s2 ∈ {+,−} define the resonance function

µs1,s2(ξ1, ξ2) := 〈ξ1 − ξ2〉m + s1〈ξ1〉M − s2〈ξ2〉M . (2.5)

Then we have the following bounds:

• Case 1: If

(a) s1 = +, s2 = − or
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(b) s1 = −, s2 = + and 〈ξ1 − ξ2〉m � min(〈ξ1〉M , 〈ξ2〉M),

then
|µs1,s2(ξ1, ξ2)| & max(〈ξ1 − ξ2〉, 〈ξ1〉, 〈ξ2〉). (2.6)

• Case 2: If

(a) s1 = s2 or
(b) s1 = −, s2 = + and 〈ξ1 − ξ2〉m & min(〈ξ1〉M , 〈ξ2〉M),

then

|µs1,s2(ξ1, ξ2)| &m,M
〈ξ1〉 · 〈ξ2〉

〈ξ1 − ξ2〉
∠(s1ξ1, s2ξ2)

2. (2.7)

With any choice of signs, we have both

|µs1,s2(ξ1, ξ2)| &m,M min(〈ξ1〉, 〈ξ2〉)∠(s1ξ1, s2ξ2)
2, (2.8)

and the non-resonance bound

|µs1,s2(ξ1, ξ2)| &m,M max(〈ξ1 − ξ2〉
−1, 〈ξ1〉

−1, 〈ξ2〉
−1). (2.9)

Proof. In Case 1 the lower bound (2.6) is obvious, which implies all other claims.
Suppose now that we are in Case 2(a). Then

(〈ξ1 − ξ2〉m − |〈ξ1〉M − 〈ξ2〉M |)(〈ξ1 − ξ2〉m + |〈ξ1〉M − 〈ξ2〉M |)

= 2(|ξ1| |ξ2| − ξ1 · ξ2)+m
2
+ 2(〈ξ1〉M 〈ξ2〉M − |ξ1| |ξ2| −M

2).

Now, we compute

〈ξ1〉M 〈ξ2〉M − (|ξ1| |ξ2| +M
2) = M2 (|ξ1| − |ξ2|)

2

〈ξ1〉M 〈ξ2〉M + |ξ1| |ξ2| +M2 . (2.10)

Since this is nonnegative, we conclude that

(〈ξ1 − ξ2〉m − |〈ξ1〉M − 〈ξ2〉M |)(〈ξ1 − ξ2〉m + |〈ξ1〉M − 〈ξ2〉M |)

≥ 2|ξ1| |ξ2|(1− cos∠(ξ1, ξ2))+m
2 & |ξ1| |ξ2|∠(ξ1, ξ2)

2
+m2.

Now, because of m > 0 and 〈ξ1 − ξ2〉m + |〈ξ1〉M − 〈ξ2〉M | . 〈ξ1 − ξ2〉m the estimates
(2.8) and (2.7) follow. Also, (2.9) follows if 〈ξ1 − ξ2〉 . min(〈ξ1〉, 〈ξ2〉). Otherwise, we
have max(〈ξ1〉, 〈ξ2〉)� min(〈ξ1〉, 〈ξ2〉), and the estimate (2.9) follows from

(〈ξ1 − ξ2〉m − |〈ξ1〉M − 〈ξ2〉M |)(〈ξ1 − ξ2〉m + |〈ξ1〉M − 〈ξ2〉M |)

≥ M2 (|ξ1| − |ξ2|)
2

〈ξ1〉M 〈ξ2〉M + |ξ1| |ξ2| +M2 ,

where we have used (2.10) again.
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Suppose now that we are in Case 2(b). A computation similar to the above yields

(〈ξ1〉M + 〈ξ2〉M − 〈ξ1 − ξ2〉m)(〈ξ1〉M + 〈ξ2〉M + 〈ξ1 − ξ2〉m)

= 2(|ξ1| |ξ2| + ξ1 · ξ2)+ 2M2
−m2

+ 2(〈ξ1〉M 〈ξ2〉M − |ξ1| |ξ2|)

& |ξ1| |ξ2|∠(−ξ1, ξ2)
2
+ 4M2

−m2.

By assumption 4M2
− m2 > 0, so the estimate (2.8) is proved, and due to 〈ξ1 − ξ2〉 ≈

max(〈ξ1〉, 〈ξ2〉) the claim (2.7) follows, too. Also, if |ξ1| ≈ |ξ2|, then (2.9) follows.
Otherwise, we use the lower bound provided by (2.10) to obtain (2.9). ut

Remark 2.3. From now on we fixM = m = 1 in oder to simplify the exposition. In view
of Lemma 2.2 it will be obvious that all arguments carry over to the case 2M > m > 0
with modified (implicit) constants depending on m,M .

Lemma 2.4. Let s1, s2 ∈ {+,−}. Consider k, k1, k2 ∈ N0, j, j1, j2 ∈ Z, and φ =
P̃kQ̃

+

j φ, ui = P̃ki Q̃
si
ji
ui .

(i) If max(j, j1, j2) ≺ −min(k, k1, k2), we have∫
R1+3

φ · u1u2 dt dx = 0. (2.11)

(ii) Case 1: Suppose that either

• s1 = +, s2 = −, or
• s1 = −, s2 = + and k ≺ min(k1, k2).

If max(j, j1, j2) ≺ max(k, k1, k2), then (2.11) holds true.

Case 2: Suppose that either

• s1 = s2, or
• s1 = −, s2 = + and k � min(k1, k2).

