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Abstract. If L is an oriented link with n components, then the rank of its Khovanov homology
is at least 2n. We classify all links that achieve this lower bound and show that such links can be
obtained by iterated connected sums and disjoint unions of Hopf links and unknots. This gives a
positive answer to a question asked by Batson and Seed (2015).
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1. Introduction

Let L be an oriented link in S3 and R be a ring. Khovanov homology [14] assigns a
bi-graded R-module Kh.LIR/ to the link L. When R is an integral domain, the Euler
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characteristics of Kh.LIR/ are given by the coefficients of the unreduced Jones polyno-
mial of L. If L has n components, then the value of the unreduced Jones polynomial at
t D 1 equals .�2/n. Therefore,

rankR Kh.LIR/ � 2n: (1.1)

The rank of Kh.LIR/ is independent of the orientation of L. This paper classifies all
links L such that equality is achieved in (1.1).

If L is the unlink, then rankR Kh.LIR/ D 2n and (1.1) attains equality. However,
there are other examples where equality holds in (1.1). In graph theory, a finite simple
graph is called a forest if it contains no cycles. Given a forestG, we define the link LG by
placing an unknot at each vertex of G and linking two unknots as a Hopf link whenever
there is an edge connecting the corresponding vertices (see Figures 1–3 for examples).
The link LG is called the forest of unknots defined by G. By definition, every forest of
unknots can be obtained by iterated connected sums and disjoint unions of Hopf links
and unknots. By [1, Corollary 6.6], if LG is a forest of unknots with n components, then
rankR Kh.LG IR/ D 2n.

Fig. 1. Example of a forest of unknots.

Fig. 2. Example of a forest of unknots.

Fig. 3. Example of a forest of unknots.

The following question was asked by Batson and Seed:

Question 1.1 ([5, Question 7.2]). Are forests of unknots the only n-component links with
Khovanov homology of rank 2n in Z=2-coefficients?

The main result of the paper gives an affirmative answer to the above question.
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Theorem 1.2. If L is an n-component link such that rankZ=2 Kh.LIZ=2/ D 2n, then L
is a forest of unknots.

Remark 1.3. The special case of Theorem 1.2 when L is alternating was proved by
Shumakovitch [30, Lemma 3.3.C].

The detection property of Khovanov homology has been a central question since the
introduction of the theory. The first breakthrough in this field was the landmark paper by
Kronheimer and Mrowka [20], which proved that Khovanov homology detects the unknot
(see also [11,12]). Since then, several other detection results have been proved. It is known
that Khovanov homology detects the unlink [5, 13], the trefoil [3] and the Hopf link [4].

Theorem 1.2 recovers all the previous detection results on links [4, 5, 13]. In fact, we
have the following two corollaries of Theorem 1.2. They will be proved in Section 12.

Corollary 1.4. Suppose L1 and L2 are two oriented links with n components and L1 is
a forest of unknots. If there exist e; f 2 Z such that

Khi;j .L1IZ=2/ Š KhiCe;jCf .L2IZ=2/

for all i; j 2 Z, then L2 is isotopic to a forest of unknots whose graph has the same
number of edges as the graph of L1. In particular, if

Khi;j .L1IZ=2/ Š Khi;j .L2IZ=2/

for all i; j 2 Z, and if L1 is the unlink, or a Hopf link, or the disjoint union of a Hopf link
and the unlink, or a connected sum of two Hopf links, then L2 is isotopic to L1.

Given a linkLwith n components, one can equip Kh.LIZ=2/with a module structure
over the ring

Rn WD .Z=2/ŒX1; : : : ; Xn�=.X
2
1 ; : : : ; X

2
n /:

For the definition of the module structure, the reader may refer to [13, Section 2] and
[15, Section 3].

Corollary 1.5. Suppose L1 and L2 are two links with n components, and suppose L1
is a forest of unknots with graph G1. If Kh.L1IZ=2/ is isomorphic to Kh.L2IZ=2/ as
Rn-modules, then L2 is isotopic to a forest of unknots with graph G2 such that

(1) there is a one-to-one correspondence between the connected components of G1 and
the connected components of G2;

(2) the corresponding components of G1 and G2 have the same number of vertices.

If we further assume the number of vertices of every connected component of G1 is less
than or equal to 3, then L2 is isotopic to L1 as unoriented links.

Remark 1.6. Suppose L1 and L2 are two forests of unknots which are associated to
trees with the same number of vertices (see Figures 2 and 3 for examples). We may also
orient L1; L2 so that the linking number of any two components is non-negative. Then
Kh.L1IZ=2/ and Kh.L2IZ=2/ are isomorphic as bi-graded vector spaces according to
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[1, Theorem 6.2]. Moreover, the module structures of Kh.L1IZ=2/ and Kh.L2IZ=2/ are
also isomorphic according to Lemma 12.1.

The proof of Theorem 1.2 consists of five main steps. By Kronheimer–Mrowka’s spec-
tral sequence [20] and Batson–Seed’s inequality, if L satisfies the condition of Theorem
1.2, then all the components of L are unknots. Using instanton Floer homology and vari-
ous topological arguments, we establish the following results:

(1) The linking number of any two components of L is 0 or 1. This is proved in Section 6
using a braid-detection result for annular instanton homology by the authors [34,
Corollary 8.4] together with an Alexander polynomial argument for exchangeably
braided links.

(2) Let G be the graph such that each vertex of G corresponds to a component of L and
there is an edge between two vertices of G if and only if the linking number of the
corresponding components of L is non-zero. In Section 5, we show that if G is a
forest, then L must be a forest of unknots. This uses the authors’ previous result on
the relationship between the generalized Thurston norm and singular instanton Floer
homology [34, Theorem 8.2].

(3) If G is not a forest, we may assume without loss of generality that G is a cycle by
passing to a sublink. By step (2), deleting a component of L gives a connected sum of
Hopf links which is fibered. In Section 7.2, we show that the deleted component can
be made disjoint from a fiber. This step uses the properties of instanton homology with
local coefficients developed in Section 3, and it is the most difficult gauge-theoretic
step in the proof.

(4) It can be shown that the removed component in step (3) is the boundary of a disk
that intersects the fiber in a single arc. We explicitly determine the arc using results
in Sections 8 and 9. This step does not use gauge theory but depends on an in-depth
analysis of the fundamental group of the complement of the connected sum of Hopf
links.

(5) The link is now known explicitly enough to be ruled out by hand using a computation
in Section 10.

The method in step (1) above can also be used to prove other new detection results
for links with small Khovanov homology. The proof of Theorem 1.7 below is given in
Section 6.

Theorem 1.7. Let L1 be the oriented link given by Figure 4, and let L2 be the disjoint
union of a trefoil and an unknot. Let L D K1 [K2 be a 2-component oriented link.

(1) If
Kh.LIZ=2/ Š Kh.L1IZ=2/

as bi-graded vector spaces, then L is isotopic to L1.

(2) Let q 2 K2 and p be a basepoint on the unknotted component of L2. If

Khr.L; qIZ/ Š Khr.L2; pIZ/
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Fig. 4. The link L4a1 in the Thistlethwaite table with an orientation.

as bi-graded abelian groups, then L splits into the disjoint union of a trefoil K1 and
an unknot K2.

Remark 1.8. By the trefoil detection result of Baldwin and Sivek [3], the essential con-
tent of part (2) of Theorem 1.7 is the splitness of L. Shortly after the first version of this
paper was posted to arXiv, Lipshitz and Sarkar [24] proved that the splitness of a general
link can be detected by the module structure of Khovanov homology.

The proof of Theorem 1.2 does not immediately apply to other coefficient rings
because it relies on [30, Corollary 3.2.C], which only holds for Z=2-coefficients. In
Section 12, we will use a purely algebraic argument to extend Theorem 1.2 to arbitrary
coefficient rings and prove the following theorem.

Theorem 1.9. Suppose R is an integral domain. If L is an n-component link such that
rankR Kh.LIR/ D 2n, then L is a forest of unknots.

2. Annular instanton Floer homology

The singular instanton Floer homology theory was introduced by Kronheimer and
Mrowka [20,21]. Let .Y;L;!/ be a triple where Y is a closed oriented 3-manifold,L� Y
is a link and ! � Y is an embedded 1-manifold such that @!D! \L. The triple .Y;L;!/
is called admissible if there is an embedded closed surface† � Y satisfying either one of
the following conditions:

� † is disjoint from L and the intersection number of ! and † is odd,

� the intersection number of L and † is odd.

If .Y; L; !/ is admissible, the instanton Floer homology I.Y; L; !/ is defined to be a
Morse homology of the Chern–Simons functional on a certain space of orbifold SO.3/-
connections over Y , where Y is equipped with an orbifold structure with cone angle �
along L, and ! represents the second Stiefel–Whitney class of the SO.3/-bundle. In this
article, we will always take C-coefficients for instanton Floer homology.
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The homology group I.Y; L; !/ carries a relative Z=4-homological grading. Given
an embedded closed surface F � Y , there is an operator �orb.F / defined on I.Y; L; !/
with degree 2. For more details the reader may refer to, for example, [34, Section 2] or
[31, Section 2.3.2].

The rest of this section gives a brief review of the annular instanton Floer homology
introduced in [33]. LetL be a link in the solid torus S1 �D2. The annular instanton Floer
homology AHI.L/ is defined by the following procedure:

(1) Let K2 be the product link S1 � ¹p1; p2º in S1 �D2, and let u be an arc in S1 �D2

connecting S1 � ¹p1º and S1 � ¹p2º.

(2) Form the new link L [K2 in

S1 � S2 D S1 �D2
[S1�S1 S

1
�D2;

where L lies in the first copy of S1 �D2, and K2 lies in the second copy.

(3) Define
AHI.L/ WD I.S1 � S2; L [K2; u/:

The vector space AHI.L/ is equipped with an absolute Z-grading (called the f-grading).
By definition, the component of AHI.L/ with f-degree i is given by the generalized
eigenspace of �orb.S2/ for the eigenvalue i , and is denoted by AHI.L; i/. Since �orb.S2/

has degree 2 with respect to the Z=4-homological grading of AHI.L/, the subspace
AHI.L; i/ carries a Z=2-homological grading, and we have

AHI.L; i/ Š AHI.L;�i/: (2.1)

There is a product formula for split links in S1 �D2.

Proposition 2.1 ([33, Proposition 4.3]). Suppose L1 and L2 are two links in S1 �D1
and S1 �D2 respectively, where D1 and D2 are disjoint subdisks of D2. Then

AHI.L1 [ L2/ Š AHI.L1/˝ AHI.L2/:

Moreover, the isomorphism above preserves the f-gradings.

In the following, we will use Un to denote the unlink with n components in S1 �D2,
and use Kn to denote the closure of the trivial braid with n strands in S1 �D2. We will
use Uk [Kl to denote the union of Uk and Kl such that Uk is included in a solid 3-ball
disjoint from Kl .

Example 2.2 ([33, Example 4.2]). The critical set of the unperturbed Chern–Simons
functional for AHI.U1/ is diffeomorphic to S2, and after perturbation the critical set
consists of two points whose homological degrees differ by 2. Therefore there is no dif-
ferential, and we have

AHI.U1/ Š C ˚C:

The vector space AHI.U1/ is supported in f-grading 0.
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The critical set for AHI.K1/ consists of two points whose homological degrees differ
by 2, so there is no differential and

AHI.K1/ Š C ˚C:

The vector space AHI.K1/ is supported in f-gradings˙1.
By Proposition 2.1, we have

AHI.Uk [Kl / Š AHI.U1/
˝k
˝ AHI.K1/

˝l ;

and the above isomorphism preserves the f-gradings.
We also have AHI.;/ Š C, because the critical set consists of a single point.

Definition 2.3. A properly embedded, connected, oriented surface S � S1 �D2 is called
a meridional surface if @S is a meridian of S1 �D2.

The annular instanton Floer homology detects the generalized Thurston norm of
meridional surfaces.

Theorem 2.4 ([34, Theorem 8.2]). Fix a linkL in S1 �D2 and suppose S is a meridional
surface that intersects L transversely. Let g be the genus of S and let n WD jS \ Lj. If S
minimizes the value of 2g C n among meridional surfaces, then

AHI.L; i/ D 0 for all ji j > 2g C n,

AHI.L;˙.2g C n// ¤ 0:

We also need the following result.

Proposition 2.5 ([34, Corollary 8.4]). Let L be a link in S1 �D2. Then L is isotopic to
the closure of a braid with n strands if and only if the top f-grading of AHI.L/ is n and
AHI.L; n/ Š C:

Although annular instanton Floer homology is defined for links in the solid torus, it
can be used to study links in S3. Let L be a link in S3 and let p be a basepoint on L. In
[20], Kronheimer and Mrowka defined the link invariant

I\.L; p/ WD I.S3; L [m;u/;

wherem is a small meridian ofL around p and u is an arc joiningm and p. The following
result is a consequence of the excision property of instanton Floer homology.

Proposition 2.6 ([33, Section 4.3]). Suppose L has an unknotted component U and let
p 2 U . Let N.U / be a tubular neighborhood of U . Then L0 WD L � U is a link in the
solid torus S3 �N.U /, and

AHI.L0/ Š I\.L; p/: (2.2)

The above isomorphism does not preserve the f-grading of AHI.L0/ since there is no
such grading on I\.L; p/. Notice that a meridional surface in the solid torus S3 � N.U /
is a Seifert surface of U .
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3. Local coefficients

This section reviews the singular instanton Floer homology theory with local coefficients,
which was introduced in [21, Section 3.9] (see also [22, Section 3]). Let B.Y; L; !/ be
the space of gauge-equivalence classes of orbifold connections over .Y; L; !/. Let R be
the ring

R WD CŒt; t�1�;

and suppose
� W B.Y; L; !/! R=Z

is a continuous function. For each a 2 B.Y;L; !/, define a rank-1 free R-module by the
formal multiplication

��a WD t
Q�.a/
�R;

where Q�.a/ is a lift of �.a/ in R. Let Crit.CS/ be the set of critical points of the (per-
turbed) Chern–Simons functional CS, and define a free R-module C� by

C� WD
M

˛2Crit.CS/

��˛ :

To make C� a chain complex, we need to define a differential on it. For ˛; ˇ 2 Crit.CS/,
let Md .˛; ˇ/ be the d -dimensional moduli space of trajectories of CS from ˛ to ˇ. This
space carries an R-action and we denote the quotient space by

MMd .˛; ˇ/ WDMd .˛; ˇ/=R:

A trajectory z 2Md .˛; ˇ/ determines a path pz in B.Y; L; !/ from ˛ to ˇ. The map

� ı pz W Œ0; 1�! R=Z

can be lifted to a map
A� ı pz W Œ0; 1�! R:

Although A� ı pz is not unique, the difference

�.z/ WD A� ı pz.1/ � A� ı pz.0/
is well-defined. We define an R-module homomorphism by

d˛ˇ W �
�
˛ ! �

�

ˇ
; t s 7!

X
Œz�2 MM1.˛;ˇ/

sign(z) � t sC�.z/:

The differential D on C� is then given by

D WD
M

˛;ˇ2Crit.CS/

d˛ˇ ;

and the instanton Floer homology with local coefficients is defined by

I.Y; L; !I��/ WD H�.C�;D/: (3.1)
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If F � Y is an embedded closed surface, the operator �orb.F / can be defined in the
setting with local coefficients. Roughly speaking, the surface F defines a two-dimensional
cohomology class on B.Y; L; !/ (see [34, formula (10)]), and its Poincaré dual is given
by a linear combination of divisors on B.Y; L; !/ asX

aiVi ; ai 2 Q:

There is a map from Md .˛; ˇ/ to B.Y; L; !/ by restricting the trajectories at time 0.
The divisors Vi can be chosen to be generic in the sense that they are transverse to the
restriction mapMd .˛; ˇ/!B.Y;L;!/ for all ˛;ˇ 2 Crit.CS/ and d 2 N. We define an
R-module homomorphism by

f ˛ˇ W �
�
˛ ! �

�

ˇ
; t s 7!

X
i

ai
X

z2M2.˛;ˇ/\Vi

sign.z/ � t sC�.z/:

A standard argument shows that the mapM
˛;ˇ2Crit.CS/

f ˛ˇ W C
�
! C� (3.2)

is a chain map. The map (3.2) induces the operator �orb.F / on I.Y; L; !I��/. When it
does not cause confusion, we will also use �orb.F / to denote the chain map (3.2) by abuse
of notation.

The tensor products�
C� ˝R R=.t � 1/;D ˝R R=.t � 1/

�
; �orb.F /˝R R=.t � 1/

recover the ordinary Floer chain complex .C; d/ and the chain map defining the ordinary
operator �orb.F / on I.Y; L; !/ with C-coefficients.

