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Abstract. We provide a necessary and sufficient condition for the metastability of a Markov chain,
expressed in terms of a property of the solutions of the resolvent equation. As an application of
this result, we prove the metastability of reversible, critical zero-range processes starting from a
configuration.
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1. Introduction

Metastability is a physical phenomenon ubiquitous in first order phase transitions. A ten-
tative of a precise description can be traced back, at least, to Maxwell [51].

In the mid-1980s, Cassandro, Galves, Olivieri and Vares [20], continuing work of
Lebowitz and Penrose [55], proposed a first rigorous method for deducing the metastable
behavior of Markov processes, based on the theory of large deviations developed by Frei-
dlin and Wentsel [25]. This method, known as the pathwise approach to metastability,
was successfully applied to many models in statistical mechanics [54].

In the following years, different approaches were put forward. In the early 20th cen-
tury, Bovier, Eckhoff, Gayrard and Klein [16–18], replaced the large deviations tools with
potential theory to derive sharp estimates for the transition times between wells, the so-
called Eyring–Kramers law. We refer to [14] for a comprehensive review of this method,
known as the potential-theoretic approach to metastability.

More recently, Beltrán and Landim [6, 8] characterized the metastable behavior of a
process as the convergence of the order process, a coarse-grained projection of the dynam-
ics, to a Markov chain. Inspired by [17] and based on the martingale characterization of
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Markov processes, they provided different sets of sufficient conditions for metastability.
We refer to [35] for a review of the martingale approach to metastability.

In this article, we show that the metastable behavior of a sequence of Markov chains
can be read off from a property of the solutions of the resolvent equation associated to
the generator of the process. It turns out that this property is not only sufficient, but also
necessary for metastability. This is the content of Theorem 2.3.

As these conditions for metastability do not rely on the explicit knowledge of the
stationary state, they can, in principle, be employed to derive the metastable behavior of
non-reversible dynamics whose stationary states are not known.

To emphasize the strength of our method, we show that the necessary and sufficient
conditions for metastability can be derived from the ones introduced in [6,8], which have
been proved to hold for all models whose metastable behavior has been derived through
the potential-theoretic method [17] or the martingale method [6, 8]. Moreover, the recent
articles [36, 37, 46] successfully apply the approach introduced here to non-reversible
overdamped Langevin dynamics.

We further illustrate the extent of possible applications by proving that the conditions
for metastability required in this article hold for a dynamics with poor mixing properties:
reversible condensing critical zero-range processes. This is a model which does not satisfy
the conditions in [6], and whose metastable behavior could only be derived so far when
the process starts from measures spread over a well [41]. This new approach permits us to
extend this result to reversible dynamics in which the process starts from a configuration.

We leave for the future the investigation of metastability of critical asymmetric zero-
range processes. For this model the mixing condition M, introduced in Section 6.2, is very
delicate in that the mixing time is slightly smaller than the escape time. In the reversible
situation considered here, we verify condition M through a careful construction of a sub-
harmonic function. It seems difficult to extend this construction to the non-reversible case.
Apart from condition M, all other steps are identical to the reversible case.

Recent advancements

Before providing a more detailed statement of the main results, we review recent progress
in the theory of metastability.

Markov Chain Monte Carlo algorithms have been widely used in order to sample
from a given Gibbs measure. Their efficiency is expressed by the speed of convergence to
equilibrium. It has been shown in several different contexts that non-reversible dynamics
converge faster to equilibrium than their reversible counterpart. This is derived by Kaiser,
Jack and Zimmer [30] for the large deviations from the hydrodynamic limit of inter-
acting particle systems described by the Macroscopic Fluctuation Theory. Bouchet and
Reygner [13] show that the transition time between two wells in overdamped Langevin
dynamics is faster in the non-reversible case. A similar result appears in [44] for random
walks in potential fields.

These results raise the problem of finding the non-reversible perturbation of a
reversible dynamics that does not alter the invariant distribution and optimizes the rate
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of convergence. Lelièvre, Nier and Pavliotis [48] solve this problem for overdamped
Langevin equations with quadratic potential. Guillin and Monmarché [28] show that the
asymptotic rate of convergence of generalized Ornstein–Uhlenbeck processes is maxi-
mized by non-reversible hypoelliptic ones.

There are only a few other results on metastability for non-reversible dynamics. Le
Peutrec and Michel [49] obtain by semiclassical analysis the Eyring–Kramers formula
for the exponentially small eigenvalues of the generator of a non-reversible overdamped
Langevin dynamics associated to a potential which is a Morse function satisfying addi-
tional regularity properties.

In the last years, the close connection between quasi-stationary states and exponen-
tial exit laws have been exploited in many different directions. Bianchi, Gaudillière and
Milanesi [11,12] expressed the mean transition time in terms of soft capacities and derived
sufficient conditions for metastability in terms of local and global mixing characteristics
of the dynamics. Miclo [52] provided an estimate on the distance between the exit time of
a set and an exponential law. Di Gesù, Lelièvre, Le Peutrec and Nectoux [22, 47] inves-
tigated the distribution of the exit point from a domain. Berglund [9] reviews analytical
methods to derive metastability. Di Gesú [21] derived, recently, the Eyring–Kramers for-
mula for the exponentially small eigenvalues of the generator of reversible discrete diffu-
sions with semiclassical analysis, an expansion obtained in [42,44] by stochastic methods.

We turn to a precise description of the results.

The model. Consider a sequence of countable sets HN , N 2 N, and a collection of HN -
valued, irreducible, continuous-time Markov chains .�N .t/ W t � 0/. To fix ideas, one may
think that the sets HN are finite with cardinality increasing to infinity, but this is not
necessary.

Let S be a fixed finite set and ‰N W HN ! S a projection in the sense that the cardi-
nality of S is much smaller than that of HN . Elements of HN are represented by Greek
letters �, �, while the ones of S by x, y. The problem we address is under what conditions
the order process .YN .t/ W t � 0/, defined by YN .t/D‰N .�N .t//, is close to a Markovian
dynamics which mimics the dynamics of �N .t/.

Denote by ExN the inverse image of x 2 S by‰N , ExN D‰
�1
N .x/, and by LN the gen-

erator of the Markov chain �N .t/. The sets ExN are called wells. The following condition
plays a central role in the article.

Resolvent condition. Fix a function g W S ! R, and denote by GN WHN ! R its lifting:
GN .�/ D

P
x2S g.x/�Ex

N
.�/, where �A, A � HN , stands for the indicator of the set A.

For � > 0, denote by FN the solution of the resolvent equation

.� � LN /FN D GN : (1.1)

Assume that for each � > 0, FN is asymptotically constant on each set ExN : there
exists a function f W S ! R such that

lim
N!1

max
x2S

sup
�2Ex

N

jFN .�/ � f .x/j D 0: (1.2)

Of course, f depends on � and on g.
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Assume, furthermore, that there exists a generator L of an S -valued continuous-time
Markov chain such that

.� � L/f D g (1.3)

for all � > 0 and g W S ! R.
We claim that, under the resolvent conditions (1.2), (1.3), any limit point of the

sequence of processes YN .�/ D ‰N .�N .�// is the law of the continuous-time Markov
chain whose generator is L. The proof of this claim is so simple that we present it below.
It relies on the martingale characterization of Markovian dynamics.

Assume that the sequence YN .�/ converges in law. Fix �>0 and a function f WS!R.
Denote by FN the solution of the resolvent equation (1.1) with gD .��L/f . Since �N .�/
is a Markov process,

MN .t/ D e
��tFN .�N .t// � FN .�N .0//C

Z t

0

e��r Œ.� � LN /FN �.�N .r// dr (1.4)

is a martingale. As FN solves the resolvent equation (1.1), �FN � LNFN D GN .
By (1.2), FN .�/ is close to f .‰N .�//. Hence, since ‰N .�N .t// D YN .t/ and GN .�/ D
g.‰N .�//, we can write

MN .t/ D e
��tf .YN .t// � f .YN .0//C

Z t

0

e��rg.YN .r// dr C oN .1/;

where oN .1/ is a small error which vanishes uniformly as N !1. As g D .� � L/f ,

MN .t/ D e
��tf .YN .t// � f .YN .0//C

Z t

0

e��r Œ.� � L/f �.YN .r// dr C oN .1/:

Passing to the limit shows that any limit point solves the martingale problem associated to
the generator L. To complete the argument it remains to recall the uniqueness of solutions
of martingale problems in finite state spaces.

The resolvent condition is also necessary. The previous approach provides a general
method to describe a complex system, a Markovian dynamics evolving in a large
space HN , in terms of a much simpler one, an S -valued Markov chain. This abridgement
has been named Markov chain model reduction or metastability; see [35] and references
therein.

The point here is that the existence of this synthetic description of the dynamics can
be read off from a simple property of the generator. It is in force if the resolvent operator
U�;N WD .� � LN /

�1 sends functions which are constant on the sets ExN to functions
which are asymptotically constant.

The second main point of the article is that conditions (1.2), (1.3) are not only suffi-
cient for the convergence of the order process YN .�/, but also necessary.

Applications. The last claim of the article is that this method to derive the metastable
behavior, in the sense of the model reduction described above, of a sequence of Markov
processes can be applied to a wide range of dynamics. We support this assertion by pro-
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viding sufficient conditions for assumptions (1.2), (1.3) to hold. These conditions rely on
mixing properties of the dynamics and have been derived in several different contexts in
previous papers. Furthermore, in the last part of the article, we show that these conditions
are in force for reversible, critical zero-range dynamics. In particular, we are able to extend
the results presented in [41] to the case in which the process starts from a configuration
instead of a measure spread over a well ExN .

Comments. In concrete examples, one has first to find the time-scale �N at which a
metastable behavior is observed. Then, one speeds up the evolution by this quantity and
proves all properties of the dynamics in this new time-scale. Speeding up the process
by �N corresponds to multiplying the generator by the time-scale �N . In the previous
discussion we started from a generator which has already been speeded up, which means
that the metastable behavior is observed in the time-scale �N D 1.

This approach to metastability, inspired from techniques in PDE to study the asymp-
totic behavior of solutions of reaction-diffusion equations [23,59], appeared in the context
of Markov processes in [45,53,56]. In these articles, for different models, it is proved that
the solutions of the Poisson equation LNFN D GN are asymptotically constant in each
well.

Replacing the Poisson equation with resolvent equations has a significant advantage,
as the solutions of the later equation are bounded. It permits, in particular, to prove L1

estimates instead of the L2 estimates derived in [41]. This, in turn, allows to start the
process from a fixed configuration instead of a measure spread over the sets ExN .

The existing methods to derive the metastable behavior of a Markov processes rely
on explicit computations involving the stationary state [14, 35]. In contrast, as already
pointed out at the beginning of this introduction, the deduction of (1.2) and (1.3) does not
appeal to the stationary state.

Introducing a transition region. Condition (1.2) is expected to hold only in very special
cases, where the jump rates between configurations belonging to different sets ExN vanish
asymptotically. Only in such a case, one can hope for a discontinuity of the solution of the
resolvent equation (1.1) at the boundary of the set ExN [an aftermath of condition (1.3)].

To surmount this problem, we introduce a transition set �N which separates the
wells ExN . The set�N has to be sufficiently large to isolate the wells, but small enough to
be irrelevant from the point of view of the dynamics.

In this new set-up, �N , EN forms a partition of the state space HN , where EN DS
x2S ExN . To bypass the set �N , we focus our attention on the trace of the process �N .�/

on EN and provide sufficient conditions for the projection of the trace process to converge
to a Markovian dynamics. This result requires conditions (1.2), (1.3) to hold only on the
set EN , as stated in the first equation.

Furthermore, in this framework, Theorem 2.3 asserts that the resolvent conditions
(1.2), (1.3) hold if, and only if, (a) the order process converges to the S -valued Markov
chain whose generator is L and (b) the process �N .�/ spends only a negligible amount of
time outside the wells ExN .
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Critical zero-range processes. As mentioned above, this approach is applied to a spe-
cial class of zero-range processes. This Markovian dynamics describes the evolution
of particles on a finite set S . Denote by N � 1 the total number of particles and by
� D .�x W x 2 S/ a configuration of particles. Here, �x represents the number of particles
at site x for the configuration �. Let HN D ¹� 2 NS W

P
x2S �x D N º be the state space.

Particles jump on S according to some rates which will be specified in the next section.
It has been shown that a condensation phenomenon occurs for this family of rates. The
precise statement requires some notation. Fix a sequence .`N WN � 1/ such that `N !1,
`N =N ! 0. Denote by ExN , x 2 S , the set of configurations given by

ExN D ¹� 2 HN W �x � N � `N º:

For the models alluded to above, �N .ExN /! 1=jS j, where �N represents the stationary
state of the dynamics [1, 3, 4, 7, 24, 27, 29].

This means that under the stationary state, essentially all particles sit on a single site.
In consequence, in terms of the dynamics, one expects the zero-range process to evolve
as follows. When it reaches a set ExN , it remains there a very long time, performing short
excursions in �N . Its sojourn at ExN before it hits a new well E

y
N , y 6D x, is long enough

for the process to equilibrate inside the well ExN . The transition from ExN to a new well
E
y
N is abrupt in the sense that its duration is much shorter compared to the total time the

process stayed in ExN .
We apply the method presented at the beginning of this introduction to derive the

asymptotic evolution of the position of the condensate (the site x where almost all parti-
cles sit) for critical, reversible zero-range dynamics.

The metastable behavior of condensing zero-range processes has a long history [2, 7,
34, 41, 53, 58]. The critical case, examined here and in [41], presents a major difference
with respect to the supercritical case considered before. While in the supercritical case,
when entering a well, the process visits all its configurations before visiting a new well,
this is no longer true in the critical case. This difference prevents the use of the martingale
approach, proposed in [6, 8], to prove the metastable behavior of a sequence of Markov
chains.

To overcome this problem, we show that in the critical case, when entering a well, the
process hits the bottom of this well before reaching another well. The proof of this result
relies on the superharmonic functions constructed in [41] and on mixing properties of the
process reflected at the boundary of the wells. The fact that the process visits one specific
configuration inside the well permits us to prove its metastable behavior starting from any
configuration inside a well.

Combining the property that the process hits quickly the bottom of a well and that
it mixes inside the well before it reaches its boundary permits us to prove that the solu-
tion of the resolvent equation fulfills (1.2). The proof of property (1.3) also relies on a
computation of capacities between wells. The details are given in Sections 8–12.

