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Abstract. An n-vertex graph is said to to be .p; ˇ/-bijumbled if for any vertex sets A;B � V.G/,
we have

e.A;B/ D pjAj jBj ˙ ˇ
p
jAj jBj:

We prove that for any r 2 N�3 and c > 0 there exists an " > 0 such that any n-vertex .p; ˇ/-
bijumbled graph with n 2 rN, p > 0, ı.G/ � cpn and ˇ � "pr�1n contains a Kr -factor. This
implies a corresponding result for the stronger pseudorandom notion of .n; d; �/-graphs.

For the case of triangle factors, that is, when r D 3, this result resolves a conjecture of Krivele-
vich, Sudakov and Szabó from 2004 and it is tight due to a pseudorandom triangle-free construction
of Alon. In fact, in this case even more is true: as a corollary to this result and a result of Han,
Kohayakawa, Person and the author, we can conclude that the same condition of ˇ D o.p2n/ actu-
ally guarantees that a .p; ˇ/-bijumbled graph G contains every graph on n vertices with maximum
degree at most 2.
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1. Introduction

We say a graph G contains a Kr -factor if there is a collection of vertex disjoint copies
ofKr that completely cover the vertex set ofG. When r D 3, we often refer to aK3-factor
as a triangle factor. As a natural generalisation of a perfect matching in a graph, Kr -
factors are a fundamental object in graph theory with a wealth of results studying various
aspects and variants, in particular exploring probabilistic [11, 36, 39, 45, 51], extremal
[4, 12, 62, 68], and algorithmic [18, 42, 44, 46] considerations. However, unlike perfect
matchings, it is not easy to verify whether a graphG contains aKr -factor or not. Certainly
it is necessary that the number of vertices of G must be divisible by r but given this,
it was proved by Schaeffer [43] (in the case r D 3) and by Kirkpatrick and Hell [46]
(in general) that determining whether a graph on n 2 rN vertices contains a Kr -factor
is an NP-complete problem. Given that we cannot hope for a nice characterisation of
graphs which containKr -factors, there has been a focus on providing sufficient conditions
which are computationally easy to verify. One classical such theorem is due to Hajnal and
Szemerédi [29] who showed that aKr -factor is guaranteed if the host graph is sufficiently
dense. The case of triangle factors was previously shown by Corrádi and Hajnal [24].

Theorem 1.1. If r 2 N�3 and G is a graph on n 2 rN vertices with minimum degree
ı.G/ � .1 � 1=r/n, then G contains a Kr -factor.

This theorem is tight, as can be seen, for example, by taking G to be a complete
graph with a clique of size n=r C 1 removed to leave an independent set of vertices,
say I . One then has ı.G/ D .1 � 1=r/n � 1 and G does not have a Kr -factor. Indeed,
any copy of Kr in a family of vertex disjoint Krs can use at most one vertex of I but a
Kr -factor should contain n=r < jI j copies of Kr . All examples verifying the tightness
of Theorem 1.1 share some features with the graph given here. For example they contain
much larger independent sets than almost all graphs of this density. Therefore, one might
hope to capture more graphs having a Kr -factor by adding a condition that precludes the
atypical behaviour of the extremal examples.
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This naturally leads us to the notion of pseudorandom graphs, which are, roughly
speaking, graphs which imitate random graphs of the same density. The study of pseu-
dorandom graphs, initiated in the 1980s by Thomason [65, 66], has become a central
and vibrant field at the intersection of combinatorics and theoretical computer science.
We refer to the excellent survey of Krivelevich and Sudakov [53] for an introduction to
the topic. One way of imposing pseudorandomness is through the spectral notion of the
eigenvalue gap. This then leads to the study of .n; d; �/-graphs G which are d -regular
n-vertex graphs with second eigenvalue �. By second eigenvalue, what is actually meant
is the second largest eigenvalue in absolute value, as follows. Given an n-vertex d -regular
graph G, we can look at the eigenvalues of the adjacency matrix A of G which, as A is a
symmetric 0=1-matrix, are real and can be ordered as �1 � � � � � �n. The second eigen-
value is then defined to be � WDmax ¹j�2j; j�njº. It turns out that this parameter � controls
the pseudorandomness of the graph G, with smaller values of � giving graphs that have
stronger pseudorandom properties. More concretely, the relation is given by the following
property of .n;d;�/-graphs (see e.g. [53, Theorem 2.1]), which is known as the Expander
Mixing Lemma and shows that � controls the edge distribution between vertex sets. For
any vertex subsets A;B of an .n; d; �/-graph G, one hasˇ̌̌̌

e.A;B/ �
d

n
jAj jBj

ˇ̌̌̌
� �

p
jAj jBj; (1.1)

where e.A; B/ WD j¹uv 2 E.G/ W u 2 A; b 2 Bºj denotes the number1 of edges in G
with one endpoint in A and the other in B . Note that d=n is the density of the graph G,
and hence one would expect to see d

n
jAj jBj edges between the vertex sets A and B in a

random graph G. The pseudorandom parameter � then controls the discrepancy from this
paradigm.

It follows from simple linear algebra (see e.g. [53]) that for an .n; d; �/-graph, one
has � � d always and moreover, as long as d is not too close to n, say d � 2n=3, one
has � D �.

p
d/. Thus, we think of .n; d; �/-graphs with � D ‚.

p
d/ as being opti-

mally pseudorandom. For example, it is known that random regular graphs are optimally
pseudorandom .n; d; �/-graphs with high probability2 [16, 67].

A prominent theme in the study of pseudorandom graphs has been to give conditions
on the parameters, n, d and � that guarantee certain properties of an .n; d; �/-graph. For
example, it follows easily from (1.1) that any .n; d; �/-graph G with � < d2=n con-
tains a triangle as there is an edge in the neighbourhood of every vertex. In particular,
any optimally pseudorandom graph with d D !.n2=3/ must contain a triangle. More-
over, this condition is tight due to a triangle-free construction of an .n; d; �/-graph due
to Alon [5] with d D ‚.n2=3/ and � D ‚.n1=3/. Alon’s construction is optimally pseu-
dorandom and Krivelevich, Sudakov and Szabó [54] generalised it to the whole possible

1Note that edges that lie in A \ B are counted twice.
2Here, and throughout, we say that a property holds with high probability if the probability that

it holds tends to 1 as the number n of vertices tends to infinity.
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range of densities. That is, for any d D d.n/ such that �.n2=3/ D d � n, they gave
a sequence of infinitely many n and triangle-free .n0; d; �/-graphs with n0 D ‚.n/ and
�D‚.d2=n/. In general, finding optimal conditions for subgraph appearance in .n;d;�/-
graphs seems hard. Indeed, the only tight conditions that are known are those for fixed size
odd cycles [9, 53]. With respect to spanning structures, it is only perfect matchings that
have been well understood [17,20,53]. Whilst such questions are interesting in their own
right, they also have implications in other areas of mathematics. As an example, we men-
tion the beautiful connection given by Alon and Bourgain [6] (see also [2]) who used the
existence of certain subgraphs in pseudorandom graphs to prove the existence of additive
patterns in large multiplicative subgroups of finite fields.

The purpose of this paper is to answer what has become one of the central problems
in this area, by giving a tight condition for an .n; d; �/-graph to contain a triangle factor.

Theorem 1.2. There exists " > 0 such that any .n; d; �/-graph with n 2 3N, d > 0 and
� � "d2=n contains a triangle factor.

Theorem 1.2 was conjectured by Krivelevich, Sudakov and Szabó [54] in 2004. Focus-
ing solely on optimally pseudorandom graphs, that is, setting � D ‚.

p
d/, Theorem 1.4

implies that any optimally pseudorandom graph with d D !.n2=3/ contains a triangle
factor. Comparing this to Theorem 1.1, we see that imposing pseudorandomness, which
is easy to compute via the second eigenvalue, allows us to capture much sparser graphs
which are guaranteed to contain a triangle factor.

Theorem 1.2 (and the more general Theorem 1.4 below) conclude a body of work
towards the conjecture of Krivelevich, Sudakov and Szabó, and the proof of the theorem,
discussed in Section 2, builds upon the many beautiful ideas of various authors, which
have arisen in this study. The first step towards the conjecture was given by Krivele-
vich, Sudakov and Szabó [54] themselves, who showed that � � "d3=.n2 logn/ for some
sufficiently small " is enough to guarantee a triangle factor. This was improved to � �
"d5=2=n3=2 by Allen, Böttcher, Hàn, Kohayakawa and Person [3] who also proved that the
same condition guarantees the appearance of the square of a Hamilton cycle, a supergraph
of a triangle factor. Recently, Nenadov [61] got very close to the conjecture, showing that
� � "d2=.n log n/ guarantees a triangle factor. Concentrating solely on optimally pseu-
dorandom graphs, these results imply that having degree d D !.n4=5.logn/2=5/, !.n3=4/
and !..n logn/2=3/ respectively, guarantees the existence of a triangle factor.

In a different direction, one can fix the condition that �� "d2=n for some small " > 0
and prove the existence of other structures giving evidence for a triangle factor. Again,
this was initiated by Krivelevich, Sudakov and Szabó [54] who proved that with this con-
dition, one can guarantee the existence of a fractional triangle factor. That is, they showed
that there is a function w which assigns a weight w.T / 2 Œ0; 1� to each triangle T in a
pseudorandom graph G and is such that for every vertex v 2 V.G/, the sum

P
v2T w.T /

of the weights of triangles containing v is precisely equal to 1. Imposing ¹0; 1º-weights
recovers the notion of a triangle factor and a fractional triangle factor is thus a natural
relaxation. Another interesting result of Sudakov, Szabó and Vu [64] showed that when
�� "d2=n, we have many triangles and these are well distributed in the .n;d;�/-graphG.
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Indeed, they proved a Turán-type result showing that any triangle-free subgraph of such
a graph G must contain at most half the edges of G. A more recent result due to Han,
Kohayakawa and Person [34, 35] shows that � � "d2=n guarantees the existence of a
near triangle factor: there are vertex disjoint triangles covering all but n647=648 vertices
of such an .n; d; �/-graph.

We will deduce Theorem 1.2 from a more general theorem (Theorem 1.4 below)
which deals with Kr -factors for all r � 3 and works with a larger class of pseudoran-
dom graphs where we do not restrict solely to regular graphs. Indeed, we will work with
the notion of bijumbledness, whose usage dates back to the original works of Thoma-
son [65, 66], and whose definition captures the key property of edge distribution, given
for .n; d; �/-graphs by (1.1).

Definition 1.3. Let n 2 N, p D p.n/ 2 Œ0; 1� and ˇ D ˇ.n; p/ > 0. An n-vertex graph
G D .V;E/ is .p; ˇ/-bijumbled if for every pair of vertex subsets A;B � V , one hasˇ̌

e.A;B/ � pjAj jBj
ˇ̌
� ˇ

p
jAj jBj: (1.2)

Note that, due to (1.1), .n; d; �/-graphs are .d=n; �/-bijumbled. As with .n; d; �/-
graphs, we are interested in finding conditions on the parameters n, p and ˇ that guarantee
the existence of certain subgraphs in n-vertex .p;ˇ/-bijumbled graphs. Our main theorem
gives conditions for the existence of Kr -factors for all r � 3 in this setting.

Theorem 1.4. For every r 2 N�3 and c > 0 there exists an " > 0 such that any n-vertex
.p; ˇ/-bijumbled graph with n 2 rN, p > 0, ı.G/ � cpn and ˇ � "pr�1n contains a
Kr -factor.

We remark that the condition that ı.G/ � cpn is natural. Indeed, Definition 1.3
implies that almost all vertices will have degree at least cpn, and some lower bound
on minimum degree is necessary to avoid isolated vertices. Theorem 1.2 follows directly
from Theorem 1.4, and much of the context and past results discussed above have analo-
gous statements when r � 4 with many authors also working in the more general setting
of .p; ˇ/-bijumbled graphs. In particular, for all r � 3, a condition of ˇ D o.pr�1n/

guarantees a copy of Kr , and before Theorem 1.4 the best condition known for ensur-
ing a Kr -factor was ˇ D o.pr�1n=log n/ due to Nenadov [61]. Another result due to
Han, Kohayakawa, Person and the author [32] appeared at roughly the same time as
that of Nenadov and gave a condition of ˇ D o.prn/ for a Kr -factor, which for r � 4
gives a stronger result than the previously best known condition of Allen, Böttcher, Hàn,
Kohayakawa and Person [3]. Although this condition is weaker than Nenadov’s only when
the bijumbled graph is very dense, it turns out that the proof methods of both results will
be useful in proving Theorem 1.4.

There is one key difference between the pictures for r D 3 and for r � 4: the tightness
of the condition ˇ D o.pr�1n/ for both the clique and the clique factor when r � 4 is
unknown. We defer a more in-depth discussion of this to our concluding remarks (Section
9) and conclude this introduction by again focusing on the most interesting case of triangle
factors where we know that Theorems 1.4 and 1.2 are tight due to the construction of Alon
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(and its generalisation to the whole range of densities by Krivelevich, Sudakov and Szabó)
discussed above. Indeed, one of the reasons that the Krivelevich–Sudakov–Szabó conjec-
ture (Theorem 1.2) has attracted so much attention is that it marks a distinct difference
between the behaviour of random graphs and that of (optimally) pseudorandom graphs. In
random graphs, we know that triangles appear at density roughly p D n�1, whilst for tri-
angle factors the threshold is considerably denser, namely p D n�2=3.logn/1=3 [39] (see
also recent results [37,40,41,63] that imply that this threshold is sharp). On the other hand,
there exist triangle-free, optimally pseudorandom graphs with density roughly n�1=3, but
Theorem 1.4 asserts that any pseudorandom graph whose density is a constant factor
larger than this is guaranteed to have not only a triangle but a triangle factor. Furthermore,
it follows from Theorem 1.4 and (the proof of) a result of Han, Kohayakawa, Person and
the author [33] that even more is true.

Corollary 1.5. For every c > 0 there exists an " > 0 such that any n-vertex .p; ˇ/-
bijumbled graph with ı.G/ � cpn, p > 0 and ˇ � "p2n is 2-universal. That is, given
any graph F on at most n vertices, with maximum degree 2, G contains a copy of F . In
particular, any .n; d; �/-graph G with � � "d2=n is 2-universal.

Our proof of Theorem 1.4 incorporates discrete algorithmic techniques, probabilis-
tic methods, fractional relaxations and linear programming duality, and the method of
absorption. In the next section we discuss the proof in detail and reduce the problem to
proving two intermediate propositions and a lemma. These will then be proven in what
follows after developing the necessary theory.

Remark. An accompanying conference version [59] of this work deals solely with the
setting of Theorem 1.2. More technical parts of the proof are omitted there and we hope
that it serves as a gentle introduction to the present paper.

2. Proof of main theorem

The proof of Theorem 1.4 rests on the shoulders of the previous results [3, 32–35, 54, 61]
working towards the conjecture of Krivelevich, Sudakov and Szabó. Indeed, it is fair to
say that the solution of the conjecture would not have been possible without the insights
and ideas of the many authors who tackled this problem. In this section, we discuss these
as well as our novel ideas and lay out the key concepts and scheme of the proof. In doing
so, we will reduce the theorem to several intermediate results, whose proofs will be the
subject of the rest of the paper.

Our proof, like some of its predecessors [3,32,61], works by the method of absorption.
It turns out that finding many vertex disjoint copies of Kr in a .p; ˇ/-bijumbled graph G
as in Theorem 1.4 is easy. This follows from a simple consequence of Definition 1.3
which guarantees that any small linear sized set of vertices contains a copy ofKr ; see e.g.
Corollary 3.5 (2) for a precise statement. Therefore we can greedily choose copies of Kr
to be in ourKr -factor and continue this process until we are left with some small leftover
set of vertices L, where small means of size at most "rn, say. However, at this point we
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get stuck: we have no way of guaranteeing the existence of a Kr in L and so we do not
know how to get a larger set of vertex disjoint copies of Kr . The idea of absorption is
to put aside an absorbing set of vertices which can absorb the leftover vertices L into
a Kr -factor. That is, before running this greedy process to build a Kr -factor, we find
some special set of vertices X � V.G/ which has the property that for any small set of
vertices L � V.G/ n X , there is a Kr -factor in GŒX [ L� (under the trivial divisibility
constraint that r j .jX j C jLj/). If we can find such an X in G, then we can put it to one
side and run the greedy argument to cover almost all the vertices which do not lie in X ,
with vertex disjoint copies of Kr . We can then use the absorbing property to absorb the
leftover vertices L and get a full Kr -factor.

This leaves the challenge of defining some structure in G which has this absorbing
property and finding such a structure (on some vertex set X ) in G. The building blocks
of our absorbing structure will be subgraphs that we call Kr -diamond trees. In words, a
Kr -diamond tree D D .T; R; †/ is the graph obtained by taking a tree T and replacing
each edge e 2 E.T / by a copy of K�rC1 whose degree r � 1 vertices are the vertices of e
and whose degree r vertices are new and distinct from previous choices; see Figure 1 for
an example. The following definition formalises this notion.

R = { }

Σ =
{ }

T =D = (T,R,Σ)D D .T;R;†/ T D

R D ¹�º

† D

Fig. 1. An example of aK3-diamond tree D D .T;R;†/ of order 9 shown on the left. The remov-
able vertices R are the larger vertices of D and the interior cliques † are the edges given in grey.
The auxiliary tree T is depicted on the right.

Definition 2.1. A Kr -diamond tree D of order m in a graph G is a tuple D D .T;R;†/

where T is an (auxiliary) tree of order m (i.e. with m vertices), R � V.G/ is a subset
of m vertices of G and3 † � Kr�1.G/ is a set of m � 1 copies of Kr�1 in G with the
following property. There are bijective maps � W V.T /! R and � W E.T /! † such that

� the copies of Kr�1 in † are pairwise vertex disjoint in G and they are also disjoint
from R, i.e. V.S/ \ V.S 0/ D ; and V.S/ \R D ; for all S; S 0 2 †;

� for all e D uv 2 E.T /, we have V.�.e// � NG.�.u//\NG.�.v//, that is, the r � 1-
clique �.e/ 2 Kr�1.G/ can be extended to a copy of Kr in G by adding the vertex
�.u/ and likewise with �.v/.

3Here and throughout, we use Kr�1.G/ to denote the family of .r � 1/-cliques in G.
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We refer to R as the set of removable vertices of D and to † as the set of interior cliques
of D . We define the vertices of D to be all the removable vertices and the vertices in
interior cliques. That is, V.D/ WD .

S
S2† V.S//[R. Finally, we define the leaves of the

diamond tree to be the vertices which are images of leaves in T under �.

Note that a Kr -diamond tree of order m has exactly .m � 1/r C 1 vertices. Krivele-
vich [51] usedK3-diamond trees in an absorption argument for triangle factors in random
graphs which is often cited as one of the first appearances of the absorption method.
Nenadov [61] also used this idea in his result that got within a log-factor of Theorem 1.4.
The utility of these subgraphs in absorption arguments comes from the following key
observation which shows that they can contribute to a Kr -factor in many ways.

Observation 2.2. Given a Kr -diamond tree D D .T; R; †/ in G, for any removable
vertex v 2R there is aKr -factor ofGŒV.D/ n ¹vº�. Indeed, consider uD ��1.v/ in V.T /
and the map ' WE.T /! V.T / n ¹uºwhich maps each edge e of T to the vertex in e which
has the larger distance from u in T . Then ' is a bijection and taking the copies of Kr on
�.e/ [ �.'.e// for each edge e 2 E.T / gives the required Kr -factor. See Figure 2 for
some examples.

Fig. 2. Some examples of K3-factors found after removing a removable vertex from the K3-
diamond tree in Figure 1 (see Observation 2.2).

Observation 2.2 works for any underlying auxiliary tree T . It turns out that in the
.p; ˇ/-bijumbled graphs G we are interested in, one can find Kr -diamond trees of any
order up to linear size. Indeed, one can use the argument of Krivelevich [51] to construct
these or a different argument due to Nenadov [61]. The method of Nenadov gives diamond
trees whose auxiliary tree is a path, whilst the argument of Krivelevich gives no control
over the underlying auxiliary tree which defines the diamond tree found. As a key part
of our argument, we will need to prove the existence of diamond trees which have extra
structure, as we discuss shortly.

In order to utilise the absorbing power of diamond trees, we need to group them
together in collections. The following definition of an orchard captures how we do this.

Definition 2.3. We say a collection O D ¹D1; : : : ;Dkº of pairwise vertex disjoint Kr -
diamond trees in a graph G is a .k; m/r -orchard if there are k diamond trees in the



Clique factors in pseudorandom graphs 9

collection and each has order at least m and at most 2m. We refer to k as the size of
the orchard, and tom as its order.4 We denote by V.O/ the vertices featuring in diamond
trees in O, that is, V.O/D

S
i2Œk� V.Di /. Finally, if O0 �O is a subset of diamond trees

in an orchard O, we call O0 a suborchard of O.

The term orchard here is supposed to be instructive, indicating that this is a ‘neat’
collection of diamond trees that all have a similar order and are completely disjoint
from one another. As noted in Observation 2.2, a Kr -diamond tree can contribute to a
Kr -factor in many ways. By grouping together many vertex disjoint Kr -diamond trees
into a .k; m/r -orchard such that km D �.n/, we get a structure with a strong absorb-
ing property, as the following lemma shows. We say a .K; M/r -orchard O absorbs a
.k;m/r -orchard R if there is an ..r � 1/k;M/r -suborchard O0 � O such that there is a
Kr -factor in GŒV.R/ [ V.O0/�.

Lemma 2.4. For any r 2N�3 and 0< �;�< 1 there exists an "> 0 such that the following
holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n. Let O be a .K;M/r -
orchard in G such that KM � �n. Then there exists a set B � V.G/ such that jBj �
�p2r�4n and O absorbs any .k;m/r -orchard R in G with

V.R/ \ .B [ V.O// D ;; k � K=.8r/ and kM � mK: (2.1)

Morally, Lemma 2.4 says that large orchards absorb small orchards. Here, by large we
refer to both the size and the order of the orchards. Indeed, the second condition in (2.1)
shows that the larger orchard has to have a larger size than the smaller orchard. This is the
critical condition when we want absorption between orchards of similar order. The third
condition shows that the ratio between the orders of the orchards is constrained by the
ratio of the sizes. That is, the larger O is compared to R with respect to their sizes, the
smaller R can be than O with respect to their orders. This will be the critical condition
when we want absorption between orchards of (polynomially) different orders. The first
condition in (2.1) simply states that in order for O to absorb R, we need that R avoids
some small set B of bad vertices. This will be easy to implement in applications.

Lemma 2.4 will be proven in Section 5.1. It provides us with an absorption property
between two distinct orchards. We will also need an absorption property within orchards
themselves, showing that we can find a large suborchard which hosts a Kr -factor in G.
Given Observation 2.2, in order to findKr -factors on suborchards it suffices to find copies
of Kr which traverse sets of removable vertices. We therefore make the following defini-
tion.

Definition 2.5. Given a .k; m/r -orchard O D ¹D1; : : : ;Dkº in a graph G, the Kr -
hypergraph generated by O, denoted H D H.O/, is the r-uniform hypergraph with

4Note that we abuse notation slightly here. Indeed, we refer to the order of an orchard although
this may not be uniquely defined by the orchard. We take the convention that when we refer to the
order of an orchard, we simply fix one of the possible orders arbitrarily, noting that these possible
orders differ by a factor of at most 2.
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vertex set V.H/ D O and with ¹Di1 ; : : : ;Dir º for distinct i1; : : : ; ir 2 Œk� forming a
hyperedge inH if and only if there is a copy ofKr traversing5 the sets Ri1 ; : : : ;Rir in G,
where Rij is the set of removable vertices of Dij for all j .

Appealing to Observation 2.2 then gives the following, as finding copy of Kr travers-
ing r sets of removable vertices removes exactly one vertex from each set.

Observation 2.6. If O is an orchard of Kr -diamond trees in a graph G and H.O/ con-
tains a perfect matching, then GŒV.O/� contains a Kr -factor.

