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Abstract. We prove a Torelli-like theorem for higher-dimensional function fields, from the point
of view of “almost-abelian” anabelian geometry.
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1. Introduction

The classical Torelli Theorem, in its cohomological form, can be stated as follows:

Theorem. Let X be a smooth compact complex curve. Then the isomorphism type of X
is determined by the singular cohomology group H1.X;Z/, endowed with its canonical
polarized Hodge structure.

In this paper, we develop and prove a Torelli-like theorem for function fields of tran-
scendence degree � 2 over algebraically closed subfields of C. As expected, one must
include not only H1 (with its mixed Hodge structure), but also some additional data aris-
ing from the cup product, akin to the polarization in the theorem above. In our context, the
two-step nilpotent information, encoded as the kernel of the cup-product, turns out to be
sufficient. While the bound on the transcendence degree is necessary in our context (see
Section 1.3) our result works even with rational coefficients, in contrast to the theorem
above.

1.1. Main result

Let k be an algebraically closed field and � W k ,! C an embedding into the complex
numbers. Letƒ be any subring of Q. For a k-varietyX , considerX an WDX.C/ (computed
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via � ) endowed with the complex topology, and define the Betti cohomology of X in the
usual way as

Hi .X;ƒ/ WD Hising.X
an; ƒ/:

Following Deligne [14,15], one can endow Hi .X;ƒ/with a canonical mixed Hodge struc-
ture overƒ. We writeƒ.j / for the j -th Tate–Hodge structure overƒ, which is the unique
pure Hodge structure over ƒ with underlying module .2�i/j �ƒ which is of Hodge type
.�j;�j /. As usual, we write Hi .X;ƒ.j // WD Hi .X;ƒ/˝ƒ.j /.

Let Kjk be a function field, and X a model of Kjk, i.e. X is an integral k-variety
whose function field is K. Define

Hi .Kjk;ƒ.j // WD lim
�!
U

Hi .U;ƒ.j //;

where U varies over the nonempty open k-subvarieties ofX . We consider Hi .Kjk;ƒ.j //
as a mixed Hodge structure of possibly infinite rank. This construction does not depend
on the choice of model X of Kjk.

The cup-product in singular cohomology yields a well-defined cup-product on

H�.Kjk;ƒ.�// WD
M
i�0

Hi .Kjk;ƒ.i//;

making it into a graded-commutative ring. We write

R.Kjk;ƒ/ WD ¹.x; y/ j x; y 2 H1.Kjk;ƒ.1//; x [ y D 0º

for the set of pairs of elements of H1.Kjk;ƒ.1// whose cup-product vanishes. With this
notation and terminology, we may state our main result as follows (see Theorem 6.1 for a
precise formulation).

Theorem 1.1. In the above context, assume furthermore that trdeg.Kjk/ � 2. Then the
isomorphism type of Kjk, as fields, is determined by the following data:

(1) The mixed Hodge structure H1.Kjk;ƒ.1//.

(2) The subset R.Kjk;ƒ/ � H1.Kjk;ƒ.1// � H1.Kjk;ƒ.1//.

1.2. A comment about the proof

The proof of Theorem 1.1 combines results concerning 1-motives and their Hodge real-
izations with arguments from birational anabelian geometry. The key ingredients include
the following:

(1) The comparison of a 1-motive with its Hodge realization, due to Deligne [15]. We
will only need a simple case of this comparison which is summarized in Lemma 4.1.

(2) The construction of the Picard 1-motive of a smooth quasi-projective variety and the
calculation of its Hodge realization. This is due essentially to Serre [27], and/or the
works of Barbieri-Viale and Srinivas [6] and Ramachandran [25].



A Torelli-like theorem for higher-dimensional function fields 3

(3) Methods for reconstructing function fields over algebraically closed fields in bira-
tional anabelian geometry, which are similar to those developed by Bogomolov [7],
Bogomolov–Tschinkel [9, 10], Pop [21, 23, 24], and the author [29–31].

In addition to the above points, there are several nontrivial hurdles one must overcome,
specifically in the case where ƒ D Q, where the known “global” anabelian techniques
(e.g. from Pop [23, 24] and/or Bogomolov–Tschinkel [9, 10]) break down, as one can
no longer distinguish between the “divisible” and “nondivisible.” We overcome these
difficulties by relying on arguments surrounding the connection between algebraic depen-
dence and the cup-product, which refine some of the key ideas from [29, 31]. The local
theory developed for the usual Galois-theoretical contexts in [8, 22, 28, 30] must also be
modified appropriately, and this is handled in Appendix A.

As we see it, the primary novelty of this work comes from the fact that it applies
anabelian techniques in a purely motivic setting, a combination that seems to be new. In
fact, the object H�.Kjk; ƒ.1// behaves quite similarly to the Galois cohomology of K
in several ways, and this point of view plays a motivating role throughout the paper. For
example:

(1) There is a Kummer map K� ! H1.Kjk;ƒ.1// whose kernel is k�.

(2) There are residue maps associated to divisorial valuations of Kjk.

(3) The cohomological dimension agrees with the transcendence degree of Kjk.

These properties, among others, are discussed in Sections 2 and 3. The interaction
between Kummer theory and the mixed Hodge structure of H1.Kjk; ƒ.1// also plays
a crucial role in the proof of our main result, as discussed in Sections 6.1 and 6.2.

1.3. A comment about the one-dimensional case

The assumption that trdeg.Kjk/ � 2 in Theorem 1.1 arises from a similar assumption
appearing in Theorem 5.1, which is the primary anabelian result used in the proof of
our main theorem. There are a few key points in the proof of Theorem 5.1 where this
assumption is used in a fundamental way:

(1) In the local theory, this assumption is used in the process of detecting valuations from
the given data. See Proposition A.6 in particular.

(2) The proof has two key synchronization steps, both of which rely on this assumption.
The first occurs in Proposition 5.7 whose proof relies on the local theory. And the
second occurs in Proposition 5.8, which uses this assumption along with a birational
Bertini result (Fact 5.4) to obtain an abundance of so-called general elements.

(3) This assumption is used in the final collineation step of the proof of Theorem 5.1
before applying the fundamental theorem of projective geometry [4, 18]. See Propo-
sition 5.9.

If trdeg.Kjk/ D 1 and X denotes the smooth proper model of Kjk, then the set
R.Kjk; ƒ/ appearing in Theorem 1.1 is simply H1.Kjk; ƒ.1//2, due to cohomologi-
cal dimension reasons (see Fact 3.1). Thus, the data appearing in Theorem 1.1 reduces to
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the mixed Hodge structure H1.Kjk; ƒ.1// alone. In this case, the genus g of X can be
easily recovered from H1.Kjk;ƒ.1//, for example, since its smallest weight portion has
rank 2g.

In the case where g � 2, one can use the work of Zilber [33] along with some of the
arguments below to see that the isomorphism type of X is determined by H1.Kjk;Z.1//
along with the collection of kernels of the residue maps @v W H1.Kjk;Z.1//! Z asso-
ciated to the divisorial valuations v of Kjk. However, it is currently unclear whether the
same holds with more general coefficient rings. In any case, such a datum is best viewed
within the framework of cycle modules in the sense of Rost [26]. The implications of
Zilber’s work [33] and the results of the present paper in such a context will be investi-
gated in future work.

2. Cohomology

Throughout the paper, we work with a fixed algebraically closed field k endowed with
an embedding � W k ,! C, and a subring ƒ of Q which will be fixed as our coefficient
ring. By a k-variety we mean a separated scheme of finite type over k, and morphisms of
k-varieties are morphisms over Spec k.

Given a k-variety X , write X an WD X.C/, computed via � , and endowed with the
complex topology. We will work with Betti cohomology (with respect to � ) defined in the
usual way as the singular cohomology of X an:

Hi .X;ƒ/ WD Hising.X
an; ƒ/:

This is aƒ-module which is canonically endowed with a mixed Hodge structure [14, 15].
We write Hi .X; ƒ.j // WD Hi .X; ƒ/˝ ƒ.j / for its j -th Tate twist. Of course, the con-
struction of Hi .X; ƒ.j // depends on the choice of � , but we will exclude it from the
notation while ensuring it is understood from context.

2.1. Models

LetK be a function field over k. By a model ofKjk, we mean an integral quasi-projective
k-variety whose function field is K. Given such a model, we define

Hi .Kjk;ƒ.j // WD lim
�!
U

Hi .U;ƒ.j //;

where U varies over the nonempty open k-subvarieties of X , considered as a (possibly
infinite-rank) mixed Hodge structure over ƒ. The cup-product in singular cohomology
yields a natural cup-product:

[ W Hi .Kjk;ƒ.j //˝ƒ Hi
0

.Kjk;ƒ.j 0//! HiCi
0

.Kjk;ƒ.j C j 0//

which makes H�.Kjk; ƒ.�// WD
L
i�0 Hi .Kjk; ƒ.i// into a graded-commutative ƒ-

algebra.
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For a smooth modelX ofKjk and nonempty open k-subvarietyU ofX , the morphism

H1.X;ƒ.1//! H1.U;ƒ.1//;

induced by the inclusion U ,! X , is known to be injective. Thus the structure map
H1.X; ƒ.1//! H1.Kjk; ƒ.1// is injective as well. In other words, the underlying ƒ-
module of H1.Kjk;ƒ.1// can be considered as an inductive union of H1.U;ƒ.1// as U
varies over the smooth models ofKjk. We will tacitly identify H1.U;ƒ.1//with its image
in H1.Kjk;ƒ.1// whenever U is such a smooth model of Kjk.

2.2. Functoriality

Let � W L ,! K be a k-embedding of function fields over k. By a model of �, we mean a
dominant morphism f W X ! Y where X is a model of Kjk and Y is a model of Ljk
which induces � on the level of function fields. Given such a model f W X ! Y of �, we
obtain a canonical map

�� W Hi .Ljk;ƒ.j // D lim
�!
U

Hi .U;ƒ.j //
f �

��! lim
�!
U

Hi .f �1.U /;ƒ.j //! Hi .Kjk;ƒ.j //;

where U varies over the nonempty open k-subvarieties of Y . This morphism does not
depend on the choice of model f , and this construction makes Hi .Kjk; ƒ.j // (covari-
antly) functorial in K with respect to k-embeddings.

2.3. Kummer theory

It is well-known that H1.Gm; ƒ.1// D ƒ.0/ as mixed Hodge structures. Let Kjk be a
function field and f 2K� be given. LetX be a model ofKjk andU an open k-subvariety
of X such that f 2 O�.U /. Then f corresponds to a morphism f W U ! Gm, and hence
induces a canonical map of ƒ-modules

ƒ D H1.Gm; ƒ.1//
f �

��! H1.U;ƒ.1//! H1.Kjk;ƒ.1//:

We write �U .f / for the image of 1 2 ƒ in H1.U;ƒ.1// with respect to this map.
It is a straightforward consequence of the Künneth formula that the corresponding

map
�U W O

�.U /! H1.U;ƒ.1//

is a homomorphism of abelian groups. Indeed, suppose we are given a pair of functions
f; g 2 O�.U /. The morphism U ! Gm associated to the product f � g factors as

U
.f;g/
���! Gm �Gm

�
�! Gm;

where � is multiplication in Gm. Thus, the corresponding map on H1.�;ƒ.1// factors as
follows:

H1.Gm; ƒ.1//! H1.Gm �Gm; ƒ.1//! H1.U;ƒ.1//:
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On the other hand, the Künneth formula yields an isomorphism

H1.Gm; ƒ.1//˚ H1.Gm; ƒ.1// Š H1.Gm �Gm; ƒ.1//;

which is the sum of the maps associated to the two projections Gm � Gm ! Gm. From
this it follows that the induced map

H1.Gm; ƒ.1//˚ H1.Gm; ƒ.1// Š H1.Gm �Gm; ƒ.1//! H1.U;ƒ.1//

is the sum of the maps H1.Gm; ƒ.1// ! H1.U; ƒ.1// associated to f and g. Tracing
through all the definitions, it follows that indeed �U .f � g/ D �U .f /C �U .g/.