To our knowledge, this is the first model which does not visit points and for which one
can prove metastability starting from points and derive explicit formulae for the time-scale
at which metastability occurs and for the generator L of the asymptotic dynamics.
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Along the same lines, Schlichting and Slowik [57] extended the investigation of
metastability to continuous-time Markov chains which do not hit single points. They
derived asymptotic sharp estimates for mean hitting times by generalizing the potential-
theoretic approach to deal with metastable sets, instead of just metastable points. This
technique has been applied by Bovier, den Hollander, Marello, Pulvirenti and Slowik [15]
to inhomogeneous mean-field models.

Directions for future research. As observed above, it is conceivable to derive properties
(1.2), (1.3) without turning to the stationary state. In particular, this approach might permit
one to deduce the metastable behavior of non-reversible dynamics for which the stationary
measure is not known explicitly (say, non-reversible diffusions [13]). Furthermore, prov-
ing properties (1.2) and (1.3) for a generator LN becomes an interesting problem since
they yield (modulo a third property) the metastable behavior of the associated Markovian
dynamics.

2. A resolvent approach to metastability

In this section, we provide a set of sufficient conditions for a sequence of continuous-
time Markov chains to exhibit a metastable behavior. If the framework below seems too
abstract, the reader may read this section together with the next, where we apply these
results to a concrete example, the critical zero-range process.

We start by introducing the general framework proposed in [6, 8] to describe the
metastable behavior of a Markovian dynamics as a Markov chain model reduction. Let
.HN W N � 1/ be a collection of finite sets. Elements of the set HN are designated by the
letters �, �, and �.

Consider a sequence .�N .t/ W t � 0/ of HN -valued, irreducible, continuous-time
Markov chains, whose generator is represented by LN . Then, for every function f W
HN ! R,

.LNf /.�/ D
X
�2HN

RN .�; �/Œf .�/ � f .�/�;

where RN .�; �/ stands for the jump rates. Denote by �N .�/ the holding times of the
Markov chain, �N .�/ D

P
� 6D� RN .�; �/, and by �N the unique stationary state.

Denote by D.RC;HN / the space of right-continuous functions x W RC ! HN with
left limits, endowed with the Skorokhod topology and its associated Borel � -field. Let
PN� , � 2 HN , be the probability measure on D.RC;HN / induced by the process �N .�/
starting from � 2 HN . Expectation with respect to PN� is represented by EN� .

Fix a finite set S , and denote by ExN , x 2 S , a family of disjoint subsets of HN . Let

EN D
[
x2S

ExN and �N D HN n

[
x2S

ExN :

The sets ExN , x 2 S , represent the metastable sets of the dynamics �N .�/, in the sense
that, as soon as the process �N .�/ enters one of these sets, say ExN , it equilibrates in ExN
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before hitting a new set E
y
N , y 6D x. The goal of the theory is to describe the evolution

between these sets. To this end, we introduce the order process.
For A � HN , denote by TA.t/ the total time the process �N .�/ spends in A in the

time interval Œ0; t �:

TA.t/ D

Z t

0

�A.�N .s// ds;

where �A represents the characteristic function of the set A. Denote by SA.t/ the gener-
alized inverse of TA.t/:

SA.t/ D sup ¹s � 0 W TA.s/ � tº: (2.1)

The trace of �N .�/ on A, denoted by .�A
N .t/ W t � 0/, is defined by

�A
N .t/ D �N .S

A.t//; t � 0: (2.2)

It is an A-valued, continuous-time Markov chain, obtained by turning off the clock when
the process �N .�/ visits the set Ac , that is, by deleting all excursions to Ac . For this
reason, it is called the trace process of �N .�/ on A.

Let ‰N W EN ! S be the projection given by

‰N .�/ D
X
x2S

x � �Ex
N
.�/:

The order process .YN .t/ W t � 0/ is defined as

YN .t/ D ‰N .�
EN

N .t//; t � 0: (2.3)

Denote by QN
� , �2EN , the probability measure onD.RC;S/ induced by the measure PN�

and the order process YN .
The definition of metastability relies on two conditions. Let L be a generator of an

S -valued, continuous-time Markov chain. Denote by QL
x , x 2 S , the probability measure

onD.RC; S/ induced by the Markov chain whose generator is L and which starts from x.

Condition CL. For all x 2 S and sequences .�N /N2N such that �N 2 ExN for allN 2N,
the sequence .QN

�N /N2N of laws converges to QL
x as N !1.

The next condition asserts that the process �N .�/ spends a negligible amount of time
on �N on each finite time interval. It ensures that the trace process does not differ much
from the original one when starting from a well.

Condition D. For all t > 0,

lim
N!1

max
x2S

sup
�2Ex

N

EN�

�Z t

0

��N
.�N .s// ds

�
D 0:

The next definition is taken from [6].



A resolvent approach to metastability 9

Definition 2.1. The process �N .�/ is said to be L-metastable if conditions CL and D

hold.

The first main result of this article provides sufficient conditions, expressed in terms
of properties of the solutions of resolvent equations, for condition CL to hold. The second
one asserts that these sufficient conditions are also necessary.

Fix a function g W S ! R, and let GN W HN ! R be its lifting to HN given by

GN .�/ D
X
x2S

g.x/�Ex
N
.�/: (2.4)

Note that the function GN is constant on each well ExN and vanishes on �N . For � > 0,
denote by FN D F

�;g
N the unique solution of the resolvent equation

.� � LN /FN D GN : (2.5)

Condition RL. For all � > 0 and g W S ! R, the unique solution FN of the resolvent
equation (2.5) is asymptotically constant in each set ExN :

lim
N!1

sup
�2Ex

N

jFN .�/ � f .x/j D 0; x 2 S; (2.6)

where f W S ! R is the unique solution of the reduced resolvent equation

.� � L/f D g: (2.7)

Remark 2.2. Condition RL is usually proved in two steps. One first shows that for every
� > 0 and g W S ! R the solution FN of the resolvent equation (2.5) is asymptotically
constant on each well. In other words, that (2.6) holds for some f . Then, one proves
.� � L/f D g for some generator L.

The first main result of the article reads as follows.

Theorem 2.3. The process �N .�/ is L-metastable if, and only if, condition RL is fulfilled.
In other words, Conditions D and CL hold if, and only if, condition RL is in force.

Remark 2.4. This result provides a new tool to prove metastability. The existing methods
rely on explicit computations involving the stationary state. In particular, they cannot be
applied to non-reversible dynamics whose stationary states are not known explicitly, for
example, to small perturbations of dynamical systems or to the superposition of Glauber
and Kawasaki dynamics. That the solution of a resolvent equation is constant on the wells
might be proven without turning to the stationary state.

Remark 2.5. The introduction of the set �N which separates the wells makes condi-
tion RL plausible. The challenge is to tune �N correctly: sufficiently large to prove RL,
but small enough for D to hold.
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Remark 2.6. Solving the martingale problem through a resolvent equation, instead of
a Poisson equation, considerably simplifies the proof of the metastable behavior of the
process. As the solutions of the resolvent equations are bounded (see (4.2)), one can hope
to obtain bounds and convergence in L1, as we do here, instead of L2. Moreover, many
L1-estimates simplify substantially due to the L1-bound on the solution of the resolvent
equation.

Remark 2.7. Condition RL being necessary and sufficient for metastability implies that
it holds for all models whose metastable behavior has been derived so far. The reader will
find in [14, 35] a list of such dynamics.

2.1. Applications

To convince the skeptical reader that condition RL is not too stringent, besides the fact,
mentioned before, that it is also necessary for metastability, we provide two frameworks
where this condition can be proven. First, Theorem 2.8 states that condition RL follows
from properties (H0) and (H1), introduced in [6,8]. Then, in the next section, to illustrate
how to prove condition RL when assumption (H1) is violated, we prove that it holds for
critical condensing zero-range processes.

The statement of Theorem 2.8 requires some notation. Denote by rN .x; y/ the mean-
jump rate between the sets ExN and E

y
N :

rN .x; y/ D
1

�N .E
x
N /

X
�2Ex

N

�N .�/�N .�/PN� Œ�E
y
N
< �C

ME
y
N

�: (2.8)

In this formula, �A and �C
A

, for A � HN , stand for the hitting and return time of the set
A, respectively:

�A D inf ¹t > 0 W �N .t/ 2 Aº: (2.9)

�C
A
D inf ¹t � �1 W �N .t/ 2 Aº; where �1 D inf ¹t � 0 W �N .t/ 6D �N .0/º;

and MEyN D
S
x2Sn¹yº E

x
N for y 2 S:

Condition (H0). For all x 6D y 2 S , the sequence rN .x; y/ converges. Denote its limit
by r.x; y/:

r.x; y/ D lim
N!1

rN .x; y/:

Let DN .F / be the Dirichlet form of a function F W HN ! R with respect to the
generator LN :

DN .F / D hF; .�LNF /i�N
:

Summation by parts yields

DN .F / D
1

2

X
�;�02HN

�N .�/RN .�; �
0/ŒF .�0/ � F.�/�2:
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Fix two disjoint non-empty subsets A and B of HN . The equilibrium potential
between A and B with respect to the process �N .�/ is denoted by hA;B and is given
by

hA;B.�/ D PN� Œ�A < �B �; � 2 HN : (2.10)

The capacity between A and B is given by

capN .A;B/ D DN .hA;B/:

Condition (H1). For each x 2 S , there exists a sequence .�xN W N � 1/ of configurations
such that �xN 2 ExN for all N � 1 and

lim
N!1

max
�2Ex

N

capN .E
x
N ;
MExN /

capN .�
x
N ; �/

D 0:

Theorem 2.8. Assume that conditions (H0) and (H1) are in force. Then the solution FN
of the resolvent equation (2.5) is asymptotically constant on each well ExN in the sense
that

lim
N!1

max
x2S

max
�;�2Ex

N

jFN .�/ � FN .�/j D 0:

Furthermore, let fN W S ! R be the function given by

fN .x/ D
1

�N .E
x
N /

X
�2Ex

N

FN .�/�N .�/; x 2 S;

and let f be a limit point of the sequence fN . Then

Œ.� � LY /f �.y/ D g.y/ (2.11)

for all y 2 S such that �N .�N /=�N .E
y
N /! 0, where g is the function in (2.4). In this

formula, LY is the generator of the continuous-time Markov process whose jump rates
are given by r.x; y/, introduced in (H0).

Remark 2.9. Under assumptions (H0), (H1) and D, condition RLY
is in force. Indeed,

by [8, Theorem 2.1], CLY
holds. Hence, by Theorem 2.3, RLY

is fulfilled. A direct proof
is also possible.

Remark 2.10. Conditions (H0) and (H1) have been proved in many different contexts
including condensing zero-range models [2,7,34,41,58], inclusion processes [10,31,32],
Ising, Potts and Blume–Capel models at low temperature [33, 38, 39, 43], random walks
and diffusions in potential fields [42, 44, 45, 56] and many others [35, 40].

Remark 2.11. Lemma 7.4 provides a sufficient condition for the identity (2.11) to hold
in the case where �N .�N /=�N .E

y
N / does not vanish asymptotically.

The rest of the article is organized as follows. In Section 3, we introduce the critical
zero-range process and state, in Theorem 3.2, that it fulfills conditions RL and D. In
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Section 4, we prove Theorem 2.3. In Sections 5–7, we prove Theorem 2.8 and provide
further different sets of sufficient conditions, namely, conditions V and M, for D or RL

to hold. These families of sufficient conditions were designed to encompass most of the
dynamics whose metastable behavior have been derived so far. Sections 8–12 are devoted
to the proof of Theorem 3.2.

3. Critical zero-range dynamics

In this section, we introduce the critical condensing zero-range process to which we
apply the resolvent approach described in the previous section. Fix a finite set S with
jS j D � � 2 elements, and consider a continuous-time Markov chain on S with genera-
tor LX acting on functions f W S ! R as

.LXf /.x/ D
X
y2S

r.x; y/Œf .y/ � f .x/�

for some jump rate r W S � S ! RC assumed to be symmetric [r.x; y/ D r.y; x/ for
all x; y 2 S ]. Set r.x; x/ D 0 for all x 2 S for convenience. Denote by .X.t//t�0 the
Markov chain generated by LX and assume that this chain is irreducible. Note that the
process X.�/ is reversible with respect to the uniform measure m.�/ on S [m.x/ D 1=�
for all x 2 S ].

The zero-range process describes the evolution of particles on S . A configuration
� 2 NS of particles is written as � D .�x/x2S where �x represents the number of particle
at x under the configuration �. For N 2 N and S0 � S , denote by HN;S0

� NS0 the
subset of configurations on S0 with exactly N particles:

HN;S0
D

°
� 2 NS0 W

X
x2S0

�x D N
±
: (3.1)

Let HN D HN;S . The critical zero-range process is the continuous-time Markov chain
¹�N .t/ºt�0 on HN with generator acting on functions F W HN ! R as

.LNF /.�/ D
X
x;y2S

g.�x/r.x; y/ŒF.�
x;y�/ � F.�/�; � 2 HN ; (3.2)

where
g.0/ D 0; g.1/ D 1; and g.n/ D

n

n � 1
for n � 2:

In this equation, �x;y�, x; y 2 S , stands for the configuration obtained from � by moving
a particle from x to y, when there is at least one particle at x:

.�x;y�/z D

8̂̂<̂
:̂
�x � 1 if z D x;

�y C 1 if z D y;

�z otherwise,

if �x � 1. Otherwise, �x;y� D �.
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3.1. Condensation of particles

It is elementary to check that the unique invariant measure for the irreducible Markov
chain �N .�/ is given by

�N .�/ D
N

ZN;�.logN/��1
1

a.�/
;

where
a.�/ D

Y
x2S

a.�x/ with a.n/ D max ¹n; 1º for n � 0;

and where the partition function ZN;� is defined by

ZN;� D
N

.logN/��1
X
�2HN

1

a.�/
: (3.3)

The factor N=.logN/��1 was introduced so that ZN;� has a non-degenerate limit when
N tends to infinity: By [41, Proposition 4.1], limN!1ZN;� D �. Furthermore, the zero-
range process �N .�/ is reversible with respect to �N .�/.

Define the metastable well as

ExN D ¹� 2 HN W �x � N � `N º; x 2 S;

where `N is any sequence satisfying

lim
N!1

`N

N
D 0 and lim

N!1

log `N
logN

D 1:

Assume that `N D N=logN for simplicity. The set ExN can be regarded as a collection of
configurations in which almost all particles are sitting at site x. As defined previously, let

EN D
[
x2S

ExN and �N D HN n

[
x2S

ExN ;

so that HN D EN [ �N gives a partition of HN : The following result is [41, Theo-
rem 2.3].