We will be particularly interested in orchards which contain near Kr -factors in a
robust way. This gives us the notion of a shrinkable orchard.

Definition 2.7. Given 0<  < 1, we say a .k;m/r -orchard O in a graphG is  -shrinkable
if there exists a suborchard Q � O of size at least k such for any suborchard Q0 �Q,
there is a matching in H WD H.O nQ0/ covering all but k1� of the vertices of H .

Our first key proposition gives the existence of shrinkable orchards. It will be dis-
cussed in Section 5.2 and proven in Sections 6 and 7.

Proposition 2.8. For any r 2 N�3 and 0 < ˛;  < 1=212r there exists an " > 0 such that
the following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n and any
vertex subset U � V.G/ with jU j � n=2. For any m 2 N with 1 � m � n7=8 there exists
a  -shrinkable .k;m/r -orchard O in GŒU � with k 2 N such that ˛n � km � 2˛n.

Given Lemma 2.4 and Proposition 2.8, we know that we can find orchards which
contain large Kr -factors and that large orchards can absorb smaller orchards. This sug-
gests the following approach for giving an absorbing structure which can absorb leftover
vertices in our .p; ˇ/-bijumbled graph G (we keep the discussion at a high level here
to highlight the key idea; the details of this scheme are elaborated within the proof of
Theorem 1.4). Find a sequence of vertex disjoint shrinkable orchards, each on a linear
number of vertices. Each orchard in the sequence will have a larger order than that of the
previous orchard and the first orchard in the sequence will be composed of linearly many
Kr -diamond trees of constant size. We can then run a cascading absorption through the
sequence of orchards. That is, given some small leftover set of vertices L (which is itself
a .jLj; 1/-orchard), we use the first orchard in the sequence to absorb L. We then use the
fact that the first orchard is shrinkable and so we can cover most of what remains of the
first orchard with vertex disjoint copies of Kr . There will be some Kr -diamond trees of
the first orchard left at the end of this and for these we appeal to Lemma 2.4 to absorb this
small suborchard using the second orchard. Then again, the second orchard is shrinkable
and so the remainder of the second orchard can be almost fully covered with vertex dis-
joint Krs, leaving some small leftover suborchard uncovered. We then repeat to absorb
this leftover with the third orchard and continue in this fashion. In this way we cascade

5Here and throughout, we say a copy of Kr traverses r disjoint sets of vertices if it contains
one vertex from each set.
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the absorption through the orchards and each time we do this, we increase the order of the
orchard which we need to absorb.

This approach is promising but we need to cut this process off at some point and find
a full Kr -factor on the vertices which have not already been covered by vertex disjoint
copies of Kr . The next proposition states that once the orchard has a large enough order,
we can find a structure that can fully absorb any leftover.

Proposition 2.9. For any r 2 N�3 and 0 < ˛; � < 1=23r there exists an " > 0 such that
the following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n and any
vertex subset W � V.G/ with jW j � n=2.

There exist vertex subsets A;B � V.G/ such that A � W , jAj � ˛n, jBj � �p2r�4n
and for any .k; m/r -orchard R whose vertices lie in V.G/ n .A [ B/, if jAj C jV.R/j
2 rN, k � ˛2n1=8 and m � n7=8 then GŒA [ V.R/� has a Kr -factor.

In our absorption scheme sketched above, R will be the leftover of the last orchard
(the one with the largest order) after having cascaded the absorption through the sequence
of orchards. Proposition 2.9 states that the vertex set A can fully absorb this R. Hence
when constructing our absorbing structure, we will first find A and then construct our
sequence of shrinkable orchards so that they avoid A and also the small set B of bad
vertices given by Proposition 2.9. Finally, we remark that the necessity of W in Proposi-
tion 2.9 comes from the fact that before we find our absorbing structure, we will put aside
some small set Y which will be used later in the proof to help with bad vertices, and so
need to find A in W D V.G/ n Y .

We are now in a position to prove Theorem 1.4, using only Lemma 2.4, Proposi-
tions 2.8 and 2.9, some simple properties of .p; ˇ/-bijumbled graphs and Chernoff’s
Theorem (Theorem 3.6), a well-known result which gives concentration of binomial ran-
dom variables.

Proof of Theorem 1.4. For convenient reference throughout the proof, let us fix our con-
stants

 WD
c

224r
; � WD 2; ˛ WD �2; � D ˛2 � WD �2 and t WD

7

8�
: (2.2)

We further fix " > 0 much smaller than all these constants and small enough to apply
Lemma 2.4 and Propositions 2.8 and 2.9 with these parameters. We also use some simple
consequences of Definition 1.3 which imply that, by choosing " > 0 sufficiently small,
we guarantee that any vertex subset of size �pn contains a copy of Kr�1, whilst any
vertex set of size �n contains a copy of Kr ; see e.g. Corollary 3.5. Finally, we note that if
ı.G/ � .1 � 1=r/n then it follows from Theorem 1.1 that G has a Kr -factor and so we
can assume that ı.G/ < .1 � 1=r/n. For such n-vertex .p; ˇ/-bijumbled graphs G with
ˇ � "pr�1n, a well-known fact (see Fact 3.1) implies that by choosing " > 0 sufficiently
small, we can assume that n is sufficiently large in what follows, because otherwise no n-
vertex .p; ˇ/-bijumbled graphs with ˇ � "pr�1n exist and the theorem is vacuously true.
Moreover, another well-known fact (see Fact 3.2) implies that .p; ˇ/-bijumbled graphs
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cannot be too sparse. In particular, with our condition on ˇ, by choosing " > 0 sufficiently
small, we can also assume that p � n�1=3 in what follows.

Before finding our Kr -factor in G we need to do some preparation. We begin by
setting aside a randomly chosen subset Y � V.G/. We let each vertex be in Y with
probability ˛. It follows from Chernoff’s Theorem (see Theorem 3.6) and a union bound
that with high probability, as n!1, we have jY j � 2˛n and degY .v/ � c˛pn=2 for
all v 2 V.G/. Indeed, this follows because EŒdegY .v/� � c˛pn D �.n2=3/ for each
v 2 V.G/. Therefore, as n is large, we can fix such an instance of Y . We will use the
vertices of Y to find copies of Kr containing ‘bad’ vertices later in the argument.

Next, we apply Proposition 2.9 (with W D V.G/ n Y ) to obtain vertex sets A �
V.G/ n Y and B such that jAj � ˛n, jBj � �p2r�4n and we have the following key
absorption property. For any .k;m/r -orchard R whose vertices lie in V.G/ n .A[ B/, if
jAj C jV.R/j 2 rN, k � �n1=8 and m � n7=8 then GŒA [ V.R/� has a Kr -factor. That
is, A can absorb orchards whose order is sufficiently large.

As sketched above, the idea is now to provide constantly many (namely, t C 1) ver-
tex disjoint shrinkable orchards O0;O1; : : :Ot , each on a linear number of vertices and
whose vertices are disjoint from A. The order of these orchards will increase slightly
(namely, by a factor of n�) at each step in the sequence. Due to our definition (2.2)
of t , O0 has �.n/ diamond trees of constant order, while Ot has diamond trees of
order �.n7=8/. The point is that we will be able to repeatedly apply Lemma 2.4 and the
fact that each orchard is shrinkable to create a cascading absorption through the shrinkable
orchards. Indeed, O0 will be able to absorb leftover vertices and each Oi will be able to
absorb any leftoverKr -diamond trees in Oi�1, after using the fact that Oi�1 is shrinkable
to cover almost all of the vertices of Oi�1 with disjoint copies of Kr . Once this absorp-
tion reaches Ot , we will be able to use A to absorb the leftover Kr -diamond trees in Ot

and complete a Kr -factor. In fact, when absorbing between orchards we do not use all
of Oi to absorb leftover diamond trees in Oi�1 but rather a suborchard Qi � Oi which
contains a  -proportion of the Kr -diamond trees in Oi . Indeed, this Qi is provided by
the fact that Oi is shrinkable (see Definition 2.7) and guarantees that removing diamond
trees from Qi will not prevent us from covering almost all of what remains of Oi with
vertex disjoint copies of Kr .

In detail, we collect what we require in the following claim.

Claim 2.10. There exist vertex disjoint orchards O0;O1; : : : ;Ot in G such that the
following properties hold.

(i) For all 0 � i � t , we have V.Oi / \ .A [ B [ Y / D ;.

(ii) For each 0 � i � t , fixing mi WD ni�, the orchard Oi is a .ki ; mi /r -orchard for
some ki such that ˛n � kimi � 2˛n.

(iii) Each Oi is  -shrinkable with respect to some suborchard Qi � Oi such that

k�i WD jQi j � ki :

(iv) For 1 � i � t , given any suborchard P � Oi�1 such that jPj � k1�i�1 , the orchard
Qi absorbs P .
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Before verifying the claim, let us see how we can derive the theorem using the claim.
So suppose we have found such orchards O0; : : : ;Ot and fix

X WD A [

t[
iD0

V.Oi /:

Furthermore, note that as k�0m0 D k
�
0 � ˛n � �n, by Lemma 2.4 there exists some set

B0 � V.G/ such that jB0j � �p2r�4n and Q0 absorbs any .k; 1/-orchard6 R such that

k � �n �
˛n

8r
�
k�0
8r

(2.3)

and V.R/ \ .B0 [ V.Q0// D ;. Indeed, the condition on k comes from (2.1), using
m0 D 1 and our lower bound on k�0 . Fix Z WD B0 nX and note that z WD jZj � �p2r�4n
as Z is a subset of B0. Note also that X \ Y D ; due to Claim 2.10 (i) and how we
defined A.

G

Z
Y

A

X

G

Z
Y

A

X

G

Z
Y

A

X

G

Z
Y

A

X

S1 S2

S3 S4

Fig. 3. A schematic to demonstrate the triangles found (and the vertex sets they cover) by our four-
phase algorithm that finds a K3-factor in G.

We are now ready to find ourKr -factor � , which we do algorithmically in four phases.
See Figure 3 for a visual guide to the cliques found in each phase. So let us initiate with

6Note that a .k; m/r -orchard with m D 1 is simply a set of vertices. Each Kr -diamond tree in
the orchard has order 1 and so is a single isolated vertex.
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�1 D ;. In the first phase we find copies of Kr containing the vertices in Z, using some
vertices in Y . So let us order the vertices of Z arbitrarily as Z WD ¹b1; : : : ; bzº and fix
Y1 WD Y nZ. Now for 1 � j � z, we find an r-clique Sj containing bj and r � 1 vertices
of Yj . We add Sj to �1, fix YjC1 WD Yj n V.Sj / and move to step j C 1. To see that we
can always find such a clique, note that for each j 2 Œz� we have

degYj .bj / � degY .bj / � jZj � r.j � 1/ � c˛pn=2 � r�p
2r�4n � �pn;

recalling our key property of Y and using the definitions of our constants (2.2). A simple
consequence of (1.2) (see e.g. Corollary 3.5 (1) (i)) implies that there is a copy ofKr�1 in
N.bj / \ Yj and so this forms an r-clique Sj with bj . In this way, we see that we succeed
at every step j and at the end of the first phase we have a set of vertex disjoint r-cliques
�1 in G of size z such that every vertex in Z is contained in a clique in �1.

In the second phase we find the majority of the Kr -factor which we do greedily. We
initiate with �2 D ; and W D V.G/ n .X [ V.�1//. Now, whilst jW j � �n, we can find
an r-clique S in W . Again, this is a simple consequence of (1.2); see Corollary 3.5 (2).
We add S to �2 and delete its vertices from W . Therefore at the end of the second phase,
we are left with some vertex set L � V.G/ n X such that jLj � �n and �1 [ �2 form a
Kr -factor in GŒV.G/ n .X [ L/�.

Oi+1

Oi

Oi−1

Ti+1

Ri

Ti

Q′

i

Pi

Fig. 4. A closer look at phase 3 of the algorithm in the case r D 3.

In our third phase, we will find vertex disjoint r-cliques �3 which cover L and use
almost all the vertices of X n A. We begin by fixing ` WD jLj and noting that L is an
.`;1/-orchard which we relabel as P�1. Now we run the following procedure for 0� i � t
(see Figure 4). We first absorb Pi�1 using Qi . That is, we find a suborchard Q0i � Qi

such that there is a Kr -factor Ti in GŒV.Pi�1/ [ V.Q0i /�. We add the r-cliques in Ti
to �3. Then, using the fact that Oi is  -shrinkable (Claim 2.10 (iii)), we can define some
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Pi �Oi nQ0i such that jPi j � k1�i and there is a perfect matching in theKr -hypergraph
H.Oi n .Q0i [Pi //. By Observation 2.6, this perfect matching gives a Kr -factor Ri in
GŒV.Oi n .Q0i [Pi //�. We add Ri to �3 and move to step i C 1 or finish if i D t . Note
that in order to find Ti and Q0i in each step i � 1, we appeal to Claim 2.10 (iv), whilst when
i D 0, the existence of T1 and Q01 is guaranteed by the fact that L is an .`; 1/-orchard
with ` � �n as in (2.3) and L is disjoint from Z and hence B0.

Let R WD Pt � Ot . Then �1 [ �2 [ �3 is a Kr -factor in GŒV.G/ n .A [ V.R//�.
Hence as r j n, we must have r j .jAj C jV.R/j/. Moreover, R is a .k;m/r -orchard with
k � k

1�
t � .2˛n1=8/1� < ˛2n1=8 and m D n7=8. Finally, note that V.R/ \ B D ;

due to Claim 2.10 (i). Therefore, by the key property of the absorbing vertex set A in
Proposition 2.9, there is a Kr -factor �4 in GŒA [ V.R/�. It follows that � WD �1 [ �2 [

�3 [ �4 is a Kr -factor in G, completing the proof.

It remains to establish Claim 2.10 and find the shrinkable orchards as stated. We will
do this algorithmically in decreasing order. The reason for this is that in order for (iv)
to hold we will appeal to Lemma 2.4 and therefore there will be some set Bi of bad
vertices which we want Oi�1 to avoid. In fact, we will ensure that Oi�1 avoids Bj for all
i � j � t . This is not necessary but eases our definitions (as we do not have to reintroduce
vertices into the pool Ui of available vertices); the important condition in what follows is
that Oi�1 avoids Bi for all i .

We start by fixing UtC1 WD V.G/ n .A [ B [ Y /. Now for t � i � 0 in descend-
ing order, we apply Proposition 2.8 to find a  -shrinkable .ki ; mi /r -orchard Oi such
that ˛n � kimi � 2˛n and V.Oi / � UiC1. We then define Ui as follows. As Oi is  -
shrinkable, it defines some suborchard Qi � Oi as in condition (iii) of the claim. Now
as k�i mi � ˛n � �n, it follows from Lemma 2.4 that there exists some Bi � V.G/
with jBi j � �pr�1n such that if k and m satisfy k � k�i =.8r/ and kmi � mk�i and R
is a .k; m/r -orchard with V.R/ � V.G/ n .Bi [ V.Qi // then Qi absorbs R. We fix
Ui WD UiC1 n .V .Oi / [ Bi / and move onto the next index i � 1.

Let us first check that the process succeeds in finding the shrinkable orchards
Ot ; : : : ;O0 at each step. Note that we start with jUtC1j � n� 3˛n� �p2r�4n� n� 4˛n.
Moreover at each step i , we remove at most �p2r�4n � ˛n vertices which lie in Bi and
at most 4r˛n vertices from UiC1 which lie in the orchard Oi . Indeed, the orchard is
composed of ki vertex disjoint Kr -diamond trees of order at most 2mi , the number of
vertices in each diamond tree is less than r times its order, and kimi � 2˛n. Hence for
all t � i � 0, we have

jUi j � n � .t C 2/ � 5r˛n � n=2;

using t � 1=�, ˛ D �2 and the definition of � (see (2.2)). Hence Proposition 2.8 gives the
existence of Oi at each step and verifies part (iii) of the claim. Note that conditions (i)
and (ii) also hold simply from how we defined the Oi and the fact that we found them in
the sets Ui , each of which is a subset of UtC1.

Thus it remains to verify the absorption property between orchards, namely (iv). For
each 1� i � t , we chose Oi�1 to have vertices inUi and hence V.Oi�1/\ .Bi [ V.Qi //
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D ;. Therefore, by Lemma 2.4, Qi absorbs any suborchard P �Oi�1 with jPj � k1�i�1

if k1�i�1 � k
�
i =.8r/ and k1�i�1 mi � k

�
i mi�1.

Now as mi D n�mi�1 and n�� � 1=.8r/ for sufficiently large n, it suffices to show
that k1�i�1 � k

�
i n
��. To see this, note that since ˛n � ki�1mi�1 and kimi � 2˛n, we

have

ki�1 �
2˛n

mi�1
D
2˛n1C�

mi
� 2kin

�
�
2k�i n

�


;

and using this as a lower bound for k�i , it suffices to show that

k

i�1 �

2n2�


:

This is certainly true as ki�1 � kt � ˛n1=8 > n4�= , recalling that 4�= D 4 from
(2.2). This shows that (iv) holds for all i and concludes the proof of the claim and hence
the proof of Theorem 1.4.

We remark that this proof scheme builds on that of Nenadov [61] (which in turn is
influenced by that of Krivelevich [51]), who proved that ˇ � "p2n=log n suffices for
a triangle factor in an n-vertex .p; ˇ/-bijumbled graph. Indeed, Nenadov also uses a
result akin to Lemma 2.4, albeit between orchards whose orders only differ by a con-
stant factor. His absorbing structure then contains a sequence of‚.logn/ orchards whose
order increases by a constant factor along the sequence. Therefore the last orchard in the
sequence contains constantly many diamond trees of large order (of order ‚.n=log n/).
These can be fully absorbed because any three large sets host a transversal triangle and so
transversal triangles between removable sets can be greedily found, completing a triangle
factor in the last step. Similarly, the .k;m/3-orchards used in his argument are not imposed
to be shrinkable but can be seen to host a triangle factor on all but o.k/ of the diamond
trees by again applying a greedy approach of finding transversal triangles. The necessity
of the log n in the condition of Nenadov is thus due to needing ‚.log n/ orchards in the
absorbing structure and thus requiring slightly stronger properties of the .p;ˇ/-bijumbled
graph, for example the existence of triangles on sets of �.n=logn/ vertices.

The key challenge in this paper is then to prove Propositions 2.8 and 2.9. Both results
rely heavily on a technique we develop to provide the existence of Kr -diamond trees in
which we have some control over the set of removable vertices. This control is rather
weak; we cannot guarantee that any fixed vertices appear as removable vertices but we
can give some flexibility over the choice of removable vertices. See Proposition 4.1 for
the technical statement of what we prove.

In order to prove Proposition 2.8, we build on the approach of Han, Kohayakawa and
Person [34, 35]. Indeed, their result showing the existence of a near Kr -factor (covering
all but some n1�"

0

vertices) in .n; d; �/-graphs can be seen as a step towards proving
the existence of shrinkable orchards of order 1. The approach involves showing the exis-
tence of a near-perfect matching in a subhypergraph H 0 of the Kr -hypergraph generated
by V.G/. In order to do this, one needs to carefully chooseH 0 and this is done by finding
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many fractionalKr -factors in G which do not put too much weight on (copies ofKr con-
taining) any given edge. Therefore, the methods of Krivelevich, Sudakov and Szabó [54],
who proved the existence of singular fractional Kr -factors, become pertinent. They use
the power of linear programming duality to prove that certain expansion properties guar-
antee the existence of fractional factors. In our setting, it turns out that we need several
distinct arguments to prove the existence of shrinkable orchards of different orders. We
follow the scheme of using fractional factors (in fact, fractional perfect matchings in Kr -
hypergraphs) but need to adapt the method for different applications and we rely crucially
on probabilistic methods to actually prove the existence of orchards which satisfy the
necessary expansion properties.

It can be seen that Proposition 2.8 alone (for all orders of orchards) would lead via
the same proof scheme to a condition of ˇ � "pr�1n=.log log n/. In order to close the
gap and achieve Theorem 1.4, Proposition 2.9 is necessary. To prove this, we appeal
to a different absorption argument whose roots go back to an ingenious argument of
Montgomery [57, 58] in his work on spanning trees in random graphs. The approach,
sometimes called the absorption-reservoir method, uses a bipartite graph, which we call
a template (see Section 3.6) as an auxiliary graph to define an absorbing structure. This
idea was previously used by Han, Kohayakawa, Person and the author [32] to find clique
factors in pseudorandom graphs, and we used this approach again in our result on 2-
universality [33]. Here we combine this idea with the absorbing power of orchards and
prove Proposition 2.9 with a three-stage algorithm which finds the absorbing structure
necessary.

The rest of this paper is organised as follows. In the next section, we run through
the necessary preliminaries, providing the background theory that we will use. This
includes properties of bijumbled graphs, the study of perfect fractional matchings via
linear programs, probabilistic methods and the absorption-reservoir method of Mont-
gomery [57, 58]. In Section 4 we then study what kinds of diamond trees we can guarantee
in our bijumbled graph. The key result here is Proposition 4.1, which will be crucial at
various points in our proof. We then turn to addressing the necessary results for the cas-
cading absorption through the orchards in Section 5. We prove Lemma 2.4 in Section 5.1
and discuss Proposition 2.8 in Section 5.2, reducing it to two intermediate propositions
which tackle small and large order shrinkable orchards separately. We go on to prove
the existence of shrinkable orchards of small order in Section 6 and large order in Sec-
tion 7. Finally, we prove Proposition 2.9 which provides the final absorption in the proof
of Theorem 1.4, in Section 8.

3. Preliminaries

3.1. Notation

For a graph G and r 2 N, we define Kr .G/ to be the set of copies of Kr in G. When
referring to (a copy of) a clique S 2 Kr .G/, we will identify the copy with the set
of vertices that hosts it. That is, we think of S 2 Kr .G/ as a set of r vertices which
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host a clique in G rather than the copy of the clique itself. Given a set † � Kr .G/
of r-cliques, we use the notation V.†/ to denote all vertices that feature in cliques
in †, i.e. V.†/ WD

S
S2† S . We call † � Kr .G/ a matching of cliques if it is com-

posed of pairwise vertex disjoint cliques, that is, S \ S 0 D ; for any S ¤ S 0 2 †. Now
given subsets S;W � V.G/ of vertices, we let NG

W .S/ denote the common neighbours
of the vertices in S which lie in W . That is, NG

W .S/ WD .
T
v2S N

G.v// \ W . Like-
wise, we define degGW .S/ WD jN

G
W .S/j to be the cardinality of this neighbourhood. If

the graph G is clear from context then we drop the superscripts. Also if S D ¹uº is
a single vertex, we will drop the set brackets. We say that a clique S 2 Kr .G/ tra-
verses vertex subsets U1; : : : ; Ur � V.G/ if there exists some ordering of S as S D
¹u1; : : : ; urº such that ui 2 Ui for all i 2 Œr�. Note that when the Ui are pairwise disjoint,
this simplifies to requiring that S contains one vertex from each Ui . However, at times
we will deal with not necessarily disjoint sets Ui and so this more delicate definition is
needed.

If H is an r-uniform hypergraph for some r 2 N and v; u 2 V.H/, then degH .v/
denotes the number of edges in H containing v, and codegH .u; v/ denotes the number
of edges of H which contain both u and v. If the hypergraph H is clear from context, we
drop the superscripts. If H is an r-uniform hypergraph with r � 3 and J is a 2-uniform
graph on the same vertex set V.H/, then HJ denotes the subhypergraph of H given by
all edges of H that contain some edge of J .

For graphs QG and G on the same vertex set with QG a subgraph of G, we let G n QG
denote the graph on V.G/ given by the set of edges that feature in G but not in QG. If
H 0 and H are r-uniform hypergraphs with H 0 a subgraph of H , then H nH 0 is defined
similarly.

We use x D y ˙ z to denote that x � y C z and x � y � z, and we say a property
holds with high probability (whp, for short) if the probability that it holds tends to 1 with
some parameter n (usually the number of vertices of a graph). Finally, we drop ceilings
and floors unless necessary, so as not to clutter the arguments.

