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Abstract. We establish quantitative bounds on the U k ŒN � Gowers norms of the Möbius function �
and the von Mangoldt function ƒ for all k, with error terms of the shape O..log logN/�c/. As a
consequence, we obtain quantitative bounds for the number of solutions to any linear system of
equations of finite complexity in the primes, with the same shape of error terms. We also obtain
the first quantitative bounds on the size of sets containing no k-term arithmetic progressions with
shifted prime difference.
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1. Introduction

Throughout this paper we fix an integer k � 1, and let N > 1 be a real parameter that is
assumed to be sufficiently large depending on k. We will also make frequent use of the
somewhat smaller quantity

Q WD exp.log1=10N/; (1.1)

for instance by sieving out multiples of all primes less thanQ. We use c to denote various
small positive constants depending on k that are allowed to vary from line to line, or even
within the same line. All the constants in our asymptotic notation are permitted to depend
on k (see Section 3 for a more detailed description of the asymptotic notation conventions
used in this paper). The implied constants will be effective, except when otherwise stated.

In this paper we will be interested in quantitatively controlling the Gowers norm
uniformity of the Möbius function � and the von Mangoldt function ƒ on the inter-
val ŒN � WD ¹n 2 N W 1 � n � N º, as well as various related statistics. Our methods can
extend to some other arithmetic functions, such as sufficiently “non-pretentious” bounded
multiplicative functions, but we focus on the classical functions �; ƒ here for ease of
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exposition. Such quantitative control on the Gowers norms will be used to quantify the
asymptotics for linear equations in primes obtained in [22].

We begin by recalling the definition of the Gowers uniformity norms, first introduced
by Gowers [13]; we largely follow the notation of [22, Appendix B] here, except that we
will find it convenient to work with both normalized and unnormalized Gowers norms.

Definition 1.1 (Gowers norms). Let k � 1 be a natural number.

(i) If ! 2 ¹0; 1ºk is a k-tuple, we write !1; : : : ;!k 2 ¹0;1º for the components of !, and
j!j WD !1C � � � C!k . Similarly, if Eh 2Gk is a k-tuple in some additive groupG, we
write h1; : : : ; hk 2 G for the components of h, and write ! � Eh for the “dot product”

! � Eh WD !1h1 C � � � C !khk :

We often identify GkC1 with G �Gk , thus for instance the assertion .n; Eh/ 2 GkC1

means that n 2 G and Eh 2 Gk .

(ii) If f WG ! C is a finitely supported function on an additive group G, we define the
(unnormalized) Gowers uniformity norm kf k QUk.G/ to be the quantity

kf k QUk.G/ WD
� X
.n;Eh/2GkC1

Y
!2¹0;1ºk

C j!jf .nC ! � Eh/
�1=2k

;

where C W z 7! xz denotes complex conjugation. If G is finite, we then define the
normalized norm

kf kUk.G/ WD kf k QUk.G/=k1k QUk.G/:

(iii) For any function f WZ!C and natural numberN , we define the local .normalized/
Gowers uniformity norm

kf kUk ŒN � WD kf 1ŒN �k QUk.Z/=k1ŒN �k QUk.Z/;

where 1ŒN � is the indicator function of ŒN �.

Thus for instance

kf kU 1ŒN � D
�
En;hW .n;nCh/2ŒN �2f .n/f .nC h/

�1=2
D jEn2ŒN �f .n/j;

where throughout this paper we use the averaging notation

Ea2Af .a/ WD
1

#A

X
a2A

f .a/

for any non-empty setA of some finite cardinality #A, and by the orthogonality of additive
characters we can compute

kf kU 2ŒN � D
�
En;hW .n;nCh;nCk;nChCk/2ŒN �4f .n/f .nC h/f .nC k/f .nC hC k/

�1=4
� N�3=4

�Z 1

0

ˇ̌̌ X
n2ŒN �

f .n/e.n�/
ˇ̌̌4
d�

�1=4
;
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where we adopt the usual asymptotic notation (see Section 3), and e.�/ WD e2�i� . While
we will permit the functions f to be complex-valued for compatibility with previous lit-
erature (particularly those that invoke the circle method), in this paper we will deal almost
exclusively with real-valued functions. As is well known, the Gowers uniformity norms
are indeed norms for k � 2, and seminorms for k D 1; see for instance [22, Appendix B].
In particular, they obey the triangle inequality

kf C gkUk ŒN � � kf kUk ŒN � C kgkUk ŒN � (1.2)

(and similarly for the other variants of the Gowers norms in Definition 1.1), which we
will rely on frequently in this paper.

The Möbius pseudorandomness principle (see e.g. [29, p. 338]) informally makes the
prediction

�.n/ � 0

in the metric given by the Gowers norms U k ŒN �. Similarly, the usual modification of the
Cramér random model [6], as refined by Granville [15] in order to take into account the
distribution at primes below some threshold w, makes the prediction

ƒ.n/ � ƒCramér;w.n/

for various small 2 � w � N , where ƒCramér;w WZ! R is the function

ƒCramér;w.n/ WD
P.w/

�.P.w//
1.n;P.w//D1 D

Y
p<w

p

p � 1
1p−n;

where P.w/ is the primorial1 of w,

P.w/ WD
Y
p<w

p;

with � the Euler totient function and .n; P.w// the greatest common divisor of n
and P.w/. Thus for instance ƒCramér;2 D 1 (which corresponds to the original model
of Cramér). The precise choice of the parameter w is not too important, as can be shown
by the following standard sieve-theoretic calculation:

Proposition 1.2 (Gowers norm stability of the Cramér model). If 2 � w; z � Q, then

kƒCramér;w �ƒCramér;zkUk ŒN � � log�c N C w�c C z�c : (1.3)

We establish this proposition in Section 5. In our applications it will be convenient
to focus on the Cramér models ƒCramér;w ; ƒCramér;z with w D log� N , z D Q, for � > 0
a sufficiently small constant which may depend on k (usually we can take � D 1=100).
However, using Proposition 1.2 it is not difficult to also work with other suitable choices

1In some texts the constraint p � w is used in place of p < w; the precise convention is not too
important for our applications, but the choice p < w is consistent with the conventions in [11].
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of parameters if desired, at least up to logarithmic decay (and probably up to pseudopoly-
nomial decay2 as well, see Remark 5.4).

We summarize the previous Gowers uniformity results on Möbius and von Mangoldt
as follows.

Theorem 1.3 (Gowers uniformity of Möbius and von Mangoldt).

(i) (Pseudopolynomial U 1 uniformity) We have

k�kU 1ŒN �; kƒ � 1kU 1ŒN � � exp.�c.logN/3=5.log logN/�1=5/:

(ii) (Logarithmic and strongly logarithmic U 2 uniformity) We have

k�kU 2ŒN � �
ineff
A log�AN

and
kƒ �ƒCramér;wkU 2ŒN � �

ineff log�c N C w�c (1.4)

for all A > 0 and all 2 � w � Q.

(iii) (Qualitative higher uniformity) For any fixed k > 2, we have

k�kUk ŒN � D o
ineff.1/

and
kƒ �ƒCramér;wkUk ŒN � � w�c C oineff.1/ (1.5)

as N !1 uniformly for any 2 � w � Q.

In the asymptotic notation superscripted with ineff, the implied constants are permitted
to be ineffective.

A short deduction of this theorem from results stated in the literature is given in
Appendix B for the sake of completeness.

The first main objective of this paper is to quantify (and make effective) the qualita-
tive rate of decay oineff.1/ in Theorem 1.3 (iii). We are able to obtain doubly logarithmic
bounds which are weaker than the k D 2 logarithmic bound in Theorem 1.3 (ii) only by a
single additional logarithm:

Theorem 1.4 (Doubly logarithmic uniformity of Möbius and von Mangoldt). For k � 2,
we have

k�kUk ŒN � � .log logN/�c

and
kƒ �ƒCramér;wkUk ŒN � � .log logN/�c C w�c

whenever 2 � w � Q.

2By a pseudopolynomially decaying function we mean one that decays faster than
exp.� logc N/ for some c > 0.
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This is new for k � 3; henceforth we will assume k � 2 in our arguments to avoid
some minor degeneracies. We remark that this theorem (and hence all of our subsequent
results) are dependent on the results in [33] (see also [1]), which are currently available
in preprint form as of this time of writing.

For later use, we also state a version of Theorem 1.4 for ƒ where the W -trick has
been implemented.

Corollary 1.5 (W -tricked quantitative Gowers uniformity). Let w D .log logN/1=2 and
W D

Q
p�w p. Then for k � 2 we have�.W /W

ƒ.W � Cb/ � 1


Uk ŒN�bW �

� .log logN/�c

whenever 1 � b � W is coprime to W .

In Corollary 1.5, unlike in Theorem 1.4, the size of w turns out to be important.
Indeed, if we had w=log logN !1, then for all we know there could be a Siegel zero
to some modulus q �Q such that all its prime factors dividedW , and this would bias the
main term 1 in Corollary 1.5; cf. Theorem 2.6.

1.1. Applications to linear equations in primes and to progressions with shifted prime
difference

The main application of the qualitative uniformity result (1.5) in [22] was to obtain quali-
tative asymptotics on linear equations in the primes; now using Theorem 1.4 we can make
that result quantitative.

Theorem 1.6 (Quantitative linear equations in primes). LetN;d; t;L be positive integers,
and let ‰ D . 1; : : : ;  t / be a system of affine-linear forms  i WZd ! Z of the form

 i .n/ D n � P i C  i .0/

where P i 2 Zd and  i .0/ 2 Z are such that j P i j � L and j i .0/j � LN . Suppose that
no two of the P i are linearly dependent. Let � � Œ�N;N �d be a convex body. ThenX

En2�\Zd

tY
iD1

ƒ. i .En// D ˇ1
Y
p

p̌ COt;d;L.N
d .log logN/�c/ (1.6)

as N !1, where c D ct;d;L > 0 depends only on t; d; L, ƒ is extended by zero to the
integers, ˇ1 is the Archimedean factor

ˇ1 D vol.� \‰�1.Rt>0//;

and for each prime p, p̌ is the local factor

p̌ WD EEn2.Z=pZ/d

tY
iD1

p

p � 1
1 i .En/¤0

.viewing each  i also as an affine map from .Z=pZ/d to Z=pZ/.
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Note that, in the language of [22], the assumption that P i are pairwise linearly inde-
pendent is equivalent to these forms having “finite Cauchy–Schwarz complexity”.

In [22], the result of Theorem 1.6 was established with the qualitative error term
oineff
t;d;L

.N d / in (1.6) (initially under the hypotheses of the Möbius and nilsequences con-
jecture and the inverse Gowers-norm conjecture, but these were later proved in [23, 27]).

In Section 9, we outline the (rather straightforward) details of the deduction of Theo-
rem 1.6 from Theorem 1.4.

Example 1.7. In [22, Example 8] it is shown that the number of (increasing) arithmetic
progressions of primes of a given length k � 2 in ŒN � is equal to�

1

2.k � 1/

Y
p

p̌ C o
ineff.1/

�
N 2

logk N

where p̌ is equal to 1
p
. p
p�1

/k�1 when p � k, and .1� k�1
p
/. p
p�1

/k�1 otherwise. Insert-
ing Theorem 1.6 into the arguments from [22], the qualitative error term oineff.1/ can now
be improved to the doubly logarithmic error O..log logN/�c/. This is new for k � 4.

Another application of Theorem 1.6 is to sets containing no progressions with shifted
prime difference.3 It was shown by Sárközy [39] that (for N large) any subset of ŒN �
of size� N contains a pattern of the form x; x C p � 1 with p a prime. After several
improvements [32, 37, 46], the current best known quantitative version of this, proved
recently by Green [16], is that any subset of ŒN � of size � N 1�c contains a pattern of this
form. Sárközy’s theorem was later generalized to longer progressions by Frantzikinakis–
Host–Kra [10], and Wooley–Ziegler [47], who showed that, for any k � 3 and N large
enough in terms of k, any subset of ŒN � of size � N contains a pattern of the form
x; x C p � 1; x C 2.p � 1/; : : : ; x C .k � 1/.p � 1/ with p a prime, that is, a k-term
arithmetic progression with shifted prime difference. These proofs however did not pro-
vide quantitative bounds for the density of a set avoiding k-term progressions with shifted
prime difference. Using our main theorem, we can now obtain the first quantitative bound
for this problem.

Theorem 1.8 (A quantitative bound for sets missing progressions with shifted prime dif-
ference). Let k � 3, and let N be large enough in terms of k. Then any subset of ŒN �
of size � N.log log log logN/�c contains a k-term arithmetic progression whose com-
mon difference is a shifted prime of the form p � 1. Moreover, if k D 4, one can replace
N.log log log logN/�c with N.log log logN/�c above, and if k D 3, one can replace it
with N exp.�.log log logN/c/ .

The proof of this is given in Section 10.

Remark 1.9. It is likely that one can similarly now make other qualitative consequences
of (1.5) quantitative. Certainly the version of the generalized Hardy–Littlewood conjec-
ture in [22, Conjecture 1.2] (in the finite complexity case) can now be made quantitative,

3We are indebted to Sean Prendiville for bringing this application to our attention.
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with doubly logarithmic savings, in a manner perfectly analogous to Theorem 1.6, as can
the version of the main theorem in [22, Theorem 1.8]; we omit the details. The more
recent asymptotics on linear inequalities in primes in [45] are also likely to now have a
doubly logarithmic quantitative version, but we do not pursue this matter here.

Lastly, one can also use Theorem 1.6 to quantify a result of the authors [42] on the log-
arithmically averaged Chowla conjecture for odd order correlations (whose proof relied
on the Gowers uniformity of ƒ). A back of the envelope calculation suggests that one
could quantify the error term there, for fixed odd k � 3, to triply logarithmic; thus,

1

log x

X
n�x

�.nC h1/�.nC h2/ � � ��.nC hk/

n
� .log log log x/�c (1.7)

for any fixed integers 0 � h1 < � � � < hk (and the same with the Liouville function in
place of �). Very briefly, by the entropy decrement argument [42, Theorem 3.1] one can
locate a scale exp..log logx/1=2/ � P � logx such that the left-hand side of (1.7) can be
replaced up to a triply logarithmic error term with

.�1/k

log logP

X
p�P

1

p

1

log x

X
n�x

�.nC ph1/�.nC ph2/ � � ��.nC phk/

n
:

One would then split the p sum into dyadic scales and proceed as in [42] by replacing
the average over primes p with an average over w-rough integers, using Theorem 1.6 and
a quantitative version of the generalized von Neumann theorem as a substitute for The-
orem 1.3, producing an admissible O..log logP /�c/ error term. The triply logarithmic
error terms at this step are much worse than any other error terms arising in the rest of the
proof, therefore leading to (1.7). We leave the details to the interested reader.

2. Discussion and set-up of the proof

Until recently, there were two main obstacles to achieving the sort of quantitative (and
effective) bound stated in Theorem 1.4. Firstly, the first proofs of the inverse conjecture
for the Gowers norms in the large k regime k � 5 were ineffective (using tools such as
non-standard analysis) and did not provide any quantitative dependence of constants. Sec-
ondly, in order to overcome certain logarithmic losses in the estimates, it was necessary
to invoke Siegel’s theorem to control the correlation of the Möbius function with nilse-
quences, and the decay rate in the o.1/ bounds in Theorem 1.3 (iii) then depended on the
rate at which the constants in Siegel’s theorem jL.1;�/j �ineff

" q�" depended on ", which
is completely ineffective with known methods.

The first issue was resolved recently with the quantitative inverse theorem of Man-
ners [33], which provided a good quantitative dependence on all parameters in the inverse
theory of Gowers norms. To resolve the second issue, we perform the technique of isolat-
ing out the contribution of a potential Siegel zero to obtain more refined approximations

� � �Siegel.n/; ƒ � ƒSiegel.n/

to the arithmetic functions �;ƒ. To make this precise we introduce some notation:
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Definition 2.1 (Siegel model). Recall that the quantity Q was defined in (1.1).

(i) We define a Q-Siegel zero to be a real number 1 � c0
logQ < ˇ < 1 for which there

exists a primitive real Dirichlet character �Siegel (which we call theQ-Siegel charac-
ter) of conductor qSiegel < Q such that L.ˇ; �Siegel/ D 0, where L.s; �/ denotes the
DirichletL-function associated to �. Here c0 is a sufficiently small absolute constant
(and henceforth all implied constants are permitted to depend on c0). Note from the
Landau–Page theorem (see e.g. [35, Corollary 11.10]) that if a Q-Siegel zero exists,
then it is unique (and similarly for the Q-Siegel character), and the zero ˇ is simple
(so that L0.ˇ; �Siegel/ ¤ 0).

(ii) We define the Q-Siegel model ƒSiegel for the von Mangoldt function ƒ to be

ƒSiegel.n/ WD ƒCramér;Q.n/ D
P.Q/

�.P.Q//
1.n;P.Q//D1

if no Q-Siegel zero exists, and

ƒSiegel.n/ WD ƒCramér;Q.n/.1 � n
ˇ�1�Siegel.n//

otherwise.

