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Bimodule coefficients, Riesz transforms on Coxeter
groups and strong solidity

Matthijs Borst, Martijn Caspers, and Mateusz Wasilewski

Abstract. In deformation-rigidity theory, it is often important to know whether certain bimodules
are weakly contained in the coarse bimodule. Consider a bimodule H over the group algebra C[I]
with I' a discrete group. The starting point of this paper is that if a dense set of the so-called coef-
ficients of H is contained in the Schatten S, class p € [2, 00), then the n-fold tensor power H f?’"
forn > % is quasi-contained in the coarse bimodule. We apply this to gradient bimodules associ-
ated with the carré du champ of a symmetric quantum Markov semi-group. For Coxeter groups, we
give a number of characterizations of having coefficients in S, for the gradient bimodule construc-
ted from the word length function. We get equivalence of: (1) the gradient-$, property introduced
by the second named author, (2) smallness at infinity of a natural compactification of the Coxeter
group, and for a large class of Coxeter groups, (3) walks in the Coxeter diagram called parity paths.
We derive several strong solidity results. In particular, we extend current strong solidity results for
right-angled Hecke von Neumann algebras beyond right-angled Coxeter groups that are small at
infinity. Our general methods also yield a concise proof of a result by Sinclair for discrete groups
admitting a proper cocycle into a p-integrable representation.

1. Introduction

This paper establishes bridges between the Riesz transform in modern harmonic analysis
and von Neumann algebra theory. The original Riesz transform can be defined as fol-
lows. Consider the positive unbounded Laplace operator A and the directional gradient V;
on L,(R") given by
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Then the Riesz transform R; = V; o A~ for 1 < j < nis an isometry on L,(R") that
has been studied extensively in classical harmonic analysis in the context of Fourier mul-
tipliers, singular integral operators and Calder6n—Zygmund theory.

2020 Mathematics Subject Classification. Primary 46L.10; Secondary 20F55.
Keywords. Strong solidity, quantum Markov semi-groups, Coxeter groups, Akemann—Ostrand property,
Riesz transform, Hecke von Neumann algebras, bimodule coefficients.



M. Borst, M. Caspers, and M. Wasilewski 2

Riesz transforms can be defined abstractly for any Cy-semi-group of positive measure
preserving unital contractions on Lo (X, i), with (X, i) a finite Borel measure space.
Such semi-groups admit a generator A and a natural replacement of the gradient V known
as the carré du champ. The Riesz transform is then defined as V o A~2. These Riesz
transforms were studied by Meyer [37] for (commutative) Gaussian algebras, and their
study was continued by Bakry [3,4], Gundy [27], Pisier [42], amongst others. This in par-
ticular involves an analysis of diffusion semi-groups on compact Riemannian manifolds
with lower bounds on the Ricci curvature [4]. In the non-commutative situation, Clifford
algebras were considered by Lust-Piquard [35,36]. Also recently the Riesz transform was
studied on general groups [31] using certain multipliers associated with cocycles.

In this paper, we study Riesz transforms associated with non-commutative general-
izations of diffusion semi-groups: (symmetric) quantum Markov semi-groups. Let M be
a finite von Neumann algebra and & = (®;);>¢ a point-strongly continuous semi-group
of trace preserving unital completely positive maps. Such a semi-group comes with a gen-
erator A. The proper replacement of the gradient is played by a bilinear form that is a non-
commutative version of the carré du champ. For simplicity, we consider mostly quantum
Markov semi-groups of Fourier multipliers associated with a discrete group I', acting
on the group algebra C[I']. Then the carré du champ allows the construction of a C[I]
bimodule Hv and a derivation, i.e., a map satisfying the Leibniz rule, V: C[['] — Hyvy
such that (here formally) A = V*V. So V is a root of A just as in the case of the Laplace
operator and the gradient. We refer to Cipriani and Sauvageot [18] where also the ana-
lytical framework is established. Then there is an isometry V o A3 £,(T") = Hy called
the Riesz transform. This Riesz transform was studied in the context of g-Gaussian algeb-
ras [16,35,36] and compact quantum groups [13, 14].

In the current paper, we are interested in applications of the Riesz transform to group
von Neumann algebras of discrete groups; we focus on Coxeter groups but we also obtain
results for other groups.

Recall that to a discrete group I' we may associate the group von Neumann algebra
£(I") which is the von Neumann algebra generated by the left regular representation.
Let IF, be the free group with two generators. In his fundamental papers on free probab-
ility, Voiculescu [50] showed that £ (IF;) does not possess a Cartan subalgebra, meaning
that there does not exist a maximal abelian subalgebra (MASA) of £(FF,) whose nor-
malizer generates £(IF2). An important consequence is that &£ () does not non-trivially
decompose as a crossed product and cannot be constructed from an equivalence rela-
tion with a cocycle as was shown by Feldman and Moore [23, 24]. In [39], Ozawa and
Popa gave an alternative proof of the Voiculescu’s result. They showed that £(FF,) is
strongly solid. This means that the normalizer of any diffuse amenable von Neumann sub-
algebra of £(IF,) generates a von Neumann algebra that is amenable again. Since £(IF2)
is nonamenable and since MASA’s are diffuse, it automatically follows that £(IF,) does
not possess a Cartan subalgebra. After [39] many von Neumann algebras were proven to
be strongly solid, see, e.g., [29,40,44] and references given there. As a consequence of
the methods in this paper, we are able to prove such strong solidity results as well.
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To motivate the first part of this paper, we recall the following theorem from [16]. We
do not explain for now the technical terms that occur in this theorem but in the subsequent
paragraph, we explain what the crucial part is. Theorem 1.1 itself is actually not that hard
to prove; however, its consequences (see [29,44]) and proving that its assumptions hold
in examples is rather intricate.

Theorem 1.1 ([16, Proposition 5.2]). Let H be a C[I'] bimodule, and let V:£,(T") — H
be bounded. Assume that H is quasi-contained in the coarse bimodule of T', V is almost
bimodular and that V*V is Fredholm. Assume that C¥(T") is locally reflexive. Then £(T")
satisfies AOT.

The Akemann—Ostrand property AO™ (as in [29]) will be used frequently in this paper
for which we refer to Definition 3.10. If I" is weakly amenable, then AO™ implies strong
solidity [29,44]. The Coxeter groups in this paper are weakly amenable [25,30] as are all
hyperbolic discrete groups [38].

In view of Theorem 1.1, we are mostly still interested in two things: (1) constructing
almost bimodular maps V:{,(I") — H with H a C[I'] bimodule; (2) showing that the
CI[I'] bimodule H is quasi-contained in the coarse bimodule £, (I") ® £, (T") of I'. It turns
out that very often the Riesz transform is an almost bimodular map. Further, we provide
comprehensible conditions that show that the gradient bimodule is quasi-contained in the
coarse bimodule. We will develop general theory for this as follows.

In the first part of this paper, we study bimodules over C[I'] and their coefficients.
We define coefficients of a C[I'] bimodule as a certain map C[I'] — C[I']. This notion
occurs, for instance, in [2, Section 13] for von Neumann algebras; the more algebraic
notion we present here is more convenient for our purposes. Since C[I"] C £,(I"), a coef-
ficient determines a densely defined map £, (I") — £,(I"). We study when these maps are
contained in the Schatten von Neumann non-commutative L,-space 3.

For two C[I'] bimodules H; and H,, we shall also show that H; ® H; has a natural
C[I'] bimodule structure, and we denote this bimodule by H; @ H». As a Hilbert space,
H; ®r H, = H; ® H;. Recall that the coarse bimodule of T" is given by £,(T") ® £,(I")
where the left action of C[I'] is on the first tensor leg and the right action on the second
tensor leg. In Section 3, we prove the following, amongst other results (except for part (4),
which is proved in Section 4, see Corollary 4.13).

Theorem 1.2. Let H, Hy and H, be C[I'] bimodules.
(1) If a dense set of coefficients of H is in S, then H is a £(I") bimodule that is

quasi-contained in the coarse bimodule of T.

(2) If a dense set of coefficients of H;, i = 1,2, is contained in S,;, p; € [1,00), then

a dense set of coefficients of Hi ®r H> is contained in Sp,, where % = % ﬁ.

3) If Vi: £,(T) — H;, i = 1,2, is almost C[I'] bimodular, then so is Vi x V, :=
(V] ® Vz) o Ap:ﬁz(l") — Hy ®r H,, where Ar‘ﬁez(r) — Ez(r) ® Zz(l") is the
comultiplication.
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(4) Consider a proper length function W:I' — Zx that is conditionally of negative
type, defined on a finitely generated group I'. Then the associated Riesz transform
R: 05 (T) — £5(I)v is almost bimodular.

Theorem 1.2 provides a clear strategy towards obtaining the input of Theorem 1.1.
Namely, we start with a proper length function y: I' — R that is conditionally of negative
type. We construct the associated gradient bimodule Hy and show that its coefficients are
in §, for some p € [1, 00). By tensoring, we obtain a bimodule (HV)?", n > [%£] and
a map

v £() — (He)E",

with the desired properties of Theorem 1.1. This is the rough idea of our strategy. We say
‘rough’ since in all applications we need some suitably adapted variation of this idea.

In the second part of this paper, we analyse when coefficients of a gradient bimod-
ule Hy are in §,, p € [1, 00). In order to do so, we recall the property gradient-S,
for quantum Markov semi-groups from [13, 16]. If a quantum Markov semi-group has
gradient-S,, then a dense set of coefficients of Hy are in $,; consequently, Hy is quasi-
contained in the coarse bimodule of I".

We first show (Lemma 4.11) thatif ¢: I' — Z is a proper length function that is condi-
tionally of negative type, then gradient §,, p € [1, co) for the associated quantum Markov
semi-group is independent of p. Then we analyse when the word length function of a gen-
eral (finite rank) Coxeter group is gradient-S,. We find the following characterization.

Theorem 1.3. Let W = (S|M) be a finite rank Coxeter system. Fix p € [1, oo]. The
following are equivalent:

(1) The quantum Markov semi-group associated with the word length is gradient-S,.
(2) Foralls,t € S, the set {w € W:ws = tw} is finite.
(3) The Coxeter system (S|M) is small at infinity (as in [33]).

In particular, for right-angled Coxeter groups these statements are equivalent to the
Coxeter group being a free product of finite abelian Coxeter groups, see [33]. This shows
that gradient-S, is rather rare. However, with the right tensor techniques it can still be
turned into a very useful property. We also provide an almost characterization of when the
equivalent statements of Theorem 1.3 hold in the following theorem. For the definition of
the graph Graphg (W), we refer to Definition 5.5. The definition of a parity path is given
in Definition 5.6.

Theorem 1.4. Let W = (S|M) be a Coxeter group. If there does not exist a cyclic parity
path in Graphg (W), then the semi-group (®;):>0 associated to the word length Vs is
gradient-Sp, for all p € [1, 00]. The converse holds true if m; j # 2 foralli, j.

Section 5 shows that it is usually easy to determine whether Graphg (W) has a parity
path, see Corollaries 5.11 and 5.12.
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We now come to the applications. The first one is essentially the main result of [46].
Now this theorem follows rather directly from our analysis of bimodule coefficients in
Section 3. The theorem in particular applies to infinite conjugacy class (icc) lattices in the
groups SO(n, 1), n > 3, and SU(m, 1), m > 2.

Theorem 1.5 (Application A, Theorem 3.15). Let I" be a discrete group admitting a prop-
er cocycle into a p-integrable representation for some p < 0o. Assume C}(T") is locally
reflexive. Then £.(T") has property AO™ .

Next we obtain strong solidity results for Hecke von Neumann algebras: g-deforma-
tions of Coxeter groups. The following theorem extends [33, Theorem 0.7] in the case
of a right-angled Coxeter system. What is of particular interest is that our methods really
improve on the approach based on compactifications and boundaries in [33]. More pre-
cisely, [33] shows that if the action of a right-angled Coxeter group on a natural boundary
associated with it is small at infinity, then actually the Coxeter group is a free product
of finite (commutative) Coxeter groups. So the approach in [33, Theorem 0.7] cannot be
extended to the current generality.

Theorem 1.6 (Application B, Theorem 8.3). Let W = (S|M) be a right-angled Coxeter
group, and let ¢ = (qs)ses with qs > 0. Assume that all elements in

I:={reS:3s,t € Ssuchthatm, s = m,; =2 and m;,; = oo}

commute. Then the Hecke von Neumann algebra Ny(W) satisfies AOY and is strongly
solid.

We note that a large part of the analysis in proving Theorem 1.6 applies to general
Hecke algebras. However, the strong solidity properties are still pending on whether cer-
tain semi-groups extend to quantum Markov semi-groups. In the final Section 9 of this
paper, we summarize some problems that are open to the knowledge of the authors.

Structure of the paper. Section 2 contains the preliminaries. Section 3 contains results
on bimodules and their coefficients. We prove Theorem 1.2. We also directly obtain the
first strong solidity result, namely Theorem 1.5. Section 4 introduces quantum Markov
semi-groups, the gradient bimodule and the Riesz transform. We also derive many of the
basic properties. In Section 5, we prove Theorems 1.3 and 1.4. Note that here we also
establish the Corollaries 5.11 and 5.12 which make it easy to see if a Coxeter group is
small at infinity. Section 6 contains an analysis of quantum Markov semi-groups with
weights on the generators. This applies mostly to right-angled Coxeter groups, and it is
crucial in the later sections. Section 7 proves strong solidity results for Coxeter groups
using tensor methods. In Section 8, we prove Theorem 1.6. We have included Section 9 to
list some problems that are left open.
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2. Preliminaries
Inner products are linear on the left and anti-linear on the right.

2.1. Von Neumann algebras

For standard theory of von Neumann algebras, we refer to [2,47,48]. Let B(H) be
the bounded operators on a Hilbert space H. A von Neumann algebra M is a unital
*-subalgebra of B(H) that is closed in the strong operator topology. A von Neumann
algebra is finite if it admits a faithful normal tracial state t: M — C. We will say that the
pair (M, 7) is a finite von Neumann algebra. We let L, (M) be the Hilbert space comple-
tion of M with respect to the inner product (x, y); = t(y*x). Note that we suppress t
in the notation of L,(M). In case M is a group von Neumann algebra (see below), 7 is
understood as the trace defined by (2.2). We denote 2, € L,(M) for the element 1 € M
identified within L,(M). A map between von Neumann algebras is called normal if it is
strongly continuous on the unit ball.

2.2. Operator spaces

For operator spaces, we refer to [22,43]. A map ®: M — M on a von Neumann algebra M
is called completely positive if for every n € N, the map id, ® ®: M,(C) @ M —
M, (C) ® M maps positive elements to positive elements.

2.3. Approximation properties

A von Neumann algebra M has the weak-* completely bounded approximation property
if there exists a net of normal completely bounded finite rank maps ®;: M — M,i € I,
such that sup; || ®;||.» < oo and for every x € M, we have ®;(x) — x in the o-weak
topology. If the ®; can moreover be chosen to be unital and completely positive, then M
is called amenable. We refer to [10] for further equivalent notions of amenability.

2.4. Bimodules and containment

A bimodule over an algebra + is a Hilbert space H with commuting actions of # and the
opposite algebra A°P. For x,y € A, £ € H, we denote by x - £ - y or x£y the left action
of x and the right action of y on the vector &. In the case where + is also a C*-algebra, we
require that both actions are continuous as maps 4 — B(H) (and therefore contractive).
In the case where # is a von Neumann algebra, we require both actions to be normal. We
refer to these bimodules as 4 bimodules and it should be clear from the context whether
this is a bimodule over a *-algebra, C*-algebra or von Neumann algebra.

We say that an 4 bimodule H is contained in an 4 bimodule K if H is a Hilbert
subspace of K that is invariant under the left and right action of 4. We say that H is quasi-
contained in K if H is contained in @;; K for some index set / (if H is separable, we
may choose I = N). We say that H is weakly contained in K if for every ¢ > 0, every



Bimodule coefficients, Riesz transforms on Coxeter groups and strong solidity 7

finite set F' C »A and every £ € H, there exist finitely many n; € K indexed by j € G
such that for x,y € F,
ey, 8) = Y (e yom)| <ce.
j€G

Containment implies quasi-containment which implies weak containment. In this paper,
we mostly deal with quasi-containment though in most of our applications a weak con-
tainment would be sufficient.

Let M be a finite von Neumann algebra. Then M acts on L, (M) by left and right mul-
tiplication. This turns L, (M) into an M bimodule called the trivial bimodule. Similarly,
Ly(M) ® Ly(M) has a bimodule structure by extending

xE@ny=xE®ny, x,yeM, &nelLr(M).

The M bimodule thus obtained is called the coarse bimodule.

2.5. Schatten classes

Let H be a Hilbert space. For p € (0, c0), we define S, = §,(H) as the space of all
x € B(H) for which

=

Il = Te(x1) 7 = (D (xlPer ei) @1
iel
is finite, where ¢;, i € I, is any orthonormal basis of H.If p € [1, oo], then (2.1) defines
a norm turning §, into a Banach space that is moreover a 2-sided ideal in B(H). In the
case p € (0, 1), we have that §,, is a quasi-Banach space as the triangle inequality only
holds up to a constant; we shall only encounter this space in Lemma 3.5.

2.6. Group algebras

Let I" be a discrete group. We denote by e the identity of I'. Let
I' > B(lr(T)): s = Ay

be the left regular representation, where A;§; = J5¢, and where §; is the delta function at
t € T'. The group algebra C[I'] is the x-algebra generated by Ay, s € I'. The reduced group
C*-algebra C(TI") is the norm closure of C[I']. The group von Neumann algebra £(I")
is the strong operator topology closure of C[I']. The von Neumann algebra £(I") is finite
with faithful normal tracial state

7(x) = (x8¢,68e), x € L£(I). 2.2)

Note that we have an identification as Hilbert spaces L, (£(I")) ~ £5(I") by x + x4,
with x € C[I']. Under this identification, £, (I") is the trivial bimodule with actions given
by the left and right regular representations A and p. The coarse bimodule is then given by
£5(T") ® £,(T") with left and right actions given by

x-(E®@n-y=xEHMy), &nela(l).
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We simply call £,(I") ® £,(I") with these bimodule actions the coarse bimodule of I'. We
also summarize that

I'c CII < () € £(T) < &(D),
where the first inclusion is given by s — A and the others were discussed above.