Suppose there is a component K � L such that K \ ! D ;. Fix an orientation and a
framing of K. We can define a continuous map

�K W B.Y; L; !/! U.1/ D R=Z

by taking the limit holonomy of the orbifold connections along the longitude of K. The
map �K then gives a local system. The local systems defined by different framings of K
are isomorphic via multiplications by powers of t , therefore the choice of the framing is
not important. More generally, suppose there is a sublink L0 D K1 [ � � � [Kl of L such
that ! \L0 D ;. We can choose a framing for eachKj and define the map �Kj as above,
and hence we obtain a local system � associated with L0 defined by

�L0 WD �K1 � � ��Kl :

If L0 is the empty link, then �L0 D 1, thus the local system � is the trivial system with
R-coefficients. In this case, we have

I.Y; L; !I�/ D I.Y; L; !/˝C R: (3.3)
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Suppose .Y0; L0; !0/ and .Y1; L1; !1/ are two admissible triples with local systems
�0 and �1 associated with oriented sublinks L00 � L0 and L01 � L1 respectively. Let

.W; S; �/ D .W; S 0 t S 00; �/ W .Y0; L0; !0/! .Y1; L1; !1/

be a cobordism such that @S 0 D L00 [ L
0
1 and � \ S 0 D ;. Then .W; S; �/ induces a map

I.W; S; �/ W I.Y0; L0; !0I�0/! I.Y1; L1; !1I�1/:

This makes the instanton Floer homology with local coefficients a functor. By the defini-
tion of cobordism of triples, S and � are required to be embedded surfaces in W . We can
also consider the situation where S is an immersed surface with transverse double points,
as discussed in [21, Section 5] and [18]. In this situation, one can blow up W at the self-
intersection points of S to resolve the double points and obtain an ordinary cobordism
.eW ;eS; �/, and then define

I.W; S; �/ WD I.eW ;eS; �/:
Now suppose S D S 0 t S 00 and OS D OS 0 t OS 00 are two immersed surfaces with trans-

verse double points in W such that � \ S 0 D O� \ OS 0 D ;, � D O�, @S D @ OS D L0 [ L1,
and @S 0 D @ OS 0 D L00 [ L

0
1. We consider the following five situations:

(i) OS is obtained from S by an ambient isotopy;

(ii) OS 00 D S 00, and OS 0 is obtained from S 0 by a twist move introducing a positive double
point (see [10, Section 1.3] for the definition of twist move);

(iii) OS 00 D S 00, and OS 0 is obtained from S 0 by a twist move introducing a negative double
point;

(iv) OS 00 D S 00, and OS 0 is obtained from S 0 by a finger move introducing two double points
of opposite signs (see Figure 5 for a schematic picture and see [10, Section 1.5] for
the precise definition of finger move);

Fig. 5. A schematic picture of the finger move.

(v) OS is obtained from S by a finger move introducing two double points of opposite
signs in OS 0 \ OS 00.

All the moves and isotopies above are assumed to be supported outside a neighborhood
of � D O�.

Proposition 3.1. Let .Y0; L0; !0/; .Y1; L1; !1/;W; S; OS; �; �0; �1 be as above, and let

I.W; S; �/ W I.Y0; L0; !0I�0/! I.Y1; L1; !1I�1/;

I.W; S 0; �/ W I.Y0; L0; !0I�0/! I.Y1; L1; !1I�1/
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be the induced cobordism maps. For the five cases listed above, the following equations
hold respectively:

(i) I.W; OS; �/ D I.W; S; �/;

(ii) I.W; OS; �/ D .1 � t2/ I.W; S; �/;

(iii) I.W; OS; �/ D I.W; S; �/;

(iv) I.W; OS; �/ D .1 � t2/ I.W; S; �/;

(v) I.W; OS; �/ D �.t/ I.W; S; �/ for a universal non-zero polynomial �.t/ 2 R.

Proof. Part (i) is trivial. (ii)–(iv) are from [22, Proposition 3.1]. The proof of (v) is similar
to that of (iv). We first review Kronheimer and Mrowka’s proof of (iv) briefly. For simplic-
ity, consider a special case that .W; S; �/ is closed, thus it can be viewed as a cobordism
from the empty set to the empty set. We also assume S 00 D OS 00 D ;. In this case,

I.W; S; �/ 2 HomR.R;R/ D R

is the singular Donaldson invariant (from 0-dimensional moduli spaces) introduced by
Kronheimer and Mrowka [19]. More precisely, we have

I.W; S; �/ D
X
k;l

qk;l .W; S; �/t
�l ; (3.4)

where qk;l denotes the singular Donaldson invariant defined by counting the number of
points in the 0-dimensional moduli spaces over all orbifold bundles with instanton num-
ber k and monopole number l . The restriction of an orbifold SO.3/-bundle to S has a
reduction to K ˚R where K is an SO.2/-bundle. By definition, the monopole number l
is given by

l D �1
2
e.K/ŒS�:

If .W; OS/ is obtained from .W; S/ by a finger move, [18, Proposition 3.1] uses a gluing
argument to prove that

qk;l .W; OS; �/ D qk;l .W; S; �/ � qk�1;lC2.W; S; �/: (3.5)

When .W; S; �/ is closed and S 00 D OS 00 D ;, part (iv) follows immediately from (3.4)
and (3.5). Since the gluing argument only depends on the local structure of the finger
move, it is straightforward to extend the argument to the general (relative) case.

To prove (v), we first assume .W; S; �/ is closed and S 00 ¤ ;. We give a refined
definition of the monopole number l by taking

l0 WD �
1
2
e.K/ŒS 0�; l1 WD �

1
2
e.K/ŒS 00�:

It is clear from the definition that l D l0 C l1. With this definition, we have a refined
singular Donaldson invariant qk;l0;l1 . Similar to (3.4), we define the polynomial

Q.W; S; �/.t0; t1/ WD
X
k;l0;l1

qk;l0;l1.W; S; �/t
�l0
0 t

�l1
1 :
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If OS is obtained by a finger move that introduces intersection points between S 0 and S 00,
then the proof of [18, equation (23)] shows that there exist universal constants ai;j 2 Z
such that

qk;l0;l1.W;
OS; �/ D

X
2jiCj

ai;j qk� iCj2 ;l0Ci;l1Cj
.W; S; �/:

By the Uhlenbeck compactness theorem, only finitely many ai;j ’s are non-zero. This
implies that

Q.W; OS; �/.t0; t1/ D P.t0; t1/Q.W; S; �/.t0; t1/ (3.6)

for a universal polynomial P.t0; t1/ 2 CŒt0; t�10 ; t1; t
�1
1 �. Notice that

qk;l D
X

l0Cl1Dl

qk;l0;l1 ;

therefore (3.5) implies
P.t; t/ D 1 � t2: (3.7)

We also have P.t0; t1/ D P.t1; t0/ because there is no difference between the roles of S 0

and S 00 in the finger move.
We claim that

P.t; 1/ D P.1; t/ ¤ 0: (3.8)

In fact, suppose the contrary; then

.t0 � 1/ jP.t0; t1/; .t1 � 1/ jP.t0; t1/;

thus we have

.t0 � 1/.t1 � 1/ jP.t0; t1/; therefore .t � 1/.t � 1/ jP.t; t/;

which contradicts (3.7), hence the claim is proved.
Now, let �.t/ WD P.t; 1/. We have

I.W; S; �/.t/ D Q.W; S; �/.t; 1/;

therefore in the closed case, part (v) of the proposition follows from (3.6) and (3.8). By
the gluing argument, the same result holds for the non-closed case.

Suppose .Y; L0; !/ is an admissible triple, and let L00 be a sublink of L0 such that
L00 \ ! D ;. Fix an orientation of L00. By the previous discussion, L00 defines a local sys-
tem �0 with R-coefficients. Suppose L1 is obtained from L0 by a local crossing change
in Y � !, where the crossing is either within L00 or between L00 and L0 � L00, and let
�1 be the local system of .Y; L1; !/ associated with the image of L00 after the crossing
change.

The crossing change induces an immersed cobordism S W L0 ! L1, where S is
an immersed surface in Œ0; 1� � Y with one double point. Reversing S , we obtain an
immersed cobordism xS W L1 ! L0 with one double point. The composition S [ xS �
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Œ0; 2� � Y can be obtained from the product cobordism Œ0; 2� � L0 by a finger move
decribed by case (iv) or case (v) of Proposition 3.1. Therefore by Proposition 3.1, the map

I.Œ0; 2� � Y; S [ xS; Œ0; 2� � !/ W I.Y; L0; !0I�0/! I.Y; L0; !0I�0/ (3.9)

is equal to .1 � t2/ id or �.t/ id. Similarly, the map

I.Œ0; 2� � Y; xS [ S; Œ0; 2� � !/ W I.Y; L1; !I�1/! I.Y; L1; !I�1/ (3.10)

is equal to .1 � t2/ id or �.t/ id. As a consequence, we have the following result.

Proposition 3.2. Suppose .Y; L0; !/ is an admissible triple and L00 � L0 is a sublink
with L0 \ ! D ;. Fix an orientation on L00 and let �0 be the local system of .Y; L0; !/
defined by L00. Suppose L01 is an oriented link that is homotopic to L00 in Y � ! and is
disjoint fromL0 �L00. LetL1 WDL01 [ .L0 �L

0
0/. Let �1 be the local system of .Y;L1;!/

defined by L01. Then

T �1 I.Y; L0; !I�0/ Š T �1 I.Y; L1; !I�1/;

where T is the multiplicative system generated by .1 � t2/�.t/.

Proof. Since L00 is homotopic to L01 in Y � !, the link L1 can be obtained from L0
by a finite sequence of crossing changes in Y � ! such that the sublink L0 �L00 remains
fixed. Without loss of generality, we may assume thatL1 is obtained fromL0 by one such
crossing change. Let S � Y � Œ0; 1� be the immersed cobordism from L0 to L1 given by
the crossing change, and let NS be the reverse of S . By (3.9), (3.10), and the functoriality
of the instanton Floer homology with local coefficients, we have

I.Y � Œ0; 1�; xS; ! � Œ0; 1�/ ı I.Y � Œ0; 1�; S; ! � Œ0; 1�/ D .1 � t2/ id or �.t/ id

on I.Y; L0; !I�0/, and

I.Y � Œ0; 1�; S; ! � Œ0; 1�/ ı I.Y � Œ0; 1�; xS; ! � Œ0; 1�/ D .1 � t2/ id or �.t/ id

on I.Y;L1;!I�1/. Hence T �1 I.Y;L0;!I�0/ and T �1 I.Y;L1;!I�1/ are isomorphic.

Corollary 3.3. Let Y; !;L0; L1; �0; �1 be as in Proposition 3.2. Then

rankR I.Y; L0; !I�0/ D rankR I.Y; L1; !I�1/:

Given an oriented link L in S1 �D2, we define the annular instanton Floer homology
with local coefficients by

AHI.LI�/ WD I.S1 � S2; L [K2; uI�/;

where � is the local system associated with L. The operator �orb.S2/ on AHI.LI �/ is
now an R-module homomorphism instead of a C-linear map, therefore AHI.LI �/ no
longer carries the f-grading. The torus excision theorem [20, Theorem 5.6] still holds for
instanton Floer homology with local coefficients, as long as the excision surface is disjoint
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from the sublink defining the local system. Therefore, Proposition 2.1 still holds for the
annular instanton Floer homology with local coefficients, except that there is no f-grading
anymore.

Example 3.4. By Example 2.2, the critical points of the (perturbed) Chern–Simons func-
tional for AHI.U1/ (or AHI.K1/) consist of two points whose homological degrees differ
by 2. Therefore there are no differentials in the Floer chain complex, and we have

AHI.U1I�/ Š R˚R; AHI.K1I�/ Š R˚R:

By Proposition 2.1,
AHI.Uk [Kl I�/ Š R2kCl :

Proposition 2.6 follows from the torus excision theorem, therefore it also works in
the case with local coefficients. Let L � S1 �D2 be a link with n components and view
S1 �D2 as the complement of a neighborhood of the unknot U in S3, let p 2 U and let
�L be the local system associated with L. Then

AHI.LI�/ Š I\.L [ U; pI�L/:

Suppose the annular link L has n components. Then the embedded image of L in S3 is
homotopic to the embedded image of Un in S3. By Corollary 3.3, we have

rankR I\.L [ U; pI�L/ D rankR I\.Un [ U; pI�Un
/:

By Proposition 2.6 again,

I\.Un [ U; pI�/ Š AHI.UnI�/ Š R2n :

In conclusion, we obtain
rankR AHI.LI�/ D 2n: (3.11)

By the universal coefficient theorem,

rankC I\.L [ U; p/ D rankC AHI.L/ � rankR AHI.LI�/ D 2n: (3.12)

4. Limits of chain complexes

This section discusses a simple observation from linear algebra and its consequences in
instanton Floer homology.

Suppose ¹Cnºn2Z is a sequence of finite-dimensional complex vector spaces. For
each n 2 Z and k � 0, and let @.k/n be a C-linear map from Cn to Cn�1, let f .k/n be
an endomorphism of Cn. Suppose that for each pair .n; k/ we have @.k/n ı @

.k/
nC1 D 0 and

@
.k/
n ı f

.k/
n D f

.k/
n�1 ı @

.k/
n . Moreover, suppose that for each n the limits

lim
k!1

f .k/n and lim
k!1

@.k/n
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exist. Let

@n WD lim
k!1

@.k/n ; fn WD lim
k!1

f .k/n ;

H .k/
n WD ker @.k/n =Im @

.k/
nC1; Hn WD ker @n=Im @nC1:

The maps f .k/n and fn induce maps on H .k/
n and Hn respectively. For ƒ � C, define

E
.k/
n;ƒ �H

.k/
n to be the direct sum of the generalized eigenspaces of f .k/n with eigenvalues

in ƒ. Similarly, define En;ƒ � Hn to be the direct sum of the generalized eigenspaces of
fn with eigenvalues in ƒ.

Lemma 4.1. Let Cn, @.k/n , @n, f .k/n , fn, H .k/
n , Hn, E.k/n;ƒ, and En;ƒ be as above.

(1) If ƒ � C is a closed subset, then

dimEn;ƒ � lim sup
k!1

dimE
.k/
n;ƒ:

(2) For " > 0, let N.ƒ; "/ be the closed "-neighborhood of ƒ. If ƒ is closed, then

dimEn;ƒ � lim
"!0

lim sup
k!1

dimE
.k/

n;N.ƒ;"/
:

(3) If we further assume that dimH
.k/
n D dimHn for all k, then

dimEn;ƒ D lim
"!0

lim sup
k!1

dimE
.k/

n;N.ƒ;"/
:

Proof. (1) LetZn WD ker@.k/n , B.k/n WD Im@.k/nC1,Zn WD ker@n, Bn WD Im@nC1. After tak-
ing a subsequence, we may assume that the dimensions of Z.k/n and B.k/n are independent
of k, and that they are convergent in the corresponding Grassmannians as k !1. The
spectrum of fn (with multiplicities) on�

lim
k!1

Z.k/n

�
=
�

lim
k!1

B.k/n

�
(4.1)

is the limit of the spectra of f .k/n on Z.k/n =B
.k/
n as k !1. Let

E 0n;ƒ �
�

lim
k!1

Z.k/n

�
=
�

lim
k!1

B.k/n

�
be the direct sum of the generalized eigenspaces of fn for the eigenvalues in ƒ. Since ƒ
is closed, the previous argument implies

dimE 0n;ƒ � lim sup
k!1

dimE
.k/
n;ƒ:

On the other hand, we have

Zn � lim
k!1

Z.k/n ; Bn � lim
k!1

B.k/n ;
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therefore (4.1) is a subquotient of Hn D Zn=Bn, and hence

dimEn;ƒ � dimE 0n;ƒ � lim sup
k!1

dimE
.k/
n;ƒ;

which completes the proof.
(2) Let "0 be sufficiently small such that En;N.ƒ;"0/ D En;ƒ. By (1), we have

dimEn;ƒ D dimEn;N.ƒ;"0/

� lim sup
k!1

dimE
.k/

n;N.ƒ;"0/
� lim
"!0

lim sup
k!1

dimE
.k/

n;N.ƒ;"/
:

(3) Let "0 be sufficiently small such that En;N.ƒ;"0/ D En;ƒ. Suppose " < "0. Then
En;N.ƒ;"/ D En;ƒ. Let ƒ1 WD C �N.ƒ; "/. By the condition on ",

En;@N.ƒ;"/ D En;@ƒ1 D ¹0º:

Hence by (1), for k sufficiently large we have

dimE
.k/

n;@N.ƒ;"/
D dimE

.k/

n;@ƒ1
D 0:

Applying (1) again on N.ƒ; "/ and ƒ1, we deduce that if k is sufficiently large, then
dimEn;N.ƒ;"/ � dimE

.k/

n;N.ƒ;"/
and dimEn;ƒ1 � dimE

.k/
n;ƒ1

. Therefore

dimHn D dimEn;N.ƒ;"/ C dimEn;ƒ1

� dimE
.k/

n;N.ƒ;"/
C dimE

.k/
n;ƒ1

D dimH .k/
n D dimHn:

As a consequence, for k sufficiently large, dimEn;N.ƒ;"/ D dimE
.k/

n;N.ƒ;"/
, and hence

dimEn;ƒ D dimEn;N.ƒ;"/ D lim sup
k!1

dimE
.k/

n;N.ƒ;"/
:

Since the above equation holds for all " < "0, part (3) of the lemma is proved.