Theorem 3.1. For all x 2 S , limN!1 �N .E
x
N / D 1=�. In particular,

lim
N!1

�N .EN / D 1 and lim
N!1

�N .�N / D 0:

Hence, as N !1, under the invariant measure, almost all particles are condensed
at a single site. In this sense, the critical zero-range process �N .�/ condensates. The main
result of the article describes the evolution of the condensate.

This model is said to be “critical” for the following reason. Suppose that we replace
g.�x/ in (3.2) by Œg.�x/�˛ for some ˛ > 0. It is known that the condensation phenomenon
occurs if ˛ � 1, while a diffusive behavior without condensation is observed if ˛ < 1. For
this reason the zero-range process �N .�/ is said to be critical at ˛ D 1.
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3.2. Order process

Let �N D N 2 logN be the time-scale at which the condensate moves, and denote by �N .�/
the process obtained by speeding up the zero-range process �N .�/ by �N , i.e., �N .t/ D
�N .t�N / for all t � 0. Note that the process �N .�/ is the HN -valued, continuous-time
Markov chain whose generator is given by L

�
N D �NLN .

Denote by PN� the probability measure on D.RC;HN / induced by the process �N .�/
starting from � 2 HN , and by EN� the expectation with respect to PN� .

Recall from (2.2), (2.3) the definition of the trace process .�EN

N .t//t�0, of the pro-
jection ‰N W EN ! S , and of the order process .YN .t//t�0. For critical zero-range
processes, the order process YN .�/ specifies the position of the condensate for the trace
process �EN

N .t/. Recall that QN
� , � 2 HN , denotes the probability law on D.RC; S/

induced by the order process YN .�/ when the underlying zero-range process �N .�/ starts
from �.

3.3. Main result

We first introduce the S -valued Markov chain .Y.t//t�0 describing the evolution of the
condensate. Denote by �XC , C � S , the hitting time of the set C with respect to the random
walk X.�/ introduced above:

�XC D inf ¹t > 0 W X.t/ 2 C º:

Let QX
x , x 2 S , be the law of the process X.�/ starting at x. For two non-empty

disjoint subsets A, B of S , the equilibrium potential between A and B with respect to the
process X.�/ is the function hXA;B W S ! R defined by

hXA;B.x/ D QX
x Œ�

X
A < �XB �; x 2 S: (3.4)

The capacity between A and B is given by

capX .A;B/ D DX .h
X
A;B/; (3.5)

where DX .�/ stands for the Dirichlet form associated to the process X.�/, which can be
written as

DX .f / D
1

2

X
x;y2S

m.x/r.x; y/Œf .y/ � f .x/�2 (3.6)

for f W S ! R. If the sets A, B are singletons, then we write capX .x; y/ instead of
capX .¹xº; ¹yº/.

Denote by .Y.t//t�0 the S -valued, continuous-time Markov chain associated to the
generator LY acting on f W S ! R as

.LY f /.x/ D 6�
X
y2S

capX .x; y/Œf .y/ � f .x/�: (3.7)
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Recall from the previous section that we denote by QLY
x , x 2 S , the probability mea-

sure on D.RC; S/ induced by the Markov chain Y.�/ starting from x. Sometimes, we
represent QLY

x by QY
x .

The next theorem is the third main result of the article.

Theorem 3.2. Conditions RLY
and D hold for the critical zero-range process, where

LY is given by (3.7). In particular, the critical zero-range process is LY -metastable.

In view of Theorem 2.3, this result establishes that, in the time-scale �N D N 2 logN ,
the condensate evolves as the Markov chain Y.�/ and outside some time intervals whose
total length is negligible, almost all particles sit on a single site.

Remark 3.3. The so-called martingale approach developed in [6, 8] to derive the
metastable behavior of a Markov process, based on potential theory, does not apply here
because the process does not visit all points of a well before jumping to a new one, and
condition (H1) of [6] is violated. This characteristic is the main difference between the
critical zero-range process and the supercritical ones.

Remark 3.4. By using the so-called Poisson equation approach developed in [45,53,56],
we proved in [41] a weaker version of Theorem 3.2. Denote by �xN .�/, x 2 S , the measure
on ExN obtained by conditioning �N on ExN :

�xN .�/ D
�N .�/

�N .E
x
N /
; � 2 ExN :

We assumed in [41] that the initial distribution is a measure �N concentrated on a set ExN
for some x, and satisfying the following L2-condition: there exists a finite constant C0
such that

E�x
N

��
d�N

d�xN

�2�
D

X
�2Ex

N

�N .�/
2

�xN .�/
� C0 for all N 2 N: (3.8)

The main novelty of Theorem 3.2 is that it removes assumption (3.8) and allows the
process to start from a fixed configuration inside some well.

Remark 3.5. The proof of Theorem 3.2 relies on many estimates obtained in [41], in
particular, on the construction of a superharmonic function inside the wells.

Remark 3.6. The equilibration inside the well, or the loss of memory, is obtained in two
different manners. First, we derive a sharp bound on the relaxation time of the process
reflected at the boundary of a well. This relaxation time is shown to be much smaller than
the metastable time-scale �N .

Then, we show that the process visits the bottom of the well before visiting a new
well. This crucial property is derived with the help of the superharmonic function alluded
to above. Thus, although the process does not visit all configurations in a well before
reaching a new one, it visits a specific configuration.
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Remark 3.7. The symmetry of the jump rates r of the chainX is used in the construction
of the superharmonic function. Theorem 3.2 should still hold without this assumption, but
a proof is missing.

The proof of Theorem 3.2 relies on Theorem 2.3. The strategy is presented in Section 8
and the details in Sections 9–12.

4. Proof of Theorem 2.3

In the first part of this section, we show that condition RL implies conditions CL and D.
In the second part, we prove the converse.

4.1. Condition RL entails CL and D

We first show that the solution of the resolvent equation is bounded. Fix a function g W
S ! R and � > 0. It is well known that the solution of the resolvent equation (2.5) can
be represented as

FN .�/ D EN�

�Z 1
0

e��sGN .�N .s// ds

�
: (4.1)

In particular, there exists a finite constant C0 D C0.�; g/ such that

max
�2HN

jFN .�/j � C0: (4.2)

The next result asserts that condition RL implies condition D.

Lemma 4.1. Assume that condition RL holds. Then condition D is in force.

Proof. We first claim that for all � > 0,

lim
N!1

max
�2EN

EN�

�Z 1
0

e��s��N
.�N .s// ds

�
D 0: (4.3)

Indeed, fix � > 0 and g W S ! R given by g.x/ D 1 for all x 2 S . Let GN , FN be given
by (2.4) and (2.5), respectively. By (4.1) and since GN D �EN

, for all � 2 HN ,

FN .�/�
1

�
D EN�

�Z 1
0

e��sŒGN .�N .s//� 1� ds

�
D �EN�

�Z 1
0

e��s��N
.�N .s// ds

�
:

Since the solution f of the reduced resolvent equation .� � L/f D g is f .x/ D 1=� for
all x 2 S , claim (4.3) follows from (2.6).

Fix t; � > 0, and observe that

EN�

�Z t

0

��N
.�N .s// ds

�
� e�tEN�

�Z t

0

e��s��N
.�N .s// ds

�
� e�tEN�

�Z 1
0

e��s��N
.�N .s// ds

�
for all � 2 HN . Hence, condition D follows from (4.3).
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We prove some consequences of condition RL. The next result asserts that the process
�N .�/ cannot jump from one well to another quickly. The proof of this result is similar to
the one of [56, Proposition 5.2]. Recall from (2.9) that we denote by �A, A � HN , the
hitting time of the set A. Let

MExN D
[

y2Sn¹xº

E
y
N ; x 2 S: (4.4)

Lemma 4.2. Assume that condition RL holds. Then, for all x 2 S ,

lim sup
t!0

lim sup
N!1

sup
�2Ex

N

PN� Œ� MEx
N
< t� D 0: (4.5)

Proof. Fix � > 0, x 2 S and �N 2 ExN . Let f W S ! R be the function given by f .y/ D
1� ıx;y . Set gD .��L/f , and denote by FN the solution of the resolvent equation (2.5).
Let MN .t/ be the martingale defined by

MN .t/ D FN .�N .t// � FN .�N .0// �

Z t

0

.LNFN /.�N .r// dr:

As LNFN D �FN �GN , for every t > 0,

EN� ŒFN .�N .t ^ �//� D FN .�
N /C EN�

�Z t^�

0

.�FN �GN /.�N .r// dr

�
; (4.6)

where � D � MEx
N

.

By condition RL and the definition of f , limN!1 FN .�
N / D 0. By (4.2) and by

definition of GN , �FN �GN is bounded. The right-hand side of (4.6) is thus bounded by
aN C C0t for some finite constant C0 and a sequence aN such that aN ! 0.

We turn to the left-hand side of (4.6). Since f � 0, by condition RL there exists a
constant cN � 0 such that cN ! 0 and zFN .�/ D FN .�/C cN � 0 for all � 2 EN .

Claim A. zFN .�/ � 0 for all � 2 HN .

To prove this claim, let � be a configuration at which zFN achieves its minimum
value so that .LNFN /.�/ D .LN zFN /.�/ � 0. If � 2 EN , there is nothing to prove.
If � 2 �N , then since GN vanishes on �N and .� � LN /FN D GN , it follows that
FN .�/ D �

�1.LNFN /.�/ � 0 so that zFN .�/ D FN .�/C cN � 0, as claimed.

The left-hand side of (4.6) is equal to EN� Œ zFN .�N .t ^ �//� � cN . By RL, for N suf-
ficiently large, zFN .�/ � 1=2 on MExN . Hence, the left-hand side of (4.6) is bounded below
by .1=2/PN� Œ�N .t ^ �/ 2 MExN � � cN .

Putting together the previous estimates yields

PN� Œ�N .t ^ �/ 2 ME
x
N � � 2.cN C aN C C0t /:

To complete the proof of the lemma, it remains to remark that

PN� Œ� MEx
N
< t� � PN� Œ�N .t ^ �/ 2 ME

x
N �:
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The next result states that the sequence .QN
�N /N2N is tight.

Proposition 4.3. Assume that condition D and (4.5) hold. Then the sequence .QN
�N /N2N

is tight, and any limit point Q� of this sequence is such that

Q�ŒY.t/ 6D Y.t�/� D 0 for all t > 0: (4.7)

Proof. This result follows from conditions D, (4.5) and Aldous’ criterion. We refer to
[41, Theorem 5.4] for a proof.

Recall from (2.1) the definition of the time-change SA.t/, A � HN . Clearly, for all
t � 0,

TA.SA.t// D t: (4.8)

In contrast, we only have SA.TA.t// � t and a strict inequality may occur. Furthermore,
for all t > 0 and " > 0,

¹SA.t/ � t � "º �

²Z tC"

0

�Ac .�N .s// ds � "

³
: (4.9)

Indeed, if SA.t/ � t C ", applying TA on both sides of this inequality, as TA is an
increasing function, by (4.8),

t � TA.t C "/ so that t C " � TA.t C "/ � ":

This last relation corresponds exactly to the right-hand side of (4.9).
Denote by ¹F0t ºt�0 the natural filtration of D.RC;HN / generated by the process

�N .�/, F0t D �.�N .s/ W s 2 Œ0; t �/, and by ¹Ftºt�0 its usual augmentation. Let GNt be the
filtrations defined by

GNt WD FSEN .t/ for t > 0: (4.10)

Lemma 4.4. Assume that condition D is in force. Then, for all � > 0 and t > 0,

lim
N!1

sup
�2EN

EN� Œe
��t
� e��S

EN .t/� D 0;

and

lim
N!1

sup
�2EN

EN�

�Z t

0

¹e��r � e��S
EN .r/

º dr

�
D 0:

Note that these expressions are positive since SEN .r/ � r for all r � 0.

Proof. To prove the first assertion, note that the expectation is bounded by

EN� ŒK�.S
EN .t/ � t /�;

where K�.a/ D 1 � e��a.
Fix "> 0. AsK� is continuous, there exists ı > 0 such thatK�.a/� " for all 0� a� ı.

Since K� is bounded by 1, the previous expectation is less than or equal to

"C PN� ŒS
EN .t/ � t > ı�:
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By (4.9) and Chebyshev’s inequality, this expression is bounded by

"C
1

ı
EN�

�Z tCı

0

��N
.�N .s// ds

�
:

At this point, the first claim of the lemma follows from condition D by taking the limit
N !1 and then "! 0.

The proof of the second assertion is similar. The expectation is equal to

EN�

�Z t

0

e��rK�.S
EN .r/ � r/ dr

�
:

As r 7! SEN .r/ � r and K� are increasing maps, this expectation is bounded by

1

�
EN� ŒK�.S

EN .t/ � t /�:

At this point, the second assertion of the lemma follows from the first one.

The next result establishes the uniqueness of limit points of the sequence QN
�N .

Proposition 4.5. Assume condition RL is in force. Fix x 2 S and a sequence .�N /N2N

such that �N 2 ExN for all N 2 N. Let Q� be a limit point of the sequence QN
�N which

satisfies (4.7). Then Q� D QL
x .

Proof. Fix � > 0 and a function f W S ! R, and let g D .� � L/f . Denote by FN the
solution of (2.5). Under the measure PN

�N , the process MN .t/ given by

MN .t/ D e
��tFN .�N .t// � FN .�N .0//C

Z t

0

e��r Œ.� � LN /FN �.�N .r// dr

is a martingale with respect to the filtration ¹Ftºt�0 defined above (4.10). By (2.5), we
may replace .� � LN /FN by GN . Thus, since GN vanishes on �N ,

MN .t/ D e
��tFN .�N .t// � FN .�N .0//C

Z t

0

e��rGN .�N .r//�EN
.�N .r// dr:

Recall the definition of the filtration ¹GNt ºt�0 from (4.10). Since SEN .t/ is a stopping
time with respect to Ft , the process yMN .t/ DM.S

EN .t// is a martingale with respect to
the filtration ¹GNt ºt�0:

yMN .t/ D e
��SEN .t/FN .�

EN

N .t// � FN .�
EN

N .0//

C

Z SEN .t/

0

e��rGN .�N .r//�EN
.�N .r// dr:

The presence of the indicator of the set EN in the integral permits us to perform the
change of variables r 0 D T EN .r/. Hence, by (4.8),

yMN .t/ D e
��SEN .t/FN .�

EN

N .t// � FN .�
EN

N .0//C

Z t

0

e��S
EN .r 0/GN .�

EN .r 0// dr 0:
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By definitions of GN , YN .�/, by condition RL and by Lemmata 4.1 and 4.4,

yMN .t/ D e
��tf .YN .t// � f .YN .0// �

Z t

0

e��r
0

g.YN .r
0// dr 0 CRN .t/;

where, for all t > 0,
lim
N!1

sup
�2Ex

N

EN� ŒRN .t/� D 0: (4.11)

Fix 0 � s < t , p � 1, 0 � s1 < s2 < � � � < sp � s and a bounded measurable function
h W Sp ! R. Let

Ms;t
f
.Y.�// WD e��tf .Y.t// � e��sf .Y.s//C

Z t

s

e��r Œ.� � LY /f �.Y.r// dr;

H.Y.�// WD h.Y.s1/; : : : ; Y.sp//;

and let Q� be a limit point of the sequence QN
�N satisfying the hypothesis of the proposi-

tion. As yMN .t/ is a martingale and �N 2 ExN , by (4.11),

EQ� ŒM
s;t
f
.Y.�//H.Y.�//� D lim

N!1
EN
�N ŒM

s;t
f
.YN .�//H.YN .�//� D 0:

To complete the proof, it remains to appeal to the uniqueness of solutions of martingale
problems in finite state spaces.