2.7. Hyperbolic groups

Let (V, E) be a graph with vertex set V' and edge set E. For v, w € V, a geodesic from v
to w is a shortest path in the graph. For G C V and § > 0, we define the §-neighbourhood
of G as all points in V' for which there exists a geodesic of length at most § to a point
in G. The graph (V, E) is hyperbolic if there exists § > 0 such that for every three vertices
v,w,u € V and for all geodesics [v, w], [w, u] and [u, v] between these vertices, we have
that [u, v] lies in the §-neighbourhood of [v, w] U [w, u].

Let T" be a finitely generated (discrete) group. The group I' is hyperbolic or word
hyperbolic if its Cayley graph is hyperbolic; this definition is independent of the finite
generating set that is used to construct the Cayley graph. We emphasize that in this paper
hyperbolic and word hyperbolic mean the same thing. The terminology ‘word hyperbolic’
is more common in the theory of Coxeter groups.

2.8. Functions on groups

Let I be a discrete group. A length function is a function ¥: I' — R satistying ¥ (uv) <
Y(u) + ¢ (v) for all u,v € T'. If T is generated by a finite set .S, then a typical length
function is defined by ¥ (w) = n, where w = s7 ..., is the shortest way of writing w as
a product of generators s; € S. Note that ¥ (w) is the distance from w to e in the Cayley
graph of I'. A function ¥: I' — R is called conditionally of negative type (also known as
conditionally negative definite) if ¥ (e) = 0, Y (s) = ¥ (s~ !),s € [ and for all » € N and
S1,...,5, € I' and real numbers cq, ..., c, with Z:’=1 c¢; = 0, we have

Z Zcicjgﬁ(sj_ls,-) <0.

i=1j=1

In this paper, we shall frequently work with length functions that are conditionally of
negative type. A function ¥: I' — R is called proper if the inverse image of a compact set
is compact (hence finite as I" is discrete).

2.9. Tensor products

With mild abuse of notation, we use ® for several different tensor products in this paper.
If V1 and V5 are vector spaces, then V; ® V> is the tensor product of these vector spaces.
If V1 and V), are algebras or x-algebras, then we see V; ® V, as an algebra or x-algebra as
well. When V; and V, are Hilbert spaces, then V; & V5 is the Hilbert space tensor product
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(closure of the vector space tensor product) and it should be understood from the context
which tensor product is meant. We further use ® to denote tensor products of linear maps
or elements. In the case where V; and V, are C*-algebras, we will write ®,, instead of ®
for their tensor product as a *-algebra and ®;, for their spatial tensor product; this is also
the minimal tensor product by Takesaki’s theorem. If V; and 1, are von Neumann algeb-
ras, we denote by V; ® V, the von Neumann algebraic tensor product (strong operator
topology closure of the spatial tensor product).

3. Coefficients of bimodules

In this section, we study bimodules over the group algebra of a discrete group and provide
sufficient criteria for when such a bimodule is quasi-contained in the coarse bimodule.
We also consider tensor products of such bimodules. We conclude this section with our
first strong solidity result in Section 3.4.

3.1. Coefficients and quasi-containment

Let I' be a discrete group with group algebra C[I'], reduced group C*-algebra C,*(I") and
group von Neumann algebra £(I"). They include naturally

C[T] € G/ () € 2(D).

In turn £(T") € £,(T") by x — x8.. Hence we may and will view C[I'] as the subspace
of £,(I") of functions with finite support. Now a C[I'] bimodule will be a Hilbert space H
with commuting left and right actions of I" and thus of C[I'] by extending the actions
linearly.

Definition 3.1 (Coefficients). Let H be a C[I'] bimodule. Let £, 7 € H be such that there
exists amap 7Tz ,: C[I'] — C[I'] such that

T(Te,y(x)y) = (x€y,m), x,y € C[T']. (3.1

The map T , is called the coefficient of H at &, n. Set Tz := T ¢. The coefficient T¢ , is
in §, with p € [1, 00] if T ,, exists and extends to a bounded operator T¢ ,,: £>(I") — £2(T")
that is moreover in $, := S, (£2(I")).

Note that if the map T , is existent, then it is uniquely determined by (3.1). Indeed,
if TSI . is another map with this property, then ©((T%,, — Té 77)(x)y) =0forall x,y € C[T']
sothat T/ | = Ty

Remark 3.2. In [2, Definition 13.1.6], the notion of a coefficient of a von Neumann
bimodule is defined. Definition 3.1 is an algebraic analogue which is more convenient
for our purposes. The reason that we work in this algebraic setting is that the bimodules
we consider in this paper are a priori not necessarily von Neumann bimodules. In fact, for
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the gradient bimodules we consider in Section 4, this is not even true in general. However,
under the conditions of Proposition 3.3, the normal extensions of the left and right actions
automatically exist.

Proposition 3.3 (Quasi-containment). Let H be a C[I'] bimodule. Suppose that there
exists a dense subset Hy C H such that for any & € Hy the coefficient T: C[I'] — C[I']
is in 8. Then the left and right C[T'] actions on H extend to (bounded) normal £ (T")
actions, and the £(I") bimodule H is quasi-contained in the coarse bimodule £,(I") ®
£>().

Proof. Take £ € Hy. Define the functional
p: CI] ®ug C[TI® - C: x @ yP > (x-£-y,§).
For x, y € C[I'] by definition of T,

p(x ® yP) = (x-£-p.8) = t(Te(x)y) = t(yTe(x) = (Te(x), y™)e-
Now as T is Hilbert—Schmidt, there exists a vector ¢ € £2(I") ® £>(I") such that

P(x ®@yP) = (x @ yP.l) = (x @ yP)- (1 ®1),&).

This shows that p extends contractively to C(I') ®@min C,*(I'). Moreover, this shows
that p extends to a normal contractive map on the von Neumann algebraic tensor product
£(T') ® £(I') — C. By Kaplansky’s density theorem, this extension of p is moreover
positive. Since £5(I") ® £, () is the standard form of £(I") ® £(I")°P, there exists 1 €
£5(T") ® £5(T") such that

p(x ®yP)=(x-n-y.n), x,ye).

This proves that the conditions of [16, Lemma 2.2] are fulfilled, and hence H is quasi-
contained in the coarse bimodule. We already observed in the preliminaries that this quasi-
containment implies that the left and right actions extend to normal actions of £(I"). m

A subset Hyp € H of a C[I'] bimodule H is called cyclic if Hy := spanC[['|HooC[I']
is dense in H. The following lemma tells us that we can reduce Proposition 3.3 to checking
the property only for the coefficients in a cyclic subset.

Lemma 3.4 (Reduction to cyclic subset). Suppose that Hyo € H is a subset whose
coefficients Tg , for £, 1 € Hoo are in S». Then the coefficients Tg, for §,n € Hy :=
span C[T'|HooC[I'] are in S,. Consequently, if Hoo is cyclic, then H is a £(I") bimodule
that is quasi-contained in the coarse bimodule {5 (") ® £,(T).

Proof. Let &' = AgéAy and ' = AgnA, for some g, h,s,t € T and &, n € Hopo. We have
that
t(Tery (X)y) = (xE'y, ') = (xAg €Ay, Asnhe) = (A1 XAgEARY A1, 1)
= 1(Ten(As—1XAg)Any A1) = (A1 Ty (Ag—1 XA 5 ) AR Y).
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This shows that T/, (x) = A;—1 T¢ 5 (Ag-1xXAg)Ap and so Ty 4y is in §5. The first statement
then follows by linearity. By Proposition 3.3, we find that H is quasi-contained in the
coarse bimodule £, (I") ® £,(T") in the case Hyyg is cyclic. L]

3.2. Tensoring bimodules

If Hy and H, are two C[I'] bimodules, then we can construct a bimodule H; Qr H>,
which, as a Hilbert space, is the same as H; ® H», and the actions are given by

s-E®Rn):=s£®sn and (EQn)s:=EsQ®ns, £€ Hy, ne Hy, s el

The actions extend by linearity to actions of C[I"]. If we take an n-fold tensor power of
a given bimodule H, it will be denoted by Hl?". For later use, we also recall that the
comultiplication

Ar: C[T'l - C[T'] ® C[I']

is given by the linear extension of the assignment y — y ® y, v € I'. Then Ar extends
to an isometry £, (I") — £,(I") ® £,(I") which we still denote by Ar-.

The following lemma shall mostly be used in the situation where 1 < r < oo and hence
also 1 < p,q < oo so that all Schatten spaces are Banach spaces. It holds true however in
the more general range of exponents 0 < p, g, r < oo, where the Schatten spaces are only
quasi-Banach spaces.

Lemma 3.5. Let 0 < p,q,r < oo with % = % + %. Let Hy and Hj, be C[I'] bimodules,
and let§ € Hy and n € H,. Suppose that the coefficient Ty is in Sp and the coefficient T,
is in 84. Then the coefficient Tz, of Hy ®r H, is in ;.

Proof. We have for s, € T,

t(Tegy(9)t) = (s§1 @ snt.§ @ n) = (s&1.§)(snt. n) = t(Te(s))T(Ty(9)1).

It follows that T g, = AL(Te ® T,) Ar. Now we want to determine the S,-norm of T¢g,,.
As Ar is an isometry on {>(I"), we have AT Ar = 1. Using the (slightly unusual) con-
vention |T'| := ~/TT*, we get |Tegn|” = AL(IT¢|” ® |T;|")Ar. So we have

I Tegnlls, = Tr(|Tean|) = Y (| Teonl"g.8) = > _(ITel"g. &) Tyl g. g).
gerl gel

Using the fact that % + 2 = 1, we can apply Holder’s inequality to this sum and obtain
an upper bound

ITeenls, = (Z<|T$|’g,g)€)§ ' (Z(ITnl’g,g)%)é.
gel gl

We will now use the following inequality: if S is a positive operator and v is a unit vector,
then (Sv, v)! < (S'v,v) for any ¢ > 1. Indeed, let 1 be the spectral measure of S at v
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(which is a probability measure), then (Sv, v)" = (f xdp)* < [ x'dp = (S'v, v) by
Jensen’s inequality applied to the convex function x — x’. Now our upper bound becomes

» a
ITeanlls, < (Y (TeP2.0)" - (D UTul?g. )" = ITels, - 1Ty %, -
gel gel
To sum up, we get the inequality
I Tegnlls, < I Tells, - 1 Tylls, - m

Proposition 3.6. Let H be a C[I'] bimodule such that for a dense subset of H the coef-

ficients are in Sp,. Then the bimodule H f@ " is quasi-contained in the coarse bimodule for

anyn = %.

Proof. By Lemma 3.5 (and induction), we get that a dense subset of coefficients of H 1@”
isin $» C §3, so by Proposition 3.3, we get the quasi-containment. ]

Definition 3.7. Let H and K be C[I'] bimodules. A linear map V: H — K is called
almost bimodular if for every x, y € C[I'], the map

H— K: &= xV(E)y —V(xéy)

is compact.

Lemma 3.8. Let H; and H, be bimodules over C[I']. Suppose V1:£,(I') — H; and
Va:45(I') — Hy are almost bimodular bounded linear maps. Then

VixVy = (V1 ®Va)o Ar: £*(T') — Hy ®r Ha
is almost bimodular.

Proof. 1t suffices to check the almost bimodularity for x = s and y = ¢, as the general
case will follow by taking linear combinations. For a map V:{,(I") — H with H a C[I']
bimodule, we will write

(sVD)(E) = sV(E)t and V(&) := V(sr),
where £ € £, (I"). It follows from the definitions that
s(VixVo)t=(8s) - (V1 ®Va)oAr)-(t ®t) = (sVit x sVat).
Further, for £ € £,(T),

(V1 % V2)"(§) = (Vi @ Va)Ar(sét) = (V1 @ Va)((s ® s)Ar(§)(t ® 1))
= (" = V().

Hence
(Vi % Vo) = s v



Bimodule coefficients, Riesz transforms on Coxeter groups and strong solidity 13

Therefore, we have
s(Vy x Vo)t — (Vi # Vo) = ((sVit = V") x sVat) + (V2 x (sVat = V3")). (3.2)

By our assumption, the operators sVt — Vls’t and sVt — V) ' are compact. So it suffices
to check that if K is compact and 7 is bounded, then both K * T and T * K are compact.
To check that, for every finite subset F' C I" consider the corresponding finite rank ortho-
gonal projection Pg onto the linear span of §; € £5(I"), s € F. We can easily check that
Ao Pr=(Pr®Id) oA =(AdQ®PF)o A.Itfollows that (K * T)Pr = (KPp * T), so
(K*«T)Pr — K «T = (KPfr — K) x T. Further,

I(K*T)Pr — K *T| < [|KPr = KI[|T].

By compactness of K, we see that || KPr — K|| goes to 0 as F increases. So K * T can be
approximated in norm by finite rank operators and thus is compact. The proof for 7' * K
is the same. Hence the operator in (3.2) is compact, i.e., V; * V5, is almost bimodular. m

Lemma 3.9. Fori = 1,2, suppose that V;: £,(I') — H; is a partial isometry to a C[T']
bimodule H; such that ker(V;) is spanned linearly by a subset F; C I'. Then Vi % V, is
a partial isometry whose kernel is the linear span of F1 U F».

Proof. The comultiplication Ar is an isometry £,(I") — £,(T") ® £5(I"). Clearly, Ar(s)=
s ® s is contained in ker(S7 ® S5) if s is in F; U F5. Further, S ® S, is isometric on
ker(S;)* ® ker(S,)* and so it is certainly isometric on the linear span of Ar(s) = s ® s,
s € '\ (F1 U F3). These observations conclude the lemma. [

3.3. The Akemann—Ostrand property AO* and strong solidity

This section serves as a blackbox that connects the theory that we develop in this paper to a
central concept in deformation-rigidity theory: strong solidity. Firstly, we recall a version
of the Akemann—Ostrand property that was introduced in [29].

Definition 3.10. A finite von Neumann algebra M has property AO™ if there exists a o--
weakly dense unital C*-subalgebra A C M such that
(1) A is locally reflexive [10, Section 9];
(2) there exists a unital completely positive map 6: A Quin A°®® — B(L,(M)) such
that f(a ® b°P) — ab®? is compact for all a, b € A.

The following theorem will be the main tool to prove that certain von Neumann algeb-
ras have AO™ using the Riesz transforms in this paper.

Theorem 3.11 ([ 16, Proposition 5.2]). Let H be a C[I"] bimodule, and let V:£,(T") — H
be a bounded linear map. Assume that H is quasi-contained in the coarse bimodule of T,
V' is almost bimodular and V*V is Fredholm. Assume that C}(T") is locally reflexive.
Then £(T) satisfies AO™.
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The following theorem in turn yields the strong solidity results from AO™. For the
notion of weak amenability, we refer to [10, Section 12.3]. If I is a weakly amenable dis-
crete group, then C*(I") is automatically locally reflexive. All Coxeter groups are weakly
amenable [25,30] as well as simple Lie groups of real rank one [19,21]. We recall that
amenability of a von Neumann algebra was defined in the introduction and preliminaries.
We note that amenability and weak amenability shall not appear explicitly in the proofs
of this paper. We recall that a von Neumann algebra is called diffuse if it does not contain
minimal projections.

Definition 3.12. A finite von Neumann algebra M is called strongly solid if for every
diffuse amenable von Neumann subalgebra B € M, we have that the normalizer

{u € M:u unitary and uBu™ = B}

generates a von Neumann algebra that is amenable again.

Theorem 3.13 (See [29,44]). Let I' be a discrete weakly amenable group such that £(I")
satisfies AOT. Then () is strongly solid.

3.4. Application A: Proper cocycles into p-integrable representations

We are now able to harvest our first result. We use a type of ad hoc Riesz transform which
is slightly different from what we do in Section 4 but with similar fundamental properties.
We use tensoring of bimodules to establish the Akemann—Ostrand property. The method
is exemplary for the rest of the paper.

Definition 3.14. Let I" be a discrete group. Suppose that 7: I' — B(H) is a unitary
(or orthogonal) representation. We say that 7 is p-integrable for some p < oo if there
exists a dense subspace Hy such that for any v € Hy, the matrix coefficient g — (7 (g)v,v)
is in £, (I).

The following theorem is the main result of [46]. The idea of the proof parallels [46]
but is somewhat cleaner and more conceptual we believe.

We recall that a derivation 0: C[I'] — K into a C[I"] bimodule K is a linear map that
satisfies the Leibniz rule

d(xy) =xd(y) +d(x)y, x,y e C[I].

A function b: ' — K with 7: " — H a representation on a Hilbert space H is called
a cocycle or 1-cocycle if b(st) = m(s)b(t) + b(s) for all 5,¢ € I'. The following theorem
is the only place where cocycles are used in this paper.

Theorem 3.15. Let I be a discrete group admitting a proper cocycle into a p-integrable
representation for some p < oco. Assume C}(I') is locally reflexive. Then £(T") satis-
fies AO™.
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Proof. Let m: " — B(H) be a p-integrable representation, Hy C H a dense subspace
with p-integrable coefficients, and let c: I' — H be a proper m-cocycle. The map

Ag > exp(~tc(@)*)re. geT. 120,

extends to a semi-group of normal unital completely positive maps on £(I") [10, The-
orem C.11], i.e., a quantum Markov semi-group as will be defined in Section 4. Set
A:C[I'] - C[[] by A(Ag) := |lc(9)]*Ag, g € T. Set K := H ® £,(T) with the left
action given by 7 ® A and the right action given by id ® p. Now define d: C[I'] — K by
0(A(g)) :=c(g) ® 8g. As c is a cocycle, 0 is a derivation. We will check that the coef-
ficients of this bimodule K at vectors of the form § := v ® §, are in §,, where v € Hy,
g € I'. Let us start with the case § = v ® §.. We claim that T¢(Ag) = (n(g)v, v)Ag.
Indeed, let us take g;, g» € I' and compute

(€162, 8) = (1(8)v ® 8g,4,,V ® 8e) = (m(g)v,V)3g, g=e-

It is clearly equal to T(7¢(g1)g2) from the definition of the coefficient T¢. Therefore,
the coefficients are diagonal operators with £,-coefficients, so they are in §,. To handle
vectors of the form v ® g, note that Tz.g = Az TeAg and (v ® 8e) - § = v ® dg, s0 these
coefficients are also in S,. The Riesz transform defined as

9o A™Z: C[T] > K: Ag > [le(9) "e(g) ® 85, geT.

extends to an almost bimodular isometry £,(I") — K (see [16, Proposition 5.3]) whose
kernel by definition equals the kernel of A. This kernel is finite-dimensional as c is proper.