Recall that given an admissible triple .Y; L; !/ and a continuous function � W

B.Y; L; !/! R=Z, there is a local system �� on B.Y; L; !/ defined by �. The Floer
chain complex C� is a finitely generated free R-module, where R D CŒt; t�1�. The dif-
ferential D is an R-endomorphism of C�. For h 2 C � ¹0º, define

.Ch; dh/ WD .C� ˝R R=.t � h/;D ˝R idR=.t�h//:

Notice that R=.t � h/ Š C via the map t 7! h, so .Ch; dh/ is a finite-dimensional chain
complex over C. Let C WD CrankR C� . We identify Ch with C using the isomorphism
R=.t � h/ Š C. The differentials dh become a continuous family of linear maps on C .
Given an embedded surface F � Y , define

�orb.F /h WD �
orb.F /˝R R=.t � h/:
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Then �orb.F /h is continuous with respect to h and is a chain map on .C; dh/. Therefore,
for each h 2 C � ¹0º, the map �orb.F /h induces a map on the Floer homology

I.Y; L; !I�� ˝R R=.t � h// D H�.C; dh/:

To simplify notations, we will use ��.h/ to denote �� ˝R R=.t � h/ for the rest of this
article. If h D 1, then I.Y;L;!I��.1// is the ordinary instanton Floer homology without
local coefficients, and �orb.F /1 coincides with the ordinary � map.

Proposition 4.2. Let Y; !; L0; L1; L00; L
0
1; �0; �1 be as in Proposition 3.2. Let �.t/ be

the polynomial given by Proposition 3.1 (v). Suppose h 2 C � ¹0º satisfies

.1 � h2/�.h/ ¤ 0: (4.2)

Then
I.Y; L0; !I�0.h// Š I.Y; L1; !I�1.h//: (4.3)

Moreover, if F � Y is a closed embedded surface in Y , then the isomorphism (4.3) inter-
twines with �orb.F /h.

Proof. Let T � R be the multiplicative system generated by .1 � t2/�.t/ as in Propo-
sition 3.2. By (4.2), the elements of T have non-zero images in R=.t � h/ Š C, hence
R=.t � h/ is isomorphic to .T �1R/=.t � h/. Therefore, for i D 0; 1, we have

I.Y; Li ; !I�i .h// Š I
�
Y;Li ; !I�i ˝R T �1R˝T�1R T �1R=.t � h/

�
: (4.4)

On the other hand, since localization is an exact functor, we have

I.Y; Li ; !I�i ˝R T �1R/ Š T �1 I.Y; Li ; !I�i /:

Therefore by Proposition 3.2,

I.Y; L0; !I�0 ˝R T �1R/ Š I.Y; L1; !I�1 ˝R T �1R/: (4.5)

Since R is a principal ideal domain, the localization T �1R is also a principal ideal
domain, hence (4.3) follows from the universal coefficient theorem and the isomorphisms
(4.4) and (4.5).

It remains to prove that (4.3) intertwines with �orb.F /h. Since the isomorphism (4.5)
is induced by a cobordism in which the two copies of the surface F on the two ends are
homologous, it intertwines the �orb.F /h on the in-coming end with the �orb.F /h on the
out-going end, hence the statement is proved.

Lemma 4.1 and Proposition 4.2 have the following application.

Proposition 4.3. Suppose L � S1 �D2 is an oriented link such that every component
ofL has winding number 0 or˙1. Assume there are k components with winding number 0
and l components with winding number˙1. Then

dimC AHI.L; i/ � dimC AHI.Uk [Kl ; i/ for all i 2 Z.
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Proof. For � 2 C, let N.�; "/ be the closed "-neighborhood of � in C. Given a vector
space V over C, a linear map f W V ! V , and a subset ƒ � C, we use E.V; f; ƒ/ to
denote the direct sum of the generalized eigenspaces of f with eigenvalues in ƒ.

Recall that AHI.LI�/ is defined to be the instanton Floer homology

I.S1 � S2; L [K2; uI�/;

where � is the local coefficient system associated withL. For h2C�¹0º, recall that �.h/
is the local system over C given by � ˝R R=.t � h/. For every i 2 Z, Lemma 4.1 (2)
and Proposition 4.2 give

dim AHI.L; i/ � lim
"!0

lim sup
h!1

E
�
AHI.LI�.h//; �orb.S2/h; N.i; "/

�
D lim
"!0

lim sup
h!1

E
�
AHI.Uk [Kl I�.h//; �

orb.S2/h; N.i; "/
�
:

According to Example 3.4, AHI.Uk [Kl I�/ is a free R-module of rank 2kCl . By
the universal coefficient theorem, dimC AHI.Uk [Kl I�.h//D 2

kCl for all h 2C � ¹0º.
Therefore Lemma 4.1 (3) gives

lim
"!0

lim sup
h!1

E
�
AHI.Uk [Kl I�.h//; �

orb.F /h; N.i; "/
�
D dimC AHI.Uk [Kl ; i/;

and the proposition is proved.

Corollary 4.4. Suppose L � S1 �D2 is an oriented link such that every component of
L has winding number 0 or ˙1. Assume there are k components with winding number 0
and l components with winding number˙1. Moreover, assume

dimC AHI.L/ D 2kCl : (4.6)

Then there exists a meridional disk S in S1 �D2 such that S intersects every component
of L with winding number ˙1 transversely in one point, and S is disjoint from every
component of L with winding number 0.

Proof. By Example 3.4, dimC AHI.Uk [Kl /D 2
kCl , therefore (4.6) and Proposition 4.3

imply
dimC AHI.L; i/ D dimC AHI.Uk [Kl ; i/

for all i 2 Z. The top f-grading of AHI.Uk [Kl ; i/ is l . By Theorem 2.4, there exists
a meridional surface S with genus g such that S intersects L transversely in n points,
and 2g C n D l . On the other hand, every component with a non-zero winding number
must intersect S , therefore we have g D 0 and n D l , and the surface S is the desired
meridional disk.

5. Linking numbers and forests of unknots

This section proves a weaker version of Theorem 1.2:
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Theorem 5.1. Suppose L D K1 [ � � � [Kn is an oriented link with n components in S3

such that

(1) rankZ=2 Kh.LIZ=2/ D 2n;

(2) there exists a forest of unknots LG D K 01 [ � � � [K
0
n such that

lk.Ki ; Kj / D lk.K 0i ; K
0
j / for all i ¤ j:

Then L is isotopic to LG .

Before starting the proof, we need to make some preparations. Notice that Batson and
Seed’s work [5] implies the following useful result.

Proposition 5.2 ([5]). If L is a link in S3 with n components and

rankZ=2 Kh.LIZ=2/ D 2n;

then rankZ=2 Kh.L0IZ=2/ D 2jL0j for every sublink L0 of L, where jL0j is the number
of components of L0.

Proof. Suppose LDK1 [ � � � [Kn. Let I be a subset of ¹1; : : : ; nº with jI j components.
By [5, Theorem 1.1] (cf. the proof of [5, Proposition 7.1]), we have

2n D rankZ=2 Kh.KIZ=2/

� rankZ=2 Kh
�[
i…I

Ki IZ=2
�
� rankZ=2 Kh

�[
i2I

Ki IZ=2
�

� 2n�jI j � rankZ=2 Kh
�[
i2I

Ki IZ=2
�
� 2n:

Hence the inequalities above are equalities, and we have

rankZ=2 Kh
�[
i2I

Ki IZ=2
�
D 2jI j:

The above result together with Kronheimer–Mrowka’s unknot detection theorem
in [20] implies the following proposition.

Proposition 5.3 ([5, Proposition 7.1]). If L is a link in S3 with n components and

rankZ=2 Kh.LIZ=2/ D 2n;

then each component of L is an unknot.

Proposition 5.4. Suppose L is a link in S3 with n components and

rankZ=2 Kh.LIZ=2/ D 2n:

Then for every point p 2 L, we have dimC I\.L; p/ D 2n�1:
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Proof. Given a point p 2L, we use Khr.L;p/ to denote the reduced Khovanov homology
with basepoint p. By [30, Corollary 3.2.C],

rankZ=2 Khr.L; pIZ=2/ D 1
2

rankZ=2 Kh.LIZ=2/ D 2n�1:

By the universal coefficient theorem,

rankQ Khr.L; pIQ/ � rankZ=2 Khr.L; pIZ=2/ D 2n�1:

Let L be the mirror image of L. By [14, Corollary 11],

rankQ Khr.L; pIQ/ D rankQ Khr.L; pIQ/ � 2n�1:

Using Kronheimer–Mrowka’s spectral sequence [20, Theorem 8.2] whose E2-page is
Khr.L; pIZ/ and which converges to I\.L; pIZ/, we obtain

dimC I\.L; p/ D rankZ I\.L; pIZ/ � rankZ Khr.L; pIZ/ � 2n�1:

On the other hand, Proposition 5.3 and (3.12) imply that dimC I\.L;p/� 2n�1. Therefore
we obtain dimC I\.L; p/ D 2n�1.

Proof of Theorem 5.1. We prove the theorem by induction on n. When n D 1, it is the
unknot detection theorem of Kronheimer and Mrowka [20].

Assume the theorem holds when the number of components is smaller than n. Since
G is a forest, we can find a vertex of G with degree less than or equal to 1. We discuss
two cases.

Case 1: There is a vertex of G with degree 1. Without loss of generality, assume this
vertex corresponds to the component K 0n of LG . By the assumption of Theorem 5.1,
there exists i 2 ¹1; : : : ; n � 1º such that lk.Ki ; Kn/ D ˙1 and lk.Kj ; Kn/ D 0 when
1 � j � n � 1; j ¤ i .

Pick a basepoint p 2 Kn and use L0 to denote K1 [ � � � [Kn�1. According to Propo-
sition 5.3, Kn is an unknot. Let N.Kn/ be a tubular neighborhood of Kn. Then L0 can be
viewed as a link in the solid torus S3 �N.Kn/. By Propositions 2.6 and 5.4 we have

AHI.L0/ Š I\.L; p/ Š C2n�1

According to Corollary 4.4, we can find a meridional disk S in the solid torus S3 �N.Kn/
which intersects Ki in a single point and is disjoint from the other components. The
meridional disk S is a Seifert disk of Kn. By the induction hypothesis, L0 is a forest of
unknots. We can shrinkKn via S to a small meridian ofKi . ThereforeL is also a forest of
unknots. Since the linking numbers uniquely determine a forest of unknots, we conclude
that L is isotopic to LG .

Case 2: There is a vertex of G with degree 0. Without loss of generality, assume this
vertex corresponds to the component K 0n of LG . By the assumption of Theorem 5.1, we
have lk.Kj ;Kn/D 0 for all 1 � j � n� 1. Let L0 WDK1 [ � � � [Kn�1 and letN.Kn/ be
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a tubular neighborhood of Kn. We can view L0 as a link in the solid torus S3 � N.Kn/,
and the same argument as above gives AHI.L0/ŠC2n�1 . By Proposition 4.4, we can find
a meridional disk S in the solid torus S3 � N.Kn/ which is disjoint from L0. Therefore
L is the disjoint union of L0 and the unknot, and the result follows from the induction
hypothesis on L0.

6. The case of 2-component links

6.1. The linking numbers of 2-component links

This subsection proves that condition (2) of Theorem 5.1 is implied by condition (1) when
n D 2. The main result of this subsection is the following lemma.

Lemma 6.1. Suppose L D K1 [K2 is a link with two components such that

rankZ=2 Kh.LIZ=2/ D 4:

Then jlk.K1; K2/j � 1:

Combining this lemma with Theorem 5.1, we have the following corollary.

Corollary 6.2. Suppose L is a link with two components and rankZ=2 Kh.LIZ=2/ D 4.
Then L is either the 2-component unlink or the Hopf link.

We start the proof of Lemma 6.1 with the following lemma.

Lemma 6.3. Suppose LD K1 [K2 satisfies the assumption of Lemma 6.1, and suppose
L is not the unlink. Then K1 is an unknot, and K2 is a braid closure with axis K1.
Similarly, K2 is an unknot, and K1 is a braid closure with axis K2.

Proof. Proposition 5.3 implies that K1 and K2 are both unknots. Let N.K1/ be a tubular
neighborhood of K1. Then K2 is a knot in the solid torus S3 � N.K1/. Proposition 5.4
yields

dimC I\.L; p/ D 2

for every p 2 L. By Proposition 2.6,

dimC AHI.K2/ D dimC I\.L; p/ D 2: (6.1)

If AHI.K2/ is supported in f-degree 0, then by Theorem 2.4, there exists a meridional disk
which is disjoint from K2. This means K2 is included in a 3-ball in the solid torus S3 �
N.K1/, hence K1 and K2 are split, and therefore the link L is the unlink, contradicting
the assumption. Therefore AHI.K2/ is supported in f-degrees ˙l for l > 0. By (6.1), we
have AHI.K2;˙l/ Š C and AHI.K2/ vanishes in all the other f-degrees. According to
Proposition 2.5, K2 is the closure of an l-braid in S3 �N.K1/.

The same argument for S3 �N.K2/ proves the second half of the lemma.
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Remark 6.4. A link described by the conclusion of Lemma 6.3 is called an exchangeably
braided link. This concept was first introduced and studied by Morton [25].

Let l > 1 be an integer. Recall that the braid group Bl is given by

Bl D h�1; : : : ; �l�1 j �i�iC1�i D �iC1�i�iC1; �i�j D �j�i .j � i � 2/i:

The reduced Burau representation (see [6]) is a group homomorphism

� W Bl ! GL.l � 1;ZŒt; t�1�/

defined by

�.�i / WD

0BBBBB@
Ii�2

1 0 0

t �t 1

0 0 1

Il�i�2

1CCCCCA ; 2 � i � l � 2;

�.�1/ WD

0@�t 1

0 1

Il�3

1A ; �.�n�1/ WD

0@Il�3 1 0

t �t

1A
for l > 2, while for l D 2 it is defined by �.�1/ WD .�t /. Notice that for every ˇ 2 Bl ,
there exists an integer a such that

det.�.ˇ// D ˙ta: (6.2)

We also need the follow result by Morton.

Theorem 6.5 ([25, Theorem 3]). Suppose L D U [ b̌ is a 2-component link where U is
the unknot and b̌ is the closure of a braid ˇ 2 Bl with axis U . Then the multi-variable
Alexander polynomial �L.x; t/ of L is given by

�L.x; t/
:
D det.xI � �.ˇ/.t//;

where x and t are variables corresponding to U and Ǒ respectively.

Remark 6.6. The sign “ :D” in Theorem 6.5 means the two sides are equal up to multipli-
cation by ˙xatb . This is necessary because the multi-variable Alexander polynomial is
only defined up to multiplication by˙xatb .

Lemma 6.7. SupposeLDK1 [K2 is an exchangeably braided link with linking number
l � 2. Let�L.x; y/ be the multi-variable Alexander polynomial of L. Then the expansion
of the Laurent polynomial .x � 1/.y � 1/�L.x; y/ has .strictly/ more than four terms.

Proof. Without loss of generality, assume x and y are the variables corresponding to K1
and K2 respectively. Let ˇ 2 Bl be the braid whose closure is isotopic to K2 as a link in
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the solid torus S3 �K1. By (6.2) and Theorem 6.5, we have

�L.x; y/
:
D .�1/l�1 det.�.ˇ/.y//C f1.y/x C � � � C fl�2.y/xl�2 C xl�1

D ˙ya C f1.y/x C � � � C fl�2.y/x
l�2
C xl�1 (6.3)

for some a 2 Z and fi 2 ZŒy; y�1�.
Switching the roles of K1 and K2, we have

�L.x; y/
:
D ˙xb C g1.x/y C � � � C gl�2.x/y

l�2
C yl�1 (6.4)

for some b 2 Z and gi .x/ 2 ZŒx; x�1�.
By (6.3), we have

.y � 1/�L.x; y/
:
D ˙.y � 1/ya C .y � 1/f1.y/x C � � � C .y � 1/fl�2.y/x

l�2
C .y � 1/xl�1;

hence we have the following expansion in increasing powers of x:

.x � 1/.y � 1/�L.x; y/
:
D ˙.y � 1/ya C h1.y/x C � � � C hl�1.y/x

l�1
C .y � 1/xl :

The right-hand side has at least four terms after expansion, which come from the lowest
and highest powers of x. Suppose it has only four terms in total; then all the terms in
between must vanish, thus we have

.x � 1/.y � 1/�L.x; y/
:
D ˙.y � 1/ya C .y � 1/xl : (6.5)

Plugging in x D 1, we have

0 D ˙.y � 1/ya C .y � 1/;

therefore a D 0, and (6.5) gives

�L.x; y/
:
D
�.y � 1/C .y � 1/xl

.x � 1/.y � 1/
D 1C x C � � � C xl�1;

which contradicts (6.4) when l � 2.

Proof of Lemma 6.1. Suppose l � 2. We use bHFK and bHFL to denote the Heegaard
knot Floer homology [26, 28] and link Floer homology [27] respectively. The link Floer
homology was originally defined only for Z=2-coefficients, and was generalized to Z-
coefficients in [29]. It is known that

rankQ bHFK.LIQ/ D rankQ bHFL.LIQ/;

but bHFL carries more refined gradings.
By [7, Corollary 1.7], we have

rankQ bHFK.LIQ/ � 2 rank Khr.LIQ/ � 2 rank Khr.LIZ=2/ D 4: (6.6)
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On the other hand, let �L.x; y/ be the multi-variable Alexander polynomial of L. It was
proved in [27] that the graded Euler characteristic of bHFL.LIQ/ satisfies

�.bHFL.LIQ// :D .x � 1/.y � 1/�L.x; y/:

By Lemma 6.7, we have

rankQ bHFK.LIQ/ D rankQ bHFL.LIQ/ > 4;

which contradicts (6.6).