If l ≥ 1, κ1, κ2 ∈ Kl with d(s1κ1, s2κ2) ≥ 2−l and max(j, j1, j2) ≺ k1+ k2− k−2l,
then ∫

R1+3
φ · P̃κ1u1P̃κ2u2 dt dx = 0. (2.12)

Proof. We have ∫
R1+3

φ · u1u2 dt dx =

∫
R1+3

φ̂û1u2 dτ dξ

and, with ζ = (τ, ξ),

û1u2(ζ ) =

∫
û1(ζ

′)û2(ζ − ζ
′) dζ ′ =

∫
û1(−ζ

′)û2(ζ − ζ
′) dζ ′;

hence, with ζj = (τj , ξj ),∫
R1+3

φ · u1u2 dt dx =

∫ ∫
φ̂(ζ2 − ζ1)û1(ζ1)û2(ζ2) dζ1 dζ2. (2.13)
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The assumptions imply that we must have

|τ2 − τ1 + 〈ξ2 − ξ1〉| ≈ 2j , |τ1 + s1〈ξ1〉| ≈ 2j1 , |τ2 + s2〈ξ2〉| ≈ 2j2

in order to obtain a nontrivial contribution. This implies

|〈ξ2 − ξ1〉 + s1〈ξ1〉 − s2〈ξ2〉| . 2max(j,j1,j2). (2.14)

(i) By assumption we have 2max(j,j1,j2) � 2−min(k,k1,k2), so that (2.14) contradicts
(2.9).

(ii) By assumption we have 2max(j,j1,j2) � 2max(k,k1,k2) in Case 1, hence (2.14) con-
tradicts (2.6). Similarly, in Case 2 the estimate (2.14) contradicts (2.7). ut

3. Function spaces and linear estimates

For 1 ≤ p ≤ ∞ and b ∈ R, we define

‖f ‖Ẋ±,b,p =
∥∥(2bj‖Q±j f ‖L2)j∈Z

∥∥
`p
.

The low frequency part will be treated as a whole, that is, we define

‖f ‖S±
≤0
= ‖f ‖L∞t L2

x
+ ‖f ‖L2

t L
6
x
+ ‖f ‖Ẋ±,1/2,∞ .

By interpolation, the space above provides all the Strichartz estimates for the Schrödinger
equation on R3. This is natural since the Klein–Gordon equation in low frequency behaves
like the Schrödinger equation.

In high frequency, the Klein–Gordon equation is of wave type and the Strichartz es-
timates should reflect that. Moreover we need some refinement of the standard Strichartz
estimates.

For d = 3 and k ∈ Z+ let 4k = 2k ·Zd . Let γ (1) : R→ [0, 1] denote an even smooth
function supported in the interval [−2/3, 2/3] with the property that∑

n∈Z
γ (1)(ξ − n) = 1 for ξ ∈ R.

Let γ : Rd → [0, 1], γ (ξ) = γ (1)(ξ1) · . . . · γ
(1)(ξd). For k ∈ Z+ and n ∈ 4k let

γk,n(ξ) = γ ((ξ − n)/2k).

Clearly,
∑
n∈4k

γk,n ≡ 1 on Rd . Now, we define 0k,n to be the Fourier multiplication
operator with symbol γk,n.

There is the following refinement of the classical Strichartz estimate. In the context of
Strichartz–Pecher inequalities for the wave equation, the underlying decay estimate after
localization to cubes has been proved in [14, (A.59)]; see also [18, Theorem 4.1] for the
case p = q = 4.
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Lemma 3.1. Let d = 3 and 1/p + 1/q = 1/2 with p > 2. Then

sup
0≤k′≤k

2−(k
′
+k)/p

( ∑
n∈4k′

‖0k′,nPke
±it〈D〉f ‖2

L
p
t L

q
x

)1/2
. ‖f ‖L2(R3). (3.1)

Proof. By orthogonality, it suffices to prove

‖0k′,nPke
±it〈D〉f ‖Lpt L

q
x
. 2(k

′
+k)/p
‖f ‖L2(R3),

uniformly in n ∈ 4k′ . Let T = 0k′,nPke±it〈D〉. The operator T T ∗ is a space-time convo-
lution operator with kernel

Kk′,k;n(t, x) =

∫
R3
e±it〈ξ〉+ix·ξρ2

k (ξ)γ
2
k′,n(ξ) dξ.

By the T T ∗-argument, it suffices to prove

‖T T ∗‖
L
p′

t L
q′

x →L
p
t L

q
x
. 22(k+k′)/p,

which reduces to proving the kernel bound

|Kk′,k;n(t, x)| . 23k′(1+ 22k′−k
|t |)−1. (3.2)

Indeed, by interpolation and Young’s inequality, we obtain

‖Kk′,k;n(t, ·) ∗ φ‖Lqx (R3) . 23k′(1−2/q)(1+ 22k′−k
|t |)−(1−2/q)

‖φ‖
L
q′

x (R3)
,

and Hardy–Littlewood–Sobolev with 1/r = 2/p = 1− 2/q implies

‖T T ∗‖
L
p′

t L
q′

x →L
p
t L

q
x
. 23k′(1−2/q)

‖(1+ 22k′−k
|t |)−(1−2/q)

‖L
r,w
t
. 22(k+k′)/p.

Finally, we give a proof of (3.2): Rescaling yields

Kk′,k;n(t, x) = 23kKk′−k,1,2−kn(2
kt, 2kx),

where, for 〈ξ〉k := (|ξ |2 + 2−2k)1/2,

Kj,1,a(s, y) =

∫
R3
e±is〈ξ〉k+iy·ξρ2

1(ξ)γ
2
j,a(ξ) dξ.