We are now in a position to prove that condition RL entails CL and D.

Proof. The statement follows from Lemma 4.1 and Propositions 4.3 and 4.5.

4.2. Conditions CL and D imply RL

Recall equation (4.1) for FN . Since GN vanishes on �N , we may rewrite this identity as

FN .�/ D EN�

�Z 1
0

e��tGN .�.t//�EN
.�.t// dt

�
:

As the chain �N .t/ is irreducible, limt!1 T
E.t/D1. Hence, by the change of variables

t 0 D T E.t/,

FN .�/ D EN�

�Z 1
0

e��S
E .t/GN .�

E.t// dt

�
D EN�

�Z 1
0

e��S
E .t/g.YN .t// dt

�
because GN .�E.t// D g.YN .t//. Therefore,

FN .�/ D EN�

�Z 1
0

e��tg.YN .t// dt

�
CR

.1/
N .�/;

where the absolute value of the remainder R.1/N .�/ is bounded by

kgk1EN�

�Z 1
0

¹e��t � e��S
E .t/
º dt

�
because SE.t/ � t for all t � 0.
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By Condition CL, for all x 2 S ,

lim
N!1

sup
�2Ex

N

ˇ̌̌̌
EN�

�Z 1
0

e��tg.YN .t// dt

�
�QL

x

�Z 1
0

e��tg.Y.t// dt

�ˇ̌̌̌
D 0:

Note that the convergence is uniform in ExN because we may consider a subsequence
�N 2 ExN of initial conditions which attains the maximum and apply condition CL to
this sequence. By (4.1), the second term in the previous formula is f .x/, where f is the
solution of (2.7).

To complete the proof of the theorem, it remains to show that the remainder R.1/N .�/

converges uniformly to 0. This is a consequence of the second assertion of Lemma 4.4.

5. Potential theory

We review below some results of potential theory used in the next three sections. The
notation is the one introduced in Section 2. Recall that we represent byRN WHN �HN !

Œ0;1/ the jump rates of the process �N .�/, and by �N .�/ D
P
� 6D� RN .�; �/ the holding

times. We adopt the convention that the jump rates vanish on the diagonal: RN .�; �/ D 0
for all � 2 HN . Denote the jump probabilities by pN .�; �/ D RN .�; �/=�N .�/.

We represent by h�; �i�N
the scalar product in L2.�N /: for F , G W HN ! R,

hF;Gi�N
D

X
�2HN

F.�/G.�/�N .�/:

Denote by L
�
N the adjoint of the generator LN inL2.�N /. It is well known that L�N is

the generator of an HN -valued, continuous-time Markov chain, represented by ��N .�/. The
jump rates, holding times and jump probabilities of this process are denoted by R�N .�; �/,
�
�
N .�/ and p�N .�; �/, respectively. For a probability measure � on HN , we denote by P�;N�

the measure on D.RC;HN / induced by ��N .�/ starting from �. Expectation with respect
to P�;N� is represented by E�;N� .

Fix two disjoint non-empty subsets A and B of HN . The equilibrium potential
between A and B with respect to the process �N .�/ has been introduced in (2.10). The
one for the adjoint process ��N .�/ is denoted by h�

A;B
W HN ! Œ0; 1� and is given by

h
�

A;B
.�/ D P�;N� Œ�A < �B �; � 2 HN : (5.1)

Recall from (2.8) the definition of the mean-jump rates between ExN and E
y
N for the

process �N .�/. The ones for the adjoint process ��N .�/, represented by r�N .x;y/, are defined
analogously. Since the holding times of the adjoint process coincide with the original
ones, ��N .�/ D �N .�/, r

�
N .x; y/ is equal to the right-hand side of (2.8) with PN� replaced

by P�;N� .
The first result of this section establishes an elementary identity between mean jump

rates of the process and its adjoint. Recall that MExN has been introduced in (4.4).
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Lemma 5.1. For all x 6D y 2 S ,

�N .E
x
N /r

�
N .x; y/ D �N .E

y
N /rN .y; x/;

and X
z 6Dx

r
�
N .x; z/ D

X
z 6Dx

rN .x; z/ D
1

�N .E
x
N /

capN .E
x
N ;
MExN /:

Proof. By the definition (2.8) of the jump rates rN .x; y/,

�N .E
x
N /rN .x; y/ D

X
�2Ex

N

�N .�/�N .�/PN� Œ�E
y
N
< �C

ME
y
N

�:

Let MN .�/ D �N .�/�N .�/. This measure is invariant for the embedded, discrete-time
Markov chain. With this notation, the right-hand side can be written asX

�2Ex
N

X
�2E

y
N

MN .�/PN� Œ�� D �
C

MEN

�:

Reversing the trajectory, this sum is seen to be equal toX
�2Ex

N

X
�2E

y
N

MN .�/P�;N� Œ�� D �
C

MEN

� D �N .E
y
N /r

�
N .y; x/;

which proves the first assertion of the lemma.
To prove the second one, note that

�N .E
x
N /
X
z 6Dx

rN .x; z/ D
X
�2Ex

N

MN .�/PN� Œ� MEx
N
< �C

Ex
N

� D capN . ME
x
N ;E

x
N /:

By [26, (2.4) and Lemma 2.3], capN . ME
x
N ;E

x
N / D cap�N . ME

x
N ;E

x
N /, where the last expres-

sion represents the capacity with respect to the adjoint process. To conclude the proof, it
remains to rewrite the same two identities for the adjoint process.

Conditions (H0), (H1). Recall from Section 2 the statement of these conditions. We
present below some consequences of them. The next result is [6, Proposition 5.10], which
essentially asserts that the process hits every configuration inside a metastable set before
arriving at another metastable set.

Lemma 5.2. Assume that condition (H1) is in force. Fix x 2 S and a sequence .�N W
N � 1/ such that �N 2 ExN for all N � 1. Then

lim sup
N!1

max
�2Ex

N

P�Œ��N > � MEx
N
� D 0:

The next result asserts that, starting from a well ExN , the process �N .�/ visits any point
in ExN quickly.
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Lemma 5.3. Assume that conditions (H0) and (H1) are in force. Fix x 2 S , and let .�N W
N � 1/ be a sequence of configurations such that �N 2 ExN for all N � 1. Then, for all
ı > 0,

lim sup
N!1

max
�2Ex

N

P�Œ��N > ı� D 0:

Proof. Fix a sequence .�N W N � 1/ such that �N 2 ExN for all N � 1. By [8, Theo-
rem 2.1], the process YN .�/ converges to Y.�/. The assertion of the lemma follows from
this fact, Lemma 5.2 and [6, Lemma 3.1].

In the reversible case, the mean jump rate rN .�; �/ can be expressed in terms of capac-
ities: By [6, Lemma 6.8], rN .x; y/ is equal to

1

�N .E
x
N /

�
capN .E

x
N ;
MExN /C capN .E

y
N ;
ME
y
N /� capN .E

x
N [ExN ;EN .S n ¹x;yº//

�
; (5.2)

where EN .S n ¹x; yº/ D
S
z2Sn¹x;yº EzN . Hence, estimating the mean-jump rates boils

down to estimating the capacity between metastable wells, which can be achieved by
using the variational characterizations of capacities, known as the Dirichlet and the Thom-
son principles [35]. In the non-reversible case, a robust strategy of estimating mean-jump
rates via capacities between wells has also been developed in [8, 34, 44].

We complete this section with a formula for the average of equilibrium potentials. Fix
two disjoint non-empty subsets A and B of HN . According to [8, Proposition A.2],X

� 62A[B

�N .�/h
�

A;B
.�/ D capN .A;B/EN

�
�

A;B

�Z �B

0

�ŒA[B�c .�N .s// ds

�
; (5.3)

where ��
A;B

is the equilibrium measure between A and B:

�
�

A;B
.�/ D

1

capN .A;B/
�N .�/�N .�/P�;N

�
Œ�B < �C

A
�; � 2 A: (5.4)

6. The solutions of the resolvent equation

Theorem 2.3 asserts that a sequence of Markov processes is metastable if conditions RL

and D are fulfilled. In this section and in the next, we present sufficient conditions for RL

and D to hold. We start by dividing condition RL into two subconditions, R.1/ and R
.2/
L .

In this section, we present two mixing properties, assumptions V and M, which
imply condition R.1/. As a by-product, we show that condition M implies condition D if
�N .�N /=�N .E

x
N /! 0 for all x 2 S . We leave condition R

.2/
L to the next section.

Condition R.1/. The solution FN of the resolvent equation (2.5) is asymptotically con-
stant on each well ExN in the sense that

lim
N!1

max
x2S

max
�;�2Ex

N

jFN .�/ � FN .�/j D 0:
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Remark 6.1. Clearly, condition R.1/ is satisfied if the wells ExN are singletons as in the
Ising model under Glauber dynamics [19] or in the simple inclusion process [10, 32].

6.1. Visiting condition V

The first condition is built upon the existence in each well of a configuration which is
visited in a time-scale much shorter than the metastable one.

Condition V. There exist configurations �xN 2 ExN , x 2 S , such that

lim
N!1

max
�2E

y
N

PN� Œ��y
N
� s� D 0 (6.1)

for all s > 0 and y 2 S .

The next result asserts that this property is sufficient for R.1/ to hold. The proof is
postponed to the end of the subsection.

Proposition 6.2. Condition V implies condition R.1/.

Remark 6.3. Condition (6.1) requires the process to visit the bottom of the well quickly.
It is weaker than (H1), which implies that the process visits all configurations in a well
before jumping to a new one. Actually, Proposition 10.1 below asserts that a stronger ver-
sion of condition (6.1) holds for reversible, critical zero-range processes, a model which
does not satisfy condition (H1).

Corollary 6.4. Assume that conditions (H0), (H1) are in force. Then R.1/ holds.

Proof. By Lemma 5.3, condition (6.1) holds under the assumptions (H0) and (H1). The
assertion of the corollary follows, therefore, from Proposition 6.2.

Remark 6.5. Conditions (H0) and (H1) have been derived for supercritical condensing
zero-range processes in [7,34,58] and for many other dynamics. These results support the
introduction of condition (6.1).

We turn to the proof of Proposition 6.2. We start by showing that we may mollify the
solution with the semigroup .PN .t/ W t � 0/ associated to the generator LN .

Lemma 6.6. For all T > 0,

sup
0�t�T

max
�2HN

jFN .�/ � .PN .t/FN /.�/j � 2T kGN k1:

Proof. Fix T > 0 and 0 < t � T . By the representation (4.1) of FN ,

.PN .t/FN /.�/ D EN�

�Z 1
0

e��sGN .�N .s C t // ds

�
:

By a change of variables, the right-hand side can be rewritten as

EN�

�Z 1
t

e��sGN .�N .s// ds

�
C EN�

�Z 1
t

¹e��.s�t/ � e��sºGN .�N .s// ds

�
:
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The first term is equal to FN .�/C RN , where the absolute value of RN is bounded by
tkGN k1. As 1 � e�a � a for a � 0, the second term is bounded by tkGN k1.

Proof of Proposition 6.2. Fix x 2 S , � 2 ExN and s > 0, and write .PN .s/FN /.�/ as

EN� ŒFN .�N .s//; ��x
N
� s�CR

.1/
N ;

where the remainder R.1/N is bounded by max�2Ex
N

PN
�
Œ��x

N
> s�kFN k1. By the strong

Markov property, the previous expression is equal to

EN�
�
ŒPN .s � ��x

N
/FN �.�

x
N /; ��x

N
� s

�
CR

.1/
N :

By Lemma 6.6, this expression is equal to FN .�xN /CR
.2/
N , where

jR
.2/
N j � 2skGN k1 C 2 max

�2Ex
N

PN� Œ��x
N
> s�kFN k1:

Hence, by Lemma 6.6 once more,

max
�2Ex

N

jFN .�/ � FN .�
x
N /j � 4skGN k1 C 2 max

�2Ex
N

PN� Œ��x
N
> s�kFN k1:

By (4.2), the sequence FN is uniformly bounded. The same property holds for the
sequence GN by definition. To complete the proof of the assertion, it remains to let
N !1 and then s ! 0 and to recall the hypothesis (6.1).

6.2. Mixing condition M

The second set of assumptions requires the mixing time of the reflected process on a well
to be much smaller than the hitting time of the boundary.

Denote by Vx
N , x 2 S , a set of large wells which contain the wells ExN : ExN � Vx

N .
Let .�R;xN .t/ W t � 0/ be the continuous-time Markov chain on Vx

N obtained by reflecting
the process �N .�/ at the boundary of this set. In other words, in the discrete setting, the
process �R;xN .�/ behaves as the original process inside the well Vx

N , but its jumps to the
set .Vx

N /
c are suppressed.

Denote by dxTV.�; �/D d
x;N
TV .�; �/ the total variation distance between two probabil-

ity measures �, � on Vx
N :

dxTV.�; �/ D
1

2
sup
J

ˇ̌̌̌Z
J.�/�.d�/ �

Z
J.�/ �.d�/

ˇ̌̌̌
; (6.2)

where the supremum is taken over all measurable functions J W Vx
N ! R bounded by 1,

sup�2Vx
N
jJ.�/j � 1.

Assume that the reflected process �R;xN .�/ is ergodic. Denote by .PR;xN .t/ W t � 0/ its
semigroup, by �R;x D �R;xN its stationary state, and by txmix."/D t

x
mix;N ."/, 0 < " < 1, its
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mixing time:

txmix."/ D inf
°
t > 0 W sup

�2Ex
N

dxTV.ı�P
R;x
N .t/; �R;x/ � "

±
:

The next result asserts that the following mixing properties entail condition R.1/.