Remark 6.8. The proof of Lemma 6.1 relies on Dowlin’s inequality [7, Corollary 1.7]
and the fact that the graded Euler characteristic of link Floer homology recovers the
multi-variable Alexander polynomial [27]. The instanton analogue of Dowlin’s inequal-
ity is proved in [32]. When the first version of this paper was written, it was not clear
how to recover the multi-variable Alexander polynomial from instanton knot homology.
Recently, such a result has been established by Zhenkun Li and Fan Ye [23, Theorem 1.4].
Therefore, Lemma 6.1 can also be proved using instanton Floer homology by a similar
argument using results from [23, 32] instead.

We introduce the following condition on a link L � S3:

Condition 6.9. (1) L has n � 3 connected components.

(2) The rank of Kh.LIZ=2/ is 2n.

(3) The components ofL can be arranged as a sequenceK1; : : : ;Kn such that the linking
number ofKi andKj .i ¤ j / is˙1 when ji � j j D 1 or n� 1, and is zero otherwise.

Theorem 5.1 and Lemma 6.1 have the following consequence.

Lemma 6.10. IfL0 is anm-component link with rankZ=2Kh.L0IZ=2/D 2m, then either
L0 is a forest of unknots, or L0 contains a sublink L satisfying Condition 6.9.

Proof. LetK1; : : : ;Km be the components of L0. By Proposition 5.2 and Lemma 6.1, for
each pair i ¤ j , the linking number of Ki and Kj is equal to 0 or˙1. Let G be a simple
graph with m vertices p1; : : : ; pm such that pi and pj are connected by an edge if and
only if jlk.Ki ; Kj /j D ˙1. If G is a forest, then Theorem 5.1 implies that L0 is a forest
of unknots. If G contains a cycle, then the vertices of the shortest cycle of G correspond
to a sublink of L0 satisfying Condition 6.9.

The next subsection gives a proof of Theorem 1.7. The rest of this article is devoted to
proving that there is no link satisfying Condition 6.9, therefore Theorem 1.2 will follow
from Lemma 6.10.

6.2. Some 2-component links with small Khovanov homology

This subsection gives a proof of Theorem 1.7, and shows that the bi-graded Khovanov
homology detects some simple 2-component links other than the unlink and the Hopf
link. The results of this subsection will not be used in the proof of Theorem 1.2.



Classification of links with Khovanov homology of minimal rank 25

Recall that the internal grading of the Khovanov homology of a linkL is introduced in
[5, Section 2] as h� q, where h is the homological grading and q is the quantum grading.
The following is a special case of a more general result due to Batson and Seed.

Theorem 6.11 ([5, Corollary 4.4]). Suppose L D K1 [ K2 is a 2-component oriented
link. Then

ranklF Kh.LIF/ � ranklC2 lk.K1;K2/
F .Kh.K1IF/˝ Kh.K2IF//;

where F is an arbitrary field and rankk denotes the rank of the summand with internal
grading k.

Let L1 be the oriented link given in Figure 4. Then its Khovanov homology is given
by

Kh.L1IZ/ D Z.0/ ˚ Z.1/ ˚ Z.2/ ˚ .Z=2/.3/ ˚ Z2.4/ ˚ Z.6/; (6.7)

where the subscripts represent the internal gradings.

Theorem 6.12. Let L D K1 [K2 be a 2-component oriented link. Suppose

Kh.LIZ=2/ Š Kh.L1IZ=2/

as bi-graded vector spaces. Then L is isotopic to L1.

Proof. To simplify notation, we use F to denote the field Z=2. By (6.8) and the universal
coefficient theorem, we have

Kh.LIF/ D F.0/ ˚ F.1/ ˚ F2.2/ ˚ F.3/ ˚ F2.4/ ˚ F.6/; (6.8)

where the subscripts represent the internal grading. By Theorem 6.11, we have

8 D rankF Kh.LIF/ � rankF Kh.K1IF/ � rankF Kh.K2IF/;

hence rankF Kh.Ki IF/ � 4. On the other hand, rankF Kh.Ki IF/ D 2 rankF Khr.Ki IF/,
and rankF Khr.Ki IF/ is always odd for knots. Therefore

rankF Kh.K1IF/ D rankF Kh.K2IF/ D 2;

rankF Khr.K1IF/ D rankF Khr.K2IF/ D 1:

By Kronheimer–Mrowka’s unknot detection theorem, bothK1 andK2 are unknots. Hence

Kh.K1IF/˝ Kh.K2IF/ D F.�2/ ˚ F2.0/ ˚ F.2/:

By Theorem 6.11 and (6.8), we have lk.K1; K2/ D 1 or 2, hence K1 is homotopic to the
closure of a 1-braid or a 2-braid in the solid torus S3 �N.K2/. Let l WD lk.K1;K2/, and
let Ǒl be the closure of an arbitrary l-braid subject to the condition that Ǒl is connected.
By [33, Section 4.4],

dimC AHI.K1; l/ � dimC AHI. Ǒl ; l/ D 1 mod 2; (6.9)

dimC AHI.K1; j / � dimC AHI. Ǒl ; j / D 0 mod 2 if j > l: (6.10)
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By Proposition 2.6 and Kronheimer–Mrowka’s spectral sequence [20, Theorem 8.2], we
have

4 D rankF Khr.L1; pIF/ � dimC AHI.K1/; (6.11)

where p 2 K2.
If l D 1, we have AHI.K1;˙1/ D C by (6.9) and (6.11). By (6.10) and (6.11), we

have AHI.K1; j / D 0 for all j > l . Hence the top f-grading of AHI.K1/ is 1, and K1
is the closure of a 1-braid by Theorem 2.5. This implies that L is a Hopf link, whose
Khovanov homology is different from Kh.L1/, which yields a contradiction. Hence we
must have l D 2. By similar arguments, we obtain AHI.K1;˙2/DC and the top f-grading
of AHI.K1/ is 2. Therefore K1 is the closure of a 2-braid. Since K1 is an unknot, this 2-
braid must be given by a generator of the 2-braid group. The proof is then completed by
directly checking all the possible choices of the generator and orientations.

Now we prove the second part of Theorem 1.7. Let T be the left-handed trefoil. We
have

Kh.T IZ/ Š Z.�3;�9/ ˚ Z.�2;�5/ ˚ Z.0;�3/ ˚ Z.0;�1/ ˚ .Z=2/.�2;�7/;

where the subscripts represent the .h; q/-bigrading. Let L2 be the disjoint union of T and
an unknot U . Then

Khr.L2; pIZ/ Š Kh.T IZ/;

where the basepoint p is in U .

Theorem 6.13. Let L D K1 [K2 be a 2-component link with a basepoint q 2 K2. Sup-
pose

Khr.L; qIZ/ Š Khr.L2; pIZ/

as bi-graded abelian groups. Then the link L splits into a left-handed trefoil K1 and an
unknot K2.

Proof. By Kronheimer–Mrowka’s spectral sequence [20, Theorem 8.2], we have

4 D rankZ Khr.L; qIZ/ � dimC I\.L; q/: (6.12)

Let � be the local system associated with K1. We have

dimC I\.L; q/ � rankR I\.L; qI�/:

By Corollary 3.3,

rankR I\.L; qI�/ D rankR I\.K2 [ U; qI�/:

By excision,
rankR I\.K2 [ U; qI�/ D 2 dimC I\.K2; q/:

Hence dimC I\.K2; q/ � 2. We know that dimC I\.K2; q/ is always odd since crossing
changes do not change the parity of I\ and I\.unknot/ Š C. Hence K2 is the unknot by
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[20, Proposition 1.4]. Let F D Z=2. The universal coefficient theorem implies

Khr.L; qIF/ Š Khr.L2; pIF/

Š F.�3;�9/ ˚ F.�2;�5/ ˚ F.0;�3/ ˚ F.0;�1/ ˚ F.�2;�7/ ˚ F.�3;�7/

Š F.6/ ˚ F.5/ ˚ F.4/ ˚ F2.3/ ˚ F.1/;

where the subscripts in the second to last row represent the .h; q/-bigrading, and the sub-
scripts in the last row represent the internal grading. According to [30, Corollary 3.2.C],

Khi;j .LIF/ Š Khri;j�1.L; qIF/˚ Khri;jC1.L; qIF/:

Hence
Kh.LIF/ Š F.0/ ˚ F2.2/ ˚ F.3/ ˚ F3.4/ ˚ F2.5/ ˚ F.6/ ˚ F.7/: (6.13)

By Theorem 6.11,

12 D rankF Kh.LIF/ � rankF Kh.K1IF/ rankF Kh.K2IF/ D 2 rankF Kh.K1IF/:

Hence rankF Kh.K1IF/ � 6 and rankF Khr.K1IF/ � 3. Kronheimer–Mrowka’s unknot
detection theorem [20] and Baldwin–Sivek’s trefoil detection theorem [3] imply K1 is
either an unknot or a trefoil.

Suppose K1 is an unknot. Then lk.K1; K2/ D 1 or 2 by Theorem 6.11 and (6.13).
Now K1 is a knot in the solid torus S3 � N.K2/ with winding number 1 or 2, and by
Proposition 2.6,

4 � dimC AHI.K1/:

The argument in the proof of Theorem 6.12 shows that K1 is either the closure of the
1-braid or the closure of a generator of the 2-braid group. In either case, Khr.L; qIZ/ is
not isomorphic to Khr.L2; pIZ/, which is a contradiction.

By the discussion above, K1 must be a trefoil, hence Theorem 6.11 and (6.13) imply
lk.K1; K2/ D 0. Hence K1 is homotopic to the unknot in S3 � N.K2/. By [33, Sec-
tion 4.4], dimC AHI.K1; j / is even for all jj j > 0. We also have dimC AHI.K1; 0/ �
dimC AHI.U1;0/D 2 by Proposition 4.3. By (6.12), dimC AHI.K1/D dimC I\.L;q/� 4,
hence the argument above implies that the top f-grading of AHI.K1/ is 0. By Theorem 2.4,
K2 has a Seifert disk which is disjoint from K1, hence L is a split link.

7. Topological properties from instanton Floer homology

From now on, let L D K1 [ � � � [Kn be a hypothetical link that satisfies Condition 6.9.
The goal is to deduce a contradiction from Condition 6.9. This section derives several
topological properties of L using instanton Floer homology.

In Section 7.1, we show that every Ki bounds a disk Di such that when i ¤ j , the
disk Di intersects Kj transversely in jlk.Ki ; Kj /j points. If n � 4, we show that this
property implies that (after isotopy) the link L has the form given by Figure 8. In Sec-
tion 7.2, we show thatKn can be isotoped in the complement ofK1 [ � � � [Kn�1 in such
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a way that it becomes disjoint from the surface shown in Figure 11 or the surface shown
in Figure 12.

Let L0 D K1 [ � � � [ Kn�1. In Sections 8 and 9, we will use the two topological
properties summarized above to study the possible isotopy classes of Kn in S3 � L0.
The results proved in this section will imply that the homotopy class of Kn in S3 � L0

has a specific form and that Kn bounds a disk that intersects a fibered Seifert surface of
K1 [ � � � [Kn�1 in an arc. Sections 8 and 9 will find all the possible isotopy classes of
the intersection arc by solving the word problem in �1.S3 � L0/. This will imply that L
must be isotopic to the link Ln;1�n or Ln;2�n defined in Section 10. We will then show
that the ranks of the Khovanov homology of Ln;1�n and Ln;2�n are both greater than 2n,
which yields a contradiction.

7.1. Seifert surfaces of Ki

Proposition 7.1. For each Ki , there exists an embedded disk Di such that

(1) @Di D Ki ;

(2) for each j ¤ i , if ji � j j D 1 or n � 1, then Di intersects Kj transversely in one
point; otherwise, the disk Di is disjoint from Kj .

Proof. Pick a basepoint p 2 Ki . By Proposition 5.4, we have dim I\.L; p/ D 2n�1. By
Proposition 5.3, Ki is an unknot. Let N.Ki / be a tubular neighborhood of Ki , and view
L �Ki as a link in the solid torus S3 �N.Ki /. By Proposition 2.6,

dim AHI.L �Ki / D I\.L; p/ D 2n�1:

By Corollary 4.4, there exists a meridional disk ODi which is disjoint fromKj if ji � j j ¤ 1
or n� 1 and intersectsKj transversely at one point if ji � j j D 1 or n� 1. The meridional
disk ODi extends to the desired Seifert disk of Ki .

Definition 7.2. Let D1; : : : ; Dn be a sequence of immersed disks in R3 such that
@Di D Ki for all i . We say that the sequence D1; : : : ; Dn is generic if every self-
intersection point of

F
Di is locally diffeomorphic to one of the following models in R3

at .0; 0; 0/:

(1) the intersection of ¹.x; y; z/ j z D 0; y � 0º and the yz-plane;

(2) the intersection of the xy-plane and the yz-plane;

(3) the intersection of the xy-, yz-, and xz-planes.

If D D .D1; : : : ; Dn/ is generic, let †1.D/, †2.D/, †3.D/ be the sets of self-inter-
section points described by .1/, .2/, .3/ above respectively.

Definition 7.3. If D D .D1; : : : ; Dn/ is generic, define the complexity of D to be the
number of components of †2.D/.

Notice that if D is generic, then the complexity of D is greater than or equal to
1
2

#†1.D/, which is at least n.
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Definition 7.4. We say that the sequence D D .D1; : : : ;Dn/ is admissible if

(1) D is generic;

(2) #†1.D/ D 2n;

(3) every point in †3.D/ is contained in at least two different disks in D.

Remark 7.5. In the definitions above, the disks ¹Diº are only required to be immersed.
Condition (2) in the definition above is equivalent to the following statement: for each
j ¤ i , if ji � j j D 1 or n� 1, thenDi intersectsKj transversely at one point; otherwise,
the immersed diskDi is disjoint fromKj . Moreover, the interior ofDi is disjoint fromKi .

Proposition 7.6. If n � 4, then there exists a sequence D D .D1; : : : ;Dn/ of disks such
that @Di D Ki for all i , and D is admissible with complexity n.

Proof. By Proposition 7.1, there exists a sequence of disks OD D . OD1; : : : ; ODn/ such that
for all i , ODi is embedded, @ ODi D Ki , and #†1. OD/ D 2n. Perturb OD1; : : : ; ODn in such
a way that they are generic. Since all the disks are embedded, every point in †3. OD/ is
contained in three different disks. Therefore OD is admissible, so admissible configurations
exist. Let D D .D1; : : : ;Dn/ be an admissible configuration with minimal complexity.

We first show that all the Di ’s are embedded. Suppose there exists i such that Di is
not embedded. Then by admissibility, Di does not have triple self-intersections, and the
self-intersection locus of Di is a disjoint union of circles. Let  � Di be a circle in the
self-intersection of Di .

Let B2 be the unit disk in R2, and let fi W B2 ! R3 be an immersion that
parametrizes Di . Then f �1i ./ is a double cover of  . There are three possibilities:

Case 1: f �1i ./ is a disjoint union of two circles, and they bound disjoint disks B1
and B2. In this case, take a diffeomorphism � from B1 to B2 such that

.fi ı �/j@B1 D fi j@B1 :

Define

f 0i .p/ WD

8̂̂<̂
:̂
fi .p/ if p … B1 [ B2;

fi .�.p// if p 2 B1;

fi .�
�1.p// if p 2 B2:

By smoothing f 0i , we obtain an immersed disk with the same boundary as Di but
has fewer self-intersection components. Figure 6 shows a local picture of f 0i after the

Fig. 6. The local construction of f 0i after smoothing.
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smoothing. Replacing Di by the image of the smoothed f 0i decreases the complexity
of D and preserves the admissibility condition.

Case 2: f �1i ./ is a disjoint union of two circles, and they bound disks B1 and B2 with
B1 � B2. In this case, take a diffeomorphism � from B1 to B2 such that

.fi ı �/j@B1 D fi j@B1 :

Define

f 0i .p/ WD

´
fi .p/ if p … B1;

fi .�.p// if p 2 B1:

Replacing fi by the smoothed version of f 0i gives an admissible configuration with
smaller complexity.

Case 3: f �1i ./ is one circle, and it bounds a disk B1. We show that this case is impos-
sible. Let � W f �1i ./ ! f �1i ./ be the deck transformation of the double cover. Fix
an orientation of f �1i ./. For each p 2 f �1i ./, let v.p/ be the unit tangent vector of
f �1i ./with positive orientation, and letw.p/ be the unit normal vector of f �1i ./ point-
ing outward of B1. Then the images of v.p/;w.p/;w.�.p// under the tangent map of fi
form a basis of R3. However, isotoping the point p to �.p/ on f �1i ./ reverses the ori-
entation of the basis, which yields a contradiction.

Since D is assumed to have minimal complexity among admissible configurations,
we conclude that Di has to be embedded.

The intersection of Di and Dj .i ¤ j / is a disjoint union of compact 1-manifolds,
possibly with boundary. Assume there exist i ¤ j such that the intersection ofDi andDj
contains a circle  . The circle  bounds a disk B1 inDi , and bounds a disk B2 inDj . Let

D0i WD .Di � Bi / [ Bj ; D0j WD .Dj � Bj / [ Bi :

Replacing Di and Dj by D0i and D0j and smoothing the corners, we obtain a generic
configuration with smaller complexity. Since neitherD0i norD0j has triple self-intersection
points, the new configuration is still admissible, contradicting the definition of D. We
conclude that the intersection of Di and Dj .i ¤ j / does not contain any circle.