Now since K has a dense set of coefficients in §,, we have that the bimodule Kf?"
has a dense set of coefficients in §, for every n > %. Therefore, by Proposition 3.3
Kf?" is quasi-contained in the coarse bimodule of I'. From the previous paragraph and
Lemma 3.8, we see that (d o A_%)*” is an almost bimodular map. Moreover, (d o A_%)*"
is a partial isometry with a finite-dimensional cokernel by Lemma 3.9. Therefore, the
assumptions of Theorem 3.11 are satisfied and if C*(I") is locally reflexive, we conclude
that £(T") has AO™. n

Remark 3.16. In the proof of Theorem 3.15, we may view d as an unbounded densely
defined operator {,(I") — K. It is not difficult to check that (0*0)(Ag) = A(Ag), g €T
as for the derivations that occur in Section 4.

Recall that I" is called icc if all conjugacy classes except for the identity are infinite.

Corollary 3.17. Let I be an icc lattice in either SO(n, 1), n > 3, or SU(m, 1), m > 2.
Then £(T') is strongly solid.

Proof. By [19,21], we have that I is weakly amenable and, in particular, C,* (T") is locally
reflexive. By [45, Theorem 1.9], I admits a proper cocycle in a p-integrable representation
for some p € [2, 00). Therefore, by Theorem 3.15, £(T") satisfies AO™. We then conclude
the proof by Theorem 3.13. ]
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4. Quantum Markov semi-groups, gradients and the Riesz
transforms

In this section, we study quantum Markov semi-groups of Fourier multipliers on the group
von Neumann algebra of a discrete group. We introduce the associated Riesz transform
which takes values in a certain bimodule that we call the ‘gradient bimodule’ or the bimod-
ule associated with the ‘carré du champ’. Our main goal is to analyze when the coefficients
of this bimodule are in the Schatten S, space and consequently when this bimodule is
quasi-contained in the coarse bimodule. We also show that under very natural conditions
the Riesz transform is an almost bimodular map in the sense of Section 3.

4.1. Quantum Markov semi-groups, the gradient bimodule and the Riesz transform
We start defining the Riesz transform of a quantum Markov semi-group.

Definition 4.1. A quantum Markov semi-group (QMS) on a finite von Neumann algebra
(M, v) is a semi-group ® = (®;);>0 of normal unital completely positive maps @;:
M — M that are trace preserving (t o ®; = t, ¢ > 0) and such that for every x € M,
the map ¢ > ®,(x) is strongly continuous. We shall moreover assume that a quantum
Markov semi-group is symmetric meaning that for every x, y € M and ¢t > 0, we have
(D (x)y) = t(xDs(y)). So QMS always means symmetric QMS.

Fix a QMS ® = (®;);>0 on a finite von Neumann algebra M with a normal faithful
tracial state t. By the Kadison—Schwarz inequality, there exists a semi-group of contrac-
tions (@52)),20 on L,(M) = L,(M, ) such that

@Ez)(er) =d,(x)Q;, x€M.

Here Q; = 1y is the cyclic vector in L,(M). The semi-group (<I>§2)) >0 1S moreover
point-norm continuous, i.e., it is continuous for the strong topology on B(L,(M)). By
a special case of the Hille—Yosida theorem, there exists an unbounded positive self-adjoint
operator A on L, (M) such that <I>§2) = exp(—tA). We will assume the existence of a o-
weakly dense *-subalgebra A € M such that AQ; € Dom(A) and A(ARQ;) C AQ;.
By identifying a € A with aQ2; € L,(M), we may and will view A as a map A4 — .
We now introduce the carré du champ or gradient as

T: A x A — A (a,b) — %(A(b*)a +b*Aa) — A(b*a)).

Let H be any + bimodule, i.e., we recall H is a Hilbert space with commuting left and
right actions of 4. For a,b € A, &, n € H, we set the possibly degenerate inner product
on A ® H (vector space tensor product) by

(a®§&.b®n) = (I'(a.b)§.n).

The Hilbert space obtained by quotienting out the degenerate part of this inner product
and taking the completion shall be denoted by Hy. We denote by a ®v £ the element
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a ® & identified in Hy. For x, y,a € »A and § € H, we define commuting left and right
actions by

x-(@a®vé)=xa®vE—-—x®vaé, (@®vf)-y=aQ®véy. 4.1

In this paper, we shall only deal with the case H = L, (M) with actions by left and right
multiplication of M. In this case, the actions (4.1) extend to contractive actions on the
norm closure of 4. We do not say anything about whether the actions are normal at this
point, but rather use Proposition 3.3 to show that they are normal in the cases that are
relevant. We define a derivation

ViA—> Ly(M)y:a+— a Qv Q.
More precisely, V satisfies the Leibniz rule
V(xy) =xV(y) + V(x)y, x.y €A,

with respect to the module actions (4.1). This fact uses that t is tracial. Since ®; is 7-
preserving, it follows that for x € /A, we have

(A(X)Qe, 2¢) = <

7| (@R Q0) = 0

(upper derivative). Therefore, as A > 0,

||V(a)||2 = ([(a,a)Q, Q)

= JUA@R.a00) + (a9 AR ~ (A2 Or))
= J(A @2, A @20) + (A @2, AH@2) ~0)
= A2 @

It follows that we have an isometric map
VA™z: ker(A)L — La(M)y.
We extend this map to a partial isometry
Ro: Ly(M) — Ly(M)y
by defining it to have ker(A) as its kernel. We call Rg the Riesz transform.

Remark 4.2. This Riesz transform was also used in [16, Section 5]. Note that mapping
that was introduced in [16, Section 5, (5.1)] differs from Rg only on ker(A). If the kernel
of A is finite-dimensional, then Rg agrees with [16, (5.1)] up to a finite rank perturbation.
In particular, this is the case if A > 0 has a compact resolvent. The results of [ 16, Section 5]
stay intact under this finite rank perturbation.
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4.2. Coefficients of the gradient bimodule

We now start our analysis of coefficients of the gradient bimodule. The following defini-
tion of ‘gradient-S,’ that first occurred in [13] (for p = 2) and [16] (for general p) plays
a central role in this paper. The definition may depend on the choice of the o-weakly dense
subalgebra A of M which we fixed before in our notation. This paper contains the first
results for the gradient-S, property in the context of group algebras.

Definition 4.3. Let p € [1, co]. Consider a QMS @ on a finite von Neumann algebra
(M, t) with generator A and a dense *-subalgebra 4 C M as in Section 4.1. The semi-
group & is called gradient-§, if for every a, b € 4, the map

b A A x> A(axb) + aA(x)b — A(ax)b —aA(xb)

extends as xQ2; — WP (x)Q; to a bounded map on L, (M) that is moreover in the Schat-
ten p-class S, = S,(La2(M)).

Remark 4.4. Since A is self-adjoint, we have for a, b, x, y € A,
(\IJ“’b(x)Q,, yQ:) = ((A(axb) + aA(x)b — Alax)b —aA(xD))2,, y ;)
= (xQq¢, (A(a*yb*) + a* A(y)b* — A(a*x)b* —a*A(yb*))Q2:)
= (xQe. ¥ (1)Q0).

So it follows that
(Uehy*s = wa™b" g b € . 4.2)

The lemma below simplifies verifying whether a QMS has the gradient-$, property.

Lemma 4.5 (Condition that implies Gradient-S,, property). Let p € [1, 00]. Let A¢ € A
be a self-adjoint subset that generates 4 as a x-algebra. Then (®;);>¢ is gradient-S, if
and only if for all a, b € Aq, we have that W% is in Sp.

Proof. The only if statement follows directly from the definition of gradient-$,. We will
prove the other direction. We must prove that ¥4 is in § » for every a, b € A. Since Ay
is self-adjoint, # is generated by ¢ as an algebra. So +4 is spanned linearly by (+¢)”,
n € N. Note that the map W% depends linearly on both @ and b. So in order to prove that
Wb g in S, forall a, b € A, it suffices to prove that Wb s in Sy forall a, b € (Ay)"
for every n € N> ;. We shall prove this latter statement by induction on n. The case n = 1
holds by assumption of the lemma. We now assume that we have proved the statement
for n and shall prove it for n 4 1.
First note that for uy, u,, v, w € 4, we have

W20 () = A(ujusvw) + uquas A(W)w — A(uuzv)w — uqus A(vw)
= (A(uiuzvw) + u1 A(uzv)w — A(uquzv)w — ug A(uzvw))
+ u1 (A(uavw) + us A(v)w — A(uzv)w — uzs A(vw))
= W'Y (uyv) + u WY (v),
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and likewise for u, v, wy, wy € A, we have
YWl () = YW (y,) + WO (v)w;.
Combining these expressions, we see that for ¥ = uju, and w = wowj, we have

W () = PHI¥2W () = PHOY (y,p) + u WY (v)
= PHLW2WL (1,5 1) + yq WH2W2WI1 (p)
= (U*0Y (upvwy) + W¥1Y2 (upv)wy)

+ up (WY (vw,y) + UH2 2 (v)wy). 4.3)

By the induction hypothesis, we have that W%t W¥1,w2 (p2.Wi y#2,02 gre all in §),.
Since the S, class forms an ideal in B(L,(M, 7)), we have that the four operators in (4.3)
are all in §,. This finishes the induction and thus shows that the associated semi-group is
gradient-§,. m

4.3. Almost bimodularity of the Riesz transform

Next we analyze when the Riesz transform is almost bimodular. Therefore, we introduce
the following notions. We say that a QMS @ on a finite von Neumann algebra is filtered
if the generator A has a compact resolvent and for every eigenvalue A of A there exists
a (necessarily finite-dimensional) subspace 4 (A) € A such that A(A1)Q2, equals the eigen-
space of A at eigenvalue A. Moreover, we assume that for an increasing enumeration
(An)n>o of the eigenvalues of A, we have for all k,/ > 0 that

00 I+k
A=P AR, ARDAGL) S @A)
n=0 n=0

We will further say that A has subexponential growth if

B Ak41
1m

=1.
k—o00 Ak

Remark 4.6. In [14], a more general notion of filtering and subexponential growth was
considered for central Fourier multipliers on compact quantum groups. The current ‘lin-
ear’ type of definition suffices however for our purposes.

Theorem 4.7 ([16, Theorem 5.12]). Suppose that a QMS ® on a finite von Neumann
algebra M is filtered with subexponential growth. Then the Riesz transform Rg: Lo(M)—
Lo(M)v is almost bimodular.

4.4. Semi-groups of Fourier multipliers on group von Neumann algebras

Now consider the case that M is a group von Neumann algebra &£ (I") of a discrete group I"
and 4 = C[I']. The following theorem is a version of Schonberg’s theorem.
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Theorem 4.8 (See [5, Appendix C]). Let y: I' — R. The following are equivalent:
(1) ¥ is conditionally of negative type.
(2) There exists a (recall: symmetric) QMS ® = (P;);>0 on M determined by
i(Ay) = exp(=ty(y)Ay, v el

We will call a QMS @ as in Theorem 4.8 a QMS of Fourier multipliers or a QMS
associated with ¥: I' — R. Note that we assume such QMS’s to be symmetric. We view
the generator of this semi-group as a map on C[I'] which is given by

Ay: C[T'l = C[T]: Ay = Y (y)A,.
The following theorem connects Definition 4.3 to Section 3.
Theorem 4.9. Consider a QMS ® = (P;);>0 of Fourier multipliers on £(I"). Let
Hoo = {a ®v c € {r(I")y:a,c € C[T']} € £r(IN)y.

If © is gradient-S, with p € [1, o], then for every &, n € span C[I"|HooC[I'], the coeffi-
cient T  is in Sp.
Proof. Leta,b,c,d,x,y € C[I'],and let £ = a ®v ¢, n = b @y d be elements of Hoo.
We have
2(x-(a®vc) y,b®vd)

=2(xa ®vcy —x ®vacy,b®vd) =2(I'(xa,b)cy — T'(x,b)acy,d),

= ((b*A(xa) + A(b*)xa — A(b*xa) — b*A(x)a — A(b*)xa + A(b*x)a)cy,d),

= ((A(b*x)a + b*A(xa) — A(b*xa) — b*A(x)a)cy,d),

= —(W()ey.d)e = —T(d* W (x)ey).
We conclude that

2T p(x) = d*wb e (x)e.

In particular, if wb*a isin § p, then so is T ,,. The statement follows from Lemma 3.4. =

Let us show that in the case of semi-groups of Fourier multipliers, the case gradient-S$,
is conceptually much easier to understand. Consider again a QMS & = (®;);>¢ of Fourier
multipliers associated with a function : I" — R that is conditionally of negative type. Let
Ay:C[I'] - C[I'] be as before. For u, w € I', we define a function )/,;/fw: I' > Ras

Yl () = Y vw) + ¥ (v) — ¥ uv) — ¥ (vw). (4.4)

We have that the function yfﬁ w is related to the operator WA« associated with Ay, as
follows:

WA (M) = Ay Gaww) + 2By (o)hw = Ay ) = A By )

= y;ﬁ,w (V) Ayvw-
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Now by (4.2), we have (WAuAw)* = whiAh = Yhu-1-4w-1 We obtain that
[Whote 2(y) = Whet Aot phete )

= 7)1 et w)yd ()
SO 4.5)

This then means that [WA«-4w [P (1) = |Vu,w (V)| Ay and therefore, as {A, }yer forms an
orthonormal basis, we have that

1
[whetefs, = (3001200 20))” = Infullgm: @6

vel

Now for p € [1, 00), in order to check whether Yrudw i in § . we thus need to check
whether )/,1/’, w € £,(I"). Moreover, for p = oo, the condition that Whote ¢ S, means
that W*«-*w is a compact operator, which is precisely the case when y,l/’, w € co(D), ie.,
when y,l/’, w vanishes at infinity.

The above calculations, together with Lemma 4.5, give us a simple condition to check
for p € [1, oo] whether the semi-group (®;);>¢ is gradient-§,.

Lemma 4.10. Let p € [1,00). Let T'g C T' be a subset that generates a discrete group T’
with 1"0_1 =To. Let ® = (P;);>0 be a QMS associated with a proper function y:I' — R
that is conditionally of negative type. Ify,;/fw € L, (I) for all u, w € I'y, then the OMS ®
is gradient-Sp. The same holds true for p = oo when £,(I") is replaced by co(T").

Proof. We denote g := {Ag:g € I'g} € C[I']. Since ;! = I'g and I'y generates I, we
have that +, is self-adjoint and generates C[I'] as an algebra. Now, if for u, w € I’y we
have that y,’f,w € {,(I), then by (4.6) we have that Whots ¢ Sp. Then Lemma 4.5 shows
that @ is gradient-S,. The proof is similar for p = oo. ]

Lemma 4.11. Let ® = (®;);50 be a QMS associated to a proper symmetric function
Y:I' — Z that is conditionally of negative type. If ® is gradient-S, for some p € [1, 00],
then for every u,v € I', the function )/:ﬁ v: I' = Z has compact support. In particular,
by (4.5) we find that W v is of finite rank and ® is gradient-S, for all p € [1, oo].

Proof. If Y takes integer values, then so does y,}/’, v for all u, v € I'. Therefore, y,l/’, v 1S
contained in £,(I"), p € [1, 00), or co(I") if and only if y,'f, » has compact support. The
remainder of the lemma is clear. ]

4.5. Almost bimodularity of the Riesz transform for length functions

We show that a QMS of Fourier multipliers associated with a Zx¢-valued length function
automatically satisfies the conditions of Theorem 4.7. Recall that ¢: I' — Z > is a length
function if

Y(uw) <yYu) +y(w) forallu,w eT. 4.7)
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Theorem 4.12. Let : ' — Zso be a proper length function that is conditionally of
negative type. Then Ay, is moreover filtered. If Y (I') = Zx¢ or if T is finitely generated,
then Ay has subexponential growth.

Proof. First of all, we have that
A4+Ap)"Ay) =0+ ¢ @) 'A, forallveT.

As  is proper, this shows that (1 + Ay )™! is a compact operator on £, (T"). Consider the
finite-dimensional spaces

C[I'](l) := Span{A, € C[T']: ¥ (v) =} forl € Z>y.

Then C[I'](/)2; equals the eigenspace of Ay at the eigenvalue /. We have

I+k
C[rl=@pcIrid), CriOCIrlk) < PCIrl() forlk =0,
>0 j=0

where @ denotes the algebraic direct sum. The first equality holds because ¥ only takes
positive integer values, and the second equality holds because ¥ is a length function,
i.e., (4.7). This shows that Ay, is filtered.

The fact that Ay has subexponential growth follows in the first case from the fact that
Z > is the set of eigenvalues, and we have HTI — 1 as! — oo. In the case I" is generated
by a finite set I'g, we set K := {max ¥ (u):u € I'p}. Then (4.7) implies that Zso \ ¥ (I")
cannot contain an interval of length K + 1. Hence if A9 < A; < .-- is an increasing

enumeration of ¥ (I'), then A +; < Ax + K. Hence Ay /A — 1l ask — oo. ]

Corollary 4.13. Assume that T is finitely generated. Let :I" — Z > be a proper length
function that is conditionally of negative type. Let ® be the associated QMS of Fourier
multipliers. Then the Riesz transform Rg: o (I') — £»(I")v is almost bimodular.

Proof. This follows from Theorems 4.7 and 4.12. ]

Theorem 4.14. Assume that T is finitely generated and that C(I') is locally reflexive.
If there exists a proper length function r:I" — Z x> that is conditionally of negative type
such that the associated QMS is gradient-S, for some p € [1, 00), then £(I") has AO™.