As any element of K� is contained in O�.U / for any sufficiently small U as above,
we obtain a map

�K W K
�
! H1.Kjk;ƒ.1//

by taking the colimit of the maps �U . This map �K is therefore also a morphism of abelian
groups. It is a straightforward consequence of the definitions that k� is contained in the
kernels of �U and �K .

Throughout the paper we will write Kƒ.Kjk/ WD .K
�=k�/˝Z ƒ. For t 2 K�, we

write xt for the image of t in Kƒ.Kjk/. We will always use additive notation for the ƒ-
module Kƒ.Kjk/, while K�=k� will be written multiplicatively. The assignment K 7!
Kƒ.Kjk/ is clearly functorial in K with respect to k-embeddings. For a k-embedding
� W L ,! K, we will write �� WKƒ.Ljk/!Kƒ.Kjk/ for the corresponding morphism of
ƒ-modules. The map �K defined above induces a morphism of ƒ-modules

�ƒK W Kƒ.Kjk/! H1.Kjk;ƒ.1//;

which is natural in K with respect to k-embeddings.
The maps �U and �K may be seen as analogues of the usual Kummer map in étale

cohomology. To see this, suppose that f 2O�.U / is given, considered also as a morphism
f W U ! Gm. We have a commutative diagram

O�.Gm/ H0ét.Gm;O
�/ H1ét.Gm; �n/

O�.U / H0ét.U;O
�/ H1ét.U; �n/

The horizontal maps are the usual Kummer maps in étale cohomology, obtained from the
exact sequence of étale sheaves

1! �n ! O�
z 7!zn

����! O� ! 1;

while the vertical maps are induced by f W U ! Gm. If we write Gm D SpeckŒt˙1�, then
the image of t 2 O�.Gm/ in H1ét.Gm; �n/ D Z=n agrees with the generator 1 2 Z=n,
while its image in O�.U / agrees with f .

The relationship between �U and �K and the usual Kummer maps in étale cohomol-
ogy arises from Artin’s comparison isomorphism between singular and étale cohomology
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for smooth k-varieties [5, exp. XI]. Consider, for U a smooth open k-subvariety of X ,
the morphism H1.U;Z.1// ! H1ét.U; �n/ which is obtained by composing the natural
map H1.U;Z.1//! H1sing.U

an; �n/ with the comparison isomorphism H1sing.U
an; �n/ Š

H1ét.U;�n/. This map is natural in U , and thus, by passing to the colimit, we also obtain a
natural map H1.Kjk;Z.1//! H1ét.K;�n/. The discussion above shows that the maps �U
and �K are compatible with the usual Kummer maps to étale cohomology with respect to
these morphisms, in the sense that the following two diagrams commute:

O�.U / H1.U;Z.1//

H1ét.U; �n/

�U

Kummer
Artin

K� H1.Kjk;Z.1//

H1ét.K;�n/

�K

Kummer Artin

Here the maps labeled “Kummer” are the usual Kummer maps, and those labeled “Artin”
are the ones obtained from Artin’s comparison isomorphism as described above. In any
case, we are thus justified in henceforth using the name “Kummer map” for both �U
and �K .

2.4. Milnor K-theory

The Milnor K-ring of K is the graded-commutative ring which is denoted and defined as
follows:

KM
� .K/ WD

T�.K�/
hx ˝ .1 � x/ j x 2 K X ¹0; 1ºi

:

Here T�.K�/ denotes the (graded) tensor algebra of K�, considered as an abelian group.
It is customary to write ¹f1; : : : ; fnº 2 KM

n .K/ for the product of f1; : : : ; fn 2 K� D
KM
1 .K/ in this ring.

Since H2.P1 X ¹0; 1;1º;ƒ.2//D 0, by functoriality we have �K.t/[ �K.1� t /D 0
in H2.Kjk; ƒ.2// for all t 2 K X ¹0; 1º. Hence the universal property of KM

� .K/ shows
that �K extends to a morphism of graded-commutative rings

��K W K
M
� .K/! H�.Kjk;ƒ.�//:

The r-th component of this map, denoted �rK W KM
r .K/ ! Hr .Kjk; ƒ.r//, is uniquely

determined by the rule �rK¹f1; : : : ; frº WD �K.f1/ [ � � � [ �K.fr / for f1; : : : ; fr 2 K�.

2.5. Residues

Suppose thatX is a smooth k-variety andZ is a smooth closed k-subvariety ofX which is
pure of codimension 1. PutU WDX XZ. Recall that one has a so-called residue morphism
associated to .X;Z/:

@X;Z W HiC1.U;ƒ.j C 1//! Hi .Z;ƒ.j //:

The following fact seems to be well-known. For a purely algebraic proof of this assertion,
which works with any suitable cohomology theory, we refer the reader to [13, Proposi-
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tion 2.6.5] and the surrounding discussion. In the statement of Fact 2.1 and the rest of the
paper, the word “fibre” will refer to the scheme-theoretic fibre.

Fact 2.1. In the above context, assume furthermore that f W X ! A1 is a morphism
of k-varieties such that Z is the fibre of f above 0. Consider its restriction f W U !
Gm and the associated function f 2 O�.U /. Let ˛ 2 Hi .X; ƒ.j // be given, and write
˛jU for its image in Hi .U; ƒ.j // and ˛jZ for its image in Hi .Z; ƒ.j //. Then one has
@X;Z.�U .f / [ ˛jU / D ˛jZ .

2.6. Divisorial valuations

Suppose that v is a divisorial valuation ofKjk, i.e. v arises from a prime divisor on some
model of Kjk. Equivalently, v satisfies the following properties:

(1) The value group vK of v is isomorphic (as an ordered abelian group) to Z. Since k is
algebraically closed, this automatically implies that v is trivial on k.

(2) The residue fieldKv of v is finitely-generated over k, and it has transcendence degree
trdeg.Kjk/ � 1 over k.

In addition to the notations vK for the value group and Kv for the residue field, we will
write Ov for the valuation ring, mv for the valuation ideal, Uv WD O�v for the v-units and
U1v WD 1Cmv for the principal v-units.

Let X be a model of Kjk. We say that X is a v-model provided that the following
conditions hold true:

(1) The valuation v has a (necessarily unique) centre �v on X .

(2) The centre �v is a regular codimension 1 point in X .

Given a v-model X of Kjk with v-centre �v , we write Xv for the closure of �v in X . An
open k-subvariety of X will be called v-open provided that �v 2 U , or equivalently that
U \ Xv is dense in Xv . Note that any v-open k-subvariety U of a v-model X of Kjk is
again a v-model, and one has U \Xv D Uv . If X is any v-model of Kjk, we define

Hi .Ovjk;ƒ.j // WD lim
�!
U

Hi .U;ƒ.j //;

where U varies over the v-open k-subvarieties of X . This clearly does not depend on the
choice of v-model X .

2.7. Residues for divisorial valuations

Let v be a divisorial valuation of Kjk and X a v-model of Kjk. The restriction maps

Hi .X;ƒ.j //! Hi .X XXv; ƒ.j //; Hi .X;ƒ.j //! Hi .Xv; ƒ.j //

are compatible with passage to v-open k-subvarieties of X . Passing to the colimit over
the v-open k-subvarieties of X , we obtain canonical maps

uv W Hi .Ovjk;ƒ.j //! Hi .Kjk;ƒ.j //; sv W Hi .Ovjk;ƒ.j //! Hi .Kvjk;ƒ.j //:
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Similarly, the residue maps @X;Xv are compatible with passage to v-open k-subvarieties
of X , and, passing to the colimit, we thereby obtain a residue map associated to v:

@v W HiC1.Kjk;ƒ.j C 1//! Hi .Kvjk;ƒ.j //:

Fact 2.1 then translates, in this birational context, to the following.

Fact 2.2. Let v be a divisorial valuation of Kjk and $ 2 K� a uniformizer of v. Let
˛ 2 Hi .Ovjk;ƒ.j // be given. Then

@v.�K.$/ [ uv˛/ D sv˛ as elements of Hi .Kvjk;ƒ.j //.

Proof. This follows from Fact 2.1 since we can find some v-model X of Kjk such that
$ 2 O.X/ and Xv is the zero-locus of $ .

To put Fact 2.2 in the right perspective, recall the existence of the tame symbol in
Milnor K-theory associated to a divisorial valuation v of Kjk. This is a morphism

@v W KM
rC1.K/! KM

r .Kv/

which is uniquely characterized by the formula

@v¹$;u1; : : : ; urº D ¹xu1; : : : ; xurº;

where $ is a uniformizer of v, u1; : : : ; ur 2 Uv , and xui denotes the image of ui in Kv�.
The residue maps described above are compatible with these tame symbols in the sense
that the following diagram commutes:

KM
rC1.K/ KM

r .Kv/

HrC1.Kjk;ƒ.r C 1// Hr .Kvjk;ƒ.r//

@v

�
rC1
K

�r
Kv

@v

(2.1)

3. Algebraic dependence

In this section we discuss the relationship between the cohomological structures described
above and algebraic (in)dependence in function fields. Throughout this section we work
with a fixed function field Kjk.

3.1. Cohomological dimension

Recall that the Andreotti–Frankel Theorem [2] combined with the universal coefficient
theorem shows that Hi .X;ƒ.j // D 0 whenever X is a smooth affine k-variety of dimen-
sion smaller than i . We immediately obtain the following consequence.

Fact 3.1. One has Hi .Kjk;ƒ.j // D 0 for all i > trdeg.Kjk/.
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This bound on the cohomological dimension of Kjk is sharp, as the following lemma
shows.

Lemma 3.2. Let f1; : : : ; fr 2 K� be given. The following are equivalent:

(1) The element �rK¹f1; : : : ; frº 2 Hr .Kjk;ƒ.r// vanishes.

(2) The element �rK¹f1; : : : ; frº 2 Hr .Kjk;ƒ.r// is ƒ-torsion.

(3) The elements f1; : : : ; fr 2 K� are algebraically dependent over k.

Proof. The implication .3/).1/ follows from Fact 3.1, while .1/).2/ is tautological.
To conclude, assume that f1; : : : ; fr 2 K� are algebraically independent over k. We will
show that �rK¹f1; : : : ; frº is non-ƒ-torsion in Hr .Kjk; ƒ.r//. We proceed by induction
on r with r D 0 being trivial. For the inductive case, choose a divisorial valuation v of
Kjk which has the following properties:

(1) v.f1/ ¤ 0 D v.f2/ D � � � D v.fr /.

(2) Letting xfi , i D 2; : : : ; r , denote the image of fi in Kv, the elements xf2; : : : ; xfr are
algebraically independent in Kvjk.

We then have
@v.�

r
K¹f1; : : : ; frº/ D v.f1/ � �

r�1
Kv ¹

xf2; : : : ; xfrº:

Sinceƒ is a subring of Q, this element is non-ƒ-torsion by our inductive hypothesis, and
thus the same holds for �rK¹f1; : : : ; frº.