For |a| ≈ 1, we claim

|Kj,1,a(s, y)| . 23j (1+ 22j
|s|)−1. (3.3)

For |s| ≤ 2−2j this is immediate because the domain of integration has volume 23j ,
and in the remaining case it can be proved as for the wave equation in [14, (A.70)].
We provide an explicit proof: By a simple covering argument we may replace ρ2

1γ
2
j,a by

a smooth cutoff ζ with respect to a thickened spherical cap of size 2j and denote the
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corresponding kernel by K̃j,a . By rotation, we may assume that y = (0, 0, |y|). We use
spherical coordinates:

K̃j,a(s, y) =

∫
∞

0

∫ 2π

0

∫ π

0
ei(|y|ρ cos θ+s〈ρ〉k)ζ(θ, ϕ, ρ) sin(θ)ρ2 dθ dϕ dρ.

We may choose ζ(ϕ, θ, ρ) = ζ1(θ)ζ2(ϕ)ζ3(ρ). The phase of the oscillatory integral is
stationary only if |y| ≈ |s|, and the cap is centered near the north pole or south pole,
otherwise we get arbitrarily fast decay. We discuss only the first case, where we may
further assume that |ζ ′1| . 2−j , ζ1 is supported in an interval of length. 2j in [0, π), and
ζ3 is supported in an interval of length . 2j in (1/4, 4), with |ζ ′3| . 2−j . We integrate by
parts with respect to θ :

K̃j,a(s, y) =
iζ1(0)
|y|

∫
∞

0

∫ 2π

0
ei(|y|ρ+s〈ρ〉k)ζ2(ϕ)ζ3(ρ)ρ dϕ dρ

−
i

|y|

∫
∞

0

∫ 2π

0

∫ π

0
ei(|y|ρ cos θ+s〈ρ〉k)ζ ′1(θ) dθ ζ2(ϕ)ζ3(ρ)ρ dϕ dρ,

and the properties of ζ1 and ζ3 imply

|K̃j,a(s, y)| . 2j |y|−1,

which completes the proof of (3.3), which implies (3.2). ut

Remark 3.2. The generalization of Lemma 3.1 to general dimension and nonsharp ad-
missible pairs is obvious, but we do not need it here.

Now, we consider functions f ∈ L∞t (R;L2(R3
;Cd)). We will use d = 1 for the Klein–

Gordon part and d = 4 for the Dirac part. For k ∈ Z, k ≥ 0, and l, k′ ∈ Z, 0 ≤ k′, l ≤ k,
we define

‖f ‖Lpt L
q
x [k;l,k

′]
:=

(∑
κ∈Kl

∑
n∈4k′

‖0k′,nPκf ‖
2
L
p
t L

q
x

)1/2
.

Note that the above norm for l = 0 is similar to the one in (3.1). The general case 0 ≤
l ≤ k is needed for technical reasons.

For k ≥ 0, we define

‖f ‖S±k
= ‖f ‖L∞t L2

x
+ ‖f ‖Ẋ±,1/2,∞

+ sup
0≤k′,l≤k

(2−(k
′
+k)/3
‖f ‖L3

t L
6
x [k;l,k

′]
+ 2−(k

′
+k)/6
‖f ‖L6

t L
3
x [k;l,k

′]
). (3.4)

Note that if k′ = k and l = 0, that is, no additional localization is provided, the last two
norms are simply the standard Strichartz estimates L3

t L
6
x and L6

t L
3
x available for the wave

equation in R3.
In the nonlinear estimates we will use the fact that ‖P≤0f ‖S±

≤0
also dominates (by

interpolation and the Sobolev embedding) the localized Strichartz norms (with k = 0)
available in the high frequency structure.

Next, we consider boundedness properties of certain multipliers.
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Lemma 3.3. (i) Let s1, s2 ∈{+,−}. For any k1, k2 ∈N0 with 1≤ l≤min(k1, k2) + 10,
κ1, κ2 ∈ Kl with d(s1κ1, s2κ2) . 2−l , and v1, v2 ∈ C4, we have

|〈5s1(2
k1ω(κ1))v1, β5s2(2

k2ω(κ2))v2〉| . 2−l |v1| |v2|. (3.5)

Fix k ∈ N0. All the statements below are made for functions localized at frequency 2k , i.e.
they satisfy f = P̃kf .

(ii) For any 1 ≤ l ≤ k + 10, κ ∈ Kl , and f ∈ S±k , we have

‖[5±(D)−5±(2kω(κ))]Pκf ‖S±k . 2−l‖Pκf ‖S±k , (3.6)

and similarly in Lpt L
q
x -norms.

(iii) For any j ∈ Z, the operators Q±j are uniformly bounded on S±k .

(iv) For any l ∈ N0, κ ∈ Kl , and j ∈ Z with j ≥ k − 2l − 100, the operators Q±>j P̃κ
and Q±

≤j P̃κ are uniformly bounded on S±k .
(v) For any k′ ∈ N0 and j ∈ Z satisfiying k′ ≤ k and j ≥ 2k′ − k, the operators Q±>j

and Q±
≤j are uniformly disposable in the sense that

sup
0≤l≤k

(
2−(k

′
+k)/3
‖Q±>j
[≤j ]

f ‖L3
t L

6
x [k;l,k

′]
+ 2−(k

′
+k)/6
‖Q±>j
[≤j ]

f ‖L6
t L

3
x [k;l,k

′]

)
. ‖f ‖S±k

.

Further, similar estimates for Q±>j and Q±
≤j hold with a bound 〈k′〉 as long as

j � −k′.