3.2. Properties of bijumbled graphs

Here we collect some properties of bijumbled graphs. These range from simple conse-
quences of Definition 1.3 to more involved statements catered to our purposes. We begin
by showing that we can assume that the graphs we consider have an arbitrarily large num-
ber of vertices.

Fact 3.1. Given any r 2N�3 and n0 2N, there exists " > 0 such that any n-vertex .p;ˇ/-
bijumbled graph G with n 2 rN, p > 0, ı.G/ < .1 � 1=r/n and ˇ � "pr�1n must have
n � n0.

Proof. Let " > 0 be such that " < 1=.2n0r/. Suppose for a contradiction that there exists
an n-vertex .p; ˇ/-bijumbled graph with ı.G/ < .1 � 1=r/n, ˇ � "pr�1n and n < n0.
Then due to the upper bound on the minimum degree ofG, there exists a vertex u 2 V.G/
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and a set W 2 V.G/ n ¹uº such that jW j D n=r and degGW .u/ D 0. However, from Defi-
nition 1.3, we have

e.¹uº; W / � pjW j � "pr�1n

r
n

r
�
pn

r
.1 � "

p
nr/ �

pn

2r
> 0;

a contradiction.

Fact 3.1 shows that by choosing " > 0 sufficiently small, we guarantee that any
bijumbled graph G we are interested in either has a large number of vertices or has
ı.G/ � .1 � 1=r/n, in which case Theorem 1.1 implies the existence of a Kr -factor and
we are done. We will use this at various points in our argument and simply state that we
choose " > 0 sufficiently small to force n to be sufficiently large.

The following well known fact states that bijumbled graphs cannot to be too sparse.

Fact 3.2. For any r 2 N�3 and any C > 0, there exists an " > 0 such that if G is an
n-vertex .p; ˇ/-bijumbled graph with p > 0 and ˇ � "pr�1n, then p � Cn�1=.2r�3/

� Cn�1=3.

Proof. Let " > 0 be such that "2 � 1=.32C 2r�3/ and small enough that we can assume
that

(i) n � 9;

(ii) p � 1=16.

Indeed, from Fact 3.1, we can choose " so that (i) holds and Cn�1=.2r�3/ < 1=16 and so
we are done if we are not in case (ii). We will also restrict to the case that

(iii) p � 1=.2n/.

To see that we can do this, suppose for a contradiction that there exists a .p;ˇ/-bijumbled
graphG D .V;E/ with pn < 1=2. We appeal to Definition 1.3 and upper bound 2e.G/D
e.V; V / by pn2 C "pr�1n2 < n � 1. Hence there must be some vertex u 2 V which is
isolated in G. But then defining W WD V n ¹uº, the lower bound of Definition 1.3 gives
e.¹uº; W / � p.n � 1/ � "pr�1n

p
n � 1 � pn.1=2 � "pn/ > 0, a contradiction.

We now turn to proving the statement in full generality. Our aim is to construct large
(disjoint) vertex subsets U and W such that e.U; W / D 0. We do this in the following
greedy fashion. We initiate the process by setting U D ; and W D V.G/. Now, whilst
jW j � 3n=4, there exists some u2W with degW .u/� 2pjW j � 2pn. Indeed, this follows
from Definition 1.3 becauseX

w2W

degW .w/ D e.W;W / � pjW j
2
C "pr�1jW j � 2pjW j2:

We then choose such a u, delete it from W and add it to U and also remove NW .u/
from W .

Let U andW be the resulting sets after this process terminates. It is clear that e.U;W /
D 0 as we have removed all the neighbours of each vertex u 2 U from W during the
process. We also claim that jW j � n=2 and U � 1=.16p/. Indeed, the last step removed at
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most 1C 2pn vertices fromW . Due to our assumptions (i) and (ii), we see that 1C 2pn<
n=4 and so as W had size greater than 3n=4 before this step, we indeed have jW j � n=2
as the process terminates. To see the lower bound on the size of U , note that if this was
not the case, then

jV.G/ nW j D
ˇ̌̌[
u2U

.¹uº [NG.u//
ˇ̌̌
�

X
u2U

j¹uº [NG.u/j � jU j.1C 2pn/

�
1

16p
C
n

8
�
n

4
;

using assumption (iii) in the last inequality. This implies that jW j � 3n=4, a contradiction
as the process terminated.

Thus jW j � n=2, jU j � 1=.16p/ and from Definition 1.3, we have

0 D e.U;W / � pjU j jW j � "pr�1n
p
jU j jW j;

implying that p2r�3 � 1=.32"2n/. Given our upper bound on ", this implies that p �
Cn�1=.2r�3/ as required.

Our first lemma shows that few vertices have degree much smaller or much larger than
expected with respect to a given set.

Lemma 3.3. For any r 2N�3 and � > 0 there exists an " > 0 such that ifG is an n-vertex
.p; ˇ/-bijumbled graph with ˇ � "pr�1n then for W � V.G/:

(i) The number of vertices v 2 V.G/ such that degW .v/ < pjW j=2 is less than

�p2r�4n2

jW j
:

(ii) For any q such that 2p � q � 1, the number of vertices v 2 V.G/ such that degW .v/
> qjW j is less than

�p2r�2n2

q2jW j
:

Proof. Fix " > 0 such that 4"2 < �. We prove only (ii); the proof of (i) is both similar and
simpler. We set B to be the set of ‘bad’ vertices, i.e. vertices v such that degW .v/ > qjW j.
Thus we have

qjBj jW j < e.B;W / � pjBj jW j C "pr�1n
p
jBj jW j;

using the definition of B and (1.2). Rearranging gives

jBj <
"2p2r�2n2

.q � p/2jW j
;

and using p � q=2 gives the desired conclusion with our choice of ".

Next, we state some further consequences of Definition 1.3, showing that we can find
cliques traversing large enough subsets of vertices. The following lemma is very general
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and will be used at various points in our argument. Due to its generality, there are some
technical features. Whilst these are all necessary for certain parts of our argument, we
do not need all of these at once. In fact, for easy reference, we list the consequences of
Lemma 3.4 that we will use in Corollary 3.5. This may also serve to digest the statement
of Lemma 3.4, seeing how it is applied in practice.

Lemma 3.4. For any r 2 N�3 and 0 < ˛ < 1=22r there exists an " > 0 such that the
following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n. Suppose
that there are integers xi , i 2 Œr C 1�, such that x1 � � � � � xrC1 � 0 and for some r� 2 Œr�,
one has

xi C xiC1 C 2i � 2r � 2 for all 1 � i � r�. (3.1)

Define y WDmax ¹xiC1C i W i 2 Œr��º. Then for any collection of subsets Ui � V.G/ such
that jUi j � ˛pxin for all i 2 Œr C 1� and for any subgraph QG of G with maximum degree
less than ˛2pyn, defining G0 WD G n QG, there exists a clique S 2 Kr�.G0/ traversing
U1; : : : ; Ur� such that

degG
0

Uj
.S/ � ˛pr

�

jUj j for r� C 1 � j � r C 1.

Proof. Fix " > 0 small enough to apply Lemma 3.3 (i) with � WD ˛2=.24rr/. Further,
fix y and QG as in the statement, setting G0 WD G n QG. We will prove inductively that
for i D 1; : : : ; r�, there exists an i -clique Si 2 Ki .G0/ traversing U1; : : : ; Ui such that
degG

0

Uj
.Si / � .p=4/

i jUj j for all j with i C 1 � j � r C 1. Note that Sr� is the desired

copy of Kr� in the statement, using ˛ � 1=4r
�

here.
So fix some i 2 Œr��. If i � 2, by induction we deduce the existence of Si�1 as claimed

and for i � j � r C 1, define Wj � Uj so that Wj WD NG0

Uj
.Si /. If i D 1, we simply set

Wj WD Uj for all j . We thus have

jWj j �

�
p

4

�i�1
jUj j � ˛4

1�ipxjCi�1n (3.2)

for i � j � r C 1. Now we appeal to Lemma 3.3 (i) and conclude that for each j with
i C 1 � j � r C 1, there is some set Bj � V.G/ such that degGWj .v/ � pjWj j=2 for all
v 2 V.G/ n Bj and

jBj j �
�p2r�4n2

jWj j
�
�4i�1p2r�3�i�xj n

˛
�
˛p2r�3�i�xiC1n

4ir
�
˛pxiCi�1n

4ir
�
jWi j

2r
:

(3.3)
Here, we used (3.2) in the second inequality, the definition of � and the fact the xj �
xiC1 in the third, (3.1) in the fourth and (3.2) once again in the final inequality. We can
thus conclude from (3.3) that there exists a vertex wi 2 Wi such that wi … Bj for all
i C 1 � j � r � 1. We claim that choosing Si D Si�1 [ ¹wiº completes the inductive
step. Indeed, Si 2 Ki .G0/ as wi was chosen from the common neighbourhood of Si�1 in
G0. Also, fixing some i C 1� j � r � 1, we see thatNG.wi / intersectsWj DNG0

Uj
.Si�1/

in at least pjWj j=2 vertices. Furthermore, at most

˛2pyn � ˛2pxiC1Cin �
˛

22r
pxjCin � pjWj j=4
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edges adjacent to wi lie in QG, using the definition of y, the upper bound on ˛, the fact
that xj � xiC1 and (3.2). Therefore we can conclude that for all i C 1 � j � r , we
have degG

0

Uj
.Si / � degG

0

Wj
.Si / � pjWj j=4 � .p=4/

i jUj j, as required. This completes the
induction and the proof.

We now collect some easy consequences of Lemma 3.4 for reference later in the proof.

Corollary 3.5. For any r 2 N�3 and 0 < ˛ < 1=22r there exists an " > 0 such that the
following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n:

(1) Let QG be any subgraph QG of G with maximum degree less than ˛2pr�1n.

(i) For any U1; : : : ; Ur�1 � V.G/ such that jUi j � ˛pn for i 2 Œr � 1�, there exists
an .r � 1/-clique S 2 Kr�1.G n QG/ traversing the Ui .

(ii) For any U1; : : : ; Ur � V.G/ such that jU1j � ˛p2r�4n and jUi j � ˛n for 2 �
i � r , there exists an r-clique S 2 Kr .G n QG/ traversing the Ui .

(2) For any U1; : : : ; Ur � V.G/ such that jU1j � ˛pr�1n, jUi j � ˛pn for 2 � i � r � 2
and jUr�1j; jUr j � ˛n, there exists an r-clique S 2 Kr .G/, traversing the Ui .

(3) For any W0; W1; W2 � V.G/ such that jW0j; jW1j; jW2j � ˛n, there exists an S 2
Kr�1.GŒW0�/ such that degWi .S/ � ˛

2pr�1n for j D 1; 2.

Proof. Fix " > 0 small enough to apply Lemma 3.4. This is predominantly a case of plug-
ging in the values and checking the conditions of Lemma 3.4. For part (1), we let G0 D
G n QG. Then for (1) (i), we take r� D r � 2, xi D 1 for 1 � i � r C 1 and y D r � 1. We
thus see that for i 2 Œr��, xi C xiC1C 2i D 2C 2i � 2r � 2 and xiC1C i D 1C i � r � 1
D y. Therefore taking Ui for 1 � i � r � 1 with jUi j � ˛pn (and defining UrC1 D Ur D
Ur�1), Lemma 3.4 gives us an .r � 2/-clique S 0 2 Kr�1.G0/ traversing U1; : : : ; Ur�2
such that degG

0

Ur�1
.S 0/ � ˛2pr�1n > 0 (here Fact 3.2 shows positivity). Therefore choos-

ing any vertex v 2 NG0

Ur�1
.S 0/ and fixing S D S 0 [ ¹vº gives the required clique.

The other cases are similar. For part (1) (ii), we fix r� D r � 1, x1 D 2r � 4, xi D 0 for
2� i � r C 1 and yD r � 1. Again, it is easily checked that the conditions on the xi are all
satisfied and so applying Lemma 3.4 (fixing UrC1 D Ur ) gives an .r � 1/-clique S 0 in G0

traversing U1; : : : ; Ur�1 such that S 0 has a nonempty G0-neighbourhood in Ur . Therefore
adding any vertex in this neighbourhood to S 0 gives the required r-clique S 2 Kr .G0/.

For part (2), we fix r� D r � 1, x1 D r � 1, xi D 1 for all i such that 2 � i � r � 2
and xr�1 D xr D xrC1 D 0. We also let QG be the empty graph and so G D G0. Now note
that for r D 3, we have x1 D 2 and x2 D 0 and so x1 C x2 C 2 D 4 D 2r � 2, whilst for
r � 4, we have x1 C x2 C 2 D r C 2 � 2r � 2. Conditions (3.1) for 2 � i � r� D r � 1
can be similarly checked. Therefore Lemma 3.4 gives an .r � 1/-clique S 0 2 Kr�1.G/
traversing U1; : : : ; Ur�1 such that NG

Ur
.S 0/ ¤ ; and so as above, we extend S 0 to the

required r-clique S .
Finally, for part (3) we fix r� D r � 1, xi D 0 for all 1 � i � r and define our

sets as Ui D W0 for i 2 Œr � 1� and Ur D W1, UrC1 D W2. Applying Lemma 3.4 then
directly gives the required .r � 1/-clique S 2 Kr�1.GŒW0�/ (again here QG is taken to be
empty).
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3.3. Concentration of random variables

We will use the following well-known concentration bounds (see e.g. [38, Theorem 2.1,
Corollary 2.4 and Theorem 2.8]).

Theorem 3.6 (Chernoff bounds). Let X be the sum of a set of mutually independent
Bernoulli random variables and let � D EŒX�. Then for any 0 < ı < 3=2, we have

P ŒX � .1C ı/�� � e�ı
2�=3 and P ŒX � .1 � ı/�� � e�ı

2�=2:

Furthermore, if x � 7�, then P ŒX � x� � e�x .

3.4. Perfect fractional matchings

Given an r-uniform hypergraph H , a fractional matching in H is a function f W

E.H/! R�0 such that
P
eWv2e f .e/ � 1 for all v 2 V.H/. We say the fractional match-

ing is perfect if
P
eWv2e f .e/D 1 for all v 2 V.H/. The value of a fractional matching f

is jf j WD
P
e2E.H/ f .e/: The maximum value jf j over all choices of fractional match-

ing f of H , we call the fractional matching number of H , which we denote by ��.H/.
A fractional cover of H is a function g W V.H/! R�0 such that for all e 2 E.H/,

one has
P
v2e g.v/ � 1. The value of a fractional cover g is jgj WD

P
v2V.H/ g.v/. The

fractional cover number of H , denoted ��.H/, is then the minimum value of a fractional
cover g of H .

For an r-uniform hypergraphH , the fractional matching number ofH can be encoded
as the optimal solution of a linear program. Taking the dual of this linear program gives
another linear program which outputs the fractional cover number as an optimal solution.
The duality theorem from linear programming thus tells us that ��.H/ D ��.H/ for any
hypergraph H . Using this, as well as the so called ‘complementary slackness conditions’
that follow from the duality theorem, one can derive the following simple consequences
(see e.g. [50, Proposition 2] or [35, Proposition 2.4]).

Proposition 3.7. For any r-uniform hypergraph H on N vertices, the following hold:

(1) ��.H/ � N=r , with equality if and only if there exists a perfect fractional matching
in H .

(2) ��.H/ � �.H/ where �.H/ denotes the size of the largest matching in H .

(3) If g W V.H/!R�0 is a fractional cover andU � V.H/, then g0 WD gjU WU !R�0 is
a fractional cover ofHŒU � and hence jg0j D

P
u2U g.u/ � �

�.HŒU �/D ��.HŒU �/.

(4) If g W V.H/! R�0 is an optimal fractional cover, i.e. jgj D ��.H/, then ��.H/ �
jW j=r where W WD ¹v 2 V.H/ W g.v/ > 0º.

We now give two lemmas, exploring some simple conditions which guarantee the
existence of a perfect fractional matching.

Lemma 3.8. SupposeH is anN -vertex, r-uniform hypergraph such that given any vertex
v 2 V.H/ and any subset W � V.H/ n ¹vº of at least N=.2r/ vertices, there exists
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an edge in H containing v and r � 1 vertices of W . Then H has a perfect fractional
matching.

Proof. Suppose for a contradiction that H does not have a perfect fractional matching.
Thus, by Proposition 3.7 (1), if we take g W V.H/!R�0 to be an optimal fractional cover
of H so that jgj D ��.H/ D ��.H/ we have jgj < N=r . Hence, if we order the vertices
in decreasing weight order according to g, we see by Proposition 3.7 (4) that g.w/ D 0,
where w is the final vertex in this order. Take W � V.H/ n ¹wº to be the set of N=.2r/
vertices preceding w in the order. Then by the condition of the lemma, there exists an
edge using w and r � 1 vertices of W . Since g.w/ D 0, there is some vertex w0 in W
with g.w0/ � 1=.r � 1/. Therefore all vertices preceding W in the order (as well as w0)
have at least this weight and in total

jgj �
N �N=r

r � 1
� N=r;

a contradiction.

Given a vertex subsetU �V WDV.H/ in a hypergraphH , a fan focused atU inH is a
subset F �E.H/ of edges ofH such that je \U j D 1 for all e 2 F and e \ e0 \ .V nU/
D ; for all e ¤ e0 2 F . In words, each edge of a fan intersects U in exactly one vertex and
outside of U , the edges in a fan are pairwise disjoint. The size of a fan is simply the num-
ber of edges in the fan. If U D ¹uº is a single vertex, we simply refer to a fan focused at u.

Lemma 3.8 shows that if H has the property that the link of every vertex v has no
large independent sets, then it must have a perfect fractional matching. In fact, we do
not necessarily need such an expansion property to hold locally at every vertex and can
instead focus on subsets of vertices, if we have an added condition that every vertex has a
large enough fan focused at it. This is the content of the following lemma.

Lemma 3.9. SupposeH is anN -vertex, r-uniform hypergraph and there exists r �M �
N=.2r/ such that

(i) for all v 2 V.H/ there is a fan focused at v in H of size M ;

(ii) for every subsetW0 � V.G/ with jW0j DM and every subsetW1 � V.G/ nW0 with
jW1j � N=.2r/, there exists an edge of H with one vertex in W0 and the other r � 1
vertices in W1.

Then H has a perfect fractional matching.

Proof. We start by noticing that (ii) leads to the following two consequences:

(a) For all U � V.H/ with jU j D .r � 1/M , fixing V 0 WD V.H/ nU we find that for all
U 0 � V 0 such that jU 0j DM , there is a fan of sizeN=r �M focused at U 0 inHŒV 0�.

(b) Every subset of at least N=r vertices of H induces an edge in H .

Indeed, for U 0 as in (a) we can build the fan FU 0 focused at U 0 greedily. Whilst jFU 0 j �
N=r �M , we see that W WD V.G/ n .V .FU 0/ [ U 0 [ U/ has size at least

N � .N=r �M/.r � 1/ �M � .r � 1/M � N � .2r � 1/N=.2r/ � N=.2r/;
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using M � N=.2r/ here. Hence we can find an edge using one vertex of U 0 and r � 1
vertices of W which extends the fan FU 0 . Condition (b) also follows easily because tak-
ing W 0 to be a set with N=r vertices, we find that for any W 00 � W 0 with jW 00j D M ,
there is an edge containing a vertex in W 00 and r � 1 vertices of W 0 nW 00 from (ii).

Now we turn to the main proof. We fix g W V.H/! R�0 to be an optimal fractional
cover and suppose for a contradiction that jgj<N=r . We deduce the existence of a vertex
w 2 V.H/with g.w/D 0 and a fan Fw focused atw of sizeM . TakingU1 WD

S
¹e n ¹wº W

e 2 Fwº, we have jU1j D .r � 1/M and
P
u2U1

g.u/ �M .
Now consider V 0 WD V.H/ n U1. If ��.HŒV 0�/ � N=r �M then we can conclude

that
P
v2V 0 g.v/ � N=r �M from Proposition 3.7 (3), which implies that jgj � N=r ,

a contradiction. Hence

��.HŒV 0�/ <
N

r
�M D

N 0 �M

r
; (3.4)

where N 0 WD jV 0j D N � .r � 1/M . We fix g0 W V 0! R�0 to be some optimal fractional
cover of HŒV 0� with jg0j D ��.HŒV 0�/. By Proposition 3.7 (4), we therefore deduce that
there is some setU2� V 0 with jU2j DM and g0.u0/D 0 for all u0 2U2. By (a) there exists
a fan FU2 of size N=r �M focused at U2 in HŒV 0�. Taking Z WD

S
¹e W e 2 FU2º n U2,

we have jZj D .r � 1/.N=r �M/ and similarly to before, using the fact that for each
edge e 2 FU2 we have

P
v2e g

0.v/ � 1 and g0.u0/ D 0 for all u0 2 U2, we can conclude
that

P
z2Z g

0.z/ � jFU2 j D N=r �M .
Finally, we look at V 00 WD V 0 n Z. We have N 00 WD jV 00j D N 0 � .r � 1/.N=r/ C

.r � 1/M and using (b) and Proposition 3.7 (2), we find that

��.HŒV 00�/ �
N 00 �N=r

r
D
N 0 C .r � 1/M

r
�
N

r
:

Hence, by Proposition 3.7 (3), we deduce that
P
v002V 00 g

0.v00/ � .N 0 C .r � 1/M/=r

� N=r . Combining this with the lower bound on the sum of g0 values on Z implies that
jg0j D ��.HŒV 0�/ � .N 0 �M/=r , contradicting (3.4).

3.5. Almost perfect matchings in hypergraphs

It is well known that hypergraphs that have roughly regular vertex degrees and small
codegrees contain large matchings. This is often referred to as Pippenger’s Theorem but
there are in fact a family of similar results, all following from the “semi-random” or
“nibble” method (see e.g. [10, Section 4.7]). Here we use the following explicit version
which follows directly from a result of Kostochka and Rödl [49].

Theorem 3.10. For any integers r � 3 and K � 4 there exists �0 > 0 such that for all
� � �0 the following holds. If H is a r-uniform hypergraph on N vertices such that

(1) for all vertices v 2 V.H/, we have deg.v/ D �.1˙K
p
.log�/=�/;

(2) for all u ¤ v 2 V.H/, we have codeg.u; v/ � �1=.2r�1/,

then H has a matching covering all but at most ��1=rN vertices.
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Indeed, [49, Theorem 4] states that for all r � 3,K0 � 8 and reals 0 < ı;  < 1, there
exists a D0 such that if H is an r-uniform hypergraph on N vertices with

D �K0
p
D logD � degH .v/ � D;

for all v 2 V.H/, where D � D0, and codegH .u; v/ � C < D1� for all pairs of ver-
tices u ¤ v, then H has a matching covering all but at most O.N.C=D/.1�ı/=.r�1//
vertices. In order to derive Theorem 3.10 from this we fixK0D 2K, ıD 1

4r
and  D 2r�2

2r�1
.

LettingD0 be the resulting constant given by [49, Theorem 4], we fix�0 �D0 to be some
large constant. Hence, our conditions (1) and (2) of Theorem 3.10 guarantee thatH satis-
fies the conditions of [49, Theorem 4] with D D �CK

p
� log� and C D �1� . Now

note that
C

D
D .1C o.1//�� D .1C o.1//��.2r�2/=.2r�1/ D o.��.4r�4/=.4r�1//:

Combining this with the fact that 1�ı
r�1
D

4r�1
4r.r�1/

and���0 is sufficiently large, we con-
clude from [49, Theorem 4] that the number of vertices uncovered by a largest matching
is always less than ��1=rN , as required.

Clearly, in order to prove that a hypergraph H has a large matching, it suffices to
establish the conditions of Theorem 3.10 for a spanning subgraph H 0 � H . An idea
introduced by Alon, Frankl, Huang, Rödl, Ruciński and Sudakov [8] is to find such anH 0

as a random subhypergraph ofH and guarantee that the conditions of Theorem 3.10 hold
forH 0 by using perfect fractional matchings to dictate the probability with which we take
each edge into H 0. This idea was then used in the context of finding almost Kr -factors in
pseudorandom graphs by Han, Kohayakawa and Person [34, 35]. We will also adopt this
idea and so give the following theorem.