Proof. Let Hy := {,(T")v be the gradient bimodule. Let n > g. Then by Proposition 3.6,
the bimodule (Hv)?" is quasi-contained in the coarse bimodule. Let Rg: £>(I") — Hy
be the Riesz transform. The kernel of Rg is spanned by all §, with ¥(g) = 0. Since
Y is proper, ker(Rg) is finite-dimensional. By Corollary 4.13, we see that Rg is almost
bimodular. By Lemmas 3.8 and 3.9, the convolved Riesz transform R 2T — (H v)?"
is an almost bimodular partial isometry. Therefore, we obtain AO™ from Theorem 3.11.
Note that in fact we could have avoided the tensor products in this proof by using
Lemma 4.11 instead. ]



Bimodule coefficients, Riesz transforms on Coxeter groups and strong solidity 23
S. Characterizing gradient-S, for Coxeter groups

In this section, we will consider the case of Coxeter groups. For any Coxeter group, the
word length defines a proper length function that is conditionally of negative type [6] (see
also [49, Proposition 2.22]). Therefore, it determines a QMS of Fourier multipliers. The
aim of this section is to find characterizations of when this specific QMS is gradient-S,.

Throughout Sections 5.2-5.5, we give an almost characterization of gradient-S, in
terms of the Coxeter diagram. In particular, we give sufficient conditions for gradient-$,
that are easy to verify in Corollaries 5.11 and 5.12. We also argue that these conditions are
necessary for a large class of Coxeter groups.

In Section 5.6, we show that gradient-$, is equivalent to smallness at infinity of the
Coxeter group. More precisely, a certain natural compactification of the Coxeter group
that was considered in [11, 33, 34] (see also [32]) is small at infinity. This result can be
understood directly after Section 5.2.

5.1. Preliminaries on Coxeter groups

Consider a finite set S = {s1,...,s,} and a symmetric matrix M = (m;j)1<i,j<n With
m;,; € N U {oo} satisfying m; ; = 1 and m; ; > 2 wheneveri # j. Occasionally, we write
m, s; for m; j; this notation is convenient when considering m;,, without referring to the
indices of the generators s, € S.

We shall write W = (S| M) for the group freely generated by the set S subject to the
relation (s;s;)™/ = e, where e denotes the identity element of W. We call W = (S|M)
a finite rank Coxeter system. We sometimes simply say Coxeter system as we assume that
they are all of finite rank. A group that can be represented in such way is called a Coxeter
group. Generally, a Coxeter group can be represented by different pairs S, M. The group
is called right-angled if moreover m; ;j € {1,2, 00} forall 1 <1i, j < n. Throughout this
entire section, W = (S|M) is a general finitely generated Coxeter system.

When we deal with Coxeter groups, we shall usually denote the elements of W with
boldface letters and the generators in S with normal letters. This makes the exposition
more clear. Let w € W. We say that an expression wy ... w, with w; € S is a reduced
expression for w if w = w; ... w, and this decomposition is of minimal length. The
minimal length is called the word length and which we denote by |w| = n. We also set

Ys: W — Zso: W |wl|.

Theorem 5.1 (See [6]). For any Coxeter group, Ys: W — Zx is conditionally of negat-
ive type.

Therefore, by Theorem 4.8 there exists a QMS of Fourier multipliers on £ (W) asso-
ciated with the word length function ¥g. The aim of the current Section 5 is to describe
when this QMS has gradient-S,. Recall that by Lemmas 4.10 and 4.11, we must thus
investigate for generators u, w € S when precisely y,’f, §, is finite rank where y,'f, 5 was
defined in (4.4).
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5.2. Describing support of the function y,',/" s

The aim of this subsection is to describe the support of 7/,;/', 5 explicitly. In fact, in anti-
cipation of Section 6, we will give this description for more general length functions .
Let 1(-) be the indicator function which equals 1 if the statement within brackets is true.

Lemma 5.2. Let W = (S|M) be a Coxeter group. Suppose r: W — R is conditionally
of negative type satisfying ¥ (w) = ¥ (wy) + --- + ¥ (wg) whenever w = wy ... wg is
a reduced expression. Then for u,w € S and v € W, we have that

Iy W W] =2y )L (uv = vw) = 29 (w)L(uv = vw).
Proof. We first note that, since we have u?> = w? = e as they are generators, we have that
Ve ) =y, evw) = =y, (v) = =y, (vw).
When v is fixed, we can let z € {v, uv, vw, uvw} be such that
|z| = min{|v|, |uv|, |[vw|, luvw|}.

Then we have |y,}”, w (@) = |y:f, w (V)|. Furthermore, because |z| is minimal, we have |uz| =
|zw| = |z| 4+ 1. Thus, if z = z1 .. . zx is a reduced expression for z, we have that uz; ... zg
and z; ... zxw are reduced expressions for uz and zw, respectively. Therefore, ¥ (uz) =

¥ (u) + ¥(z) and ¥ (zw) = ¥ (z) + ¥ (w). Hence

Virw (@) = Y (uzw) + ¥ (2) — ¥ (uz) — Y (2)
= Y (uzw) — ¥ (2) — ¥ W) — ¥ (w).

Now, since |uz| = |z| + 1, we have that either |uzw| = |z| 4+ 2 or |uzw| = |z|. We shall
consider these two separate cases, from which the result will follow.

In the first case, we have that uz; . .. zxw is reduced so that ¥ (uzw) = ¥ (u) + ¥ (z) +
¥ (w) and therefore, |y;/’,w )| = |y,l/fw (z)| = 0. We note that in this case also uv # vw.
Namely, uv = vw would imply uz = zw and hence uzw = z, which contradicts that
luzw| = |z| + 2.

In the second case, we have thatuz; . ..z w is not reduced. Therefore, by the exchange
condition (see [20, Theorem 3.3.4.]) and the fact that juzw| = |z| < |zw|, we have that
uzy...zgwisequaltozy...zj—1zj41...zxw forsomeindex 1 <i <k,oruzy...zzw =
z1 ... zk. Now in the former case, we also have that uz = zy...z;—1Zj+1 ... Zx SO that
|uz| < |z| which is a contradiction. In this case, we must thus have that uzw = z and
hence uz = zw. This then implies that ¥ (uzw) = ¥ (z) and ¥ (u) = ¥ (uz) — ¥ (z) =
Y (zw) — ¥ (z) = ¥ (w). In this case, we thus obtain that

Y@ = Y(uzw) — ¥ (2) — ¥ (u) — Y (w) = =29 (1) = 29 (w)

which shows that vy, (V)| = |ydw (2)] = 29 (1) = 2 (w).



Bimodule coefficients, Riesz transforms on Coxeter groups and strong solidity 25

The result now follows from these cases. Namely, either we have that |y,’f, w(M)| =0
and that v does not satisfy uv = vw, or we have that |y,}/’,w W)| =2y (u) = 2y (w) and
that v does satisfy uv = vw. This thus shows us that

|J/;p,w(V)| =2y ()l (uv = vw) = 2y (w)L(uv = vw). n

5.3. A characterization in terms of Coxeter diagrams

We note that for the word length 5, we have ¥ (s) > O for all generators s € S. Now by
Lemma 5.2, in order to see when y,l/', S is finite-rank, we have to know what kind of words
v € W have the property that uv = vw. For this we introduce some notation.

For distinct i, j € {1,...,|S|} we will, whenever the label m;_; is finite, denote k; ; =
L%J > 1. Now if m; ; is even, then m; ; = 2k; j, and we set r; j = Si(SjSi)ki’i_l. If
m;. ; is odd, then m; ; = 2k; ; + 1, and we setr; ; = (s;5;)¥i-/. Furthermore, we set

Si, mj j even,
aij = Si, bij= ¢ij =S8j, dij=
Sj, Mjj Odd, Si, My j odd.

S, mj j even,

Then a; ; and b; ; are respectively the first and last letters of the word r; ;. Furthermore,
when m; ; is even, we have

ki j—1 ki) kij
Ci j¥ij = 8j8i(sjsi) 70 = (s;8)" = (sis;)" =vrij8; =7 jdij.
and when m; ; is odd, we have
¢ij¥ij = 8j(si8;) " = si(sj8:)" = rwijsi =7xijd;;.

Thus in either case ¢; ;1;; =1, ;d; ;.

For given generators u, w € S, we will now check for what kind of words v e W
with |v| < |uv|, [vw|, we have that uv = vw. In Proposition 5.4, we then give a precise
description of the support of y,l/’, -

Lemma 5.3. For generators u,w € S and a word v € W with |v| < |uv|, |[vw|, we have
uv = vw if and only if v can be written in the reduced form v =r;, j, ...¥; ; so that
u = ¢, j, andw = dj, j, andsothatforl =1,... .k —1we have that ¢;,, j,., = dj, j,
and @iy jy F8ip> Sjp v and iy j; & {Sip 10 Sjpg -

Proof. First, suppose that v can be written in the given form v =1r; j, ... r;, ; with
the given conditions on c¢;;,;, and d, j,. Then since we have ¢;, ;r;, ;, = ¥i,j,di;,j;, =
Y i Cipyr,ii for L =1,....k —1,andsince u = ¢;, j, and w = d;_ j,, we have uv = vw,

which shows the ‘if” direction.

We now prove the opposite direction. First note that the statement holds for v = e as
this can be written as the empty word. We now prove by induction on n that for ve W
with |[v| > 1 and |v| <n and |v| < |uv|,|vw| and uv = vw for some u, w € S, we can write
v in the given form. Note first that the statement holds for n = 0, since then no suchve W
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exists. Thus, assume that the statement holds for n — 1, we prove the statement for n. Let
u,we S andv e W be with |v| =n and |uv| = |[vw| = |v| + 1 and uv = vw. Let v; ... v,
be a reduced expression for v. Then the expressions uv; ... v, and vy ... v,w are reduced
expressions for uv = vw. In particular, we have u # v;. Set m := my, ,,. Now, since uv
and vw are equal and u # vy, we can as in [20, proof of Theorem 3.4.2 (ii)] find a reduced
expression yj ... yu+1 foruv withn > m — 1 so that y; ...y, = uvjuv; ...u whenever
m is odd, and yq ...y, = uv; ...uv; whenever m is even. This is to say that if we let
io, jo € {1,...,|S]|} be such that v; = s;, and u = s}, then we have thatr;, j, = y2... Vm
and ¢;,, j, = Sj, = u. Note that by [20, proof of Theorem 3.4.2 (ii)], we have in particular
that m < co. Now moreover, since y; = u, we have that y, ... y,4+jw is an expression
for vw, and this expression is reduced since |[vw| = n + 1.

Now suppose thatm =n + 1, then v =1, j, and ip # jo since u # v;. Now, we have
U = Sj, = Ci,j, and furthermore, since r;,, j,di,,jo = Cio,jo¥io,ic = UV = VW = iy joW,
also w = dj,, j,. Thus in this case, we can write v in the given form.

Now suppose m < n + 1 and define vV = yy41 ... ypt1 and u’ = dj;,j, and w' = w.
Note that since v = sj, = ¢iy,j, and ' = dj,, j,» we have

1o/ P _ — . oAy
Tip, joW V. = UTjy joV = UV = VW =Tj, joVW.

Therefore, u'v' = v'w’. Moreover, |u'v| = |[vVw'| = |V/| + 1 since Y41 ... Yup1w is
a reduced expression for v'w. Now, since also |v/| > 1 and |v/| < n — 1, we have by
the induction hypothesis that there is a reduced expression vV = r;, j, ...r;, j, for some
indices iz, j; € {1,...,|S|} with i; # j; so that ¥’ = ¢;,,;, and w’ = d;;; and so
that for / = 1,...,k — 1 we have that ¢;,_, j,,, = d;;,j, and a;,,, j,,, & {5i;.5),} and
bi,j; & {8i;1- Sjy,, +- Hence we can write v = 1y, j, V' = T j, ... Fi,j, - We also have
U =8j, = Cig,jo and w = w' = d;,_j, and d;, j, = u’ = c;;,j,. Furthermore, since |v| =
n=(m—1)+ n—m+1)=|ry, ;| + |V and since the expression for v’ is reduced, we
thus have that the expression for v is also reduced. Now suppose that b;,_j, € {si,. s}, }. We
note that bio,jo 75 dio,jo = Ciy,jr 75 iy, jy - Now as also Ciy,j1»Qiy,jy € {Sil » Sjy }, we obtain
that a;, j, = b;,, j,- However, as r;; j, ends with b;; j, and as r;, ;, starts with a;, ;,, we
then obtain that r;, j,r;,,;, is not a reduced expression. This contradicts the fact that the
expression for v is reduced. Likewise, if a;,,;, € {s;,, 5j,}, we have because of the fact
that a;, , j, # Cir,j1 = dio,jo # bio,jo and dio,j07bi0,j0 € {sip, sjo} that a;, ;, = bi0=j0' This
then shows that r;, j,r;,, j, is not a reduced expression, which contradicts the fact that the
expression for v is reduced. This proves the lemma. ]

Proposition 5.4. Let u,w € S. Then we have z € supp(y;p, s)) if and only if
Z € {V,uv,vw, uvw},
where v is a word as in Lemma 5.3.

Proof. 1tis clear that if z € {v, uv, vw, uvw}, where v is of the form of Lemma 5.3, that
we then have uz = zw, and hence by Lemma 5.2 that w,‘ff 5,(z) # 0. For the other direction,
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we suppose that z € supp(y,f ). Then we have that uz = zw holds by Lemma 5.2. Now
there is a v € {z, uz, zw, uzw} such that |v| < |uv|, |[vw|. This word v moreover satisfies
uv = vw as we had uz = zw. Now, this means that v can be written in an expression as
in Lemma 5.3. Last, we note that z € {v, uv, vw, uvw}, which finishes the proof. [

5.4. Parity paths in Coxeter diagram

In Proposition 5.4, we showed precisely for what kind of words v € W we have v €
supp(y,}[’, %). The question is now whether this support is finite or infinite. It follows from
the proposition that the support is finite if and only if there exist only finitely many
words v € W that can be written in the form v = r;, ;, ...r; _j, with the condition from
Lemma 5.3. To answer the question on whether this is the case, we shall identify these
expressions with certain walks in a graph. The following defines essentially the Coxeter
diagram with the difference that in a Coxeter diagram the edges that are labelled with
m; ;j = 2 are deleted and those labelled with m; ; = oo are added. Recall that a graph is
simplicial if it contains no double edges and no edges from a point to itself.

Definition 5.5. We will let Graphg (W) = (V, E) be the complete simplicial graph with
vertex set V' = S and labels m; ; on the edges {s;,s;} € E.

Definition 5.6. Letk > land i, j; € {1,...,|S|}forl =1,...,k. Let
P:(Sjl,Sil,sz,-.-,Sjk,Sik)

be a walk in the Graphg (W), which has even length. We will say that P is a parity path if
the edges of P have finite labels, and if

(1) i; # j; forall l;

(2) forl = 1,...,k—l,wehavesjprl =d;

3) i1 i, Ji}
We will moreover call the parity path P a cyclic parity path if the path

P o= (8j,, Siys - 8jp s Sig Sjy» Siy)
is a parity path.

The intuition for a parity path is that if you walk an edge with odd label, you have to
stay there for one turn and then continue your walk over a different edge than you came
from. Furthermore, when you walk an edge with an even label, you have to return directly
over the same edge, and then continue your walk using another edge. Note that in both
cases you may still use same edges as before at a later point in your walk. A cyclic parity
path is defined so that walking the same path any number of times in a row gives you
a parity path.

We state the following definition.
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Definition 5.7. An elementary M-operation on a word v; ... vg is one of the following
operations:

(1) Delete a subword of the form s;s;.

(2) Replace an alternating subword of the form s;s;s;s; ... of length m; ; by the
alternating word s;5;5;s; . . . of the same length.

A word is called M-reduced if it cannot be shortened by elementary M-operations.

We shall now show in the following two theorems that the gradient-S,, property of the
semi-group (®;);>0 on L (W) associated to the word length g, is almost equivalent with
the non-existence of cyclic parity paths in Graphg(W).

Theorem 5.8. Let W = (S| M) be a Coxeter system. Suppose there is a cyclic parity path
P = (Sjl,sil,sz, e ,Sjk,sik)

in Graphg(W) in which the labels m;, j,, mj, ;. , Mj,.i,,, are all unequal to 2. Then
the semi-group (®;);>o associated to the word length Vg is not gradient-S, for any
p € [1,00]

Proof. Suppose the assumptions hold. Then we have that there exists a parity path of the
form P = (j;, Siys Sjys -+ s Sjgs Sigs Sjpir» Sigy,)» Where s = 55, and 55, = s, .. We
will denote vi = r; j, ...T; ;. We note that by the definition of a parity path, we have
di i = Sjipy = Cipgrjies forl =1,k — Land diy j, = sji,
define v = ¢;,,;, = d;,,j,- Now we thus have uv; = viu. This means by Lemma 5.2
that y,}/’j(vl) # 0. We show that ¥s(vy) > k. To see this, note that a;,_, j,., = Si,, &
{8, 8j, } by the definition of the parity path. Furthermore, since by, ;, # di,.j, = Cij,\,j14,
and biy,j; 7# ipyyjpey (3 Qipyy iy & i iyt 2 bigjp) and @iy gy, = iy # Sjyy =
Cipyr jier> W have that by, j, & 4ai, 1 jiys Ciperjiar ) = ASipyy» 8jy4, - Now, since there are
no labels m;, j, equal to 2, we have that the sub-words r;, ; contain both elements s;,
and sj;. This means, since a;, ., j,., & {8i;.S;,} and by, j, & {si,.,.$j,,,}» that the only
sub-words of vy of the form s;s;s; ...S;s; ors;s;s; ...s;s; are the sub-words of r;, j, for

= §j; = Ciy,j;- We now

some [ = 1,...,k, and the words b;, j a;,,j,,, for/ =1,... k — 1. For an alternating
subword x of r; ; for some 7, j, we have that x is an alternating sequence of s;’s and s;’s
and further

x| = fri ;| = mi; — 1.

Furthermore, for a word s;s; with s; = b;, j, and s; = @, j,,, forsomel =1,... .k —1
(in which case we have i € {i;, j;} and j = i;4+1), we have that
Is;s;| =2 < min{m;,, mj i p—1<m;—1.