Proof. The identity (2.3) implies

〈5s1(2
k1ω(κ1))v1, β5s2(2

k2ω(κ2))v2〉

= 〈β5−s2(2
k2ω(κ2))5s1(2

k1ω(κ1))v1, v2〉 + s2〈2k2〉
−1
〈β5s1(2

k1ω(κ1))v1, v2〉,

hence (3.5) follows from estimates (2.4) and Cauchy–Schwarz.
In order to prove (3.6), it suffices to consider the case of the + sign. We write the

matrix-valued symbol p of 2[5+(D)−5+(2kω(κ))]PkP̃κ as

p(ξ) = 2[5+(ξ)−5+(2kω(κ))]ρ̃k(ξ)η̃κ(ξ)

= ρ̃k(ξ)η̃κ(ξ)

[
ξ

〈ξ〉
−

2kω(k)
〈2k〉

]
· α + ρ̃k(ξ)η̃κ(ξ)

[
1
〈ξ〉
−

1
〈2k〉

]
β

=: p1(ξ)+ p2(ξ).

We further decompose

p1(ξ) = ρ̃k(ξ)η̃κ(ξ)

[
|ξ |

〈ξ〉
−

2k

〈2k〉

]
ω(κ) · α + ρ̃k(ξ)η̃κ(ξ)

|ξ |

〈ξ〉

[
ξ

|ξ |
− ω(κ)

]
· α

=: p11(ξ)+ p12(ξ).
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We denote the Fourier multiplication operators defined by the symbols above by P2(D),

P11(D), P12(D). Obviously, the properties of ρ̃k imply that

‖P2(D)‖Lpx→L
p
x
. 2−k, ‖P11(D)‖Lpx→L

p
x
. 2−k, for any 1 < p <∞,

and the properties of η̃κ imply that

‖P12(D)‖Lpx→L
p
x
. 2−l for any 1 < p <∞.

The claim follows from the definition of the space S+k .
Part (iii) needs to be proved for the Strichartz norms only. For the operator Q±j this is

an easy consequence of the well-known transference principle. Indeed,

Q±j f (t) =

∫
eitτ e∓it〈D〉Ft (e±it〈D〉f )(τ )ρ̃j (τ ) dτ,

hence by Lemma 3.1 we obtain

2−(k
′
+k)/p
‖Q±j f ‖Lpt L

q
x [k;l,k

′]
. ‖Ft (e±it〈D〉f )ρ̃j‖L1

τL
2
ξ
. 2j/2‖Q̃±j f ‖L2 ≈ ‖f ‖Ẋ±,1/2,∞ .

In order to prove (iv), we apply Sobolev inequalities to obtain, for any κ ′ ∈ Kl′ and
n ∈ 4k′ ,

2−(k
′
+k)/p
‖0k′,nPκ ′Q

±

j Pκf ‖Lpt L
q
x

. 2−k
′
+k/p2j (1/2−1/p)2(k

′
+min(2k−2l,2k′))(1/2−1/q)

‖0k′,nPκ ′Q
±

j Pκf ‖L2 .

Summing the squares with respect to κ ′, n yields

2−(k
′
+k)/p
‖Q±j Pκf ‖Lpt L

q
x [k;l

′,k′] . 2
min(k−2l,2k′−k)−j

p 2j/2‖Q±j f ‖L2 , (3.7)

which we finally sum with respect to j ≥ j0 ≥ k − 2l − 100 to obtain

2−(k
′
+k)/p
‖Q±>j0

Pκf ‖Lpt L
q
x [k;l

′,k′] . ‖f ‖Ẋ±,1/2,∞ .

The remaining claim in (iv) follows from Q±
≤j = I −Q

±

>j .
Part (v) follows similarly from (3.7). The last claim for Q±>j follows by applying (iii)

and (v) to
Q±>j = Q

±

>2k′−k +
∑

j<j ′≤2k′−k

Q±
j ′
,

because the number of terms in the second sum is bounded by 〈k′〉. The claim for Q±
≤j =

I −Q±>j follows, too. ut

The next lemma shows why the S±k -seminorms are useful in the context of the evolution
equation.
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Lemma 3.4. For any k∈N0,u0= P̃ku0∈L
2(R3
;Cd)andf = P̃kf ∈L1

t (R;L2(R3
;Cd)),

let

u(t) = e∓it〈D〉u0 + i

∫ t

0
e∓i(t−s)〈D〉f (s) ds.

Then u = P̃ku is the unique solution of

−i∂tu± 〈D〉u = f,

and u ∈ C(R, L2(R3
;Cd)) and

‖u‖S±k
. ‖u0‖L2(R3) + sup

g∈G

∣∣∣∣∫
R1+3
〈f, g〉Cd dx dt

∣∣∣∣ (3.8)

provided that the right hand side of (3.8) is finite, where G is defined as the set of all
g = P̃kg ∈ L

∞
t (R;L2(R3

;Cd)) such that ‖g‖S±k = 1.

Proof. Without the localization in L3
t L

6
x, L

6
t L

3
x the linear theory above is standard us-

ing Xs,b theory and the Christ–Kiselev Lemma [7]. It is likely that one can adapt the
Christ–Kiselev Lemma to cover the localized versions of L3

t L
6
x, L

6
t L

3
x and their dual

structures as well, but we do not pursue this strategy here. Instead, we will give a rather
short proof using the theory of U2 and V 2 spaces; see e.g. [15, 11, 16] for details. We
recall that for 1 < p <∞ the atomic space Up

±〈D〉 is defined via its atoms

a(t) =

K∑
k=1

1[tk−1,tk)(t)e
∓it〈D〉φk,

K∑
k=1

‖φk‖
p

L2 = 1,

where {tk} is a partition, tK = ∞.
As a companion space we use the space V p

±〈D〉 of right-continuous functions v such
that t 7→ e±it〈D〉v(t) is of bounded p-variation. We have V 2

±〈D〉 ↪→ U
p
±〈D〉 for p > 2.