Theorem 3.11. For all r 2 N�3 and 0 < � < 1=2, there exists an N0 such that the fol-
lowing holds for allN � N0. SupposeH is anN -vertex, r-uniform hypergraph such that
there exist t WD 2N � perfect fractional matchings f1; : : : ; ft W E.H/! R�0 in H with
the property that

tX
iD1

X
e2E.H/W ¹u;vº�e

fi .e/ � 2 (3.5)

for all pairs of vertices u ¤ v 2 V.H/. Then H has a matching covering all but at most
N 1��=r vertices.

Proof. We take a random subgraph H 0 � H by keeping every edge e 2 E.H/ indepen-
dently with probability pe D

Pt
iD1 fi .e/=2, noting that pe 2 Œ0; 1� for all e 2 E.H/ due

to (3.5). We fix � WD t=2 D N � and K WD 4=� and claim that H 0 satisfies the conditions
of Theorem 3.10 whp as N tends to infinity.

To check that H 0 satisfies the conditions of Theorem 3.10, note that for each v 2 V
we have

EŒdegH
0

.v/� D
X
eWv2e

pe D
X
eWv2e

tX
iD1

fi .e/=2 D
1

2

tX
iD1

� X
eWv2e

fi .e/
�
D t=2 D �;
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using the fact that each fi is a perfect fractional matching. Applying Theorem 3.6 then
gives

P

�
degH

0

.v/ ¤ �

�
1˙K

r
log�
�

��
� 2 exp

�
�
K2 log�

3

�
� 2 exp

�
�
K2� logN

3

�
�

1

N 2
(3.6)

for N sufficiently large. Similarly, for u ¤ v 2 V.H/, we find that EŒcodegH
0

.u; v/� DP
eW ¹u;vº�e pe � 1 by (3.5) and applying Theorem 3.6 gives

P ŒcodegH
0

.u; v/ � �1=.2r�1/� � exp.��1=.2r�1// �
1

N 3
(3.7)

for large N . Hence taking a union bound over all vertices and pairs of vertices and upper
bounding the failure probabilities with (3.6) and (3.7) shows that H 0 satisfies the condi-
tions of Theorem 3.10 whp. Therefore for N (and hence �) sufficiently large, we can fix
such an instance ofH 0 and apply Theorem 3.10 which gives the large matching inH 0 and
hence in H , concluding the proof.

It will be useful for us to work with the following corollary to Theorem 3.11 which
gives us a sufficient condition for us to be able to generate the perfect fractional match-
ings needed in Theorem 3.11 via a greedy process. Recall that for a 2-uniform graph J
on V.H/, HJ denotes the subhypergraph of H given by all edges of H which contain
some edge of J .

Theorem 3.12. For all r 2 N�3 and 0 <  < 1=.2r2/, there exists an N0 such that the
following holds for all N � N0. Suppose H is an N -vertex, r-uniform hypergraph such
that given any graph J on V.H/ of maximum degree at most N r2 , the set H n HJ
contains a perfect fractional matching. Then H has a matching covering all but at most
N 1� vertices.

Proof. We will prove this by appealing to Theorem 3.11 with � WD r and so we set out
to find t WD 2N � perfect fractional matchings f1; : : : ; ft such that (3.5) holds. We do this
algorithmically, finding the fi one at a time. We begin by defining J1 to be the empty
(2-uniform) graph on V.H/ and for 1� i � t we do the following. We find a perfect frac-
tional matching fi in H nHJi and add this to our family of perfect fractional matchings.
We then define a graphGi with vertex set V.H/ and a pair of vertices � 2

�
V.H/
2

�
forming

an edge in Gi if X
��e2E.H/

fi .e/ �
N��

2
:

Finally, we define JiC1 WD Ji [Gi and move to step i C 1.
We claim that this algorithm does not stall and we complete our collection of t perfect

fractional matchings. In order to check this, we need to verify that we can find a perfect
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fractional matching in H nHJj for each j 2 Œt �. This follows because at each step i we
have, for any v 2 V.H/,X

u2V.H/n¹vº

� X
¹u;vº�e2E.H/

fi .e/
�
D .r � 1/

X
v2e2E.H/

fi .e/ D r � 1;

as fi is a perfect fractional matching. Hence the number of pairs � 2
�
V.H/
2

�
which contain

v and form an edge ofGi is at most 2.r � 1/N � . As this holds for all choices of v 2 V.H/
we see that Gi has maximum degree less than 2.r � 1/N � . Thus for each j 2 Œt �, Jj WDSj�1
iD1 Gi has maximum degree less than

2.r � 1/N �
� .j � 1/ � 2.r � 1/N �t D 4.r � 1/N 2�

� N r�
D N r2

for N sufficiently large. So H nHJi does indeed host a perfect fractional matching by
assumption.

Finally, we need to check condition (3.5) for each pair of vertices �D ¹u;vº 2
�
V.H/
2

�
.

Note that for any pair � 2
�
V.H/
2

�
of vertices of H we have

tX
iD1

� X
��e2E.H/

fi .e/
�
�
tN��

2
� 1

if � does not feature as an edge in any of theGi . On the other hand, if �D ¹u;vº 2E.Gj /
for some j 2 Œt �, then because we forbid the edges ofH containing ¹u;vº from being used
again we have

tX
iDjC1

� X
��e2E.H/

fi .e/
�
D 0:

Also � … E.Gi / for i < j as otherwise there could be no weight on (edges containing) �
in fj . Hence

j�1X
iD1

� X
��e2E.H/

fi .e/
�
�
.j � 1/N��

2
� 1;

and using the fact that X
��e2E.H/

fj .e/ �
X

u2e2E.H/

fj .e/ D 1

shows that (3.5) holds for all � 2
�
V.H/
2

�
as required. So by Theorem 3.11, H contains a

matching covering all but at most N 1��=r D N 1� vertices, concluding the proof.

3.6. Templates

In this section we concentrate on a powerful new approach introduced by Mont-
gomery [57, 58], in his work on spanning trees in random graphs. The general idea is
to use the following key notion as an auxiliary graph to define absorbing structures in the
host graph of interest.
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Definition 3.13. A template T with flexibility t 2 N is a bipartite graph on 7t vertices
with vertex classes I and J1 [ J2 such that jI j D 3t , jJ1j D jJ2j D 2t , and for any
xJ � J2 with j xJ j D t , the induced graph T ŒV .T / n xJ � has a perfect matching. We call J2
the flexible set of vertices for the template.

I

J1

J2

Fig. 5. A template T of flexibility 2. One can check that the key property is indeed satisfied.

See Figure 5 for an example of a template. The definition implies that a template is
robust with respect to having a perfect matching. It is not hard to come up with examples
of templates, indeed a complete bipartite graph certainly satisfies the condition. The utility
of the notion for defining absorbing structures that are possible to find in the desired
host graphs comes with the fact that sparse templates exist. Indeed, Montgomery [57,58]
proved the following using a probabilistic argument.

Theorem 3.14. For all sufficiently large t , there exists a template of flexibility t and
maximum degree 40.

Han, Kohayakawa, Person and the author [33] then showed how to derandomise the
argument for the existence of templates and find templates with bounded maximum degree
efficiently in polynomial time. We will use the method of template absorption in proving
Proposition 2.9.

4. Diamond trees

Recall the definition of diamond trees from Section 2, namely Definition 2.1. In this sec-
tion we prove the existence of diamond trees in our bijumbled graphs. The main aim is
to prove the following proposition which gives us some flexibility over which vertices
feature as removable vertices of our diamond tree. This will turn out to be very valuable
at various points in our proof.
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Proposition 4.1. For any r 2 N�3 and 0 < ˛ < 1=22r there exists an " > 0 such that
the following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n. For any
2 � z � ˛n and any pair of disjoint vertex subsets U;W � V.G/ such that jU j; jW j �
4˛rn, there exist disjoint vertex subsets X; Y � U such that

(1) jX j C jY j D z;

(2) jX j � max ¹1; 2z=d�º with d� D ˛2pr�1n;

(3) for any subset Y 0 � Y , there exists a Kr -diamond tree D D .T; R; †/ such that
R D X [ Y 0 and † � Kr�1.GŒW �/ is a matching of .r � 1/-cliques in W .

Let us pause to digest the proposition. Firstly, note that by choosing Y 0 D Y in (3) and
varying z, we can guarantee the existence of Kr -diamond trees of any order up to linear
in our bijumbled graph G. However, the proposition is much more powerful than just
this. The vertex set Y and property (3) allow us flexibility in which vertices appear in the
removable set of vertices of the diamond tree we take from the proposition. We can start
with z much larger than the desired order of the diamond tree we want and then remove
unwanted vertices from Y to end up with some Y 0 that we include in the removable
vertices of the diamond tree. The point is that by starting with a larger z (and hence
larger jY j), we can deduce stronger properties about the vertices in Y , allowing us to then
ensure properties of the set of removable verticesR that we would otherwise have no hope
in guaranteeing. There is a catch, as we are forced to include the setX in any diamond tree
we produce, but note that due to property (2), the size of X is negligible compared to the
size of Y . Indeed, due to Fact 3.2, d� is polynomial in n (of order at least�.n.r�2/=.2r�3//,
to be precise). Thus we can choose Y 0 to be much smaller than Y and still have the vertices
in Y 0 contribute a significant subset (at least half, say) of the removable vertices of the
diamond tree we obtain. We delay applications of Proposition 4.1 to later in the proof
but refer the reader to Lemmas 6.6, 7.2 and 8.4 for a flavour of the consequences of the
proposition.

The rest of this section is concerned with proving Proposition 4.1. The idea behind
the proof is simple: we look to find a large (order z) Kr -diamond tree in G with the
property that many of the removable vertices are leaves (the set Y ). This allows us to pick
and choose which leaves (the set Y 0) we include in our desired diamond tree, as we can
simply remove the other leaves and their corresponding interior cliques;7 see Figure 6 for
an example. In order to find diamond trees with many leaves, we introduce the notion
of a scattered diamond tree and deduce the existence of such diamond trees in a suitably
pseudorandom graph.

7That is, for each unwanted leaf v 2 R in the diamond tree D D .T; R; †/, we remove the
interior clique in † which corresponds to the edge adjacent to the (preimage of) v in the defining
tree T , as well as the leaf v itself.
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4.1. Scattered diamond trees

One way to ensure a large set of leaves in a tree is to impose a minimum degree on all
non-leaf vertices. This leads to the following definition.

Definition 4.2. We say a tree T (of order at least 2) is d -scattered if every vertex in V.T /
which is not a leaf in T has degree at least d . As a convention we will also say that a tree
of order 1 (a single vertex) is d -scattered for all d . We say a diamond tree D D .T;R;†/

is d -scattered if its underlying auxiliary tree T is d -scattered.

See Figure 6 for an example of a scattered K3-diamond tree.The following simple
lemma shows that most of the vertices in a scattered tree (and hence most of the removable
vertices in a scattered diamond tree) are leaves.

Lemma 4.3. Let d � 2 and suppose that T is a d -scattered tree of order m � 3. Then
defining X � V.T / to be the vertices8 which have degree greater than 1 in T , we have
jX j � m�2

d�1
.

Proof. By the definition of d -scattered trees, every vertex in X has degree at least d . We
define x WD jX j. Note that T ŒX� is a connected subtree of T . Indeed, the interior vertices
of a path between any two vertices of T must lie in X (as they have degree at least 2).
Hence T ŒX� has exactly x � 1 edges and we can estimate the number of edges in T as
follows:

e.T / D m � 1 D
X
v2X

deg.v/ � e.T ŒX�/ � xd � .x � 1/:

Rearranging, one obtains x � m�2
d�1

, as required.

We will show that we can find large scattered diamond trees in our bijumbled graph.
To begin with, we focus on diamond trees for which the auxiliary tree is a star, which
we call diamond stars. The next lemma shows that we can find large diamond stars in a
suitably pseudorandom graph.

Lemma 4.4. For any r 2 N�3 and 0 < ˛ < 1=22r there exists an " > 0 such that the
following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n, fixing
d� WD ˛

2pr�1n. Let U0;U1;U2 � V.G/ be disjoint vertex subsets such that jUi j � ˛n for
i D 0; 1 and jU2j � ˛rn. Then there exists a Kr -diamond tree D� D .T �; R�; †�/ in G
such that T � is a star of order 1C d� centred at x, say, with9 ��.x/ 2 U0, R� n ¹��.x/º
� U1 and †� � Kr�1.GŒU2�/ a matching of .r � 1/-cliques in U2.

Proof. Fix " > 0 small enough to apply Corollary 3.5 (3). Shrink U0 (if necessary) to
be a set of exactly ˛n vertices. We claim that there is a matching M � Kr�1.GŒU2�/
of .r � 1/-cliques such that jM j D ˛n and each clique S 2 M has degUi .S/ � d� for

8That is, X is the set of vertices of T which are not leaves.
9Here �� W V.T �/! R� is the associated bijection in the definition of D�.
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i D 0; 1. Indeed, we can find M greedily by applying Corollary 3.5 (3) (with Wi D U2�i
for i D 0; 1; 2) repeatedly, adding an .r � 1/-clique S to M and removing its vertices
from U2 after each application. While jM j � ˛n, we have jU2j � ˛n and so we are
indeed in a position to apply Corollary 3.5 (3) throughout the process.

Now once we have foundM , for each S 2M and for i D 0; 1, let Ni .S/ WD NUi .S/,
that is, the set of vertices in Ui which form a Kr with S . By construction we have
jN0.S/j � d� for each S in M and so

j¹.v; S/ 2 U0 �M W v 2 N0.S/ºj � jM jd� D ˛nd�:

Hence, as jU0j has size ˛n (as we imposed at the start of the proof), by averaging, there
exists a vertex v0 2 U0 and a subset †� of d� cliques in M such that v0 is in N0.S/ for
all S 2 †�. We can now construct our diamond star greedily, with v0 as the image of the
large degree vertex. Sequentially, for each clique S in †�, choose a vertex u in N1.S/
which has not been previously chosen and add the copy of K�rC1 on S , v0 and u to the
diamond star (adding u to R�). As N1.S/ � d� for all S 2 †� � M , there is always an
option for u and so this process succeeds in building the required diamond star.

Our next lemma follows the scheme of Krivelevich [51] to construct large diamond
trees. We adapt his proof to guarantee that the diamond tree obtained is scattered.

Lemma 4.5. For any r 2 N�3 and 0 < ˛ < 1=22r there exists an " > 0 such that the
following holds for any n-vertex .p;ˇ/-bijumbled graphG with ˇ � "pr�1n, fixing d� WD
˛2pr�1n. For any 2 � z � ˛n and any pair of disjoint vertex subsets U;W � V.G/ such
that jU j; jW j � 4˛rn, there exists a d�-scattered Kr -diamond tree Dsc D .Tsc; Rsc; †sc/

of orderm such that z � m � z C d�, Rsc � U and†sc � Kr�1.GŒW �/ is a matching of
.r � 1/-cliques in GŒW �.

Proof. Our proof is algorithmic and works by building a diamond tree forest, that is, a set
of pairwise vertex disjoint diamond trees. At each step of the algorithm, we will add to
one of the trees in our forest, boosting the degree of a vertex in the underlying auxiliary
tree by d�, using Lemma 4.4. By discarding trees when the sum of the orders of the trees
gets too large, we will show that one of the trees in our forest will eventually obtain the
desired order after finitely many steps of the algorithm. The details follow.

Initiate the process by fixing U0 � U to be an arbitrary subset of ˛n vertices, W0 D
;�W to be empty and D1; : : : ;D` with `D ˛n to be the diamond trees which are defined
to be the single vertices in U0. That is, for i 2 Œ`�, theKr -diamond tree Di D .Ti ;Ri ;†i /

corresponds to an auxiliary tree Ti which is just a single vertex and thus Ri is also a
single vertex and †i is empty. In general, at each step of the process we will have a
family D1; : : : ;D` (for some ` 2 N) of vertex disjoint Kr -diamond trees such that for
each i , the diamond tree Di D .Ti ;Ri ;†i / is d�-scattered, hasRi �U0 and†i �GŒW0�.
Furthermore, we will have U0 D

S
i2Œ`� Ri and W0 D

S
i2` V.†i / � W and maintain

throughout ˛n � jU0j � 2˛n and jW0j � 2.r � 1/˛n.
Now at each step, given such a set U0 and family D1; : : : ;D`, we apply Lemma 4.4

withU1DU nU0 andU2DW nW0, noting that the conditions on the size ofU andW in
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the statement of the lemma and the imposed conditions on the size of U0 andW0 through-
out the process indeed allow Lemma 4.4 to be applied. Thus, we find a Kr -diamond
star D� D .T �; R�; †�/ of order d� C 1 with centre v0 2 U0, R� n ¹v0º � U n U0 and
†� � Kr�1.GŒU2�/ a matching of .r � 1/-cliques. As U0 is the union of the removable
vertices of the family of diamond trees, there is some i0 2 Œ`� such that v0 2 Ri0 . We
then update Di0 by adjoining the diamond star to the tree at v0, we add all the vertices
of R� to U0, and all the vertices of the .r � 1/-cliques in †� to W0. Now if there is a
Kr -diamond tree among the (new) family D1; : : : ;D` which has order at least z, we take
such a diamond tree as Dsc and finish the process. If not, then we look at the size of U0.
If jU0j < 2˛n, we continue to the next step. If jU0j � 2˛n, then we sequentially discard
arbitrary Kr -diamond trees Dj D .Tj ; Rj ; †j / from the family. That is, we choose a Dj

in the family, delete Rj from U0 and delete the vertices that belong to .r � 1/-cliques
in †j from W0. We continue discarding diamond trees until jU0j � 2˛n. Note that as
jRj j � z � ˛n for all j , the updated U0 at the end of this discarding process will have
size at least ˛n as required. We then move to the next step.

All the diamond trees in our family are d�-scattered throughout the process and also
W0, as the set of vertices featuring in interior cliques of a family of Kr -diamond trees
whose orders add up to less than 2˛n, has size less than 2.r � 1/˛n throughout. It is
also clear that as the order of any diamond tree in our collection grows by at most d�
in each step, the order of the diamond tree which is found by the algorithm will be at
most z C d�. It only remains to check that the algorithm terminates but this is guaranteed
because the number of diamond trees is decreasing throughout the process. Indeed, we
never add new diamond trees to the family and every ˛n=d� steps we have to discard at
least one diamond tree from the family. If the algorithm does not terminate after finding
an appropriate Dsc, then eventually we will be left with just one diamond tree D1 in the
family, but at this point the order of D1 would be at least ˛n � z, contradicting that the
algorithm is still running.

X = { }

Y = { }

X D

Y D

Fig. 6. A 6-scattered K3-diamond tree.

Using Lemmas 4.4 and 4.5 we can now deduce Proposition 4.1.
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Proof of Proposition 4.1. Fix " > 0 small enough to apply Lemmas 4.4 and 4.5 and small
enough to force n to be sufficiently large in what follows. Let us first deal with the case
when z � d� WD ˛2pr�1n. Here, we arbitrarily partition U into U0 and U1 of size at least
˛n, fix U2 D W and apply Lemma 4.4 to get a Kr -diamond star D� D .T �; R�; †�/

of order 1 C d� with R� � U and †� � Kr�1.GŒW �/ a matching of .r � 1/-cliques
in W . Let x 2 R� be the only non-leaf vertex in R� and define X D ¹xº. Further, let
Y � R� nX be an arbitrary subset of z � 1 vertices. Now taking �� W V.T �/! R� and
�� W E.T �/!†� to be the defining bijective maps for D�, note that for any Y 0 � Y , the
set ¹���1.v/ W v 2 Y 0 [ Xº � V.T �/ spans a subtree (or rather a substar) of T �, say T .
Therefore, taking D D .T; X [ Y 0; †/ where † WD ¹��.e/ W e 2 E.T /º defines a Kr -
diamond tree with removable vertices Y 0 [X . Therefore (1)–(3) of the proposition are all
satisfied.

When d� < z � ˛n, the proof is similar. We apply Lemma 4.5 to get a d�-scattered
Kr -diamond tree Dsc D .Tsc; Rsc; †sc/ as given by the lemma and define X � Rsc to
be the non-leaves of Dsc. See Figure 6 for an example. In order to bound jX j and prove
property (2), we appeal to Lemma 4.3 which gives

jX j �
jRscj � 2

d� � 1
�
z C d� � 2

d� � 1
�
2z

d�
;

using z � d� in the final inequality.
We note that for n large (using Fact 3.2) we have d� � 4, implying that jX j � z=2. We

fix Y � Rsc nX to be an arbitrary subset of size z � jX j and claim that conditions (1)–(3)
of the proposition are all satisfied. Indeed, it remains only to prove (3) and this follows
similarly to above, by taking sub-diamond-trees of Dsc. In detail, fix some Y 0 � Y and let
RD Y 0 [X . Then if �sc W V.Tsc/! Rsc and �sc W E.Tsc/!†sc are the defining bijective
maps for Dsc, then the set ¹��1sc .v/ W v 2 Rº of vertices spans a subtree T � Tsc. Indeed,
we simply deleted leaves from Tsc, namely ��1sc .x/ for x 2 Rsc n Y

0. Taking†D ¹�sc.e/ W

e 2 E.T /º, we conclude that D D .T;R;†/ is the desired diamond tree.

5. Cascading absorption through orchards

In this section we discuss orchards in our .p; ˇ/-bijumbled graphs. We begin in Sec-
tion 5.1 by proving Lemma 2.4 which details conditions for when one orchard absorbs
another. In Section 5.2, we then discuss the existence of shrinkable orchards, addressing
Proposition 2.8 which tells us that we can find shrinkable orchards of all desired orders
in the graphs we are interested in. The proof of Proposition 2.8 requires many ideas and
two distinct approaches. Therefore, we defer the majority of the work to later sections and
simply reduce the proposition here, splitting it into two ‘subpropositions’ which will be
tackled separately. Recall that Lemma 2.4 and Proposition 2.8 were the two ingredients
we needed to prove the cascading absorption through constantly many orchards in the
proof of Theorem 1.4.
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5.1. Absorbing orchards

Recall the definition (Definition 2.3) of an orchard and that we say a .K;M/r -orchard O
absorbs a .k;m/r -orchard R if there is an ..r � 1/k;M/r -suborchard O0 �O such that
there is a Kr -factor in GŒV.R/ [ V.O0/�.

In this section we prove Lemma 2.4, restated below for convenience, which is a gener-
alisation of [61, Lemma 3.5]. The lemma gives some sufficient conditions for an orchard
to be able to absorb another orchard.

Lemma 2.4 (restated). For any r 2 N�3 and 0 < �; � < 1 there exists an " > 0 such that
the following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n. Let O
be a .K;M/r -orchard in G such that KM � �n. Then there exists a set B � V.G/ such
that jBj � �p2r�4n and O absorbs any .k;m/r -orchard R in G with

V.R/ \ .B [ V.O// D ;; k � K=.8r/ and kM � mK: (5.1)

Our proof scheme follows that of [33] which gives a polynomial time two-phase
algorithm for finding the necessary Kr -factor. The algorithm is a simple greedy algo-
rithm and works by absorbing each diamond tree B in the small orchard R, one at
a time. In more detail, for each diamond tree B in R, we find r � 1 diamond trees
D1; : : : ;Dr�1 2 O such that there is a copy of Kr traversing the sets of removable
vertices of B and the diamond trees D1; : : : ;Dr�1. This implies that there is a Kr -factor
in GŒV.B/ [ V.D1/ [ � � � [ V.Dr�1/� (see Observation 2.2) and so we can add the Di

to the suborchard O0, forbid them from being used again, and move to the next diamond
tree B 0 2R. Note that typically, we expect to succeed with this process. Indeed, the set
of removable vertices of diamond trees in O is linear in size (and remains linear even
after forbidding diamond trees D 2 O used for previous B 2R) and so a typical vertex
has �.pn/ neighbours among this set of removable vertices. Hence, appealing to Corol-
lary 3.5 (1) (i) which states that sets of size �.pn/ host copies of Kr�1, we can expect
to find a copy of Kr�1 in the neighbourhood of a typical removable vertex of B 2 R
which lies on the removable vertices of diamond trees in O. As long as this copy ofKr�1
traverses sets of removable vertices of distinct diamond trees in O, we will succeed. With
a few extra ideas and a bit of preprocessing (for example partitioning O into r � 1 sub-
orchards at the start), this intuition holds true and we can successfully greedily start to
build O0.