(iii) We define the Q-Siegel model �Siegel for the Möbius function � to be

�Siegel.n/ WD 0

if no Q-Siegel zero exists, and

�Siegel.n/ WD �local � �
0.n/ (2.1)

otherwise, where �local is the local Möbius function

�local.n/ WD �.n/1njP.Q/;

�0 is the function

�0.n/ WD ˛nˇ�1�Siegel.n/1.n;P.Q//D1 D ˛
�.P.Q//

P.Q/
.ƒCramér;Q.n/ �ƒSiegel.n//;

(2.2)
˛ is the quantity

˛ WD
1

L0.ˇ; �Siegel/

Y
p<Q

�
1 �

1

p

��1�
1 �

�Siegel.p/

pˇ

��1
; (2.3)

and �local � �
0 is the Dirichlet convolution of �local and �0:

�local � �
0.n/ WD

X
d jn

�local.d/�
0.n=d/:

(Note from the supports of �local; �
0 that at most one term in this sum is non-zero for

any given n.)
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The significance of these models is that ƒ and ƒSiegel have very nearly the same
statistics on arithmetic progressions (with error terms that improve over the main term by
pseudopolynomial factors O.exp.� logc N//, which are superior to the strongly logarith-
mic gains O ineff

A .log�AN/ provided by the Siegel–Walfisz theorem), and similarly for �
and �Siegel. Indeed, in Section 7 we will show the following estimates:

Proposition 2.2 (Pseudopolynomial equidistribution in arithmetic progressions). For any
arithmetic progression P � ŒN �, we haveX

n2P

.�.n/ � �Siegel.n//� N exp.�c log1=10N/ (2.4)

and X
n2P

.ƒ.n/ �ƒSiegel.n//� N exp.�c log1=10N/: (2.5)

Remark 2.3. The construction of �Siegel appears to be complicated, but it is a multiplica-
tive construction and can be justified as follows. If � is any character induced from �Siegel

of some period qjŒqSiegel; P.Q/�, a short calculation reveals the Euler products
1X
nD1

�Siegel�.n/

ns
D
�.s C 1 � ˇ/

L0.ˇ; �Siegel/

Y
p<Q
pjq

1 �
�Siegel.p/

ps

1 �
�Siegel.p/

pˇ

Y
p<Q

1 � 1

psC1�ˇ

1 � 1
p

�

Y
pjq

�
1 �

�Siegel.p/

pˇ

��1
(2.6)

and
1X
nD1

��.n/

ns
D

1

L.s; �Siegel/

Y
pjq

�
1 �

�Siegel.p/

ps

��1
(2.7)

whenever Re.s/ > 1. One can then check that the meromorphic continuations of the two
Dirichlet series (2.6), (2.7) both have a simple pole at s D ˇ with the same residue (and
when � is not induced from �Siegel there is no such pole), which helps justify why we
expect �Siegel to be a good approximation to �. We experimented with simpler models
to � than �Siegel, but in order to get the pseudopolynomial error terms exp.� logc N/ in
(2.4) it seems essential that the model �Siegel behaves almost identically to � with respect
to primes p as large as exp.logc N/, which necessitates a complicated construction such
as (2.1). We remark that a similar (though slightly less refined) approximant �Siegel to the
Liouville function � was introduced by Germán and Katai [12], and recently used in [2]
to establish Chowla’s conjecture in the presence of a Siegel zero.

For future reference we also observe the following crude pointwise bounds on ƒ; �
and their approximate models:

Lemma 2.4 (Pointwise bounds). For n 2 ŒN � and 2 � w � Q, one has

ƒ.n/;ƒCramér;w.n/;ƒSiegel.n/� logN

and
�.n/; �Siegel.n/� 1:
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Proof. All of these bounds are either trivial or immediate consequences of Mertens’ the-
orem, except for the bound on �Siegel, which would follow if the quantity ˛ in (2.3) were
bounded. This turns out to follow from standard bounds on the L-function L.s; �Siegel/

near a Q-Siegel zero ˇ; see Lemma 5.5.

In view of Proposition 1.2 and the triangle inequality (1.2), Theorem 1.4 then follows
from the following two statements.

Theorem 2.5 (Siegel corrections are logarithmically Gowers uniform). We have

k�SiegelkUk ŒN � � q�cSiegel � log�c N (2.8)

and
kƒSiegel �ƒCramér;QkUk ŒN � � q�cSiegel � log�c N (2.9)

with the convention that the expression q�cSiegel vanishes when no Q-Siegel zero exists.

Theorem 2.6 (Doubly logarithmic uniformity of Möbius and von Mangoldt, II). We have

k� � �SiegelkUk ŒN � � .log logN/�c (2.10)

and
kƒ �ƒSiegelkUk ŒN � � .log logN/�c : (2.11)

Theorem 2.5 is an application of sieve-theoretic methods, smooth number estimates
and the Weil bound, and is established in Section 5.2. The main difficulty is to estab-
lish Theorem 2.6. In principle, one can directly apply the quantitative inverse theory of
Manners [33], and reduce matters to controlling the correlation of ���Siegel,ƒ�ƒSiegel

with nilsequences arising from nilmanifolds (although in the case of ƒ �ƒSiegel we have
the obstacle that the function is unbounded – the resolution of this is discussed below).
Indeed, in Section 7 we will establish the following bounds that significantly extend the
bounds in Proposition 2.2:

Theorem 2.7 (Pseudopolynomial orthogonality of Möbius and von Mangoldt with nilse-
quences). Let � > 0 and k � 1. Let c1.�/ > 0 be small enough in terms of �. Then we
have the boundsX

n2P

.� � �Siegel/.n/ xF .g.n/�/�� N exp.� log1=10�� N/ (2.12)

and X
n2P

.ƒ �ƒSiegel/.n/ xF .g.n/�/�� N exp.� log1=10�� N/ (2.13)

whenever P � ŒN � is an arithmetic progression, G=� is a filtered nilmanifold of degree
k � 1, dimension at most .log log N/c1.�/, and complexity at most exp.logc1.�/ N/,
F W G=� ! C is a 1-bounded Lipschitz function4 of Lipschitz constant at most

4A function F WX ! C is 1-bounded if jF.x/j � 1 for all x 2 X . More generally, given any
�WX ! RC, we say that F WX ! C is �-bounded if jF.x/j � �.x/ for all x 2 X .



Quantitative bounds for Gowers uniformity of the Möbius and von Mangoldt functions 11

exp.log1=10�� N/, and gWZ! G is a polynomial map. .The relevant definitions of fil-
tered nilmanifolds, etc., are reviewed in Definition 6.1./

Remark 2.8. If one redefined the Siegel models �Siegel; ƒSiegel by assigning the parame-
terQ the larger value exp.log1=2N/, one could inspect that the exponent of the logarithm
in (2.12) and (2.13) (and in particular in Proposition 2.2) could be increased to 1=2 � �,
hence essentially matching the shape of the error term in the classical prime number the-
orem. For this modification, one would have to tweak the exponents in Section 5 a little;
in particular, in Proposition 5.2 the exponents 3=5 and 4=5 would have to be replaced
with 1=2. As the precise value of the exponent has very little influence on our bounds, we
leave the details of this strengthening to the interested reader.

For the sake of comparison, in [23] the strongly logarithmic bound

En2ŒN ��.n/ xF .g.n/�/�
ineff
A;M log�AN

was established for any A > 0 assuming that the dimension and complexity of G=� and
the Lipschitz constant of F were all bounded byM ; using this bound, in [22] the qualita-
tive bound

En2ŒN �

�
�.W /

W
ƒ.W nC b/ � 1

�
xF .g.n/�/ D oineff.1/

was shown for the same type of nilsequences F.g.n/�/, where W D P.w/ for some
w Dw.N/ growing sufficiently slowly to infinity withN and any b 2 ŒW � coprime toW .
With a little additional effort, the latter bound then also implies the qualitative boundX

n2P

.ƒ �ƒCramér;w/.n/ xF .g.n/�/ D o
ineff.N /

for these nilsequences and arbitrary arithmetic progressions P � ŒN �. The arguments
relied upon (and in fact imply) the Siegel–Walfisz theorem and thus could not give error
terms better than strongly logarithmic, which would be unsuitable for our applications
(particularly those involving the von Mangoldt function). It is therefore necessary to
account for the correction terms �Siegel; ƒSiegel � ƒCramér;Q to avoid any appeal to the
Siegel–Walfisz theorem and to improve the bounds to be of pseudopolynomial type,
despite the fact (from Theorem 2.5) that these correction terms are already logarithmi-
cally small in the Gowers norm sense.

Our proof of Theorem 2.7 will broadly follow the same strategy as that in [23], rely-
ing on Proposition 2.2 in the “major arc” case and on decomposition into “Type I” and
“Type II” sums, followed by Cauchy–Schwarz and an appeal to the equidistribution the-
ory of nilmanifolds, in the “minor arc” case. A key new feature, compared to previous
work, is that the dimension of the nilsequences is no longer bounded, but grows at a
roughly doubly logarithmic rate in N . Because of this, we are forced to perform a careful
accounting on the dependence on dimension in the aforementioned equidistribution the-
ory, and in particular ensure that the bounds only depend at most doubly exponentially on
the dimension. This is in fact one of the main reasons why our bounds in Theorem 1.4 are
limited to be doubly logarithmic in nature; see Remarks 2.9 and 6.4 below.
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The estimate (2.10) can be directly obtained from (2.12) using the inverse theorem
of Manners [33], which we review in Section 6; note that this theorem basically applies
a double logarithm to the quantitative bounds, which is why the pseudopolynomial type
terms in Theorem 2.7 are reduced to doubly logarithmic type terms in Theorem 2.6. For
the von Mangoldt estimate (2.11), we encounter the familiar problem that ƒ �ƒSiegel is
not bounded (see Lemma 2.4), so that Manners’ quantitative inverse theorem does not
immediately apply. In [22], this difficulty was resolved at the qualitative level by first
using the “W -trick” of passing to an arithmetic progression ¹W nC b W n 2 Nº for some
W D P.w/ and some w growing slowly with N , and then dominating (an appropri-
ately normalized version of) the von Mangoldt function on that progression by a divisor
sum � of Goldston–Yıldırım type that obeyed some “pseudorandomness” conditions. This
enabled one to then apply a transference principle that roughly speaking allowed one to
behave “as if” the normalized von Mangoldt function was bounded on this progression,
at least for the purposes of applying an inverse theorem for the Gowers norms.

Here the biggest source of quantitative inefficiency is the transference principle, as the
first few proofs of this principle [14, 19, 22, 36] involved the Weierstrass approximation
theorem, quantitative versions of which can generate exponential type losses. However,
in [5] (see also [4]), Conlon, Fox, and Zhao introduced the method of densification, which
they used to obtain a transference principle in the context of Szemerédi-type theorems that
involved only polynomial dependencies on the bounds (and they also relaxed the pseudo-
randomness hypotheses on the enveloping sieve � by dropping the so-called “correlation
condition”). As it turns out, the densification method can be adapted to inverse theorems
as well with efficient quantitative bounds, at least when the correlation in the inverse
theorem enjoys polynomial bounds; we formalize this observation (which seems to be
of independent interest) as Theorem 8.1. Fortunately for us, the arguments of Manners
in [33, Section 5] already provide such a polynomial bound. Using our quantitative trans-
ference result for the inverse theorem, it becomes a relatively routine matter to derive
(2.11) from (2.13), after making various necessary quantitative refinements (for instance,
the parameter w will now be taken to be of the shape log"N for some small " > 0, rather
than growing in some unspecified slow fashion with N ). This will all be performed in
Section 8.

Remark 2.9. Perhaps surprisingly, the bounds in Theorem 1.4 are not significantly
improved if one assumes the generalized Riemann hypothesis; some pseudopolynomial
bounds can now be sharpened to polynomial bounds (such as Theorem 2.7), but for the
logarithmic and doubly logarithmic bounds only minor improvements in the unspecified
constants c are available under GRH (though of course in this case any terms involving
Q-Siegel zeroes can simply be deleted). On the other hand, it is tempting to conjecture
that the doubly logarithmic bounds in our main results can be improved to logarithmic,
given that several of the key estimates already have this quality of error term or better.
This is particularly appealing in the k D 3 case where we have quite a good inverse U 3

theorem [18]. The main difficulty is that to achieve this goal, it appears that one needs
an equidistribution theory for 2-step nilmanifolds (or quadratic bracket polynomials) that
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involves exponents that are merely polynomial in the dimension of the nilmanifold (or
complexity of the bracket polynomial) rather than exponential. In analogy with the well
known quadratic Diophantine approximation theory of Schmidt [40], it seems reason-
able to expect such a theory to be feasible,5 but we will not pursue this matter here. On
the other hand, we note that by combining Theorem 2.7 with the circle method one can
obtain the pseudopolynomial bounds

k� � �SiegelkU 2ŒN �; kƒ �ƒSiegelkU 2ŒN � � exp.�c logc N/;

and one could optimistically conjecture that such pseudopolynomial (or even polynomial)
bounds are also true for higher Gowers norms as well (such bounds would follow from a
sufficiently uniform version of the Hardy–Littlewood prime tuples conjecture).

3. Notation

As stated in the introduction, throughout this paper we fix an integer k � 1, and assume
N is a positive real number that is sufficiently large depending on k (and Q is given in
terms of N by (1.1)). We abbreviate ¹n 2 N W 1 � n � N º as ŒN � (even when N is not an
integer).

We use the asymptotic notationX � Y , Y � X , orX DO.Y / to denote an estimate
of the form jX j � CY for some constant C > 0. If C depends on additional parameters,
we indicate this by subscripts, for instance X D Od .Y / denotes the estimate jX j � CdY
for someCd >0 depending on d . However, as all of our constants will depend on the fixed
parameter k, we omit this parameter from this subscripting notation. Unless otherwise
specified, the constants will depend in an effective fashion on the parameters; on the rare
occasions (mostly involving citing previous literature) in which ineffective constants are
used, we will use the superscript ineff to indicate this. We writeX � Y as an abbreviation
for X � Y � X , subject to the same subscripting and superscripting conventions as
before. If X; Y depend on an additional parameter N , we write X D o.Y / as N !1 to
denote the claim that jX j � c.N /Y for some quantity c.N / that goes to zero as N !1,
again subject to the same subscripting and superscripting conventions as before. As stated
in the introduction, we use c to denote various small positive constants depending on k
that can vary from line to line.

We often refer to the following hierarchy of decay estimates, in increasing order of
strength:

� qualitative (and ineffective) decay, in which X D oineff.Y / as N !1;

� doubly logarithmic decay, in which X � .log logN/�cY ;

5Another option is to exploit the improved dimension bounds for the inverse U 3 theory now
available [38], using the equivalences from [21]. Since the initial release of this article as a preprint,
this option has in fact been carried out by Leng [31], who significantly improved the .log logN/�c

type bounds in Theorem 2.6 to exp.� logc N/ type bounds in the k D 3 case.
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� logarithmic decay, in which X � .logN/�cY ;

� strongly (but ineffectively) logarithmic decay, in which X �ineff
A .logN/�AY for any

A > 0 (this is a typical shape for bounds obtained using the Siegel–Walfisz theorem);

� pseudopolynomial decay, in which X � exp.�c logc N/Y ;

� polynomial decay, in which X � N�cY .

As the terminology suggests, pseudopolynomial decay will be a satisfactory substitute for
polynomial decay in many of our arguments.

We use 1E to denote the indicator function of a set E, thus 1E .n/ equals 1 when
n 2 E and 0 otherwise. We also use 1S to denote the indicator of a statement S , thus 1S
equals 1 when S is true and 0 otherwise.

If A is a finite set, we use #A to denote its cardinality.
All sums and products over the variable p are understood to be over primes, and

similarly all sums and products over variables such as n or d are understood to be over
natural numbers, unless otherwise indicated.

4. Some lemmas on Gowers norms

We state here a few lemmas concerning the Gowers norms that will be used later on.
In addition to the triangle inequality (1.2), we shall also often use the closely related

Gowers–Cauchy–Schwarz inequalityˇ̌̌
E
.x;Eh/2GkC1

Y
!2¹0;1ºk

f!.x C ! � Eh/
ˇ̌̌
�

Y
!2¹0;1ºk

kf!kUk.G/ (4.1)

for any finite additive group G and any functions f! WG ! C for ! 2 ¹0; 1ºk ; see for
instance [22, Lemma B.2]. For arbitrary additive groups, we also have the non-normalized
variant ˇ̌̌ X

.x;Eh/2GkC1

Y
!2¹0;1ºk

f!.x C ! � Eh/
ˇ̌̌
�

Y
!2¹0;1ºk

kf!k QUk.G/: (4.2)

Observe that the Gowers norms behave well with respect to tensor products: if f1 W
G1 ! C, f2WG2 ! C are finitely supported functions on additive groups G1; G2, then a
short computation reveals that

kf1 ˝ f2k QUk.G1�G2/ D kf1k QUk.G1/kf2k QUk.G2/ (4.3)

for any k � 1.
We now develop a variant of this identity. We localize the Gowers norm to

cosets a C H of a subgroup H of an additive group G as follows: if k � 1 and
f WG ! C is finitely supported, we define kf k QUk.aCH/ WD kf .a C �/k QUk.H/, and sim-
ilarly kf kUk.aCH/ WD kf .aC �/kUk.H/ if H is finite. Note that this definition does not
depend on the choice of coset representative. We have the following convenient Fubini
type inequality (which is reasonably well known “folklore”, although the only explicit
prior reference to such an inequality that we are aware of is [3, Lemma 4.3]):
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Lemma 4.1 (Fubini type inequality). Let k � 1, let G be an additive group, let H be a
subgroup of G, and let f WG! C be a finitely supported function. For each coset aCH
in the quotient group G=H , let F.aCH/ denote the quantity

F.aCH/ WD kf k QUk.aCH/I

note that F WG=H ! C is also a finitely supported function. Then

kf k QUk.G/ � kF k QUk.G=H/: (4.4)

Informally, this lemma asserts that to bound the U k.G/ norm of a function f , one can
first evaluate the QU k norm along the various cosets of H , and then compute the QU k norm
of the numbers obtained in that fashion. IfG;H are finite we can obtain similar claims for
the normalized U k norms in the obvious fashion. Note that the Fubini–Tonelli theorem
establishes a similar claim for the `1 (or more generally `p) norms (and in this case one
has equality in (4.4) instead of inequality. One can also verify that (4.4) is consistent
with (4.3).

Proof of Lemma 4.1. From Definition 1.1 we have

kf k2
k

QUk.G/
D

X
.n;Eh/2GkC1

Y
!2¹0;1ºk

C j!jf .nC ! � Eh/:

Consider the contribution to the right-hand side where n lies in a coset aCH and hi lies
in a coset bi CH for i D 1; : : : ; k. By the Gowers–Cauchy–Schwarz inequality (4.2), this
contribution can be bounded in magnitude byY

!2¹0;1ºk

F.aC ! � Eb CH/

where Eb WD .b1; : : : ; bk/. Summing over all choices of a; Eb and applying Definition 1.1
again, we conclude that

kf k2
k

QUk.G/
� kF k2

k

QUk.G=H/
;

giving (4.4).