For 0 ≤ l, k′ ≤ k we define

‖u‖U±
k;l,k′
:=

(∑
κ∈Kl

∑
n∈4k′

‖0k′,nPκu‖
2
U2
±〈D〉

)1/2
. (3.9)

Then we have

‖u‖V±
k;l,k′
:=

(∑
κ∈Kl

∑
n∈4k′

‖0k′,nPκu‖
2
V 2
±〈D〉

)1/2
. ‖u‖U±

k;l,k′
. (3.10)

It is easy to show that the U±
k;l,k′

-norms are decreasing if we localize to smaller scales, i.e.

‖u‖U±
k;l,k′
. ‖u‖U±

k;l̃,k̃′
if l̃ ≤ l and k̃′ ≥ k′,

and the V ±
k;l,k′

-norms are increasing if we localize to smaller scales, i.e.

‖u‖V±
k;l,k′
. ‖u‖V±

k;l̃,k̃′
if l̃ ≥ l and k̃′ ≤ k′.

Set U±k = U
±

k;k,0 and V ±k = V
±

k;k,0.
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Strichartz estimates for admissible pairs (p, q) hold for Up
±〈D〉-functions (which is

easily verified for atoms), hence also for V 2
±〈D〉-functions. For any 0 ≤ k′, l ≤ k we have

2−(k
′
+k)/p

(∑
κ∈Kl

∑
n∈4k′

‖0k′,nPκu‖
2
L
p
t L

q
x

)1/2
. ‖u‖V±

k;l,k′
. ‖u‖V±k

.

We also have V ±k ↪→ V 2
±〈D〉 and the V 2

±〈D〉-norm dominates both the L∞t L
2
x-norm

and the Ẋ±,1/2,∞-seminorm. Hence,

‖u‖S±k
. ‖u‖V±k

. ‖u‖U±k
.

Now, we can use the U2 duality theory (see e.g. [11, Prop. 2.10], and [12, Prop. 2.11] for
a frequency-localized version) to conclude that

‖u‖U±k
. ‖u0‖L2(R3) + sup

h∈H

∣∣∣∣∫
R1+3
〈f, h〉Cd dx dt

∣∣∣∣,
whereH is defined as the set of all h = P̃kh such that ‖h‖V±k = 1. The claim now follows
by using again ‖g‖S±k . ‖g‖V±k . ut

Remark 3.5. In fact, we have proved a stronger result: In the setting of Lemma 3.4,
provided that the right hand side of (3.8) is finite, we can upgrade this estimate to

‖u‖U±k
. ‖u0‖L2(R3) + sup

g∈G

∣∣∣∣∫
R1+3
〈f, g〉Cd dx dt

∣∣∣∣.
Our resolution space S±,σ corresponding to Sobolev regularity σ—used in Subsection
4.2—will be the space of functions in C(R, H σ (R3

;Cd)) such that

‖f ‖S±,σ = ‖P≤0f ‖S±
≤0
+

(∑
k≥1

22σk
‖Pkf ‖

2
S±k

)1/2
<∞,

which is obviously a Banach space.

4. Nonlinear estimates and the proof of the main result

Recall (2.2) with the conventionM = m = 1 and use the decompositionψ = 5+(D)ψ+
5−(D)ψ in the nonlinearity (for all three terms). It then suffices to prove∣∣∣∣∫ 〈5s2(D)[<φ β5s1(D)ψ1], ψ2〉 dx dt

∣∣∣∣ . ‖φ‖S+,1/2+ε‖ψ1‖Ss1,ε‖ψ2‖Ss2,−ε ,∣∣∣∣∫ 〈D〉−1
〈5s1(D)ψ1, β5s2(D)ψ2〉φ dx dt

∣∣∣∣ . ‖φ‖S+,−1/2−ε‖ψ1‖Ss1,ε‖ψ2‖Ss2,ε ,
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for any choice of signs s1, s2 ∈ {+,−}. By symmetry, this follows from∣∣∣∣∫ φ 〈5s1(D)ψ1, β5s2(D)ψ2〉 dx dt

∣∣∣∣ . ‖φ‖S+,1/2+ε0 ‖ψ1‖Ss1,ε1 ‖ψ2‖Ss2,ε2 (4.1)

where ε0, ε1, ε2 ∈ {±ε} are such that ε0+ ε1+ ε2 = ε. More precisely, we will prove this
first on the dyadic level, where all integrals are clearly finite (see Lemma 3.4).

4.1. Estimates for dyadic pieces

Our aim will be to identify a function G : N3
0 → (0,∞) such that

∑
k,k1,k2∈N0

max(k,k1,k2)∼med(k,k1,k2)

G(k, k1, k2)akbk1ck2

2k/2(min(k, k1, k2)+ 1)10 . ‖a‖l2‖b‖l2‖c‖l2 (4.2)

for all sequences a = (aj )j∈N0 etc. in l2(N0). We write k = (k, k1, k2).
Clearly, (4.1) is implied by the following key result of this section:

Proposition 4.1. Let s1, s2 ∈ {+,−}. There exists a function G satisfying (4.2) such that
for all φ = Pkφ and ψi = Pki5si (D)ψi , i = 1, 2,∣∣∣∣∫ φ〈ψ1, βψ2〉 dx dt

∣∣∣∣ . G(k)‖φ‖S+k ‖ψ1‖S
s1
k1
‖ψ2‖S

s2
k2
. (4.3)

Proof. We denote the integral on the left hand side of (4.3) by I (k). Without restricting
the generality of the argument we can assume that k1 ≤ k2. We decompose

I (k) = I0(k)+ I1(k)+ I2(k)

where

I0(k) :=
∑
j∈Z

∫
Q+j φ 〈Q

s1
≤jψ1, βQ

s2
≤jψ2〉 dx dt,

I1(k) :=
∑
j1∈Z

∫
Q+<j1

φ 〈Q
s1
j1
ψ1, βQ

s2
≤j1
ψ2〉 dx dt,

I2(k) :=
∑
j2∈Z

∫
Q+<j2

φ 〈Q
s1
<j2
ψ1, βQ

s2
j2
ψ2〉 dx dt.