Condition M. The process �N .�/ starting from a well ExN cannot escape from the well Vx
N

within a time-scale hN � 1: For all x 2 S ,

lim
N!1

sup
�2Ex

N

PN� Œ�.Vx
N
/c � hN � D 0: (6.3)

Furthermore, for every x 2 S , the reflected process �R;xN .�/ is ergodic, and for all " > 0,

txmix."/ � hN (6.4)

for all N sufficiently large.

Proposition 6.7. If the mixing property M is satisfied, then condition R.1/ holds.

Remark 6.8. Barrera and Jara [5] proved that the mixing time of small random pertur-
bations of dynamical systems satisfying certain regularity assumptions is of polynomial
order. Since the hitting time of the boundary is exponentially large [25], the previous
result applies to this setting.

The proof of Proposition 6.7 relies on a simple estimate between the semigroup of the
original process and the semigroup of the reflected one.

Lemma 6.9. For each x 2 S , � 2 ExN and t > 0,

j.PN .t/FN /.�/ � .P
R;x
N .t/FN /.�/j � 2kFN k1PN� Œ�.Vx

N
/c � t �:

Proof. Fix x in S , � in ExN , and write .PN .t/FN /.�/ as

EN� ŒFN .�N .t//; �.Vx
N
/c > t�C EN� ŒFN .�N .t//; �.Vx

N
/c � t �:

In the first term, we may replace the process �N .�/ by the reflected one since the pro-
cess remained in the set Vx

N in the time interval Œ0; t �. The second term is bounded by
PN� Œ�.Vx

N
/c � t �kFN k1. Writing the indicator function of the set ¹�.Vx

N
/c > tº as 1minus

the indicator of the complement, we conclude the proof.

Proof of Proposition 6.7. By Lemmata 6.6 and 6.9 with T D t D hN , and hypothesis
(6.3),

lim
N!1

sup
�2Ex

N

jFN .�/ � .P
R;x
N .hN /FN /.�/j D 0:

Fix x 2 S , � 2 ExN and " > 0. By definition of the total variation distance,

j.P
R;x
N .hN /FN /.�/ �E�R;x ŒFN �j � 2kFN k1d

x
TV

�
ı�P

R;x
N .hN /; �R;x

�
: (6.5)
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By the contracting property of the semigroup, the distance

dxTV.ı�P
R;x
N .t/; �R;x/ D dxTV

�
ı�P

R;x
N .t/; �R;xP

R;x
N .t/

�
is decreasing in t , and thus by (6.4), the right-hand side of (6.5) is bounded from above
by

2kFN k1 sup
�2Ex

N

dxTV

�
ı�P

R;x
N .txmix."//; �

R;x
�
D 2kFN k1"

by definition of the mixing time. This completes the proof of the proposition because the
sequence .FN / is uniformly bounded in N .

6.3. Local equilibration and condition D

The same argument shows that condition M guarantees a fast local equilibration inside
each well. In particular, condition D results from assumption M and the property that
�N .�N /=�N .E

x
N /! 0 for all x 2 S .

Consider a uniformly bounded sequence .QN /N2N of functions QN W HN ! R:
There exists a finite constant M > 0 such that

sup
�2HN

jQN .�/j �M for all N 2 N: (6.6)

Recall the definition of the probability measure �xN , introduced in Remark 3.4.

Proposition 6.10. Assume that condition M is in force. Then, for all x 2 S and T > 0,

sup
�2Ex

N

ˇ̌̌̌
EN�

�Z T

0

QN .�N .t// dt

�
� EN�x

N

�Z T

0

QN .�N .t// dt

�ˇ̌̌̌
� 6M.T C 1/oN .1/;

where the error term oN .1/ on the right-hand side is uniform in N , M and T .

Proof. Fix x 2 S and � 2 ExN , and let

qN .�/ D EN�

�Z T

0

QN .�N .s// ds

�
:

Note that
jqN .�/j � TM for all N 2 N and � 2 HN : (6.7)

By (6.4), there exists a sequence ."N W N � 1/ such that limN "N D 0 and
txmix."N / � hN for all N � 1. Let sN D txmix."N /. SinceQN is uniformly bounded byM ,

qN .�/ D EN�

�Z TChN

hN

QN .�N .s// ds

�
CMO.hN /:

By (6.3), this expectation is equal to

EN�

�Z TChN

hN

QN .�N .s// ds; �.Vx
N
/c > hN

�
CMToN .1/:
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By the Markov property and the definition of qN , we may write the previous expectation
as

EN� ŒqN .�N .hN //; �.Vx
N
/c > hN �:

Recall that we denote by �R;xN .�/ the reflected process at the boundary of Vx
N . Denote

by PR;x� the law of the reflected process �R;xN .�/, and by ER;x� the expectation with respect
to PR;x� .

Due to the presence of the indicator of the set ¹�.Vx
N
/c > hN º, we may replace in the

previous expectation �N .hN / by �R;xN .hN / and then remove the indicator of that set. After
these modifications the previous expression becomes

ER;x� ŒqN .�N .hN //�CMToN .1/:

By definition of sN and since sN � hN , the expectation is equal to

E�R;x ŒqN �CMToN .1/:

We have just proved that

sup
�;�2Ex

N

jqN .�/ � qN .�/j � 6M.T C 1/oN .1/:

The assertion of the proposition follows from this bound by averaging � according to �xN .

Corollary 6.11. Assume that condition M is in force. Then, for all x 2 S and T > 0,

sup
�2Ex

N

EN�

�Z T

0

��N
.�N .t/// dt

�
�
�N .�N /

�N .E
x
N /
T C 6.T C 1/oN .1/:

In particular, if �N .�N /=�N .ExN /! 0 for all x 2 S , then condition D holds.

Proof. By the proposition, for every x 2 S , � 2 ExN and T > 0,

EN�

�Z T

0

��N
.�N .t// dt

�
� EN�x

N

�Z T

0

��N
.�N .t// dt

�
C 6.T C 1/oN .1/:

The expectation is bounded by

1

�N .E
x
N /

EN�N

�Z T

0

��N
.�N .t/// dt

�
D
�N .�N /

�N .E
x
N /
T;

where the last identity follows from the fact that �N is the stationary state.

7. Proof of Theorem 2.8

In this section, we examine the possible limits of the average of the solutions of the resol-
vent equation (2.5) in each well and prove Theorem 2.8. Most of the notation is borrowed
from Section 5.



A resolvent approach to metastability 29

Recall from the statement of Theorem 2.8 the definition of the function fN . Note that
condition R.1/ holds if and only if

lim
N!1

max
z2S

max
�2Ez

N

jFN .�/ � fN .z/j D 0:

Condition R
.2/
L . Let L be the generator of an S -valued, continuous-time Markov chain.

For all x 2 S ,
lim
N!1

fN .x/ D f .x/;

where f W S ! R is the solution of the reduced resolvent equation

.� � L/f D g:

Remark 7.1. It is clear that R.1/ and R
.2/
L together imply condition RL.

By (4.2) and the definition of fN , there exists a finite constant C0 D C0.�; g/ such
that

sup
N�1

max
x2S

jfN .x/j � C0:

Let L be the generator of the S -valued Markov chain induced by the rates r introduced
in condition (H0):

.Lf /.x/ D
X
y2S

r.x; y/Œf .y/ � f .x/�;

and let ��y D �
�

E
y
N
; ME

y
N

, y 2 S , be the equilibrium measure between E
y
N and MEyN , as defined

in (5.4).

Proposition 7.2. Assume that conditions (H0) and R.1/ are in force. Let f be a limit
point of the sequence fN . Then

Œ.� � L/f �.y/ D g.y/

for all y 2 S such that

lim
N!1

�X
z 6Dy

rN .y; z/
�

EN
�

�
y

�Z � MEy
N

0

��N
.�N .s// ds

�
D 0: (7.1)

Proof. Fix y 2 S , and denote by h�y D h
�

E
y
N
; ME

y
N

the equilibrium potential between E
y
N

and MEyN for the adjoint process, as defined in (2.10). Multiply the resolvent equation (2.5)
by h�y and integrate with respect to the stationary measure �N to get

�hFN ; h
�
yi�N

� hLNFN ; h
�
yi�N

D hGN ; h
�
yi�N

: (7.2)

Consider the right-hand side of this equation. Since GN vanishes on �N and is equal
to g.z/ on EzN , z 2 S , and since on the set EN , h�y is equal to the indicator of the set E

y
N ,

hGN ; h
�
yi�N

D g.y/�N .E
y
N /:
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We turn to the first term on the left-hand side of (7.2). For similar reasons, it is equal
to

�
X
�2E

y
N

�N .�/FN .�/C
X
�2�N

�N .�/FN .�/h
�
y.�/:

By (4.2), the sequence FN is uniformly bounded. As h�y is bounded by 1, the second term
is bounded by C0.�; g/

P
�2�N

�N .�/h
�
y.�/. On the other hand, by definition of fN , the

first term is equal to ��N .E
y
N /fN .y/.

We turn to the second term on the left-hand side of (7.2). Since L
�
Nh

�
y D 0 on �N ,

hLNFN ; h
�
yi�N

D hFN ;L
�
Nh

�
yi�N

D

X
x2S

X
�2Ex

N

�N .�/FN .�/.L
�
Nh

�
y/.�/:

Since the equilibrium potential h�y vanishes on MEyN and is equal to 1 on E
y
N , for � 2 ExN ,

x 6D y, as ��N .�/ D �N .�/,

.L
�
Nh

�
y/.�/ D

X
�2HN

R
�
N .�; �/Œh

�
y.�/ � h

�
y.�/�

D �N .�/
X
�2HN

p
�
N .�; �/P

N;�

�
Œ�E

y
N
< � MEy

N
� D �N .�/PN;�� Œ�E

y
N
< �C

ME
y
N

�:

Similarly, as h�y.�/ � 1 D �PN;�
�
Œ� MEy

N
< �E

y
N
�, for � 2 E

y
N ,

.L
�
Nh

�
y/.�/ D ��N .�/P

N;�
� Œ� MEy

N
< �C

E
y
N

�:

Therefore,

hLNFN ; h
�
yi�N

D

X
x 6Dy

X
�2Ex

N

�N .�/�N .�/FN .�/PN;�� Œ�E
y
N
< �C

ME
y
N

�

�

X
�2E

y
N

�N .�/�N .�/FN .�/PN;�� Œ� MEy
N
< �C

E
y
N

�:

Recall from (2.8) the definition of r�N .z;z
0/. Add and subtract fN to rewrite the right-hand

side as X
x 6Dy

�N .E
x
N /fN .x/r

�
N .x; y/ � �N .E

y
N /fN .y/

X
x 6Dy

r
�
N .y; x/CRN ; (7.3)

where the absolute value of the remainder RN is bounded by

max
z2S

max
�2Ez

N

jFN .�/ � fN .z/j
°X
x 6Dy

�N .E
x
N /r

�
N .x; y/C �N .E

y
N /

X
x 6Dy

r
�
N .y; x/

±
:

By Lemma 5.1, this expression can be rewritten as

2�N .E
y
N /max

z2S
max
�2Ez

N

jFN .�/ � fN .z/j
X
x 6Dy

rN .y; x/:
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For the same reasons, the sum of the first two terms in (7.3) is equal to

�N .E
y
N /

X
x 6Dy

rN .y; x/ŒfN .x/ � fN .y/�:

Recollecting all previous calculations and dividing by �N .E
y
N / permits us to rewrite

(7.2) as
�fN .y/ �

X
x 6Dy

rN .y; x/ŒfN .x/ � fN .y/� D g.y/CR
.2/
N ;

where the absolute value of R.2/N is bounded by

C0

�N .E
y
N /

X
�2�N

�N .�/h
�
y.�/C 2max

z2S
max
�2Ez

N

jFN .�/ � fN .z/j
X
x 6Dy

rN .y; x/

for some finite constant C0 D C0.�;g/. By (5.3), with AD E
y
N , B D ME

y
N , and the second

assertion of Lemma 5.1, this expression can be rewritten as

C0
X
x 6Dy

rN .y; x/

²
EN
�

�
y

�Z � MEy
N

0

��N
.�N .s// ds

�
Cmax

z2S
max
�2Ez

N

jFN .�/ � fN .z/j

³
for a possibly different constant C0. To conclude the proof, it remains to recall the state-
ment of conditions (H0), R.1/, and the hypotheses of the proposition.

In the previous proof we used the identity�X
z 6Dy

rN .y; z/
�

EN
�

�
y

�Z � MEy
N

0

��N
.�N .s// ds

�
D

1

�N .E
y
N /

X
�2�N

�N .�/h
�
y.�/: (7.4)

In particular, (7.1) holds for y 2 S if and only if the right-hand side vanishes as N !1.

Corollary 7.3. Assume that conditions (H0) and R.1/ are in force. Let f be a limit point
of the sequence fN . Then

Œ.� � LY /f �.y/ D g.y/

for all y 2 S such that �N .�N /=�N .E
y
N /! 0. In this formula, LY is the generator of

the continuous-time Markov process whose jump rates are given by r.x; y/, introduced
in (H0).

Proof. The right-hand side of (7.4) is bounded by�N .�N /=�N .E
y
N /. Thus, the assertion

follows from Proposition 7.2.

Proof of Theorem 2.8. Theorem 2.8 follows from Corollaries 6.4 and 7.3.

We complete this section with a method to prove condition (7.1) when the hypotheses
of Corollary 7.3 are not satisfied. The idea behind the decomposition below is that AN

is contained in the basin of attraction of MEyN . In particular, starting from a configuration
in AN the set MEyN is reached quickly. We refer to Figure 1 for an example of illustration
of the set AN .
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Fig. 1. This picture illustrates the idea behind the statement of Lemma 7.4. To simplify, we argue
in a continuous setting, but the same idea applies to the discrete setting. Consider a diffusion on
the potential field appearing in the picture. The valley E

y
N

is a metastable set and Ez
N

a stable
one. As �N .�N /=�N .E

y
N
/ does not converge to 0, we decompose �N as �0

N
[ AN , so that

�N .�
0
N
/=�N .E

y
N
/! 0. On the other hand, as AN is a subset of the domain of attraction of the

valley Ez
N

, we can expect (7.5) to hold.

Lemma 7.4. Fix y 2 S , and suppose that�N may be decomposed as�N D �0N [AN ,
�0N \AN D ¿, where �N .�0N /=�N .E

y
N /! 0, and

lim
N!1

sup
�2AN

EN�

�Z � MEy
N

0

�AN
.�N .s// ds

�
D 0: (7.5)

Then (7.1) holds for y.