As a corollary of this inequality, we can estimate the Gowers norm of a function
on ŒN � in terms of its values on various arithmetic progressions:

Corollary 4.2 (W -trick). Let 1 � W � N=10, and let f W ŒN �! C be a function sup-
ported on the set ¹n 2 ŒN � W .n;W / D 1º that obeys the bounds�.W /W

f .W � Cb/


Uk ŒN�bW �

� A

for all b 2 ŒW � coprime to W and some A > 0. Then

kf kUk ŒN � � A:
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Proof. We extend f by zero to the integers Z and work with the unnormalized Gowers
norms. Since

k1ŒN �k QUk.Z/ � N
kC1

2k

and
k1ŒN�bW �k QUk.Z/ � .N=W /

kC1

2k

we have
kf k QUk.WZCb/ �

W

�.W /
A.N=W /

kC1

2k

for all b 2 ŒW � coprime to W , and it will suffice to show that

kf k QUk.Z/ � AN
kC1

2k :

Applying Lemma 4.1 with G D Z and H D W Z, and normalizing the Gowers norms, it
suffices to show that  W

�.W /
1.�;W /D1


Uk.Z=WZ/

� 1:

ExpressingW as the product of primes pvp.W / and using the Chinese remainder theorem
and (4.3) repeatedly, the left-hand side can be written asY

p

 p

p � 1
1.�;p/D1


Uk.Z=pvp.W /Z/

:

However, direct computation using the inclusion-exclusion principle shows that

k1.�;p/D1k
2k

Uk.Z=pvp.W /Z/
D 1 �

2k

p
COk

�
1

p2

�
;

and hence  p

p � 1
1.�;p/D1


Uk.Z=pvp.W /Z/

D 1COk

�
1

p2

�
:

The claim follows.

Next, we give a variant of the triangle inequality that estimates a Gowers norm based
on the greatest common divisor with a fixed modulus.

Lemma 4.3 (Variant of triangle inequality). Let N � 100, let 1 � q � N , and let k � 1
be an integer. Let f W ŒN �! Œ�1; 1� be a function. Then

kf k2
k

Uk ŒN �
�

X
d jq

1

d
kf .d �/1.�;q=d/D1kUk ŒN=d�:

The key point here is the presence of the factor 1=d , which ensures that the summation
over d can be estimated manageably.
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Proof of Lemma 4.3. We extend f by zero outside of ŒN �. From Definition 1.1, it suffices
to show the unnormalized estimateX

.n;Eh/2ZkC1

Y
!2¹0;1ºk

f .nC ! � Eh/� N kC1
X
d jq

1

d.N=d/
kC1

2k

kf 1.�;q/Ddk QUk.dZ/:

The left-hand side can be written as X
n2Z

f .n/F.n/

where the dual function F.n/ is defined as

F.n/ WD
X
Eh2Zk

Y
!2¹0;1ºkn¹0ºk

f .nC ! � Eh/:

We split this sum in terms of the value of .n; q/ asX
n2Z

f .n/F.n/ D
X
d jq

X
n2dZ

f .n/1.n;q/DdF.n/:

By the triangle inequality, it thus suffices to show thatX
n2dZ

f .n/1.n;q/DdF.n/�
N kC1

d.N=d/
kC1

2k

kf 1.�;q/Ddk QUk.dZ/

for each d j q. Decomposing h1; : : : ; hk in the definition of F.n/ into cosets mod d , the
left-hand side may be written asX

Eb2Œd�k

X
.n;Eh/2.dZ/kC1

Y
!2¹0;1ºk

f .nC ! � .EhC Eb//1.n;q/Dd :

By the Gowers–Cauchy–Schwarz inequality (4.1), and noting that f is bounded by 1ŒN �,
we have X

.n;Eh/2.dZ/kC1

Y
!2¹0;1ºk

f .nC ! � .EhC Eb//1.n;q/Dd

� kf 1.�;q/Ddk QUk.dZ/

�
.N=d/

kC1

2k
�2k�1

:

Summing over all the dk choices of Eb, we thus obtainX
n2dZ

f .n/1.n;q/DdF.n/� kf 1.�;q/Ddk QUk.dZ/d
k
�
.N=d/

kC1

2k
�2k�1

and the claim follows after a little algebra.
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5. Some sieve theory

5.1. The Cramér model

In this section we use some standard sieve-theoretic tools to establish several estimates
involving the Cramér models ƒCramér;w , some of which will also be useful in controlling
the Siegel models ƒSiegel; �Siegel in later sections.

We first recall a form of the fundamental lemma of sieve theory (arising from an
analysis of the beta sieve).

Lemma 5.1 (Fundamental lemma of sieve theory). Let .an/n2Z be a collection of non-
negative reals, let � > 0, z � 2, and D � z9�C1. Let gWN ! Œ0; 1/ be a multiplicative
function obeying the estimatesY

w�p<z

.1 � g.p//�1 � K

�
log z
logw

��
(5.1)

for all 2 � w � z and some K > 0. Suppose that for every d � D dividing P.z/ one has
the formula X

d jn

an D Xg.d/C rd (5.2)

for some X > 0 and some remainder rd . ThenX
n

.n;P.z//D1

an D X
�Y
p<z

.1 � g.p//
�
.1CO.e9��sK10//CO

� X
d�D
d jP.z/

jrd j

�

where s WD logD
log z .

Proof. See [11, Theorem 6.9].

In our applications, the ratio s D logD
log z will grow at a logarithmic rate, leading to

pseudopolynomial accuracy when applying the fundamental lemma.
Using the fundamental lemma we can obtain satisfactory estimates (with pseudopoly-

nomial accuracy) for counting linear equations in the Cramér model (compare with The-
orem 1.6).

Proposition 5.2 (Linear equations in the Cramér model). Let t;m� 1 be integers, and let
N � 100. Let � be a convex subset of the cube Œ�N;N �d , and let  1; : : : ;  t WZm ! Z
be linear forms

 i .En/ D En � P i C  i .0/

for some P i 2 Zm and  i .0/ 2 Z. Assume that the linear coefficients P 1; : : : ; P t 2 Zm

are all pairwise linearly independent and have magnitude at most exp.log3=5 N/ .say/.
Then for any 2 � z � Q, one hasX

En2�\Zm

tY
iD1

ƒCramér;z. i .En// D vol.�/
Y
p<z

p̌ COt;m.N
m exp.�c log4=5N//
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for some c > 0 depending only on t; m, where for each p, p̌ is the local factor

p̌ WD EEn2.Z=pZ/m

tY
iD1

p

p � 1
1 i .En/¤0;

where  i is also viewed as a map from .Z=pZ/m to Z=pZ in the obvious fashion.

Proof. Without loss of generality we may assume that N is sufficiently large depending
on t; m; we now allow all implied constants to depend on t; m.

For any d dividing P.z/, let g.d/ 2 Œ0; 1� denote the quantity

g.d/ WD EEn2.Z=dZ/m1Qt
iD1 i .En/D0

;

with the convention that g.d/ D 0 if d does not divide P.z/. In particular, we have

g.p/ D 1 �

�
p � 1

p

�t
p̌ (5.3)

for all p < z. From the Chinese remainder theorem we see that g is multiplicative.
Suppose first that g.p/ D 1 for some p < z, then p̌ D 0 and

Qk
iD1 ƒCramér;z. i .n//

is identically zero. Thus the proposition is trivial in this case, so we may assume that
g.p/ < 1 for all p. From the construction we then have the crude bound

g.p/ � 1 �
1

pm
: (5.4)

Also, from the construction we see that for any two distinct linear forms  i ;  j , there is
a positive integer Aij D exp.O.log3=5 N// such that P i ; P j are linearly independent in
.Z=pZ/k whenever p does not divide Aij (indeed, one can take Aij to be one of the non-
zero coefficients of the wedge product of P i and P j ). If we let A D exp.O.log3=5N// be
the product of all the Aij , we conclude in particular that

En2.Z=pZ/m1 i .En/D j .En/D0 �
1

p2

whenever p does not divide A, hence by using the inclusion-exclusion formula (or the
Bonferroni inequalities) we have

g.p/ D
t

p
CO

�
1

p2

�
(5.5)

whenever p does not divide A. In particular, we have

.1 � g.p//�1 D

�
p

p � 1

�t�
1CO

�
1

p2

��
unless p divides A (using (5.4) to handle the case when p is bounded). For p dividing A,
(5.4) instead gives .1 � g.p//�1 � pm. We conclude that for any 2 � w � z, we haveY

w�p<z

.1 � g.p//�1 �
�Y
pjA

p
�m Y

w�p<z

�
p

p � 1

�t
� Am

Y
w�p<z

�
p

p � 1

�t
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and hence by Mertens’ theorem the axiom (5.1) is obeyed with � D t and some K D
O.exp.O.log3=5N///.

We introduce the sequence

an WD
X

En2�\Zm

1Qt
iD1 i .En/Dn

:

Observe that the an are non-negative withX
En2�\Zm

tY
iD1

ƒCramér;z. i .n// D

�Y
p<z

p

p � 1

�t X
n

.n;P.z//D1

an:

Set
D WD exp.log9=10N/:

For any d � D dividing P.z/, we haveX
n�0 .d/

an D
X

En2�\Zm

1d j
Qt
iD1 i .En/

:

The condition d j
Qt
iD1 i .En/ restricts d to g.d/dm cosets of .dZ/m. Applying a volume

packing argument using [22, Corollary A.2] givesX
En2�\Zm

1d j
Qt
iD1 i .En/

D g.d/ vol.�/CO.dO.1/Nm�1/

and hence axiom (5.2) is obeyed with X WD vol.�/ and some rd D O.DO.1/Nm�1/.
Applying Lemma 5.1, we conclude thatX

En2�\Zm

tY
iD1

ƒCramér;z. i .En// D

�Y
p<z

p

p � 1

�t
vol.�/

Y
p<z

.1 � g.p//

�
�
1CO

�
e�s exp.O.log3=5N//

��
CO

��Y
p<z

p

p � 1

�t
DO.1/Nm�1

�
with s D logD

logQ � log4=5 N . We can then simplify the right-hand side using (5.3) and
Mertens’ theorem toX

En2�\Zm

tY
iD1

ƒCramér;z. i .En// D vol.�/
�Y
p<z

p̌

��
1CO

�
exp.�c log4=5N/

��
CO.Nm�1=2/

(say) for some constant c > 0 depending on t;m. From (5.1), (5.3) and Mertens’ theorem
we have the crude bound Y

p<z

p̌ � exp.O.log3=5N//

and the claim follows.
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As a first application of this estimate, we have good estimates (basically of logarithmic
type) for the Cramér model in the Gowers norm.

Corollary 5.3 (Gowers uniformity of the Cramér model on arithmetic progressions). Let
2 � w � z �Q be such that w � log1=100N . Set W WD P.w/. Then for any 1 � b � W
coprime to W , one has�.W /W

ƒCramér;z.W � Cb/ � 1


Uk ŒN�bW �

� w�c :

Proof. Write N 0 WD N�b
W

. We can rewrite the desired estimate (after adjusting c appro-
priately) asX

.n;Eh/2�\ZkC1

Y
!2¹0;1ºk

�
�.W /

W
ƒCramér;z.W.nC ! � Eh/C b/ � 1

�
� .N 0/kC1w�c ;

where � is the convex body of tuples .n; Eh/ 2 RkC1 such that

0 < nC ! � Eh � N 0

for all ! 2 ¹0; 1ºk . By inclusion-exclusion, it suffices to establish the boundsX
.n;Eh/2�\ZkC1

Y
!2S

�.W /

W
ƒCramér;z.W.nC ! � Eh/C b/ D vol.�/CO..N 0/kC1w�c/

for all subsets S � ¹0; 1ºk . Applying Proposition 5.2 (and Mertens’ theorem), the left-
hand side is equal to�

�.W /

W

�#S

vol.�/
Y
p<z

p̌ CO..N
0/kC1w�c/

(in fact, there is plenty of room to spare in the error term), where

p̌ WD E
.n;Eh/2.Z=pZ/kC1

Y
!2S

p

p � 1
1
W.nC!� Eh/Cb¤0

:

If p < w, then W vanishes modulo p and b is coprime to p, and hence p̌ D .
p
p�1

/#S .
Thus �

�.W /

W

�#S Y
p<z

p̌ D

Y
w�p<z

p̌:

By the inclusion-exclusion argument used to establish (5.5) one has

p̌ D

�
p

p � 1

�#S�
1 �

#S
p
CO

�
1

p2

��
D 1CO

�
1

p2

�
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for any w � p < z, hence Y
w�p<z

p̌ D 1CO.w
�1/:

Since vol.�/� .N 0/kC1, the claim follows.

Proof of Proposition 1.2. Combining Corollary 5.3 with Corollary 4.2, we see that

kƒCramér;z �ƒCramér;wkUk ŒN � � w�c

whenever 2�w � z � exp.log1=10N/ are such thatw � log1=100N . Proposition 1.2 now
follows from the triangle inequality (1.2) (note the case N D O.1/ is trivial, so we may
assume N is large enough that log1=100N > 2).

Remark 5.4. With more effort it may be possible to delete the log�c N term in (1.3), but
we will not need to do so here as there are several other error terms in our analysis that
are of the same order of magnitude as log�c N , or worse.

5.2. Controlling the Siegel correction

Now suppose that there is a Q-Siegel zero ˇ, with associated quadratic character �Siegel

and conductor qSiegel. In this subsection we combine the previous sieve-theoretic estimates
with Weil sum estimates to obtain good control on the Siegel models ƒSiegel; �Siegel.

We begin with some basic estimates on theQ-Siegel zero ˇ and theQ-Siegel conduc-
tor qSiegel. As �Siegel is a primitive real character, qSiegel is must be either square-free or four
times a square-free number or eight times a square-free number. From the construction
one has the upper bound

qSiegel � Q D exp.log1=10N/:

From [8, Chapter 14, (12)] one has the estimate

1 � ˇ � q
�1=2
Siegel log�2 qSiegel;

which when combined with the upper bound 1� ˇ� 1
logQ � log�1=10N gives the lower

bound

qSiegel �
log1=5N

.log logN/2
: (5.6)

One could improve this lower bound using Siegel’s theorem to strongly logarithmic, but
we will not do so here in order to keep the estimates effective. In particular, any bound of
the shape O.q�cSiegel/ will lead to logarithmic decay.

From [35, Theorem 2.9] we observe the doubly logarithmic boundY
pjqSiegel

�
1 �

1

p

��1
D

qSiegel

�.qSiegel/
� log log qSiegel � log logN: (5.7)
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Next, we show that the quantity ˛ in (2.3) is bounded, which was the missing step
needed to establish Lemma 2.4:

Lemma 5.5. We have ˛ � 1. In particular, Lemma 2.4 holds.

Proof. Consider the meromorphic function

F.s/ D
1

L.s; �Siegel/

Y
p<Q

�
1 �

�Siegel.p/

ps

��1
:

This function has a simple pole at ˇ with residue

Res.F; ˇ/ D
1

L0.ˇ; �Siegel/

Y
p<Q

�
1 �

�Siegel.p/

pˇ

��1
D ˛

Y
p<Q

�
1 �

1

p

�
and no other poles in the disk ¹s W js � ˇj � 2c0

logQ º if c0 is small enough, by [35, Theorem
11.3]. By Mertens’ theorem, it thus suffices to establish the bound

Res.F; ˇ/�
1

logQ
:

By the residue theorem, it suffices to show that

F.s/� 1 (5.8)

on the circle js � ˇj D 2c0
logQ . On the rightmost point s0 D ˇ C 2c0

logQ � 1C
c0

logQ of this
circle, we can use the Euler product representation

F.s0/ D
Y
p�Q

�
1 �

�Siegel.p/

ps0

�
followed by the triangle inequality to estimate

jF.s0/j �
Y
p�Q

�
1C

1

p
1C

c0
logQ

�
� 1 (5.9)

thanks to Mertens’ theorem. For more general points s on this circle, we deduce from [35,
Theorem 11.4] that

L0

L
.s; �Siegel/� logQ:

Since

F 0

F
.s/ D �

L0

L
.s; �Siegel/ �

X
p<Q

�Siegel.p/ logp
ps � �Siegel.p/

D �
L0

L
.s; �Siegel/CO

�X
p<Q

logp

p
1�

3c0
logQ

�
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(noting that Res � 1 � 3c0
logQ ), we conclude from Mertens’ theorem that

F 0

F
.s/� logQ

on the entire circle; integrating this and using (5.9), we obtain (5.8) as required.

From [35, Theorem 11.4] we have

L0

L
.s; �Siegel/ D

1

s � ˇ
CO.log qSiegel/

and
L.s; �Siegel/� js � ˇj

for s¤ ˇ sufficiently close to ˇ; multiplying the two estimates and taking limits as s! ˇ,
we also obtain the bound

1

L0.ˇ; �Siegel/
� 1: (5.10)

We can view �Siegel as a function on Z=qSiegelZ. Crucially, it exhibits some cancel-
lation in the Gowers norms (of polynomial type in qSiegel, and hence of logarithmic type
in N ):

Lemma 5.6 (Gowers norm cancellation). For any " > 0, we have

k�SiegelkUk.Z=qSiegelZ/ �" q
�1=2kC1C"
Siegel :

Proof. By the Chinese remainder theorem, we can express Z=qSiegelZ as the product of
prime cyclic groups Z=pZ of odd order, as well as Z=2jZ for some 0 � j � 3. The
quadratic character �Siegel can then be expressed as the tensor product of quadratic char-
acters on these groups. Using (4.3) and the divisor bound, it thus suffices to show that

k�kUk.Z=pZ/ � p�1=2
kC1

for all odd primes p, with � the quadratic character on Z=pZ. By Definition 1.1, this is
equivalent to

E
.n;Eh/2.Z=pZ/kC1

Y
!2¹0;1ºk

�.nC ! � Eh/� p�1=2:

The contribution of any given tuple Eh 2 .Z=pZ/k to the left-hand side is trivially bounded
by O.p�k/. When the dot products ! � Eh are all distinct, the Weil bounds (see e.g. [29,
Corollary 11.24]) give instead the bound O.p�k�1=2/. Since there are pk tuples h and
collisions between the ! � Eh only occur forO.pk�1/ of these tuples, the claim follows.

We can now use this cancellation to prove Theorem 2.5.