3.2. Good models

Let Kjk be a function field and L a subextension of Kjk which is relatively algebraically
closed in K. We say that a model X ! B of � W L ,! K is good provided that:

(1) The k-varieties X , B and the morphism X ! B are all smooth.

(2) The fibres of X ! B are all geometrically integral.

(3) The induced map X an ! Ban on topological spaces is a fibre bundle.

Clearly, if f W X ! B is a good model, and U is a nonempty k-open subvariety in B ,
then the restriction f �1.U /! U is again good.

The good models of � W L ,! K are cofinal among all models. Indeed, if f W X ! B

is any model of �, then f has generically geometrically integral fibres because L was
assumed to be relatively algebraically closed in K. Hence the models of � satisfying (1)
and (2) above are cofinal among all models. Moreover, if f W X ! B is any model of �
satisfying (1) and (2), then there exists a nonempty open k-subvariety U of B such that
the restriction f �1.U /! U is a good model (see [32, Corollaire 5.1]).

3.3. Geometric submodules

Let L be a subextension of Kjk which is algebraically closed in K. In this subsection we
study the map induced by the inclusion L ,! K on H1.
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Lemma 3.3. Let L be a subextension of Kjk which is relatively algebraically closed
in K. Then the canonical map

H1.Ljk;ƒ.1//! H1.Kjk;ƒ.1//

is injective.

Proof. Suppose ˛ is in the kernel of this map, and letX ! B be a good model ofL ,!K

such that ˛ 2 H1.B;ƒ.1//. Since X an ! Ban is a fibre bundle, the map

H1.B;ƒ.1//! H1.X;ƒ.1//

is injective. Since X is smooth, the map H1.X; ƒ.1//! H1.Kjk; ƒ.1// is injective as
well. Hence ˛ D 0.

Proposition 3.4. Let L be a subextension of Kjk which is relatively algebraically closed
in K and let ˛ 2 H1.Kjk;ƒ.1// be given. Assume that ˛ is not contained in the image of
the injective map

H1.Ljk;ƒ.1//! H1.Kjk;ƒ.1//:

Then there exists a smooth model B of Ljk such that for all closed points b 2 B and all
systems of regular parameters .f1; : : : ; fr / of OB;b , the element �rK¹f1; : : : ; frº [ ˛ is
non-ƒ-torsion .in particular, nontrivial/ in HrC1.Kjk;ƒ.r C 1//.

Proof. Choose a good model f W X ! B of L ,! K with ˛ 2 H1.X;ƒ.1//. Since L is
assumed to be a subfield of K, we will consider elements of L both as rational functions
on B and as rational functions on X .

Let b 2 B be a closed point and f1; : : : ; fr a system of regular parameters at b 2 B .
Let � denote the generic point ofZ WD f �1.b/, and note that f1; : : : ; fr , when considered
as rational functions on X , are also a system of regular parameters at � 2 X . Replacing
X resp. B with a sufficiently small neighborhood of � resp. b, we may also assume that
the following conditions hold true:

(1) One has f1; : : : ; fr 2 O.B/, ¹bº is the zero-locus of .f1; : : : ; fr / in B , and Z is the
zero-locus of .f1; : : : ; fr / in X . Let Wi denote the zero-locus of .f1; : : : ; fi / in B
and Zi the zero-locus of .f1; : : : ; fi / in X . Put W0 WD B and Z0 WD X .

(2) B DW0 ©W1 © � � �©Wr D ¹bº is a flag of smooth integral closed subvarieties with
WiC1 having codimension 1 in Wi .

(3) X D Z0 © Z1 © � � � © Zr D Z is a flag of smooth integral closed subvarieties with
ZiC1 having codimension 1 in Zi .

(4) For all i D 0; : : : ; r � 1, the function fiC1 is a regular parameter for the generic point
of WiC1 in Wi , and similarly for the generic point of ZiC1 in Zi .

Put ZrC1 D ¿ and, for i D 1; : : : ; r , let @i denote the composition

HsC1.Zi�1 XZi ; ƒ.s C 1//
@Zi�1;Zi
������! Hs.Zi ; ƒ.s//

restriction
�����! Hs.Zi XZiC1; ƒ.s//;
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where s D 1C r � i . Applying Fact 2.1 successively r times, we find

.@r ı @r�1 ı � � � ı @1/.�Z0XZ1.f1/ [ � � � [ �Zr�1XZr .fr / [ ˛/ D ˇ;

where ˇ denotes the image of ˛ in H1.Z;ƒ.1//. This map to H1.Z;ƒ.1// fits in an exact
sequence of the form

0! H1.B;ƒ.1//! H1.X;ƒ.1//! H1.Z;ƒ.1//

since X an ! Ban is a fibre bundle. Passing to the colimit over good models of L ,! K,
we obtain a similar exact sequence

0! H1.Ljk;ƒ.1//! H1.Kjk;ƒ.1//! H1.k.Z/jk;ƒ.1//:

Writing vi for the divisorial valuation on k.Zi�1/ associated to Zi , the above calculation
shows that

.@vr ı � � � ı @v1/.�
r
K¹f1; : : : ; frº [ ˛/

agrees with the image of ˛ in H1.k.Z/jk;ƒ.1//. The assertion follows since this element
is nontrivial, and H1.k.Z/jk;ƒ.1// is torsion-free.

4. Picard 1-motives

Recall that a 1-motive over k consists of the following data:

(1) A semiabelian k-variety G.

(2) A finitely-generated free abelian group L.

(3) A morphism L! G.k/.
This data is summarized as a complex ŒL ! G� of group schemes over k where L is
placed in degree 0 and G in degree 1. A morphism of 1-motives is simply a morphism
of such complexes. The set of morphisms Homk.M1;M2/ between two 1-motives over k
naturally forms an abelian group.

4.1. Hodge realizations

Let M D ŒL! G� be a 1-motive over k. The Hodge realization of M, denoted H.M/, is
constructed as follows (see [15, Section 10]). First, consider the exponential sequence

0! H1.Gan;Z/! Lie Gan
! Gan

! 0:

Pull back this sequence with respect to the map L! G.k/ ,! Gan to obtain H.M/ which
then fits in an exact sequence of the form

0! H1.Gan;Z/! H.M/! L! 0: (4.1)

The mixed Hodge structure of H.M/ is the unique one making the exact sequence
above compatible with the usual mixed Hodge structure on H1.Gan;Z/, the trivial Hodge
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structure on L, where F0.H.M/˝C/ is the kernel of the induced map

H.M/˝Z C ! Lie Gan

obtained from the construction of H.M/.
Given any 1-motive M D ŒL! G�, we may consider L as the 1-motive ŒL! 0� and

G as the 1-motive Œ0! G�. These fit into an exact sequence (of complexes) of the form

0! G!M! L! 0: (4.2)

Furthermore, one has LD H.L/ and H1.Gan;Z/D H.G/ with their natural mixed Hodge
structures, while (4.1) can thus be considered as the exact sequence of mixed Hodge
structures

0! H.G/! H.M/! H.L/! 0 (4.3)

obtained from (4.2) by applying the Hodge realization functor H.�/.
We need the following lemma, which is the simplest case of Deligne’s much more

general result [15, Section 10.1.3].

Lemma 4.1. Let MD ŒL! A� be a 1-motive over k with A an abelian variety. Consider
the 1-motive Z WD ŒZ! 0�. Then the trivial Hodge structure Z is isomorphic to H.Z/,
and H.�/ induces an isomorphism Homk.Z;M/ Š HomMHS.Z;H.M//.

Proof. The fact that Z (as a mixed Hodge structure) agrees with H.Z/ follows directly
from the definitions. As above, we view A and L as the 1-motives Œ0! A� and ŒL! 0�

respectively. We have an exact sequence of 1-motives,

0! A!M! L! 0;

and a corresponding exact sequence of Hodge realizations:

0! H.A/! H.M/! H.L/! 0:

Note H.A/ D H1.Aan;Z/ and H.L/ D L.
The lemma is easily verified in the case where M D A or M D L. Indeed, the theory

of weights ensures HomMHS.Z;H.A// D 0, while Homk.Z;A/ D 0 by definition. On the
other hand, Homk.Z;L/ D L while HomMHS.Z;L/ D L and the map in question is the
obvious isomorphism.

Consider the following commutative diagram of abelian groups with exact rows:

0 Homk.Z;M/ Homk.Z;L/ Extk.Z;A/

0 HomMHS.Z;H.M// HomMHS.Z;H.L// ExtMHS.Z;H.A//

ık

Š

ıMHS

Exactness on the left follows from the above observation that the groups Homk.Z;A/ and
HomMHS.Z;H.A// are both trivial. The group Extk.Z;A/ at the top-right is the abelian
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group of extensions of Z by A, with respect to the Baer sum, in the category of 1-motives
over k. Similarly, ExtMHS.Z;H.A// is the group of extensions of Z by H.A/, again with
respect to the Baer sum, in the category of mixed Hodge structures. The vertical maps are
all induced by the functor H. The map ık sends a morphism f W Z! L to the pullback
of

0! A!M! L! 0

with respect to f . The map ıMHS can be defined similarly.
As noted in the diagram above, the map Homk.Z; L/ ! HomMHS.Z;H.L// is an

isomorphism. A simple diagram chase shows it is enough to prove that the map

Extk.Z;A/! ExtMHS.Z;H.A//

induced by H.�/ is injective. Note that Extk.Z;A/ D A.k/, merely as a consequence
of the definitions. Also, it is well-known that ExtMHS.Z;H.A// D Aan (see [12]), and
the corresponding map from A.k/ to Aan D A.C/ is the usual (injective) inclusion. This
concludes the proof of the lemma.

4.2. Picard 1-motives

Let X be a smooth projective integral k-variety, and U a nonempty open k-subvariety
ofX . PutZ WDX XU . Consider Div0.X/, the group of algebraically trivial Weil divisors
on X , as well as the subgroup Div0Z.X/ of algebraically trivial Weil divisors on X which
are supported on Z. Note Div0Z.X/ is a finitely-generated free abelian group.

Next, consider the Picard variety Pic0X of X . This is an abelian k-variety, and we have
a canonical morphism

Div0Z.X/ ,! Div0.X/! Pic0.X/ D Pic0X .k/;

mapping a Weil divisor to its associated line bundle. We thereby obtain the so-called
Picard 1-motive of U (associated to the inclusion U ,! X ):

M1;1.U / WD ŒDiv0Z.X/! Pic0X �:

Whenever V � U is a nonempty open k-subvariety, we obtain a canonical morphism

M1;1.U /!M1;1.V /

of 1-motives over k, which simply arises from the inclusion Div0XXU .X/ ,! Div0XXV .X/.
The following theorem, due to Barbieri-Viale and Srinivas [6] and Ramachandran [25],

describes the Hodge realization of such Picard 1-motives.

Theorem 4.2 ([6, Theorem 4.7], [25, Theorem 2.5]). In the above context, there is a
canonical isomorphism of mixed Hodge structures H.M1;1.U // Š H1.U;Z.1// which is
functorial with respect to open embeddings V ,! U of open k-subvarieties of X .



A Torelli-like theorem for higher-dimensional function fields 15

5. An anabelian result

In this section, we discuss an anabelian result from which we will eventually deduce our
main theorem. Writeƒ¤0 for the set of nonzero elements ofƒ. Sinceƒ is a subring of Q,
we see that for every x 2 Kƒ.Kjk/, there exists some t 2 K� such that xt 2 ƒ¤0 � x.
Given two elements x; y 2 Kƒ.Kjk/ and elements u; v 2 K� such that xu 2 ƒ¤0 � x
and xv 2 ƒ¤0 � y, we say that x; y are (in)dependent provided that u; v are algebraically
(in)dependent over k. It is easy to see that this definition does not depend on the choice
of u; v as above, and that x; y are dependent if and only if they are not independent (this
again relies on the assumption that ƒ � Q).