In fact, if kM is small compared to pn, we can fully form O0 in this way and no
second phase is necessary. However, if kM is large compared to pn we may run into
trouble as with this greedy approach, it may be the case that the neighbourhood of a
removable vertex v of a diamond tree B 2R has too small a size by the time we come to
considering B. Indeed, as we run this greedy process, we forbid the diamond trees (and
their removable vertices) which we add to O0 from being used again. This could result
in v having much fewer than pn neighbours in the removable vertices of diamond trees
in (the remainder of) O and so we have no guarantee of finding a copy of Kr�1 in this
neighbourhood.
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We resolve this issue by running a two-phase algorithm and reserving half of O for
the second phase. The key point is that if a diamond tree B fails in the first round then
it must be the case that all of the removable vertices of B have small neighbourhoods
amongst the removable vertices of diamond trees in O. Given that throughout the pro-
cess, many diamond trees in O will remain available to use, pseudorandomness (more
precisely, Corollary 3.5 (1) (ii)) tells us that the number of vertices that do not have large
enough neighbourhoods is relatively small. Hence, as each diamond tree B 2 R which
failed in the first phase has a set of removable vertices which are atypical in this way, we
can upper bound the number of diamond trees in R that fail in the first round. This upper
bound will then be used to show that in the second phase, we are successful with each
diamond tree, as throughout the second round, the number of removable vertices being
forbidden (due to being used to absorb other diamond trees in R) will be negligible and
so the neighbourhoods of vertices amongst the removable vertices of diamond trees in the
half of O reserved for this second phase will remain large.

Proof of Lemma 2.4. We fix ˛; �0 < ��2

23r r2
and choose " > 0 small enough to apply Lem-

ma 3.3 with �3.3 D �
0 and Corollary 3.5 with ˛3.5 D ˛. Let O D ¹D1; : : : ;DKº be the

.K;M/r -orchard with each Di D .Ti ;Ri ;†i / being aKr -diamond tree of order between
M and 2M . We start by arbitrarily partitioning O into 2.r � 1/ suborchards of size as
equal as possible so that O D

S2.r�1/
jD1 Oj and each Oj is a .Kj ; M/r -orchard with

Kj D
K

2.r�1/
˙ 1 � K

2r
. For j 2 Œ2.r � 1/�, we let

Yj WD
[

i WDi2Oj

Ri

be the set of removable vertices of the diamond trees which feature in the j th suborchard.
Note that jYj j �KjM �KM=.2r/� �n=.2r/ for each j 2 Œ2.r � 1/�. We define B to be
the set of vertices v 2 V n V.O/ such that for some j 2 Œ2.r � 1/�, degYj .v/ < pjYj j=2.
By Lemma 3.3 (i), we have

jBj <
2.r � 1/�0p2r�4n2

minj jYj j
� �p2r�4n;

due to our lower bound on the size of the jYj j and our upper bound on �0.
Now as in the statement of the lemma, consider a .k;m/r -orchard RD ¹B1; : : : ;Bkº

of diamond trees whose vertices lie in V n .B [ V.O//. For i 0 2 Œk�, let Qi 0 be the set
of removable vertices of the diamond tree Bi 0 . We will show that for each i 0 2 Œk�, there
exist distinct indices i1 D i1.i 0/; : : : ; ir�1 D ir�1.i 0/ 2 ŒK� such that there is a copy ofKr
which traverses the setsQi 0 andRi1 ; : : : ;Rir�1 , whereRi1 is the set of removable vertices
of Di1 and likewise for i2; : : : ; ir�1. Now, from Observation 2.2, for such an r-tuple Bi 0 ,
Di1 ; : : : ;Dir�1 , there is a Kr -factor in GŒV.Bi 0/ [ V.Di1/ [ � � � [ V.Dir�1/�. We will
prove that one can choose such indices i1; : : : ; ir�1 for each i 0 2 Œk� in such a way that no
i 2 ŒK� is chosen more than once. That is, for i 0 ¤ j 0 2 Œk�, the sets ¹i1.i 0/; : : : ; ir�1.i 0/º
and ¹i1.j 0/; : : : ; ir�1.j 0/º are disjoint. Therefore our suborchard O0 � O can simply be
defined to be the union of all the choices of Dij .i

0/ for i 0 2 Œk� and j 2 Œr � 1�.
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We now show how to find the indices i1.i 0/; : : : ; ir�1.i 0/ for each i 0 2 Œk�. We will
achieve this via the following simple algorithm. We initiate the first round of the algorithm
with O0 D ;, I D Œk�, Pj D Oj and Zj D Yj for 1 � j � r � 1. Note that the Oj for
r � j � 2.r � 1/ do not feature in these definitions. This is because we will not use
any diamond trees that lie in

S2.r�1/
jDr Oj in this first round. Now the algorithm runs as

follows. For i 0 D 1; : : : ; k; we check if there exists some set ¹Dij 2 Pj W j 2 Œr � 1�º
such that there is a Kr traversing Qi 0 and the sets of removable vertices Ri1 ; : : : ; Rir�1 .
If this is the case then we delete Dij from Pj and add it to O0 for j 2 Œr � 1� and we also
delete Rij from Zj for all j 2 Œr � 1�. Furthermore, we delete i 0 from I and move to the
next index i 0 C 1 (or finish this round if i 0 D k). If it is not the case that such diamond
trees exist in the orchards Pj , then we simply leave i 0 as a member of I and move on to
the next index.

At the end of the first round, we have some set I of indices remaining. We define
t WD jI j at this point. We will now use diamond trees in the orchards Oj with r � j �
2.r � 1/ to absorb these remaining diamond trees Bi 0 with i 0 2 I . Thus we reset the
process, setting Pj D OjCr�1 and Zj D YjCr�1 for all j 2 Œr � 1�. We then follow
the same simple process in the second round as we did in the first, running through the
(remaining) i 0 2 I in order and trying to find an appropriate set ¹Dij 2 Pj W j 2 Œr � 1�º
of diamond trees at each step. We claim that in this second round, we can find such a set
for every i 0 2 I and so by the end of the second round, the set I is empty and O0 is such
that GŒV.R/ [ V.O0/� hosts a Kr -factor.

In order to prove this, our analysis splits into two cases. First consider when kM
< �pn

16r
. In this case, the second round is not even necessary as all indices succeeded in

the first round. Indeed, note that every time we are successful for an index i 0, we delete at
most 2M vertices from each of the Zj . Therefore, at any instance in the first round of the
process, any vertex v which is not in B has

degZj .v/ �
pjYj j

2
� 2kM �

�pn

4r
� 2kM �

�pn

8r

for all j 2 Œr � 1�, using our lower bound on the jYj j and our upper bound on kM .
But then, by Corollary 3.5 (1) (i) (applied in this instance with QG being the empty graph
and G0 D G), there exists a copy of Kr�1 traversing the sets NZj .v/ for 1 � j � r � 1.
When v is any vertex in the removable set of verticesQi 0 for some diamond tree Bi 0 in the
process, this gives a copy of Kr traversing Qi 0 and some sets of removable vertices Rij
for diamond trees Dij 2 Pj , j 2 Œr � 1�, as desired. In this way, we see that the process
succeeds in every step of the first round to find a suitable ¹ij .i 0/ W j 2 Œr�º for each i 0 2 Œk�
and I is empty (i.e. t D 0) at the end of the round. Note that we have used here the fact
that the vertices of Qi 0 are not in B .

When �pn
16r
� kM � mK, the second round may be neccesary and we start with esti-

mating t , the size of I after the first round. Now note that at the end of the first round,
before we reassign the sets Zj to removable vertices in diamond trees in OjCr�1 for
j 2 Œr � 1�, if we take Q D

S
i 02I Qi 0 , then there is no Kr traversing Q and the sets

Z1; : : : ; Zr�1. Indeed, otherwise there would be an i 0 2 I and a vertex v 2 Qi 0 � Q
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which is contained in aKr with a set of vertices ¹vij 2 Zj W j 2 Œr � 1�º. This contradicts
that for the index i 0 we failed to find a suitable set of ij in the first round. Thus, at the end
of the first round, there is no Kr traversing Q, and the Zj , j 2 Œr � 1�. Moreover,

jZj j �
KM

2r
� 2kM �

KM

4r
�
�n

4r
;

using the upper bound on k from (5.1) and the fact that at most 2M vertices are deleted
from Zj every time we are successful with an index i 0 2 I . Thus, we can conclude from
Corollary 3.5 (1) (ii) that at the end of the first round, tm < jQj < ˛p2r�4n. Therefore

t <
˛p2r�4n

m
�
˛p2n

m
�
16˛rpK

�
�
16˛rpn

�M
�

�pn

16rM
;

where we have used our lower and upper bounds on kM to give an upper bound on pn=m
in the third inequality, the fact thatKM � n in the fourth inequality and our upper bound
on ˛ in the final inequality.

We now turn to analyse the second round. Using our upper bound on t , we can upper
bound the number of vertices deleted in each Zj throughout the second round, and using
this we find that for any vertex v not in B , any j 2 Œr � 1� and at any point in the second
round,

degZj .v/ �
pjYjCr�1j

2
� 2tM �

�pn

4r
�
�pn

8r
�
�pn

8r
:

Thus we can repeat the argument used for the case when kM was small, seeing that at
every step in the second round we are successful in finding an appropriate set of ij for
j 2 Œr � 1� for each i 0 2 I . This completes the proof.

5.2. Shrinkable orchards

Here we are concerned with the existence of shrinkable orchards in pseudorandom graphs
and verifying Proposition 2.8, which we restate below for the convenience of the reader.
We also encourage the reader to remind themselves of Definitions 2.5 and 2.7 as well as
Observation 2.6.

Proposition 2.8 (restated). For any r 2N�3 and 0 < ˛;  < 1=212r there exists an " > 0
such that the following holds for any n-vertex .p;ˇ/-bijumbled graphG with ˇ � "pr�1n
and any vertex subset U � V.G/ with jU j � n=2. For anym 2N with 1�m� n7=8 there
exists a  -shrinkable .k;m/r -orchard O in GŒU � with k 2 N such that ˛n � km � 2˛n.

In order to prove Proposition 2.8, we will appeal to the methods of Sections 3.4
and 3.5. We will use Theorem 3.12 to reduce the problem to establishing the existence of
perfect fractional matchings in the appropriate Kr -hypergraphs and we will then employ
Lemmas 3.8 and 3.9 to find these perfect fractional matchings. In order that our hyper-
graph has the desired properties to apply these lemmas, we need to choose the diamond
trees which define our orchard carefully.
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It turns out that different arguments are needed for finding shrinkable orchards of
different orders. In Section 6 we show how to find shrinkable orchards of small order,
establishing the following intermediate proposition.

Proposition 5.1. For any r 2 N�3 and 0 < ˛;  < 1=23r there exists an " > 0 such that
the following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n and any
vertex subset U � V.G/ with jU j � n=2. For any m 2 N with

1 � m � min ¹pr�2n1�2r
3 ; n7=8º;

there exists a  -shrinkable .k;m/r -orchard O in GŒU � with k 2 N such that ˛n � km �
2˛n.

In Section 7 we then address shrinkable orchards with large order, which results in the
following.

Proposition 5.2. For any r 2 N�3 and 0 < ˛;  < 1=212r there exists an " > 0 such that
the following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n and any
vertex subset U � V.G/ with jU j � n=2. For any m 2 N with

pr�1n � m � n7=8;

there exists a  -shrinkable .k; m/r -orchard O in GŒU � with k 2 N such that ˛n � km
� 2˛n.

The proof of Proposition 2.8 is basically immediate from Propositions 5.1 and 5.2 but
we spell it out nonetheless.

Proof of Proposition 2.8. We split into a case analysis based on the density p of our
graphG. First consider p � n�1=.10r/. Then we claim that pr�2n1�2r

3 � n7=8 and so the
desired  -shrinkable orchard of all orders up to n7=8 can be derived from Proposition 5.1.
Indeed, we have pr�2n1�2r

3 � n1�
r�2
10r �2r

3 and

1 �
r � 2

10r
� 2r3 > 1 �

1

10
�
1

40
D 7=8;

due to our upper bound on  (and lower bound on r).
When p < n�1=.10r/, we have p � n�2r

3 again due to our upper bound on  . Hence
we can apply Proposition 5.1 to find  -shrinkable orchards of orders m � n7=8 such that
m < pr�1n � pr�2n1�2r

3 and apply Proposition 5.2 to find  -shrinkable orchards with
orders m such that pr�1n � m � n7=8. This settles all cases, giving the proposition.

In both cases, a simpler argument works for the extreme cases, that is, when the order
is small in Proposition 5.1 or when the order is large in Proposition 5.2. Extra ideas are
then needed to push the approaches, extending the ranges of the two propositions so that
they meet and cover all desired orders. In more detail, an easier form of Proposition 5.1
can cover orders which get close to pr�1n (see Proposition 6.5). Again the separation
required depends on  , explicitly m � pr�1n1�r

3 . This is already enough to cover all
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desired orchard orders when p is large. On the other hand, a basic form of the argument
for large order orchards gives shrinkable orchards of order at least pr�1n when p is
large and of order at least p1�r when p is smaller (see Proposition 7.3). Interestingly,
Fact 3.2 implies exactly that p1�r D�.pr�2n/ always and so proves that when p is small
(close to the lower bound of �.n�1=.2r�3//) and our bijumbled graph is sparse, both the
simpler arguments for small orders and large orders as well as their extensions are needed.
Indeed, using the simpler version, Proposition 6.5, for small orders and the full power of
Proposition 5.2 leaves a small gap in the orders, and so does using Proposition 5.1 in
conjunction with the easier Proposition 7.3. In order to help the reader through the next
two sections, in both cases we begin by presenting the easier weaker versions of the
statements we need. This then lays the foundation for the full proofs and allows us to
discuss the more technical aspects needed to push the ranges for which we can prove the
existence of shrinkable orchards.

6. Shrinkable orchards of small order

Our first argument for proving the existence of shrinkable orchards works provided the
order of the orchard is not too large, establishing Proposition 5.1. Before embarking on
this we have to go through several steps. Firstly, in Section 6.1, we generalise the theory
of shrinkable orchards built up in Section 2, allowing slightly more flexibility for our
consequent proofs. In Section 6.2, we then use the theory of perfect fractional matchings
to give conditions that guarantee an orchard is shrinkable. In Section 6.3, we show how
this immediately implies the existence of shrinkable orchards of small order. However,
this falls short of Proposition 5.1 and in the rest of this section we push the ideas to extend
the range of orders we can cover, showing how to cleverly choose diamond trees of our
orchard in Section 6.4, which allows us to prove the full Proposition 5.1 in Section 6.5.

6.1. From orchards to systems

We begin by generalising our definitions slightly, allowing us to work not just with
orchards but also with set systems.

Definition 6.1. Given a graph G we say a set ƒ � 2V.G/ of pairwise disjoint subsets is a
.k;m/-system if m � jQj � 2m for each Q 2 ƒ and jƒj D k. That is, a .k;m/-system is
just a family of k disjoint vertex sets of size between m and 2m.

Now given a .k; m/-system ƒ in a graph G, the Kr -hypergraph generated by ƒ,
denoted H D H.ƒI r/, is the r-uniform hypergraph with vertex set V.H/ D ƒ and with
¹Qi1 ; : : : ; Qir º 2

�
ƒ
r

�
forming a hyperedge in H if and only if there is a copy of Kr

traversing the sets Qi1 ; : : : ;Qir in G.
Finally, for 0 <  < 1, we say a .k;m/-system ƒ in a graph G is  -shrinkable (with

respect to r) if there exists a subsystem � � ƒ of size at least k such for any subsystem
� 0 � � , there is a matching in H WD H.ƒ n � 0I r/ covering all but k1� of the vertices
of H .
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Note that given a .k; m/r -orchard O we can define a .k; m/-system ƒ as the sets
of removable vertices of diamond trees in O. That is, ƒ WD ¹RD W D 2 Oº. Then the
Kr -hypergraphs generated by O and ƒ coincide, i.e. H.ƒI r/ D H.O/, and O is  -
shrinkable if and only if ƒ is  -shrinkable. However, Definition 6.1 allows us slightly
more flexibility, giving us the ability to focus on subsets of removable vertices. The next
observation highlights this and although the result is trivial, it will be important for our
proofs.

Observation 6.2. Suppose r � 3, 0 <  < 1 and OD ¹D1; : : : ;Dkº is a .k;m/r -orchard
in a graph G with Ri being the set of removable vertices of Di for i 2 Œk�. Then if
ƒ D ¹Q1; : : : ; Qkº is some .k;m0/-system (for some m0) such that Qi � Ri for i 2 Œk�
and ƒ is  -shrinkable (with respect to r), then O is also  -shrinkable.

It will become clear why such a relaxation is useful for us and thus why we make this
switch to working with set systems.

6.2. Sufficient conditions for shrinkability

We now explore the conditions on set systems which guarantee shrinkability. We begin by
giving some local conditions on a set system which guarantee that it is shrinkable given
that it lies in the pseudorandom graphs we are interested in.

Lemma 6.3. For any r 2 N�3 and 0 < ˛;  < 1=.2rr2/ there exists an " > 0 such that
the following holds for any n-vertex .p;ˇ/-bijumbled graphG with ˇ � "pr�1n. Suppose
ƒ � 2V.G/ is a .k;m/-system such that m � n7=8, km � ˛n, pk � n and

(1) there exists a subsystem � � ƒ such that j�j � k and Y WD
S
¹P W P 2 ƒ n �º,

for every Q 2 ƒ there exists a vertex v 2 Q such that

degGY .v/ � ˛pkmI

(2) for any u 2
S
P2ƒ P and Q 2 ƒ, we have degGQ.u/ � p

r�1n1�r
3 .

Then ƒ is  -shrinkable with respect to r .

Let us make a few remarks before proving the lemma. Firstly, note that condition (1),
despite the slight technicality necessary to avoid dependence on sets in � , is a natural
condition. Indeed, we are requiring that at least one vertex in each set is well connected to
the other sets and has a constant fraction of the degree that we would expect on average.
Condition (2) is perhaps more mysterious as it is unclear why having an upper bound
on the degree of a vertex relative to another set in the system is advantageous. The point
is that this guarantees that each of the vertices has a neighbourhood that is well-spread
across the other sets of the set system, without being too concentrated on any other single
set. Within the proof this necessity manifests itself as we appeal to Theorem 3.12 and
so will need that when we disallow edges between certain pairs of sets from being used
(dictated by the graph J ), we do not significantly alter the graph in which we work. The
details follow in the proof.
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Proof of Lemma 6.3. Fix " > 0 small enough to apply Corollary 3.5 with ˛3.5 D ˛0 <

˛3=.2r/ and small enough to force n to be sufficiently large in what follows. Fixing
� � ƒ as in condition (1), we have to show that for any � 0 � � , the Kr -hypergraph
H D H.ƒ n � 0I r/ has a matching covering all but k1� vertices of H . So fix such a � 0,
let ƒ� WD ƒ n � 0 and let H WD H.ƒ�I r/.

In order to show the existence of a large matching in H , we appeal to Theorem 3.12.
So let us fix N D jV.H/j and note that as N � .1 � /k and k � ˛n1=8 due to our
conditions on k and m, we can assume that N is sufficiently large in what follows. Now
fix some 2-uniform graph J on V.H/ of maximum degree at most N r2 . If we can show
that H nHJ contains a perfect fractional matching, then we are done by Theorem 3.12
because, J being arbitrary, the theorem guarantees a matching covering all but at most
N 1� � k1� vertices of H .

In order to study H n HJ , we look at the forbidden edges of G which J imposes.
That is, we define

QGJ WD
[

¹Q1;Q2º2E.J/

GŒQ1;Q2� [
[
Q2ƒ�

GŒQ�

where GŒQ1; Q2� denotes the set of all edges in G between the sets Q1 and Q2 and
GŒQ� denotes all the edges induced by G in the set Q. Then for any v 2 V.G/, we have
deg QGJ .v/ D 0 if v …

S
P2ƒ� P , while if v 2 Q 2 ƒ� then

deg QGJ .v/ �
X

P2NJ .Q/[¹Qº

degGP .u/ � .N
r2
C 1/pr�1n1�r

3
� pr�1n1� ; (6.1)

using (2), the upper bound on the degrees in J and the fact that N � n.
Now definingG0J WDG n QGJ , we see thatH nHJ is precisely the hypergraph obtained

by viewingƒ� as an .N;m/-system inG0J and taking theKr -hypergraphH�DH.ƒ�I r/
inG0J . Indeed, as there are no edges ofG0J between two sets,Q1 andQ2 say, which form
an edge in J , there can be no edge of H in H� which contains both Q1 and Q2. We
therefore switch from now on to considering H� as the Kr -hypergraph generated by ƒ�

in G0J .
In order to prove the existence of a perfect fractional matching in H�, we will appeal

to Lemma 3.9, fixing M D ˛2pk. Note that due to our lower bound on pk, we certainly
have M1 � r . We thus need to check that conditions (i) and (ii) of that lemma hold.
For (i), fix some Q 2 ƒ�. From (1) we know that there exists some vertex v in Q such

that degGW .v/ � ˛pkm where W WD
S
P2ƒ� P , and so taking U WD N

G0
J

W .v/ we have

jU j � ˛pkm � deg QGJ .v/ � ˛pkm=2;

using (6.1). Moreover, due to (2), we can spilt U into disjoint sets U1; : : : ; Ur�1 such that
jUi j � ˛pkm=.2r/ for each i , and for any P 2 ƒ�, there exists an i 2 Œr � 1� such that
jP \ U j � Ui . That is, we simply partition U into r � 1 roughly equal size parts such
that vertices which lie in the same P end up in the same part. Condition (2) of the lemma
guarantees that U \P is small enough for each P 2ƒ� and so we can do this partition in
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such a way that all the Ui are roughly equal in size. We will now repeatedly find .r � 1/-
cliques in G0J traversing the Ui and build a fan FQ of size M in H� focused at Q. We
start with FQ being empty and each time we find a copy S D ¹u1; : : : ; ur�1º 2Kr�1.G0J /
in G0 with ui 2 Ui for i 2 Œr � 1�, there P1; : : : ; Pr�1 2 ƒ� such that ui 2 Pi . We add
the hyperedge between P1; : : : ; Pr�1 and Q to the fan FQ and delete any vertices in Pi
from Ui for i 2 Œr � 1�. We repeat this process and note that we are successful in every
step until FQ has size M . Indeed, this follows from Corollary 3.5 (1) (i) because while
jFQj < M , we have deleted at most10 M2m � ˛pkm=.4r/ vertices from each Ui and so
Ui � ˛pkm=.4r/ � ˛

0pn, using our upper bound on ˛0 and our lower bound on km.
We now turn to verifying (ii) of Lemma 3.9. We will show that given any r-tuple of

disjoint subsystems �1; : : : ; �r �ƒ� such that j�1j DM and j�i j � ˛k=r for 2 � i � r ,
there exists a hyperedge of H� with one endpoint in each of the �i . Indeed, this follows
from Corollary 3.5 (1) (ii) because taking Ui WD

S
P2�i

P for i 2 Œr�, there exists an r-
clique S 2 Kr .G0J / traversing the Ui which in turn gives the hyperedge. Condition (ii)
then clearly follows since any subsystem of �� of size N=.2r/ � ˛k can be split into
r � 1 subsystems of size at least ˛k=r . Note that in both applications of Corollary 3.5 (1)
above we have used (6.1) to show that we could find cliques that avoid using edges of QGJ .
The lemma now follows from Lemma 3.9.