Proof of Theorem 2.5. We may assumeN is sufficiently large depending on k, and allow
all implied constants to depend on k. Obviously we may assume that a Q-Siegel zero
exists, as the claim is trivial otherwise.
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We first establish (2.9). It suffices to show the polynomial (in qSiegel) bound

kƒCramér;Q�Siegel.�/
ˇ�1
kUk ŒN � � q�cSiegel; (5.11)

where .�/ˇ�1 denotes the function n 7! nˇ�1. By the fundamental theorem of calculus,
we have

1ŒN �.t/t
ˇ�1
D

Z N

1

1ŒM�.t/.1 � ˇ/M
ˇ�2 dM CN ˇ�11ŒN �.t/ (5.12)

and

1 D

Z N

1

.1 � ˇ/M ˇ�2 dM CN ˇ�1: (5.13)

Substituting (5.12) and (5.13) on the left and right-hand sides of (5.11), respectively, and
applying Minkowski’s integral inequality to the Banach space norm k � kUk ŒN �, it suffices
to show that6

kƒCramér;Q�Siegel1ŒM�kUk ŒN � � q�cSiegel

uniformly for all 1 �M � N . By Definition 1.1, we can rewrite this estimate asX
.n;Eh/2�\ZkC1

Y
!2¹0;1ºk

ƒCramér;Q�Siegel.nC ! � Eh/� N kC1q�cSiegel (5.14)

for some c > 0 and all 1 �M � N , where � D �M is the convex body

� WD
®
.x; Ey/ 2 RkC1 W 0 < x C ! � Ey �M for all ! 2 ¹0; 1ºk

¯
:

Splitting n; h1; : : : ; hk into cosets of qSiegel, we can write the left-hand side of (5.14) asX
.a;Eb/2ŒqSiegel�kC1

Y
!2¹0;1ºk

�Siegel.aC ! � Eb/G.a; Eb/; (5.15)

where

G.a; Eb/ WD
X

.n;Eh/2 1
qSiegel

.��.a;Eb//\ZkC1

Y
!2¹0;1ºk

ƒCramér;Q.qSiegelnCqSiegel! � EhCaC! � Eb/:

Applying Proposition 5.2 (with N replaced by N=qSiegel), we can estimate

G.a; Eb/ D q�k�1Siegel vol.�/
Y
p<z

p̌ CO
�
.N=qSiegel/

kC1 exp.�c log4=5N/
�
;

where
p̌ WD E

.n;Eh/2.Z=pZ/kC1

Y
!2¹0;1ºk

p

p � 1
1
qSiegelnCqSiegel!� EhCaC!�Eb¤0

:

6Alternatively, instead of applying Minkowski’s integral inequality one could open the def-
inition of the U k ŒN � norm, exchange the order of integration and averaging, and apply the
Gowers–Cauchy–Schwarz inequality.



T. Tao, J. Teräväinen 26

Because of the �Siegel factor in (5.15), we can restrict attention to the case where aC ! � Eb
is coprime to qSiegel. This implies that p̌ D .

p
p�1

/2
k

when p jqSiegel. When p − qSiegel, we

can dilate n; Eh by 1=qSiegel (performing the division over the field Z=pZ) and then shift
both variables to simplify

p̌ D E
.n;Eh/2.Z=pZ/kC1

Y
!2¹0;1ºk

p

p � 1
1
nC!� Eh¤0

:

In particular, the p̌ are not dependent on a; Eb; qSiegel. Summing in a; Eb, we can thus write
the left-hand side of (5.14) as

vol.�/
Y
p<z

p̌E
.a;Eb/2ŒqSiegel�kC1

Y
!2¹0;1ºk

�Siegel.aC ! � Eb/CO.N
kC1 exp.�c log4=5N//:

The error term is certainly negligible. From Lemma 5.6 we have

E
.a;Eb/2ŒqSiegel�kC1

Y
!2¹0;1ºk

�Siegel.aC ! � Eb/� q
�1=4
Siegel

(say), and we can of course bound vol.�/�N kC1. Finally, direct calculation shows that
p̌ D 1CO.1=p

2/ when p − qSiegel, thus

Y
p<z

p̌ �

Y
pjqSiegel

�
p

p � 1

�2k
�

�
qSiegel

�.qSiegel/

�2k
� .log log qSiegel/

2k

thanks to (5.7). Putting these estimates together, we obtain the claim (2.9).
Now we establish (2.8), which is a similar calculation but a little more involved

because of the �local factor. By Lemma 4.3 and (5.6) it suffices to show thatX
d jqSiegel

1

d
k�Siegel.d �/1.�;qSiegel=d/D1kUk ŒN=d� � q�cSiegel

for some c > 0 depending on k. From (5.7) we haveX
d jqSiegel

1

d
� log log qSiegel;

so it suffices to show that

k�Siegel.d �/1.�;qSiegel=d/D1kUk ŒN=d� � q�cSiegel

for each d j qSiegel.
Fix d . We rewrite this estimate as

k�Siegel.d �/1.�;qSiegel=d/D11ŒN=d�k
2k

QUk.Z/
� q�cSiegelk1ŒN=d�k

2k

QUk.Z/
: (5.16)
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Using Definition 2.1, we can write

�Siegel.dn/1.�;qSiegel=d/D1.n/1ŒN=d�.n/

D ˛
X
d 02D

�.d/�.d 0/1d 0jn.n=d
0/ˇ�1�Siegel.n=d

0/1.n=d 0;P.Q//D11ŒN=d�.n/ (5.17)

where D is the set of all d 0 jP.Q/ with .d 0; qSiegel/ D 1. By Lemma 5.5, it thus suffices
to show thatX

d 02D

�.d 0/1d 0j�.�=d
0/ˇ�1�Siegel.�=d

0/1.�=d 0;P.Q//D11ŒN=d�

2k
QUk.Z/

� q�cSiegelk1ŒN=d�k
2k

QUk.Z/
:

Using (5.12), (5.13) and Minkowski’s integral inequality, it suffices to showX
d 02D

�.d 0/1d 0j��Siegel;M .�=d
0/1ŒN=d�

2k
QUk.Z/

� q�cSiegelk1ŒN=d�k
2k

QUk.Z/
(5.18)

for any M � 1, where

�Siegel;M .n/ WD �Siegel.n/1ŒM�.n/1.n;P.Q//D1:

We decompose D DD� [D>, where D� are those d 0 2D with d 0 � exp.log1=2N/
(say) and D> are those d 0 2 D with d 0 > exp.log1=2N/. We first dispose of the contri-
bution of the large d 0, i.e. d 0 2 D>. Their contribution to the expression inside the norm
on the left-hand side of (5.18) is supported on a set of numbers n of sizeX

d 02D>

N

dd 0
:

From basic estimates on smooth numbers [28, Theorem 1.1], the number of elements of
D> in any dyadic range ŒM;2M�withM 2 ŒQ;N � isO.Mu�u=2/ (say) where u WD logM

logQ .
From this and a routine dyadic decomposition we see thatX

d 02D>

N

dd 0
� N exp.� log�1=10N/

(say). We thus see that the contribution to the left-hand side of (5.18) can be bounded by
O.N kC1 exp.� log�1=10N//, which is acceptable. Thus, by the triangle inequality (1.2),
it suffices to control the contribution of D�, i.e. to show that X

d 02D�

�.d 0/1d 0j��Siegel;M1ŒN=d�

2k
QUk.Z/

� q�cSiegelk1ŒN=d�k
2k

QUk.Z/
:

We can expand out the left-hand side asX
d 02D

¹0;1ºk

�

Ad 0 ;
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where for d 0 D .d 0!/!2¹0;1ºk we have

Ad 0 WD
X

.n;Eh/2�

Y
!2¹0;1ºk

�.d 0!/1d 0! jnC!� Eh
�Siegel;M

�
nC ! � Eh

d 0!

�
;

where � is the set of all tuples .n; Eh/ 2 ZkC1 such that nC ! � Eh 2 ŒN=d� for all ! in
¹0; 1ºk . Meanwhile, using the pointwise bound

0 �
X
d 02D�

1d 0j�1ŒN=d�1.�=d 0;P.Q//D1 � 1ŒN=d�

(reflecting the fact that every number n has a unique decomposition n D d 0.n=d 0/ where
d 0 jP.Q/ and .n=d 0; P.Q// D 1) one hasX

d 02D
¹0;1ºk

�

Bd 0 � k1ŒN=d�k
2k

QUk.Z/
;

where
Bd 0 WD

X
.n;Eh/2�

Y
!2¹0;1ºk

1
d 0! jnC!�

Eh
1
.nC!�

Eh

d 0!
;P.Q//D1

:

Hence it will suffice to show that

Ad 0 � q�cSiegelBd 0

for all d 0 2 D
¹0;1ºk

� .
The constraints 1

d 0! jnC!�
Eh

restrict .n; Eh/ to some finite union of cosets .a; Eb/CDZkC1

of DZkC1 where D WD
Q
!2¹0;1ºk d

0
! , with the property that d 0! divides a C ! � Eb for

all ! 2 ¹0; 1ºk . Note from the construction that D is coprime to qSiegel and of size

O.exp.O.log1=2N///. So, denoting for brevity�.a;Eb/ WD �\ ..a; Eb/CDZkC1/, it will
suffice to show thatX
.n;Eh/2�.a;Eb/

Y
!2¹0;1ºk

�Siegel;M

�
nC ! � Eh

d 0!

�
� q�cSiegel

X
.n;Eh/2�.a;Eb/

Y
!2¹0;1ºk

1
.nC!�

Eh

d 0!
;P.Q//D1

(5.19)

for all such cosets .a; Eb/CDZkC1. Using Proposition 5.2 and some elementary rescaling,
we haveX

.n;Eh/2�.a;Eb/

Y
!2¹0;1ºk

1
.nC!�

Eh

d 0!
;P.Q//D1

D D�k�1 vol.�/
Y
p<Q

Q̌
p CO

�
.N=D/kC1 exp.�c log4=5N/

�
;
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where
Q̌
p WD E

.n;Eh/2.Z=pZ/kC1

Y
!2¹0;1ºk

1 aC!�Eb
d 0!

C.nC!� Eh/ D
d 0!
¤0
:

If any of the Q̌p vanish then both sides of (5.19) vanish and we are done. For p not dividing
D we have the crude bound

Q̌
p D 1 �O.1=p/; (5.20)

and for all p we have the lower bound

Q̌
p �

1

pkC1
(5.21)

since the Q̌p are non-vanishing integer multiples of 1=pkC1. This gives the crude lower
bound Y

p<Q

Q̌
p � D�O.1/ log�O.1/N (5.22)

and hence the right-hand side of (5.19) is comparable to q�cSiegel.N=D/
kC1

Q
p<Q

Q̌
p . Next,

we partition the left-hand side of (5.19) asX
.r;Es/2ŒqSiegel�kC1

Y
!2¹0;1ºk

�Siegel.d
0
!/�Siegel.r C ! � Es/Fr;Es; (5.23)

where

Fr;Es

WD

X
.n;Eh/2�\..a;Eb/CDZkC1/\..r;Es/CqSiegelZkC1/

Y
!2¹0;1ºk

1ŒM�

�
nC ! � Eh

d 0!

�
1
.nC!� Eh;P.Q//D1

:

We can restrict attention to those .r; Es/ for which r C ! � Es is coprime to qSiegel for all
! 2 ¹0; 1ºk , since otherwise the product in (5.23) vanishes. Under this assumption, we
can apply Proposition 5.2, the Chinese remainder theorem, and some further rescaling
(using the fact that D; qSiegel are coprime), to conclude that

Fr;Es D .DqSiegel/
�k�1 vol.�0/

Y
p<Q
p−qSiegel

Q̌
p CO

�
.N=DqSiegel/

kC1 exp.�c log4=5N/
�
;

where

�0 WD

²
.n; Eh/ 2 � W

nC ! � Eh

d 0!
2 ŒM � 8! 2 ¹0; 1ºk

³
:

Note the main term here is independent of r; Es. In particular, we can rewrite (5.23) as� Y
!2¹0;1ºk

�Siegel.d
0
!/
�
k�Siegelk

2k

QUk.Z=qSiegel/
.DqSiegel/

�k�1 vol.�0/
Y
p<Q
p−qSiegel

Q̌
p

CO
�
.N=D/kC1 exp.�c log4=5N/

�
:
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By Lemma 5.6, this quantity is

� q�cSiegel.N=D/
kC1

Y
p<Q
p−qSiegel

Q̌
p C .N=D/

kC1 exp.�c log4=5N/: (5.24)

The second term in (5.24) is acceptable thanks to (5.22). From (5.20), (5.21), (5.7) we
have Y

pjqSiegel

Q̌
p � .log log qSiegel/

�O.1/

and so the first term in (5.24) is also acceptable.

6. The Manners inverse theorem

We are now ready to state a version of the inverse theorem of Manners [33], though
formulated in a slightly different language (in particular, using the complexity notions
from [24] rather than [33]).

Definition 6.1 (Nilmanifolds). Let s � 1 be an integer, and let M > 0. A (filtered) nil-
manifold G=� of degree s and complexity at most M consists of the following data:

(i) a nilpotent connected and simply connected Lie group G of some dimension m,
which can be identified with its Lie algebra log G via the exponential map
expW logG ! G or its inverse logWG ! logG;

(ii) a filtration G� D .Gi /i�0 of closed connected subgroups Gi of G with

G D G0 D G1 � � � � � Gs � GsC1 D ¹idGº

(and Gi trivial for all i � s C 1) such that7 ŒGi ; Gj � � GiCj for all i; j � 0 (or
equivalently ŒlogGi ; logGj � � logGiCj in the Lie algebra logG);

(iii) a discrete cocompact subgroup � of G;

(iv) a linear basis X1; : : : ; Xdim.G/ of logG, known as a Mal’cev basis .of the second
kind/.

We require this data to obey the following axioms:

(a) For 1 � i; j � dim.G/, one has

ŒXi ; Xj � D
X

i;j<k�dim.G/

cijkXk (6.1)

for some rational numbers cijk with numerator and denominator bounded in magni-
tude by M .

7We use Œ ; � to denote both the commutator in the Lie group G and the Lie bracket in the Lie
algebra logG, with the two being related to each other by the Baker–Campbell–Hausdorff formula.
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(b) For each 1 � i � s, the Lie algebra logGi is spanned by the Xj with dim.G/ �
dim.Gi / < j � dim.G/.

(c) The subgroup � consists of all elements of the form exp.t1X1/ � � � exp.tdimGXdimG/

with t1; : : : ; tdimG 2 Z.

This data defines a metric on G=� as described in [24, Definition 2.2], as well as the
notion of a polynomial map gWZ! G, defined in [24, Definition 1.8].

A function f W X ! C is said to be 1-bounded if jf .n/j � 1 for all n 2 X .

Theorem 6.2 (Manners inverse theorem). Let 0< ı < 1. Let f W ŒN �!C be a 1-bounded
function such that

kf kUk ŒN � � ı:

Then there exist a . filtered/ nilmanifold G=� of degree k � 1, dimensionO.ı�O.1//, and
complexity at most exp exp.O.1=ıO.1///, a 1-bounded Lipschitz function F WG=�!C of
Lipschitz constant at most exp exp.O.1=ıO.1///, and a polynomial map gWZ! G, such
that

jEn2ŒN �f .n/ xF .g.n/�/j � exp.� exp.O.1=ıO.1////:

Proof. By Bertrand’s postulate we can find a prime N 0 such that 10N � N 0 � 20N 0. If
we embed ŒN � into the cyclic group Z=N 0Z and extend f by zero we may view f as a
1-bounded function on Z=N 0Z, and a brief calculation reveals that

kf kUk.Z=N 0Z/ � ı:

We now apply [33, Theorem 1.1.2] with s WD k � 1 to produce the required data G=� ,
g, F , Xi , save for two differences. Firstly, the polynomial g is described as a map from
Z=N 0Z to G=� rather than from Z to G, but one can lift the map from the former to the
latter using [33, Proposition C.17]. Secondly, instead of axiom (a) of Definition 6.1, the
basis elements Xi are instead required to obey a decomposition

Œexp.Xi /; exp.Xj /� D
Y

i;j<l�dim.G/

exp.aijlXl / (6.2)

for some integers aijl bounded in magnitude by some boundM0� expexp.O.1=ıO.1///,
where the product is taken from left to right. However, as briefly noted in [33, Sec-
tion C.2], one can pass from this control (6.2) to the control (6.1) (with M a suitable
polynomial of M0), as follows. For any 1 � a � k � 1, we let P.a/ denote the claim
that one has (6.1) with M of the form exp exp.O.1=ıO.1/// whenever one of Xi ; Xj
lies in logGa. The claim P.a/ is certainly true for a D k � 1 since logGk�1 is cen-
tral, and we will be done if P.1/ is true, so it suffices by downward induction (with at
most k � 2 steps) to show that P.aC 1/ implies P.a/ for any 1 � a � k � 2, where the
implied constants in theOk./ notation are allowed to vary with each step of the induction.
Call a rational number good if its numerator and denominator are bounded in magnitude
by exp exp.O.1=ıO.1///. If one of Xi ; Xj lies in logGa, then from (6.2), the induction
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hypothesis, and the Baker–Campbell–Hausdorff formula we see that

logŒexp.Xi /; exp.Xj /� D
X
l>i;j

c0ijlXl (6.3)

for some good rationals c0
ijl

(and furthermore one can restrict to those Xk lying in
logGaC1). On the other hand, a further application of Baker–Campbell–Hausdorff reveals
that logŒexp.Xi /; exp.Xj /� is equal to ŒXi ;Xj � plusOk.1/ additional terms, which consist
of a good rational number times an iterated Lie bracket formed by starting with ŒXi ; Xj �
and taking the Lie bracket with eitherXi orXj one or more times (but no more thanO.1/
times in all). Inverting this formula, we can then write ŒXi ; Xj � as logŒexp.Xi /; exp.Xj /�
plusO.1/ additional terms, which consist of a good rational number times an iterated Lie
bracket formed by starting with logŒexp.Xi /; exp.Xj /� and taking the Lie bracket with
either Xi or Xj one or more times (but no more than O.1/ times in all). Using (6.3)
and the induction hypothesis P.a C 1/ repeatedly, we conclude P.a/, thus closing the
induction.

Remark 6.3. As noted in [33], improved bounds are available for k � 4 [18, 26], but we
will not be able to take advantage of these bounds due to inefficiencies elsewhere in the
arguments (in particular, our nilsequence equidistribution theory involves exponents that
are exponential in the dimension rather than polynomial).

From Lemma 2.4 we see that the function � � �Siegel can be made 1-bounded by
multiplying by a small absolute constant. Applying Theorem 6.2 in the contrapositive
(setting ı equal to a small power of .log logN/�1, we conclude that the bound (2.10)
is an immediate consequence of (2.12). The same argument does not work directly for
ƒ �ƒSiegel due to the additional factor of logN in the pointwise bounds; but we will be
able to get around this in Section 8 by employing the densification technology of Conlon,
Fox, and Zhao [5]. Assuming this for the moment, the only remaining step needed to
establish Theorem 1.4 is to prove Theorem 2.7, to which we now turn.