410 141

Furthermore, there are no sub-words of v, of the form s; ;. This means that the expres-
sion for vy is M -reduced, and therefore, by [20, Theorem 3.4.2], that the expression is
reduced. This means that ¥s(vy) > k. Now, since we can create cyclic parity paths P,
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by walking over P a n number of times, we can create v, € W with ¥s(v,) > nk and
yf{f 5% (Vn) # 0. Therefore, )/,;/f % is not finite rank, and hence the semi-group (®;);>¢ is not
gradient-S,, for any p € [1, oo]. L]

Theorem 5.9. Let W = (S|M) be a Coxeter group. If there does not exist a cyclic parity
path in Graphg (W), then the semi-group (®;);>0 associated to the word length Vs is
gradient-$, for all p € [1, c0].

Proof. Suppose that (®;);>¢ is not gradient-S, for some p € [1, oo]. We will show that
a cyclic parity path exists. Namely, since the semi-group is not gradient-S,, there exist by
Lemma4.11 generators u, w € S for which y,l/’, % is not finite rank. Set m = max{m; j:1 <
i,j <|S|}\ {oo}. We can thus let z € supp(y,}pj,) be with ¥g(z) > m|S|?> + 2. Then
by Proposition 5.4, there is a v € {z, uz, zw, uzw} such that we can write v in reduced
formv = r; j, ...r; j with the conditions as in Lemma 5.3. Now define the path P =
(Sj18iys- - 8j,, 5, ). We show that this is a parity path. By the properties that we obtained
from Lemma 5.3, we have that i; # j; and that m;, j, < oo for all /. Moreover, sj;,,, =
Cipyrijier = diy,j; and s;, = aj; j; € {Si;,,» 8, +- This shows that P is a parity path. Note
furthermore that since Y5 (v) > s (z) —2 > m|S|?, we have that P has length | P| = 2k >
ZWST(V) > 2|S|?. Therefore, there must exist indices / < I’ such that (sj,, 5;,) = (Sjys» Siy)-
The sub-path (s}, Sipr e Sjy_y.jy_,) thenis a cyclic parity path. L]

5.5. Characterization of graphs that contain cyclic parity paths

In the previous subsection, in Theorems 5.8 and 5.9, we have shown that the gradient-S,
property is almost equivalent to the non-existence of a cyclic parity path. We shall now
characterize in Proposition 5.10 precisely when a graph possesses a cyclic parity path.
The content of this proposition is moreover visualized in Figure 1. Thereafter, we state
two corollaries that follow from this proposition and from Theorems 5.8 and 5.9. These
corollaries give an ‘almost’ complete characterization of the types of Coxeter systems for
which the semi-group associated to Vs is gradient-S,,.

The following proposition shows exactly when a cyclic parity path P in the graph
Graphg (W) exists. Recall that a forest is a union of trees. A connected graph is a tree if it
has no loops/cycles.

Proposition 5.10. Letusdenote V =S, Eo ={{i,j}:m; j€2N}and Ey ={{i,j}:m; ;€
2N + 1}. Then there does not exist a cyclic parity path P in Graphg(W) if and only if
(V, E1) is a forest, and for every connected component C of (V, E1) there is at most one
edge{t,r} € Eqwitht € C andr & C, and for every connected component C of (V, E1)
there is no edge {t,t'} € Eq witht,t' € C.

Proof. First suppose that (V, E) is not a forest. Then we can find a cycle Q = (s;,,5,,. . .,
Sj.»8j) in (V, E1). Now, since all edges are odd, this means that

P = (S_/I,sz,sz,Sj3,Sj3,...,Sjk,Sjk,Sjl)
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Figure 1. Graphs with and without a cyclic parity path: (a) with no cyclic parity path; (b) with
a cyclic parity path; (c) with a cyclic parity path. The graph Graphg (W) is denoted for three different
Coxeter systems W = (S|M) with |S| = 6. In each of the graphs, the label m;_; is shown on the
edge {s;.s;}. We colored the edge orange when the label is even, we colored it blue when the label
is odd, and we colored it black when the label is infinity. The relations we imposed on the generators
are almost the same in the three cases. They only differ on the edges {s4, s5} and {55, 5¢}. The graph
in (a) satisfies the assumptions of Proposition 5.10 and hence does not contain a cyclic parity path.
The graph in (b) does not satisfy the assumptions of the proposition as for the connected component
C = {s3, 54} of (V, E1) there are two distinct edges {s2, s3} and {s4, 55} with even label and with
(at least) one endpoint in C. Therefore, the graph contains a cyclic parity path. One is given by
P = (s3, 52,53, 54, 54, S5, 54, 53) (another cyclic parity path uses the node s1). The graph in (c)
does also not satisfy the assumptions of the proposition as it contains a cycle with odd labels. Here
a cyclic parity path is given by P = (s1, 55, 55, 56, S6, S1) (another cyclic parity path is obtained by
walking in reverse order).

is a cyclic parity path. Indeed, if we denote ji4; := j; and jgi, := ja, then for [ =
1,....k, we have j; # jiy1, 8jj., = djppy,j; and jiyo & {ji+1, ji}, which shows all
conditions hold.

Now suppose that there is a connected component C of (V, E1) for which there are
two distinct edges {¢1, 71}, {t2,r2} € Eo with t1,1, € C and r1,r, & C. If t; = 15, then
r1 # rp and a cyclic parity path is given by P = (¢1,r1,#1,r2). In the case that #; and #, are
distinct, there is a simple path Q = (#1, 5j,,...,5j,,t2) in (V, E1) from #; to t,. The path

P o= (t1,8)1,8j1:8j5:8jnr o o5 S s Sjis 12,82, 72,12, 83 St s Sju > Sju_ys -+ Sj1s Sjp» 11 11, 71)
then is a cyclic parity path. Indeed, just as the previous case, we have that the paths

P = (l‘l,Sjl,Sjl,sz,sz, .. ,Sjk,Sjk,lz),

Po = (02, i Sjgs Sjk_ys Sjgys - - -+ Sjus Sjr» 1)

are parity paths since they are obtained from a simple path in (V, E1). We then only have
to check that in the middle and at the start/end of the path P the conditions are satis-
fied. For the middle, we see that indeed r» ¢ {s;, , 2} as the label of the edge between #,
and r, is even. Furthermore, since P; is a parity path, we have that s;, # #>. Thus also
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Sj, & {t2,r2}. Furthermore, if we let i, j be such that 1, = s}, r, = s;, then since mj, ;
is odd, we have that , = d; ;, and since m; ; is even, we have t, = d;_ ;. This shows all
conditions in the middle. The conditions at the start/end hold by symmetry. Thus P is
a cyclic parity path.

Now, suppose that there is a connected component C of (V, E1) for which there exists
anedge {t,t'} € Eg with¢,¢’ € C. Then we can, similar to what we just did, obtain a cyclic
parity path by taking t; =t,t, =t andry =t',r, = 1.

We now prove the other direction. Thus, suppose that (V, Ep) is a forest and that
for every connected component C, there is at most one edge {¢,r} € Eo with ¢t € C and
r € V, and that for every connected component, there is no edge {¢,t'} € Eq with¢,t' € C.
Suppose there exists a cyclic parity path P = (sj,,8i,,...,8;,8;) in (V, Eo U Eq), we
show that this gives a contradiction. Namely, first suppose that P only has odd edges.
Then we have s;,,, = d;; j, = s; forl =1,...,k — 1 and 5, = d;; j, = si;, and thus
P = (Si,» Siys Siys Sins Sins -+ Siy_y» Si ). However, since also iy41 & {iz, ji} = {ir, ij-1},
this means that Q = (s, Si,, ..., 8, 8;;) is a cycle in (V, E1). But this is not possible
since (V, E7) is a forest, which gives the contradiction. We thus assume that there is an
index / such that the label m;, ;, is even. By choosing the starting point of P as j; instead
of ji, we can assume that m;, j, is even. Now in that case, we have s;, = d;,,j, = 5.
We must moreover have i, & {i1, j1} as P is a parity path. Now as the edges {i1, j1}
and {i2, j»} are thus distinct, and share an endpoint, we obtain that m;,_ j, is odd. This
means that jz = d;, j, = ix # jo. Now the sub-path (sj,, Si,, ..., S, Sips Sj1, 8ip) 18
also a parity path. Denote jr4+; = j; and ix+; = i; and let 3 < k' < k + 1 be the
smallest index such that s, = s5;,. Note that such k' exists since s;,,, = s;, = 5j,.
Then the sub-path P’ := (Sjys Sigs - sjk,,s,-k,) is a parity path, and the labels m;, j, for
[ =2,...,k" —1are odd since s;, is the only vertex in its connected component in (V, E;)
that is connected by an edge in Ey. Thus, just like in the previous case, we have that P’ :=
(Sipss Sins Siys Sigs -+ Sip,_,»Siy, ). Now this means that the path Q = (s;,,, Si,, Si5, . -+, Sip,)
contains a cycle, which is a contradiction with the fact that (V, E) is a forest. This proves
the lemma. ]

We now state two corollaries that directly follow from Theorems 5.8, 5.9 and 5.10.

Corollary 5.11. Let W = (S|M) be a Coxeter system and fix p € [1,00]. Let us denote
Eo={(i,j):m;j€2N}and E; ={(i, j):m; ; € 2N + 1}. Then the semi-group (P;);>0
on (W) associated to the word length s is gradient-Sp, if (S, E1) is a forest, and if for
every connected component C of (S, E1) there is at most one edge {t,r} € Eq witht € C
andr € C and no edge {t,t'} € Eq witht,t' € C.

Corollary 5.12. Let W = (S|M) be a Coxeter system satisfying m; ; # 2 for all i, j. Fix
p € [1,00]. Let us denote Eo = {(i, j):m;; € 2N} and Ey = {(i, j):m; j € 2N + 1}.
Then the semi-group (®;)s>0 on £(W) associated to the word length Vs is gradient-S,
if and only if (S, E1) is a forest, and for every connected component C of (S, E1) there is
at most one edge {t,r} € Eq witht € C andr & C and no edge {t,t'} € Eq witht,t’' € C.
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We would also like to point out the following result from [8, Example 5.1]. It follows
that the Coxeter groups are in some cases actually equal. In such cases, we have obtained
the gradient-S, property for multiple quantum Markov semi-groups.

Proposition 5.13. Let W; = (S;|M;) be Coxeter systems fori = 1,2 such that Graphg, (W)
has no edges of even label, and such that the edges of odd label form a tree. Then if
Graphg, (W) has the same set of labels as Graphg, (W>) (counting multiplicities), then the
Coxeter groups are equal, that is Wi = W,.

5.6. Smallness at infinity

We recall the construction of a natural compactification and boundary associated with
a finite rank Coxeter group. We base ourselves mostly on the very general construction
from [33] but in the case of Coxeter groups this boundary was also considered in [11,34].
In [33] then smallness at infinity was studied as well as its connection to the Gromov
boundary, which generally is different from the construction below.

Let W = (S| M) be a finite rank Coxeter system, and let G be its Cayley graph which
has vertex set W, and w, v € W are connected by an edge if and only if w = vs for some
s € S. We see G as arooted graph with e € W the root. We say that w < v if there exists
a geodesic (= shortest path) from e to v passing through w. An infinite geodesic path is
a sequence @ = («;);eN such that

(1) i e W,
(2) o; and a4+ have distance 1 in the Cayley graph,
(3) (@i)i=o.,....n is the shortest path (geodesic) from «y to o, for every n.

For every w € W, we have either w < «; for all large enough i or w £ «; for all large
enough i. We write w < « in the former case and w £ « in the latter case. We define an
equivalence relation ~ by saying that for two infinite geodesics « and 8, we have o ~ f if
for all w € W both implications w < & < w <  hold. Let (W, S) be the set of infinite
geodesics modulo ~. Define (W, S) = W U d(W, S). We equip (W, S) with the topology
generated by the subbase consisting of

Uy :={ae (W, S):w=<a}, U,:={aecWS):w£a}

with w € W. Then (W, S) contains W as an open dense subset and the left translation
action of W on W extends to a continuous action on (W, §) (see [33]). This means that
(W, S) is a compactification of W in the sense of [10, Definition 5.3.15] and d(W, S) is
the boundary. We now recall the following definition from [10, Definition 5.3.15].

Definition 5.14. We will say that a finite rank Coxeter system (W, S) is small at infinity
if the compactification (W, S) is small at infinity. This means that for every sequence
(xi)ien € W converging to a boundary point z € d(W, S) and for every w € W, we have
that x;w — z.
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The following is the main theorem of this subsection. The authors are indebted to
Mario Klisse for noting the connections in this theorem as well as its proof.

Theorem 5.15. Let W = (S|M) be a Coxeter system. Fix p € [1, 00]. The following are
equivalent:

(1) The QMS (®;);>0 associated with the word length s is gradient-S, on L(W).
(2) Forallu,w € S, the set {v e W:uv = vw} is finite.

(3) Foralls € S, the set {v e W:sv = vs} is finite.

(4) The Coxeter system W = (S| M) is small at infinity.

Proof. (1) is equivalent to saying that for all u, v € S we have that y,l”’ 5 has compact sup-
port by Lemma 4.11. By Lemma 5.2, this is equivalent to (2). The equivalence between (3)
and (4) was proven in [33, Theorem 0.3]. The implication (2) = (3) is immediate.

Now assume (4). We shall prove that (2) holds by contradiction. So suppose that
#{v:uv = vw} = oo for some u, w € S. Choose a sequence (v;); in {v:uv = vw} which
has increasing word length. By the compactness of the compactification (W, S) [33, Pro-
position 2.8], this implies that (by possibly passing over to a subsequence) the sequence
(v;i); converges to a boundary point z. Now, by the smallness at infinity and the assump-
tion that uv; = v; w, we have that z = lim; v;w = lim; uv; = u - z. We have eitheru < z
or u £ z but not both in the partial order from [33, Lemma 2.2]. Further, u £ z if and only
if u < u -z = z which yields a contradiction. [

Remark 5.16. We refer to [33, Theorem 0.3] for yet another statement that is equivalent
to the statements in Theorem 5.15. A consequence of [33, Theorem 0.3] is that Coxeter
groups that are small at infinity are word hyperbolic. Conversely, not every word hyper-
bolic Coxeter group is small at infinity. The simplest example is probably the Coxeter
group generated by S = {s1,52,53, 54}, where m; ; =2if|i — j| =1and m; ; = oo oth-
erwise. We thus see that not for every hyperbolic Coxeter group we have the gradient-S,
property for the QMS associated with the word length. However, in Section 7 we show
that using tensoring we may still use our methods for such Coxeter groups.

Remark 5.17. It is known that every discrete hyperbolic group is strongly solid by com-
bining results in [28] (to get AO™ using amenable actions on the Gromov boundary),
[38] (for weak amenability, see [25, 30] for general Coxeter groups) and [44] (for Theo-
rem 3.13). Condition AO™ may also be obtained by Theorem 4.14 for the Coxeter groups
that admit a QMS with gradient-S,. However, Remark 5.16 shows that this covers a smal-
ler class than [28] and so our methods — for now at least — do not improve on existing
methods concerning strong solidity questions.

There are still two large benefits of the results in this section. Firstly, given a Coxeter
system W = (S| M), it is not directly clear whether it is small at infinity. A combination
of Theorem 5.15 and Corollaries 5.11 and 5.12 gives in many cases an easy way to see
whether a Coxeter group is small at infinity. Secondly, for now we may not improve on
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current strong solidity results but in Section 7, we show that using the tensor methods of
Section 3 we may prove strong solidity for all hyperbolic right-angled Coxeter groups.
This gives an alternative path to the method of [28] (still not outweighing known results).
In Section 8, this alternative path also gives strong solidity results for Hecke von Neumann
algebras. Here we really improve on existing results as the methods of [28] can only be
applied in a limited way, see [33, Theorem 3.15 and Corollary 3.17].

Remark 5.18. By Theorem 5.15 (see [33, Theorem 0.3]), smallness at infinity or gradi-
ent-$, can be characterized in terms of the finiteness of the centralizers of the generators.
Such centralizers can be analyzed using the methods from [1,9].

6. Gradient-S, semi-groups associated to weighted word lengths on
Coxeter groups

In this section, we will consider proper length functions on Coxeter groups that are con-
ditionally of negative type and are different from the standard word length. We can then
consider the quantum Markov semi-groups associated to these other functions and study
the gradient-S, property of these semi-groups. We show that these other semi-groups may
have the gradient-S, properties in the cases where the semi-group associated to the word
length s fails to be gradient-S,. For p € [1, oo, this gives us new examples of Coxeter
groups W for which there exist a gradient-S, quantum Markov semi-group on £(W).
These results will turn out to be crucial in Section 7.

6.1. Weighted word lengths

For non-negative weights x = (x1, ..., x|5|), we consider, if existent, the function :
W — R by taking the word length with respect to the weights x on the generators (see
below). These functions are conditionally of negative definite type as follows for instance
as a special case of [7, Theorem 1.1]. Here we give another purely group theoretical proof.

Fix again a (finite rank) Coxeter group W = (S| M ). Recall that the graph Graphg (W)
was defined in Definition 5.5. Let Graph's (W) be the subgraph of Graphg(W) that has
vertex set S and edge set

E ={(si,5j):3 <my j :=myg 5 < 00}
Then let €; be the connected component in Graph’y (W) that contains ;.

Lemma 6.1. Let W = (S|M) be a Coxeter group. Then if x € [0, 00)!S| is such that
Xi = xj whenever €; = C;, then the function

Yx: W — [0, 00),

given for aword w = wy ... wy in reduced expression by YUy (w) = Zlﬂl xi|[{l:w; = si}]
is well defined and is conditionally of negative type.
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Proof. Letn = (ny,...,n|5)) € N'S! be such that n; = nj whenever €; = €;. We will
construct a new Coxeter group W, = (Sa|M,) as follows. We denote Sy, = {s;x:1 <
i <|S|,1 <k < n;} for the set of letters. We then define My,: S, — N U {oo} as

M ,sj G = t’j and k =1,
Mn,s; .50 = 2, € =€ andk # 1,
msi,sj, €i 75 fj.