As previously noted, condition (1) of Lemma 6.3 is somewhat weak and just requires
that each set in the set system contains a vertex that acts typically. We now show how
we can ‘clean up’ a set system, losing sets which do not have a typical vertex in order to
recover condition (1). This allows us to focus on finding systems which satisfy condition
(2) of Lemma 6.3.

Lemma 6.4. For any r 2 N�3 and 0 < ˛;  < 1=.2rr2/ there exists an " > 0 such that
the following holds for any n-vertex .p;ˇ/-bijumbled graphG with ˇ � "pr�1n. Suppose
ƒ0 � 2V.G/ is a ..1C /k;m/-system such thatm� n7=8, ˛n� km� 2˛n, pk � n and
for any u 2

S
P2ƒ0 P and Q 2 ƒ0, we have degGQ.u/ � p

r�1n1�r
3 . Then there exists a

.k;m/-system ƒ � ƒ0 which is  -shrinkable with respect to r .

Proof. We fix " > 0 small enough to apply Lemma 6.3 and to apply Lemma 3.3 with
� < ˛2=2. The method of the proof is simple; we aim to apply Lemma 6.3 and so obtain
ƒ fromƒ0 by losing the sets which violate condition (1) of that lemma. By Lemma 3.3 (i),
there are few vertices which have small degree (� pjY j=2) relative to any set Y which
is large enough and so we can expect that we do not lose many sets when transitioning
from ƒ0 to ƒ. One complication is that the definition of Y in condition (1) of Lemma
6.3 depends on the sets in the system and so we cannot guarantee that a set satisfying (1)
continues to satisfy the condition once other sets have been removed. In order to handle
this, we delete sets in the system one by one, creating a process which will terminate with
a system which has the desired minimum degree condition. The details now follow.

10Here we use the fact that every set in ƒ has size at most 2m.
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We begin by fixing �0 � ƒ0 to be some arbitrary subsystem of size .1 � /k and we
initiate the process by setting ‚ D ƒ0 and setting a ‘bin’ system ˆ which we initiate as
being empty, that is, we set ˆ D ;. Throughout the process we also define

W WD
[

Q2�0\‚

Q

to be the subset of vertices that lie in (sets that belong to) the current system ‚ as well
as the system �0. Now the process runs as follows. If there is a set P in ‚ such that
degW .v/ < ˛pkm for all v 2P , then we deleteP from‚ and add it toˆ. Hence ifP 2�0
then we also delete P from W . We claim that this process terminates with jˆj � k.
Indeed, if this were not the case then consider the process at the point where jˆj D k.
At this point we have

jW j D
ˇ̌̌ [
Q2�0nˆ

Q
ˇ̌̌
D .j�0j � jˆj/m D .k � 2k/m � km=2 � ˛n=2:

Now Lemma 3.3 (i) implies that at most

�p2r�4n2

jW j
�
2�p2r�4n

˛
< ˛n � km D jˆjm

vertices can have degree less than pjW j=2 relative to W . This leads to a contradiction.
Indeed, it follows from how ˆ is defined that at this point in the process, j

S
P2ˆ P j �

jˆjm and for all v 2
S
P2ˆP , we have degW .v/ < ˛pkm < pjW j=2. Indeed, if a vertex

v 2 P 2 ˆ had a larger degree relative to W then P would not have been added to ˆ in
the process.

Hence when the process terminates we have jˆj � k and j‚j D jƒ0 n ˆj � k. We
fixƒ�‚ of size k so that �0 \‚�ƒ. We also fix � �ƒ n .�0 \‚/ of size k (which
is possible as j�0 \‚j � .1 � /k). We claim that ƒ is  -shrinkable with respect to r .
Indeed, this follows directly from Lemma 6.3 noting that condition (1) is satisfied in ƒ
with respect to � due to how we constructed ƒ.

6.3. The existence of shrinkable orchards of small order

We are now ready to prove the existence of shrinkable orchards by appealing to
Lemma 6.4. Indeed, we simply need to find orchards which satisfy the maximum degree
condition given there. This condition is immediate when the order of the orchards which
we aim for is sufficiently small, leading to the following easy consequence.

Proposition 6.5. For any r 2 N�3 and 0 < ˛;  < 1=23r there exists an " > 0 such that
the following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n and any
vertex subset U � V.G/ with jU j � n=2. For any m 2 N with

1 � m � min ¹pr�1n1�r
3 ; n7=8º;

there exists a  -shrinkable .k;m/r -orchard O inGŒU � with k such that ˛n� km� 2˛n.
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Proof. We fix " > 0 small enough to apply Proposition 4.1 and Lemma 6.4 with ˛;  as
defined here and k 2 N such that ˛n � km � 2˛n. Note that due to our upper bound
on m, we certainly have pk � n . We begin by finding a ..1 C /k; m/r -orchard O0
inGŒU �. This can be done by repeated applications of Proposition 4.1. Indeed, we initiate
a process by fixing U 0 D U and O0 D ; and at each step we find some Kr -diamond
tree D of order m in U 0, add it to O0 and delete its vertices from U 0. We claim that we
can do this until O0 has size .1C /k. Indeed, this follows because at any point in the
process, jV.O0/j � .1C /kmr D .1C /2˛rn � n=4 due to our upper bounds on ˛
and  . Therefore, throughout the process, we have jU 0j � n=4 and so U 0 can be split into
two disjoint sets of size at least 4˛rn. Therefore applying Proposition 4.1 with z D m

(and taking Y 0 D Y in (3)) gives us the existence of the diamond tree at each step of this
process.

Now defining ƒ0 D ¹RD W D 2 O0º to be the ..1 C /k; m/-system generated by
taking the sets of removable vertices of diamond trees that lie in O0, we see that ƒ0

satisfies the hypothesis of Lemma 6.4 since m � pr�1n1�r
3 . Hence Lemma 6.4 implies

the existence of a subsystem ƒ � ƒ0 of size k which is  -shrinkable with respect to r .
Finally, we conclude that O WD ¹D 2O0 WRD 2ƒº is the required  -shrinkable .k;m/r -
orchard by Observation 6.2.

For dense graphs (that is, when p is large), Proposition 6.5 is already enough to estab-
lish Proposition 2.8. On the other hand, for sparse graphs Proposition 6.5 can only be
used for orchards of very small order and becomes redundant as the order m approaches
pr�1n. However, in deriving Proposition 6.5, we were quite naive in our application of
Lemma 6.4, using the order of a diamond tree as an upper bound on the degrees of vertices
to the removable set of vertices of the diamond tree. For a setQ we expect a typical vertex
v 2 V.G/ to have degQ.v/ � pjQj and so we can hope that Lemma 6.4 can be applied
to imply the existence of shrinkable orchards whose orders approach pr�2n, gaining an
extra power of p over Proposition 6.5. This is the content of the rest of this section.

6.4. Controlling degrees relative to removable sets of vertices

A reasonable approach when trying to apply Lemma 6.4 to deduce the existence of larger
shrinkable orchards is to start with a larger (in size) orchard than we desire and crop
diamond trees which fail the bounded degree condition. This approach is reminiscent
of how we derived Lemma 6.4 from Lemma 6.3, where we greedily lost diamond trees
which violated condition (1) of Lemma 6.3. In this case, though, our condition is harder
to satisfy. Indeed, we require that all vertices in a set in our system satisfy the degree
condition and not just a single vertex. In order to achieve this, we will need to appeal
to (the full power of) Proposition 4.1 to choose our diamond trees. As Proposition 4.1
does not give full control over the set of vertices which end up as the set of removable
vertices, we have to settle with being able to conclude our desired upper bound on the
degrees of vertices relative to a subset of the removable vertices. The detailed statement
is as follows.
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Lemma 6.6. For any r 2N�3 and 0 < ;� < 1=r2 there exists an " > 0 such that the fol-
lowing holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n and any vertex
subset U � V.G/ with jU j � n=4. For any m 2 N with pr�1n1� � m � pr�2n1�2 ;
there exists a Kr -diamond tree D D .T;R;†/ of order at most 2m such that V.D/ � U

and there exists a subset Q � R of removable vertices such that jQj D m and all but at
most �m vertices v 2 V.G/ have degQ.v/ � p

r�1n1� .

Proof. Fix " > 0 small enough to apply Proposition 4.1 with ˛ D 1=.22rr/, small enough
to apply Lemma 3.3 with �3.3D �

0<˛2�=26 and small enough to force n to be sufficiently
large in what follows. We begin by splitting U into disjoint subsets U 0 and W 0 arbitrarily
so that jU 0j; jW 0j � n=8 � 4˛rn, noting that this is possible due to our definition of ˛.

Now fix some m with pr�1n1� � m � pr�2n1�2 and define q WD pr�1n1�m�1.
Note that 8p � pn � q � 1 due to our conditions on m. As we aim to find a set Q
of size m, the condition that degQ.v/ > p

r�1n1� is equivalent to degQ.v/ > qjQj. As
discussed above, given a diamond tree of the correct order and a subsetQ ofm removable
vertices, we can appeal to Lemma 3.3 (ii) to bound the number of vertices which have
high degree relative to Q. However, the bound is not strong enough for our purposes
so we instead appeal to the full power of Proposition 4.1. The idea is to take Y of size
much bigger than m. Therefore applying Lemma 3.3 (ii) with respect to Y gives a much
stronger upper bound on the number of vertices which have large degree (at least qjY j,
say) relative to Y . If we then take Q to be a random subset of Y then we expect the
density of the neighbourhood of a vertex in Q to have roughly the same density as the
neighbourhood of that vertex in Y . Hence, we can bound the number of vertices which
have large degree relative to Q by ‘carrying over’ the bound on the number of vertices
which had large degree relative to Y . The details follow.

First we fix d� WD ˛2pr�1n and z WD min ¹˛n; d�m=2º. Note that for n large, due
to Fact 3.2, d� will also be large. Now apply Proposition 4.1 to obtain disjoint subsets
X;Y � U 0 as in the statement of Proposition 4.1. Note that jX j � 2z=d� � m and jY j �
z � jX j � z=2 for n sufficiently large. Fix a subset Z � Y of size z=2 and let B � V.G/
be the set of vertices v 2 V.G/ such that degZ.v/ > qjZj=4. We claim that jBj � �m.
Indeed, noting that q=4 � 2p, Lemma 3.3 (ii) gives

jBj �
24�0p2r�2n2

q2jZj
D
25�0n2m2

z
�

´
�n2�1p1�rm if z D d�m=2;

�n2�1m2 if z D ˛n:
(6.2)

In the case that z D d�m=2, the estimate in (6.2) is less than �m for large n due to the
condition that  < 1=r2 and the fact that p � n�1=.2r�3/ (Fact 3.2). In the case that
z D ˛n, the estimate in (6.2) is less than �m since m � pr�2n1�2 � n1�2 .

For each v … B , we have degZ.v/ � qjZj=4 and so we let Nv � Z be a subset of
exactly qjZj=4 vertices inZ such thatNv contains all the neighbours of v which lie inZ.
Now consider a random subset Q1 � Z where we keep each vertex independently with
probability p0 D 4m=z, noting that 0 � p0 � 1 for large enough n. Clearly EŒjQ1j� D
p0jZj D 2m and for each v 2 V.G/ n B , we have EŒjQ1 \Nvj� D p0jNvj D qm=2. We
get concentration for these random variables from Theorem 3.6 which is strong enough
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to do a union bound and conclude that whp as n (and hence m and qm) tend to infinity,
we have jQ1j � m and jQ1 \Nvj � qm for all v 2 V.G/ nB . Therefore, for sufficiently
large n, we can fix such an instance of Q1 and take Q to be a subset of Q1 such that
jQj D m. Therefore for all vertices v 2 V.G/ n B , we have

degQ.v/ � jQ \Nvj � jQ1 \Nvj � qm D p
r�1n1� :

We know that jBj � �m from above and we use the conclusion of Proposition 4.1 to give
a Kr -diamond tree D D .T;R;†/ with removable vertices R WD X [Q � U 0 � U and
† a matching of .r � 1/-cliques in W 0 � U . We thus have V.D/ � U as required and
the order of D is jQj C jX j � 2m.

6.5. The existence of shrinkable orchards of larger order

Lemma 6.6 gives us the key to being able to push the methods above (which culminated in
Lemma 6.4) to be able to handle orchards with larger order. We remark that the flexibility
given by dealing with .k; m/-systems and Observation 6.2 is necessary in order to han-
dle this extension. Indeed, this is due to Lemma 6.6 only giving control over the degree
relative to a subset of the removable vertices of the diamond tree generated.

Proof of Proposition 5.1. By Proposition 6.5 we can focus on the case that

pr�1n1�r
3
� m � min ¹pr�2n1�2r

3 ; n7=8º:

We fix " > 0 small enough to apply Lemma 6.4 with ˛6.4 D ˛
0 WD ˛=4 and 6.4 D  and

small enough to apply Lemma 6.6 with 6.6 D 
0 WD r3 and �6.6 D � < ˛=8. Finally, we

fix some k 2N such that ˛n � km � 2˛n and note that pk � n due to our upper bound
onm. By repeatedly applying Lemma 6.6, we find a .2k;m/-orchard O0 with V.O0/�U

and each D D .T;R;†/ 2O0 has the property that there exists some distinguished subset
QD � R of removable vertices such that jQD j D m and all but at most �m vertices v
in V.G/ have degQD

.v/ � pr�1n1�
0

. Indeed, we can find O0 by sequentially choosing
diamond trees and deleting their vertices from U , using the fact that jV.O0/j � 4r˛n at
all times in this process and so jU n V.O0/j � n=4 and we can apply Lemma 6.6.

Now we will crop our orchard O0 to arrive at an orchard for which we can apply
Lemma 6.4 to subsets of removable vertices. Similarly to the proof of Lemma 6.4, we
do this by a process of ‘cleaning up’, losing diamond trees in the orchard which have
lots of removable vertices which are atypical. So let B1 � V.G/ be the set of vertices
v 2 V.G/ such that degQD

.v/ > pr�1n1�
0

for some D 2 O0 as above. It follows that
jB1j � �m � 2k � ˛n=4. Next we delete D 0 from O0 if jB1 \QD 0 j � m=2. Due to our
upper bound on jB1j, we delete at most k=2 of the diamond trees D 0 from O0. Let the
resulting suborchard be O1 �O0 and for each diamond tree D D .T;R;†/ 2O1 define
a distinguished subset SD � QD � R of removable vertices such that jSD j D m=2 and

degSD
.v/ � pr�1n1�

0

D pr�1n1�r
3 for all D 2 O1 and all v 2

[
D 02O1

SD 0 : (6.3)
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Let O2 be an arbitrary suborchard of O1 with jO2j D .1 C /k. Moreover, let ƒ0 D
¹SD W D 2 O2º be the ..1C /k; m=4/-system defined by the distinguished subsets of
removable vertices for the Kr -diamond trees in O2. Now due to (6.3), Lemma 6.4 gives
the existence of some  -shrinkable (with respect to r) subsystem ƒ � ƒ0. Taking O WD
¹D 2 O2 W SD 2 ƒº thus gives a  -shrinkable .k;m/r -orchard as required, appealing to
Observation 6.2.

7. Shrinkable orchards of large order

In this section, we establish the existence of shrinkable orchards with large order, proving
Proposition 5.2. Our approach is to find an orchard such that theKr -hypergraphH gener-
ated by the orchard is very dense. This allows us to apply Lemma 3.8 in many subhyper-
graphs of H . Coupled with Theorem 3.12, this will imply that the orchard is shrinkable.
As in the previous section, we begin in Section 7.1 by using these results on fractional
matchings to deduce conditions on an orchard which guarantee shrinkability. We will then
show in Section 7.2 that we can appeal to Proposition 4.1 to generate diamond trees whose
removable vertices are contained in many copies of Kr . This will then allow us to prove
the existence of shrinkable orchards of large order in Section 7.3. As in Section 6, how-
ever, this first argument will fall short of the range of orders needed in Proposition 5.2.
The rest of the section is thus concerned with extending our methods to capture more
orders. This leads us to a process which generates an orchard in two rounds. The outcome
of the first round is discussed in Section 7.4, and building on this, in Section 7.5 we detail
properties of the orchard after a second round of generation. Finally, in Section 7.6, we
show that by generating orchards via this two-phase process, we end up with orchards
which are shrinkable. This allows us to complete the proof of Proposition 5.2.

7.1. A density condition which guarantees shrinkability

We begin by applying Lemma 3.8 and Theorem 3.12 to give a density condition which we
can use to show that an orchard is shrinkable. This transforms our problem into finding
orchards which satisfy this condition.

Lemma 7.1. For all r 2 N�3 and 0 <  < 1=.2r3/, there exists a k0 2 N such that
the following holds. Suppose that O is a .k; m/r -orchard in a graph G with k 2 N�k0
and m 2 N. For a diamond tree D 2 O, let RD denote its removable vertices and for a
suborchard O0 �O, let R.O0/ WD

S
D2O0 RD denote the union of the sets of removable

vertices of diamond trees in O0. Suppose that the following condition holds:

For any D 2 O and P � O n ¹Dº such that jPj � k=.4r/, there exists
a suborchard P� D P�.D ;P/ � P such that jP�j � k1�r3 and for
any disjoint suborchards O1; : : : ;Or�2 � P nP�, with jOi j � k

1�r3

for i 2 Œr � 3� and jOr�2j � k, there is a copy of Kr in G traversing RD ,
R.P�/ and R.Oi / for i 2 Œr � 2�.

(7.1)

Then O is  -shrinkable.
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Let us take a moment to digest the density condition (7.1). For simplicity, one can
think of P� being a single diamond tree D� DD�.D ;P/. Indeed, this is the setting that
we will work in first when applying Lemma 7.1. Simplifying further and just focusing on
the case that r D 3, condition (7.1) translates as stating that for any K3-diamond tree D

in the orchard and large suborchard P � O, there is some diamond tree D� 2 P such
that the pair ¹D ;D�º has high degree in the K3-hypergraph generated by P . Indeed, for
any small linear sized O1 � P , there is a hyperedge in H.O/ containing D ;D� and a
diamond tree in O1. In general, when r � 4, we need to guarantee traversing Krs when
some of the sets we look to traverse are smaller than linear (size k1�r

3 /. Also later on
we will need the full power of Lemma 7.1 which allows us to choose the P� as a small
suborchard as opposed to a single diamond tree. We now prove the lemma.

Proof of Lemma 7.1. Let Q � O be an arbitrary suborchard of O of size k. We will
show that O is shrinkable with respect to Q. So fix some arbitrary suborchard Q0 � Q
and let H WD H.O nQ0/ be the Kr -hypergraph generated by O nQ0. We have to show
that H has a matching covering all but at most k1� vertices of H .

In order to show the existence of a large matching in H , as we did in Lemma 6.3, we
appeal to Theorem 3.12. So let us fix N D jV.H/j and note that as N � .1 � /k, by
choosing k0 to be large, we can assume that N is sufficiently large in what follows. Now
fix some 2-uniform graph J on V.H/ of maximum degree at most N r2 . If we can show
that H nHJ contains a perfect fractional matching, then we are done by Theorem 3.12
because, J being arbitrary, the theorem guarantees a matching covering all but at most
N 1� � k1� vertices of H .

In order to prove the existence of a perfect fractional matching in H nHJ , we appeal
to Lemma 3.8, fixing M WD N=.2r/. Thus, we need to show that given any Kr -diamond
tree D 2 V.H/ D O nQ and suborchard P0 � V.H/ n ¹Dº with jP0j � M , there is
an edge in H nHJ containing D and r � 1 Kr -diamond trees in P0. So fix such a D

and P0. Let P WD P0 nN J .D/. Then

jPj � jP0j � jN J .D/j �
N

2r
�N r2

�
.1 � /k

2r
� kr

2
�
k

4r

for k sufficiently large. Hence by condition (7.1), we have the existence of some P� D
P�.D ;P/�P as in the hypothesis. Now we will iteratively define Oi for 1 � i � r � 2
as follows. We begin by fixing P 0 D P and defining Q0 WD

S
C2P�.N

J .C/ [ ¹Cº/.
For 1 � i � r � 2, we update P 0 by removing any diamond trees in Qi�1 from P 0
and then define Oi to be an arbitrary suborchard of P 0 of size k1�r

3 if i 2 Œr � 3�,
and of size k if i D r � 2. If i D r � 2 we end this process. If i < r � 2, we define
Qi WD

S
C2Oi .N

J .C/ [ ¹Cº/ and move to the next index.
Let us check that we are successful in each round. Indeed, this follows because at the

beginning of step i in the process, P 0 has size

jP 0j �
k

4r
� ik1�r

3 .1CN r2 / �
k

4r
� rk1�r

3Cr2
� k � k1�r

3
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for large k. Therefore there is always space in P 0 to choose our suborchard Oi at each
step i . Now condition (7.1) gives a copy ofKr inG traversingRD ,R.P�/ andR.Oi / for
i 2 Œr � 2�. This gives a hyperedge e in the Kr -hypergraph H D H.O nQ0/ which has
one vertex D , one vertex in P� � P0 and one vertex in each of the Oi � P0. Moreover,
this edge e lies in H nHJ . Indeed, by our construction of P� and the Oi , there is no
edge in J between any pair of distinct sets in the family ¹¹Dº;P�;O1; : : : ;Or�2º. We
have therefore established the existence of a perfect fractional matching in H nHJ due
to Lemma 3.8, which implies that O is  -shrinkable as detailed above.

Lemma 7.1 gives a route to proving the existence of shrinkable orchards. Indeed, if the
sets of vertices which arise as pools of removable vertices of suborchards are sufficiently
large, then appealing to Corollary 3.5 can give the required transversal copy of Kr in G,
so that (7.1) is satisfied. However, we cannot immediately derive such results because the
sizes of the sets required in (7.1) are too small. In particular, (7.1) forces only one set
(namely R.Or�2/) to be linear in size, whilst all other sets that feature can have sublinear
size. This is troublesome because the examples we have from Corollary 3.5 to generate
transversal copies of Kr require at least two of the sets involved to be linear. Indeed, it
can be seen from the more general Lemma 3.4 that we cannot do any better. That is, in
order to use Definition 1.3 and our condition on ˇ to derive the existence of a copy of Kr
that traverses a family of sets, at least two of the sets in the family must be linear in size.
Therefore in order to apply Lemma 7.1 and derive the existence of shrinkable orchards, we
have to obtain orchards with some additional structure. We start by exploring properties
of singular diamond tress that we can guarantee.

7.2. Popular diamond trees

As was the case when we were interested in proving the existence of shrinkable orchards
with small order, Proposition 4.1 gives a powerful tool for proving the existence of dia-
mond trees with additional desired properties. Here we show that we can choose a dia-
mond tree so that there are many copies of Kr formed with its removable vertices.

Lemma 7.2. For any r 2 N�3 and 0 < ˛ < 1=212r there exists an " > 0 such that the
following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n and any
vertex subset U � V.G/ with jU j � n=4. Suppose that m 2 N with

max ¹p1�r ; pr�1nº � m � n7=8

and we have set families W0;W1; : : : ;Wr�1 � 2
V.G/ such that

(1) jW0j � ˛pr�1n for all W0 2 W0;

(2) jWi j � ˛pn for all Wi 2 Wi , 1 � i � r � 3;

(3) jWr�2j � ˛n for all Wr�2 2 Wr�2;

(4)
Qr�2
iD0 jWi j � 2

m=4.
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Then there exists a Kr -diamond tree D D .T; R;†/ in GŒU � of order at least m and at
most 2m such that for any choice of sets WD .W0; : : : ;Wr�2/ 2W0 � � � � �Wr�2, there
is a copy of Kr in G traversing R and the sets W0; : : : ; Wr�2.