Remark 6.4. When k D 3, one can appeal instead of Theorem 6.2 to the quantitative
inverse theorem in [18], and when k D 4 one can use the fact that Manners proved in [33]
a stronger form of Theorem 6.2 for k D 4 than for k � 5. If one does so, one eventually
finds that one would be able to improve the doubly logarithmic bounds in Theorem 1.4 for
k � 4 to singly logarithmic, provided that one could increase the bound on the dimension
ofG=� in Theorem 2.7 from .log logN/c1 to logc1N . Unfortunately, our equidistribution
theory on nilmanifolds is currently not satisfactory at this high a dimension, although in
principle it is conceivable that some variant of the methods of Schmidt [40] could resolve
this issue. We will not pursue this question further here.

7. Orthogonality to nilsequences

In this section we prove Theorem 2.7. We begin by establishing Proposition 2.2, which
will be used to establish the “major arc” case of Theorem 2.7.
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Proof of Proposition 2.2. We adopt the convention that any factor involving theQ-Siegel
character �Siegel is deleted if no such character exists. Any arithmetic progressionP � ŒN �
can be expressed in the form ¹N 00 < n � N 0 W n � a .q/º for some 1 � a � q and 0 <
N 00 � N 0 � N . By the triangle inequality, it thus suffices to establish the boundsX

n�N 0

n�a .q/

ƒ.n/ D
X
n�N 0

n�a .q/

ƒSiegel.n/CO.N exp.�c log1=10N// (7.1)

and X
n�N 0

n�a .q/

�.n/ D
X
n�N 0

n�a .q/

�Siegel.n/CO.N exp.�c log1=10N// (7.2)

for any 1 � a � q and 0 < N 0 � N .
If q > exp.c2 log1=10 N/ for any constant c2 > 0 then the triangle inequality (and

Lemma 2.4) give the desired bounds after adjusting the value of c, so we may assume that
q � exp.c2 log1=10N/ for some small absolute constant c2. In particular, q �Q. Similarly
we may assume N 0 � N exp.�c2 log1=10N/.

We begin with (7.1). From [29, Theorem 5.27] one hasX
n�N 0

n�a .q/

ƒ.n/ D
N 0

�.q/

�
1 � �Siegel.a/1qSiegeljq

.N 0/ˇ�1

ˇ

�
1.a;q/D1

CO.N exp.�c log1=10N//:

Therefore, it will certainly suffice from the triangle inequality to show for 1 � a � q �
exp.log3=5N/ that8X

n�N 0

n�a .q/

ƒCramér;Q.n/ D
N 0

�.q/
1.a;q/D1 CO.N exp.�c log4=5N// (7.3)

and X
n�N 0

n�a .q/

.ƒCramér;Q.n/ �ƒSiegel.n// D
.N 0/ˇ

ˇ�.q/
�Siegel.a/1qSiegeljq1.a;q/D1

CO.N exp.�c log4=5N//: (7.4)

We first show (7.3). By a change of variables we haveX
n�N 0

n�a .q/

ƒCramér;Q.n/ D
X

�a
q �n�

N 0�a
q

ƒCramér;Q.qnC a/

8It would of course suffice to show this for q � exp.log1=10 N/ and with savings
exp.�c log1=10N/, but the larger powers of logN will be useful later on.



T. Tao, J. Teräväinen 34

and then on applying Proposition 5.2 we haveX
n�N 0

n�a .q/

ƒCramér;Q.n/ D
N 0

q

Y
p<Q

p̌ CO.N exp.�c log4=5N//;

where
p̌ WD En2Z=pZ

p

p � 1
1qnCa¤0:

If .a; q/ > 1 then .a; q/ will be divisible by some prime p � q <Q, in which case p̌ D 0

and the claim follows. If instead .a; q/ D 1, then p̌ D 1 for all p < Q not dividing q,
and p̌ D

p
p�1

for all p < Q dividing q, and the claim (7.3) follows.
Now we show (7.4). We may of course assume there is aQ-Siegel zero, in which case

(by Definition 2.1 (ii)) our task is to show thatX
n�N 0

n�a .q/

ƒCramér;Q.n/n
ˇ�1�Siegel.n/ D

.N 0/ˇ

ˇ�.q/
�Siegel.a/1qSiegeljq1.a;q/D1

CO.N exp.�c log4=5N//:

From the fundamental theorem of calculus we have

nˇ�11ŒN 0�.n/ D

Z N 0

1

.1 � ˇ/M ˇ�21ŒM�.n/ dM C .N
0/ˇ�11ŒN 0�.n/

and
.N 0/ˇ

ˇ
�
1

ˇ
C 1 D

Z N 0

1

.1 � ˇ/M ˇ�2M dM C .N 0/ˇ�1N 0;

so from the triangle inequality it suffices to show thatX
n�M
n�a .q/

ƒCramér;Q.n/�Siegel.n/D
M

�.q/
�Siegel.a/1qSiegeljq1.a;q/D1CO.N exp.�c log4=5N//

for all 1 �M � N . We split the left-hand side asX
1�b�q0

b�a .q/

�Siegel.b/
X
n�M

n�b .q0/

ƒCramér;Q.n/;

where q0 WD Œq; qSiegel� is the least common multiple of q and qSiegel. By (7.3) we haveX
n�M

n�b .q0/

ƒCramér;Q.n/ D
M

�.q0/
1.b;q0/D1 CO.N exp.�c log4=5N//

and thusX
n�M
n�a .q/

ƒCramér.n/�Siegel.n/D
M

�.q0/

X
1�b�q0

b�a .q/

�Siegel.b/1.b;q0/D1CO.N exp.�c log4=5N//:
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The right-hand side vanishes if .a; q/ > 1, and also vanishes if q0 > q due to the orthog-
onality properties of Dirichlet characters. If instead .a; q/ D 1 and q0 D q then the right-
hand side is equal to M

�.q/
�Siegel.a/, and the claim (7.4) follows.

Now we turn to (7.2). We first do an easy reduction to the case of primitive residue
classes. Let d WD .a; q/. Observe that for any natural number n one has

�.dn/ D �.d/�.n/1.n;d/D1

and also from Definition 2.1 (ii) we similarly have

�Siegel.dn/ D �.d/�Siegel.n/1.n;d/D1

and thusX
n�N 0

n�a .q/

.�.n/ � �Siegel.n// D �.d/
X

n�N 0=d
n�a=d .q=d/
.n;d/D1

.�.n/ � �Siegel.n//

D �.d/
X
1�b�d
.b;d/D1

X
n�N 0=d

n�a=d .q=d/
n�b .d/

.�.n/ � �Siegel.n//: (7.5)

Since d � q � exp.c2 log1=10N/, it thus suffices to establish the pseudopolynomial decay
estimate X

n�N 0=d
n�a=d .q=d/
n�b .d/

.�.n/ � �Siegel.n//� N exp.�c log1=10N/

for all 1 � b � d coprime to d (where the constant c here is uniform in c2). Writing q0 WD
Œq=d; d �, we see from the Chinese remainder theorem that the constraints n� a=d .q=d/
and n � b .d/ are either inconsistent, or constrain n to precisely one primitive residue
class a0 .q0/with .a0; q0/D 1. Thus it suffices to show the pseudopolynomial decay boundX

n�N 0

n�a0 .q0/

.�.n/ � �Siegel.n//� N exp.�c log1=10N/

whenever 1 � N 0 � N and 1 � a0 � q0 � exp.2c2 log1=10N/ with .a0; q0/ D 1.
When there is no Q-Siegel zero the claim is immediate from [35, Exercise 11.3.12]

(modified slightly due to our slightly different definition of a Siegel zero). Now suppose
that there is a Q-Siegel zero. The result previously cited in [35, Exercise 11.3.12] (again
modified slightly to account for our slightly different notion of Siegel zero) then gives the
pseudopolynomially accurate asymptoticX

n�N 0

n�a0 .q0/

�.n/ D 1qSiegeljq0
�q0.a

0/.N 0/ˇ

�.q0/L0.ˇ; �q0/ˇ
CO.N exp.�c log1=10N//
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where �q0.n/ WD �Siegel.n/1.n;q0/D1 is the character of modulus q0 induced from �Siegel

when q0 is a multiple of qSiegel. Note that

L.s; �q0/ D L.s; �Siegel/
Y
pjq0

p−qSiegel

�
1 �

�Siegel.p/

ps

�
;

and thus by the product rule (and the fact that L.ˇ; �Siegel/ D 0),

L0.ˇ; �q/ D L
0.ˇ; �Siegel/

Y
pjq0

p−qSiegel

�
1 �

�Siegel.p/

pˇ

�
:

We conclude thatX
n�N 0

n�a0 .q0/

�.n/ D 1qSiegeljq0
.N 0/ˇ�Siegel.a

0/

ˇ�.q/L0.ˇ; �Siegel/

Y
pjq0

p−qSiegel

�
1 �

�Siegel.p/

pˇ

��1
CO.N exp.�c log1=10N//:

It will thus suffice to establish the corresponding pseodupolynomially accurate asymptoticX
n�N 0

n�a0 .q0/

�Siegel.n/ D 1qSiegeljq0
.N 0/ˇ�Siegel.a

0/

ˇ�.q0/L0.ˇ; �Siegel/

Y
pjq0

p−qSiegel

�
1 �

�Siegel.p/

pˇ

��1
CO.N exp.�c log1=10N// (7.6)

for �Siegel. It suffices to establish the variant estimateX
n�N 0

n�a0 .q0/

�Siegel.n/ D
.N 0/ˇ�Siegel.a

0/

ˇ�.q0/L0.ˇ; �Siegel/

Y
pjq0

p−qSiegel

�
1 �

�Siegel.p/

pˇ

��1
CO.N exp.�c log1=10N// (7.7)

(say) whenever 1 � a0 � q0 � exp.O.log1=10N// with .a0; q0/D 1 and qSiegel jq
0. Indeed,

this estimate immediately implies (7.6) when qSiegel divides q0, and when qSiegel does not
divide q0, one splits up the primitive residue class a0 .q0/ into primitive residue classes
modulo Œq0; qSiegel� on the support of �Siegel, applies (7.7) to each such class, and sums,
using the orthogonality of Dirichlet characters to cancel out the main term.

We use Definition 2.1 to expand the left-hand of (7.7) asX
d2D

�.d/
X

n�N 0=d
dn�a0 .q0/

�0.n/;

where D consists of all the factors d of P.Q/ with .d; q0/ D 1. As in the proof of (5.18),
we can decompose D� [ D>, where D� are those d 0 2 D with d 0 � exp.log1=2 N/
(say) and D> are those d 0 2 D with d 0 > exp.log1=2N/. The contribution of D> can be



Quantitative bounds for Gowers uniformity of the Möbius and von Mangoldt functions 37

disposed of by the same argument used to prove (5.18), so it remains to show thatX
d2D�

�.d/
X

n�N 0=d
dn�a0 .q0/

�0.n/ D
.N 0/ˇ�Siegel.a

0/

ˇ�.q0/L0.ˇ; �Siegel/

Y
pjq0

p−qSiegel

�
1 �

�Siegel.p/

pˇ

��1
CO.N exp.�c log1=10N//:

By Definition 2.1, we haveX
n�N 0=d
dn�a0 .q0/

�0.n/ D ˛
�.P.Q//

P.Q/

X
n�N 0=d

n�a0=d .q0/

.ƒCramér;Q.n/ �ƒSiegel.n//:

Applying (7.4), as well as Lemma 5.5, we can write this as

˛
�.P.Q//

P.Q/

.N 0=d/ˇ

ˇ�.q0/
�Siegel.a

0/�Siegel.d/

up to acceptable error terms. Canceling some terms, it thus suffices to show that

˛
�.P.Q//

P.Q/

X
d2D�

�.d/�Siegel.d/

dˇ
D

1

L0.ˇ; �Siegel/

Y
pjq0

p−qSiegel

�
1 �

�Siegel.p/

pˇ

��1
CO.exp.�c log1=10N//:

A standard Euler product calculation using (2.3) gives

˛
�.P.Q//

P.Q/

X
d2D

�.d/�Siegel.d/

dˇ
D

1

L0.ˇ; �Siegel/

Y
pjq0

p−qSiegel

�
1 �

�Siegel.p/

pˇ

��1
;

so it suffices to show that

˛
�.P.Q//

P.Q/

X
d2D>

�.d/�Siegel.d/

dˇ
� exp.�c log1=10N//:

By Lemma 5.5 and the triangle inequality it suffices to show thatX
d2D>

1

dˇ
� exp.�c log1=5N//:

But we can bound
1

dˇ
�

1

dˇ�log�1=10N
exp.�c log2=5N/ �

1

d1�2 log�1=10N
exp.�c log2=5N/

when d 2 D>, and from Euler products we haveX
d2D

1

d1�2 log�1=10N
�

Y
p�Q

�
1C

1

p1�2 log�1=10N

�
� exp.O.log logN//;

and the claim follows.
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We return now to the proof of Theorem 2.7. Throughout this section we assume that
� > 0 is fixed and small in terms of k, and that c1.�/ > 0 is sufficiently small depending
on k (and we reserve the right to decrease c1.�/ later in the argument if necessary). We can
assume thatN is sufficiently large depending on c1.�/, k, as the claim is trivial otherwise.
Let P , G=� , F , g be as in that theorem. We use m D O..log logN/c1.�// to denote the
dimension ofG; to avoid some minor notational issues we will assume thatm � 2 (as can
be achieved trivially by adding some dummy dimensions).

We repeat the arguments from [23], but now performing a more quantitative account-
ing of the dependence on constants (particularly on the dimension). We first use a dimen-
sion-uniform version of the factorization theorem in [24, Theorem 1.19], which we estab-
lish in Theorem A.6. We apply that theorem with M0 WD exp.log1=10��=2 N/ and A WD
exp..log logN/1=2/ to obtain a quantity

exp.log1=10��=2N/ �M � exp.log1=10��=3N/; (7.8)

a subgroupG0 �G which isM -rational with respect toG, and a decomposition gD "g0
into polynomial sequences "; g0;  WZ! G such that

(i) " is .M;N /-smooth;

(ii) g0 takes values in G0 and .g0.n/�/n2ŒN � is totally 1=MA-equidistributed in G0=� 0,
with respect to a Mal’cev basis X0 consisting of M -rational linear combinations of
the basis elements of X;

(iii)  is M -rational and .n/� is periodic with period at most M .

We can partition the arithmetic progression P into O.MmO.1// components P 0 such
that on each of these components the periodic function .n/� is equal to an M -rational
constant P 0� , and the smooth sequence " differs by at most O.M�m

C
/ from a constant

"P 0 2 G of distance at most M from the origin, for a large constant C . We can also
normalize P 0 to be distance O.MmO.1// from the origin. From this and the Lipschitz
nature of F , we see (for C large enough) that

F.g.n/�/ D F."P 0g
0.n/P 0�/CO.M

�1/

for n 2 P 0. By (7.8), the triangle inequality, and Lemma 2.4, it thus suffices to establish
the boundsX

n2P 0

.� � �Siegel/.n/ xF ."P 0g
0.n/P 0�/

� NM exp.mO.1//.exp.� log1=10��=4N/CM�A= exp.mO.1///

and X
n2P 0

.ƒ �ƒSiegel/.n/ xF ."P 0g
0.n/P 0�/

� NM exp.mO.1//.exp.� log1=10��=4N/CM�A= exp.mO.1///
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for all of the progressions P 0, where the implied constants in the O.1/ notation on the
right-hand sides of the estimates can be taken to be uniform in � for � sufficiently small.
We introduce the conjugated group

GP 0 WD 
�1
P 0 G

0P 0

and conjugated polynomial
gP 0 WD 

�1
P 0 g

0P 0

that takes values in GP 0 , and the normalized function

FP 0.x/ WD xF ."P 0P 0x/ �

Z
GP 0=.GP 0\�/

xF ."P 0P 0 �/;

where the integral is with respect to the Haar probability measure on GP 0=.GP 0 \ �/
(which we can view as a subnilmanifold of G=�). Using Proposition 2.2 to dispose of
the contribution of the constant

R
GP 0=.GP 0\�/

xF ."P 0P 0 �/ (which can be viewed as the
“major arc” contribution to these correlations), we are reduced to establishing the boundsX

n2P 0

.� � �Siegel/.n/FP 0.gP 0.n/�/

� NM exp.mO.1//�exp.� log1=10��=4N/CM�A= exp.mO.1//�
and X

n2P 0

.ƒ �ƒSiegel/.n/FP 0.gP 0.n/�/

� NM exp.mO.1//.exp.� log1=10��=4N/CM�A= exp.mO.1///:

The advantages of this reduction are that the function FP 0 is not only 1-bounded and
O.MmO.1//-Lipschitz (with respect to the Mal’cev basis of GP 0=.GP 0 \ �/, which is
a filtered nilmanifold of complexity O.MmO.1//), but it also has mean zero. By repeat-
ing the arguments from [23, p. 547] and keeping track of the constants, we see that the
polynomial sequence gP 0 is totally 1=MA=mO.1/ -equidistributed (note that multiplicative
factors of exp.exp.mO.1/// can be absorbed into the MA=mO.1/ denominator, and all the
Om.1/ exponents appearing in this portion of [23] (and [24]) are polynomial in m).

We can use the Gowers uniformity of �Siegel to obtain the following bound on the
Siegel terms which is acceptable when qSiegel is large enough:

Proposition 7.1. We haveX
n2P 0

�Siegel.n/FP 0.gP 0.n/�/� NMmO.1/q
�1=mO.1/

Siegel

and X
n2P 0

.ƒSiegel.n/ �ƒCramér;Q.n//FP 0.gP 0.n/�/� NMmO.1/q
�1=mO.1/

Siegel :
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Proof. We apply [22, Proposition 11.2], noting that all bounds9 can be shown to be poly-
nomial in the parameters M; " with exponents that are polynomial in the dimension m, to
decompose

FP 0.gP 0.n/�/ D F1.n/C F2.n/;

where F1 obeys the dual norm bound

En2ŒN �f .n/F1.n/� .M="/m
O.1/

kf kUk ŒN �

for any f W ŒN �! C, and F2 obeys the pointwise bound

F2.n/� "

for all n 2 ŒN �. Here 0 < " � 1 is a parameter that we are at liberty to choose.
By Theorem 2.5, the functions �Siegel; ƒSiegel � ƒCramér;Q already have a U k ŒN �

norm of O.q�cSiegel/; a standard Fourier expansion of 1P 0.n/ in terms of additive char-
acters and the triangle inequality then show that the truncated versions 1P 0�Siegel,
1P 0.ƒSiegel � ƒCramér;Q/ have a U k ŒN � norm of O.MO.1/q�cSiegel/ (note that any log-
arithmic factors can be easily absorbed into the MO.1/ factor). Applying the above
decomposition as well as Lemma 2.4, we see thatX

n2P 0

�Siegel.n/FP 0.gP 0.n/�/� NMO.1/.M="/m
O.1/

q�cSiegel C "N

andX
n2P 0

.ƒSiegel.n/�ƒCramér;Q.n//FP 0.gP 0.n/�/�NMO.1/.M="/m
O.1/

q�cSiegelC"N logN;

and the claim then follows by a suitable choice of " (noting that the logN factor can be
absorbed into the M factor).