For a subextension M of Kjk, the canonical map

Kƒ.M jk/! Kƒ.Kjk/

is injective since ƒ is flat over Z. We will tacitly identify Kƒ.M jk/ with its image in
Kƒ.Kjk/ with respect to this inclusion. For a subset S of K, we write

aclK.S/ WD k.S/ \K

for the relative algebraic closure of k.S/ in K. We say that a submodule K of Kƒ.Kjk/

is rational if there exists some t 2K X k such that aclK.t/D k.t/ and K DKƒ.k.t/jk/.
Next suppose that Ljl is a further function field over an algebraically closed field l of

characteristic 0, and let
� W Kƒ.Kjk/ Š Kƒ.Ljl/

be an isomorphism of ƒ-modules. We say that:

(1) � is compatible with dependence provided that for all x; y 2Kƒ.Kjk/, the pair x; y
is dependent in Kƒ.Kjk/ if and only if the pair �x; �y is dependent in Kƒ.Ljl/.

(2) � is compatible with rational submodules provided that � induces a bijection between
the rational submodules of Kƒ.Kjk/ and the rational submodules of Kƒ.Ljl/.

The collection of all isomorphisms Kƒ.Kjk/ Š Kƒ.Ljl/ which are compatible with
dependence and with rational submodules will be denoted by

Isomdep
rat .Kƒ.Kjk/;Kƒ.Ljl//:

Note that for any � 2 Isomdep
rat .Kƒ.Kjk/;Kƒ.Ljl// and " 2 ƒ�, the corresponding iso-

morphism " � � is again compatible with dependence and with rational submodules. We
thus obtain an action ofƒ� on Isomdep

rat .Kƒ.Kjk/;Kƒ.Ljl//, and we denote its orbits by

Isomdep
rat .Kƒ.Kjk/;Kƒ.Ljl//:

Any isomorphism of fields K Š L restricts to an isomorphism k Š l , hence we obtain a
canonical map

Isom.K;L/! Isomdep
rat .Kƒ.Kjk/;Kƒ.Ljl//� Isomdep

rat .Kƒ.Kjk/;Kƒ.Ljl//;

which is the focus of the following main result of this section.
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Theorem 5.1. In the above context, assume furthermore that trdeg.Kjk/ � 2. Then the
canonical map

Isom.K;L/! Isomdep
rat .Kƒ.Kjk/;Kƒ.Ljl//

is a bijection.

We stated Theorem 5.1 as a theorem because it may be of independent interest. How-
ever, it can be deduced from known results in the literature in certain special cases.
For example, if ƒ D Z, this theorem follows from the main results of Bogomolov–
Tschinkel [10] and/or Cadoret–Pirutka [11]. If ƒ is a proper subring of Q, then this
theorem can be deduced from the work of Pop [24]. And finally, if trdeg.Kjk/ � 5,
then one can deduce this result from the work of Evans–Hrushovski [16, 17] and Gis-
matullin [19], along with arguments similar to the ones appearing below. Moreover, in all
of these cases the condition of compatibility with rational submodules can be removed.

In this respect, the most interesting case of Theorem 5.1 is where ƒ D Q, and where
one considers function fields of transcendence degree � 2. In such cases, we do not know
of a straightforward way to deduce this result from what has appeared in the literature.
Moreover, it is currently unclear whether the condition of compatibility with rational sub-
modules in Theorem 5.1 can be relaxed when ƒ D Q.

The rest of this section is devoted to proving Theorem 5.1, and the bulk of the proof
is devoted to constructing a (functorial) left inverse of the map appearing in its statement.
For the rest of this section, we put ourselves in the context of Theorem 5.1 and fix an
element � 2 Isomdep

rat .Kƒ.Kjk/;Kƒ.Ljl//.

5.1. Divisorial valuations

For a divisorial valuation v of Kjk, we write

Uv WD image..Uv=k�/˝Z ƒ! Kƒ.Kjk//;

U 1
v WD image..U1v � k

�=k�/˝Z ƒ! Kƒ.Kjk//:

The maps in the formulas above are the ones induced by the inclusions Uv ,! K� and
U1v ,!K�, respectively. Note that U 1

v �Uv �Kƒ.Kjk/, and that the map Uv! .Kv/�

induces an isomorphism Uv=U 1
v Š Kƒ.Kvjk/.

We will need to use a variant of the local theory from almost-abelian anabelian geom-
etry in order to show the compatibility of � with divisorial valuations. Such local theories
have been extensively developed; see [8, 22, 28, 30] for instance. However, the precise
statement we need in our context has not appeared in the literature. For the sake of com-
pleteness, we provide the details for the local theory needed here in an appendix to this
paper. We summarize the precise result we need in the following fact, which follows
directly from Theorem A.1 in the appendix.

Fact 5.2. In the above context, for all divisorial valuations v ofKjk, there exists a unique
divisorial valuation v� of Ljl such that �.Uv/ D Uv� and �.U 1

v / D U 1
v�

.
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5.2. Rational submodules

For t 2 K X k, put
Kt WD Kƒ.aclK.t/jk/

considered as a submodule of Kƒ.Kjk/.

Lemma 5.3. A submodule K of Kƒ.Kjk/ has the form Kt for some t 2 K X k if and
only if it satisfies the following conditions:

(1) The submodule K is nontrivial.

(2) For all nontrivial ˛ 2 K and ˇ 2 Kƒ.Kjk/ dependent with ˛, one has ˇ 2 K .

(3) Any two elements ˛; ˇ 2 K are dependent.

Proof. It is easy to see that the three conditions hold for Kt for t 2 K X k. Conversely,
suppose that K satisfies the three conditions. By condition (1), there exists some t2KX k
such that xt 2K , and condition (2) implies that Kt is contained in K . Finally, if ˇ 2K

is not contained in Kt , then xt and ˇ would be independent, contradicting condition (3).
Thus Kt D K , as required.

We say that t is general in Kjk provided that K is regular over k.t/. Note that if t is
general inKjk then Kt is a rational submodule of Kƒ.Kjk/. We will need the following
birational Bertini result.

Fact 5.4 (Birational Bertini [20, Ch. VIII, p. 213]). Let x; y 2 K be algebraically inde-
pendent over k. For all but finitely many a 2 k, the element x C a � y is general in Kjk.

5.3. Divisors on curves

Let t 2K X k be given, and put K WDKt . Consider the following collection of submod-
ules of K :

Dt D DK WD ¹Uv \K j K 6� Uvº;

where v varies over the divisorial valuations of Kjk. Also write Dt D DaclK .t/ for the
collection of divisorial valuations of aclK.t/jk, so that Dt is in bijection with the closed
points of the unique projective normal model of aclK.t/jk.

Lemma 5.5. In the above context, the following hold:

(1) For all U 2 Dt , the quotient K =U is isomorphic to ƒ.

(2) One has a canonical bijection Dt Š Dt defined by w 7! Uw , w 2 Dt , with inverse
sending U D Uv \K to the restriction of v to aclK.t/.

Proof. For (1), let v be a divisorial valuation ofKjk with K 6�Uv and put U DUv \K .
Note that Kƒ.Kjk/=Uv is isomorphic to ƒ, hence one has a canonical injective mor-
phism of ƒ-modules

K =U ,! Kƒ.Kjk/=Uv Š ƒ:
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The image of this map is nontrivial by assumption and since ƒ is a subring of Q, hence a
PID, assertion (1) follows.

For (2), put M WD aclK.t/ and suppose first that w is a divisorial valuation of M jk.
Then there exists a divisorial valuation v of Kjk whose restriction to M is w, hence
Uw � Uv \K while K 6� Uv . The exact sequence of ƒ-modules

0! Uv \K =Uw ! K =Uw ! K =Uv \K ! 0

splits since K =Uv \K is a free ƒ-module of rank 1. As K =Uw is also a free ƒ-
module of rank 1, using the fact that ƒ is a PID, it follows that Uv \K =Uw D 0, hence
Uw D Uv \K 2 Dt . The map Dt ! Dt given by w 7! Uw is thus well-defined, and,
since the valuations in Dt are all pairwise independent, this map is injective.

On the other hand, if U is an element of Dt , and v is a divisorial valuation of Kjk
with U DUv \K and K 6�Uv , then the restrictionw of v toM is a divisorial valuation
ofM jk with Uw �Uv \K . Arguing as above, we find again that Uw DUv \K DU .
This shows that the map Dt ! Dt is indeed bijective, and that its inverse is as described
in the statement of the lemma.

5.4. Rational-like collections

Assume now that t is a general element of Kjk so that K WD Kt is a rational submod-
ule of Kƒ.Kjk/. By Lemma 5.5, we have K =U Š ƒ for every U 2 Dt . Consider a
collection of such isomorphisms:

ˆ D .ˆU W K =U
Š
�! ƒ/U 2Dt :

Any element of K is contained in all but finitely many of the U 2 Dt by Lemma 5.5,
hence ˆ induces a canonical map

divˆ W K !

M
U 2Dt

ƒ � ŒU �; divˆ.x/ D
X

U 2Dt

ˆU .x/ � ŒU �:

Here ŒU �, U 2 Dt , denote formal basis elements for the direct sum.
We say that ˆ is a rational-like collection provided that divˆ fits in a short exact

sequence of the form

0! K
divˆ
���!

M
U 2Dt

ƒ � ŒU �
sum
��! ƒ! 0:

If ˆ is a rational-like collection and " 2 ƒ� is given, then we obtain another rational-like
collection

" �ˆ WD ." �ˆU /U 2Dt :

By Lemma 5.5, there is a canonical rational-like collection for K , constructed from
the field structure of M WD aclK.t/ D k.t/, as follows. For U 2 Dt and w 2 Dt such
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that U D Uw , the isomorphism ˆcan
U is the unique one making the following diagram

commute:
K .M�=k�/˝Z ƒ Z˝Z ƒ D ƒ

K =U K =U

w˝ƒ

ˆcan
U

Write ˆcan
K WD .ˆ

can
U /U 2DK

. This is clearly a rational-like collection, which we call
the canonical rational-like collection of K . We simplify the notation by writing divcan WD

divˆcan
K

if K is understood from context.

Lemma 5.6. In the above context, let ˆ be a rational-like collection for K . Then there
exists a unique " D "K 2 ƒ� such that ˆ D " �ˆcan

K .

Proof. By Lemma 5.5, for each U 2 DK , we may choose an "U 2 ƒ� such that

ˆU D "U �ˆ
can
U :

We must show that "U is independent of the choice of U . For two different U ;V 2DK ,
there exists a unique x 2 K such that

divcan.x/ D ŒU � � ŒV �:

Hence divˆ.x/D "U � ŒU �� "V � ŒV �. The “exactness” in the definition of a rational-like
collection (applied to ˆ) shows that "U � "V D 0. Hence "U does not depend on U .