By the admissibility assumption, the intersection Di \Dj (i ¤ j ) consists of circles
and at most one arc, and there is an arc if and only if ji � j j D 1 or n � 1. As a conse-
quence,Di andDj are disjoint if ji � j j ¤ 1, n� 1, andDi \Dj is an arc if ji � j j D 1
or n� 1. Since n � 4, this implies thatDi \DiC1 is disjoint fromDj \DjC1 whenever
i ¤ j (where the subscripts are taken modulo n), so the complexity of D is n.

Let L0 WD K1 [ � � � [Kn�1. Proposition 7.6 has the following corollary.

Corollary 7.7. The link L0 is a connected sum of n � 2 Hopf links as given by Figure 7.
If n � 4, then the link L has a diagram described by Figure 8.

Proof. The first part of the statement follows from Theorem 5.1 and Proposition 5.2. For
the second part, by Proposition 7.6, there exists a sequence of disks D1; : : : ; Dn�1 such
that (1)Di is embedded and @Di DKi for i D 1; : : : ;n� 1, (2) if ji � j j D 1, the disksDi
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Fig. 7. The link L0.

Fig. 8. The link L.

and Dj intersect in an arc, (3) if i ¤ j and ji � j j ¤ 1, the disks Di and Dj are disjoint.
It follows that if we arrange Figure 7 in such a way that each component is contained in
a (flat) plane, then after an isotopy, the link L0 is given by Figure 7, and Di is the disk
bounded by Ki on the corresponding plane. Moreover, by Proposition 7.6 again, we may
assume thatKn bounds an embedded diskDn which intersectsD1 andDn�1 respectively
in an arc and is disjoint from D2 [ � � � [Dn�2, so L is isotopic to a link described by
Figure 8.

7.2. Seifert surfaces of L0

We recall the following property of fibered links.

Lemma 7.8. Suppose L1 and L2 are two oriented fibered links with oriented Seifert
surfaces S1 and S2 respectively. Let f1 W S1! S1 and f2 W S2! S2 be the monodromies.
Take p1 2L1, p2 2L2, and form the connected sumL1 #L2 and the boundary connected
sum S1 #b S2 with respect to .p1; p2/. Then L1 # L2 is a fibered link with Seifert surface
S1 #b S2 and monodromy f1 #b f2.

Proof. Given a compact surface S with boundary, and given a diffeomorphism f W S! S

that restricts to the identity on a neighborhood of @S , define

Mf WD S � Œ0; 1�=�;

where � is defined by .x; 0/ � .f .x/; 1/ for x 2 S , and .x; t1/ � .x; t2/ for x 2 @S ,
t1; t2 2 Œ0; 1�. By the assumptions of the lemma,

Mf1 Š S
3; Mf2 Š S

3;
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and the images of @S1 and @S2 are isotopic to L1 and L2 respectively. Therefore,

Mf1#bf2 ŠMf1 # Mf2 Š S
3;

and the image of @.S1 #b S2/ is isotopic to L1 # L2.

Fig. 9. Seifert surface of the Hopf link with linking number �1.

Fig. 10. Seifert surface of the Hopf link with linking number 1.

Notice that the Hopf link is fibered. Depending on the orientations of the components,
the corresponding Seifert surface is given by Figure 9 or Figure 10. Both Seifert surfaces
are diffeomorphic to the annulus, and the monodromies are Dehn twists along the core
circles.

Fig. 11. The Seifert surface S1.

Fig. 12. The Seifert surface S2.

Let S1 and S2 be the Seifert surfaces of L0 given by Figure 11 and Figure 12 respec-
tively. By Lemma 7.8, the link L0 is fibered with respect to both S1 and S2. For each
j D 1; 2, endow the components K1; : : : ; Kn�1 with the boundary orientation of Sj and
choose an arbitrary orientation for Kn. Then the algebraic intersection number of Kn
and Sj is equal to the sum of the linking numbers

Pn�1
iD1 lk.Kn; Ki /. Therefore, Con-

dition 6.9 (3) implies that there exists exactly one j 2 ¹1; 2º such that the algebraic
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intersection number of Sj and Kn is zero. The main result of this subsection is the fol-
lowing proposition.

Proposition 7.9. Suppose j 2 ¹1;2º and the algebraic intersection number ofKn with Sj
is zero. Then there exists a knot K 0n such that K 0n is disjoint from Sj , and Kn is isotopic
to K 0n in R3 � L0.

Before proving Proposition 7.9, we need to prove some results on instanton Floer
homology. Let U be an unknot included in a 3-ball which is disjoint from L0, let mi be a
small meridian circle aroundKi (1 � i � n� 1) and ui be a small arc joiningKi andmi .

Lemma 7.10. We have

dimC I
�
S3; L0 [

n�1[
iD1

mi ;

n�1X
iD1

ui

�
D 22n�4; (7.1)

dimC I
�
S3; L [

n�1[
iD1

mi ;

n�1X
iD1

ui

�
D 22n�3; (7.2)

and

I
�
S3; L0 [

n�1[
iD1

mi [ U;

n�1X
iD1

ui I�U

�
Š R22n�3 ; (7.3)

where �U is the local system associated with U .

Proof. Picking a crossing between m1 and K1 and applying Kronheimer–Mrowka’s
unoriented skein exact triangle [20, Section 6], we obtain a 3-periodic exact sequence

� � � ! I
�
S3; L0 [

n�1[
iD1

mi ;

n�1X
iD1

ui

�
! I

�
S3; L0 [

n�1[
iD2

mi ;

n�1X
iD2

ui

�
! I

�
S3; L0 [

n�1[
iD2

mi ;

n�1X
iD2

ui

�
! � � � :

See [32, Section 3] for more details. The above exact triangle implies

dimC I
�
S3; L0 [

n�1[
iD1

mi ;

n�1X
iD1

ui

�
� 2 dimC I

�
S3; L0 [

n�1[
iD2

mi ;

n�1X
iD2

ui

�
:

Repeating this argument for the other meridians, we obtain

dimC I
�
S3; L0 [

n�1[
iD1

mi ;

n�1X
iD1

ui

�
� 2n�2 dimC I.S3; L0 [mn�1; un�1/ D 2n�2 dimC I\.L0; p/:
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By Propositions 5.2 and 5.4, dimC I\.L0; p/ D 2n�2, therefore

dimC I
�
S3; L0 [

n�1[
iD1

mi ;

n�1X
iD1

ui

�
� 22.n�2/: (7.4)

A similar earrings-removal argument yields

dimC I
�
S3; L [

n�1[
iD1

mi ;

n�1X
iD1

ui

�
� 2n�2 dimC I\.L; p/ D 22n�3: (7.5)

We recall some properties of the instanton knot Floer homology KHI for oriented
links, which was introduced in [17, Definition 2.4]. Given an oriented link M � S3,
the homology group KHI.M/ carries an Alexander Z-grading and a homological Z=2-
grading. The rank of KHI.M/ does not depend on the orientation of M . We use
KHI.M; i/ to denote the summand of KHI.M/ with Alexander degree i , and use
�.KHI.M; i// to denote its Euler characteristic with respect to the homological grading.
Recall that we always take coefficients in C for instanton Floer homology in this article.
According to [17, Theorem 3.6 and (14)], we haveX

i

�.KHI.M; i//t i D ˙.t1=2 � t�1=2/jM j�1�M .t/;

where �M .t/ denotes the single-variable Alexander polynomial of M . Notice that the
Alexander polynomial for L0 satisfies j�L0.�1/j D 2n�2 for every orientation of L0.
Therefore, taking M D L0, we have

dimC KHI.L0/ � 2n�2j�L0.�1/j D 22n�4:

By [32, Proposition 5.1],

dimC I
�
S3; L0 [

n�1[
iD1

mi ;

n�1X
iD1

ui

�
D dimC KHI.L0/ � 22n�4: (7.6)

Inequalities (7.4) and (7.6) imply (7.1).
Consider the two admissible triples�

S3; L0 [

n�1[
iD1

mi [ U;

n�1X
iD1

ui

�
; .S1 � S2; S1 � ¹p1; p2º; v/;

where v is an arc joining the two components of S1 � ¹p1; p2º. Let N.K1/ be a small
tubular neighborhood of K1 in the first triple, and deform U into N.K1/ by an isotopy.
Let N.S1 � ¹p1º/ be a small tubular neighborhood of S1 � ¹p1º in the second triple.
Cutting out N.K1/ and N.S1 � ¹p1º/, exchanging them, and gluing back, we obtain two
new triples �

S3; L0 [

n�1[
iD1

mi ;

n�1X
iD1

ui

�
; .S1 � S2; S1 � ¹p1; p2º [ U

0; v/;
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where U 0 is an unknot included in a 3-ball disjoint from S1 � ¹p1; p2º. By the torus
excision theorem and the definition of AHI, we have

I
�
S3; L0 [

n�1[
iD1

mi [ U;

n�1X
iD1

ui I�U

�
˝R AHI.;I�/

Š I
�
S3; L0 [

n�1[
iD1

mi ;

n�1X
iD1

ui I�;

�
˝R AHI.U 0I�/; (7.7)

where �; is the trivial local system with coefficients R. By (3.3) and Example 3.4,
AHI.;I�/ Š R and AHI.U 0I�/ Š R2. By (3.3) and (7.1),

I
�
S3; L0 [

n�1[
iD1

mi ;

n�1X
iD1

ui I�;

�
Š I

�
S3; L0 [

n�1[
iD1

mi ;

n�1X
iD1

ui

�
˝C R Š R22n�4 :

Therefore by (7.7),

I
�
S3; L0 [

n�1[
iD1

mi [ U;

n�1X
iD1

ui I�U

�
Š R22n�4

˝R R2
Š R22n�3 :

This completes the proof of (7.3).
Let �Kn be the local system on R.S3; L [

Sn�1
iD1 mi ;

Pn�1
iD1 ui / associated with Kn.

By Corollary 3.3 and the universal coefficient theorem, we have

dimC I
�
S3; L[

n�1[
iD1

mi ;

n�1X
iD1

ui

�
� rankR I

�
S3; L[

n�1[
iD1

mi ;

n�1X
iD1

ui I�Kn

�
D rankR I

�
S3; L0[

n�1[
iD1

mi [U;

n�1X
iD1

ui I�U

�
D 22n�3:

The above inequality together with (7.5) implies (7.2).

Choose j 2 ¹1; 2º such that the algebraic intersection number of Sj and Kn is zero.
Choose an orientation of Sj , and endow L0 with the boundary orientation. For each i D
1; : : : ; n� 1, let N.Ki / be a sufficiently small tubular neighborhood of Ki that is disjoint
from mi . Cut N.Ki / from S3 and glue it back using a diffeomorphism that identifies the
meridian of N.Ki / to Sj \ @N.Ki /. Since S3 � L0 is fibered over S1 with fiber Sj , the
manifold obtained from the cutting-and-pasting (which are, of course, Dehn surgeries) is
fibered over S1 with fiber S2. Since the orientation-preserving mapping class group of S2

is trivial, the resulting manifold is diffeomorphic to S1 � S2 with the product fibration.
Let

OK1; : : : ; OKn; Om1; : : : ; Omn�1; OU � S
1
� S2

be the images of K1; : : : ; Kn; m1; : : : ; mn�1; U respectively by the cutting-and-pasting.
Let OL0 WD OK1 [ � � � [ OKn�1 be the image of L0, let m WD m1 [ � � � [mn�1 be the union
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of the earrings, and let Om WD Om1 [ � � � [ Omn�1 be the image of m. We further require that
the diffeomorphism used to glue back N.Ki / fixes ui \ @N.Ki / for all i D 1; : : : ; n � 1,
so the image of ui is an arc connecting OKi and Omi , and we denote the image of ui by Oui .

Given a C-vector space V , a linear map f W V ! V , and � 2C, we will useE.V;f;�/
to denote the generalized eigenspace of f with eigenvalue �.

Lemma 7.11. For all � 2 C, we have

dimC E
�

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui

�
; �orb.S2/; �

�
D dimC E

�
I
�
S1 � S2; OL0 [ Om [ OU ;

n�1X
iD1

Oui

�
; �orb.S2/; �

�
;

where the operator�orb.S2/ is the�-map defined by ¹pº �S2 � S1 �S2 for an arbitrary
p 2 S1.

Proof. By the torus excision theorem and Lemma 7.10, we have

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui

�
Š I

�
S3; L [m;

n�1X
iD1

ui

�
Š C22n�3 ; (7.8)

and

I
�
S1 � S2; OL0 [ Om [ OU ;

n�1X
iD1

Oui I� OU

�
Š I

�
S3; L0 [m [ U;

n�1X
iD1

ui I�U

�
Š R22n�3 ;

(7.9)

where � OU is the local system associated with OU , and �U is the local system associated
with U . Since the algebraic intersection number of Kn and Sj is zero, we conclude that
OKn is homotopic to OU in S1 � S2 �

Sn�1
iD1 Oui . Let � OKn be the local system associated

with OKn. By Proposition 4.2, we have

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui I� OKn.h/
�
Š I

�
S1 � S2; OL0 [ Om [ OU ;

n�1X
iD1

Oui I� OU .h/
�

(7.10)

for every h 2 C � ¹0º satisfying .1� h2/�.h/¤ 0, and this isomorphism commutes with
�orb.S2/. As a consequence, for every �2C and h2C� ¹0º satisfying .1� h2/�.h/¤ 0,
we have

dimC E
�

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui I O� OKn.h/
�
; �orb.S2/; �

�
D dimC E

�
I
�
S1 � S2; OL0 [ Om [ OU ;

n�1X
iD1

Oui I� OU .h/
�
; �orb.S2/; �

�
: (7.11)
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When h.1 � h2/�.h/ ¤ 0, the universal coefficient theorem and (7.9), (7.10) imply

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui I� OKn.h/
�
Š I

�
S1 � S2; OL0 [ Om [ OU ;

n�1X
iD1

Oui I� OU .h/
�

Š C22n�3 :

On the other hand, notice that when h D 1, the local systems � OKn.h/ and � OU .h/ become
the trivial system with coefficients C, hence by (7.8) and (7.9),

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui I� OKn.1/
�

Š C22n�3
Š I

�
S1 � S2; OL0 [ Om [ OU ;

n�1X
iD1

Oui I� OU .1/
�
:

Therefore the desired result follows from (7.11) by taking the limit h! 1 and invoking
Proposition 4.1 (3).

Notice that OL0 [ Om is a braid in S1 � S2. In fact, the projection of OL0 [ Om to S1 is a
diffeomorphism on each component. Therefore, after an isotopy, we may write S1 � S2

as A0 [S1�S1 A1, where A0; A1 are diffeomorphic to S1 �D2, such that

(1) OK1, Om1 are included in A0 and are given by S1 � ¹p1º and S2 � ¹p2º with p1; p2
in D2,

(2) Ou1 is an arc connecting OK1 and Om1, and Ou1 is included in A0;

(3) OK2; : : : ; OKn; Om2; : : : ; Omn�1; OU are included in A1.

Let

L0 WD

n�1[
iD2

OKi [

n�1[
iD2

Omi [ OKn; (7.12)

L1 WD

n�1[
iD2

OKi [

n�1[
iD2

Omi [ OU : (7.13)

Then L0 and L1 are two annular links in A1. By the definition of annular instanton Floer
homology, we have

AHI.L0/ Š I.S1 � S2; OL0 [ Om [ OKn; Ou1/; (7.14)

AHI.L1/ Š I.S1 � S2; OL0 [ Om [ OU ; Ou1/: (7.15)

Lemma 7.12. Assume there exists a connected oriented Seifert surface S � S3 of L0

such that S is compatible with the orientation of L0, and S has genus g and is disjoint
from Kn. Then

dimC E
�

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui

�
; �orb.S2/; 2g C 2n � 4

�
D dimC E

�
I.S1 � S2; OL0 [ Om [ OKn; Ou1/; �orb.S2/; 2g C 2n � 4

�
;
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and

E
�

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui

�
; �orb.S2/; j

�
D 0

for all integers j > 2g C 2n � 4.

Proof. After an isotopy, we may assume that S intersects each mi transversely in
one point. The image of S �

Sn�1
iD1 N.Ki / in S1 � S2 is a connected surface with

n � 1 boundary components, where the boundary components are given by the merid-
ians of OK1; : : : ; OKn�1. Therefore we can glue disks to the boundary of the image of
S �

Sn�1
iD1 N.Ki / and obtain a connected closed surface in S1 � S2 with genus g that

is disjoint from OKn and intersects each of OK1; : : : ; OKn�1; Om1; : : : ; Omn�1 transversely in
one point. Denote this surface by OS . After a further isotopy, we may assume that the arcs
Om1; : : : ; Omn�1 lie on OS .

Recall that OK1 and Om1 are contained in A0 Š S1 �D2 and are given by S1 � ¹p1º
and S1 � ¹p2º for p1; p2 2D2. Take a point p0 2D2 � ¹p1; p2º, and let OK0 � A0 be the
knot S1 � ¹p0º. After a further isotopy, we may assume that OS intersects OK0 transversely
in one point. Let c be a simple closed curve on D2 such that p0; p1 are inside c and p2 is
outside. Let T1 � A0 be the torus given by T1 WD S1 � c.