Given the symmetry of the estimate in k1 and k2, we split the argument into two cases.

Case 1: |k − k2| ≤ 10.

Contribution of I0(k): We split I0(k) = I01(k)+I02(k) according to j < k1 and j ≥ k1.
Then, due to Lemma 2.4, there is no contribution if j < k1 in the case s1 = +, s2 = −.



GWP and scattering for the Dirac–Klein–Gordon system 2461

For all other choices of signs, we estimate

I01(k) .
∑

−k1�j<k1

∑
n,n′∈4k1
|n−n′|�k1

‖0k1,nQ
+

j φ‖L2‖〈Q
s1
≤jψ1, βQ

s2
≤j0k1,n′ψ2〉‖L2 ,

where we have used orthogonality, and the nonresonance bound (2.9) to restrict the sum
to the range j � −k1. We conclude from Lemma 2.4 with 2l = k1 + k2 − k − j and
Lemma 3.3 that

‖〈Q
s1
≤jψ1, βQ

s2
≤j0k,n′ψ2〉‖L2

. 2−l
∑

κ1,κ2∈Kl

d(s1κ1,s2κ2).2−l

‖Q
s1
≤jPκ1ψ1‖L3

t L
6
x
‖Q

s2
≤jPκ20k1,n′ψ2‖L6

t L
3
x
.

By Lemma 3.3(v), the operators Q±
≤j are disposable up to a factor 〈k1〉. Then, we apply

Cauchy–Schwarz and perform the cube and cap summation to obtain

I01(k) .
∑

−k1�j<k1

2−j/2‖φ‖Sk2
−(k1+k2−k−j)/222k1/3〈k1〉‖ψ1‖S

s1
k1

2(k1+k2)/6〈k1〉‖ψ2‖S
s2
k2

. 〈k1〉
32(k1−k2)/32k/2‖φ‖S+k ‖ψ1‖S

s1
k1
‖ψ2‖S

s2
k2
.

In the range j ≥ k1, the operators Q±
≤j are disposable and a similar argument to the one

above with l = 0, i.e. no cap decomposition and no gain from the null structure, gives the
bound

I02(k) . 2(k1−k2)/32k/2‖φ‖S+k ‖ψ1‖S
s1
k1
‖ψ2‖S

s2
k2
.

Contribution of I1(k): We split I1(k) = I11(k) + I12(k) according to j1 < k1 and j1 ≥

k1. Again, by Lemma 2.4 there is no contribution if j1 < k1 in the case s1 = +, s2 = −.
For all other choices of signs, we can restrict the sum in I11 to j1 � −k1, so that by
Lemma 2.4 with 2l = k1 + k2 − k − j1 ∼ k1 − j1 we have

I11(k) =
∑

−k1�j1<k1

∑
n,n′∈4k1
|n−n′|�k1

∑
κ1,κ2∈Kl

d(s1κ1,s2κ2).2−l

∫
0k1,nQ

+

<j1
φ

· 〈Pκ1Q
s1
j1
ψ1, βPκ20k1,n′Q

s2
≤j1
ψ2〉 dx dt.

In view of Lemma 3.3, we decompose

5si (D)Pκi = [5si (D)−5si (2
kiω(κi))]Pκi +5si (2

kiω(κi))Pκi ,

and obtain

‖〈Pκ1Q
s1
j1
ψ1, βPκ20k1,n′Q

s2
≤j1
ψ2〉‖L3/2

t L
6/5
x

. 2−l‖Pκ1Q
s1
j1
ψ1‖L2‖Pκ20k1,n′Q

s2
≤j1
ψ2‖L6

t L
3
x
.
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By Hölder’s inequality and Cauchy–Schwarz we obtain

I11(k) .
∑

−k1�j1<k1

{
2−(k1−j1)/2‖Q

s1
j1
ψ1‖L2

( ∑
n∈4k1

‖0k1,nQ
+

<j1
φ‖2

L3
t L

6
x

)1/2

·

( ∑
n′∈4k1

∑
κ2∈Kl

‖Pκ20k1,n′Q
s2
≤j1
ψ2‖

2
L6
t L

3
x

)1/2}
.

∑
−k1�j1<k1

2−(k1−j1)/22−j1/2‖ψ1‖S
s1
k1

2(k1+k)/3〈k1〉‖φ‖S+k
2(k1+k2)/6〈k1〉‖ψ2‖S

s2
k2

. 2k/2〈k1〉
3
‖φ‖S+k

‖ψ1‖S
s1
k1
‖ψ2‖S

s2
k2
,

where we have used Lemma 3.3(v).
In the range j1 ≥ k1, we forego the gain from the null structure in the above argument

and obtain

I12(k) .
∑
j1≥k1

2−j1/2‖ψ1‖S
s1
k1

2(k1+k)/3‖φ‖S+k
2(k1+k2)/6‖ψ2‖S

s2
k2

. 2k/2‖φ‖S+k ‖ψ1‖S
s1
k1
‖ψ2‖S

s2
k2

since the operators Q±
≤j are disposable.