We set the Coxeter group 1717“ = (Sh|Mp). We now define a homomorphism ¢p: W — VIN/,,
given for generators by ¢n(s;) = ;18,2 - . . Si,»;. We note that

2 _ _ 2 2 _
On(8i)” = Si1 .- SinSi1 - Sin; = Siq---Sip, =€

Furthermore, when €; = €;, we have that n; = n; and

(n(s)on(s;))™ = (i1 SimiSjn---Sjm)™ = (5i,185,0)" (5:,2,87.2)™ -+ (Sion; Sjin; )™

This means that in this case, (@n(s;)@n(s;))™ "7 = e. If € # €;, then either My;.5; =2
or my, 5; = 00. If my, 5; = 2, then also

On(Si)Pn(sj) = i1 .. Sin;Sj1 .- -Sjn; = S8j,1 .- Sin;Si 1. Sin = ©n(si)@n(s;)

holds. Therefore, we can extend ¢, to words w = wj ... wg € W by defining ¢n(W) =
¢n(W1) . .. on(wg). By what we just showed, this map is well defined. Furthermore, from
the definition it follows that this map is a homomorphism. Moreover, we note that if w =
wi ... wx € W is areduced expression, then ¢, (W) = ¢, (w1) ... ¢n(wg) is also a reduced
expression. This means in particular that ¢, is injective. Furthermore, if we denote Jn
for the word length on 17[7,,, then we have that for a word w = w; ... w; € W written in
a reduced expression that

S| S|
Vn © @n(W) = an(wn(wm = Unlgn(s)){:wy = si}| = Zn,w wy = 5}
i=1
Now fix x € [0, oo)‘s| with x; = x; whenever €; = €;. Form € N define n,, € NISI
by (n;); = [mx;] + 1 € N. Now, for w € W with reduced expression w = wy ... wg,
we have

IS

Lo 'S‘ ()
T om0 = il = sil| = 3| P -t = s
i=1 i=1

Z”””’”l "5 1y = )

IS\

<3 ity = syt < 20

i=1
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and hence %Jnm o ¢n,, (W) — Z‘IS:'I x;|{l: w; = s;}| as m — oo. This shows in particular
that ¥ is well defined. Since %1//.,,” o ¢n,, 18 conditionally of negative type, and since
%anm © ¢n,, = Yx point-wise, we have by [5, Proposition C.2.4 (ii)] that i is condition-
ally of negative type. ]

Remark 6.2. By Lemma 6.1 in the case of a right-angled Coxeter group W = (S| M),
we have that every weight x € [0, 00)!S! defines a function that is conditionally of negative

type.

Remark 6.3. For a general Coxeter group W = (S| M) and arbitrary non-negative weights
x € [0, 00)!5!, the weighted word length is not well defined. Indeed, if s;, s; € S are such
that my, 5, is odd, then for k; ; := L%msi,st, we have that (sisj)ki:fsi and s; (s,-sj)ki’i
are two reduced expressions for the same word, but the values of |{/:w; = s;}| and
[{{:w; = s;}| depend on the choice of the reduced expressions.

We shall now turn to examine when a weighted word length is proper. Fix again
a Coxeter system W = (S|M). Let I C S be a subset of the generators such that for
i=1,...,|S|either & C Tor€; NI =0. Weset

V1 =y withx € [0,00)!S! defined by x(i) = yz(i),

where y r is the indicator function on I. Then by Lemma 6.1, we have that ¥ 7: W — R
is a well-defined function that is conditionally of negative type. We give the following
characterization on when the function vz is proper.

Proposition 6.4. The function 1 is proper if and only if the elements S \ I generate
a finite subgroup.

Proof. Indeed, if the generated group H is infinite, then ¥ 7 is not proper as ¥ 1|y = 0.
On the other hand, if the generated group H contains N < oo elements, then for a reduced

expression w = wy ... wg € W, we cannot have that w;, w4 1,...,w;+n € S \ I for some
1 <! <k — N as the expressions w;, Wjwj4+1, W;Wj+1Wi+2, - .. would all be distinct
elements in H . This thus implies that ¥ y(w) > IJL—i—‘l — 1 which shows that 17 is proper
in this case. ]

6.2. Gradient-S, property with respect to weighted word lengths on right-angled
Coxeter groups

In this subsection, we shall consider a right-angled Coxeter group W = (S|M). Recall
that right-angled means that m, € {2, 00} for all 5,7 € S, s # ¢ so either s, ¢ are free
or they commute. By Remark 6.2, it follows that for any x € [0, oo)‘S |, we have that
Yx: W — R is well defined and conditionally of negative definite type. We note also that
Yx(W) = ¥ (wy) + - - - + Yx(wg) when w = wy ... wg is areduced expression. Therefore,
by Lemma 5.2 we have that y,}/’,"w (v) #0foru,w € S and v € W if and only if uv = vw
and ¥ (u) > 0.
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Theorem 6.5. Let W = (S|M) be a right-angled Coxeter group. Let x € [0, 00)!S| and
p € [1, 00]. Suppose the function Y is proper. Then, the semi-group (®;)s>o induced
by Yk is gradient-S, if and only if there do not exist generators r,s,t € S with m, s =
my; =2, mg; = 0o and Yx(r) > 0.

Proof. Suppose that (®;);>¢ is not gradient-S, for some p € [1, oo]. We will show the
generators with the given properties exist. Namely, there are generators u, w for which
y;/f’,‘v is not finite rank. We can thus let v e W with |v| > |S| + 1 be such that y,l/',’{v (v) #0.
Then uv = vw and Y¥x(u), Yx(w) > 0 by Lemma 5.2. We note moreover that by [20,
Lemma 3.3.3], we have that u = w because these elements are conjugate and the Coxeter
group is right-angled. We can now let z € {v, uv, vw, uvw} be such that |z| < |uz|, |zw|.
Then the equality uz = zw also holds. Therefore, we can write z in reduced form z =

Tiyji - - - Tig,j, With the conditions as in Lemma 5.3. Now, as m;,,j, 1= my, s; < 00, we
must have my, 5, = 2for/ =1,... k. Hence z = sj5i, ... 8, . Furthermore, s;,,, = s,
forl =1,....k — 1since my, , iseven. We define r = s;,. Thenr = ¢;,,;, = u so that

Yx(r) > 0. Furthermore, since k = |z| > |v| — 1 > | S|, there exist indices / < [’ such that
Ms;, i, = OO We then set s = s;, and ¢ = s;;,. Then my, = Ms; s, = 2 and likewise
my r = 2. This shows that all stated properties hold for r, s and 7.

For the other direction, suppose that there exist r, s, ¢ € S with m, s = m,; = 2 and
mg, = oo and Yx(r) > 0. Define the words v, = (s¢)". Then we have |v,| = 2n and
hence {v, },>1 are all distinct. Moreover, we have rv, = v,r and ¥ (r) > 0. This means
by Lemma 5.2 that y,"p;‘ (vn) = ¥x(r) > 0 for n > 1. Thus the semi-group (®;);>¢ is not
gradient-S,. ]

7. Strong solidity for hyperbolic right-angled Coxeter groups

We conclude this paper with two applications that combines all the techniques that we have
developed so far. This section contains the first application. We prove that any right-angled
hyperbolic Coxeter group has a strongly solid group von Neumann algebra. This result
was surely known before; it follows, for instance, from [44]. Nevertheless, we present
our alternative proof to demonstrate the techniques that we have established in this paper.
For the rest of this section, fix a (finite rank) right-angled Coxeter system W = (S|M).
We shall use the following characterisation of word hyperbolicity.

Theorem 7.1 (See [20]). Let W = (S|M) be a right-angled Coxeter system. The follow-
ing are equivalent:

(1) W = (S|M) is word hyperbolic.

(2) There do not exist four distinct elements s,t,u,v € S such that ms; = My, = 00

and Mgy = Mgy = Mpy = My = 2.

Our aim is to prove the following. The proof is based on Proposition 7.3 and Lem-
ma 7.4 which we prove at the end.
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Theorem 7.2. Let W = (S|M) be a word hyperbolic right-angled Coxeter group. Then
L (W) satisfies AOT and is strongly solid.

Proof. Let Cliq(S|M) be the set of subsets I C S that generate a finite Coxeter sub-
group Wy of W = (S|M). These are precisely the subsets I C S such that for every
s,t € I, we have my; = 2. We call Cliq(S|M) the set of cliques. They could also be
seen as the cliques in a natural graph that is associated with the graph product decompos-
ition of a right-angled Coxeter group, where a clique is defined as a complete subgraph,
see [15,26]. We shall not need this graph product decomposition here except for the fact
that it explains the terminology.

For I € Cliq(S|M), the function ¥\ 7 is proper (see Proposition 6.4) and condi-
tionally of negative type (see Lemma 6.1). We may therefore consider the QMS &7
associated with g\ 7, the associated gradient C[W] bimodule H; and the Riesz trans-
form Rj:4>(I') = Hjp. The Riesz transform R is then a partial isometry with a finite-
dimensional kernel spanned by §,, u € W;. Here Rz is almost bimodular by Corol-
lary 4.13. We now consider the ®r tensor product of bimodules with I' = W over all
I € Clig(S|M) as was defined in Section 3.2,

Hy = () Hr.

Tecliq(S|M),T

We note that the order in which the tensor products are taken is not relevant for our ana-
lysis. Consider the convolution product of Riesz transforms

Rw = *1eciqsim R1: £2(T) — Hy.

By Lemmas 3.8 and 3.9, we see that Ry is an almost bimodular partial isometry whose
kernel is spanned by all vectors &,,, where u € Wy for some I € Cliq(S|M). In particular,
the kernel of Ry is finite-dimensional. Let L C Hy be the smallest C[W] subbimodule
containing the image of Ry . Then Ry : £>(W) — L is still an almost bimodular partial
isometry with finite-dimensional kernel.

Recall that C*(W) is locally reflexive and £ (W) has the weak-* completely boun-
ded approximation property as W is weakly amenable (see [25,30]). It then follows from
Theorem 3.11 that if L is quasi-contained in the coarse bimodule of W, then &£ (W) satis-
fies AO™. Consequently, £(W) is strongly solid by Theorem 3.13. The proof that Hyy is
quasi-contained in the coarse bimodule of W is given in Proposition 7.3. ]

Proposition 7.3. The C[W] bimodule L defined in the proof of Theorem 7.2 is quasi-
contained in the coarse bimodule of the word hyperbolic right-angled Coxeter group W.

Proof. We shall prove that a cyclic set of coefficients is in S, so that the proposition
follows from Lemma 3.4. Let us denote Hoo < L for the sets of all the vectors

& = (treciqsRDG) = Q) Av®v; 8. veW.
Tecliq(S|M)
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Here we used the symbol ®v ; to denote elements in the gradient bimodule constructed
from I. By construction of L, we have that Hyy is cyclic for L. For &, &y, € Hgo, we now
inspect the coefficient Tg, ¢ . We have foru,v,w € W,y € C[W],

T(TEW,Su Ay) = {Ay-&v - y. &)

= 1_[ Ay Aw ®18e) -y, Au ®18e) 1
Tecliq(S|M)

A1, Aw
= JI """ (0sey.5)

Tecliq(S|M)

= 1_[ w_ﬁ\vIV(V)( ulyw ey’S )

Tecliq(S|M)

Define the function

Faw® =[] rea . (7.1)

Tecliq(S|M)

Then, if y,-1 (v) =0, we have that 7 (T, ¢,(Av)y) = 0forall y € C[W] and consequently
T, £, (Av) = 0. We thus have that T¢_ ¢, is finite rank whenever ¥,-1 ,, has finite support.
In Lemma 7.4, we shall show that the function ¥, has finite rank for all u,w € W so that
we conclude the proof. ]

In order to prove Lemma 7.4 rigorously, we shall introduce some notation here. A tuple
(wy,...,wr) with w; € S will be call reduced if the expression wy . .. wg is reduced. Fur-
thermore, we will call the tuple semi-reduced whenever |wy ... wi| + |{{: w; = e}| = k.
We will say that a pair (i, j) with i < j collapses for a tuple (wy, ..., wg) whenever
w; = w; # e and the elements {w;:i <[ < j} pair-wise commute. In that case, we will
call the tuple (wyq, ..., Wi—1,€, Wit1,...,Wj—1,€, Wj+1,. .., Wk) the tuple obtained from
(w1, ..., wk) by collapsing on the pair (i, j ). We note that the word w . . . wg correspond-
ingto (wy,. .., wg) isin fact the same as the word wy ... w;—1ew;y1... Wj_1€w;y1... Wk
corresponding to the collapsed tuple. The notation that we introduced here is convenient
because it keeps indices aligned correctly. We also note that a tuple (wq, . . ., wg) is semi-
reduced if and only if we cannot collapse on any pair (i, j ). Hence, for a general tuple, we
can obtain a semi-reduced tuple by subsequently collapsing on pairs (i1, j1), ..., (ig, jg)-

Lemma 7.4. For a right-angled word hyperbolic Coxeter group W, we have that for
u,w € W the function Yy w: W — R defined in (7.1) has finite support.

Proof. Letu=1uq...Uup,,V="01...Uy,, W= W7 ... W, €W written in reduced expres-
sion. We will moreover assume that |v| > |u| + |w| 4+ |S| 4+ 2. We will show that for such
words we have (V) = 0. This then shows that ¥, y has finite support.

Let (u’l, ce U . vl, e, nz) be the semi-reduced tuple obtained by subsequently
collapsing the tuple (¥1,...,Upn,, V1,..., Uy,) ON pairs (11, Ji)soo.. (i q1’](II)' Then we
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must have i/ < n; and j/ > n; since the expressions for u and v were reduced. Also
l J1 p
luv| = |u| + |v| — 2¢; and, more generally, for a weight x € [0, 00)!S! we have

q1
Yx(uy) = Y (W) + Y (V) =2 Yluy)

=1

Likewise, let (v}, ..., v S wy, ..., wy ,) be the semi-reduced tuple obtained by sub-
sequently collapsing the tuple (v1, ..., Vny, W1, ..., Wny) o0 pairs (if, ji’), ..., (07, jg,)-

Then we must have i’ < n5 and j;" > n; since the expressions for v and w were reduced.
Also |vw| = |v| + |w| — 2¢» and, more generally, for a weight x € [0, 00)!S! we have

q2
Y (VW) = Y (V) + Y (W) —2) " Ywjr_p,).

=1

Let us denote

F=Avjell...onmp\jf—nu..ojg, —miy UL ig DY

Now since ny = |v| > |u| + |w| + |S| + 2 > g1 + g2 + |S| + 2, we have that || >
|S| + 2. Hence, there are two elements g1, g» € & that do not mutually commute. Now, if
51,82 € S commute with all elements in § , then s1, s, commute with both g; and g, so
that by the word hyperbolicity of W (see (2) of Theorem 7.1), we must have that also s
commutes with s;. We now let Io € S be the set of all generators that commute with all
elements in §. Then by what we just mentioned, we have that the elements in Iy pair-wise
commute, i.e., Iy € Cliq(S|M).

Now, fori =1,...,n; letussetu; = u} andfori =1,...,n3 set w; = w;. Further-
more, fori = 1,...,n, set v; = e whenever either v; = e or v/ = e but not both, and set
v; = v; otherwise. Let us also denote U = /7 ... Up,, V=01 ...0n, and W = Wy ... Wp,.

We claim that then we have Uvw = uvw. Indeed, we have that

uvw = uvy ... v, wi... w,.
Now we can collapse (U1, ..., un,,V7,..., v, , W, ..., w,.) subsequently on the pairs
(@, jp)forl =1,....q1 except when v i 76 Vj/—p, for some 1 <1 < gy, in which
case v;;, _n, = e If this is the case, then Jl — nl = lk' for some k; € {1,...,¢>}. In par-
ticular, it follows that in this case u; | = Vi, = v,// = wr > and that this element
commutes with all elements in . Therefore Uy € I 0. We can then simply interchange

the elements at index ; ’ (which is u lr) and the element at index j; ’ (which is v], =e).
I

—m
This manipulation does not change the word, and allows us to continue collapsing on the
remaining pairs. Once we are done collapsing on all pairs we have obtained the tuple

(1, ..., Upny, U1y -evs Unys WY, ..., Wn,). This thus shows us that uvw = avw. It also
shows us that v;/t,;l efetUIpforl =1,...,q,. Note that also by definition LTZ? = e for

I=1,...,q1 andm =eforl =1,....¢>. Therefore, we also have that s\ 1, (it;;) =
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Vs\r,(e) =0forl =1,...,¢q; and likewise ¥s\ 7, (W; "—nz) =0forl =1,...,¢q,. Fur-
thermore, wS\IO(Uhf\_;l) =0for/ =1,...,q; and ws\fo(v w) =0forl =1,...,q>.

Also, if we can collapse (i1, .. unl , 071, vnz, wy, .. wn3) on some pair (i, j),
then we musthavei <nj and j > n; + ns. Indeed otherwise, we have that either (ul, e
un1 , vl, o, nz) or (v o vn2 wl, e, w;,’3) is not semi-reduced, which is a contradic-
tion. Now let (i1, j1). ..., (ig, j4) be the pairs on which we can subsequently collapse
W1, ... Uny, U1y -+ Opyy W1, ..., Wp,) to obtain a semi-reduced tuple. Then we thus
must have i; < nj and j; > ny + n,. This thus implies that for/ = 1,.. ., g, we have that
u;, = Wj;, commutes with the elements from J. Therefore, we have {u;,:/ = 1,....q} =
{w;,:l =1,....q} € Io.

Now, we have that

Vs\ 1, (@vw) = Vg 1, (0) + Ys\ 1, (V) + WS\IO (w)

q1 q
_2|:ZWS\IO(M /) + ZWS\IO(wtl —nz) + ZWS\IO(E?)]
I=1 =1

q
= Ys\1, (V) + Y\, (VW) — Y\, (V) + 2 ) U1, (077,

=1
= Vs\1, (V) + Ys\ 7, (VW) — ¥sy\ 1, (V).

This shows that y.f \¥0(v) = 0. Therefore, as I € Cliq(S|M), we obtain that Vaw(v) =0
Now as this holds for every v e W with |v| > |u| 4+ |w| 4 |S| + 2, we obtain that , ,, has
finite support. ]

8. Application B: Strong solidity of Hecke von Neumann algebras

In this final section, we obtain strong solidity results for Hecke von Neumann algeb-
ras. These are g-deformations of the group (von Neumann) algebra of a Coxeter group.
If g = 1, we retrieve the classical case of a group (von Neumann) algebra of a Coxeter
group.