Notice that OS is homologous to the slice of S2 in S1 � S2, therefore �orb. OS/ D

�orb.S2/. The surface OS intersects OL0 [ Om [ OKn [ OK0 transversely in 2n � 1 points.
Applying [34, Theorem 6.1] to the surface OS , we deduce that the set of eigenvalues of
�orb.S2/ on

I
�
S1 � S2; OL0 [ Om [ OKn [ OK0;

n�1X
iD1

Oui

�
is included in

¹�.2g C 2n � 3/;�.2g C 2n � 5/; : : : ; 2g C 2n � 5; 2g C 2n � 3º:

Consider the triple .S1 � S2; S1 � ¹q1; q2º; v/, where q1; q2 2 S2 and v is an arc
connecting S1 � ¹q1º and S1 � ¹q2º. Let T2 be a torus given by the boundary of a tubular
neighborhood of S1 � ¹q1º. Recall that T1 � A0 is the torus S1 � c as defined above.
Applying the torus excision on the triple�

S1 � S2; OL0 [ Om [ OKn [ OK0;

n�1X
iD1

Oui

�
t .S1 � S2; S1 � ¹q1; q2º; v/

along T1 [ T2 yields

dimC E
�

I
�
S1 � S2; OL0 [ Om [ OKn [ OK0;

n�1X
iD1

Oui

�
; �orb.S2/; �

�
D dimC E

�
I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui

�
; �orb.S2/; � � 1

�
C dimC E

�
I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui

�
; �orb.S2/; �C 1

�
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for all � 2 C. Therefore

dimC E
�

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui

�
; �orb.S2/; 2g C 2n � 4

�
D dimC E

�
I
�
S1 � S2; OL0 [ Om [ OKn [ OK0;

n�1X
iD1

Oui

�
; �orb.S2/; 2g C 2n � 3

�
(7.16)

and

dimC E
�

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui

�
; �orb.S2/; j

�
D 0 (7.17)

for all integers j > 2g C 2n � 4.
Similarly, applying torus excision on the triple

.S1 � S2; OL0 [ Om [ OKn [ OK0; Ou1/ t .S
1
� S2; S1 � ¹q1; q2º; v/

along T1 [ T2 yields

dimC E
�
I.S1 � S2; OL0 [ Om [ OKn [ OK0; Ou1/; �orb.S2/; 2g C 2n � 3

�
D dimC E

�
I.S1 � S2; OL0 [ Om [ OKn; Ou1/; �orb.S2/; 2g C 2n � 4

�
: (7.18)

Let ¹z1; : : : ; z2n�1º � OS be the intersection of OS with OL0 [ Om [ OKn [ OK0. Apply the
singular excision theorem [34, Theorem 6.4] on the triple

.S1 � S2; OL0 [ Om [ OKn [ OK0; Ou1/ t
�
S1 � OS; S1 � ¹z1; : : : ; z2n�1º;

n�1X
iD2

Oui

�
along OS in the first component, and a slice of OS in the second component, and invoke
[34, Proposition 6.7], to obtain

dimC E
�

I
�
S1 � S2; OL0 [ Om [ OKn [ OK0;

n�1X
iD1

Oui

�
; �orb. OS0/; 2g C 2n � 3

�
D dimC E

�
I.S1 � S2; OL0 [ Om [ OKn [ OK0; Ou1/; �orb. OS0/; 2g C 2n � 3

�
: (7.19)

Since �orb. OS0/ D �orb.S2/, the first part of the lemma is proved by (7.16), (7.18), and
(7.19). The second part of the lemma is proved by (7.17).

Lemma 7.13. Let L0 � A1 be the annular link defined by (7.12). Suppose there exists a
meridional surface S .cf. Definition 2.3/ with genus g such that S intersects L0 trans-
versely at m points. Then there exists a connected Seifert surface OS of L0 in S3 such that
OS is compatible with the orientation of L0 and is disjoint from Kn, and the genus of OS is

equal to
g Cm=2 � nC 2:
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Proof. Suppose there is a component K of L0 whose intersection with S has different
signs. Then we can attach a tube to S along a segment of K to decrease the value of
m by 2 and increase the value of g by 1. Repeating this process until the number of
intersection points of S with each component of L1 equals the absolute value of their
algebraic intersection number, we obtain a new meridional surface S 0 � A1 such that

(1) the genus of S 0 equals g C .m � 2nC 4/=2;

(2) S 0 intersects each of OK2; : : : ; OKn�1; Om2; : : : ; Omn�1 transversely in one point;

(3) S 0 is disjoint from OKn.

Since S 0 is a meridional surface, by attaching a disk in A0, we can complete the
surface S 0 to a closed surface with the same genus that intersects each of OK1; : : : ; OKn�1
transversely in one point and is disjoint from OKn, therefore it gives rise to a Seifert surface
of L0 in S3 with the same genus that is disjoint from Kn, hence the lemma is proved.

Corollary 7.14. Let g0 be the smallest integer with the property that there exists a con-
nected oriented Seifert surface S � S3 of L0 that is compatible with the orientation of L0,
has genus g0 and is disjoint from Kn. Then

dimC E
�

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui

�
; �orb.S2/; 2g0 C 2n � 4

�
¤ 0;

and

E
�

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui

�
; �orb.S2/; j

�
D 0

for all integers j > 2g0 C 2n � 4.

Proof. By Theorem 2.4 and (7.14), there are integers g;m such that there exists a merid-
ional surface in A1 with genus g and intersecting L1 transversely in m points such that

dimC E
�
I.S1 � S2; OL0 [ Om [ OKn; Ou1/; �orb.S2/; 2g Cm

�
> 0: (7.20)

Let g0 WD gCm=2� nC 2. By Lemma 7.13, we may choose g;m such that there exists a
connected oriented Seifert surface ofL0 in S3 that is compatible with the orientation ofL0,
has genus g0, and is disjoint from Kn. Since 2g C m D 2g0 C 2n � 4, by Lemma 7.12
and (7.20) we have

dimC E
�

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui

�
; �orb.S2/; 2g0 C 2n � 4

�
D dimC E

�
I.S1 � S2; OL0 [ Om [ OKn; Ou1/; �orb.S2/; 2g Cm

�
> 0: (7.21)

By the definition of g0, we have g0 � g0. On the other hand, the second part of Lem-
ma 7.12 implies that

dimC E
�

I
�
S1 � S2; OL0 [ Om [ OKn;

n�1X
iD1

Oui

�
; �orb.S2/; j

�
D 0 (7.22)

for all integers j > 2g0 C 2n � 4. Therefore by (7.21) and (7.22), we have g0 � g0. In
conclusion, we must have g D g0, and the lemma follows from (7.21) and (7.22).
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Replacing OKn with OU in the previous arguments, we also have the following lemma.

Lemma 7.15. Let g1 be the smallest integer with the property that there exists a con-
nected oriented Seifert surface S � S3 of L0 that is compatible with the orientation of L0,
has genus g1 and is disjoint from U . Then

dimC E
�

I
�
S1 � S2; OL0 [ Om [ OU ;

n�1X
iD1

Oui

�
; �orb.S2/; 2g1 C 2n � 4

�
¤ 0;

and

E
�

I
�
S1 � S2; OL0 [ Om [ OU ;

n�1X
iD1

Oui

�
; �orb.S2/; j

�
D 0

for all integers j > 2g1 C 2n � 4.

Proof of Proposition 7.9. It is obvious that the minimal genus g1 in Lemma 7.15 is zero,
therefore by Lemma 7.11, Corollary 7.14, and Lemma 7.15, the genus g0 in Corol-
lary 7.14 is also zero. As a result, there exists a connected oriented Seifert surface S � S3

for L0 with genus zero that is disjoint from Kn and is compatible with the orientation
of L0. Since the minimal-genus Seifert surface for an oriented fibered link is unique up to
isotopy, we conclude that there exists an ambient isotopy of S3 that fixes L0 and takes S
to Sj . This ambient isotopy gives the desired isotopy from Kn to K 0n.

8. The fundamental group of R3 � L0

This section takes a detour to study the properties of �1.R3 � L0/. The results in this
section (or more precisely, Lemma 8.12 and Corollary 8.14) will be used in the proof of
the non-existence of L.

By the Wirtinger presentation, �1.R3 � L0/ is generated by

g1; : : : ; gn�1; g
0
2; : : : ; g

0
n�2

as shown in Figure 13, where the basepoint is taken to be a point above and far away from
the diagram. Notice that g0i and gi are homotopic relative to the basepoint because one

g1 g2 g3 n-1g

g2 g3' '

Fig. 13. Generators of �1.R3 � L0/.
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can shrink K1 [ � � � [Ki�1 into a small neighborhood of Ki . Therefore �1.R3 � L0/ is
generated by g1; : : : ; gn�1, and the Wirtinger presentation gives

�1.R
3
� L0/ D hg1; : : : ; gn�1 j Œgi ; giC1� D 1 for i D 1; : : : ; n � 2i:

To simplify notation, for the rest of this section we will use m to denote n � 1, and
use G to denote the group �1.R3 � L0/. For i D 1; : : : ; m, define the set

Ci WD

8̂̂<̂
:̂
¹g1; g2; g

�1
1 ; g�12 º if i D 1;

¹gi�1; gi ; giC1; g
�1
i�1; g

�1
i ; g�1iC1º if i D 2; : : : ; m � 1;

¹gm�1; gm; g
�1
m�1; g

�1
m º if i D m:

The first part of this section solves the word problem for G.

Definition 8.1. A word is a sequence .x1; : : : ; xN / such that

xi 2 ¹g1; : : : ; gm; g
�1
1 ; : : : ; g�1m º for all i:

We call x1; : : : ; xN the letters of the word .x1; x2; : : : ; xN /.

Definition 8.2. The word .x1; x2; : : : ; xN / is called reduced if for every pair u < v with
.xu; xv/ D .gi ; g

�1
i / or .g�1i ; gi /, there exists w such that u < w < v and xw … Ci .

Definition 8.3. Define an equivalence relation � on the set of words using the following
relations as generators:

.x1; : : : ; xk ; gi ; giC1; xkC3; : : : ; xN / � .x1; : : : ; xk ; giC1; gi ; xkC3; : : : ; xN /;

.x1; : : : ; xk ; g
�1
i ; giC1; xkC3; : : : ; xN / � .x1; : : : ; xk ; giC1; g

�1
i ; xkC3; : : : ; xN /;

.x1; : : : ; xk ; gi ; g
�1
iC1; xkC3; : : : ; xN / � .x1; : : : ; xk ; g

�1
iC1; gi ; xkC3; : : : ; xN /;

.x1; : : : ; xk ; g
�1
i ; g�1iC1; xkC3; : : : ; xN / � .x1; : : : ; xk ; g

�1
iC1; g

�1
i ; xkC3; : : : ; xN /:

It is straightforward to verify that if two words are equivalent and one of them is
reduced, then the other is also reduced. Therefore � defines an equivalence relation on
the set of reduced words.

Every word .x1; : : : ; xN / represents an element of G by taking the product x1 � � �xN .
By the definition of G, equivalent words represent the same element.

Proposition 8.4. Every element of G is represented by a reduced word. Two reduced
words represent the same element if and only if they are equivalent.

Proof. Define another group zG as follows. The elements of zG are the equivalence classes
of reduced words. If .x1; : : : ; xN / is a reduced word, we use Œx1; : : : ; xN � 2 zG to denote
the equivalence class of .x1; : : : ; xN /. Let .x1; : : : ; xN / be a reduced word, and let
y 2 ¹g1; : : : ; gm; g

�1
1 ; : : : ; g�1m º. If the word .x1; : : : ; xN ; y/ is reduced, define

Œx1; : : : ; xN � � Œy� WD Œx1; : : : ; xN ; y�: (8.1)
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If the word Œx1; : : : ; xN ; y� is not reduced, then there exists u such that xuy D 1 and every
letter in .xuC1; : : : ; xN / commutes with both xu and y. In this case, define

Œx1; : : : ; xN � � Œy� WD Œx1; : : : ; xu�1; xuC1; : : : ; xN �: (8.2)

For different choices of xu, the right-hand side of (8.2) gives the same equivalence class.
Moreover, if we take a different representative of Œx1; : : : ; xN �, the right-hand sides of
(8.1) and (8.2) remain the same. It is also straightforward to verify that if y1 and y2 are
commutative generators of G, then

ŒŒx1; : : : ; xN � � y1� � y2 D ŒŒx1; : : : ; xN � � y2� � y1: (8.3)

Therefore, we obtain a well-defined product operator on zG defined inductively by

Œx1; : : : ; xN � � Œy1; : : : ; yM � WD ŒŒx1; : : : ; xN � � Œy1; : : : ; yM�1�� � yM :

We show that
.a � b/ � c D a � .b � c/ (8.4)

for all a; b; c 2 zG by induction on the length of the reduced words representing c.
If c is given by a word with length 1, write b D Œx1; : : : ; xN � and c D Œy1�. We

discuss two cases. If .x1; : : : ; xN ; y1/ is a reduced word, then (8.4) follows from the
definition. If .x1; : : : ; xN ; y1/ is not reduced, let y�11 be the reciprocal of y1; then there
exists .x01; : : : ; x

0
N�1/ such that b D Œx01; : : : ; x

0
N�1; y

�1
1 �. Let b0 WD Œx01; : : : ; x

0
N�1�. By

definition and (8.3),

.a � b/ � c D ..a � b0/ � y�11 / � y1 D a � b
0
D a � .b � c/:

Hence (8.4) is proved if c is given by a word with one letter.
In general, if c D Œx1; : : : ; xN � with N � 2, let c0 WD Œx1; : : : ; xN�1�. By definition

and the induction hypothesis,

a � .b � c/ D a � ..b � c0/ � xN / D .a � .b � c
0// � xN D ..a � b/ � c

0/ � xN D .a � b/ � c:

In conclusion, we have proved that zG is associative.
For an element Œx1; : : : ; xN � 2 zG, we have Œx1; : : : ; xN � � Œx�1N ; : : : ; x�11 �D 1, so every

element in zG has an inverse, therefore zG is a group.
By the universal property, there is a unique homomorphism ' fromG to zG defined by

'.gi / WD Œgi �. We also have a map  from zG to G defined by

 .Œx1; : : : ; xN �/ WD x1 � � � xN :

Since

 .Œx1; : : : ; xN � � Œy1; : : : ; yM �/ D  .Œx1; : : : ; xN �/ �  .Œy1; : : : ; yM �/;

the map  is a group homomorphism. It is obvious from the definitions that ' and  
are inverse to each other, therefore ' and  are isomorphisms, and the proposition is
proved.
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Definition 8.5. If .x1; : : : ; xN / is a reduced word and w D x1 � � � xN 2 G, we call
x1 � � � xN a reduced presentation of w.

Definition 8.6. For w 2 G, define length.w/ to be the length of a reduced presentation
of w.

By Proposition 8.4, length.�/ does not depend on the choice of the reduced presenta-
tion, so it is well-defined.

Lemma 8.7. ForC �¹g1; : : : ;gm;g�11 ; : : : ;g�1m º, letGC be the subgroup ofG generated
by C . Suppose .x1; : : : ; xN / is a reduced word. Then x1 � � � xN 2 GC if and only if xi 2
C [ C�1 for all i .

Proof. Let w D x1 � � � xN . Suppose w 2 GC . Then w D y1 � � � yM with yi 2 C [ C�1

for all i . If .y1; : : : ; yM / is not reduced, there exist letters yu and yv such that yuyv D 1
and every letter between yu and yv commutes with both yu and yv . Removing yu and
yv from the word yields a shorter word representing the same element of G. Repeating
this process, we obtain a reduced word representing w which is given by a subsequence
of y1; : : : ; yM . By Proposition 8.4, this word is equivalent to .x1; : : : ; xN /, and hence
xi 2 C [ C

�1 for all i .
The other direction of the lemma is obvious.

Lemma 8.8. For each i , the centralizer of gi in G is generated by Ci .

Proof. Suppose there exists an element w in the centralizer of gi that is not generated
by Ci ; choose such a w with N WD length.w/ smallest possible. Let w D x1 � � � xN be a
reduced presentation ofw. Then there exists u such that xu …Ci . If x1 2Ci , then x2 � � �xN
is an element in the centralizer of gi , and by Lemma 8.7, the element x2 � � � xN is not
generated by Ci , which contradicts the minimality of N . Therefore x1 … Ci . Similarly,
xN … Ci . Moreover, the same property holds for every reduced word that is equivalent to
.x1; : : : ; xN /. Therefore .x1; : : : ; xN ; gi ; x�1N ; : : : ; x�11 / is a reduced word. By Proposition
8.4, x1 � � �xNgix�1N � � �x

�1
1 ¤ gi , therefore w is not in the centralizer of gi , contradicting

the assumption.

Lemma 8.9. If m � 4, then the only element that commutes with both g1 and gm is 1.

Proof. The lemma is an immediate consequence of Proposition 8.4, Lemma 8.7 and
Lemma 8.8.

Lemma 8.10. Suppose .x1; : : : ; xN / and .y1; : : : ; yN / are reduced words such that
x1, y1 do not commute. Then x1 � � � xN ¤ y1 � � �yN .

Proof. By Proposition 8.4, we only need to show that the two words .x1; : : : ; xN / and
.y1; : : : ; yN / are not equivalent. Assume the contrary, and let wx be the word obtained
by removing all the letters that are not equal to x1 or y1 from .x1; : : : ; xN /. Similarly, let
wy be the word obtained by removing all the letters that are not equal to x1 or y1 from
.y1; : : : ; yN /. Since x1 and y1 do not commute with each other, wx must be equal to wy
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if .x1; : : : ; xN / and .y1; : : : ; yN / are equivalent. On the other hand, wx starts with x1,
and wy starts with y1, so wx ¤ wy , a contradiction.