Contribution of I2(k): As above, we split I2(k) = I21(k)+ I22(k) according to j2 < k1
and j2 ≥ k1. Again, by Lemma 2.4 there is no contribution if j2 < k1 in the case s1 = +,
s2 = −, whereas for all other choices of signs, we can restrict the sum in I21(k) to
j2 � −k1, so that by Lemma 2.4 with 2l = k1 + k2 − k − j2 ∼ k1 − j2 we repeat the
argument for I11(k) to obtain

I21(k) .
∑

−k1�j2<k1

2(k1+k)/3〈k1〉‖φ‖S+k
2−(k1−j2)/22k1/3〈k1〉‖ψ1‖S

s1
k1

2−j2/2‖ψ2‖S
s2
k2

. 2k/22(k1−k)/6〈k1〉
3
‖φ‖S+k

‖ψ1‖S
s1
k1
‖ψ2‖S

s2
k2
.

For the range j2 ≥ k1, the same argument as above, but with no gain from the null
structure, gives the bound

I22(k) .
∑
j2≥k1

2(k1+k)/3‖φ‖S+k
2k1/3‖ψ1‖S

s1
k1

2−j2/2‖ψ2‖S
s2
k2

. 2k/22(k1−k)/6‖φ‖S+k
‖ψ1‖S

s1
k1
‖ψ2‖S

s2
k2
.

Case 2: |k1 − k2| ≤ 10.

Contribution of I0(k): We split I0(k) = I01(k) + I02(k) according to j < k and j ≥ k.
Then, due to Lemma 2.4, there is no contribution if j < k in the case s1 = +, s2 = − or
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s1 = −, s2 = + and k ≺ min(k1, k2). In all remaining cases, we can restrict the sum in
I01 to j � −k, so that

I01(k) .
∑
−k�j<k

∑
n,n′∈4k
|n−n′|�k

‖Q+j φ‖L2‖〈Q
s1
≤j0k,nψ1, βQ

s2
≤j0k,n′ψ2〉‖L2 .

We conclude from Lemma 2.4 with 2l = k1 + k2 − k − j and Lemma 3.3 that

‖〈Q
s1
≤j0k,nψ1, βQ

s2
≤j0k,n′ψ2〉‖L2

. 2−l
∑

κ1,κ2∈Kl

d(s1κ1,s2κ2).2−l

‖Q
s1
≤jPκ10k,nψ1‖L3

t L
6
x
‖Q

s2
≤jPκ20k,n′ψ2‖L6

t L
3
x
.

By Lemma 3.3(v), the operators Q±
≤j are disposable up to a factor 〈k〉. Then, we apply

Cauchy–Schwarz and perform the cube and cap summation to obtain

I01(k) .
∑
−k�j<k

2−j/2‖φ‖Sk2
−(k1+k2−k−j)/22(k+k1)/3〈k〉‖ψ1‖S

s1
k1

2(k+k2)/6〈k〉‖ψ2‖S
s2
k2

. 〈k〉32(k−k1)/22k/2‖φ‖S+k ‖ψ1‖S
s1
k1
‖ψ2‖S

s2
k2
.

Let us now consider the range j ≥ k. Now, by Lemma 3.3(v), the operators Q±
≤j are

disposable. In the case s1 = +, s2 = − and in the case s1 = −, s2 = + and k ≺
min(k1, k2), Lemma 2.4 implies that there is only a contribution if j � k1. Then, the
above argument with l = 0 yields

I02(k) .
∑
j�k1

2−j/2‖φ‖S+k 2(k+k1)/3‖ψ1‖S
s1
k1

2(k+k2)/6‖ψ2‖S
s2
k2

. 2k/2‖φ‖S+k ‖ψ1‖S
s1
k1
‖ψ2‖S

s2
k2
.

In the case s1 = s2, (2.13) implies that the integral is nonzero only if the frequencies in
the supports of ψ̂1 and ψ̂2 make an angle of at most 2k−k1 , hence, we choose l = k1 − k.
In the remaining case where s1 = −, s2 = + and k � min(k1, k2) we choose l = 0.
Again, arguing as for I01(k) we obtain

I02(k) .
∑
j≥k

2−j/2‖φ‖Sk2
−l2(k+k1)/3‖ψ1‖S

s1
k1

2(k+k2)/6‖ψ2‖S
s2
k2

. 2k/2‖φ‖S+k ‖ψ1‖S
s1
k1
‖ψ2‖S

s2
k2
.

Contribution of I1(k): Again, we split I1(k) = I11(k)+ I12(k) according to j1 < k and
j1 ≥ k. Then, due to Lemma 2.4, there is no contribution if j1 < k in the case s1 = +,
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s2 = −, or s1 = −, s2 = + and k ≺ min(k1, k2). In all remaining cases, we can restrict
the sum in I11 to j1 � −k, so that by Lemma 2.4 with 2l = k1 + k2 − k − j1 we have

I11(k) =∑
−k�j1<k

∑
n,n′∈4k
|n−n′|�k

∑
κ1,κ2∈Kl

d(s1κ1,s2κ2).2−l

∫
Q+<j1

φ · 〈Pκ1Q
s1
j1
0k,nψ1, βPκ20k,n′Q

s2
≤j1
ψ2〉 dx dt.

Using Lemma 3.3, we obtain

‖〈Pκ1Q
s1
j1
0k,nψ1, βPκ20k,n′Q

s2
≤j1
ψ2〉‖L3/2

t L
6/5
x

. 2−l‖Pκ1Q
s1
j1
0k,nψ1‖L2‖Pκ20k,n′Q

s2
≤j1
ψ2‖L6

t L
3
x
.