Proof. In (7.1), write ��N
as �AN

C ��0
N

. We estimate the two pieces separately. By
(7.4) with �0N instead of �N ,�X

x 6Dy

rN .y; x/
�

EN
�

�
y

�Z � MEy
N

0

��0
N
.�N .s// ds

�
�
�N .�

0
N /

�N .E
y
N /
�

By hypothesis, this expression vanishes as N !1.
On the other hand, starting the integral from the hitting time of AN and applying the

strong Markov property yields

EN
�

�
y

�Z � MEy
N

0

�AN
.�N .s// ds

�
D EN

�
�
y

�Z � MEy
N

�AN

�AN
.�N .s// ds

�
� sup
�2AN

EN�

�Z � MEy
N

0

�AN
.�N .s// ds

�
:

By assumption this expression vanishes as N !1, which completes the proof.

8. Proof of Theorem 3.2

In view of Theorem 2.3, to prove Theorem 3.2 we have to show that conditions D and RL

hold. The proof is based on the theory developed in the previous sections. We proceed as
follows.
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Condition RL. In Proposition 10.1, we show that condition V is fulfilled. Hence, by
Proposition 6.2, property R.1/ holds.

In Corollary 12.2 we show that condition (H0) holds. Since we have already proved
that condition R.1/ is fulfilled, and since, by Theorem 3.1, �N .�N /=�N .ExN /! 0 for all
x 2 S , by Corollary 7.3, property R

.2/
LY

is in force, where LY is the generator introduced
in (3.7).

Condition D. Recall the assumptions (6.3) and (6.4) of condition M. In Corollary 9.2,
we show that condition (6.3) holds for some enlarged wells Vx

N and a time-scale hN � 1.
Then, in Proposition 11.1, we prove that, for every " > 0, the mixing time txmix."/ of the
zero-range process reflected at the boundary of Vx

N is bounded by a sequence sN � hN .
This property implies condition (6.4). These two results yield condition M, which is the
assertion of Corollary 11.2. Thus, by Theorem 3.1 and Corollary 6.11, property D is
fulfilled.

Remark 8.1. To deduce property R.1/ one could also invoke Corollary 11.2 and Propo-
sition 6.7. On the other hand, condition R

.2/
LY

has been proven in an alternative way in
[41, Section 7].

9. Escape from large wells

In this section, we prove that condition (6.3) holds for the critical zero-range process for
a sequence .hN /N2N , hN ! 0, and enlarged wells .Vx

N ; x 2 S/N2N , Vx
N � ExN .

For N 2 N, set
mN D N=.logN/ı with ı 2 .0; 1/

and let hN be the macroscopic time-scales given by

hN WD
m2N .logN/1=2

�N
D

1

.logN/1=2C2ı
� (9.1)

For x 2 S , define a larger well by

Vx
N D

®
� 2 HN W �y � mN for all y 2 S n ¹xº

¯
: (9.2)

As in [41], denote by Wx
N , Dx

N , x 2 S , the wells given by

Wx
N D ¹� 2 HN W �x � N �mN º; Dx

N D ¹� 2 HN W �x � N �N

º: (9.3)

In this formula,  2 .0; 2=�/ is a fixed constant. The sets Dx
N are called deep wells and

the sets Wx
N shallow wells.

Denote by �xN 2 HN the configuration such that all N particles are located at site x,
so that

�xN 2 Dx
N � ExN � Wx

N � Vx
N : (9.4)

The main result of this section asserts that the process �N .�/ starting from a well ExN
cannot escape from the well Wx

N within the time-scale hN .
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Proposition 9.1. For all x 2 S ,

lim
N!1

sup
�2Ex

N

PN� Œ�.Wx
N
/c � hN � D 0:

By the last inclusion of (9.4), the next result is a straightforward consequence of
Proposition 9.1.

Corollary 9.2. For all x 2 S ,

lim
N!1

sup
�2Ex

N

PN� Œ�.Vx
N
/c � hN � D 0:

9.1. Estimates based on capacity

In this subsection, we state several estimates based on the following bound of the capacity
between ExN and .Wx

N /
c with respect to the critical zero-range processes.

Lemma 9.3. There exists a finite constant C such that

capN .E
x
N ; .W

x
N /

c/ �
C�N

m2N logN

for all x 2 S and N � 1.

Proof. Let Q.�/ D q.N � �x/ for some function q W Z! R such that

q.k/ D

´
0 if k � `N ;

1 if k � mN :

The precise expression for q will be specified below in (9.5). By the Dirichlet principle
and since Q.�y;z�/ D Q.�/ if y; z ¤ x or � … Wx

N n ExN ,

capN .E
x
N ; .W

x
N /

c/

� DN .Q/ D �N
X

�2Wx
N
nEx

N

X
y2S

�N .�/g.�x/r.x; y/ŒQ.�
x;y�/ �Q.�/�2:

By definition of the jump rates and of Q, this expression is bounded by

C�N
X

�2Wx
N
nEx

N

�N .�/Œq.N � �x C 1/ � q.N � �x/�
2

for some finite constant C . Let

Rk D ¹� 2 HN W N � �x D kº

so that

capN .E
x
N ; .W

x
N /

c/ � C�N

mN�1X
kD`N

�N .Rk/Œq.k C 1/ � q.k/�
2:
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Define

q.k/ D

Pk�1
iD`N

�N .Ri /
�1PmN�1

iD`N
�N .Ri /�1

; k 2 Œ`N ; mN �: (9.5)

It follows from the penultimate displayed equation that

capN .E
x
N ; .W

x
N /

c/ �
C�NPmN�1

iD`N
�N .Ri /�1

: (9.6)

For `N � i < mN ,

�N .Ri / D
N

ZN;�.logN/��1
1

N � i

Zi;��1.log i/��2

i
�

C

logN
1

i
�

Here, we have used the facts that ZN;� , Zi;��1 are bounded, that N=.N � i/ ' 1 and
log i=logN ' 1 for i 2 Œ`N ; mN � 1�. Inserting this into (9.6) yields

capN .E
x
N ; .W

x
N /

c/ �
C�N

.logN/
PmN�1

iD`N
i
�

C�N

m2N logN
;

as claimed.

Based on the previous estimate of capacity, we can refine [41, Propositions 9.4 and
8.6], replacing the set MExN D EN n ExN by the much larger set .Wx

N /
c .

Lemma 9.4. For all x 2 S ,

lim
N!1

inf
�2Dx

N

inf
�2Dx

N

PN� Œ�� < �.Wx
N
/c � D 1:

Proof. By [38, (3.3)] and the monotonicity of capacity,

PN� Œ�� > �.Wx
N
/c � �

capN .�; .W
x
N /

c/

capN .�; �/
�

capN .E
x
N ; .W

x
N /

c/

capN .�; �/
:

Hence, by [41, Lemma 9.3] and Lemma 9.3,

PN� Œ�� > �.Wx
N
/c � � C

N �.logN/��1

m2N logN
D oN .1/;

where the last equality holds because  < 2=�. This completes the proof.

Recall from [41, Proposition 9.1] that the deep wells Dx
N are attractors, in the sense

that
lim
N!1

inf
�2Ex

N

PN� Œ�Dx
N
< �.Wx

N
/c � D 1 for all x 2 S: (9.7)

Lemma 9.5. For all x 2 S ,

lim
N!1

inf
�2Dx

N

inf
�2Ex

N

PN� Œ�� < �.Wx
N
/c � D 1:
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Proof. Fix x 2 S , � 2 ExN , and � 2 Dx
N . Then, by the strong Markov property,

PN� Œ�� < �.Wx
N
/c � � PN� Œ�� < �.Wx

N
/c ; �Dx

N
< �.Wx

N
/c �

� PN� Œ�Dx
N
< �.Wx

N
/c � inf

�2Dx
N

PN� Œ�� < �.Wx
N
/c �:

Therefore, we have

inf
�2Dx

N

inf
�2Ex

N

PN� Œ�� < �.Wx
N
/c �

� inf
�2Ex

N

PN� Œ�Dx
N
< �.Wx

N
/c � � inf

�2Dx
N

inf
�2Dx

N

PN� Œ�� < �.Wx
N
/c �:

The first term on the right-hand side is 1� oN .1/ by (9.7), and the second one is 1� oN .1/
by Lemma 9.4. This completes the proof of the lemma.

9.2. Proof of Proposition 9.1

The proof of Proposition 9.1 is similar to the one of [41, Theorem 3.2]. First, we establish
the following estimate, whose proof is omitted since it is completely identical to the proof
of [41, Proposition 8.4]. It suffices to replace MExN by .Wx

N /
c and 1=N by tN .

Lemma 9.6. For all x 2 S and every probability measure �N concentrated on ExN ,

.PN�N
Œ�.Wx

N
/c � hN �/2 � e2hNE�x

N

��
�N

�xN

�2�
1

�N .E
x
N /

capN .E
x
N ; .W

x
N /

c/:

By inserting �N D �xN .�/ WD �N .�jD
x
N / into the previous equation, we obtain the

following estimate. The order of magnitude of hN is critically used in the proof of this
result.

Lemma 9.7. For all x 2 S ,

lim
N!1

PN�x
N
Œ�.Wx

N
/c � hN � D 0:

Proof. Since

E�x
N

��
�N

�xN

��2
D
�N .E

x
N /

�N .D
x
N /
;

by Lemmata 9.3 and 9.6 we get

.PN�N
Œ�.Wx

N
/c � hN �/2 � ChN

1

�N .D
x
N /

�N

m2N logN
D

C

.logN/1=2
1

�N .D
x
N /
�

By [41, Lemma 4.2], �N .Dx
N / '

1
�
��1, which completes the proof.

Proof of Proposition 9.1. Fix � 2 ExN and � 2 Dx
N . By Lemma 9.5,

PN� Œ�.Wx
N
/c � hN � � PN� Œ�.Wx

N
/c � hN ; �� < �.Wx

N
/c �C PN� Œ�� > �.Wx

N
/c �

D PN� Œ�.Wx
N
/c � hN ; �� < �.Wx

N
/c �C oN .1/:



A resolvent approach to metastability 37

By the strong Markov property,

PN� Œ�.Wx
N
/c � hN ; �� < �.Wx

N
/c � � PN� Œ�.Wx

N
/c � hN �

so that
PN� Œ�.Wx

N
/c � hN � � PN� Œ�.Wx

N
/c � hN �C oN .1/:

Multiplying both sides by �xN .�/ and summing over � 2 Dx
N , we get

PN� Œ�.Wx
N
/c � hN � � PN�x

N
Œ�.Wx

N
/c � hN �C oN .1/:

Apply Lemma 9.7 to complete the proof.

10. Condition V for critical zero-range processes

In this section, we prove that the process �N .�/ starting from a well ExN hits quickly the
configuration �xN . For N � 1, define the time-scale uN by

uN WD
m2N
�N
D

1

.logN/1C2ı
:

Proposition 10.1. For all x 2 S ,

lim
N!1

sup
�2Ex

N

PN� Œ��x
N
� uN � D 0:

In particular, condition V holds for the critical zero-range processes.

This result is crucially used in the next section to verify the requirement (6.4) of
condition M.

10.1. A superharmonic function

We first establish, in Lemma 10.6 below, the estimate stated in Proposition 10.1 for the
process which is reflected at the boundary of Wx

N . The proof of Lemma 10.6 is based
on the construction, carried out in [41, Section 10], of a function GxN W HN ! R, for
x 2 S , which is superharmonic on Wx

N nDx
N . For the sake of completeness, we recall its

definition and main properties below.
Fix x0 2 S , and let S0 D S n ¹x0º. For a subset C of HN , let

int C D ¹� 2 C W �x;y� 2 C for all x; y with r.x; y/ > 0º;

@C D C n int C ;

C D ¹� 2 HN W � 2 C or �x;y� 2 C for some x; y with r.x; y/ > 0º:

With this notation, let

U
x0

N D W
x0

N nD
x0

N so that int U
x0

N D W
x0

N nD
x0

N :
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Recall, from (3.5), that hA;B.�/ and capX .�; �/ represent the equilibrium potential and
the capacity, respectively, associated to the underlying random walk X . For each non-
empty subset A of S0, consider the sequence .bAx;y/x;y2S defined by

bAx;y D
1

�

hx;Ac .y/

capX .x; Ac/
; x; y 2 A;

and bAx;y D 0 otherwise. By elementary properties of the capacity and the equilibrium
potential, bAx;y D b

A
y;x for all x; y 2 S (see [41, Lemma 10.2]). Moreover, by [41, Lemma

10.3],
bAx;y � b

B
x;y for all x; y 2 S (10.1)

if A � B � S0.
For each non-empty subset A of S0, define the quadratic function PA.�/ as

PA.�/ D
1

2

X
x2A

bAx;x�x.�x � 1/C
X
¹x;yº�A

bAx;y�x�y :

By [41, Lemma 10.8],

c1

�X
x2S0

�x

�2
� P S0.�/ � c2

�X
x2S0

�x

�2
: (10.2)

Fix A ¨ S0. For each constant cA > 0 and positive integer ` � 1, let PA
`
W U

x0

N ! R
be given by

PA` .�/ D P
A.�/ � cA`

2:

The dependence ofPA
`

on the constant cA is omitted from the notation. TakingP¿

`
.�/D 0

for all � 2 U
x0

N , define the corrector function W` W U
x0

N ! R by

W`.�/ D min ¹PA` .�/ W A � S0; A 6D S0º:

By [41, Lemma 10.10], there exists a constant 0 < C <1 such that

�C`2 � W`.�/ � 0:

Hence, by (10.2) and the previous bound, P S0.�/ �W`.�/ > 0 for all � 2 U
x0

N .
For each positive integer m > 2, define the function Gx0

N W HN ! R by

G
x0

N .�/ D

8̂̂<̂
:̂

mX
`D2

1

`
ŒP S0.�/ �W`.�/�

1=2; � 2 U
x0

N ;

0; � 2 HN nU
x0

N :

(10.3)

Here, again, the dependence ofGx0

N onm is omitted. The next result is [41, Theorem 9.2].
Recall that L�N D �NLN , introduced in Section 3.2, is the generator of the speeded-up
process.
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Theorem 10.2. For large enough m and a suitable selection .cA/A¨S0
of constants, the

function Gx0

N is superharmonic in W
x0

N n D
x0

N . More precisely, there exists a positive
constant C > 0 such that

.L
�
NG

x0

N /.�/ � �
C�N

N � �x0

for all � 2 W
x0

N nD
x0

N :

Additionally, there exist constants 0 < c1 < c2 <1 such that

c1.N � �x0
/ � G

x0

N .�/ � c2.N � �x0
/ (10.4)

for all � 2 W
x0

N nD
x0

N .