Lemma 8.11. Suppose m � 4. Then the centralizer of g1gm is generated by g1gm.

Proof. Let w D x1 � � � xN be an element in the centralizer of g1gm, and assume that
.x1; : : : ; xN / is a reduced word. We use induction on N to show that w is a power of
g1gm. If N D 0, then w D 1 and the property is trivial. From now, assume N > 0, and
assume that the claim is proved when length.w/ < N .

By the assumptions on w, we have g1gmwg�1m g�11 D w, so the word

.g1; gm; x1; : : : ; xN ; g
�1
m ; g�11 /

is not reduced. Hence there are three possibilities:

(a1) g�1m is a letter in .x1; : : : ; xN /, and every letter before the first appearance of g�1m in
.x1; : : : ; xN / is in Cm;

(a2) gm is a letter in .x1; : : : ; xN /, and every letter after the last appearance of gm in
.x1; : : : ; xN / is in Cm;

(a3) every letter in .x1; : : : ; xN / is contained in Cm.

Case (a3) implies Œw; gm� D 1, therefore Œw; g1� D 1, and by Lemma 8.9, w D 1. Since
we are assuming N > 0, case (a3) is impossible.

Similarly, since g�1m g�11 wg1gm D w, the word

.g�1m ; g�11 ; x1; : : : ; xN ; g1; gm/

is not reduced. Applying the same argument as before, we conclude that there are two
possibilities:

(b1) g1 is a letter in .x1; : : : ; xN /, and every letter before the first appearance of g1 in
.x1; : : : ; xN / is in C1;

(b2) g�11 is a letter in .x1; : : : ; xN /, and every letter after the last appearance of g�11 in
.x1; : : : ; xN / is in C1;

Since m � 4, we have C1 \ Cm D ;, therefore (a1) and (b1) are mutually exclusive,
and (a2) and (b2) are mutually exclusive. Hence either (a2) and (b1) hold, or (a1) and (b2)
hold.

If (a2) and (b1) hold, then .x1; : : : ; xN / is equivalent to a reduced word of the form
.g1; x

0
2; : : : ; x

0
N�1; gm/. Let w0 WD x02 � � �x

0
N�1. Then Œg1w0gm; g1gm� D Œw; g1gm� D 1,

and hence Œw0; gmg1�D 1. Let � W G! G be the isomorphism of G defined by �.gk/ WD
gmC1�k . Then Œ�.w0/; g1gm� D Œ�.w0/; �.gmg1/� D 1. By the induction hypothesis,
�.w0/ is a power of g1gm, therefore w0 is a power of gmg1, so w D g1w0gm is a power
of g1gm.

If (a1) and (b2) hold, then .x1; : : : ; xN / is equivalent to a reduced word of the form
.g�1m ; x02; : : : ; x

0
N�1; g

�1
1 /, and the result follows from a similar argument.
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Lemma 8.12. Suppose m � 4. The solutions u; v 2 G to the equation

ug1u
�1
� vgmv

�1
D g1gm (8.5)

are given by

u D .g1gm/
ku0; (8.6)

v D .g1gm/
kv0; (8.7)

where k 2 Z, u0 is in the centralizer of g1, and v0 is in the centralizer of gm.

Remark 8.13. The expressions on the right-hand side of (8.6) and (8.7) are not required
to be reduced. For example, we may have k D 1, u0 D 1, v0 D g�1m .

Proof. It is clear that every pair .u; v/ given by (8.6) and (8.7) is a solution to (8.5). To
prove the reverse, we use induction on length.u/C length.v/. If length.u/C length.v/
D 0, then u D v D 1, and the result is obvious.

Suppose length.u/ C length.v/ D N > 0, and assume the result is proved when
length.u/C length.v/ < N . We can write u as u D u1u2 with the following properties:

� length.u/ D length.u1/C length.u2/;

� u2 is in the centralizer of g1;

� u1 does not have a reduced presentation that ends with a letter in C1.

Notice that .u1; v/ is also a solution to (8.5), so the result is proved by the induction
hypothesis if u2 ¤ 1.

Similarly, we can write v as v D v1v2 with the following properties:

� length.v/ D length.v1/C length.v2/;

� v2 is in the centralizer of gm,

� v1 does not have a reduced presentation that ends with a letter in Cm.

Since .u; v2/ is also a solution to (8.5), the result is proved by the induction hypothesis if
v2 ¤ 1.

From now on, we assume u2 D v2 D 1. This implies uD u1, v D v1, so both ug1u�1

and vg�1m v�1 are reduced presentations, and we have

length.ug1u�1/ D 2 length.u/C 1;

length.vg�1m v�1/ D 2 length.v/C 1:

As a result,
length.g�11 ug1u

�1/ D 2 length.u/C 2 or 2 length.u/;

length.gmvg�1m v�1/ D 2 length.v/C 2 or 2 length.v/:

By (8.5),
g�11 ug1u

�1
D gmvg

�1
m v�1;

so there are four possibilities:
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Case 1: length.u/ D length.v/ C 1, the expression gmvg
�1
m v�1 is reduced, and

g�11 ug1u
�1 is not reduced. By the previous assumption on u, the element u cannot be

represented by a reduced word that ends with a letter in C1, so for g�11 ug1u
�1 not

to be reduced, u must have a presentation of the form u D g1 Ou, where length. Ou/ D
length.u/ � 1. Thus

gmvg
�1
m v�1 D Oug1 Ou

�1g�11 : (8.8)

Since the left-hand side of (8.8) is reduced, and the right-hand side of (8.8) is given
by a word with the same length, the right-hand side of (8.8) is also reduced. Therefore,
by Proposition 8.4, the corresponding words given by the two sides of (8.8) are equiva-
lent. By the assumption that v D v1, every reduced presentation of gmvg�1m v�1 has the
property that the product of the first length.v/C 1 terms is gmv. Similarly, since u D u1,
every reduced presentation of Oug1 Ou�1g�11 has the property that the product of the first
length. Ou/C 1 terms is Oug1. Therefore

gmv D Oug1; g�1m v�1 D Ou�1g�11 :

Hence g1 Ou D vgm, and
g1gmv D g1 Oug1 D vgmg1;

and so Œg1gm; vgm� D 1. By Lemma 8.11, we have v D .g1gm/kg�1m for some integer k.
By the previous equations, Ou D g�11 .gmg1/

k , and u D g1 Ou D .g1gm/
k , so the desired

result is proved.

Case 2: length.v/ D length.u/ C 1, and g�11 ug1u
�1 is reduced, while gmvg�1m v�1 is

not. This case follows from the same argument as Case 1.

Case 3: length.u/ D length.v/, and both g�11 ug1u
�1 and gmvg�1m v�1 are reduced. This

is impossible by Lemma 8.10.

Case 4: length.u/ D length.v/, neither g�11 ug1u
�1 nor gmvg�1m v�1 is reduced. By the

previous assumption that u D u1, for g�11 ug1u
�1 not to be reduced, u must have a

presentation of the form u D g1 Ou, where length. Ou/ D length.u/ � 1. Similarly by the
assumption that vD v1, there is a presentation of v given by vD g�1m Ov, where length. Ov/D
length.v/ � 1. Equation (8.5) gives

Oug1 Ou
�1g�11 g�1m Ovgm Ov

�1
D 1;

therefore
Ovgm Ov

�1
Oug1 Ou D gmg1:

Let � W G ! G be the isomorphism of G defined by �.gk/ WD gmC1�k . Then

�. Ov/g1�. Ov/
�1�. Ou/gm�. Ou/

�1
D g1gm:

By the induction hypothesis, �. Ov/ D .g1gm/k Ov0, �. Ou/ D .g1gm/k Ou0, where k 2 Z, Ov0 is
in the centralizer of g1, and Ou0 is in the centralizer of gm. Therefore

u D g1 Ou D g1.gmg1/
k�. Ou0/ D .g1gm/

kg1�. Ou
0/;

v D g�1m Ov D g
�1
m .gmg1/

k�. Ov0/ D .g1gm/
kg�1m �. Ov0/:
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Since g1�. Ou0/ is in the centralizer of g1, and g�1m �. Ov0/ is in the centralizer of gm, the
desired result is proved.

In conclusion, every solution of (8.5) can be written as (8.6) and (8.7).

Corollary 8.14. Suppose m � 4. The solutions u; v 2 G to the equation

ug1u
�1
� vg�1m v�1 D g1g

�1
m (8.9)

are given by

u D .g1g
�1
m /ku0; (8.10)

v D .g1g
�1
m /kv0; (8.11)

where k 2 Z, u0 is in the centralizer of g1, and v0 is in the centralizer of gm.

Proof. Notice that there is an isomorphism � W G! G defined by �.gi / WD gi for i < m,
and �.gm/ WD g�1m . Applying � to the formulas of Lemma 8.12 yields the result.

9. Arcs on compact surfaces

This section collects several results about arcs on surfaces that will be used later. We first
recall the following result of Feustel.

Proposition 9.1 ([9]). Let S be a smooth compact surface with boundary, and let 1, 2
be two smoothly embedded arcs in S such that i \ @S D @i and i is transverse to @S
for i D 1; 2. Suppose 1 and 2 are homotopic to each other in S relative to @1 D @2.
Then 1 and 2 are isotopic to each other in S relative to @1 D @2.

We also need the following result in Section 11.

Lemma 9.2. Let p 2 S1, and let D be a closed disk in .S1 � ¹pº/ � .0; 1/. Let S WD
S1 � Œ0; 1� �D and 0 WD ¹pº � Œ0; 1�. Let f1 W S ! S be the Dehn twist along a curve
parallel to S1 � ¹0º, and let f2 W S ! S be the Dehn twist along a curve parallel to
S1 � ¹1º. Suppose  is an arc on S from .p; 0/ to .p; 1/. Then there exist integers u and v
such that  is isotopic to f u1 f

v
2 .0/ in S relative to @S .

Proof. Notice that S can be embedded in R2. By the Jordan curve theorem, cutting S
open along  yields a closed annulus with corners, which is diffeomorphic to the man-
ifold obtained by cutting S open along 0. Hence there exists an orientation-preserving
diffeomorphism ' W S ! S such that '.0/ D  and 'j@S D id. Since

� the mapping class group of S is generated by Dehn twists (see, for example, [2] or
[8, Corollary 4.16]);

� every simple closed curve on S is parallel to the boundary;

� Dehn twists along curves parallel to @D preserve the isotopy class of 0,

the desired result is proved.
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The rest of this section studies arcs on Seifert surfaces.

Definition 9.3. Let L0 be a link in R3, let S be a Seifert surface of L0, and let  be an
arc on S such that  intersects @S transversely in S and  \ @S D @ . Define K.S; /
to be the knot in R � L0 which bounds an embedded disk D in R3 that intersects S
transversely in  and intersects @S transversely in @ .

Remark 9.4. Since K.S; / can be isotoped to a neighborhood of  in D �  , the knot
K.S; / satisfying Definition 9.3 is unique up to isotopy in R3 � L0. An example of
K.S; / can be constructed as follows. Let S 0 be an extension of S to a slightly bigger
embedded surface such that S is in the interior of S 0. Let N.S 0/ � R3 be a small neigh-
borhood of the zero section of the normal bundle of S 0. Then N.S 0/ is a neighborhood
of S . Let � W N.S 0/! S 0 be the bundle projection. Let  0 be an extension of  in S 0.
Then K.S; / can be taken to be the boundary of a neighborhood of  in ��1. 0/.

By definition, K.S; / is always an unknot in R3.

Lemma 9.5. Let S ,  be as in Definition 9.3. Suppose K is a knot in R3 � L0 such that
K bounds an embedded disk D in R3. Moreover, assume D intersects both @S and S
transversely, and that D \ S is the disjoint union of  and a family of circles. Then K is
isotopic to K.S; / in R3 � L0.

Proof. By the assumptions,  is an arc in the interior ofD, andD\L0D @.D\S/D @ .
Let K 0 be the boundary of a small neighborhood of  in D. Then K is isotopic to K 0 in
D �  . Since .D � / \ L0 D ;, the isotopy remains in R3 � L0. By the definition of
K.S; /, the knot K 0 is isotopic to K.S; / in R3 � L0, hence the lemma is proved.

Lemma 9.6. Let S ,  be as in Definition 9.3. Suppose L0 is a fibered link with respect
to the Seifert surface S and with monodromy f W S ! S . Then K.S; / is isotopic to
K.S; f .// in R3 � L0.

Proof. By the definition of monodromy, there exists an isotopy � W S � Œ0; 1�! R3 such
that

� �.x; t/ is independent of t for x 2 @S ;

� �.x; 0/ D x for all x 2 S ;

� �.x; 1/ D f .x/ for all x 2 S .

The map � induces an isotopy from K.S; / to K.S; f .// in R3 � L0 by the family of
knots K.�.S; t/; �.; t//.

10. The link Lu;v

This section defines a family of links Lu;v and computes their Jones polynomials at
t D �1. The computation will be used in the proof of the non-existence of the hypo-
thetical link L satisfying Condition 6.9.
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Definition 10.1. For a pair of integers .u; v/ with u� 3, we define a link Lu;v as follows.
If v � 0, define Lu;v to be the link given by Figure 14 with u components such that
there are v crossings in the dotted rectangle. If v < 0, define Lu;v to be the link given by
Figure 15 with u components such that there are jvj crossings in the dotted rectangle.

Fig. 14. Lu;v when v � 0.

Fig. 15. Lu;v when v < 0.

Fig. 16. An orientation of Lu;v .

The only difference between Figures 14 and 15 is that the crossings in the dotted
rectangles are reversed. Notice that Lu;v is alternating if v � 0.

Let V.Lu;v/ be the reduced Jones polynomial of Lu;v with the orientation given by
Figure 16. The Jones polynomial is normalized so that if U is the unknot then V.U / D 1.
Let Vu;v be the value of V.Lu;v/ when plugging in t1=2 D �i . Although this will not be
used in the proofs, we remark that jVu;vj is equal to the determinant of Lu;v .
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Notice that the Hopf link with linking numberC1 has Jones polynomial�t1=2 � t5=2,
and the Hopf link with linking number �1 has Jones polynomial �t�1=2 � t�5=2. More-
over, the Jones polynomial of the connected sum of links is the product of the Jones
polynomials of the summands. Therefore, if v is even, by the skein relation at the dotted
circle in Figure 16, we have

.t1=2 � t�1=2/V .Lu�1;v/ D t
�1V.Lu;v/ � t .�t

1=2
� t5=2/u�1:

If v is odd, then the skein relation gives

.t1=2 � t�1=2/V .Lu�1;v/ D t
�1V.Lu;v/ � t .�t

1=2
� t5=2/u�2.�t�1=2 � t�5=2/:

Hence

Vu;v D

´
.2i/Vu�1;v C .2i/

u�1 if v is even,

.2i/Vu�1;v � .2i/
u�1 if v is odd.

On the other hand, if v is even, the skein relation at a crossing in the dotted box in Fig-
ure 16 yields

.t1=2 � t�1=2/.�t1=2 � t5=2/u D t�1V.Lu;v�2/ � tV .Lu;v/:

If v is odd, then the skein relation gives

.t1=2 � t�1=2/.�t1=2 � t5=2/u�1.�t�1=2 � t�5=2/ D t�1V.Lu;v�2/ � tV .Lu;v/:

Therefore

Vu;v D

´
Vu;v�2 � .2i/

uC1 if v is even,

Vu;v�2 C .2i/
uC1 if v is odd.

It can be directly computed that

V.L3;�1/ D 2C t
2
C t4;

V .L3;0/ D t
7
� t6 C 3t5 � t4 C 3t3 � 2t2 C t;

therefore
V3;�1 D 4; V3;0 D �12:

Combining the computations above, we have

Vu;v D .�1/
v.2i/u�1.uC 2v/: (10.1)

As a consequence, we have the following result.

Corollary 10.2. If juC 2vj > 1, then rankZ=2 Kh.Lu;vIZ=2/ > 2u.

Proof. Since the coefficients of the Jones polynomial V.Lu;v/ are the Euler characteris-
tics of Khr.Lu;v/ at different q-gradings, we have

rankZ=2 Khr.Lu;vIZ=2/ � jVu;vj D j2u�1.uC 2v/j:

If juC 2vj > 1, then

rankZ=2 Kh.Lu;vIZ=2/ D 2 � rankZ=2 Khr.Lu;vIZ=2/ > 2u:
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11. The non-existence of L

This section combines the results from Sections 7–10 to prove that the hypothetical linkL
satisfying Condition 6.9 does not exist. We will proceed by showing more properties of
L and eventually deduce a contradiction. By Lemma 6.10, this will finish the proof of
Theorem 1.2.

Recall that the components ofL areK1; : : : ;Kn, andL0 DK1 [ � � � [Kn�1. We have
defined S1 and S2 to be the Seifert surfaces of L0 given by Figures 11 and 12 respectively.
By the conditions on the linking numbers of L, there are two possibilities:

Case 1: The algebraic intersection number of S1 and Kn is zero.

Case 2: The algebraic intersection number of S2 and Kn is zero.

By Proposition 7.9, for j 2 ¹1; 2º, if the algebraic intersection number of Sj and Kn
is zero, then Kn can be isotopically deformed in R3 � L0 into R3 � Sj . The first half of
this section will focus on Case 1. The argument for Case 2 is similar and will be sketched
afterwards.