5.5. Rational synchronization

Let t be a general element of Kjk. By Lemma 5.5, Dt is parameterized by P1.k/ D
k [ ¹1º by identifying a 2 k resp. 1 with Uw with w the divisorial valuation whose
centre is t D a resp. t D1. Write Ut;a for the element of Dt corresponding to a 2 k [1.
Note that

divcan .t � c/ D ŒUt;c � � ŒUt;1�

for all c 2 k. Also, if U1;U2 2 Dt are two distinct elements, then there exists a general
element x of Kjk such that k.x/ D k.t/ and

divcan xx D ŒU1� � ŒU2�:

Proposition 5.7. Let � WKƒ.Kjk/ ŠKƒ.Ljl/ be an isomorphism of ƒ-modules which
is compatible with dependence and with rational submodules, and let x be a general
element of Kjk. Then there exists a general element y of Ljl , a unit " 2 ƒ�, and a
bijection � W k Š l such that �0 D 0, �1 D 1, and �.x � a/ D " � .y � �a/ for all a 2 k.

Proof. Put K WD Kx . Since � is compatible with rational submodules, we see that
L WD �K is a rational submodule of Kƒ.Ljl/. By Fact 5.2, � induces a bijection

U 7! �U W DK
Š
�! DL :
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Consider the canonical rational-like collection ˆ WD ˆcan
K on K . Let ‰ denote the

rational-like collection on L induced byˆ and �. Explicitly,‰V WL =V Šƒ, V 2DL ,
is the isomorphism

L =V
��1

��! K =U
ˆU
��! ƒ

where U D ��1V . By Lemma 5.6 there exists an " 2 ƒ� such that ‰ D "�1 �ˆcan
L , and

by the construction of ‰ we have a commutative diagram with exact rows:

0 K
L

U 2DK
ƒ � ŒU � ƒ 0

0 L
L

V 2DL
ƒ � ŒV � ƒ 0

divcan

�

sum

�

div‰ sum

The � in the middle is shorthand for the morphism defined by ŒU � 7! Œ�U �.
Note that divˆ xx D ŒUx;0� � ŒUx;1�, hence div‰.�xx/ D Œ�Ux;0� � Œ�Ux;1�. By the

discussion above, there exists a general element y of Ljl such that Ky D L and

�Ux;0 D Uy;0; �Ux;1 D Uy;1:

Replacing y with an element of the form c � y for some c 2 l� we may assume furthermore
that �Ux;1 D Uy;1. Define the bijection � W k Š l as the unique one satisfying �Ux;a D

Uy;�a for a 2 k. Then for all a 2 k, we have

divcan."
�1
� �.x � a// D div‰.�.x � a// D Œ�Ux;a� � Œ�Ux;1�

D ŒUy;�a� � ŒUy;1� D divcan .y � �a/:

The injectivity of divcan implies that �.x � a/ D " � .y � �a/, as required.

5.6. Multiplicative synchronization

At this point, our proof of Theorem 5.1 will use an adaptation of arguments due to Pop [24,
Section 6]. Following Proposition 5.7, we will say that � 2 Isomdep

rat .Kƒ.Kjk/;Kƒ.Ljl//

is synchronized provided that there exists some general element x of Kjk, some general
element y of Ljl , and some bijection � W k Š l with �0 D 0 and �1 D 1, such that

�.x � a/ D .y � �a/

for all a 2 k. To specify x, y and �, we may say that � is synchronized by x and y via �.
By Proposition 5.7, for any � 2 Isomdep

rat .Kƒ.Kjk/;Kƒ.Ljl//, there exists some " 2 ƒ�

such that " � � is synchronized.
The canonical map K�=k� ! Kƒ.Kjk/ is injective, and we will identify K�=k�

with its image in Kƒ.Kjk/, and similarly for L�=l�. We show that a synchronized � is
compatible with these lattices.

Proposition 5.8. Assume that � 2 Isomdep
rat .Kƒ.Kjk/;Kƒ.Ljl// is synchronized. Then

�.K�=k�/ D L�=l�.
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Proof. It suffices to prove that �.K�=k�/ � L�=l� since ��1 is also synchronized
whenever � is. Put M WD ��1.L�=l�/ \ .K�=k�/ and let M� denote the preimage
of M in K�. Our goal is to show that M WDM� [ ¹0º D K.

Suppose � is synchronized by x and y via �. Note that k.x/� � M� since k.x/� is
multiplicatively generated by elements of the form x � a, a 2 k.

More generally, assume that u 2 M� is general in Kjk. By Proposition 5.7, there
exists a bijection 
 W k Š l , a general element w of Ljl , and an " 2 ƒ�, such that 
0D 0,

1 D 1 and

�.u � a/ D " � .w � 
a/

for all a 2 k. Note in particular that �xu D " � xw, while �xu 2 L�=l�.
We claim that " 2 Z. Write " D m=n for integers m; n and n > 0. Since l� is divis-

ible, the above observations show that there exists g 2 L� such that wm D gn, hence w
and g are algebraically dependent. As w is general in Ljl , it follows that g 2 k.w/ and
comparing w-adic valuations we find " D m=n 2 Z.

With " 2 Z as above, one has

�.u � a/ D " � .w � 
a/ D .w � 
a/"

for all a 2 k, hence u � a 2 M�. As k.u/� is multiplicatively generated by u � a for
a 2 k, we deduce that k.u/� is contained in M�.

Finally, since ƒ � Q, we see that for all t 2 K� there exists some integer n > 0

such that n � �xt 2 L�=l�. In other words, tn 2M�, so that K�=M� is torsion. Bringing
together the above observations:

(1) The quotient K�=M� is torsion.

(2) If u 2M� is general in Kjk, then k.u/� is contained in M�.

(3) The element x is contained in M� and x is general in Kjk.

We claim that M is additively closed in K. As M is multiplicatively closed and
M� D M X ¹0º is a subgroup of K�, it suffices to prove that for all u 2 M , one has
1C u 2 M . As k.x/ � M , we may also assume that u … k.x/, hence u and x are alge-
braically independent over k. For a; b; c 2 k, put

Ab;c WD
b � x C c

u
; Ba;b;c WD a � uC b � x C c D u � .Ab;c C a/:

Let c 2 k� be an arbitrary element. Since x=u and c=u are algebraically independent,
it follows from Fact 5.4 that

Ab;c D b �
x

u
C
c

u

is general inKjk for all but finitely many b 2 k. Since b � x C c 2M and u 2M , we see
that Ab;c 2 M as well since M is multiplicatively closed. Since Ab;c is general in Kjk
for all but finitely many b 2 k, the properties above show that Ab;c C a 2 M for such b
and arbitrary a 2 k. To summarize, for a given a 2 k and c 2 k�, one has

Ba;b;c D u � .Ab;c C a/ 2M

for all but finitely many b 2 k.
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Next suppose that a; c 2 k and that a ¤ c. Thus .a � uC c/=.uC 1/ and x=.uC 1/
are algebraically independent. Using Fact 5.4 again, we see that for all but finitely many
b 2 k, the element

a � uC c

uC 1
C b �

x

uC 1
D
a � uC b � x C c

uC 1
D
Ba;b;c

uC 1

is general in Kjk. In this case, the element

uC 1

Ba;b;c
C 1 D

.aC 1/ � uC b � x C .c C 1/

Ba;b;c
D
BaC1;b;cC1

Ba;b;c

is also general in Kjk.
Choose a; c 2 k satisfying a ¤ c, c ¤ 0 and c C 1 ¤ 0. By the discussion above, it

follows that for all but finitely many b, the following two conditions hold:

(1) Ba;b;c 2M and BaC1;b;cC1 2M .

(2) BaC1;b;cC1=Ba;b;c is general in Kjk.

Let b 2 k be such an element. Since M is multiplicatively closed, we see that

uC 1

Ba;b;c
C 1 D

BaC1;b;cC1

Ba;b;c
2M;

and since this element is general inKjk, it follows that .uC 1/=Ba;b;c 2M as well. Since
Ba;b;c 2M , this shows that indeed uC 1 2M , as contended.

The argument above shows thatM is a subfield ofK which contains k whileK�=M�

is torsion. SinceKjk is a function field and k has characteristic 0, it follows thatK DM ,
and this concludes the proof of the proposition.

5.7. Collineation

At this point of the argument we have seen that for any � 2 Isomdep
rat .Kƒ.Kjk/;Kƒ.Ljl//,

there exists some " 2 ƒ� such that " � � is synchronized, and in this case " � � restricts to
an isomorphismK�=k� Š L�=l� which is compatible with algebraic dependence. Note
also that K�=k� is the projectivization of K as a k-module, and similarly for Ljl .

The proof of Theorem 5.1 can now be easily obtained from [11, Theorem 4] once
we know that the " above is unique (see Lemma 5.11 below). For the sake of complete-
ness, we will explain how the work above can be used to deduce that the isomorphism
K�=k� Š L�=l� is compatible with projective lines, after which we conclude the proof
of Theorem 5.1 by applying the fundamental theorem of projective geometry [4,18], sim-
ilarly to the approach taken in [10, 11, 24].

Suppose now that � 2 Isomdep
rat .Kƒ.Kjk/;Kƒ.Ljl// is synchronized, so � restricts

to an isomorphism K�=k� Š L�=l� by Proposition 5.8.

Proposition 5.9. In the above context, the isomorphism

� W K�=k� Š L�=l�

is a collineation, i.e. � sends projective lines in K�=k� to projective lines in L�=l�.
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Proof. For x 2 K�=k�, x ¤ 1 and zx 2 K� a representative of x, write

Lx WD
.k C zx � k/ \K�

k�

for the unique projective line in K�=k� containing 1 and x. Since � is compatible with
multiplication, it suffices to show that �Lx D L�x for all such x.

Assume first that x 2 K X k and y 2 L X l are such that �Lxx D Lxy . Let t 2 K
be algebraically independent from x over k, and choose u 2 L X l such that �xt D xu.
Choose a divisorial valuation v of Kjk such that v is trivial on aclK.x/ and on aclK.t/,
and such that x and t have the same image in .Kv/�=k�; such a v exists since x and t are
algebraically independent over k. Put w D v� , as in Fact 5.2. The same fact implies that
y and u have the same image in .Lw/�=l�, while w is trivial on aclL.y/ and on aclL.u/
since � is compatible with dependence (see Lemma 5.3).

Note that both maps

aclK.x/=k� ! .Kv/�=k�  aclK.t/=k�

are injective. Letting xx D xt denote the images of x and t in .Kv/�=k�, the images of Lxx
and Lxt both agree with Lxx under these two maps. Since U 1

v \ .K
�=k�/ D U1v � k

�=k�

and aclK.t/�=k� D Kt \ .K
�=k�/, we deduce that

Lxt D Kt \ .K
�=k�/ \ .Lxx � .U

1
v \ .K

�=k�///:

Since � identifies Kt with Ku, K�=k� with L�=l�, Lxx with Lxy , and U 1
v with U 1

w ,
it follows that �Lxt D Lxu. Finally, since � is synchronized, there exist some x and y
as above such that �Lxx D Lxy . Thus, the argument above shows that for every t 2 K
algebraically independent from x, we have �Lxt D L�xt .

If t 2 K X k is not algebraically independent from x, simply choose some s 2 K X k
which is algebraically independent from x, so the argument above shows �Lxs D L�xs .
Since t is independent from s, the argument above then shows that �Lxt D L�xt .

5.8. Concluding the proof

We now conclude the proof of Theorem 5.1.

Proposition 5.10. Assume that � 2 Isomdep
rat .Kƒ.Kjk/;Kƒ.Ljl// is synchronized. Then

there exists a unique isomorphism of fields �� WK ŠL such that �xt D �� t for all t 2K�.