10.2. Reflected processes

Denote by .y�xN .t//t�0 the continuous-time Markov chain on Wx
N obtained by reflecting

the zero-range process �N .�/ at the boundary of this set. In other words, the process y�xN .�/
behaves as the zero-range process inside the well Wx

N , but its jumps to the set .Wx
N /

c

are suppressed. Denote by yPN;x� the law of the reflected process y�xN .�/, and by yEN;x� the
expectation with respect to yPN;x� .

The next result asserts that the function Gx0

N is also superharmonic in W
x0

N n D
x0

N

for the reflected process. Denote by L
x0

N the generator associated to the reflected pro-
cess y�x0

N .�/.

Lemma 10.3. Fix x0 2 S , and let Gx0

N be the function given by (10.3). Then there exists
C > 0 such that

.L
x0

N G
x0

N /.�/ � �
C�N

N � �x0

for all � 2 W
x0

N nD
x0

N :

The main difference between this lemma and Theorem 10.2 is the analysis around the
boundary of W

x0

N , since the generator Lx0

N differs from LN there, as the jumps to .Wx0

N /
c

are excluded.

Proof of Lemma 10.3. Since we possibly have .Lx0

N G
x0

N /.�/ ¤ .LNG
x0

N /.�/ only at the
boundary @Wx0

N D ¹� W �x0
D N �mN º, it suffices to show that

.L
x0

N G
x0

N /.�/ � .L
�
NG

x0

N /.�/ for all � 2 @Wx0

N :

At @Wx0

N , the reflected process cannot decrease the number of particles at site x0. Thus,

.L
x0

N G
x0

N /.�/ D .L
�
NG

x0

N /.�/ � �N
X
y2S

g.�x0
/r.x0; y/ŒG

x0

N .�
x0;y�/ �G

x0

N .�/�;

and it is enough to show that

G
x0

N .�
x0;y�/ � G

x0

N .�/ for all � 2 @Wx0

N :
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Actually, by the definition (10.3) of Gx0

N , it is enough to show that

P S0.�x0;y�/ �W`.�
x0;y�/ � P S0.�/ �W`.�/ (10.5)

for all ` � 2 and � 2 @Wx0

N .
Fix A ¨ S0. By definitions of P S0 and PA along with the increasing property (10.1),

P S0.�x0;y�/ � P S0.�/ D
X
z2S0

bS0
y;z�z �

X
z2A

bAy;z�z

D PA.�x0;y�/ � PA.�/: (10.6)

Hence, if W`.�/ D PA` .�/ and W`.�x;y�/ D PA` .�
x;y�/ for the same set A ¨ S n ¹x0º,

then (10.5) follows from (10.6).
On the other hand, ifW`.�/D PA` .�/ andW`.�x;y�/D PB` .�

x;y�/ for some A¤ B ,
then by definition of W` and (10.6),

W`.�
x;y�/ �W`.�/ D P

B
` .�

x;y�/ � PA` .�/

� PA` .�
x;y�/ � PA` .�/ � P.�

x;y�/ � P.�/:

This completes the proof of (10.5) and of the lemma.

10.3. Hitting times of the reflected process

In this subsection, we establish, in Lemma 10.6 below, that the assertion of Proposition
10.1 holds for the reflected process y�xN .�/. The first result asserts that the process y�xN .�/
hits the set Dx

N quickly when it starts from a configuration in ExN .

Lemma 10.4. There exists C > 0 such that, for all x 2 S and N � 1,

sup
�2Ex

N

yEN;x� Œ�Dx
N
� � C

mN `N

�N
�

Proof. By the martingale formulation, for every t > 0,

yEN;x� ŒGxN .y�
x
N .�Dx

N
^ t //� D GxN .�/C

yEN;x�

�Z �Dx
N
^t

0

.LxNG
x
N /.y�

x
N .s// ds

�
:

By Lemma 10.3, there exists a positive constant C , whose value may change from line to
line, such that

.LxNG
x
N /.�/ � �

C�N

N � �x
� �

C�N

mN
for � 2 Wx

N :

On the other hand, by (10.4), GxN is non-negative. Therefore, by the next to last displayed
equation,

C�N

mN
yEN;x� Œ�Dx

N
^ t � � GxN .�/:
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By (10.4), there exists a finite constant C1 such that GxN .�/ � C1.N � �x/. Hence, since
N � �x � `N for � 2 ExN ,

C�N

mN
yEN;x� Œ�Dx

N
^ t � � C1`N :

To complete the proof of the lemma, it remains to let t !1.

The next result asserts that y�xN .�/ hits the configuration �xN quickly when it starts from
a configuration in Dx

N .

Lemma 10.5. There exists a finite constant C such that

sup
�2Dx

N

yEN;x� Œ��x
N
� � C

N �.logN/��1

�N

for all x 2 S and N � 1.

Proof. If �D �xN , there is nothing to prove. For �¤ �xN , we recall the well-known identity
(see [6, Proposition 6.10])

yEN;x� Œ��x
N
� D

Ey�x
N
ŒhN;x
�;�x

N

�

capxN .�; �
x
N /
; (10.7)

where hN;x
�;�x

N

and capxN .�; �
x
N / denote the equilibrium potential and the capacity between �

and �xN with respect to the reflected process y�xN .�/, respectively, and where y�xN .�/ denotes
the invariant measure conditioned on Wx

N , i.e.,

y�xN .�/ D �N .�jW
x
N / D

�N .�/

�N .W
x
N /
:

Observe that y�xN .�/ is the invariant measure of the reflected process y�xN .�/.
Applying the trivial bound hN;x

�;�x
N

� 1 to (10.7), we get

yEN;x� Œ��x
N
� �

1

capxN .�; �
x
N /
�

By [41, Lemma 9.3],

capxN .�; �
x
N / �

C�N

N �.logN/��1
�

Actually, in [41, Lemma 9.3] this bound is proved for the capacity with respect to the orig-
inal zero-range process, but the same proof applies to the reflected process. To complete
the proof, it remains to combine the previous bounds.

Lemma 10.6. For all x 2 S ,

lim
N!1

sup
�2Ex

N

yPN;x� Œ��x
N
� uN � D 0:
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Proof. By Lemmata 10.4 and 10.5, and the strong Markov property,

yEN;x� Œ��x
N
� �

C

�N
¹mN `N C CN

�.logN/��1º �
m2N
�N

;

since we have assumed that  < 2=�. The assertion of the lemma follows from the Cheby-
shev inequality.

10.4. Proof of Proposition 10.1

Consider the canonical coupling of the zero-range process �N .�/ and the reflected pro-
cess y�xN .�/ starting together at � 2 Wx

N . The two processes move together until �N .�/
hits .Wx

N /
c . From this point on, they move independently according to their respective

dynamics. By Proposition 9.1, starting from ExN , we can couple the original zero-range
process and the reflected process y�xN .�/ up to time hN with a probability close to 1.

The joint law of �N .�/ and y�xN .�/ under this canonical coupling is represented by yPN;x� .
Denote by �A and y�A the hitting time of a set A with respect to �N .�/ and y�xN .�/, respec-
tively.

Proof of Proposition 10.1. Recall the definition of the sequence uN introduced at the
beginning of Section 10, and the one of hN presented in (9.1). Fix � 2 ExN . By Proposi-
tion 9.1,

PN� Œ��x
N
� uN � D PN� Œ��x

N
� uN ; �.Wx

N
/c > hN �C oN .1/:

Recall the canonical coupling introduced above. On the event ¹�.Wx
N
/c > hN º, the

two processes �N .t/ and y�xN .t/move together until hN . Since uN � hN , on the previous
event the sets ¹��x

N
� uN º and ¹y��x

N
� uN º coincide. Thus,

PN� Œ��x
N
� uN ; �.Wx

N
/c > hN � D yPN;x� Œ��x

N
� uN ; �.Wx

N
/c > hN �

D yPN;x� Œy��x
N
� uN ; �.Wx

N
/c > hN �:

Since

yPN;x� Œy��x
N
� uN ; �.Wx

N
/c > hN � � yPN;x� Œy��x

N
� uN � D yPN;x� Œ��x

N
� uN �;

by Lemma 10.6 this quantity vanishes as N !1. It remains to combine the previous
estimates.

11. Condition M for critical zero-range processes

In this section, we prove condition (6.4) for a time-scale sN � hN and the large wells
Vx
N introduced in (9.2). For N � 1, define

sN D .1C .logN/1=4/uN : (11.1)

Note that sN � hN .
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Recall from Section 6.2 and equation (6.2) the definitions of the reflected process
�
R;x
N .�/ and of the total variation distance dxTV.�; �/. For t � 0, let

Dx
TV.t/ WD sup

�2Vx
N

dxTV.ı�P
R;x
N .t/; �R;x/:

Note here that we prove a stronger version of mixing than the one required in condition
M since the supremum in the definition ofDx

TV.t/ is taken over all configurations in Vx
N .

Proposition 11.1. For all x 2 S ,

lim
N!1

Dx
TV.sN / D 0:

It follows from this result that for all " > 0 the mixing time txmix."/ is bounded by sN
for N sufficiently large. In particular, condition (6.4) holds because sN � hN .

Corollary 11.2. Condition M holds for the critical zero-range processes.

Proof. This follows from Corollary 9.2, Proposition 11.1, and the fact that sN � hN .

The proof of Proposition 11.1 is divided into several steps. We first show that the
process �R;xN .�/ hits the configuration �xN in the time-scale uN . The reasoning carried out
in the proof of Lemma 10.6 does not apply to the process �R;xN .�/ because Lemma 10.3
does not hold for it. We present below an alternative argument, based on Propositions 9.1
and 10.1.

Recall from Section 10.4 the definition of the canonical coupling of the zero-range
process �N .�/ and the reflected process y�xN .�/. The same definition permits one to couple
�N .�/ and �R;xN .�/. Denote by yPR;x� the joint law of �N .�/ and �R;xN .�/ under the canonical
coupling.

Lemma 11.3. For all x 2 S ,

lim
N!1

sup
�2Ex

N

PR;x� Œ��x
N
� uN � D 0:

Proof. By Proposition 10.1,

oN .1/ D PN� Œ��x
N
� uN � � PN� Œ��x

N
� uN ; �.Vx

N
/c > hN �:

Let �R
�x

N

stand for the hitting time of the configuration �xN with respect to the reflected

process �R;xN .�/. Replace the probability measure on the right-hand side of the previous
equation by the coupling measure yPR;x� . Since hN � uN ,

yPR;x� Œ��x
N
� uN ; �.Vx

N
/c > hN � D yPR;x� Œ�R�x

N
� uN ; �.Vx

N
/c > hN �

By Proposition 9.1, the right-hand side is equal to

yPR;x� Œ�R�x
N
� uN � � oN .1/ D PR;x� Œ�R�x

N
� uN � � oN .1/;

as claimed.
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We next recall a bound on the spectral gap established in [41].

Theorem 11.4. There exists a constant c0 > 0 such that the spectral gap of the reflected
process �R;xN .�/ on Vx

N is bounded below by c0s�1N for all N � 1.

This result is [41, Theorem 6.1]. One just has to replace `N by mN in the statement
and in the proof of that result.

Recall from Section 6.2 that �R;x , x 2 S , represents the stationary state of the
reflected process �R;xN .�/. Moreover, for � 2 Vx

N and t > 0, the measure ı�P
R;x
N .t/ on Vx

N

stands for the distribution of the reflected process �R;xN .t/ starting at �. Let

�xN .�; t / D ı�x
N
P
R;x
N .t/:

The next result asserts that the reflected process �R;xN .�/ starting from �xN mixes in the
time-scale .logN/1=4uN .

Lemma 11.5. There exist two constants C1; C2 > 0 such that, for all x 2 S and t �
.logN/1=4uN ,

dxTV.�
x
N .�; t /; �

R;x/ � C1e
�C2.logN/1=8

:

Proof. By the Cauchy–Schwarz inequality,

dxTV.�
x
N .�; t /; �

R;x/2 �
1

4

X
�2Vx

N

²
�xN .�; t/

�R;x.�/
� 1

³2
�R;x.�/:

Since the process �N .�/ is reversible, the conditioned measure �N .�jVx
N / is the stationary

measure for the reflected process �R;xN .�/. Hence, by the standard L2-contraction inequal-
ity (see [50, Lemma 20.5]) and Theorem 11.4, the summation on the right-hand side,
which is actually the square of the L2-distance between �xN .�; t / and �R;x.�/, is less than
or equal to

e�c0.t=uN /
X
�2Vx

N

²
�xN .�; 0/

�R;x.�/
� 1

³2
�R;x.�/

for some constant c0 > 0 independent of N . As t � .log N/1=4uN and �xN .�; 0/ D
1¹� D �xN º, this expression is bounded by

e�c0.logN/1=4

�
1

�R;x.�xN /
� 1

�
;

By the explicit formula for the invariant measure �N ,

�R;x.�xN / D
1

�N .V
x
N /

N

ZN;�.logN/��1
1

a.�xN /
�

c1

.logN/��1

for some constant c1 > 0. Putting together the previous estimates yields

dxTV.�
x
N .�; t /; �

R;x/ � c�11 e�c0.logN/1=4

.logN/��1 � c�11 e�.c0=2/.logN/1=4

:

This completes the proof.
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Proof of Proposition 11.1. The proof relies on Lemmata 11.3 and 11.5. Fix x 2 S , �2 ExN
and A � Vx

N . By Lemma 11.3, we can write

PR;x� Œ�
R;x
N .sN / 2 A� D PR;x� Œ�

R;x
N .sN / 2 Aj�R�x

N
< uN �C oN .1/; (11.2)

where the error term oN .1/ on the right-hand side is bounded by 2PR;x� Œ�R
�x

N

� uN � and
hence is independent of A.