For the Hecke deformations, our methods turn out to improve on existing strong solid-
ity results. In [33, Theorem 0.7], it was shown that for Coxeter groups that are small at
infinity, their Hecke von Neumann algebras satisfy the condition AO™ . If such Hecke von
Neumann algebras have the weak-* completely bounded approximation property, then
they are strongly solid by [29, Theorem A] (this is a generalisation of Theorem 3.13
from [44]). The weak-* completely bounded approximation property was proved in [12]
for Hecke von Neumann algebras of right-angled Coxeter groups; outside the right-angled
case this is an open problem. Therefore, right-angled Coxeter groups that are small at
infinity have strongly solid Hecke von Neumann algebras. It was proved in [33] that such
Coxeter groups are in fact free products of abelian Coxeter groups; hence this result is
somewhat more limited than one would hope for.
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It is natural to ask whether these strong solidity results for Hecke von Neumann algeb-
ras apply to more general word hyperbolic Coxeter groups. In the group case (¢ = 1),
this is exactly Theorem 7.2. However, the results from [33] and in particular [33, Corol-
lary 3.17] show that it is hard to extend current methods beyond free products of abelian
Coxeter groups. A typical right-angled word hyperbolic Coxeter group, which was not
covered before this paper, is given by

({51, 52,53, 84}|M = (m; ;)i ;) withm; ; =2if |i — j| =2 and m; ; = oo otherwise.

In this section, we prove that also the Hecke deformations of this Coxeter group satisfy
AO™ and are strongly solid. The precise statement is contained in Theorem 8.4.

8.1. Definition of Hecke algebras

Fix a (not necessarily right-angled, finite rank) Coxeter system W = (S|M). Let ¢ =
(¢s)ses with g5 > 0 for s € S and such that ¢g; = ¢q; whenever s,¢ € S are conjugate
in W. In this text, we shall call such tuples Hecke tuples. Moreover, we will denote
ps(q) = %. We can as in [20, Theorem 19.1.1] define for s € S the operators Ts(q):
£ (W) — £,(W) given by

TS(Q)(SW) — {SSW’ lsw| > |w|.
Ssw + ps(@)dw, |sw| < |wl|.
For these operators, we have
(TS0 (Bw). 82) = (Bow. 82) + (Ps(@)8. 8,) L (|sw] < [w])

= (8w 852) + (. 5 (@)8,) (52| < |2])
= (8w. T{9(8,))

that is (T9)* = T?.
Now, for a word w € W with a reduced expression w = wj ... Wk, we can set

TW =179 ... TY

Wi
which is well defined by [20, Theorem 19.1.1]. We note that we have (Tv(vq))* = T;‘f)l and
Tqu) (8¢) = 8. Furthermore, for s € S and w € W they satisfy the equations
TOTD =T + p() T 1(sw| < |W)),
TOTD = TP + py(@) T 1(ws| < |w)).

Note that the first equation holds by the proof of [20, Theorem 19.1.1], and the second
equation follows by taking the adjoint on both sides.

We will denote C,[W] for the *-algebra spanned by the linear basis { Tv(vq) we W} We
furthermore denote C,*, (W) € B({»(W)) for the reduced C*-algebra obtained by taking
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the norm closure of C,[W]. Finally, we define the Hecke von Neumann algebra N, (W)
(or simply N;) as the strong closure of C;':q(W). We equip the von Neumann algebra
with the faithful finite trace t(x) = (xe, 8.). We note here that when ¢ = (¢5)ses is
taken as g = 1 for s € S, then (N, 7) is simply the group von Neumann algebra £ (W)
with canonical trace t. The group von Neumann algebra is thus a special case of a Hecke
algebra.

8.2. Coefficients for gradient bimodules of Hecke algebras

We freely use the notation of Section 8.1. In particular, we fix the tuple ¢ = (¢s)ses-
We will simply write Ty, instead of T‘,Sq) and p; instead of ps(g). We let y: W — R be
proper and conditionally of negative type. Define

Ay = AP CoIW] = Cy[W]: Ty > ¥ (W)Tw,
and fort > 0,
®; = ®D: C (W] — Cy[W]: Ty > exp(—19(W))Ty. (8.1)

We will now work under the following assumption.

Assumption 8.1. For ¢t > 0 the map &, extends to a normal unital completely positive
map Ny (W) — Ny (W).

The main point of the assumption is the complete positivity of ®,; the unitality is auto-
matic since ¥ (¢) = e and also the existence of a normal extension can usually be proved
using a standard argument once one knows that ®; is bounded (see the final paragraph of
the proof of [12, Theorem 4.13]).

The assumption holds in case ¢ = 1 by Schonberg’s theorem and in case W is right-
angled by combining [12, Corollary 3.4, Proposition 3.7] and [15, Proposition 2.30]. Note
that if the assumption holds, then N, (W) satisfies the Haagerup property since ¥ is
proper. In general, we do not know whether Assumption 8.1 holds. In fact, it is not even
known whether N, (W) has the Haagerup property unless W is right-angled (see [12, Sec-
tion 3]) or ¢ = 1 (see [6]).

It is standard to check that if Assumption 8.1 holds, then ® = (®;);>¢ is a symmetric
quantum Markov semi-group. For the continuity property note that ®; is a contractive
semi-group on L;(Ny, T) and then use that on the unit ball of N, the strong topology
equals the L, (N, 7)-topology.

We shall now investigate the gradient-S,, p € [1, 0o], property for ® with respect to the
o-weak dense subalgebra A := C4[W] of N, (W). The set A := {Ts:s € S} forms a self-
adjoint set that generates the x-algebra +. Therefore, by Lemma 4.5 in order to check the
gradient-S,, property for ®, we only have to check that W7«:Tv given in Definition 4.3
isin 8, = 8,(L2(Nyz(W))) for generators u, w € S. To check this, we shall make some
calculations to obtain a simplified expression for W7u:Tw
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Fix u, w € S and let v e W. We have by the multiplication rules that

Tw(TZTy) = TuTww + TuTypw1(jvw| < |v])
= Tuvw + puTvw1(jluvw| < |vw|)

+ (Tuv + puTyL(|uv| < [V])) pw1([vw| < |V]).
We can now make the following calculations:

Ay (T, T Tw) = ¥ (uvw) Tuyvw + ¥ (VW) pu Ty L(Juvw| < |vw])
+ Y V) Tuy pwL(fvw| < |v])
+ ¥V pu Ty puL(Juv| < [vD1(lvw] < |v]),
Ty Ay (TY)Tw = ¥ (V) (Tuvw + puTww L(Juvw| < [vwl))
+ YV (Tuy + puTVL(Juv| < [v]) pw1(fvw] < |v]),
TuAy (IvTw) = Y (V) Ty Tvw + Y (VT Ty puL(|vw| < |v])
= Y (Vw)(Tuvw + puTww L(Juvw| < [vwl))
+ Y (Tuy + puTVL(Juv| < [v]) pu L(Jvw] < |v]),
Ay (TuT)Tw = Y V) TiwTw + Y (V) pu Ty Tw L(Juv| < |v))
= Y V) (Tuvw + TuypuwL(Juvw| < |uv]))
+ Y ru(Tvw + Typwl(fvw] < [v))L(Juv| < |v)).

Let ys be again the word length function on W. Now by collecting all previous terms,
we get

wheTo (1) = Ay (TuTuTw) + Tuly (T Tw — TuAy (T,Tw) — Ay (TuTy) Ty
= (Y (uvw) + ¥ (v) = Y (vw) — ¥ V) Ty
+ W@+ Y=y ) L(vw| < [v)= ¥ @)L (uvw| < [uv)] Ty pw
W vw)+ ¥ (V)= Y vw) L(luvw| < [vw])— ¥ W) L(uv| < V)] pu Ty
FWO + YO =¥ @) =y O)L(uv| < [VhL(vw| < [v) puTypuw
= 7Y D Tuvw + ¥ @V)(L(vw| < [v)) = L(uvw| < [uv]) Tuy pw
+Y A (luvw] < [vw]) = L(uv] < [v]) pu Tvw

[v| = [vw| +1  |uv| — |luvw| + 1
= y;//,w(V)Tuvw —{-I//(MV)( ) - B )Tuva
vw| — [uvw| + 1 v| — |uv| +1
L R R R LR W

1
= y;l//,w(v)Tuvw +§(|uvw|+ [v|— [vw[— [uv) (¥ V) Tuy pw— ¥ (V) puTvw)

1
= 4w v + 5705 W ) Ty po = ¥ (V) puTow).
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Now when uv # vw, we have by Lemma 5.2 that y,f’j, (v) = 0. When uv = vw, we
have |%y,;/’, 5 (V)| = ¥s(u) = 1. In this case, the elements ¥ and w are also conjugate and
therefore p,, = p,,. Combining these facts, we obtain the simplified formula

Wl (1) =yl ) Tave + 5 y S W@Y) =Y (D) Ty -
We will proceed under the further assumption that i is a length function.

Assumption 8.2. We shall assume from this point that the proper, conditionally of negat-
ive type function ¥: W — R is also a length function.

Using the fact that {7} }yew is an orthonormal basis for L, (N, (W), T), we obtain that
for the §5-norm of W7« Tv we have the following bound

Jwhelef, = 3 (whele (1), whel (1))

vew
1
= 2 [P + s 0P @) =y 0P pul?]
vew
1
= “V;II,wH%Z(W) + Z|‘//(“)|2PL2¢||V;/IJSD||%2(W)- (8.2)

We are then thus interested in functions i for which this bound is finite for all u, w € S.

Theorem 8.3. Let W = (S| M) be a right-angled Coxeter group and let ¢ = (¢s)ses With
qs > 0. Assume that the elements in

={r € S:3s,t € S suchthat m, s = m,; =2 and my; = oo} (8.3)

commute, i.e., I € Cliq(S | M). Suppose that  := s\ 1 satisfies Assumption 8.1. Then
the QMS on Ny (W) determined by (8.1) associated with s\ 1 is gradient-S.

Proof. We have shown already in Theorem 6.5 that for u, w € S we have that VWS\I

£>,(I"). Now if u € I, then ¥g\ r(#) = 0 and hence by (8.2),

€

Tu,Tw ||2 Ys\1 2
P s, < vuw , ||(2(W) < oo.

Ifu € §\ I, then ¥g\7(u) = 1 and therefore by Lemma 5.2 we have
¥
Y W] = 20\ 1)Ly = vw) = 2¢s )Ly = vw) = [yY3 (V).
This means that in this case y;p, SV — ,}1’ 5 € £2(T"). We conclude from (8.2) that

W 1
Tl 1%, < yuw” 17, + 1

Theorem 8.4. Let W = (S|M) be a right-angled Coxeter group, and let ¢ = (qs)ses
with qs > 0. Assume that (8.3) is contained in Cliq(S | M). Then Ny(W) satisfies AO™
and is strongly solid.

P I8 17,y < oo =
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Proof. Theorem 8.3 shows that the QMS ® on N, (W) associated with the length func-
tion g\ 7 is gradient-S; . Therefore, by Theorem 4.9 we see that a dense set of coefficients
of the associated gradient bimodule L, (N, (W), 7)v is in §,. Note that Theorem 4.9 is
stated only for groups, but a straightforward adaptation of the computations in the proof
yields the same result for Hecke algebras. Hence the gradient bimodule is quasi-contained
in the coarse bimodule of N, (W) by [16, Theorem 3.9] (see also Proposition 3.3). The
Riesz transform is then an isometry Rg: Lo (Ny; (W), v) — La(Ny (W), 7)y. The kernel
of Rg is given by the space spanned by the vectors T, with w in the (finite) group gener-
ated by I. Essentially, in the same way as in the group case (¢ = 1) one checks that ® is
filtered with subexponential growth. Therefore, by Theorem 4.7 we see that R¢ is almost
bimodular. By [17, Theorem 6.1], Cr’fq(W) is exact and hence locally reflexive [10].
We may now invoke Theorem [16, Proposition 5.2] (see also Theorem 3.11) to conclude
that N, (W) satisfies AOT. By [12, Theorem A], N, (W) satisfies the weak-* completely
bounded approximation property. Hence [29, Theorem A] (see also Theorem 3.13) shows
that N, (W) is strongly solid. |

Remark 8.5. The strong solidity result of Theorem 8.4 can also be proved by combining
the results in this paper with the methods of [13,40,41] without using condition AO™.

Remark 8.6. The set (8.3) can be understood as all elements in S that belong to exactly
one maximal clique.

9. Open problems
We list two natural problems which we believe are open.

Problem 9.1. Consider a Coxeter system W = (S|M) and ¢ = (¢s)ses With g5 > 0,
s € S such that g = g; whenever s,t € S are conjugate in W. Does the Hecke von
Neumann algebra N, (W) have the Haagerup property and/or the weak-* completely
bounded approximation property? An affirmative answer for both properties is known
incase g; = 1 forall s € S [6,25,30] orin case W = (S|M) is right-angled [12]. For all
other cases, these problems are open. In particular, we do not know in which generality
Assumption 8.1 holds for ¥ = g the (unweighted) word length function.

Problem 9.2. For a right-angled, word hyperbolic Coxeter system W = (S|M ), and for
q = (gs)ses with gs > 0 for s € S, is the von Neumann algebra N, (W) strongly solid?
The cases obtained in Theorem 8.4 are word hyperbolic but do not exhaust all word hyper-
bolic right-angled Coxeter groups. In case g = 1, s € S, the tensor product techniques
from Section 7 allows one to improve the results of Section 8 to all word hyperbolic
right-angled Coxeter groups. However, such tensor products of bimodules are unavailable
unless gs = 1, s € S by the absence of a suitable comultiplication for Hecke algebras.

Acknowledgements. The authors wish to express their gratitude to Mario Klisse for sev-
eral valuable comments and noting the connections obtained in Section 5.6.



Bimodule coefficients, Riesz transforms on Coxeter groups and strong solidity 47

Funding. M. Caspers is supported by the NWO Vidi grant ‘Non-commutative harmonic
analysis and rigidity of operator algebras’, VI.Vidi.192.018. M. Wasilewski was supported
by the Research Foundation — Flanders (FWO) through a Postdoctoral Fellowship and by
long term structural funding — Methusalem grant of the Flemish Government.

References

(1]
(2]

(3]

(4]

(5]
(6]

(7]

(8]
(9]

(10]

(11]
[12]
(13]
[14]
(15]

[16]

D. Allcock, Reflection centralizers in Coxeter groups. Transform. Groups 18 (2013), no. 3,
599-613 Zbl 1283.20042 MR 3084328

C. Anantharaman and S. Popa, An introduction to IIy factors. 2017, https://idpoisson.fr/
anantharaman/publications/ITun.pdf, visited on 13 December 2023

D. Bakry, Transformations de Riesz pour les semi-groupes symétriques. Premiere partie: Etude
de la dimension 1. In Séminaire de probabilités, XIX, 1983/84, pp. 130-144, Lecture Notes in
Math. 1123, Springer, Berlin, 1985 Zbl 0561.42010 MR 889472

D. Bakry, Etude des transformations de Riesz dans les variétés riemanniennes 2 courbure de
Ricci minorée. In Séminaire de Probabilités, XXI, pp. 137-172, Lecture Notes in Math. 1247,
Springer, Berlin, 1987 Zbl 0629.58018 MR 941980

B. Bekka, P. de la Harpe, and A. Valette, Kazhdan's property (T). New Math. Monogr. 11,
Cambridge University Press, Cambridge, 2008 Zbl 1146.22009 MR 2415834

M. Bozejko, T. Januszkiewicz, and R. J. Spatzier, Infinite Coxeter groups do not have Kazh-
dan’s property. J. Operator Theory 19 (1988), no. 1, 63—67 Zbl 0662.20040 MR 950825

M. Bozejko and R. Speicher, Completely positive maps on Coxeter groups, deformed com-
mutation relations, and operator spaces. Math. Ann. 300 (1994), no. 1, 97-120

Zbl 0819.20043 MR 1289833

N. Brady, J. P. McCammond, B. Miihlherr, and W. D. Neumann, Rigidity of Coxeter groups
and Artin groups. Geom. Dedicata 94 (2002), 91-109 Zbl 1031.20035 MR 1950875

B. Brink, On centralizers of reflections in Coxeter groups. Bull. Lond. Math. Soc. 28 (1996),
no. 5, 465-470 Zbl 0852.20033 MR 1396145

N. P. Brown and N. Ozawa, C *-algebras and finite-dimensional approximations. Grad. Stud.
Math. 88, American Mathematical Society, Providence, RI, 2008 Zbl 1160.46001

MR 2391387

P.-E. Caprace and J. Lécureux, Combinatorial and group-theoretic compactifications of build-
ings. Ann. Inst. Fourier (Grenoble) 61 (2011), no. 2, 619-672 Zbl 1266.51016 MR 2895068
M. Caspers, Absence of Cartan subalgebras for right-angled Hecke von Neumann algebras.
Anal. PDE 13 (2020), no. 1, 1-28 Zbl 1447.46047 MR 4047640

M. Caspers, Gradient forms and strong solidity of free quantum groups. Math. Ann. 379
(2021), no. 1-2, 271-324 Zbl 1467.46069 MR 4211088

M. Caspers, Riesz transforms on compact quantum groups and strong solidity. J. Inst. Math.
Jussieu 21 (2022), no. 6, 2135-2171 Zbl 1511.46047 MR 4515291

M. Caspers and P. Fima, Graph products of operator algebras. J. Noncommut. Geom. 11 (2017),
no. 1, 367-411 Zbl 1373.46055 MR 3626564