Proof. Let us fix " > 0 small enough to apply Proposition 4.1 with ˛4.1 D ˛
0 WD 1=23r

and Corollary 3.5 with ˛3.5 D ˛, as well as being small enough to force n to be sufficiently
large. Note that our lower bound of �.pr�1n/ on m and Fact 3.2 imply that m!1 as
n!1 and so we can also assume m is sufficiently large in what follows. We begin by
splitting U into disjoint subsets U 0 and W 0 arbitrarily so that jU 0j; jW 0j � n=8 D 4˛0rn,
noting that this is possible by our definition of ˛0. We further fix d� WD ˛02pr�1n.

Now we apply Proposition 4.1 with z WD ˛02n=4 D n=26rC2 and fix the sets X � U 0

and Y � U 0 which are output. Note that

jX j � max

´
2z
d�
D

1
2pr�1

1

µ
�
m

2
and jY j D z � jX j �

z

2
D

n

26rC3
;

for n large.
Now for each choice of WD .W0; : : : ;Wr�2/2W0 � � � � �Wr�2, we find some subset

Y.W/ � Y of size jY j=2 such that for every v 2 Y.W/, there is a copy of Kr�1 in the
neighbourhood of v which traverses W0; : : : ; Wr�2. In other words, for every v 2 Y.W/,
there is a copy of Kr traversing W0; : : : ; Wr�2 and ¹vº. We can find Y.W/ by repeated
applications of Corollary 3.5 (2). In more detail, we initiate with Y0 D Y and Y.W/ empty
and in each step we find a copy ofKr traversingW0; : : : ;Wr�2 and Y0. Taking v to be the11

vertex of thisKr that lies in Y0, we add v to Y.W/, delete it from Y0 and move to the next
step. We continue for jY j=2 steps using the fact that the conditions of Corollary 3.5 (2)
are satisfied at each step. Indeed, this is due to the lower bounds on the sizes of Wi in
conditions (1)–(3) of this lemma and the fact that jY0j � jY j � jY.W/j � jY j=2 � ˛n

throughout, using our upper bound on ˛ and our lower bound on jY j here.
Similarly to the proof of Lemma 6.6, we now take Q to be a random subset of Y

by taking each vertex of Y into Q independently with probability p0 WD 5m
4jY j

. Thus
EŒjQj� D 5m=4 and by Theorem 3.6, we have m � jQj � 3m=2 with probability at least
1 � 2e�m=60. Furthermore, for any fixed W 2 W0 � � � � �Wr�2,

EŒjQ \ Y.W/j� D p0jY.W/j D 5m=8:

Applying Theorem 3.6 again implies that the probability that jQ \ Y.W/j D 0 is less
than e�5m=16. Therefore using the inequality

Qr�2
iD0 jWi j � 2

m=4 and appealing to a union
bound, we can conclude that whp as n (and hence m) tends to infinity, we see that
m � jQj � 3m=2 and Q \ Y.W/ ¤ ; for all choices of W 2 W0 � � � � �Wr�2. So for
sufficiently large n we can fix such an instance Q � Y and taking R WD X [Q we have

11Here we refer to the vertex that lies in Y0 although there may be several (if theWi intersect the
Y0). What we mean here is the vertex v in the copy of Kr which is assigned to Y0 by virtue of the
copy being traversing.
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that a Kr -diamond tree D D .T;R;†/ with removable set of vertices R is guaranteed by
Proposition 4.1. We claim that D satisfies all the necessary conditions. Indeed, the fact
that the order of D lies betweenm and 2m follows from the fact thatm� jQj � 3m=2 and
jX j � m=2, whilst the fact that Q \ Y.W/ ¤ ; for each choice of W D .W0; : : : ;Wr�2/
guarantees that we have a copy of Kr traversing Q � R and the sets W0; : : : ; Wr�2.

7.3. The existence of shrinkable orchards of large order

Using Lemma 7.2 to generate the diamond trees that form our orchard, we can prove that
the orchard generated satisfies the condition of Lemma 7.1 and hence is shrinkable. This
gives the following.

Proposition 7.3. For any r 2 N�3 and 0 < ˛;  < 1=212r there exists an " > 0 such that
the following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n and any
vertex subset U � V.G/ with jU j � n=2. For any m 2 N with

max ¹p1�r ; pr�1nº � m � n7=8;

there exists a  -shrinkable .k;m/r -orchard O in GŒU � with k 2 N such that ˛n � km �
2˛n.

Proof. Fix " > 0 small enough to apply Lemma 7.1 with 7.1 D  and Lemma 7.2 with
˛7.2 D ˛

0 D ˛ . Fix some k 2 N such that ˛n � k � 2˛n. We also ensure that " is small
enough to force n (and hence k, due to our upper bound on m) to be sufficiently large
in what follows. Now we begin by noticing that k � m=.8r/. Indeed, if p � n�1=.2r�2/,
then

p1�r �
p
n � pr�1n � m;

while if p � n�1=.2r�2/, then

pr�1n �
p
n � p1�r � m:

Therefore, for any p we have m �
p
n and k � 2˛n=m � 2�11r

p
n � m=.8r/.

Now we turn to finding our .k; m/r -orchard in GŒU �. We do this by finding one dia-
mond tree at a time as follows. For 1 � i � k, fix Ui WD U n

S
i 0<i V.Di 0/ and note

that jUi j � jU j � 2˛rn � n=4 throughout due to our condition on ˛. We then apply
Lemma 7.2 to find a diamond tree Di D .Ti ; Ri ; †i / such that V.Di / � Ui and for any
choice of i 0 2 Œi � 1� and disjoint subsets I1; : : : ; Ir�2 � Œi � 1� n ¹i 0º with jIj j � pk
for 1 � j � r � 3, and jIr�2j � k, there is a copy of Kr traversing Ri , Ri 0 and the
sets

S
`2Ij

R` for j 2 Œr � 2�. The existence of such a Di follows from Lemma 7.2.
Indeed, we define W0 D ¹Ri 0 W i

0 2 Œi � 1�º, Wj D ¹
S
`2I 0 R` W I

0 � Œi � 1�; jI 0j � pkº

for 1 � j � r � 3 and finally Wr�2 D ¹
S
`2I 0 R` W I

0 � Œi � 1�; jI 0j � kº. We need
to check that conditions (1)–(4) of Lemma 7.2 are satisfied. Indeed, (1) follows from our
lower bound on m, whilst (2) and (3) follow from the fact that km � ˛n and our defini-
tion of ˛0. Finally, note that each choice of a set in any of the Wj comes from a subset
of Œi � 1�. Hence we can upper bound

Qr�2
jD0 jWj j by .2i /r�1 � 2rk . As discussed in the
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opening paragraph, we have k � m=.8r/ and so condition (4) of Lemma 7.2 is also satis-
fied. Thus Lemma 7.2 succeeds in finding the necessaryKr -diamond tree at every step of
this process.

Let OD ¹D1; : : : ;Dkº be the orchard obtained by this process. We claim that O is  -
shrinkable and to show this we appeal to Lemma 7.1 and so need to show that the density
condition (7.1) is satisfied by O. So fix Di 2 O and P � O n ¹Diº with jPj � k=.4r/.
We then define D� D D�.Di ;P/ (this plays the role of P� in (7.1)) to be the diamond
tree in P with the highest index. That is, we define i� WD max ¹i 0 W Di 0 2 P�º and set
D� D Di� . Note that we may have i� < i but this will not be a problem. We claim that
condition (7.1) is satisfied with this choice of D�. Indeed, let O1; : : : ;Or�2�P� n ¹D�º
be disjoint suborchards satisfying the lower bounds on the sizes given by (7.1). For each
j 2 Œr � 2�, define Ij WD ¹i 0 W Di 0 2Oj º. Then jIr�2j � k. For 1 � j � r � 3 we have
jIj j � k

1�r3 � pk. This follows from the fact that

k�r
3
� k�1=2

r

� n�1=2
rC1

� n�
1

8.r�1/ � p;

where we have used the upper bound on  in the first inequality, the fact that k �
p
n in

the second inequality (see the opening paragraph of the proof), and pr�1n � m � n7=8 in
the last inequality. Now relabelling ¹i; i�º as ¹`0; `1º so that `0 < `1, we see that at the
point of choosing D`1 , we guaranteed that there was a Kr traversing R`1 , R`0 and the
sets R.Oj / D

S
i 02Ij

Ri 0 for j 2 Œr � 2�. By Lemma 7.1 this completes the proof that O
is  -shrinkable.

Proposition 7.3 establishes Proposition 5.2 when G is very dense. However, when
G is sparse (when p � n�1=.2r�2/ to be specific), the lower bound of m � p1�r takes
over and we are left with a gap between the range covered by Proposition 7.3 and the
desired range of Proposition 5.2. Tracing the condition that m D �.p1�r / back through
the proof, we can see that this was necessary in order to prove Lemma 7.2. There, we used
our key Proposition 4.1 to generate a diamond tree where we had a large pool Y of vertices
which were candidates for being removable vertices. In order to establish the existence
of the cliques we need in Lemma 7.2, we needed Y to be linear in size. The sticking
point then comes from the fact that Proposition 4.1 can only guarantee a maximum factor
of O.pr�1n/ between the size of the pool of vertices Y and the order of the diamond
tree that we generate. Indeed, in Proposition 4.1 we are forced to include the set X in
the removable vertices of the diamond tree we generate and when Y is linear in size,
X could have size as large as �.p1�r /. It is unclear how one would improve on this and
find diamond trees with smaller order that are still contained in sufficiently many copies
of Kr .

Thankfully, there is a way to circumvent this issue and apply our methods to close
the gap in the range of orders nonetheless. The key idea is to replace the diamond tree
generated by Lemma 7.2 with a set of diamond trees, that is, a small suborchard. Indeed,
by grouping together diamond trees, we can decrease their order but guarantee that the
collective pool of potential removable vertices for the group is still linear in size. Through
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following a similar proof to that of Lemma 7.2, this has the outcome of being able to guar-
antee many copies of Kr which contain a vertex in the removable vertices of one of the
diamond trees in the group. Moreover, in the proof of Proposition 7.3, we crucially used
the fact that we could generate diamond trees from Lemma 7.2 to establish the density
condition (7.1) of Lemma 7.1. We chose an appropriate D� and used the fact that it had
been generated by Lemma 7.2 to prove the required existence of transversal copies ofKr .
However, Lemma 7.1 allows us to use a much larger suborchard P� for this condition
as opposed to a single diamond tree. Therefore there is hope to incorporate the idea of
using a suborchard instead of a single diamond tree in Lemma 7.2, whilst maintaining
the overall, scheme of the proof. There are some further difficulties to overcome, but on a
high level, this is the approach we follow in the next sections to establish Proposition 5.2.

7.4. Preprocessing the orchard

As discussed above, in order to prove Proposition 5.2 and remove the condition that m D
�.p1�r / from Proposition 7.3, we need to replace the role played by D� in the proof
by a small suborchard P�. This allows us to prove an analogue of Lemma 7.2, where
one now finds an orchard whose collective set of removable vertices lies in many copies
of Kr . Our shrinkable orchard will then be formed as the union of many of these smaller
orchards. Indeed, in what follows we will split k as k D `t and will aim to have t smaller
.`; m/r -orchards contributing to our shrinkable orchard O. Each of the .`; m/r -orchards
will have strong connectivity to the rest of the orchard O.

In order to work with the fact that we are splitting k into t sets of size `, we introduce
a two-coordinate index system, with .i; j / 2 Œt � � Œ`� indicating that we are referring to
the j th object in the i th subset and we will work through these indices lexicographically.
In more detail, we let <L denote the lexicographic order on the pairs .i; j / 2 Œt � � Œ`�.
That is, .i 0; j 0/ <L .i; j / if and only if either 1 � i 0 � i � 1 and 1 � j 0 � ` or i 0 D i and
1 � j 0 � j � 1. Furthermore, for each 1 � i � t and 1 � j � `, we define

I<ij WD ¹.i
0; j 0/ 2 Œt � � Œ`� W .i 0; j 0/ <L .i; j /º

to be the indices .i 0; j 0/ which come before .i; j / in the lexicographic order.
A hurdle that arises with our new approach is that we lose the symmetry provided by

the fact that both D and D� in our applications of Lemma 7.1 were given by singular
diamond trees. Indeed, in our proof of Proposition 7.3, when verifying condition (7.1)
of Lemma 7.1, we use the fact that both the arbitrary diamond tree D D Di and the
diamond tree D� D D�.Di ;P/ that we can choose were generated using Lemma 7.2.
We now hope to generate our suborchards P� using an equivalent to Lemma 7.2, and
this will mean that we can no longer switch the roles of D and P� when appealing to the
conclusion of (the proof method of) Lemma 7.2. In particular, this places a higher demand
on the properties we need to conclude of our .`;m/r -suborchards.

In more detail, we need to generate suborchards which are highly connected to all the
other vertices of the Kr -hypergraph H.O/. Therefore it no longer suffices to build our
orchard in a linear fashion, choosing diamond trees (or indeed suborchards) to be well
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connected (in terms of the Kr -hypergraph) with previously chosen diamond trees. We
will instead generate our orchard in two rounds. In the first round we fix a part of each
diamond tree and using Proposition 4.1, provide large pools of vertices which can extend
the parts of the diamond trees chosen so far, which we will then do in the second round.
Lemma 7.4 details the outcome we draw from this preprocessing first round.

Lemma 7.4. For any r 2 N�3 and 0 < ˛ < 1=212r there exists an " > 0 such that the
following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n, any vertex
subset U � V.G/ with jU j � n=2 and any k;m; t; ` 2 N such that

k D t`; ˛n � km � 2˛n and `m � p1�r :

There exist vertex sets Zij ; Yij � U and matchings …ij ; ‡ij � Kr�1.GŒU �/ of .r � 1/-
cliques for each i 2 Œt � and j 2 Œ`� such that the copies of Kr�1 in each ‡ij WD ¹Sv W
v 2 Yij º are indexed by the vertices in Yij and conditions .1ij / through .5ij / below are
satisfied for all 1 � i � t and 1 � j � `:

.1ij / jZij j D m and j…ij j D jZij j � 1.

.2ij / jYij j D j‡ij j D
p
˛ n=`.

.3ij / The vertex sets Zij , Yij , V.…ij / and V.‡ij / are all disjoint from each other.

.4ij / A \ A
0 D ; for any choice of A 2 ¹Zij ; V .…ij /; Yij ; V .‡ij /º and12

A0 2 ¹Zi 0j 0 ; V .…i 0j 0/ W .i
0; j 0/ 2 I<ij º [ ¹Yij 0 ; V .‡ij 0/ W 1 � j

0
� j � 1º:

.5ij / For any choice of QY such that QY � Yij , there exists a Kr -diamond tree D D

.T;R;†/ such that R D Zij [ QY and † D …ij [ Q‡ij , where Q‡ij � ‡ij is defined
to be

Q‡ij WD ¹SQv W Qv 2 QY � Yij º:

As mentioned above, in this first round we put aside part of every single diamond tree
in the .k; m/r -orchard we are going to generate, thus partially defining the orchard. We
also put aside large pools of vertices which will be used to extend these diamond trees in
the second round of generating our orchard. The fixed parts of the diamond trees chosen
in Lemma 7.4 are the sets Zij and the interior cliques …ij , whilst the pools of potential
removable vertices and interior cliques that can be used to extend the diamond trees cho-
sen are given by the sets Yij and ‡ij , respectively. We make sure through conditions .1ij /
that these fixed diamond subtrees contribute a substantial portion of the final diamond
trees that we are shooting for (which will have order between m and 2m). We also guar-
antee through conditions .4ij / that the parts of the diamond trees that we put aside in
this preprocessing round do not interfere with each other, in that they are vertex disjoint.
Notice also that if we fix i 2 Œt �, then conditions .4ij / for all j 2 Œ`� guarantee that the

12Crucially, we do not require that A is disjoint from all Yi 0j 0 and V.‡i 0j 0/, only those that are
in the same subfamily indexed by i .
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sets Yij ; V .‡ij /, j 2 Œ`�, do not intersect each other. This is important because in the sec-
ond round of generating our orchard, we will want to extend all the diamond trees in the
i th .`; m/r -suborchard simultaneously and so we do not want any interference between
the choices of the extensions within such a suborchard. Also note that conditions .2ij /,
for fixed i 2 Œt � and all j 2 Œ`�, guarantee that the collective pool of potential removable
vertices for the i th .`; m/r -suborchard (the set

S
j2Œ`� Yij ) is linear in size, as required.

Finally, conditions .5ij / contain the heart of Proposition 4.1, allowing us to arbitrarily
extend any of the diamond trees we have so far using any subsets of the pools (the Yij ) of
potential removable vertices and interior cliques (the ‡ij ) we have put aside.

Our final remark on the statement of Lemma 7.4 is that we do not require e.g. Yij
and Yi 0j 0 for i ¤ i 0, to be disjoint. Indeed, as we have t suborchards and each has a linear
collective pool of potential removable vertices, there would not be enough space in the
graph to keep these pools disjoint. However, by requiring that the collective pool is much
larger than all the vertices in our orchard (that is, much larger than km), we guarantee
that we will be able to proceed greedily in our second round (Lemma 7.5) of defining the
orchard, always having a large enough set of potential removable vertices at each step.

Proof of Lemma 7.4. Let us fix " > 0 small enough to apply Proposition 4.1 with ˛4.1 D

˛0 WD 1=22rC1. We will find these vertex sets and matchings of .r � 1/-cliques algorithmi-
cally working through the pairs .i; j / 2 Œt �� Œ`� in lexicographic order. So let us fix some
.i�; j �/ 2 Œt � � Œ`� and suppose that we have already found Zij ; Yij ; …ij and ‡ij such
that conditions .1ij / through .5ij / are satisfied for all .i; j / 2 I<i�j� . We fix W � � U to
be

W � WD
�[
¹Zij [ V.…ij / W .i; j / 2 I<i�j�º

�
[

�[
¹Yi�j [ V.‡i�j / W 1 � j � j

�
� 1º

�
;

and let U � WD U nW �. We use conditions .1ij / and .2ij / to upper bound the size of W �

as follows. We have

jW �j � rm..i� � 1/`C j � � 1/C

p
˛ rn

`
.j � � 1/ � rmt`C

p
˛ rn � .2˛C

p
˛/rn;

using mt` D mk � 2˛n. Hence jU �j � n=4 from our upper bound on ˛. We will find
Zi�j� ; Yi�j� � U

� and …i�j� ; ‡i�j� � Kr�1.GŒU
��/ and so condition (4i�j� ) will

be satisfied. The required vertex sets Zi�j� and Yi�j� are found by an application of
Proposition 4.1. So let us split U � into disjoint subsets U 0 and W 0 arbitrarily so that
jU 0j; jW 0j � n=8 � 4˛0rn, noting that this is possible by our definition of ˛0. We further
fix d� WD ˛02pr�1n and z WD m C

p
˛ n=` and note that z � ˛0n due to the fact that

m � 2˛n=k � 2˛n and our upper bound on ˛.
So Proposition 4.1 shows that there exists disjoint vertex subsets X; Y � U 0 � U �

such that jX j C jY j D z and jX j D 1 � m or

jX j � 2z=d� �
2m

d�
C
2
p
˛ n

d�`
�
m

2
C

2
p
˛

˛02pr�1`
� m;
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using our upper bound on ˛ and lower bound on `m in the last inequality. As jX j �m, we
can fix some Zi�j� � X [ Y such that X � Zi�j� and jZi�j� j D m. Therefore letting
Yi�j� WD Y nZi�j� , we have jYi�j� j D z �mD

p
˛ n=` and so the size requirements on

Zi�j� in (1i�j� ) and on Yi�j� in (2i�j� ) are both satisfied. Moreover, part of (5i�j� ) is
also satisfied. Indeed, for some QY � Yi�j� , taking Y 0 D QY [ .Zi�j� nX/, Proposition 4.1
implies that there is a diamond tree D D .T;R;†/with removable verticesRDX [Y 0D
Zi�j� [ QY and † a matching of .r � 1/-cliques in GŒU ��.

Now in order to complete the proof of the lemma, we need to define the matchings of
.r � 1/-cliques …i�j� and ‡i�j� and reason that the remaining conditions of the lemma
are satisfied. This comes from recalling how we proved Proposition 4.1 in Section 4.1 (see
also Figure 6). There, we applied Lemma 4.5 to find a large d�-scatteredKr -diamond tree
Dsc D .Tsc; Rsc; †sc/, where Rsc D X [ Y was the set of removable vertices of Dsc and
Y � Rsc was the set of leaves in Dsc. The conclusion of Proposition 4.1 then followed
readily as we could choose which leaves in Y to include in a diamond subtree D of Dsc.
From this proof we see that we can partition †sc into †sc DW …i�j� [ ‡i�j� where the
.r � 1/-cliques …i�j� are interior cliques of the Kr -diamond subtree of Dsc spanned
by the removable vertices Zi�j� . Furthermore, we can label ‡i�j� with the vertices in
Yi�j� so that (5i�j� ) is satisfied. Indeed, each vertex v in Yi�j� corresponds to a leaf of
the diamond tree Dsc and so there is an interior clique Sv 2 †sc such that any diamond
subtree which contains the non-leaves X of Dsc can be extended by adding v to the set
of removable vertices and Sv to the set of interior cliques. As Dsc is a well-defined Kr -
diamond tree, condition (3i�j� ) is also satisfied and the size constraints on …i�j� and
‡i�j� in (1i�j� ) and (2i�j� ) are also immediate, noting that j…i�j� j D jZi�j� j � 1 as
the set of interior cliques of a diamond tree with removable vertices Zi�j� .

7.5. Completing the orchard

We will now use Lemma 7.4 to generate our orchard. This can be thought of as extending
the parts of the diamond trees (the Zij and …ij ) which were fixed in Lemma 7.4. The
strategy is very similar to that of Lemma 7.2 and Proposition 7.3. Indeed, we take random
subsets of the pools of potential vertices in order to guarantee that the Kr -hypergraph
generated by our final orchard is sufficiently dense. The key difference here is that, as
opposed to fixing our orchard one diamond tree at a time, we appeal to Lemma 7.4 to fix
part of all the diamond trees in our orchard and then carry out the extensions on .`;m/r -
suborchards. That is, we apply the approach of Lemma 7.2 on the whole suborchard as
opposed to a singular Kr -diamond tree. After doing this process for all suborchards we
end up with an orchard which generates a dense Kr -hypergraph. This is detailed in the
following lemma.

Lemma 7.5. For any r 2 N�3, 0 < ˛ < 1=212r and 0 <  < 1 there exists an " > 0 such
that the following holds for any n-vertex .p;ˇ/-bijumbled graphG with ˇ � "pr�1n, any
vertex subset U � V.G/ with jU j � n=2 and any k;m; t; ` 2 N such that

k D t`; m � pr�1n; `m � p1�r and ˛n � km � 2˛n: (7.2)
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There exists a .k;m/r -orchard O inG such that V.O/�U and O can be partitioned into
suborchards Q1; : : : ;Qt such that each Qi with 1 � i � t is an .`;m/r -orchard and we
have the following property. For any i 2 Œt �, any D 0 2O, any suborchard Q0 �Qi with
jQ0j � `=.4r/ and any set of disjoint suborchards O01; : : : ;O0r�2 � O with jO0i 0 j � pk
for i 0 2 Œr � 3� and jO0r�2j � k, there exists a copy ofKr traversing13 RD 0 , R.Q0/ and
R.Oi 0/ for i 0 2 Œr � 2�.

Proof. Fix " > 0 small enough to apply Corollary 3.5 with ˛3.5 D ˛
0 WD ˛, small enough

to apply Lemma 7.4 with ˛7.4 D ˛ and small enough to force n to be sufficiently large in
what follows. We begin by applying Lemma 7.4 to get vertex sets Zij ; Yij and matchings
of .r � 1/-cliques…ij and ‡ij for .i; j / 2 Œt � � Œ`� satisfying .1ij / through .5ij / as listed
in that lemma. Now we turn to finding the diamond trees Dij for .i; j / 2 Œt � � Œ`� which
will form our orchard O, so that the suborchard Qi is defined to be Qi WD ¹Dij W j 2 Œ`�º

for each i 2 Œt �. We will appeal in particular to condition .5ij / of Lemma 7.4 to find each
Dij D .Tij ; Rij ; †ij /. In more detail, for each .i; j / 2 Œt � � Œ`�, we will find QYij � Yij
and apply .5ij / to find a diamond tree with removable set of vertices Rij WD Zij [ QYij .