Based on this proposition, we may now delete the Q-Siegel zero contributions except
in the regime where

qSiegel �M
A=exp.mC1 / (7.9)

9The argument as stated in that paper appeals to the Stone–Weierstrass theorem and the Arzelà–
Ascoli theorem, but this can be replaced by more quantitative approximation results without
difficulty, such as [20, Lemma A.9], combined with standard smooth partitions of unity to allow one
to work on regions such as the unit cube rather than on the original nilmanifold. As pointed out to us
by James Leng, the required smoothness bounds on the function P constructed in [22, Proposition
11.5] also need to be established. To do this, one can first take advantage of the fact that HKsC1.G/
acts transitively on the graph of P to reduce to establishing smoothness bounds at the origin. Then
one can lift from G=� to G, and reduce to establishing that one corner of a parallelepiped in
HKsC1.G/ is a smooth function of all the other corners near the origin with the required bounds.
But one can express the first corner as a word in the other corners of length depending only on s,
and from many applications of the Baker–Campbell–Hausdorff formula this will give the desired
quantitative bounds on this corner completion function.
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where C1 is a large constant depending on k (but not on �) that we are at liberty to choose;
we can also assume N to be sufficiently large depending on C1 (as well as k and �). To
simplify the notation we assume henceforth that theQ-Siegel zero exists and obeys (7.9);
the remaining cases follow by a simplified version of the same argument that deletes all
the steps and terms that treat the contribution of the Q-Siegel zero. It will now suffice to
obtain estimates of the formX

n2P 0

.� � �Siegel/.n/FP 0.gP 0.n/�/

� N.MqSiegel/
exp.mO.1//�exp.� log1=10��=4N/CM�A= exp.mO.1//�

and X
n2P 0

.ƒ �ƒSiegel/.n/FP 0.gP 0.n/�/

� N.MqSiegel/
exp.mO.1//�exp.� log1=10��=4N/CM�A= exp.mO.1//�;

where the implied constants do not depend on C1.
To treat these sums, we make the following standard Vaughan-type decompositions.

Call a sequence ad ; d 2 N of complex numbers divisor bounded if one has

ad � .logN/O.1/�O.1/.d/

for all d 2 ŒN �, where �.n/ WD
P
d jn 1 is the divisor function.

Proposition 7.2 (Vaughan-type decompositions). Any of the four functions �; �Siegel;

ƒ; ƒSiegel on ŒN � can be expressed as a convex linear combination of functions of one
of the following four classes .with uniform constants in the bounds/:

(i) (Type I sum) A function of the form

n 7!
X

d�N2=3

ad1d jn1ŒN 0�.n/;

where the coefficients ad are divisor-bounded and 1 � N 0 � N .

(ii) (Twisted type I sum) A function of the form

n 7!
X

d�N2=3

ad1d jn�Siegel.n=d/1ŒN 0�.n/;

where the coefficients ad are divisor-bounded and 1 � N 0 � N .

(iii) (Type II sum) A function of the form

n 7!
X

d;w>N1=3

adbw1dwDn

for some divisor-bounded coefficients ad ; bw .
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(iv) (Negligible sum) A divisor-bounded function n 7! f .n/ withX
n2ŒN �

jf .n/j � N exp.� log1=2N/:

Proof. For ƒ we can use the familiar Vaughan identity [43]

ƒ.n/ D ƒ.n/1n�N1=3

�

X
d�N2=3

ad1d jn C
X

d�N1=3

�.d/1d jn log
n

d
C

X
d;w>N1=3

ƒ.d/bw1dwDn;

where ad WD
P
bcDd Wb;c�N1=3 �.b/ƒ.c/ and bw WD

P
cjwW c>N1=3 �.c/. The first term is

negligible, the second term is a Type I sum (restricting to ŒN �), and the fourth term is a
Type II sum; the third term can be converted to a convex combination of Type I sums by
using the fundamental theorem of calculus to write

log
n

d
D logN �

Z N

1

1t>n
dt

t
� log d

and absorbing all the various logarithmic factors into the divisor-bounded coefficients.
Similarly, for � we can use the variant identity

�.n/ D
X

d�N2=3

a0d1d jn �
X

d;w>N1=3

�.d/bw1dwDn;

where a0
d
WD
P
bcDd Wb;c�N1=3 �.b/�.c/ and bw is as before; see e.g. [20, Lemma 4.1].

To handleƒSiegel, it suffices (using the estimate P.Q/=�.P.Q//� .logN/O.1/ com-
ing from Mertens’ theorem) to show that the functions

n 7! 1.n;P.Q//D1 (7.10)

and
n 7! nˇ�11.n;P.Q//D1�Siegel.n/

can be expressed in the desired form (absorbing all the constant factors into the divisor-
bounded coefficients). But if �C

d
; ��
d

are the upper and lower linear sieve coefficients,
respectively, with level D D Q10.logN/3=5 and sifting parameter Q, one can writeX

d�D

��d 1d jn � 1.n;P.Q// �
X
d�D

�C
d
1d jn;

and by the fundamental lemma [29, Lemma 6.3] (bounding the error terms R˙ there
as O.D/) we haveX

n2ŒN �

ˇ̌̌
1.n;P.Q// �

X
d�D

�˙d 1d jn

ˇ̌̌
� N exp.�10 log3=5N/

(say). Therefore, one can express (7.10) as a Type I sum plus an error term of L1ŒN �
norm � N exp.�10 log3=5 N/, and by multiplying by �Siegel one can then express
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n 7! 1.n;P.Q//D1�Siegel.n/ as a twisted Type I sum plus an error term of L1ŒN � norm
at most� N exp.�10 log3=5N/. Indeed, in these cases one can lower the N 2=3 thresh-
old on d to something much smaller, such as exp.O.log7=10N//. Finally, the nˇ�1 weight
can be handled using the fundamental theorem of calculus identity (5.12).

Now we turn to �Siegel D �local ��
0. From the previous discussion and Lemma 5.5, �0

is already expressible as a convex combination of twisted Type I sums (where d can
be constrained to be at most exp.O.log7=10 N//) plus an error term of L1ŒN � norm
� N exp.�10 log3=5 N/. We can then convolve by �local1Œexp.5 log3=5N/� and conclude
that �local1Œexp.5 log3=5N/� � �

0 is also expressible as a convex combination of twisted
Type I sums plus a negligible error (note that the values of d encountered stay well below
the threshold N 2=3). Finally, the remaining term �local.1 � 1Œexp.5 log3=5N/�/ � �

0 can be
seen to be negligible by the same arguments used to dispose of the D> contributions to
(5.18) (namely, using the fact that the density ofQ-smooth numbers in any dyadic interval
ŒM; 2M� with exp.5 log3=5N/ �M � N is� exp.�5.log1=2N/).

The contributions of the negligible sums to the previous estimates are acceptable from
the triangle inequality. By a further application of the triangle inequality, it thus suffices
to establish the boundX

n2P 0

f .n/FP 0.gP 0.n/�/� N.MqSiegel/
exp.mO.1//M�A= exp.mO.1// (7.11)

whenever f is a Type I sum, a twisted Type I sum, or a Type II sum.
The Type I and Type II sums were already essentially treated in [23, Section 3], and it

turns out that the methods also easily extend to cover the twisted Type I case. We briefly
review the argument as follows. We begin with the twisted Type I case; the Type I case is
treated by a simplification of the argument that deletes the role of the Q-Siegel character,
and is omitted here (and in any case would follow closely the treatment in [23, Section 3]).
Suppose that ˇ̌̌X

n2P 0

f .n/FP 0.gP 0.n/�/
ˇ̌̌
� ıN (7.12)

for some 0 < ı < 1
MqSiegel

and a twisted Type I sum f . By the definition of such sums and
the triangle inequality, this implies thatX

d�N2=3

�C .d/
ˇ̌̌ X
n2P 00\dZ

�Siegel.n=d/FP 0.gP 0.n/�/
ˇ̌̌
� ıO.1/N

for some constant C D O.1/, where P 00 WD P 0 \ ŒN 0� (note that all logO.1/N terms can
be easily absorbed into the ıO.1/ factor). Standard divisor sum estimates giveX

d�N2=3

�2C .d/=d � logO.1/N

(with the implied constant depending on C ), hence by Cauchy–Schwarz,X
d�N2=3

d
ˇ̌̌ X
n2P 00\dZ

�Siegel.n=d/FP 0.gP 0.n/�/
ˇ̌̌2
� ıO.1/N 2;
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and hence by dyadic decomposition there exists 1 � D � N 2=3 such thatX
D�d�2D

ˇ̌̌ X
n2P 00\dZ

�Siegel.n=d/FP 0.gP 0.n/�/
ˇ̌̌2
� ıO.1/

N 2

D
:

Since the inner sum is O.N=D/, we conclude thatˇ̌̌ X
n2P 00\dZ

�Siegel.n=d/FP 0.gP 0.n/�/
ˇ̌̌
� ıO.1/

N

D

for� ıO.1/D log�O.1/N natural numbers d in ŒD; 2D�. For such a d , we partition into
residue classes modulo dqSiegel and use the triangle inequality to conclude thatˇ̌̌ X

n2ŒNd �

FP 0.gP 0.d.qSiegelnC ad //�/
ˇ̌̌
� ıO.1/

N

D

for some 1�Nd �N=D and 1� ad � qSiegel (note that all qSiegel factors can be absorbed
into the ıO.1/ factor). Applying Theorem A.3, we can then find a horizontal character �d
of G0 with

0 < j�d j � ı� exp.mO.1// (7.13)

such that
k�d ı gP 0.d.qSiegel � C ad //kC1ŒN=D� � ı� exp.mO.1//;

where k � kC1 is defined in [24, Definition 2.7]. The parameter ad is annoying, but we
can remove it10 by applying [24, Lemma 8.4] to conclude that

k�0d ı gP 0.d.qSiegel �//kC1ŒN=D� � ı� exp.mO.1//

for some �0
d

that continues to obey (7.13). The total number of such �0
d

isO.ı� exp.mO.1///.
Thus by the pigeonhole principle, we can find one such horizontal character � such that

k� ı gP 0.d.qSiegel �//kC1ŒN=D� � ı� exp.mO.1//

for� ıexp.mO.1//D values of d 2 ŒD; 2D�. If we expand out the polynomial

� ı gP 0.qSiegeln/ D ˇkn
k
C � � � C ˇ0 mod 1 (7.14)

for some real numbers ˇ0; : : : ; ˇk , then by applying [23, Lemma 3.2] we conclude that
there is a positive integer q D O.1/ such that

kqd j ǰ kR=Z � .N=D/�j ı� exp.mO.1//

for all j D 0; : : : ; k, where kxkR=Z denotes the distance to the nearest integer. Applying
a Waring-type result from [23, Lemma 3.3], we then have, for each j D 0; : : : ; k,

kqd 0 ǰ kR=Z � .N=D/�j ı� exp.mO.1//

10We thank the anonymous referee for this suggestion, which patched a gap in a previous version
of this argument.
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for� ıexp.mO.1//Dj integers d 0 of size d 0 DO.Dj /. Applying Vinogradov’s lemma [23,
Lemma 3.4], and clearing denominators, we then conclude that there is a positive integer
K � ıexp.mO.1// such that

kK ǰ kR=Z � N�j ı� exp.mO.1//

for all j D 0; : : : ; k, and thus by (7.14),

kKqkSiegel� ı gP 0kC1ŒN � � ı� exp.mO.1//:

On the other hand, gP 0 is totally 1=MA=mO.1/ -equidistributed. Arguing as in [23, Sec-
tion 3] and noting that all exponents of the form Om.1/ are in fact polynomial inm, these
two facts are incompatible unless

ı� exp.mO.1//
�MA=mO.1/ ; (7.15)

which (when combined with the constraint ı � 1
MqSiegel

) gives the desired bound (7.11).
For the Type II case, we can again start by assuming (7.12) for some 0 < ı < 1=M

and some Type II sum f . The contribution of those n less than ıCN for a large abso-
lute constant C can easily be seen to be negligible, so one can assume without loss of
generality that jP 0j lies in the interval ŒıCN;N �. One hasX

d>N1=3

X
w>N1=3

adbwFP 0.gP 0.dw/�/1P 0.dw/� ıO.1/N

for some divisor-bounded ad ; bw , and then after some dyadic decomposition and Cauchy–
Schwarz (cf. [20, Proposition 7.2]) one can find N 1=3 � D; W � ı�O.1/N 2=3 with
DW D ıO.1/N such thatX
d;d 02ŒD;2D�

X
w;w02ŒW;2W �

FP 0.gP 0.dw/�/FP 0.gP 0.dw
0/�/FP 0.gP 0.d

0w/�/

� FP 0.gP 0.d
0w0/�/� ıO.1/N:

One now repeats the arguments used to treat the Type II case in [23, Section 3] more
or less verbatim (noting that all exponents are of order exp.mO.1// at worst) to obtain a
contradiction to the total 1=MA=mO.1/ -equidistribution of gP 0 unless (7.15) holds, and we
again obtain (7.11) as desired. This concludes the proof of Theorem 2.7.

8. Applying densification

We now use densification methods to establish a general transference principle (which
seems of independent interest) that converts inverse theorems for the Gowers norms for
1-bounded functions to inverse theorems for Gowers norms for �-bounded functions for
various “pseudorandom” weights �. Our pseudorandomness condition will be relatively
mild (a U 2k estimate on � � 1), and the losses in the transference argument will only
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be polynomial in nature. However, one drawback of the theorem is that the input inverse
theorem must also have polynomial bounds.

In Section 8.2, we will use Theorem 8.1 to complete the proof of Theorem 2.6 in the
von Mangoldt case.

8.1. Transferring inverse theorems

Theorem 8.1 (Transference principle for U k inverse theorems). Let k � 2 be fixed. Let
G D .G;C/ be a finite abelian group. Suppose that for every 0 < ı � 1=2 there is a family
‰ı of 1-bounded functions  WG! C, non-increasing in ı and closed under translations
and complex conjugation, obeying the following U k inverse theorem:

(i) If 0 < ı � 1=2 and f WG ! C is 1-bounded with kf kUk.G/ � ı, then there exists
 2 ‰ı such that jEx2Gf .x/ .x/j � ıB for some B > 0.

Let C0 be sufficiently large depending on k, let 0 < ı � 1=2, and let �WG ! RC be a
weight with

k� � 1kU 2k.G/ � ı
C0 : (8.1)

Let f WG ! C be �-bounded with

kf kUk.G/ � ı: (8.2)

Then there exist  1; : : : ;  2k�1 2 ‰ıO.1/ such that

ˇ̌̌
Ex2Gf .x/

2k�1Y
jD1

x j .x/
ˇ̌̌
� ıO.1/:

We remark that this theorem strengthens a similar result in [9], in that the class ‰ı
is allowed to be more general than the space of “dual functions”, and the bounds are
polynomial in nature rather than qualitative.