Proof. Since � is synchronized, it induces an isomorphism

� W K�=k� Š L�=l�

by Proposition 5.8 which is a collineation by Proposition 5.9. By the fundamental theorem
of projective geometry (see [4,18]), there exists a unique isomorphism of fields 
 W k Š l
and a 
 -semilinear isomorphism � W K Š L of additive groups such that �.x/ D �xx for
all x 2 K�. Moreover, � is unique with these properties up to homotheties. Note that we
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must have �.1/ 2 l� since �.1/D 1. Replace � with .1=�.1// � � to assume furthermore
that �.1/ D 1, and note that this � is then the unique 
 -semilinear isomorphism K Š L

satisfying �.1/ D 1 and �.x/ D �xx for all x 2 K�.
We follow an argument which is similar to [9, Theorem 7.3] to show that this � is a

field isomorphism. First, since �.1/ D 1, it follows that � restricts to 
 W k Š l on k. In
particular, for x 2 K and a 2 k, one has

�.a � x/ D 
.a/ � �.x/ D �.a/ � �.x/:

Also, � is already an additive homomorphism, so we only need to show its compatibility
with multiplication.

Assume therefore that x;y 2K are given. We must show that �.x � y/D �.x/ � �.y/.
Since � restricts to the field isomorphism 
 on k, we may assume furthermore that x � y
and y are k-linearly independent. Since � induces � W K�=k� Š L�=l� which is multi-
plicative, there exists some c 2 l� such that

�.x � y/ D c � �.x/ � �.y/:

Since x � y and y are k-linearly independent, we see that c�1 � �.x � y/ D �.x/ � �.y/
and �.y/ are again l-linearly independent.

Consider �.x � y C y/. On the one hand, we have

�.x � y C y/ D �.x � y/C �.y/ D c � �.x/ � �.y/C �.y/;

and on the other there exists some d 2 l� such that

�.x � y C y/ D �..x C 1/ � y/ D d � �.x C 1/ � �.y/ D d � .�.x/C 1/ � �.y/

D d � �.x/ � �.y/C d � �.y/:

In particular, we see that c D d D 1, and hence �.x � y/ D �.x/ � �.y/, as required.

We now conclude the proof of Theorem 5.1. Let � 2 Isomdep
rat .Kƒ.Kjk/;Kƒ.Ljl//

be given. By Proposition 5.7, there exists some " 2 ƒ� such that  WD " � � is synchro-
nized, while Proposition 5.10 shows there is a unique isomorphism � W K Š L of fields
satisfying  xt D � t . If furthermore � arises from a given isomorphism � W K Š L, then
� is synchronized and it is easy to see that � D �� .

Lemma 5.11. Let � W Isomdep
rat .Kƒ.Kjk/; Kƒ.Ljl// be given, and suppose that

"1; "2 2 ƒ
� are such that both "1 � � and "2 � � are synchronized. Then "1 D "2.

Proof. Put �i WD "i � � and �i WD ��i as in Proposition 5.10. Consider � D ��11 ı �2 and
put ı WD "�11 � "2. Write ı D m=n with m; n integers such that n > 0. Note that � is an
automorphism of K satisfying �.x/ D ı � xx for all x 2 K�.

Let x 2K� be general inKjk. Since �k D k, it follows that y WD �.x/ is also general
in Kjk, and one has xy D ı � xx, hence yn D c � xm for some c 2 k�. Comparing x-adic
valuations of x and y with this equality, we find that ı 2 Z and y D c � xı . In particular,
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x and y are algebraically dependent while both x and y are general inKjk. This can only
happen if y 2 ¹c � x; c � x�1º. The map " 7! " � xx, " 2 ƒ�, is injective since x is general
in Kjk, hence ı 2 ¹�1; 1º. We will conclude by showing ı D 1.

Assume otherwise, hence ı D �1, so y D c � x�1 and there exists d 2 k� such that
�.1C x/ D d � .1C x/�1. But � is a field automorphism, hence

1C c � x�1 D 1C y D �.1C x/ D d � .1C x/�1:

This is clearly impossible as x is transcendental over k.

We have thus constructed a left inverse of the map

Isom.K;L/! Isomdep
rat .Kƒ.Kjk/;Kƒ.Ljl//

appearing in Theorem 5.1, which is easily seen to be functorial with respect to isomor-
phisms. To conclude, we must prove that this left inverse is injective, and for this it suffices
to take K D L and prove that the group homomorphism we produced in this case,

Isomdep
rat .Kƒ.Kjk/;Kƒ.Kjk//! Aut.K/;

is injective. So suppose that � is an automorphism of Kƒ.Kjk/ which is compatible
with dependence and with rational submodules, and which represents an element in the
kernel of this map. Replacing � with " � � for some uniquely determined " 2 ƒ� (see
Lemma 5.11), we may assume � is synchronized and by assumption �� D 1. Note �xt D
�� t Dxt for all t 2K�, hence � acts as the identity onK�=k�. But Kƒ.Kjk/ is generated
as a ƒ-module by this subgroup, so it follows that � is the identity on Kƒ.Kjk/ as well.
This concludes the proof of Theorem 5.1.

6. Proof of the main theorem

We now turn to the proof of the main theorem, which we state precisely as follows.

Theorem 6.1. Let ƒ be a subring of Q, and let k, l be algebraically closed fields. Let
� W k ,! C be a complex embedding. Let K be a function field of transcendence degree
� 2 over k and L a function field over l . There exists an isomorphism K Š L of fields
which restricts to an isomorphism k Š l if and only if there exists a complex embedding
� W l ,! C and an isomorphism of mixed Hodge structures

� W H1.Kjk;ƒ.1// Š H1.Ljl; ƒ.1//

such that the map � induces a bijection R.Kjk;ƒ/ Š R.Ljl; ƒ/. Here H�.Kjk;ƒ.�//
is computed via � while H�.Ljl; ƒ.�// is computed via � .

The rest of the section is devoted to proving this theorem. First, recall that any isomor-
phism of fields K Š L restricts to an isomorphism k Š l . Given such an isomorphism



A. Topaz 26

of fields, say � W K Š L with restriction 
 W k Š l , one can define � W l ,! C as the
composition

l

�1

��! k
�
�! C;

and the existence of � as in the statement of the theorem is then trivial.
Let us now fix an isomorphism � as in the statement of the theorem. Our goal is to

produce an isomorphism of fields K Š L, which will automatically restrict to k Š l as
observed above. The strategy is as follows:

(1) First, show that � restricts to an isomorphism � WKƒ.Kjk/ŠKƒ.Ljl/ via Kummer
theory. This will follow from the compatibility with the mixed Hodge structures.

(2) Second, show that this isomorphism is compatible with dependence and with rational
submodules.

(3) Conclude by applying Theorem 5.1 to obtain an isomorphism K Š L.

From now on, we put ourselves in the context of Theorem 6.1, and fix � as in the state-
ment.

6.1. Compatibility with Kummer theory

Note that the Kummer map

�ƒK W Kƒ.Kjk;ƒ/! H1.Kjk;ƒ.1//

is injective since ƒ is flat over Z.

Lemma 6.2. Let 
 W ƒ! H1.Kjk; ƒ.1// be a morphism of ƒ-modules. Then 
 arises
from a morphism of mixed Hodge structures, where ƒ is the underlying module of ƒ.0/,
if and only if 
.1/ is contained in the image of �ƒK .

Proof. First suppose t 2 K� is given, and consider the map


t W ƒ! H1.Kjk;ƒ.1//

given by the composition

ƒ D H1.Gm; ƒ.1//
t�

�! H1.U;ƒ.1//! H1.Kjk;ƒ.1//;

where U is any model ofKjk with t 2O�.U /, and t� is the map on cohomology induced
by the associated morphism t W U ! Gm. Since both morphisms in this composition are
compatible with the mixed Hodge structures, the same holds for 
t . If 
 is as in the
statement of the lemma, and 
.1/ is in the image of �ƒK , then it is a linear combination of
morphisms of the form 
t for t 2 K�, so again 
t is compatible with the mixed Hodge
structures.

Conversely, suppose that 
 is compatible with the mixed Hodge structures, and let
X be a smooth projective model of Kjk and U a sufficiently small nonempty open k-
subvariety of X such that 
 factors through H1.U; ƒ.1// ,! H1.Kjk; ƒ.1//. Consider
the Picard 1-motive M1;1.U / associated to the inclusion U ,! X , as well as the 1-motive
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Z WD ŒZ! 0�. Since ƒ is flat over Z, by Theorem 4.2 and Lemma 4.1, the Hodge real-
ization functor induces a canonical isomorphism

Homk.Z;M1;1.U //˝Z ƒ
Š
�! HomMHS.ƒ.0/;H1.U;ƒ.1///:

Unfolding the definitions, we see that

Homk.Z;M1;1.U //˝Z ƒ D .O
�.U /=k�/˝Z ƒ;

and so 
 gives rise to some element ˛ 2 .O�.U /=k�/˝Z ƒ � Kƒ.Kjk/ via this bijec-
tion. Tracing through the definitions, it is easy to see that 
.1/ D �ƒK .˛/.

As a consequence of this lemma, we deduce that � restricts to an isomorphism

� W Kƒ.Kjk/ Š Kƒ.Ljl/

which fits in the following commutative diagram:

H1.Kjk;ƒ.1// H1.Ljk;ƒ.1//

Kƒ.Kjk/ Kƒ.Ljl/

�

�ƒ
K

�

�ƒ
L

(6.1)

6.2. Concluding the proof

Our final two tasks are to show that the isomorphism � WKƒ.Kjk/ŠKƒ.Ljl/ discussed
in (6.1) is compatible with dependence and with rational submodules. We prove these in
two separate lemmas.

Lemma 6.3. In the above context, � W Kƒ.Kjk/ Š Kƒ.Ljl/ is compatible with depen-
dence.

Proof. Let x; y 2 Kƒ.Kjk/ be given. By Lemma 3.2, we see that x, y are dependent if
and only if �ƒKx [ �

ƒ
Ky D 0 in H2.Kjk;ƒ.2//. The lemma follows from the compatibility

of � with R and the commutativity of (6.1).

We will need the following lemma to deduce the compatibility with rational submod-
ules.

Lemma 6.4. Let E be a function field over k satisfying trdeg.Ejk/ D 1. Then Ejk is
rational if and only if the Kummer map

�ƒE W Kƒ.Ejk/! H1.Ejk;ƒ.1//

is an isomorphism.

Proof. Let C be the smooth projective model of Ejk. For each closed subsetZ of C , one
has an exact sequence of the form

0! H1.C;ƒ.1//! H1.C XZ;ƒ.1//! Div0Z.C /˝Z ƒ! 0;
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which is obtained (after tensoring with ƒ) from (4.3) in the case where one considers
the Picard 1-motive ŒDiv0Z.C /! Pic0C �. Passing to the colimit over all U WD C XZ, we
obtain an exact sequence

0! H1.C;ƒ.1//! H1.Ejk;ƒ.1//! Div0.C /˝Z ƒ! 0:

Note that the map H1.Ejk; ƒ.1//! Div0.C /˝Z ƒ in this exact sequence is given by
the sum of the residue maps @x associated to x 2 C.k/.

This exact sequence, and the Kummer map �ƒE in question, both fit in the following
commutative diagram with exact rows/columns:

0 0

Kƒ.Ejk/ Kƒ.Ejk/

0 H1.C;ƒ.1// H1.Ejk;ƒ.1// Div0.C /˝Z ƒ 0

0 H1.C;ƒ.1// coker.�ƒE / Pic0.C /˝Z ƒ 0

0 0

�ƒ
E

div˝ƒ

Now, Ejk is rational if and only if C has genus 0, which is equivalent to Pic0.C /˝Z ƒ

D 0 and H1.C;ƒ.1// D 0. The assertion of the lemma follows from the exactness of the
bottom row in the above diagram.