By Hölder’s inequality and Cauchy–Schwarz we obtain

I11(k) .
∑

−k�j1<k

‖Q+<j1
φ‖L3

t L
6
x
2−(k1+k2−k−j1)/2‖Q

s1
j1
ψ1‖L2‖Q

s2
≤j1
ψ2‖L6

t L
3
x [k2;l,k]

.
∑

−k�j1<k

22k/3
〈k〉‖φ‖S+k

2−(k1+k2−k−j1)/22−j1/2‖ψ1‖S
s1
k1

2(k+k2)/6〈k〉‖ψ2‖S
s2
k2

. 2k/225(k−k1)/6〈k〉3‖φ‖S+k
‖ψ1‖S

s1
k1
‖ψ2‖S

s2
k2
,

where we have also used Lemma 3.3(v).
Let us now consider the case j1 ≥ k. We use a dichotomy as for I02(k). In the case

s1 = +, s2 = −, or s1 = −, s2 = + and k ≺ min(k1, k2), Lemma 2.4 implies that there
is only a contribution if j1 � k2. In that case, from the above argument with l = 0 we
obtain

I12(k) .
∑
j1�k2

22k/3
‖φ‖S+k

2−j1/2‖ψ1‖S
s1
k1

2(k+k2)/6‖ψ2‖S
s2
k2

. 2k/22(k−k2)/3‖φ‖S+k
‖ψ1‖S

s1
k1
‖ψ2‖S

s2
k2
.

In the case s1 = s2, (2.13) implies that the integral is nonzero only if the frequencies
in the supports of ψ̂1 and ψ̂2 make an angle of at most 2k−k1 , hence, we choose l = k1−k.
In the remaining case where s1 = −, s2 = + and k � min(k1, k2), we choose l = 0. By
the argument above we obtain

I12(k) .
∑
j1≥k

22k/3
‖φ‖S+k

2−l2−j1/2‖ψ1‖S
s1
k1

2(k+k2)/6‖ψ2‖S
s2
k2

. 2k/225(k−k1)/6‖φ‖S+k
‖ψ1‖S

s1
k1
‖ψ2‖S

s2
k2
.

Contribution of I2(k): This is treated in the same way as I1(k). ut
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Remark 4.2. Using V 2-based spaces one can avoid the logarithmic divergencies in
Lemma 3.3(v). We expect that one could obtain a result in the critical Besov space
Ḃ

0,ε
2,1 × Ḃ

1/2,ε
2,1 × Ḃ

−1/2,ε
2,1 , where ε > 0 accounts for a bit of angular regularity (some-

what strengthening the null structure and this way eliminating any logarithmic factors).
This would improve the result in [20] (which corresponds to ε = 1) in the massive case;
however, we will not pursue these matters here.

4.2. Proof of Theorem 1.1

Again, for notational convenience, let m = M = 1. Fix ε > 0. We will construct a
solution

(ψ+, ψ−, φ+) ∈ Sε := S+,ε × S−,ε × S+,1/2+ε

of the system (2.2) in integral form, i.e.

ψ+(t) = e
−it〈D〉5+(D)ψ0 + i

∫ t

0
e−i(t−s)〈D〉5+(D)[<φ+ β(ψ+ + ψ−)] ds,

ψ−(t) = e
it〈D〉5−(D)ψ0 + i

∫ t

0
ei(t−s)〈D〉5−(D)[<φ+ β(ψ+ + ψ−)] ds,

φ+(t) = e
−it〈D〉φ+,0 + i

∫ t

0
e−i(t−s)〈D〉〈D〉−1

〈(ψ+ + ψ−), β(ψ+ + ψ−)〉 ds,

provided that the initial data satisfy

‖ψ0‖H ε(R3) ≤ δ, ‖φ+,0‖H 1/2+ε(R3) ≤ δ,

for sufficiently small δ > 0. Let T (ψ+, ψ−, φ+) denote the operator defined by the right
hand sides of the above formulas.

By the results of the previous subsection and Lemma 3.4 we conclude that

‖T (ψ+, ψ−, φ+)‖Sε

. δ + ‖φ+‖S+,1/2+ε (‖ψ+‖S+,ε + ‖ψ−‖S−,ε )+ (‖ψ+‖S+,ε + ‖ψ−‖S−,ε )
2

. δ + ‖(ψ+, ψ−, φ+)‖
2
Sε ,

and similar estimates for differences. Hence, in a small closed ball in the complete
space Sε we can invoke the contraction mapping principle to obtain a unique solution.
Further, continuous dependence on the initial data is an easy consequence.

It remains to prove that these solutions scatter, which we will only do for t → ∞,
the other case being similar. It suffices to show that for a solution (ψ+, ψ−, φ+) ∈ Sε we
have convergence of the integrals, i.e.

lim
t→∞

∫ t

0
e−i(−s)〈D〉5+(D)[<φ+ β(ψ+ + ψ−)] ds ∈ H

ε(R3),

lim
t→∞

∫ t

0
ei(−s)〈D〉5−(D)[<φ+ β(ψ+ + ψ−)] ds ∈ H

ε(R3),

lim
t→∞

∫ t

0
e−i(−s)〈D〉〈D〉−1

〈(ψ+ + ψ−), β(ψ+ + ψ−)〉 ds ∈ H
1/2+ε(R3).
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We simply observe that this is a by-product of the linear theory provided by Lemma 3.4.
Indeed, by Remark 3.5 it follows that at the dyadic level these integrals are in fact in U±k
and this is square-summable. From this it follows that they are in the space

V 2(R;H ε(R3))× V 2(R;H ε(R3))× V 2(R;H 1/2+ε(R3)).

Functions of bounded 2-variation have limits at infinity [11, Prop. 2.2], which proves the
scattering claim.
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Inst. H. Poincaré Phys. Théor. 48, 387–422 (1988) Zbl 0672.35071 MR 0969173
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