We now begin the proof of this theorem. Let the notation and hypotheses be as in
Theorem 8.1. From (8.2) we haveˇ̌̌

E
.x;Eh/2GkC1

Y
!2¹0;1ºk

f!.x C ! � Eh/
ˇ̌̌
� ıO.1/; (8.3)

where f0D f , and all the other f! WG!C are either equal to f or its complex conjugate.
The key step is

Proposition 8.2 (Densification of a single factor). Suppose that the bound (8.3) holds for
some � C 1-bounded functions f! ; ! 2 ¹0; 1ºk . Let !0 2 ¹0; 1ºk . Thenˇ̌̌

E
.x;Eh/2GkC1

Y
!2¹0;1ºk

Qf!.x C ! � Eh/
ˇ̌̌
� ıO.1/;

where Qf! D f! for ! 2 ¹0; 1ºkn¹!0º, and Qf!0 2 ‰ıO.1/ .
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Indeed, after applying this proposition 2k � 1 times starting with (8.3), we conclude
that ˇ̌̌

E
.x;Eh/2GkC1

f .x/
Y

!2¹0;1ºkn¹0ºk

 !.x C ! � Eh/
ˇ̌̌
� ıO.1/

for some  ! 2 ‰ıO.1/ and all ! 2 ¹0; 1ºkn¹0ºk (one can use the non-decreasing nature
of‰ to make the implied constant inO.1/ uniform in !). In particular, by the pigeonhole
principle there exist h1; : : : ; hk 2 G such thatˇ̌̌

Ex2Gf .x/
Y

!2¹0;1ºkn¹0ºk

 !.x C ! � Eh/
ˇ̌̌
� ıO.1/;

giving Theorem 8.1 thanks to the translation and conjugation invariance of ‰ıO.1/ .
It remains to prove Proposition 8.2. By relabeling we may assume !0D 0k . By replac-

ing � with �C1
2

(and adjusting C0 if necessary), and then rescaling by various factors of 2,
we may assume that the f! are �-bounded rather than � C 1-bounded. Now we adapt the
arguments of Conlon–Fox–Zhao [5]. We have

jEx2Gf0k .x/F.x/j � ıO.1/;

where F WG ! C is the dual function

F.x/ WD EEh2Gk
Y

!2¹0;1ºkn¹0ºk

f!.x C ! � Eh/:

Since f0k is �-bounded, we conclude from Cauchy–Schwarz that

.Ex2G�.x//.Ex2G�.x/jF.x/j
2/� ıO.1/:

Since
Ex2G�.x/ D k�kU 1.G/ � k�kUk.G/ � 1C k� � 1kUk.G/ � 1;

we conclude that
Ex2G�.x/jF.x/j

2
� ıO.1/: (8.4)

Next we claim that
Ex2G.� � 1/.x/jF.x/j

2
� ıC0 : (8.5)

We can write the left-hand side of (8.5) as

E
.x;Eh/2G2kC1

Y
!2¹0;1º2k

f!.x C ! � Eh/;

where

f02k .x/ WD �.x/ � 1; f E!;0k .x/ WD f E!.x/; f0k ; E!.x/ WD
xf E!.x/

for E! 2 ¹0; 1ºkn¹0ºk , and f!.x/ WD 1 for all other ! 2 ¹0; 1º2k not covered by the pre-
ceding definitions. By the Gowers–Cauchy–Schwarz inequality (4.1), we thus have

Ex2G.� � 1/.x/jF.x/j
2
�

Y
!2¹0;1º2k

kf!kU 2k.G/ � k� � 1kU 2k.G/k� C 1k
22k�1
U 2k.G/

;

and the claim now follows from (8.1) and the triangle inequality.
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From (8.4), (8.5) and the triangle inequality we conclude (for C0 large enough) that

Ex2G jF.x/j
2
� ıO.1/: (8.6)

The function F is not quite bounded. However, as the f! are all �-bounded, we certainly
have the pointwise bound jF j � D�, where D� is the dual function

D�.x/ WD Eh2Gk
Y

!2¹0;1ºkn¹0ºk

�.x C ! � Eh/:

We observe the moment estimates

Ex2GD�.x/j D 1CO.ıC0/ (8.7)

for j D 0;1;2. We just prove this for j D 2, as the j D 0;1 claims are similar (and easier).
We can expand

Ex2GD�.x/2 D E
.x;Eh/2G2kC1

Y
!2¹0;1º2k

g!.x C ! � Eh/;

where

g E!;0k .x/ WD �.x/; g0k ; E!.x/ WD �.x/

for E! 2 ¹0; 1ºkn¹0ºk , and g!.x/ WD 1 for all other ! 2 ¹0; 1º2k not covered by the pre-
ceding definitions. We split each g! that is of the form � into 1 and � � 1. Applying the
triangle inequality (1.2) and the Gowers–Cauchy–Schwarz inequality (4.1), we can thus
write

Ex2GD�.x/2 D 1CO.k� � 1kU 2k.G/.1C k� � 1kU 2k.G//
22k�1/;

and the claim follows from (8.1).
From (8.7) we have

Ex2G jD�.x/ � 1j2 � ıC0 : (8.8)

Now define the truncated version

QF .x/ WD min.jF.x/j; 1/ sgn.F.x//;

where sgn.F.x// is equal to F.x/=jF.x/j when F.x/ ¤ 0 and equal to zero when
F.x/ D 0. Then QF is 1-bounded and

jF.x/ � QF .x/j � max.jF.x/j � 1; 0/ � jD�.x/ � 1j; (8.9)

so from (8.8) and Cauchy–Schwarz we have

Ex2G xF .x/.F.x/ � QF .x// � Ex2G
�
jF.x/ � QF .x/j2 C jF.x/ � QF .x/j

�
� ıC0=2:

Hence by (8.6) and the triangle inequality we have

jEx2G xF .x/ QF .x/j � ıO.1/:
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We rewrite the left-hand side asˇ̌̌
EEh2Gk

Y
!2¹0;1ºk

f �! .x C ! �
Eh/
ˇ̌̌
;

where

f �
0k
.x/ WD QF .x/; f �! .x/ WD

xf!.x/

for ! 2 ¹0; 1ºkn¹0ºk . The f �! all have U k.G/ norm of at most k�kUk.G/ � 1 thanks to
(8.1), hence by the Gowers–Cauchy–Schwarz inequality (4.1) one has

k QF kUk.G/ � ıO.1/:

Applying the hypothesis in Theorem 8.1 (i), we conclude that there exists  2 ‰ıO.1/
such that

jEx2G QF .x/ .x/j � ıO.1/:

On the other hand, from Cauchy–Schwarz we have

Ex2G.F.x/ � QF .x// .x/� .Ex2G jF.x/ � QF .x/j
2/1=2 � ıC0=2

thanks to (8.8), (8.9). Hence by the triangle inequality (for C0 large enough) we have

Ex2GF.x/ .x/� ıO.1/:

But this rearranges to give the conclusion of Proposition 8.2. The proof of Theorem 8.1 is
now complete.

We now combine this theorem with Manners’ inverse theorem to obtain

Theorem 8.3 (Transferred inverse theorem). Let 0 < ı < 1=2, and let �W ŒN �! C be
such that

k� � 1kU 2k ŒN � � ı
C0

for some constant C0 that is sufficiently large depending on k. Let f W ŒN � ! C be a
�-bounded function such that

kf kUk ŒN � � ı: (8.10)

Then there exist a . filtered/ nilmanifold G=� of degree k � 1, dimensionO.ı�O.1//, and
complexity at most exp exp.O.1=ıO.1///, a 1-bounded Lipschitz function F WG=�!C of
Lipschitz constant at most exp exp.O.1=ıO.1///, and a polynomial map gWZ! G, such
that

jEn2ŒN �f .n/ xF .g.n/�/j � exp.� exp.O.1=ıO.1////:

Proof. As in the proof of Theorem 6.2, we pick a prime N 0 with 10N � N 0 � 20N
and extend f by zero to Z=N 0Z; we also extend � by 1 to Z=N 0Z, and observe that
k� � 1kU 2k.Z=N 0Z/ � ıC0 .

To apply Theorem 8.1, we will need an inverse theorem that has polynomial corre-
lation bounds. This is not directly provided by Theorem 6.2; however, such an inverse
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theorem does appear in the work of Manners [33]. Indeed, we see from [33, Lem-
mas 5.4.1, 5.5.1] (applying [33, Lemma 5.5.1] inductively, as in [33, p. 102]), that if
f WZ=N 0Z ! C is 1-bounded with kf kUk.Z=N 0Z/ � ı, then there exists a 1-bounded
function  WZ=N 0Z! C with the polynomial correlation bound

jEn2Z=N 0Zf .n/ .n/j � ıO.1/

such that  is of the form

 .n/ D

TX
iD1

˛i xFi .gi .n/�i /;

where T � exp.exp.ı�O.1///, the ˛i are complex numbers with j˛i j � 1, and for each
i , Gi=�i is a filtered nilmanifold of degree k � 1, dimension O.ı�O.1//, and complex-
ity at most exp exp.O.1=ıO.1///, Fi WGi=�i ! C is a 1-bounded Lipschitz function of
Lipschitz constant at most exp exp.O.1=ıO.1///, and gi WZ! Gi is a polynomial map
with gi� periodic with period N 0. Let us call the collection of all such  (with appropri-
ate choices of implied constants) Fı ; note that this collection is invariant under translation
and complex conjugation. We may now apply Theorem 8.1 to the �-bounded function f
in the hypotheses of this theorem, and conclude that there exist  1; : : : ;  2k�1 2 FıO.1/

such that ˇ̌̌
Ex2Z=N 0Zf .x/

2k�1Y
jD1

x j .x/
ˇ̌̌
� ıO.1/:

Applying the pigeonhole principle, and taking the tensor product of various nilsequences,
we conclude a correlation

jEn2Z=N 0Zf .n/ xF .g.n/�/j � exp.� exp.ı�O.1///;

where G=� is a filtered nilmanifold of degree k � 1, dimension O.ı�O.1//, and com-
plexity at most exp exp.O.1=ıO.1///, F WG=� ! C is a 1-bounded Lipschitz function
of Lipschitz constant at most exp exp.O.1=ıO.1///, and gWZ! G is a polynomial map
with g� periodic of periodN 0. Now argue as in the proof of Theorem 6.2 to conclude.

8.2. Completing the proof of the main theorem

Now we can show how the bound (2.11) in Theorem 2.6 follows from the bound (2.13)
given by Theorem 2.7. This will complete the proof of Theorem 2.6 and hence that of
Theorem 1.4. We begin with an application of the “W -trick”. LetW WD P.log"N/, where
" > 0 is a small constant depending on k to be chosen later; we may assume that N is
sufficiently large depending on ". Observe that the set ¹n 2 ŒN � W .n; W / D 1º contains
the entire support ofƒSiegel, as well as the support ofƒ except forO.logO.1/N/ numbers
which give a negligible contribution to the U k ŒN � norm. Thus it will suffice to show the
doubly logarithmic decay bound

k.ƒ �ƒSiegel/1.�;W /D1kUk ŒN � � .log logN/�c :
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By Corollary 4.2, this will follow once we show that�.W /W
.ƒ �ƒSiegel/.W � Cb/


Uk ŒN�bW �

� .log logN/�c (8.11)

for all 1 � b � W coprime to W .
Fix b. Now we use a quantitative variant of the well known fact (see [19]) that

�.W /
W

ƒ � 1 can be bounded by a pseudorandom weight, but now observing that we can
attain logarithmic accuracy in the pseudorandomness bound.

Proposition 8.4. �.W /
W

.ƒ � ƒSiegel/.W � Cb/ is C�-bounded for some C D O.1/

depending only on k and some �W ŒN�b
W
�! RC with k� � 1kU 2k ŒN�bW � � log�c"N .

Proof. By the triangle inequality (1.2), it suffices to establish this for �.W /
W

ƒ.W � Cb/

and �.W /
W

ƒSiegel.W � Cb/ separately. In the latter case, we see from Definition 2.1 thatˇ̌̌̌
�.W /

W
ƒSiegel.W nC b/

ˇ̌̌̌
�
�.W /

W
ƒCramér;Q.W nC b/

and the claim in this case follows from Corollary 5.3.
Now we turn to �.W /

W
ƒ.W � Cb/. Here we can basically follow the analysis of

Goldston–Yıldırım correlation estimates from [22, Appendix D], though with a slightly
more careful accounting in order to obtain suitable estimates. We choose a smooth func-
tion �WR! R�0 supported on Œ�2; 2� that equals 1=2 on Œ�1; 1� with

R 2
1
�0.x/2 dx D 1.

We set R WD N  for some sufficiently small constant 0 <  < 1=2 depending only on k
(and independent of "). Following [22, Appendix D], we introduce the truncated divisor
sum

ƒ�;R;2.n/ WD logR �
�X
d jn

�.d/�

�
log d
logR

��2
:

From [22, Lemma D.2] and the choice of �, the sieve factor c�;2 D
R1
0
j�0.x/j2 dx asso-

ciated to this divisor sum via [22, Definition D.1] is simply

c�;2 D 1: (8.12)

We then set

�.n/ WD
�.W /

W
ƒ�;R;2.W nC b/: (8.13)

Letƒ0 be the restriction ofƒ to those primes greater than R2. It is not difficult to see that
the error �.W /

W
ƒ.W � Cb/ � �.W /

W
ƒ0.W � Cb/ (supported on primes up to R2, as well as

powers of primes, and bounded in size by O.logN/) is non-negative with U 2k ŒN�b
W
�

norm as small as O.N�c/, so by (1.2) we may freely replace �.W /
W

ƒ.W � Cb/ with
�.W /
W

ƒ0.W � Cb/. By the definition of � in (8.13) and the fact that �.0/ D 1=2, we easily
verify the pointwise bound

0 �
�.W /

W
ƒ0.W nC b/� �.n/
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for all n. It will thus suffice to show the logarithmic decay bound

k� � 1k2
2k

U 2k ŒN�bW �
� log�c"N:

Expanding out the left-hand side, it suffices to show that

E
.n;Eh/2�

Y
!2S

�.W /

W
ƒ�;R;2.W.nC ! � Eh/C b/

D vol.�/CO..N=W /2kC1 log�c"N/ (8.14)

for all subsets S of ¹0; 1º2k , where � � R2kC1 is the convex body

� WD
®
.x; Ey/ 2 R2kC1W 0 < W.x C ! � Ey/C b � N 8! 2 ¹0; 1º2k

¯
:

Suppose that we directly apply the estimate11 in [22, Theorem D.3], using (8.12) to elim-
inate the role of the sieve factors. Then we can express the left-hand side of (8.14) as�

�.W /

W

�#S�
vol.�/

Y
p

p̌ CO

�
.N=W /2kC1

log1=20R
eO.X/

��
; (8.15)

where p̌ are the usual local factors

p̌ WD E
.n;Eh/2.Z=pZ/2kC1

Y
!2S

p

p � 1
1
W.nC!� Eh/Cb¤0

;

X is the quantity
X WD

X
p2P

p�1=2

and P is the set of primes p which are “exceptional” in the sense that at least two of the
affine forms

.x; Ey/ 7! W.x C ! � Ey/C b (8.16)

for E! 2 ¹0; 1º2k are linearly dependent modulo p.
Since W D P.log"N/, one has p̌ D .

p
p�1

/#S for p < log"N , while from the inclu-
sion-exclusion calculation used in the proof of Proposition 5.2 one has p̌ D 1CO.1=p

2/

for p � log"N . Thus Y
p

p̌ D

�
W

�.W /

�#S

.1CO.log�"N//: (8.17)

11This theorem as stated requires  to be sufficiently small depending onW (represented in [22]
by the parameter L), but the bound R � N  is only used before [22, (D.4)] to show that an expres-
sion of the form O.LO.1/RO.1/N d�1 logt R/ (here we have made the dependence on L explicit)
is equal to o.N d /, and this can be achieved with R � N  and  independent of L, so long as we
also haveL�N  , which is also the case here sinceLDO.W / andN is assumed to be sufficiently
large.
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Since vol.�/ � .N=W /2kC1, the main term in (8.15) is acceptable. If it were not for
the eO.X/ term, the error term in (8.15) would similarly be acceptable; unfortunately, as
defined in [22, Appendix D], the exceptional primes consist precisely of all the primes p
up to log"X , and this would ostensibly lead to an unacceptably large error term in (8.15).
But, an inspection of the proof of [22, Proposition D.4] reveals that the eO.X/ loss arises
from three sources. One is from the crude boundY

p

p̌ � e
O.X/ (8.18)

(see [22, (D.14)]); one is from the variantY
p>log1=10R

p̌ � 1CO.e
O.X/ log�1=20R/ (8.19)

(see [22, equation after (D.15)]); and the third arises from the estimateX
p2P‰ Wp>log1=10R

p�1 D O.X log�1=20R/ (8.20)

appearing in the fourth display after [22, (D.16)]. Of course, for the first estimate (8.18) we
may use the superior bound (8.17) instead in our case. In our cases none of the exceptional
primes exceed log"N < log1=10R, and so one can replace X with 0 in (8.19), (8.20). As
a consequence of these observations, the eO.X/ factor in [22, Proposition D.4] may be
replaced with . W

�.W /
/#S , and the error term in (8.15) is now also acceptable, giving the

claim.

Proof of Theorem 2.6 for ƒ. Combining Proposition 8.4 with (the contrapositive of)
Theorem 8.3, we see that it suffices to show (for a sufficiently small constant c1 > 0)
that one has the pseudopolynomial bound

En2ŒN�bW �

�.W /

W
.ƒ �ƒSiegel/.W nC b/ xF .g.n/�/� exp.�c logc N/ (8.21)

whenever G=� is a (filtered) nilmanifold G=� of degree k � 1, dimension at most
.log logN/c1 and complexity at most exp.logc1 N/, F WG=� ! C is a 1-bounded Lips-
chitz function of Lipschitz constant at most exp.logc1 N/, and gWZ! G is a polynomial
map. Using [34, Lemma 4.2], we can write g.n/ D Qg.W nC b/ for another polynomial
map QgWZ! G. But from Theorem 2.7 we haveX

n�N Wn�b .W /

.ƒ �ƒSiegel/.n/ xF . Qg.n/�/� N exp.�c logc N/

for some c > 0 independent of ", and the claim (8.21) then follows for " small enough.
This (finally!) completes the proof of Theorem 2.6, and hence that of Theorem 1.4.

We can now quickly deduce Corollary 1.5 from our main theorem.
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Proof of Corollary 1.5. Let w D .log logN/1=2. By Theorem 2.5, we have

kƒSiegel �ƒCramér;QkUk ŒN � � log�c N: (8.22)

Using the Fourier expansion 1n�b .W / D 1
W

P
1�a�W e.a.n�b/

W
/, the triangle inequality

for the Gowers norms, and the fact that kfe.� �/kUk ŒN � D kf kUk ŒN � for any function f
and any � 2 R, we deduce from (8.22) that�.W /W

�
ƒSiegel.W � Cb/ �ƒCramér;Q.W � Cb/

�
Uk ŒN�bW �

� W .kC1/=2k log�c N � log�c N: (8.23)

From Proposition 5.3, we have�.W /W
ƒCramér;Q.W � Cb/ � 1


Uk ŒN�bW �

� w�c : (8.24)

Let w0 D log" N where " is as in Section 8.2. Also let W 0 D
Q
p�w0 p. Then by Corol-

lary 4.2 and (8.11) we have

max
.b;W /D1

�.W /W
.ƒ �ƒSiegel/.W � Cb/


Uk ŒN�bW �

� max
.b0;W 0/D1

�.W 0/W 0
.ƒ �ƒSiegel/.W

0
� Cb0/


Uk ŒN�b

0

W 0
�

� .log logN/�c :

Now the claim follows by combining this with (8.23), (8.24) and applying the triangle
inequality for Gowers norms.

9. Quantitative linear equations in primes result

In this section we sketch the derivation of Theorem 1.6 from Theorem 1.4. The argu-
ments follow those in [22] extremely closely, and we will assume familiarity with those
arguments in this section.

In [22, Section 4], the qualitative version of Theorem 1.6 was derived from [22,
Theorem 4.5] using some elementary linear algebra and convex geometry. The same argu-
ments, replacing all qualitative decay terms with doubly logarithmic ones instead, show
that Theorem 1.6 will follow if one shows the following.