Lemma 6.5. In the above context, � WKƒ.Kjk/ŠKƒ.Ljl/ is compatible with rational
submodules.

Proof. Let x be a general element of Kjk so that Kx WD Kƒ.k.x/jk/ is a rational
submodule of Kƒ.Kjk/. Put L WD �K , a submodule of Kƒ.Ljl/. Since � is com-
patible with dependence by Lemma 6.3, L must have the form Kƒ.aclL.y/jl/ for some
y 2 L X l by Lemma 5.3. We must show that aclL.y/ is rational over l .

By Fact 3.1 and Proposition 3.4, we see that the image of the injective map

H1.aclL.y/jl; ƒ.1//! H1.Ljl; ƒ.1//

can be characterized as the collection of elements ˛ of H1.Ljl; ƒ.1// such that for all
ˇ 2 Kƒ.aclL.y/jl/, one has �ƒL ˇ [ ˛ D 0. The image of

H1.k.x/jk;ƒ.1//! H1.Kjk;ƒ.1//

can be similarly characterized as the elements which pair trivially with KxDKƒ.k.x/jk/.
The compatibility of � with R ensures that � restricts to a commutative diagram whose
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horizontal morphisms are injective and whose vertical morphisms are isomorphisms
which are all induced by �:

Kx D Kƒ.k.x/jk/ H1.k.x/jk;ƒ.1// H1.Kjk;ƒ.1//

L D Kƒ.aclL.y/jk/ H1.aclL.y/jl; ƒ.1// H1.Ljl; ƒ.1//

Š Š Š

The fact that L is a rational submodule now follows easily from Lemma 6.4.

Putting everything together, � induces an isomorphism Kƒ.Kjk/ Š Kƒ.Ljl/ via
Kummer theory (see (6.1)) which is compatible with dependence by Lemma 6.3 and with
rational submodules by Lemma 6.5. Thus Isomdep

rat .Kƒ.Kjk/;Kƒ.Ljl// is nonempty,
hence Isom.K;L/ is nonempty by Theorem 5.1. This concludes the proof of Theorem 6.1
as any isomorphism K Š L restricts to an isomorphism k Š l .

Appendix A. The local theory

The local theory in “almost-abelian” anabelian geometry has been extensively developed
by Bogomolov [7], Bogomolov–Tschinkel [8], Pop [22], and the author [28, 30]. Despite
this, the precise statement which is needed in the above paper has not appeared in the
literature, since previous results have mostly focused on the “classical” anabelian point
of view of decomposition and inertia groups in Galois groups (of function fields, in this
case). In this appendix we give an essentially self-contained account of the local theory,
which is required in the main body of the present paper. The arguments we give here are
merely a distillation of the ideas developed in the references mentioned above.

We use the notation introduced in the body of the paper. The main result in the local
theory reads as follows.

Theorem A.1. Let Kjk and Ljl be two function fields over algebraically closed fields,
and let ƒ be a subring of Q. Assume that trdeg.Kjk/ � 2. Let

� W Kƒ.Kjk/
Š
�! Kƒ.Ljl/

be an isomorphism of ƒ-modules which is compatible with dependence, and let v be a
divisorial valuation of Kjk. Then there exists a unique divisorial valuation w of Ljl such
that �.Uv/ D Uw and �.U 1

v / D U 1
w .

We work in the context of this theorem for the rest of the appendix. For a field exten-
sion M jF , we put

G .M jF / WD Hom.M�=F �;Q/;

considered as a Q-module endowed with the pointwise convergence topology, and we
will tacitly only consider submodules which are closed with respect to this topology. We
consider elements of G .M jF / as morphisms M� ! Q which are trivial on F �.
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For a valuation v of M , we define

Iv WD Hom.M�=.Uv � F �/;Q/; Dv WD Hom.M�=.U1v � F
�/;Q/;

both considered as subspaces of G .M jF / with Iv � Dv .
Note that the isomorphism � from Theorem A.1 induces an isomorphism

 WD .��1/� W G .Kjk/ Š G .Ljl/;

and, for a divisorial valuation v of Kjk, Uv resp. U 1
v is orthogonal to Iv resp. Dv with

respect to the canonicalƒ-bilinear pairing G .Kjk/�Kƒ.Kjk/!Q. It therefore suffices
to provide a characterization of Iv � Dv for divisorial valuations v of Kjk in terms of
the following data:

(1) The ƒ-module Kƒ.Kjk/ and the Q-module G .Kjk/.

(2) The canonical pairing G .Kjk/ �Kƒ.Kjk/! Q.

(3) The binary relation on Kƒ.Kjk/ given by dependence.

A.1. Abhyankar’s inequality

Let v be any valuation of K. Abhyankar’s inequality [1] asserts that

dimQ..vK=vk/˝Z Q/C trdeg.Kvjkv/ � trdeg.Kjk/:

If equality holds, then we say that v is defectless, and in this case vK=vk is a finitely-
generated group and Kvjkv is a finitely-generated field extension.

Note that K�=.Uv � k�/ D vK=vk and thus

Iv Š HomQ..vK=vk/˝Z Q;Q/

is finite-dimensional and dimQ Iv D dimQ..vK=vk/˝Z Q/ � trdeg.Kjk/. Also, since
the quotient Dv=Iv is naturally isomorphic to G .Kvjkv/ and kv is algebraically closed,
we see that trdeg.Kvjkv/ D 0 if and only if Iv D Dv . We will use these observations
several times in the discussion below.

A.2. acl-pairs

Let f; g 2 G .Kjk/ be given. We say that .f; g/ is an acl-pair provided that one of the
following equivalent (since ƒ is a subring of Q) conditions holds true:

(1) For all dependent x; y 2 Kƒ.Kjk/, one has f .x/ � g.y/ D f .y/ � g.x/.

(2) For all k-algebraically dependent x; y 2 K�, one has f .x/ � g.y/ D f .y/ � g.x/.

A subspace H � G .Kjk/ is an acl-subspace if any pair of elements of H is an acl-pair.

Lemma A.2. Let v be a valuation ofK, and let f 2 Iv and g 2Dv be given. Then .f; g/
is an acl-pair.
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Proof. Suppose x; y 2 K� are algebraically dependent, and let t 2 K X k be such that
x; y 2 aclK.t/ DWM . We must show that f .x/ � g.y/ D f .y/ � g.x/.

Let w denote the restriction of v toM . If x;y 2 Uv � k�, then the claim is trivial since
f .x/ D f .y/ D 0. Otherwise wM=wk has rational rank at least 1, and by Abhyankar’s
inequality it must be exactly 1, while trdeg.Mwjkw/ D 0, hence Uw � k� D U1w � k

�.
This implies that x; y must have Q-linearly dependent images in

.M�=Uw � k�/˝Z Q D .M�=U1w � k
�/˝Z Q:

Since both f;g act trivially on U1w � k
�, it follows again that f .x/ �g.y/D f .y/ �g.x/.

Theorem A.3. Let H � G .Kjk/ be a subspace. Then H is an acl-subspace of G .Kjk/

if and only if there exists a valuation v of Kjk such that H � Dv and Iv \ H has
codimension at most 1 in H .

Proof. If v exists as in the statement of the theorem, then the assertion about H follows
from Lemma A.2. Conversely, suppose that H is an acl-subspace. Let T � K� be the
orthogonal of H with respect to the pairing G .Kjk/ �K� ! Q. By [3, Theorem 2.16],
it suffices to prove that for all x; y 2 K� X T such that 1C x … T [ x � T and 1C y …
T [ y � T , and all f; g 2 H , one has

f .x/ � g.y/ D f .y/ � g.x/:

Indeed, lettingH denote the subgroup ofK� generated by T and all x 2K� XT such that
1C x … T [ x � T , it follows from [3, Theorem 2.16] that there exists a subgroup zH ofK�

containing H with Œ zH W H� � 2, and a valuation v of K such that U1v � T and Uv � zH .
The condition above would then imply that I WD Hom.K�= zH;Q/ D Hom.K�=H;Q/
has codimension at most 1 in Hom.K�=T;Q/ D H , while H � Dv and I � Iv .

Assume toward a contradiction that this does not hold, and let x;y 2K� and f;g 2H

witness this. Putˆ WD .f;g/ WK�!Q2. By our assumption on H , we see that whenever
u; v 2 K� with u˙ v 2 K�, the triple .ˆ.u˙ v/;ˆ.u/;ˆ.v// is collinear (in the affine
sense). Under our assumption on x;y and f;g, the pairˆ.x/,ˆ.y/ is linearly independent
and ˆ.1C x/ … ¹ˆ.1/;ˆ.x/º, ˆ.1C y/ … ¹ˆ.1/;ˆ.y/º.

Embed Q2 D A2.Q/ into P2.Q/ via .a; b/ 7! .1 W a W b/, and compose with this
inclusion and the unique projective-linear automorphism † of P2.Q/ satisfying

†.1 W 0 W 0/ D .1 W 0 W 0/; †.ˆ.x// D .1 W 1 W 0/; †.ˆ.y// D .1 W 0 W 1/;

†.ˆ.1C x// D .0 W 1 W 0/; †.ˆ.1C y// D .0 W 0 W 1/:

Denote the resulting map by ‰ W K� ! P2.Q/. The following conditions hold:

(1) For all u; v 2 K� with u˙ v 2 K�, the triple .‰.u/;‰.v/;‰.u˙ v// is collinear.

(2) ‰.1/ D .1 W 0 W 0/, ‰.x/ D .1 W 1 W 0/ and ‰.y/ D .1 W 0 W 1/.

(3) ‰.1C x/ D .0 W 1 W 0/ and ‰.1C y/ D .0 W 0 W 1/.
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We will show that the image of‰ contains a complete projective line, which is impossible
by the construction of‰, as the image of‰misses the image under† of the line at infinity.
For u; v 2 K� with ‰.u/ ¤ ‰.v/, write L.u; v/ for the unique projective line containing
‰.u/ and ‰.v/.

The proof that follows is elementary but technical, and comes down to computing
intersections of pairs of lines of the form L.u; v/ based on a sum/difference decomposi-
tion of the corresponding elements inK�. For example, ‰.1C x C y/D .1 W 1 W 1/ since
1C x C y D .1C x/C y D .1C y/C x, hence ‰.1C x C y/ lies in the intersection
L.1C x;y/\L.1C y;x/, which contains the unique point .1 W 1 W 1/. In the steps below,
we give the sum/difference decomposition, leaving the straightforward computation of
the intersection of the corresponding lines to the reader.

Step 1. One has ‰.1C x C y/ D .1 W 1 W 1/.

Proof. This follows from the equation 1C x C y D .1C x/C y D .1C y/C x.

Step 2. One has ‰.2C x C y/ D .0 W 1 W 1/.

Proof. This follows from

2C x C y D 1C .1C x C y/ D .1C x/C .1C y/

and Step 1.

Step 3. For all integers n � 1,

‰..2 � n/C x C y/ D .n W 1 W 1/; ‰..1 � n/C x/ D .n W 1 W 0/:

Proof. We proceed by induction on n with the base case n D 1 having been done above.
For the inductive case, first calculate ‰..2 � .nC 1//C x C y/ using

.2 � .nC 1//C x C y D ..1 � n/C x/C y D ..2 � n/C x C y/ � 1

combined with the inductive hypothesis, showing that

‰..2 � .nC 1//C x C y/ D .nC 1 W 1 W 1/:

Conclude by calculating ‰..1 � .nC 1//C x/ using

.1 � .nC 1//C x D ..2 � .nC 1//C x C y/ � .1C y/ D ..1 � n/C x/ � 1;

along with the calculation above and the inductive hypothesis to obtain

‰..1 � .nC 1//C x/ D .nC 1 W 1 W 0/:

This concludes the proof of this step.