Let 0 be the arc on S1 as shown in Figure 17, where 0 starts from a point p1 2 K1
and travels from left to right, goes through the crossings of L0 in an alternating way, and
ends at a point p2 2 Kn�1.

p1 2p
q

q'

t

Fig. 17. The arc 0 on S1.

Lemma 11.1. Suppose Case 1 holds. Then there exists an arc  � S1 from p1 to p2 such
that Kn is isotopic to K.S1; / in R3 � L0.

Proof. By Proposition 7.9, there exists a knot K 0n � R3 � S1 such that Kn is isotopic
to K 0n in R3 � L0. By Proposition 7.1, K 0n bounds a disk Dn such that Dn intersects
K1 and Kn�1 in one point each, and is disjoint from K2 [ � � � [ Kn�2. After a further
isotopy, we may assume thatDn \L0 D ¹p1; p2º, and thatDn intersects S1 transversely.
Therefore Dn \ S1 consists of an arc  � S1 from p1 to p2 and a union of circles. By
Lemma 9.5, K 0n is isotopic to K.S1; / in R3 � L0.

Lemma 11.2. Suppose Case 1 holds. Fix an orientation on S1, let f1, f2 be the Dehn
twists on S1 along an oriented curve parallel to K1 and an oriented curve parallel
to Kn�1 respectively, and let f3 W S1 ! S1 be the monodromy of the fibered structure
of L0. Let  be the arc given by Lemma 11.1. Then there exist integers a; b; c such that 
is isotopic to f a1 f

b
2 f

c
3 .0/ relative to ¹p1; p2º on S1.
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Proof. If n D 3, then S1 is an annulus, and every arc from p1 to p2 is isotopic to f a1 0
for some integer a. If n D 4, then S1 is an annulus with a disk removed, and the result
follows from Lemma 9.2 with c D 0. From now, we assume n � 5.

Fix a point q in the interior of 0 as shown in Figure 17. Let 1 be the subarc of 0
from p1 to q, and let 2 be the subarc of 0 from q to p2. Then there exists a closed
curve w in the interior of S1, based at q, such that  is homotopic to 1 �w � 2 relative to
¹p1; p2º on S1. The loop w is not necessarily simple.

Let g1; : : : ; gn�1 be the generators of �1.R3 � L0; q0/ defined in Section 8, where q0

is their basepoint. Fix an arc t from q0 to q as given by Figure 17, let t�1 be the same
arc with the reversed orientation, and let Œw� 2 �1.R3 � L0; q0/ be the homotopy class of
t � w � t�1.

Every oriented knot in R3 � L0 defines a conjugacy class in �1.R3 � L0; q0/. By
Corollary 7.7, the conjugacy class defined by Kn has the form ga1g

b
n�1, where a; b 2

¹�1; 1º depend on the signs of the linking numbers and the orientation of Kn. On the
other hand, under a suitable orientation, the conjugacy class defined by K.S1; / is given
by g1Œw�gb

0

n�1Œw�
�1, where b0 D .�1/nC1. Therefore, there exists r 2 �1.R3 � L0; q0/

such that
rg1Œw�g

b0

n�1Œw�
�1r�1 D ga1g

b
n�1:

Comparing the images of both sides in H1.R3 � L0IZ/ yields a D 1, b D b0, thus the
equation can be rewritten as

rg1r
�1
� .rŒw�/gb

0

n�1.rŒw�/
�1
D g1g

b0

n�1:

Applying Lemma 8.12 and Corollary 8.14 for uD r , v D rŒw�, and invoking Lemma 8.8,
we have

Œw� D g˛1g
ˇ
2 g

ı
n�2g

�
n�1

for some ˛; ˇ; ı; � 2 Z. Notice that the image of H1.interior.S1/IZ/ in H1.R3 � L0IZ/
is generated by Œg1�C Œg2�; Œg2�C Œg3�; : : : ; Œgn�2�C Œgn�1�, therefore we have

˛ � ˇ C .�1/n�1ı C .�1/n� D 0;

and hence
Œw� D .g1g2/

ˇg�1 .g
.�1/n�1

n�1 /� .gn�2gn�1/
ı ; (11.1)

where � WD ˛ � ˇ D .�1/n�1.� � ı/.
We construct a set of generators of �1.interior.S1/; q/ as follows. Let u1; : : : ; un�2

be the oriented simple closed curves on S1 as given by Figure 18. Each ui intersects 0 at

p1 2p
q
u

u

u
1

2

3

Fig. 18. The generators of �1.interior.S1/; q/.
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one point near one of the crossings of L0. Let qi be the intersection point of ui and 0, let
vi be the subarc of 0 from q to qi , and let v�1i be the same arc with reverse orientation.
Let u0i be the loop based at q defined by vi � ui � v�1i . Then �1.interior.S1/; q/ is a free
group generated by Œu01�; : : : ; Œu

0
n�2�. Equation (11.1) implies that w is based homotopic

to
u
0ˇ
1 � .u

0�
1 u
0��
2 u0�3 � � �u

0.�1/n�1�
n�2 / � u0ın�2 (11.2)

in �1.R3 � L0; q/.
Since R3 � L0 is a fiber bundle over S1 with a fiber being the interior of S1, the map

from �1.interior.S1/; q/ to �1.R3 � L0; q/ is injective, hence w is based homotopic to
(11.2) in S1. By Lemma 7.8, the monodromy f3 is given by the composition of the Dehn
twists along u1; : : : ; un�2. Therefore, under a suitable choice of the orientation for the
monodromy f3, the image of 0 under f c3 is homotopic to 1 � .u0c1 u

0�c
2 u0c3 � � �u

0.�1/n�1c
n�2 / �

2 relative to ¹p1; p2º, where the alternating signs in front of c come from the fact that
the normal vector field of S1 switches directions at each crossing of the diagram. As a
consequence,  is homotopic to f a1 f

b
2 f

c
3 .0/ relative to ¹p1; p2º on S1 with a D ˙ˇ,

b D ˙ı, c D � , where the signs depend on the orientations of the Dehn twists in the def-
initions of f1; f2. By Proposition 9.1, 0 is isotopic to f a1 f

b
2 f

c
3 .0/ relative to ¹p1; p2º

on S1.

Corollary 11.3. Under the condition of Case 1, the knot Kn is isotopic to K.S1; 0/ in
R3 � L0.

Proof. Let f1; f2; f3 be as in Lemma 11.2. By Lemmas 11.1 and 11.2, there exist integers
a; b; c such thatKn is isotopic toK.S1; / in R3 �L0, where  is an arc on S1 that is iso-
topic to f a1 f

b
2 f

c
3 .0/ relative to ¹p1; p2º. Therefore  is isotopic to f c3 .0/ on S1 if we

allow its boundary points to move on @S1. Hence K.S1; / is isotopic to K.S1; f c3 .0//
in R3 �L0. By Lemma 9.6,K.S1; f c3 .0// is isotopic toK.S1; 0/ in R3 �L0, hence the
result is proved.

Recall that for a pair of integers u; v with u � 3, the link Lu;v is defined by Defini-
tion 10.1.

Lemma 11.4. The link L0 [K.S1; 0/ is isotopic to Ln;1�n.

Proof. Notice that .S1; 0/ is isotopic to Figure 19. Removing the bands in the dotted
boxes in Figure 19 from S1 yields a disk, so the surface S1 is given by a disk with n � 1

...
Fig. 19. Another diagram for S1 and 0.
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...

Fig. 20

...

...

...

...

Fig. 21. Isotopy from L0 [K.S1; 0/ to Ln;1�n.

bands attached, and one can isotope Figure 19 to Figure 20. Figure 21 then shows an
isotopy from L0 [K.S1; 0/ to Ln;1�n.

By Corollary 10.2, if n � 4, then rankZ=2 Kh.Ln;1�nIZ=2/ > 2n. It can be directly
verified that L3;�2 is isotopic (up to mirror image) to the link L6n1 in the Thistlethwaite
link table, and the rank of Kh.L3;�2IZ=2/ equals 12. Therefore the links Ln;1�n all fail
to satisfy Condition 6.9 (2). This proves the non-existence of L for Case 1.

To prove the statement for Case 2, let 0 be the arc on S2 given by Figure 22.
Then the same argument as for Lemma 11.2 and Corollary 11.3 shows that Kn is iso-
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Fig. 22. The arc 0 on S2.

...
Fig. 23. Another diagram for S2 and 0.

topic to K.S2; 0/ in R3 � L0. A similar argument to the one for Lemma 11.4 shows
that L0 [ K.S2; 0/ is isotopic to Ln;2�n. By Corollary 10.2, when n � 6, we have
rankZ=2 Kh.Ln;2�nIZ=2/ > 2n. The link L3;�1 is isotopic up to mirror image to the link
L6n1 in the Thistlethwaite link table, and the rank of Kh.L3;�1IZ=2/ equals 12. The link
L4;�2 is isotopic up to mirror image to L8n8, and the rank of Kh.L4;�2IZ=2/ equals 24.
The linkL5;�3 is isotopic up to mirror image to L10n113, and the rank of Kh.L5;�3IZ=2/
equals 60. Therefore, rankZ=2Kh.Ln;2�nIZ=2/ > 2n for all n, and this proves the desired
result for Case 2.

In conclusion, we have proved that the link L satisfying Condition 6.9 does not exist,
therefore Theorem 1.2 follows from Lemma 6.10.

12. Algebraic results

In this section, we use algebraic arguments to prove Corollary 1.4, Corollary 1.5 and
Theorem 1.9.

Proof of Corollary 1.4. Suppose T is a tree with k vertices and let LT be the forest of
unknots given by T . If LT is oriented such that the linking numbers between the compo-
nents of LT are all non-negative, then by [1, Corollary 6.6] we have

P.LT / WD
X
i;j

t iqj rankZ=2 Khi;j .LT IZ=2/

D tk�1q3.k�1/.q C q�1/.tq2 C t�1q�2/k�1:

Changing the orientation of LT will change P.LT / by multiplication by ˙t rqs , which
is a unit in the ring ZŒt; t�1; q; q�1�. Theorem 1.2 implies L2 is a forest of unknots. Let
G D T1 t � � � t Tl be the graph of L2, where Ti is a tree with ki vertices and n D

P
ki .

Then the Künneth formula shows that

P.LG/ D t
aqb.q C q�1/l .tq2 C t�1q�2/n�l ;
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where a and b are integers depending on the orientaion of L2. Since q C q�1 and tq2 C
t�1q�2 are irreducible polynomials in the unique factorization domain ZŒt; t�1; q; q�1�,
the value of n � l is determined by P.LG/. Therefore the first part of the corollary is
proved. For the second part, notice that in these four cases the graph for L1 is uniquely
determined by the number of edges.

Lemma 12.1. SupposeL is an oriented link andL0 DL[m wherem is a meridian near
a point p 2 L. Then

Kh.L0IZ=2/ Š Kh.LIZ=2/˚ Kh.LIZ=2/ (12.1)

as un-graded Z=2-vector spaces. Given any point r 2 L, this isomorphism intertwines
the basepoint operators Xr on the two sides. If q 2 m, then the isomorphism intertwines
Xq on the left-hand side with Xp on the right-hand side.

qs

p

Fig. 24. The diagram D0 D D [m

Proof. In the proof we set R D Z=2. Let D be a diagram of L, and C be the associated
Khovanov chain complex. The meridian m is added to D with two new crossings intro-
duced as in Figure 24. We may also assume the point r is away from the region drawn in
Figure 24. According to Figure 25, the Khovanov chain complex C 0 for D [m is

C ˝R RŒXs�=.X
2
s /

� //

�

��

C

��

��
C

� // C ˝R RŒXq�=.X2q /

where �.˛ ˝ 1/ D ˛; �.˛ ˝ Xs/ D Xp˛, and �.˛/ D ˛ ˝ Xq C Xp˛ ˝ 1. It is clear
that the subcomplex

C ˝R R¹1º
� //

�

��

C

��

��
C

� // Im�
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p p

p p

q q

q q

s s

s s

Fig. 25. Four resolutions of D0 D D [m.

is acyclic. Therefore the quotient complex C 00 given by

C ˝R R¹Xsº //

��

0

��

0 // C˝RRŒXq �=.X
2
q /

Im�

is quasi-isomorphic to C 0. This quasi-isomorphism respects the actions of Xp; Xq; Xr
since the subcomplex is indeed an RŒX�=.X2/-submodule for X D Xp; Xq; Xr . Now

H.C 0/ Š H.C 00/ Š H.C ˝R R¹Xsº/˚H

�
C ˝R RŒXq�=.X

2
q /

Im�

�
Š H.C/˚H.C/:

The actions of Xp and Xq on C ˝R R¹Xsº are the same since p and q lie on the same
component of the resolved diagram in Figure 25. On the quotient

C ˝R RŒXq�=.X
2
q /

Im�

the actions of Xp and Xq are also the same. Therefore the actions of Xp; Xq on H.C 00/
also coincide. This completes the proof.

Remark 12.2. The change of grading in (12.1) is computed in [1, Theorem 6.2].
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Proof of Corollary 1.5. Let Un be the n-component unlink and H be the Hopf link. It is
straightforward to calculate that

Kh.UnIZ=2/ Š Rn and Kh.H IZ=2/ Š R2=.X1 �X2/˚R2=.X1 �X2/:

For k 2 ZC, let Hk�1 be a forest of unknots with k components whose graph is a
tree. Then for k � 2, the link Hk�1 is given by a connected sum of k � 1 Hopf links.
Lemma 12.1 implies that

Kh.Hk�1IZ=2/ Š ŒRk=.X1 D � � � D Xk/�˚2
k�1

: (12.2)

The Khovanov module of the disjoint union of two links is the tensor product of the
Khovanov modules of the two links over Z=2. Theorem 1.2 implies L2 is a forest of
unknots with a graph G2. It is clear from the above discussion that the module structure
of Kh.L2IZ=2/ determines the number of vertices in each component of G2, and hence
the corollary is proved.

Now we prove Theorem 1.9. The proof of Theorem 1.2 does not immediately apply
to the case of arbitrary coefficient rings because we have used the equation

rankZ=2 Khr.L; pIZ=2/ D 1
2

rankZ=2 Kh.LIZ=2/

in the proof of Proposition 5.4, and the above equation only holds for Z=2-coefficients.
For Q-coefficients, the same proof would only give the following result.

Theorem 12.3. If L is an n-component link such that

rankQ Kh.LIQ/ D 2n;

rankQ Khr.L; pIQ/ D 2n�1 for all basepoints p,

then L is a forest of unknots.

Sketch of proof. By Batson–Seed’s inequality, we have rankQ Kh.KIQ/ D 2 for every
component K of L. Therefore, Kronheimer–Mrowka’s unknot detection theorem implies
that every component of L is an unknot. The assumption rankQ Khr.L; pIQ/ D 2n�1

implies that dimC I\.L; p/ � 2n�1 by Kronheimer–Mrowka’s spectral sequence. By
(3.12), we also have dimC I\.L; p/ � 2n�1, therefore

dimC I\.L; p/ D 2n�1 for every basepoint p 2 L.

The proof then proceeds as for Theorem 1.2 to reduce to the three links L3;�2, L4;�2 and
L5;�3. Since

rankQ.L3;�2IQ/ D 10 > 2
3;

rankQ.L4;�2IQ/ D 20 > 2
4;

rankQ.L5;�3IQ/ D 46 > 2
5;

all the three links are eliminated.
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Using the equivariant Khovanov homology introduced in [16], we have the following
lemma.

Lemma 12.4. If L is an n-component link such that rankQ Kh.LIQ/ D 2n, then

rankQ Khr.L; pIQ/ D 2n�1 for all basepoints p.

Proof. Given a diagram D for L, a chain complex F3.D/ of free ZŒt �-modules is intro-
duced in [16]. The tensor product Ct .D/ WD F3.D/ ˝Z Q is a chain complex of free
QŒt �-modules. Its homology H .L/ is a QŒt �-module called the equivariant Khovanov
homology. If a basepoint p 2 L is chosen, then Ct .D/ (hence H .L/) becomes a QŒX�-
module, where the action of X depends on p and satisfies X2 D t . The tensor prod-
uct Ct .D/˝QŒt� QŒt �=.t/ is the chain complex defining Kh.LIQ/. The tensor product
Ct .D/˝QŒX� QŒX�=.X/ is the chain complex defining Khr.L; pIQ/. By [16, Proposi-
tion 7] (and the discussion before it), we have

H .L/ Š QŒt �˚2
n

˚ T;

where T is a direct sum of torsion modules of the form QŒt �=.t l /. Since Kh.LIQ/ŠQ2n ,
the universal coefficient theorem implies that T D 0. Therefore

H .L/ Š QŒX�˚2
n�1

as a QŒX�-module since X2 D t . Now applying the universal coefficient theorem again
we obtain

Khr.L; pIQ/ Š Q˚2
n�1

for all basepoints p.

Theorem 12.3 and Lemma 12.4 imply Theorem 1.9.

Theorem 1.9. Suppose R is an integral domain. If L is an n-component link such that
rankR Kh.LIR/ D 2n, then L is a forest of unknots.

Proof. By the universal coefficient theorem,

2n D rankR Kh.LIR/ � rankZ Kh.LIZ/ D rankQ Kh.LIQ/:

Therefore by (1.1), we have rankQ Kh.LIQ/ D 2n. Lemma 12.4 and Theorem 12.3 then
imply that L is a forest of unknots.
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