M. Caspers, Y. Isono, and M. Wasilewski, L-cohomology, derivations, and quantum Markov
semi-groups on g-Gaussian algebras. Int. Math. Res. Not. IMRN 2021 (2021), no. 9, 6405—
6441 Zbl 1493.46085 MR 4251282


https://doi.org/10.1007/s00031-013-9236-7
https://zbmath.org/?q=an:1283.20042
https://mathscinet.ams.org/mathscinet-getitem?mr=3084328
https://idpoisson.fr/anantharaman/publications/IIun.pdf
https://idpoisson.fr/anantharaman/publications/IIun.pdf
https://doi.org/10.1007/BFb0075843
https://doi.org/10.1007/BFb0075843
https://zbmath.org/?q=an:0561.42010
https://mathscinet.ams.org/mathscinet-getitem?mr=889472
https://doi.org/10.1007/BFb0077631
https://doi.org/10.1007/BFb0077631
https://zbmath.org/?q=an:0629.58018
https://mathscinet.ams.org/mathscinet-getitem?mr=941980
https://doi.org/10.1017/CBO9780511542749
https://zbmath.org/?q=an:1146.22009
https://mathscinet.ams.org/mathscinet-getitem?mr=2415834
https://zbmath.org/?q=an:0662.20040
https://mathscinet.ams.org/mathscinet-getitem?mr=950825
https://doi.org/10.1007/BF01450478
https://doi.org/10.1007/BF01450478
https://zbmath.org/?q=an:0819.20043
https://mathscinet.ams.org/mathscinet-getitem?mr=1289833
https://doi.org/10.1023/A:1020948811381
https://doi.org/10.1023/A:1020948811381
https://zbmath.org/?q=an:1031.20035
https://mathscinet.ams.org/mathscinet-getitem?mr=1950875
https://doi.org/10.1112/blms/28.5.465
https://zbmath.org/?q=an:0852.20033
https://mathscinet.ams.org/mathscinet-getitem?mr=1396145
https://doi.org/10.1090/gsm/088
https://zbmath.org/?q=an:1160.46001
https://mathscinet.ams.org/mathscinet-getitem?mr=2391387
https://doi.org/10.5802/aif.2624
https://doi.org/10.5802/aif.2624
https://zbmath.org/?q=an:1266.51016
https://mathscinet.ams.org/mathscinet-getitem?mr=2895068
https://doi.org/10.2140/apde.2020.13.1
https://zbmath.org/?q=an:1447.46047
https://mathscinet.ams.org/mathscinet-getitem?mr=4047640
https://doi.org/10.1007/s00208-020-02109-y
https://zbmath.org/?q=an:1467.46069
https://mathscinet.ams.org/mathscinet-getitem?mr=4211088
https://doi.org/10.1017/S1474748021000165
https://zbmath.org/?q=an:1511.46047
https://mathscinet.ams.org/mathscinet-getitem?mr=4515291
https://doi.org/10.4171/JNCG/11-1-9
https://zbmath.org/?q=an:1373.46055
https://mathscinet.ams.org/mathscinet-getitem?mr=3626564
https://doi.org/10.1093/imrn/rnaa044
https://doi.org/10.1093/imrn/rnaa044
https://zbmath.org/?q=an:1493.46085
https://mathscinet.ams.org/mathscinet-getitem?mr=4251282

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]
(30]

(31]

(32]
(33]
[34]
(35]

(36]

M. Borst, M. Caspers, and M. Wasilewski 48

M. Caspers, M. Klisse, and N. S. Larsen, Graph product Khintchine inequalities and Hecke
C*-algebras: Haagerup inequalities, (non)simplicity, nuclearity and exactness. J. Funct. Anal.
280 (2021), no. 1, article no. 108795 Zbl 1451.05199 MR 4156133

F. Cipriani and J.-L. Sauvageot, Derivations as square roots of Dirichlet forms. J. Funct. Anal.
201 (2003), no. 1, 78-120 Zbl 1032.46084 MR 1986156

M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of
a simple Lie group of real rank one. Invent. Math. 96 (1989), no. 3, 507-549

Zbl 0681.43012 MR 996553

M. W. Davis, The geometry and topology of Coxeter groups. London Math. Soc. Monogr. Ser.
32, Princeton University Press, Princeton, NJ, 2008 Zbl 1142.20020 MR 2360474

J. de Canniere and U. Haagerup, Multipliers of the Fourier algebras of some simple Lie groups
and their discrete subgroups. Amer. J. Math. 107 (1985), no. 2, 455-500 Zbl 0577.43002
MR 784292

E. G. Effros and Z.-J. Ruan, Operator spaces. London Math. Soc. Monogr. Ser. 23, The Clar-
endon Press, Oxford University Press, New York, 2000 Zbl 0969.46002 MR 1793753

J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann
algebras. 1. Trans. Amer. Math. Soc. 234 (1977), no. 2, 289-324 7Zbl 0369.22009

MR 578656

J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann
algebras. II. Trans. Amer. Math. Soc. 234 (1977), no. 2, 325-359 Zbl 0369.22010

MR 578730

G. Fendler, Weak amenability of Coxeter groups. 2002, arXiv:math/0203052

E. R. Green, Graph products of groups. Ph.D. thesis, 1990, University of Leeds, https://etheses.
whiterose.ac.uk/236/, visited on 13 December 2023

R. F. Gundy, Sur les transformations de Riesz pour le semi-groupe d’Ornstein—Uhlenbeck.
C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 19, 967-970 Zbl 0606.60063 MR 877182
N. Higson and E. Guentner, Group C *-algebras and K-theory. In Noncommutative geometry,
pp- 137-251, Lecture Notes in Math. 1831, Springer, Berlin, 2004 Zbl 1053.46048

MR 2058474

Y. Isono, Examples of factors which have no Cartan subalgebras. Trans. Amer. Math. Soc. 367
(2015), no. 11, 7917-7937 Zbl 1342.46056 MR 3391904

T. Januszkiewicz, For Coxeter groups 12l is a coefficient of a uniformly bounded representa-
tion. Fund. Math. 174 (2002), no. 1, 79-86 Zbl 1038.20025 MR 1925487

M. Junge, T. Mei, and J. Parcet, Noncommutative Riesz transforms — dimension free bounds
and Fourier multipliers. J. Eur. Math. Soc. (JEMS) 20 (2018), no. 3, 529-595

Zbl 1392.43002 MR 3776274

M. Klisse, Simplicity of right-angled Hecke C *-algebras. Int. Math. Res. Not. IMRN 2023
(2023), no. 8, 6598-6623 Zbl 07676533 MR 4574381

M. Klisse, Topological boundaries of connected graphs and Coxeter groups. J. Operator The-
ory 89 (2023), no. 2,429-476 Zbl 07734206 MR 4591647

T. Lam and A. Thomas, Infinite reduced words and the Tits boundary of a Coxeter group. Int.
Math. Res. Not. IMRN 2015 (2015), no. 17, 7690-7733 Zbl 1355.20029 MR 3403997

F. Lust-Piquard, Riesz transforms associated with the number operator on the Walsh system
and the fermions. J. Funct. Anal. 155 (1998), no. 1, 263-285 Zbl 0908.47027 MR 1623158
F. Lust-Piquard, Riesz transforms on deformed Fock spaces. Comm. Math. Phys. 205 (1999),
no. 3, 519-549 Zbl 0977.46044 MR 1711277


https://doi.org/10.1016/j.jfa.2020.108795
https://doi.org/10.1016/j.jfa.2020.108795
https://zbmath.org/?q=an:1451.05199
https://mathscinet.ams.org/mathscinet-getitem?mr=4156133
https://doi.org/10.1016/S0022-1236(03)00085-5
https://zbmath.org/?q=an:1032.46084
https://mathscinet.ams.org/mathscinet-getitem?mr=1986156
https://doi.org/10.1007/BF01393695
https://doi.org/10.1007/BF01393695
https://zbmath.org/?q=an:0681.43012
https://mathscinet.ams.org/mathscinet-getitem?mr=996553
https://doi.org/10.1515/9781400845941
https://zbmath.org/?q=an:1142.20020
https://mathscinet.ams.org/mathscinet-getitem?mr=2360474
https://doi.org/10.2307/2374423
https://doi.org/10.2307/2374423
https://zbmath.org/?q=an:0577.43002
https://mathscinet.ams.org/mathscinet-getitem?mr=784292
https://zbmath.org/?q=an:0969.46002
https://mathscinet.ams.org/mathscinet-getitem?mr=1793753
https://doi.org/10.2307/1997924
https://doi.org/10.2307/1997924
https://zbmath.org/?q=an:0369.22009
https://mathscinet.ams.org/mathscinet-getitem?mr=578656
https://doi.org/10.2307/1997925
https://doi.org/10.2307/1997925
https://zbmath.org/?q=an:0369.22010
https://mathscinet.ams.org/mathscinet-getitem?mr=578730
https://arxiv.org/abs/math/0203052
https://etheses.whiterose.ac.uk/236/
https://etheses.whiterose.ac.uk/236/
https://zbmath.org/?q=an:0606.60063
https://mathscinet.ams.org/mathscinet-getitem?mr=877182
https://doi.org/10.1007/978-3-540-39702-1_3
https://zbmath.org/?q=an:1053.46048
https://mathscinet.ams.org/mathscinet-getitem?mr=2058474
https://doi.org/10.1090/tran/6321
https://zbmath.org/?q=an:1342.46056
https://mathscinet.ams.org/mathscinet-getitem?mr=3391904
https://zbmath.org/?q=an:1038.20025
https://mathscinet.ams.org/mathscinet-getitem?mr=1925487
https://doi.org/10.4171/JEMS/773
https://doi.org/10.4171/JEMS/773
https://zbmath.org/?q=an:1392.43002
https://mathscinet.ams.org/mathscinet-getitem?mr=3776274
https://doi.org/10.1093/imrn/rnac036
https://zbmath.org/?q=an:07676533
https://mathscinet.ams.org/mathscinet-getitem?mr=4574381
https://doi.org/10.7900/jot.2021aug20.2348
https://zbmath.org/?q=an:07734206
https://mathscinet.ams.org/mathscinet-getitem?mr=4591647
https://doi.org/10.1093/imrn/rnu182
https://zbmath.org/?q=an:1355.20029
https://mathscinet.ams.org/mathscinet-getitem?mr=3403997
https://doi.org/10.1006/jfan.1997.3217
https://doi.org/10.1006/jfan.1997.3217
https://zbmath.org/?q=an:0908.47027
https://mathscinet.ams.org/mathscinet-getitem?mr=1623158
https://doi.org/10.1007/s002200050688
https://zbmath.org/?q=an:0977.46044
https://mathscinet.ams.org/mathscinet-getitem?mr=1711277

(37]

(38]
(39]
(40]
(41]

(42]

[43]

[44]

[45]

[46]
[47]
(48]
[49]

(50]

Bimodule coefficients, Riesz transforms on Coxeter groups and strong solidity 49

P.-A. Meyer, Transformations de Riesz pour les lois gaussiennes. In Seminar on probabil-
ity, XVIII, pp. 179-193, Lecture Notes in Math. 1059, Springer, Berlin, 1984

Zbl 0543.60078 MR 770960

N. Ozawa, Weak amenability of hyperbolic groups. Groups Geom. Dyn. 2 (2008), no. 2, 271-
280 Zbl 1147.43003 MR 2393183

N. Ozawa and S. Popa, On a class of 1 factors with at most one Cartan subalgebra. Ann. of
Math. (2) 172 (2010), no. 1, 713-749 Zbl 1201.46054 MR 2680430

N. Ozawa and S. Popa, On a class of 111 factors with at most one Cartan subalgebra, II. Amer. J.
Math. 132 (2010), no. 3, 841-866 Zbl 1213.46053 MR 2666909

J. Peterson, L2-rigidity in von Neumann algebras. Invent. Math. 175 (2009), no. 2, 417-433
Zbl 1170.46053 MR 2470111

G. Pisier, Riesz transforms: a simpler analytic proof of P.A. Meyer’s inequality. In Séminaire
de Probabilités, XXII, pp. 485-501, Lecture Notes in Math. 1321, Springer, Berlin, 1988

Zbl 0645.60061 MR 960544

G. Pisier, Introduction to operator space theory. London Math. Soc. Lecture Note Ser. 294,
Cambridge University Press, Cambridge, 2003 Zbl 1093.46001 MR 2006539

S.Popa and S. Vaes, Unique Cartan decomposition for II; factors arising from arbitrary actions
of hyperbolic groups. J. Reine Angew. Math. 694 (2014), 215-239 Zbl 1314.46078

MR 3259044

Y. Shalom, Rigidity, unitary representations of semisimple groups, and fundamental groups of
manifolds with rank one transformation group. Ann. of Math. (2) 152 (2000), no. 1, 113-182
Zbl 0970.22011 MR 1792293

T. Sinclair, Strong solidity of group factors from lattices in SO(n, 1) and SU(n, 1). J. Funct.
Anal. 260 (2011), no. 11, 3209-3221 Zbl 1232.46055 MR 2776567

S. Strétild and L. Zsidd, Lectures on von Neumann algebras. Editura Academiei, Bucharest,
1979 Zbl 0391.46048 MR 526399

M. Takesaki, Theory of operator algebras. I. Encyclopaedia Math. Sci. 124, Springer, Berlin,
2002 Zbl 0990.46034 MR 1873025

J. Tits, Buildings of spherical type and finite BN-pairs. Lecture Notes in Math. 386, Springer,
Berlin, 1974 Zbl 0295.20047 MR 470099

D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free prob-
ability theory. III. The absence of Cartan subalgebras. Geom. Funct. Anal. 6 (1996), no. 1,
172-199 Zbl 0856.60012 MR 1371236

Received 20 October 2021.

Matthijs Borst
Delft Institute of Applied Mathematics, Delft University of Technology (TU Delft), Building 36,
Mekelweg 4, 2628 CD Delft, The Netherlands; m.j.borst@outlook.com

Martijn Caspers
Delft Institute of Applied Mathematics, Delft University of Technology (TU Delft), Building 36,
Mekelweg 4, 2628 CD Delft, The Netherlands; m.p.t.caspers @tudelft.nl

Mateusz Wasilewski
Department of Mathematics, KU Leuven, Celestijnenlaan 2008, 3001 Leuven, Belgium;
mateusz.wasilewski @kuleuven.be


https://doi.org/10.1007/BFb0100043
https://zbmath.org/?q=an:0543.60078
https://mathscinet.ams.org/mathscinet-getitem?mr=770960
https://doi.org/10.4171/GGD/40
https://zbmath.org/?q=an:1147.43003
https://mathscinet.ams.org/mathscinet-getitem?mr=2393183
https://doi.org/10.4007/annals.2010.172.713
https://zbmath.org/?q=an:1201.46054
https://mathscinet.ams.org/mathscinet-getitem?mr=2680430
https://doi.org/10.1353/ajm.0.0121
https://zbmath.org/?q=an:1213.46053
https://mathscinet.ams.org/mathscinet-getitem?mr=2666909
https://doi.org/10.1007/s00222-008-0154-6
https://zbmath.org/?q=an:1170.46053
https://mathscinet.ams.org/mathscinet-getitem?mr=2470111
https://doi.org/10.1007/BFb0084154
https://zbmath.org/?q=an:0645.60061
https://mathscinet.ams.org/mathscinet-getitem?mr=960544
https://doi.org/10.1017/CBO9781107360235
https://zbmath.org/?q=an:1093.46001
https://mathscinet.ams.org/mathscinet-getitem?mr=2006539
https://doi.org/10.1515/crelle-2012-0104
https://doi.org/10.1515/crelle-2012-0104
https://zbmath.org/?q=an:1314.46078
https://mathscinet.ams.org/mathscinet-getitem?mr=3259044
https://doi.org/10.2307/2661380
https://doi.org/10.2307/2661380
https://zbmath.org/?q=an:0970.22011
https://mathscinet.ams.org/mathscinet-getitem?mr=1792293
https://doi.org/10.1016/j.jfa.2010.12.017
https://zbmath.org/?q=an:1232.46055
https://mathscinet.ams.org/mathscinet-getitem?mr=2776567
https://zbmath.org/?q=an:0391.46048
https://mathscinet.ams.org/mathscinet-getitem?mr=526399
https://doi.org/10.1007/978-1-4612-6188-9
https://zbmath.org/?q=an:0990.46034
https://mathscinet.ams.org/mathscinet-getitem?mr=1873025
https://doi.org/10.1007/978-3-540-38349-9
https://zbmath.org/?q=an:0295.20047
https://mathscinet.ams.org/mathscinet-getitem?mr=470099
https://doi.org/10.1007/BF02246772
https://doi.org/10.1007/BF02246772
https://zbmath.org/?q=an:0856.60012
https://mathscinet.ams.org/mathscinet-getitem?mr=1371236
mailto:m.j.borst@outlook.com
mailto:m.p.t.caspers@tudelft.nl
mailto:mateusz.wasilewski@kuleuven.be

	1. Introduction
	2. Preliminaries
	2.1. Von Neumann algebras
	2.2. Operator spaces
	2.3. Approximation properties
	2.4. Bimodules and containment
	2.5. Schatten classes
	2.6. Group algebras
	2.7. Hyperbolic groups
	2.8. Functions on groups
	2.9. Tensor products

	3. Coefficients of bimodules
	3.1. Coefficients and quasi-containment
	3.2. Tensoring bimodules
	3.3. The Akemann–Ostrand property AO^+ and strong solidity
	3.4. Application A: Proper cocycles into p-integrable representations

	4. Quantum Markov semi-groups, gradients and the Riesz transforms
	4.1. Quantum Markov semi-groups, the gradient bimodule and the Riesz transform
	4.2. Coefficients of the gradient bimodule
	4.3. Almost bimodularity of the Riesz transform
	4.4. Semi-groups of Fourier multipliers on group von Neumann algebras
	4.5. Almost bimodularity of the Riesz transform for length functions

	5. Characterizing gradient-\mathcal{S}_p for Coxeter groups
	5.1. Preliminaries on Coxeter groups
	5.2. Describing support of the function \gamma_{u,w}^{\psi_{S}}
	5.3. A characterization in terms of Coxeter diagrams
	5.4. Parity paths in Coxeter diagram
	5.5. Characterization of graphs that contain cyclic parity paths
	5.6. Smallness at infinity

	6. Gradient-\mathcal{S}_p semi-groups associated to weighted word lengths on Coxeter groups
	6.1. Weighted word lengths
	6.2. Gradient-\mathcal{S}_p property with respect to weighted word lengths on right-angled Coxeter groups

	7. Strong solidity for hyperbolic right-angled Coxeter groups
	8. Application B: Strong solidity of Hecke von Neumann algebras
	8.1. Definition of Hecke algebras
	8.2. Coefficients for gradient bimodules of Hecke algebras

	9. Open problems
	References