Step 4. For all integers n;m � 1,

‰..1Cm � n/Cm � x C y/ D .n W m W 1/; ‰..m � n/Cm � x/ D .n W m W 0/:
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Proof. Proceed by induction on m with the case m D 1 taken care of by Step 3. For the
inductive case, first use

.1C .mC 1/ � n/C .mC 1/ � x C y D ..1Cm � n/Cm � x C y/C .1C x/

D ..m � n/Cm � x/C .2C x C y/

along with the inductive hypothesis and Step 1 to deduce

‰..1C .mC 1/ � n/C .mC 1/ � x C y/ D .n W mC 1 W 1/:

Then use the equation

..mC 1/ � n/C .mC 1/ � x D ..m � n/Cm � x/C .1C x/

D ..1C .mC 1/ � n/C .mC 1/ � x C y/ � .1C y/

with the inductive hypothesis and the above calculation to deduce

‰...mC 1/ � n/C .mC 1/ � x/ D .n W mC 1 W 0/:

This concludes the proof of this step.

Step 5. One has ‰.2C x/ D .1 W �1 W 0/.

Proof. Use the equation 2C x D 1C .1C x/ D .2C x C y/� y along with Step 2.

We can now conclude, as follows. First, by Step 4, the image of ‰ contains the set

¹.1 W a W 0/ j a 2 Q�0º [ ¹.0 W 1 W 0/º:

Repeat the argument above while replacing x with x0 WD �2 � x and 1C x0 D �1 � x,
while noting that‰.x0/D‰.2C x/D .1 W �1 W 0/ by Step 5 and‰.1C x0/D‰.1C x/D
.0 W 1 W 0/, to see that ¹.1 W a W 0/ j �a 2 Q�0º is also contained in the image of ‰. Hence
the whole projective line L.1; x/ is contained in the image of ‰, which is impossible as
discussed above. This provides the required contradiction, hence proving the theorem.

We will need the following refinement of the above theorem.

Proposition A.4. Put d WD trdeg.Kjk/, and let H � G .Kjk/ be an acl-subspace of
dimension d . Then there exists a valuation v of K with no transcendence defect in Kjk
such that Iv � H � Dv and Iv has codimension at most 1 in H .

Proof. By Theorem A.3, there exists a valuation v such that H � Dv and Iv \H has
codimension at most 1 in H . By Abhyankar’s inequality, Iv has dimension � d . Further-
more, if dimQ Iv D d then v is defectless and trdeg.Kvjkv/D 0 so that Dv D Iv , hence
Iv DH DDv . Otherwise dimQ Iv � d � 1, and we still have Iv �H since Iv \H has
dimension at least d � 1. In any case, we have Iv � H � Dv .

To conclude we must show that v is defectless. If Iv D H then we are done, as
observed above, so assume that Iv ¤ H . The argument above shows that Iv has dimen-
sion d � 1, hence vK=vk has rational rank d � 1. Thus, the only way that v can have
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any transcendence defect is if trdeg.Kvjkv/ D 0, in which case Dv D Iv . The fact that
Iv � H � Dv , while Iv ¤ H shows that this cannot happen.

Finally, we will need the following characterization of the transcendence degree of
Kjk, which follows fairly easily from Abhyankar’s inequality and Theorem A.3.

Lemma A.5. If H � G .Kjk/ is an acl-subspace, then dimQ H � trdeg.Kjk/. In par-
ticular, trdeg.Kjk/ is the maximal integer d such that G .Kjk/ has an acl-subspace of
dimension d .

Proof. Let H be an acl-subspace of G .Kjk/. By Theorem 5.1, there exists a valuation v
of Kjk such that H � Dv and H \ Iv has codimension � 1 in H . By Abhyankar’s
inequality, dimQ Iv � trdeg.Kjk/ so we may assume without loss of generality that
H \ Iv has codimension 1 in H .

Since H=H \ Iv embeds into G .Kvjkv/ it then follows that trdeg.Kvjkv/ � 1 and
thus

dimQ H D dimQ.H \ Iv/C 1 � dimQ Iv C trdeg.Kvjkv/ � trdeg.Kjk/;

again using Abhyankar’s inequality.
Finally, if d D trdeg.Kjk/ and v is any k-valuation of K whose value group is Zd

(e.g. a valuation arising from a complete flag of divisorial valuations), then Iv is an
acl-subspace of G .Kjk/ of dimension d . Thus d does indeed agree with the maximal
dimension of an acl-subspace of G .Kjk/.

A.3. Quasi-divisorial valuations

A valuation v ofK is called a quasi-divisorial valuation ofKjk provided that it is minimal
with respect to the following conditions:

(1) vK=vk Š Z.

(2) trdeg.Kvjkv/ D trdeg.Kjk/ � 1.

Note that a quasi-divisorial valuation is divisorial if and only if it is trivial on k.

Proposition A.6. Let I � G .Kjk/ be a one-dimensional subspace, and put d WD
trdeg.Kjk/. Assume that d � 2. Then there exists a quasi-divisorial valuation v of Kjk
such that I D Iv if and only if there exist two acl-subspaces H1;H2 of dimension d such
that I D H1 \H2.

Proof. If I D Iv , then the existence of H1 and H2 is easy by choosing two independent
kv-valuations w1, w2 ofKv whose value group is Zd�1 with the lexicographic ordering,
letting vi D wi ı v, and taking Hi D Ivi .

For the converse, we know from Proposition A.4 that there exist defectless valuations
v1 and v2 such that Ivi � Hi � Dvi , with Ivi having codimension at most 1 in Hi . By
our assumption on d , v1 and v2 are both nontrivial. Furthermore, the two valuations v1; v2
must be dependent since I �Dv1 \Dv2 with I being nontrivial, hence U1v1 �U

1
v2
¤K�.
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Let v0 denote the maximal common coarsening of v1; v2, so Uv0 D U1v1 � U
1
v2

, and thus
I � Iv0 . Let v be the coarsening of v0 associated to the maximal convex subgroup of
v0.I

?/, where I? is the orthogonal to I with respect to the pairing G .Kjk/ �K� ! Q.
Note that I � Iv as well, while Dvi � Dv for i D 1; 2. We claim that v does the job.

As v is a coarsening of vi , i D 1; 2, it is also defectless, hence vK=vk is finitely-
generated as an abelian group and Kvjkv is finitely-generated as a field extension. Note
that I� Iv � Iv1 \ Iv2 �H1 \H2D I, hence ID Iv . As vK=vk is a finitely-generated
free abelian group, it follows that vK=vk Š Z since dimQ I D 1. Since v is defectless,
this then implies that trdeg.Kvjkv/ D trdeg.Kjk/ � 1. The minimality of v is ensured
from the construction since v.I?v / has no nontrivial convex subgroup.

Lemma A.7. Let v be a quasi-divisorial valuation of Kjk. Then Dv is the subspace of
G .Kjk/ consisting of elements f which form an acl-pair with every element of Iv .

Proof. By Lemma A.2, any element of Dv forms an acl-pair with any element of Iv .
Conversely, suppose that f forms an acl-pair with every element of Iv . Let x 2 mv be
given. Note Iv is one-dimensional, and let g be a generator of Iv . If g.x/ ¤ 0, then
f .1C x/ D 0 since

f .1C x/ � g.x/ D f .x/ � g.1C x/ D 0

as 1 C x 2 Uv . Otherwise, the minimality of v ensures that there exists some y 2 K�

with 0 < v.y/ < v.x/ and g.y/¤ 0. Arguing as above, we have f .1C y/D 0, and since
v.y C x � .1C y// D v.y/, so that g.y C x � .1C y// D g.y/ ¤ 0 as well, we have

f .1C x/C f .1C y/ D f .1C .y C x � .1C y/// D 0;

hence f .1C x/ D 0. In other words, f acts trivially on U1v , so f 2 Dv , as required.

A.4. Characterizing divisorial valuations

Let us summarize what we have done.

(1) We gave a characterization of trdeg.Kjk/ in terms of acl-pairs in Lemma A.5.

(2) We gave a characterization of Iv for quasi-divisorial valuations v of Kjk in terms of
acl-pairs and trdeg.Kjk/ in Proposition A.6.

(3) For every such v, we gave a characterization of Dv in terms of acl-pairs and Iv in
Lemma A.7.

In other words, we provided a characterization of Iv � Dv for all quasi-divisorial valu-
ations v of Kjk in terms of acl-pairs in G .Kjk/. To conclude the proof of Theorem A.1,
we will provide a characterization of the divisorial valuations among the quasi-divisorial
valuations using acl-pairs in G .Kjk/ and the dependence relation in Kƒ.Kjk/.

Lemma A.8. Let v be a quasi-divisorial valuation of Kjk and assume trdeg.Kjk/ � 2.
Then v is divisorial if and only if there exists some t 2 K X k such that the composition

Dv ,! G .Kjk/! G .aclK.t/jk/
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is surjective, where the morphism G .Kjk/! G .aclK.t/jk/ is the canonical one arising
from the inclusion aclK.t/ ,! K.

Proof. First, if v is divisorial, we can choose some t 2 Uv X k� �U1v so that v is trivial on
aclK.t/, and, letting s denote the image of t inKv, we obtain an embedding � W aclK.t/ ,!
aclKv.s/. The map in question fits in a commutative diagram

Dv G .Kvjkv/ G .aclKv.s/jk/

G .Kjk/ G .aclK.t/jk/

��

where the arrows decorated with two heads are surjective. Hence the map in question is
indeed surjective.

Conversely, assume that v is nontrivial on k, and let t 2 K X k be given. Replacing t
with a � t˙1 for some a 2 k� if needed, we may assume that v.t/ > 0. With this in mind,
we have 1C a � t 2 U1v for all a 2 k� such that v.a/ > 0. There are infinitely many such a
where 1C a � t have Q-linearly independent images in KQ.aclK.t/jk/. Dually, the map
Dv! G .aclK.t/jk/mentioned in the statement must have a cokernel of infinite rank.

A.5. Concluding the proof

The proof of Theorem A.1 is a simple matter of putting everything together. Let � be as in
the statement of the theorem. This � induces an isomorphism  WD .��1/� W G .Kjk/ Š

G .Ljl/, which is compatible with acl-pairs since � is compatible with dependence. By
Lemma A.5, it follows that trdeg.Kjk/ D trdeg.Ljl/, and thus both are � 2 by assump-
tion. By Theorem A.6 and Lemma A.7 it follows that for every divisorial valuation v
of Kjk there exists some quasi-divisorial valuation w of Ljl such that  Dv D Dw and
 Iv D Iw . Dualizing with respect to the pairing

G .�/ �Kƒ.�/! ƒ;

we see that �Uv D Uw and �U 1
v D U 1

w .
Arguing as in Lemma 5.3 from the main body of the paper, for every t 2 K X k, there

exists some s 2 L X l such that �Kt D Ks . Note that the inclusion Kt ,! Kƒ.Kjk/

dualizes to G .Kjk/!G .aclK.t/jk/, and similarly Ks ,!Kƒ.Ljl/ dualizes to G .Ljl/!

G .aclL.s/jl/. Hence, by Lemma A.8, w is divisorial. To conclude, simply note that the
valuation w is uniquely determined by Uw , since the value group of w is Z.
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