Denote by ˛xN .t/ dt the distribution of �R
�x

N

conditioned on �R
�x

N

< uN . Then, by the
strong Markov property, we can write the probability on the right-hand side asZ uN

0

PR;x
�x

N

Œ�
R;x
N .sN � t / 2 A�˛xN .t/ dt: (11.3)

Since sN � t � .logN/1=4uN for all t 2 Œ0; uN �, by definition of sN , it follows from
Lemma 11.5 that

jPR;x
�x

N

Œ�
R;x
N .sN � t / 2 A� � �R;x.A/j � dxTV.�

x
N .�; sN � t /; �

R;x/

� C1e
�C2.logN/1=8

; (11.4)

where we have used the fact that

dxTV.�1; �2/ D sup
A�Vx

N

j�1.A/ � �2.A/j (11.5)

for any probability measures �1 and �2 on HN . By (11.4) and (11.3), we can assert that
the right-hand side of (11.2) is �R;x.A/C oN .1/. Thus,

PR;x� Œ�
R;x
N .sN / 2 A� � �R;x.A/ D oN .1/;

where the error term is independent of A. Therefore, by (11.5), we can conclude that

Dx
TV.sN / D sup

A�Vx
N

jPR;x� Œ�
R;x
N .sN / 2 A� � �R;x.A/j D oN .1/;

as claimed.

12. Condition (H0) for critical zero-range processes

In this section, we verify condition (H0) by establishing the following proposition. For
each A � S , write

EN .A/ D
[
x2A

ExN :

Proposition 12.1. Fix a non-empty subset S1 ¨ S , and let S2 D S n S1. Then

lim
N!1

capN .EN .S1/;EN .S2// D 6
X

x2S1;y2S2

capX .x; y/:
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The proof is similar to that of [7, Theorem 2.2]. As in [7], we prove the lower and
upper bounds separately. The respective proofs is given in Sections 12.1 and 12.2. We
prove several technical lemmata in Section 12.3.

Note that the zero-range dynamics that we are considering now is reversible, and thus
we can express the mean-jump rate rN .x;y/ as in (5.2). Hence, the following is immediate
consequence of Theorem 3.1 and Proposition 12.1.

Corollary 12.2. The critical zero-range processes satisfy condition (H0) with

r.x; y/ D 6�capX .x; y/; x; y 2 S:

Now we turn to the proof of Proposition 12.1.

12.1. Lower bound

We start with a lower bound whose proof is a modification of [7, Proposition 4.1]. For the
proof, we have to introduce a notion of tube along which the metastable transition occurs.
For x; y 2 S; x ¤ y, define the tube I

x;y
N between ExN and E

y
N as

I
x;y
N D ¹� 2 HN�1 W �x C �y � .N � 1/ � `N =3 and �x ; �y � .N � 1/ � `N º:

Then we can observe that

I
x;y
N D I

y;x
N and I

x;y
N \ I

z;w
N D ; if ¹x; yº ¤ ¹z; wº (12.1)

for all large enough N . From now on, all the computations implicitly assume that N
is large enough. This is legitimate since we will send N to 1 in the end. The former
condition in (12.1) is immediate from the definition. For the latter, the statement is obvious
if ¹x; yº \ ¹z; wº D ;. To check the other case, suppose that � 2 I

x;y
N \ I

x;w
N for some

x; y;w 2 S . Then we must have

2.N � 1 � `N =3/ � �x C .�y C �x C �w/ � �x CN � 1

and hence �x �N � 1� 2`N =3. This contradicts the condition �x �N � 1� `N of I
x;y
N .

Proposition 12.3. Fix a non-empty subset S1 ¨ S , and let S2 D S n S1. Then

lim inf
N!1

capN .EN .S1/;EN .S2// � 6
X

x2S1; y2S2

capX .x; y/:

Proof. Write h D hN
EN .S1/;EN .S2/

(see (2.10)) for the equilibrium potential between
EN .S1/ and EN .S2/ so that capN .EN .S1/;EN .S2// D DN .h/.

Let ox 2 H1 denote the configuration with one particle at site x and no particles at
the other sites. We can write the Dirichlet form as

DN .h/ D
N�N

2.logN/��1ZN;�

X
�2HN�1

X
z;w2S

r.z; w/

a.�/
Œh.� C ow/ � h.� C oz/�

2:
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Thus, by (12.1), we can bound DN .h/ from below by

N�N

2.logN/��1ZN;�

X
x2S1; y2S2

X
�2I

x;y
N

X
z;w2S

r.z; w/

a.�/
Œh.� C ow/ � h.� C oz/�

2: (12.2)

For x 2 S1 and y 2 S2, fix a configuration � 2 I
x;y
N such that h.� C ox/¤ h.� C oy/.

Define a function f W S ! R as

f .v/ D
h.� C ov/ � h.� C oy/

h.� C ox/ � h.� C oy/
; v 2 S:

Since f .x/ D 1 and f .y/ D 0, we can apply the Dirichlet principle for the underlying
random walk to get (see (3.5) and (3.6))

1

2

X
z;w2S

r.z; w/Œh.� C ow/ � h.� C oz/�
2

D �DX .f /Œh.� C ox/ � h.� C oy/�
2
� �capX .x; y/Œh.� C ox/ � h.� C oy/�

2:

The same inequality obviously holds when h.� C ox/D h.� C oy/. Hence, we can bound
the summation at (12.2) from below byX

x2S1;y2S2

�
�capX .x; y/

X
�2I

x;y
N

1

a.�/
Œh.� C ox/ � h.� C oy/�

2

�
: (12.3)

Fix x0 2 S1 and y0 2 S2 and denote S0 D S n ¹x0; y0º. For each � 2Hk;S0
(see (3.1))

with k � `N =3, let G� W ¹0; : : : ; N � 1 � kº ! R be the function defined by G� .i/ D
h.�/ where � is the configuration in HN given by �v D �v for v 2 S0, �x0

D i , and
�y0
D N � k � i . Then we can rewrite the second sum of (12.3) as

`N =3X
kD0

X
�2Hk;S0

�
1

a.�/

N�`N�1X
iD`N�k

1

i.N � k � 1 � i/
ŒG� .i C 1/ �G� .i/�

2

�
:

By the Cauchy–Schwarz inequality, the innermost sum above is bounded from below by

hN�`N�1X
iD`N�k

i.N � k � 1 � i/
i�1

ŒG� .N � `N / �G� .`N � k/�
2: (12.4)

By an elementary estimate,

lim
N!1

N 3
hN�`N�1X
iD`N�k

i.N � k � 1 � i/
i�1
D

�Z 1

0

u.1 � u/ du

��1
D 6;

and by the fact that G� .N � `N / D 1 and G� .`N � k/ D 0, we can assert that (12.4) is
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.6C oN .1//=N
3. Summing up, we have shown so far that

DN .h/ � Œ1C oN .1/�
6�

ZN;�

X
x2S1; y2S2

capX .x; y/ �
�

1

.logN/��2

`N =3X
kD0

X
�2Hk;S0

1

a.�/

�
:

Now it suffices to apply Lemma 12.7 and [41, Proposition 4.1] to complete the proof.

12.2. Upper bound

Now we deduce the upper bound of the capacity.

Proposition 12.4. Fix a non-empty subset S1 ¨ S , and let S2 D S n S1. Then

lim sup
N!1

capN .EN .S1/;EN .S2// � 6
X

x2S1;y2S2

capX .x; y/:

We remark at this moment that Proposition 12.1 is an immediate consequence of
Propositions 12.3 and 12.4.

We fix S1 and S2 throughout this subsection. We prove the proposition exactly as in [7,
Section 5] where a test function is constructed and then the upper bound is established via
the Dirichlet principle. This test function can be constructed as a suitable approximation
for the equilibrium potential hEN .S1/;EN .S2/. We repeat the construction of the test func-
tion in exactly the same way as in [7, Section 5].

The set D � RS is defined as

D D
°
u 2 Œ0; 1�S W

X
x2S

ux D 1
±
;

and for each x; y 2 S and " 2 .0; 1=6/ we define

Dx
" D ¹u 2 D W ux > 1 � "º;

Lx;y" D ¹u 2 D W ux C uy � 1 � "º:

From now on, fix x 2 S and " 2 .0; 1=6/. Let � W Œ0; 1�! Œ0; 1� be a smooth bijective
function such that �.t/ C �.1 � t / D 1 for all t 2 Œ0; 1� and � � 0 on Œ0; 3"�. Then,
defineH W Œ0; 1�! Œ0; 1� asH.t/ D 6

R �.t/
0

u.1 � u/ du. For each y 2 S n ¹xº, we write
hx;y D h

X
¹xº;¹yº

(see (3.4)) for the equilibrium potential between x and y with respect to
the underlying random walk. Then, enumerate the elements of S by xD z1; z2; : : : ; z� D y
in such a manner that

1 D hx;y.z1/ � hx;y.z2/ � � � � � hx;y.z�/ D 0:

Then, for each y 2 S n ¹xº, define F jxy WHN !R; 1� j � � � 1, as F 1xy.�/DH.�x=N/
and

F jxy.�/ D H

�
�x

N
Cmin

²
1

N

jX
iD1

�zj ; "

³�
for j 2 Œ2; � � 1�:
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Define Fxy W HN ! R as

Fxy.�/ D

��1X
jD1

Œhx;y.zj / � hx;y.zjC1/�F
j
xy.�/:

For y ¤ x, write Kxy D L
x;y
" nDx

3". We can observe that the � � 1 sets Kxy , y ¤ x, are
pairwise disjoint compact subsets of D. Therefore, there exists a smooth partition of unity
‚xy W D! Œ0; 1�, y ¤ x, such thatX

y2Sn¹xº

‚xy � 1 on D and ‚xy � 1 on Kxy for y 2 S n ¹xº:

With the constructions above, we define Fx W HN ! R as

Fx.�/ D
X

y2Sn¹xº

‚xy .�=N /Fxy.�/:

Finally, the test function FS1
W HN ! R is defined by

FS1
.�/ D

X
x2S1

Fx.�/:

The main property of this test function is the following lemma.

Lemma 12.5. We have

lim sup
N!1

DN .FS1
/ � 6.1C "1=2/3

X
x2S1; y2S2

capX .x; y/:

We omit the proof of this lemma since it is identical to those of [7, (5.11), (5.12),
Proposition 5.3]. Even if those results have been proved for ˛ > 1, the same argument
also holds for ˛ D 1. The only different part is [7, Lemma 5.2] which is used in the proof
of [7, (5.11)]. We substitute this lemma by the following lemma.

Lemma 12.6. For x; y 2 S , define

I
xy
N D ¹� 2 HN W �x C �y � N � `N º:

and let IxN D
S
y2Sn¹xº I

xy
N . Then, for all x 2 S and " 2 .0; 1=6/, there exists a constant

C" > 0 depending only on " > 0 such that

1

2

X
�2HN nI

x
N

X
z;w2S

�N .�/g.�z/r.z; w/ŒFx.�zw�/ � Fx.�/�2 �
C".log logN/2

ZN;�N 2.logN/2
:

(12.5)

Proof. Basically, we perform the same proof as in [7, Lemma 5.2], but the fact that ˛ D 1
makes it slightly different.

Since Fx.�/ D 1 if �x � .1 � 3"/N and Fx.�/ D 0 if �x � 2"N , we can restrict the
first sum of (12.5) to configurations � 2HN n I

x
N satisfying "N � �x � .1� "/N . Since
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there exists C" > 0 such that

max
�2HN

jFx.�
z;w�/ � Fx.�/j �

C"

N
;

we can bound the left-hand side of (12.5) from above by

C"

N 2

X
�2HN nI

x
N
; "N��x�.1�"/N

�N .�/

�
C"N

ZN;�.logN/��1N 2

.1�"/NX
iD"N

X
�W�xDi

max ¹�y Wy¤xº�N�i�`N

1

a.�/

D
C"
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.1�"/NX
iD"N

X
�2HN�i;Sn¹xº.`N /

1

i

1

a.�/
; (12.6)

where, for S0 � S , we define

HN;S0
.`/ D ¹� 2 HN;S0

W �x � N � ` for all x 2 S0º: (12.7)

Since HN�i;Sn¹xº.`N / is a subset of HN�i;Sn¹xº.`N�i /, we can further bound (12.6)
from above by
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where the first and last inequalities follow from Lemma 12.8.

Now we are ready to prove the upper bound.

Proof of Proposition 12.4. It is immediate that

FS1
.�/ D

´
1 if � 2 EN .S1/;

0 if � 2 EN .S2/:

Hence, by Lemma 12.5 and the Dirichlet principle, we get

lim sup
N!1

capN .EN .S1/;EN .S2// � .1C "
1=2/3

6

�

X
x2S1;y2S2

capX .x; y/:

Letting "! 0 completes the proof.
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12.3. Auxiliary lemmata

In this subsection we prove two technical lemmata. The first one is used in the proof of
Proposition 12.3.

Lemma 12.7. For all c > 0 and x; y 2 S , we have

lim
N!1

1

.logN/�

c`NX
nD0

X
�2Hn;S

1

a.�/
D 1: (12.8)

Proof. By the definition (3.3) of the partition function, we can rewrite (12.8) as

lim
N!1

1

.logN/�

c`NX
nD1

.logn/��1

n
Zn;� D 1

as the case n D 0 is negligible. Since .Zn;�/n2N is bounded by [41, Proposition 4.1], and
since

1

.log logN/�

logNX
nD1

.logn/��1

n
'
1

�
;

it suffices to prove that

lim
N!1

1

.logN/�

c`NX
nDlogN

.logn/��1

n
Zn;� D 1:

This follows from [41, Proposition 4.1], from the elementary fact that

c`NX
nDlogN

.logn/��1

n
'
.log.c`N //� � .log logN/�

�
;

and from limN!1 log `N =logN D 1.

The next lemma is used in the proof of Proposition 12.4. Recall the definition of
HN;S0

.`/ from (12.7). We simply write HN .`/ D HN;S .`/.

Lemma 12.8. Define `.a/N D N=.logN/a. For � � 2 and a > 0, there exists a constant
C D C�;a > 0 such that

N

.logN/��1
X

�2HN .`
.a/
N
/

1

a.�/
� C

log logN
logN

: (12.9)

Proof. We proceed by induction. For � D 2, we can rewrite and bound the left-hand side
of (12.9) as

N

logN
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log logN
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:



C. Landim, D. Marcondes, I. Seo 52

Now we assume the result holds for all � 2 Œ2; �0 � 1� and all a > 0. Then, we will
show that (12.9) holds for � D �0 and a > 0. Define, for n � `.aC1/N ,

A
x;a
N;n D

®
� 2 HN�n;Sn¹xº W �y � N � `

.a/
N for all y 2 S n ¹xº

¯
:

We first claim that
A
x;a
N;n � HN�n;Sn¹xº.`

.aC1/
N�n /: (12.10)

To verify this, it suffices to check that
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This follows for n � `.aC1/N from the inequality
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Observe that we can write
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By the induction hypothesis and (12.10), the first summation above is bounded by
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:

On the other hand, for the second summation of (12.11), we can enlarge A
x;a
N;n to

HN�n;Sn¹xº so that the summation is bounded by
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by [41, Proposition 4.1].
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