Theorem 9.1 (Primes in affine lattices in normal form). The statement of [22, Theo-
rem 4.5] continues to hold if the qualitative error term o.N d / in that theorem is replaced
with the doubly logarithmic term Os;d;t ..log log N/�cN d / for some c D cs;d;t > 0

depending only on the parameters s; d; t . .Also one ignores the references to the now
proven conjectures GI.s/;MN.s/ in that theorem./
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Next, we apply the W -trick arguments in [22, Section 5], setting w equal12 to
.log logN/� for a sufficiently small � > 0 depending on s; d; t rather than the more
conservative choice of log log logN . These arguments then reduce matters to showing

Theorem 9.2 (W -tricked primes in affine lattices). The statement of [22, Theorem 5.2]
continues to hold if the qualitative error term o.N d / in that theorem is replaced with the
doubly logarithmic termOs;d;t ..log logN/�cN d / for some cD cs;d;t > 0 depending only
on the parameters s; d; t . .Again one ignores the references to the now proven conjectures
GI.s/;MN.s/ in that theorem./

The statement of [22, Theorem 5.2] involves the functions

ƒ0bi ;W .n/ WD
�.W /

W
ƒ0.W nC bi /;

where W WD P.w/ and ƒ0 is the restriction of ƒ to the primes. From Corollary 1.5, we
have the doubly logarithmic bound

kƒ0bi ;W � 1kU sC1ŒN�biW �
�s;� .log logN/�c�

for some c > 0 depending only on s (and assuming as we may that N is sufficiently large
depending on s; d; t; �). On the other hand, a routine modification of Proposition 8.4 (see
also [22, Proposition 6.4]) reveals that for anyD, the function 1Cƒ0

b1;W
C � � � Cƒ0

bt ;W

on the interval ŒN 3=5; N � can be bounded by C� for some C D OD;�.1/ and some �
that obeys the .D;D;D/ linear forms condition from [22, Definition 6.2] with the oD.1/
term in [22, (6.2)] replaced by OD..log logN/�cD;�/ for some cD;� > 0. (We will not
need the now largely obsolete “correlation condition” in [22, Definition 6.3].) The claim
now follows from the generalized von Neumann theorem in [22, Theorem 7.1] proven
in [22, Appendix C], after replacing all o.1/ type terms withO..log logN/�c/ type terms,
noting that all the functions denoted � in that appendix can be taken to be polynomial in
nature; we leave the details to the interested reader.

Remark 9.3. It seems likely that one can improve Theorem 1.6 further, by allowing the
parameter L to be as large as .log logN/c with uniform control on error terms; one may
even be able to handle significantly larger values of the linear coefficients P i than this by
incorporating the various methods used in this paper. We will not pursue such refinements
here, however.

10. Arithmetic progressions with shifted prime difference

In this section we prove Theorem 1.8.

12Note that for this choice ofw, the prime number theorem in arithmetic progressions of modulus
W D P.w/ has an effective error term with good decay, as we can use the effective lower bounds
on L.1; �/ in this case rather than Siegel’s theorem. It should however be possible to work with
larger choices of w by incorporating the contribution of a Q-Siegel zero, as is done elsewhere in
this paper.
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Proof of Theorem 1.8. In what follows, let ƒ0 stand for the von Mangoldt func-
tion restricted to the primes. Let A � ŒN � be any set with jAj � ıN and ı D

.log log log logN/�c for small enough c > 0 depending on k. Let w D .log logN/1=2,
and let W D

Q
p�w p. By the pigeonhole principle, we can pick 1 � b � W such that

A0 WD ¹n WW nC b 2 Aº has size � ıN=W . Then the count of k-term arithmetic progres-
sions in A with shifted prime difference is

�
1

logN

X
n�N=W

X
d�N=W

1A.W nC b/1A.W nC bCWd/ � � �1A.W nC bCWd.k � 1//

�ƒ0.Wd C 1/

D
1

logN

X
n�N=W

X
d�N=W

1A0.n/1A0.nC d/ � � � 1A0.nC d.k � 1//ƒ
0.Wd C 1/ DW T:

Note that we have the trivial bound
P
n�N jƒ.n/�ƒ

0.n/j � N 1=2 logN . Using this
and our quantitative Gowers uniformity result in the form of Corollary 1.5, we have�.W /W

�ƒ0.W � C1/ � 1


Uk ŒN=W �

D

�.W /W
ƒ.W � C1/ � 1


Uk ŒN=W �

CO.N�1=2Co.1//� .log logN/�c
0

for some c0>0 depending on k. Therefore, by applying the generalized von Neumann the-
orem for pseudorandomly majorized functions [22, Theorem 7.1] (with similar remarks
on quantitative error terms to those in the proof of Theorem 1.6), we see that T is equal
to

W

'.W /.logN/

X
n�N=W

X
0�d�N=W

1A0.n/1A0.nC d/ � � � 1A0.nC d.k � 1//

CO
�
.N=W /2.log logN/�c

0�
: (10.1)

For � > 0, let Nk.�/ denote the smallest positive integer such that, for any m � Nk.�/,
any subset of Œm� of size � �m contains a non-trivial k-term arithmetic progression. Let
c.k; ı/ WD ı2=.16Nk.ı=2/

3/. Then, by a well known argument of Varnavides for quanti-
fying Szemerédi’s theorem (see e.g. [41, Theorem 18, Remark 1]), forN=W > 2Nk.ı=2/

the expression (10.1) is

�
W

'.W /
c.k; ı/.N=W /2 CO

�
.N=W /2.log logN/�c

0�
:

We have c.k; ı/ � exp.� exp.ı�C // for some C � 1 (depending on k) by Gowers’s
bound Nk.�/ � exp.exp.��C

0

//, proved in [13]. Now, if c is chosen small enough in
the definition of ı, we have c.k; ı/� .log logN/�o.1/, which proves the statement of
the theorem for k � 4. For k D 4, the same argument works, except that we now use
the bound N4.�/� exp.��C / from [25] to get c.4; ı/� exp.�Cı�C /, which enables
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taking ı D .log log logN/�c for some c > 0. Finally, for k D 3, using the very recent
bound (see [30]) N3.�/� exp..log.1=�//C / we have c.3; ı/� exp.�C.log.1=ı//C /,
which enables taking ı D exp.�.log log logN/c/ for some c > 0.

Appendix A. Quantitative Leibman theory with explicit dimension dependence

In this appendix we refine the equidistribution theory on nilmanifolds from [24], tracking
more carefully the dependence on dimension m (but allowing all constants to depend
on the degree d , which in our context will be equal to k � 1). The key point is that all
bounds will be at most doubly exponential in this dimension parameter, basically because
the arguments rely on applying the Cauchy–Schwarz inequality (or variants such as the
van der Corput inequality) a number of times that is polynomial in the dimension. (Many
of the estimates here require only single exponential dependence on m at worst, but the
induction on dimension we use only closes if we allow double exponential dependence.)
In order to improve this double exponential dependence it would seem necessary to adopt
a different approach to equidistribution that is not as reliant on so many applications of
the Cauchy–Schwarz inequality.

We freely use the notation from [24], and let m be a dimensional parameter. To
conveniently track bounds that depend in double exponential fashion on the dimen-
sion we adopt the following notation. For any 0 < ı < 1=2 let polym.ı/ be any
quantity � exp.� exp.mO.1///ıexp.mO.1//, and for any Q > 2 let polym.Q/ be any
quantity � exp.exp.mO.1///Qexp.mO.1//. In particular, polym.1=ı/ is any quantity
� exp.exp.mO.1///ı� exp.mO.1//.

We begin with a more quantitative version of [24, Lemma 3.1]:

Lemma A.1 (Quantitative Kronecker Theorem). Let m � 1 and 0 < ı < 1=2, ˛ 2 Rm,
N � 1. If .˛nmod Zm/n2ŒN � is not ı-equidistributed in Rm=Zm, then there exists k 2Zm

with 0 < jkj � polym.1=ı/ such that kk � ˛kR=Z � polym.1=ı/=N .

Proof. The “simple calculation” used to establish [24, (3.3)], when done a little more
carefully, gives X

k2Zm
jkj�M

j OK.k/j � polym.1=ı/M
�1 (A.1)

and by chasing through the argument with this bound we obtain the claim.

This gives a version of [24, Lemma 3.7]:

Lemma A.2 (Vertical oscillation reduction). Let G=� be a filtered nilmanifold of
degree d , with vertical torus dimension md . Let 0 < ı < 1=2, and let gWZ! G be a
polynomial sequence for which .g.n/�/n2ŒN � is not ı-equidistributed. Then there is a
vertical character � with j�j � polymd .1=ı/ such that .g.n/�/n2ŒN � is not polymd .ı/-
equidistributed along the vertical oscillation � .
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Proof. Repeat the proof of [24, Lemma 3.7] verbatim, using the estimate (A.1) in place
of [24, (3.3)].

Now we state the main technical theorem on quantitative Leibman theory (a version
of [24, Theorem 7.1]):

Theorem A.3 (Variant of Main Theorem). Let m � m� � 0 be integers, 0 < ı < 1=2,
N � 1. LetG=� be a filtered nilmanifold of degree d , nonlinearity dimensionm� .defined
in [24, Section 7]/, and complexity at most 1=ı. Let gWZ! G be a polynomial sequence.
If .g.n/�/n2ŒN � is not ı-equidistributed then there exists a horizontal character � with
0 < j�j � ı� exp..mCm�/Cd / such that

k� ı gkC1ŒN � � ı
� exp..mCm�/Cd /

where Cd is a sufficiently large constant depending only on d .

We now prove this theorem. We assume inductively that the claim has already been
established for smaller values of d , or for the same value of d and smaller values of m�.
Henceforth we refine the polym notation by permitting the implied constants to depend
on the constant Cd�1, but not on Cd .

By repeating the derivation of [24, (7.1)] (using Lemma A.2 in place of [24,
Lemma 3.7]) we may find some function F W G=� ! C with kF kLip � polym.1=ı/
and vertical frequency � with j�j � polym.1=ı/ such that .g.n/�/n2ŒN � is not ıO.1/-
equidistributed along �, and such thatˇ̌̌̌

En2ŒN �F.g.n/�/ �

Z
G=�

F

ˇ̌̌̌
� polym.ı/:

If � D 0 then a repetition of the arguments after [24, (7.1)] gives the claim from the
induction hypothesis, so without loss of generality we assume � ¤ 0, thus we now have

jEn2ŒN �F.g.n/�/j � polym.ı/:

Repeating the reductions after [24, (7.2)], we may assume that g.0/ D idG and j .g.1//j
� 1, where  WG ! Rm is the Mal’cev coordinate map. Continuing the argument down
to [24, (7.8)] we conclude that

jEn2ŒN �F
�

h
.g�
h
.n/ ��/j � polym.ı/

with F�
h
; g�
h
; �� defined as in [24].

One can rather tediously verify that all the estimates in [24, Appendix A] can be
refined by replacing all estimates of the form X �m Q

Om.1/Y with X � polym.Q/Y .
As a consequence, we can refine [24, Lemma 7.4] (by exact repetition of the proof) to

Lemma A.4 (Rationality bounds for the relative square). There is a polym.1=ı/-rational
Mal’cev basis X� for G�=�� adapted to the filtration .G�/� with the property that
 X�.x;x

0/ is a polynomial of degreeO.1/ with rational coefficients of height polym.1=ı/
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in the coordinates  .x/;  .x0/. With respect to the metric dX� we have kF�
h
kLip �

polym.1=ı/ uniformly in h.

Continuing the arguments down to [24, Lemma 7.5], one can find horizontal char-
acters �1WG ! R=Z , �2WG2 ! R=Z with �2 annihilating ŒG; G2� and j�1j; j�2j �
polym.1=ı/ such that the character �WG� ! R=Z defined by

�.g0; g/ WD �1.g/C �2.g
0g�1/

is such that
k� ı g�h kC1ŒN � � polym.1=ı/

for� polym.ı/N values of h 2 ŒN �.
Continuing the argument down to [24, (7.16)], and using the induction hypothesis for

Theorem A.3 (with d replaced by d � 1, and m;m� replaced by quantities not exceeding
2m), we can find 1 � q � polym.1=ı/ such that

k�1.g.1//C � � ¹hº C q˛hkR=Z � polym.1=ı/=N

for� polym.ı/N values of h 2 ŒN �, where

(i) ˛ 2 R=Z is the quantity ˛ WD @2.�2 ı g2/.0/, where g2.n/ D g.n/g.1/�n is the
nonlinear part of g;

(ii)  2 .R=Z/mlin is (the first mlin components of)  .g.1//;

(iii) � 2 Rmlin is the vector such that

�2.Œg.1/; x�/ D � �  .x/ mod Z

for all x 2 G (extending � by zero to Rm).

Here it is important that the implied constants in the polym notation are allowed to depend
on Cd�1 (but not on Cd ).

It is routine to verify that j�j � polym.1=ı/. An inspection of the proof of [24, Propo-
sition 5.3] and [24, Claim 7.7], using Lemma A.1 in place of [24, Lemma 3.1], shows that
we may replace all bounds of the form X �m ı

�Om.1/Y appearing in these statements
by X � polym.1=ı/Y , to obtain one of the following claims:

(I) there is r � polym.1=ı/ such that kr�i mod ZkR=Z � polym.1=ı/=N for all i D
1; : : : ; mlin; or

(II) there exists k 2 Zmlin with 0 < jkj � polym.1=ı/ such that

kk � kR=Z � polym.1=ı/=N:

In case (II) we conclude exactly as in [24], so suppose we are in case (I). Arguing
as in [24] we can easily close the induction except in the case when �2 (and hence �)
annihilates ŒG;G�, at which point the arguments in [24] lead to

k�2 ı g2kR=Z � polym.1=ı/

(possibly after first multiplying �1; �2 by a positive integer of size polym.1=ı/.
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Repeating the rest of the proof of [24, Theorem 7.1] (replacing all bounds of the
formX �m ı

�Om.1/Y withX � polym.1=ı/Y ) and using the induction hypothesis with
.d;m�/ replaced by .d;m� � 1/, we see that

k� ı gkC1ŒN � � polym.1=ı/
exp..mCm��1/Cd /

for some horizontal character � W G ! R=Z with j�j � polym.1=ı/
exp..mCm��1/Cd /.

For Cd large enough, we have

polym.1=ı/
exp..mCm��1/Cd / � ı� exp..mCm�/Cd /;

and Theorem A.3 follows.
Repeating the proof of [24, Proposition 9.2] (specializing to the single-parameter case

t D 1), we then obtain

Proposition A.5 (Factorization of poorly-distributed polynomial sequences). Let m � 1,
0 < ı < 1=2,N � 1, d � 0, letG=� be anm-dimensional filtered nilmanifold of complex-
ity at most 1=ı, and let gWZ!G be a polynomial sequence. Suppose that .g.n/�/n2ŒN � is
not totally ı-equidistributed. Then there is a factorization g D "g0 with "; g0;  WZ! G

polynomials such that

(i) "WZ! G is .polym.1=ı/; N /-smooth;

(ii) g0WZ ! G takes values in a connected proper polym.1=ı/-rational subgroup G0

of G;

(iii)  WZ! G is polym.1=ı/-rational.

In [24, Lemma 10.1] with t D 1, one easily verifies that the boundMOm.1/ in the con-
clusion can be sharpened to polym.M/. We now claim the following quantitative version
of [24, Theorem 1.19]:

Theorem A.6 (Factorization theorem). Let m � 0, M0 � 2, A � 2, N � 1, d � 0. Let
G=� be an m-dimensional filtered nilmanifold of degree d and complexity at most M0,
and let gWZ! G be a polynomial sequence. Then there is some M with M0 � M �

MA.2Cm/
Od .1/

0 , a subgroup G0 � G which isM -rational with respect to X, and a decom-
position g D "g0 with "; g0;  WZ! G polynomials such that

(i) " is .M;N /-smooth;

(ii) g0 takes values in G0 and .g0.n/�/n2ŒN � is totally 1=MA-equidistributed in G0=� 0,
with respect to a Mal’cev basis X0 consisting of M -rational linear combinations of
the basis elements of the Mal’cev basis for G;

(iii)  is M -rational and .n/� is periodic with period at most M .

Proof. Repeat the proof of [24, Theorem 10.2] with t D 1, setting ıiC1 WD ıA
mC

i for a
sufficiently large constant C D Cd depending only on d (in particular, 1=ıiC1 is much
larger than any quantity of the form polym.1=ıi /

A if C is large enough).
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Appendix B. Proof of Theorem 1.3

Proof of Theorem 1.3. Part (i) follows easily from the prime number theorem with Vino-
gradov–Korobov error terms (for the Möbius case, see [44, Satz 3 in Section V.5]). Part (ii)
for the Möbius function follows from the strongly logarithmic exponential sum estimates

sup
�

jEn2ŒN ��.n/e.�n/j �
ineff
A log�AN

of Davenport [7], the Plancherel estimateZ 1

0

jEn2ŒN ��.n/e.�n/j
2 d� � N; (B.1)

the circle method, and Cauchy–Schwarz. For the second part of (ii), observe from Propo-
sition 1.2 and (1.2) that we may take w D log1=100N (say) without loss of generality. The
standard Vinogradov estimates for exponential sums over primes (see e.g. [29, Ch. 13])
eventually reveal the logarithmic bounds

sup
�

jEn2ŒN �.ƒ.n/ �ƒCramér;w.n//e.�n/j �
ineff log�c N;

while the Fourier restriction estimate from [17, Proposition 4.2] givesZ 1

0

jEn2ŒN �.ƒ.n/ �ƒCramér;w.n//e.�n/j
q d� �q 1

for any 2 < q < 1, and the claim now follows from the circle method and Hölder’s
inequality. Finally, for (iii), we see from Proposition 1.2 and (1.2) that we may assume
that w grows sufficiently slowly in N , and then the bounds in (iii) follow easily from the
main theorems in [22] as well as Corollary 4.2, after inserting the resolution of the inverse
conjecture for the Gowers norms (first proven in [27]) and the strong orthogonality of the
Möbius function to nilsequences (first proven in [23]).

Remark B.1. An alternative approach to (1.4) proceeds by comparing ƒ.n/ D

�
P
d jn�.d/ logd first with a truncated divisor sumƒ].n/ WD �

P
d jnWd�N c1 �.d/ logd

for some small absolute constant c1 > 0, and establishing the strongly logarithmic esti-
mate

kƒ �ƒ#
kU 2ŒN � �

ineff
A log�AN

from the circle method (here we can use a Plancherel bound analogous to (B.1) that loses
a factor of logN , thus avoiding the need to invoke the restriction theory from [17]), and
the logarithmic estimate

kƒ#
�ƒCramér;wkU 2ŒN � � log�c N

from sieve theory with (say) w D log1=100 N , and then applying the triangle inequality
(1.2); we leave the details to the interested reader. In this paper we found the Cramér
models ƒCramér;w to be slightly more convenient technically to work with than the trun-
cated divisor sum model ƒ], and therefore made no further use of ƒ] here.
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