Now for a set of indices I 0 � Œt � � Œ`�, we let Z.I 0/ D
S
.i;j /2I 0 Zij . In order to

guarantee the key property of O it suffices that for each i 2 Œt � we have the following.
For any choice of J � Œ`� with jJ j � `=.4r/ and any choice of .i0; j0/ 2 Œt � � Œ`� and
subsets I1; : : : ; Ir�2 � Œt � � Œ`� with jIi 0 j � pk for i 0 2 Œr � 2� and jIr�2j � k, the
following holds. There exists a copy ofKr traversing

S
j2J
QYij , Zi0j0 and the sets Z.Ii 0/

for i 0 2 Œr � 2�. This is what we prove in what follows as we select our sets QYij .
We work through the i 2 Œt � in order. Let W0 WD

S
.i;j /2Œt��Œ`�.Zij [ V.…ij // and

initiate with U0 D U nW0. Suppose that we are at some step i� 2 Œt � and we have fixed
Dij D .Tij ;Rij ;†ij / for all i < i�. In this step, we will fix Di�j for all j 2 Œ`�. We define
Wi� WD .

S
.i;j /W i<i� V.Dij // [W0. We further define, for each J � Œ`�,

Y i
�

J WD ¹v 2 U nWi� W v 2 Yi�j for some j 2 ŒJ � and Sv 2 ‡i�j \Kr�1.GŒU nWi� �/º:

In words, Y i
�

J keeps track of the vertices v which lie in one of the Yi�j with j 2 J which
we can still use, in that the vertex v has not been used in a previous diamond tree and
neither have the vertices of its associated copy of Kr�1, Sv . Note that jWi� j � 4˛rn as a
subset of vertices of a .k;m/-orchard with km � 2˛n. Hence if jJ j � `=.4r/, then

jY i
�

J j �
`

4r

�p
˛ n

`

�
� 4˛rn �

�p
˛

4r
� 4˛r

�
n � 2˛n;

by conditions .2ij / and .4ij / of Lemma 7.4 for i D i� and our upper bound on ˛.
We now define a random subset QY i

�

by taking each vertex v 2 Y i
�

Œ`�
into QY i

�

indepen-

dently with probability q WD `m

2
p
˛ n

, noting that 0< q � 1 since `m� km� 2˛n� 2
p
˛n.

13Here as before, for a diamond tree D , RD denotes the set of removable vertices of D and for
a suborchard O0 �O, R.O0/ denotes the union of the sets of removable vertices of diamond trees
in O0. That is, R.O0/ WD

S
D2O0 RD .
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For j 2 Œ`�, we define QYi�j WD QY i
�

\Yi�j . It follows from .2ij / that EŒj QYi�j j�D qjYi�j j �
m=2 for all j 2 Œ`�, and an application of Theorem 3.6 as well as a union bound shows that
with high probability, j QYi�j j � m for all j 2 Œ`�. Note that in order to show that the upper
bound on the failure probability given by Theorem 3.6 is strong enough to beat a union
bound of the ` events, we use our lower bound on m and Fact 3.2. Furthermore, we find
that with high probability, for any choice of J � Œ`� with jJ j � `=.4r/ and any choice of
.i0; j0/ 2 Œt �� Œ`� and subsets I1; : : : ; Ir�2 � Œt �� Œ`� with jIi 0 j � pk for i 0 2 Œr � 2� and
jIr�2j � k, there exists a copy of Kr traversing

S
j2J
QYi�j , Zi0j0 and the sets Z.Ii 0/

for i 0 2 Œr � 2�. Indeed, this follows from an application of Theorem 3.6 very similar to
the proof of Lemma 7.2. For a fixed J , .i0; j0/ and Ii 0 for i 0 2 Œr � 2� as above, there
is some subset X of ˛n vertices of Y i

�

J such that each vertex in X has a copy of Kr�1
in its neighbourhood which traverses the sets Zi0j0 and Z.Ii 0/ for i 0 2 Œr � 2�. Indeed,
X can be found by repeated applications of Corollary 3.5 (2), deleting vertices from Y i

�

J

and adding them to X on each application. Therefore EŒjX \ QY i
�

j� D qjX j D
p
˛ `m=2

and by Theorem 3.6, the probability that X \ QY i
�

D ; is less than e�
p
˛ `m=4. Since

`m � m � pr�1n � n.r�2/=.2r�3/ because of our lower bound on m and Fact 3.2, this
probability tends to 0 as n!1. Moreover, as there are less than k � .2k/r�2 � 2` � 2rk

choices for such .i0; j0/, Ii 0 for i 0 2 Œr � 2� and J , a union bound gives the traversing
copies of Kr for all choices with high probability. Indeed,

rk �
2˛rn

m
�
2˛r

pr�1
� 2˛r`m �

p
˛ `m

8
;

by our conditions on km, m, `m and our upper bound on ˛ from the hypotheses.
Therefore, we can fix an instance of Y i

�

which satisfies the desired conclusions that
we have shown happen with high probability. For each j 2 Œ`�, taking QYi�j D QY i

�

\ Yi�j
and defining Q‡i�j WD ¹Sv 2 ‡i�j W v 2 QYi�j º, we apply condition .5ij / for i D i� to get
a family Qi� of Di�j D .Ti�j ; Ri�j ; †i�j / for j 2 Œ`� such that for each j we have
Ri�j D Zi�j [ QYi�j and †i�j D …i�j [ Q‡i�j . This completes the step for i� and we
move to i� C 1 and repeat. Doing this for each 1 � i� � t completes the proof.

7.6. The existence of shrinkable orchards of smaller order

With Lemma 7.5 in hand, we can now complete the proof of Proposition 5.2.

Proof of Proposition 5.2. Fix "> 0 small enough to apply Lemmas 7.1 and 7.5 and Propo-
sition 7.3 all with the same ˛ and  and small enough to guarantee that p � Cn�1=.2r�3/

with C WD .2=˛/1=r (see Fact 3.2). We also take " > 0 small enough to ensure that n is
sufficiently large in what follows.

Now note that Proposition 7.3 directly implies the existence of the desired shrinkable
orchard if p1�r � pr�1n or if pr�1n � p1�r � m � n7=8 and so we can assume from
now on that

pr�1n � m � min ¹p1�r ; n7=8º: (7.3)
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We are therefore in a position (due to our lower bound on m) to apply Lemma 7.5 but we
first need to fix k; t; ` 2 N so that conditions (7.2) are satisfied. We first fix ` 2 N so that
p1�r � `m � 2p1�r . This is possible as m � p1�r and so there is a multiple of m in the
desired range. Next we fix t 2N to be any integer such that ˛n� t`m� 2˛n. Again, this
is possible because `m � 2p1�r � ˛n.r�1/=.2r�3/ � ˛n by Fact 3.2. So there is indeed
a multiple t of `m in the desired range. Finally, we fix k D t` and so all the conditions
in (7.2) are satisfied with our choice of parameters. Before analysing the conclusion of
Lemma 7.5, let us point out a few further implications of our choices of parameters.
Firstly,

k�r
3
�

�
1

k

�1=2r
�

�
m

n

�1=2r
� .pr�1/1=2

r

� p: (7.4)

Moreover,
`

k
�

2

pr�1mk
�

2

˛pr�1n
� p; (7.5)

where we use the upper bound on `m in the first inequality, the lower bound on km in the
second inequality and the fact that p � Cn�1=.2r�3/ � Cn�1=r from Fact 3.2 in the last
inequality. Putting (7.4) and (7.5) together then gives

k1�r
3
� pk � `: (7.6)

Now we apply Lemma 7.5 and let O be the resulting .k;m/r -orchard partitioned into
.`; m/r -suborchards Q1; : : : ;Qt . We will show that O is  -shrinkable by appealing to
Lemma 7.1. Firstly, due to the upper bound ofm� n7=8 and the fact that k D‚.n=m/, by
forcing n to be sufficiently large, we can assume that k is also sufficiently large to apply
Lemma 7.1. We therefore just need to check the density condition (7.1) of the lemma.
So fix D 2 O and a suborchard P � O n ¹Dº such that P � k=.4r/. By a pigeonhole
principle, there exists an i 2 Œt � such that jP \Qi j � `=.4r/. So fix such an i and define
P� WD P \Qi , noting that jP�j � k1�r3 due to (7.6). Now we simply need to check
that for any choice of suborchards O1; : : : ;Or�2 � P n P� with jOi 0 j � k

1�r3 for
i 0 2 Œr � 3� and jOr�2j � k, there is a copy of Kr in G traversing RD , R.P�/ and
the sets R.Oi 0/ for i 0 2 Œr � 2�. This is verified by the conclusion of Lemma 7.5, setting
D 0 D D , Q0 D P� and O0i 0 D Oi 0 for i 0 2 Œr � 2�, noting that the lower bounds on the
sizes of the O0i 0 are guaranteed by (7.6). Hence O is indeed  -shrinkable by Lemma 7.1
and this concludes the proof.

8. The final absorption

The aim of this section is to prove Proposition 2.9 which we restate here for convenience.

Proposition 2.9 (restated). For any r 2 N�3 and 0 < ˛; � < 1=23r there exists an " > 0
such that the following holds for any n-vertex .p;ˇ/-bijumbled graphG with ˇ � "pr�1n
and any vertex subset W � V.G/ with jW j � n=2.
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There exist vertex subsets A;B � V such that A �W , jAj � ˛n, jBj � �p2r�4n and
for any .k;m/r -orchard R whose vertices lie in V.G/ n .A[B/, if jAj C jV.R/j 2 rN,
k � ˛2n1=8 and m � n7=8 then GŒA [ V.R/� has a Kr -factor.

In order to prove this, in Section 8.1 we first define an absorbing structure whose
vertex set will play the role of A in Proposition 2.9. We then prove that it has the required
absorbing property. Next, in Section 8.2, we prove that we can find the absorbing structure
in a suitably pseudorandom graph and show that this implies Proposition 2.9.

8.1. Defining an absorbing structure

Recall from Section 3.6 the definition of a template and the fact that templates of flexibil-
ity t with maximum degree 40 exist for all large enough t (Theorem 3.14). We will use
a template as an auxiliary graph to define an absorbing structure which can contribute to
a Kr -factor in many ways.

Definition 8.1. Let T be a template with flexibility t on vertex sets I and J WD J1 [ J2
with jI j D 3t and jJ1j D jJ2j D 2t . AKr -absorbing structure A of order M with respect
to T inG consists of a labelled matching of .r � 1/-cliques inG, „.A/ WD ¹Si W i 2 I º �
Kr�1.G/ and a labelled .4t;M/r -orchard J .A/ WD ¹Dj W j 2 J º such that the following
holds for each i 2 I and j 2 J :

� Si \ V.Dj / D ;;

� if ij 2 E.T / then there is a vertex in the removable set Rj of vertices of Dj which
forms a Kr with Si in G.

We say that A has flexibility t , which is inherited from the template by which A is defined.
We refer to the vertices of the absorbing structure, denoted V.A/, which is all vertices
which feature in cliques in „.A/ or diamond trees in J .A/.

See Figure 7 for an example of an absorbing structure. Note that a Kr -absorbing
structure A of flexibility t and order M has less than

3t.r � 1/C 4t..2M � 1/r C 1/ � 8rtM � rt C t � 8rtM (8.1)

vertices. The absorbing structure is defined in such a way that it inherits the robust prop-
erty that the template has with respect to perfect matchings but has such a property with
respect to Kr -factors. The following lemma demonstrates this and reduces Proposition
2.9 to finding an appropriate absorbing structure in G.

Lemma 8.2. For any r 2 N�3 and 0 < �; � < 1=22r there exists an " > 0 such that the
following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n. Suppose
that t; M 2 N are such that tM � �n and there exists a Kr -absorbing structure A of
flexibility t .with respect to some template T / and order M in G. Let A WD V.A/.

Then there exists some vertex subset B � V.G/ such that jBj � �p2r�4n and for any
.k;m/r -orchard R whose vertices lie in V.G/ n .A[B/, if jAj C jV.R/j 2 rN, k � t

4r

and m �M then GŒA [ V.R/� has a Kr -factor.
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Ξ(A)

J (A)

Fig. 7. A K3-absorbing structure of order 3 and flexibility 2, whose defining template is the tem-
plate T displayed in Figure 5.

Proof. Fix " > 0 small enough to apply Lemma 2.4 with � and � as defined here and small
enough to apply Corollary 3.5 with ˛3.5 D ˛ WD �=.r C 1/. Let O D ¹Dj W j 2 J2º be
the suborchard of J .A/ defined by those indices which lie in the flexible set J2 of the
template T which defines A. Thus O is a .2t;M/r -orchard. Therefore, by Lemma 2.4,
there exists a set B � V.G/ with jBj � �p2r�4n and for any .k;m/r -orchard R as in the
statement of the lemma, O absorbs R. Indeed, note that in the notation of Lemma 2.4,
k; m and M are as defined here, while K D 2t . Hence the condition k � K=.8r/ is
precisely the same as our presumption that k � t=.4r/, whilst the condition kM � mK
is guaranteed by the fact that m � M and k � K=.8r/. Unpacking the conclusion of
Lemma 2.4, we thus find that for any such R there exists some subfamily P1 � O such
that jP1j D .r � 1/k � t=2 and GŒV.P1/ [ V.R/� has a Kr -factor. We will show that
GŒA n V.P1/� also has a Kr -factor, which will complete the proof.

Now note that for any P � O such that jPj D t , GŒA n V.P/� has a Kr -factor.
Indeed, let xJ WD ¹j 2 J2 WDj 2 Pº be the indices of diamond trees that feature in P . By
the definition of the template T , Definition 3.13, there is a perfect matching F � E.T / in
T ŒV .T / n xJ �. Now for ij 2 F , we can take a Kr -factor on Si [ V.Dj / in G guaranteed
by the fact that Si forms a copy ofKr with a removable vertex of Dj (Definition 8.1) and
the key property of the removable vertices of a Kr -diamond tree (Observation 2.2). As
F is a perfect matching in T ŒV .T / n xJ �, we see that by taking these Kr -factors for each
ij 2 F , we obtain a Kr -factor in GŒA n V.P/� as required.

If we had jP1j D t , this would complete the proof. However, P1 is actually much
smaller. Indeed, jP1j � t=2. We will proceed by finding some P2 � O n P1 such that
GŒV.P2/� has a Kr -factor and jP1j C jP2j D t . We build P2 by the following greedy
process. We initiate with O0 D O nP1 and P2 D ;. Then at each time step, as long as
jP1j C jP2j C r � t we partition O0 into r parts O1; : : : ;Or of sizes of the parts are as
equal as possible. We let Rx be the union of the removable vertices of diamond trees in
the orchard Ox for x 2 Œr�. Each Rx has size at least tM=.r C 1/ � �n=.r C 1/ D ˛n.
Therefore, by Corollary 3.5 (2), there is a copy ofKr traversing theRx , x 2 Œr�. This gives
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some r-tuple of diamond trees D1; : : : ;Dr such that Dx 2Ox for all x 2 Œr� and there is a
Kr -factor inGŒV.D1/[ � � � [ V.Dr /�, given by taking the copy ofKr that traverses their
sets of removable vertices and applying Observation 2.2. We add D1; : : : ;Dr to P2 and
delete these diamond trees from the orchard O0, which completes this time step. Clearly
at all points in this process there is aKr -factor inGŒV.P2/� and we claim that this process
terminates when jP1j C jP2j is exactly equal to t . Indeed, if this is not the case, as we
increase the size of jP2j by exactly r in each step, we have jP1j C jP2j D t � s for
some s 2 Œr � 1� at the end of the process. Let P3 � O n .P1 [P2/ be a set of s Kr -
diamond trees. Now as V1 WD V.R/ [ V.P1/ [ V.P2/ hosts a Kr -factor, it follows that
r j jV1j. Likewise, we know that V2 D A n

S3
iD1 V.Pi / hosts a Kr -factor and so r j jV2j.

Since r divides the size of A [ V.R/ and A [ V.R/ D V1 [ V2 [ V.P3/, we can infer
that r j jV.P3/j. This is a contradiction as P3 is a set of s Kr -diamond trees for some
1 � s � r � 1 and the number of vertices in any diamond tree is 1 mod r . Therefore we
can find a P2 as claimed.

Finally, taking P WD P1 [P2, we are done by taking ourKr -factor in GŒA[ V.R/�
to be the union of theKr -factors inGŒV.R/[V.P1/�, inGŒV.P2/� and inGŒA nV.P/�.

8.2. Finding an absorbing structure

Lemma 8.2 reduces Proposition 2.9 to finding an appropriate absorbing structure in G. In
this section we prove that this is possible by proving the following proposition.

Proposition 8.3. For any r 2 N�3 and 0 < ˛ < 1=23r there exists an " > 0 such that
the following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n and any
vertex subset W � V.G/ with jW j � n=2. There exists a Kr -absorbing structure A in G
of flexibility t D ˛n1=8 and order M D n7=8 such that V.A/ � W .

With Lemma 8.2 and Proposition 8.3, the proof of Proposition 2.9 follows readily:

Proof of Proposition 2.9. Fix � WD ˛=.8r/ and " > 0 small enough to apply Lemma 8.2
with � and � as defined here and small enough to apply Proposition 8.3 with ˛8.3 D �. We
can therefore apply Proposition 8.3 to get an absorbing structure A in G with flexibility
t D �n1=8 and order M D n7=8. The set A D V.A/ � W has size jAj � 8rtM D ˛n

(see (8.1)). The conclusion then follows from Lemma 8.2 noting that k � ˛2n1=8 implies
k � t=.4r/ D �n1=8=.4r/ D ˛n1=8=.48r2/ due to our upper bound on ˛.

Now in order to prove the existence of an absorbing structure as in Proposition 8.3,
we will first fix some template T which will define A. Next, we will set aside a large
matching … � Kr�1.G/ of .r � 1/-cliques. These will be candidates for the matching of
.r � 1/-cliques „.A/ in our absorbing structure but we start with a much bigger set … of
size �.n2=3/. Moreover, to each .r � 1/-clique S 2 … we will associate a set of vertices
XS � V.G/ such that XS � NG.S/, jXS j D �.n1=3/ and, crucially, the sets ¹XS W S 2
…º are disjoint. We will find this matching … of .r � 1/-cliques with a simple greedy
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procedure, appealing to Corollary 3.5 (3) to find each S 2 … (and the corresponding
neighbourhood set XS ), one by one.

After finding …, we then turn to constructing the .4t; M/-orchard J .A/ for the
absorbing structure A. Again, this will be done greedily, fixing the diamond trees
D 2 J .A/ one at a time. Let us consider fixing some diamond tree Dj 2 J .A/. Note
that as we fix Dj , we immediately get restrictions on which S 2 … remain as candidates
to play the rôle of certain Si 2 „.A/. Indeed, if the removable vertices of Dj are disjoint
from NG.S/ and ij is an edge in the template T defining A, then there is no way S can
play the role of Si in „.A/. Therefore as we fix our diamond trees, we will aim to have
their sets of removable vertices intersect as many of the XS (and hence neighbourhoods
NG.S/) for S 2 … as possible.

In order to do this, we will use the following lemma, which shows that we can find
diamond trees whose removable vertices intersect many prescribed sets (in our case this
will be the sets XS ). The proof of this lemma is a simple application of Proposition 4.1.

Lemma 8.4. For any r 2 N�3 and 0 < ˛ < 1=22r , there exists an " > 0 such that the
following holds for any n-vertex .p; ˇ/-bijumbled graph G with ˇ � "pr�1n.

Suppose ˛2

2
n2=3 � ` � ˛n2=3 and we have disjoint vertex subsets W; U1; : : : ; U`

such that jW j � n=4 and jUi j � n1=3 for all i 2 Œ`�. Then there exists a diamond tree
D D .T;R;†/ in G such that

(i) † � Kr�1.GŒW �/ is a matching of .r � 1/-cliques in W ;

(ii) R �
S`
iD1 Ui and R intersects `0 of the sets Ui for some `0 � `=.4r/;

(iii) the order of D is at most n2=3;

(iv) for all but at most n1=2 of the indices i 2 Œ`�, we have jV.D/ \ Ui j � n
1=6.

Proof. We begin by fixing  WD `=n2=3 so that ˛2=2 �  � ˛ and we fix " small enough
to apply Proposition 4.1 with ˛4.1 D ˛0 WD =.4r/ and small enough to guarantee that
p � Cn�1=.2r�3/ with C D 4=˛0 (see Fact 3.2). Now shrink each set Ui so that it has
exactly n1=3 vertices and define U WD

S`
iD1 Ui . Furthermore, fix d� WD ˛02pr�1n and

apply Proposition 4.1 with U ,W and z D ˛0n. So we get disjoint subsets X;Y � U as in
the outcome of Proposition 4.1.

Now firstly note that as jX j C jY j D z D ˛0n, jU j D `n1=3 D n D 4rz and the Ui
have equal size, X [ Y must intersect at least `=.4r/ of the sets Ui . We will choose our
D D .T;R;†/ so thatR intersects all the sets Ui thatX [ Y intersects, thus guaranteeing
condition (ii). Indeed, if we let Y 0 � Y be the minimal subset of Y such that there exists no
i 2 Œ`�with Y \Ui ¤; and Y 0 \Ui D;, Proposition 4.1 gives the existence of a diamond
tree D D .T; R;†/ such that R D X [ Y 0 and † � Kr�1.GŒW �/ and so conditions (i)
and (ii) are satisfied.

In order to establish condition (iii), note that jY 0j � ` � n2=3=2 and if jX j > 1 then

jX j �
2z

d�
�

2

˛0pr�1
�
2n.r�1/=.2r�3/

˛0C r�1
�
n2=3

2
;
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due to our definition of C and the fact that r�1
2r�3

�
2
3

for all r � 3. Finally, (iv) is a simple
consequence of (iii). Indeed, if (iv) were not true, then as the Ui are pairwise disjoint, D

would have order greater than n1=2 � n1=6 � n2=3, a contradiction.

Let us return to sketching the proof of Proposition 8.3, considering now that we can
use Lemma 8.4 to find diamond trees D 2 J .A/. As discussed above, the key property
of diamond trees generated by Lemma 8.4 is (ii), allowing us to find diamond trees that
intersect many of the sets ¹XS W S 2 …º which we begin the proof with. Property (iv)
will also be useful as it shows that in the process of building J .A/ one by one, we do
not destroy many of the sets XS and most of them remain large and can be used by other
D 2 J .A/.

One potentially troublesome consequence of Lemma 8.4 is that the diamond trees
it finds are far too small; see (iii). Indeed, the diamond trees in our orchard J .A/ are
supposed to be of order M D n7=8. It turns out that this is not such a big hurdle as we
can find a large diamond tree disjoint from all the XS and connect it to the diamond
tree C output by Lemma 8.4. In more detail, we can apply Proposition 4.1 to create a large
(linear) pool Y of vertices that can be removable vertices of some diamond tree which will
be disjoint from all the vertices in the sets XS . We also consider the large (linear) pool Z
of vertices that lie in some XS n V.C/ with S 2 … such that the removable vertices of C

intersect XS . It is not hard to show (see for example Corollary 3.5 (3)) that there is a copy
of K�rC1 with one degree r � 1 vertex in Y and the other in XS� � Z for some S� 2 ….
By also taking S� into D and choosing an appropriate Y 0 � Y to apply the key property
of Proposition 4.1, we can obtain a diamond tree D of the correct size that contains the
diamond tree C output by Lemma 8.4.

More troublesome is the fact that condition (ii), which means that the removable
vertices of C intersect many of the desired sets XS , is, in fact, not strong enough.
Indeed, consider some fixed i 2 I for which we want to find a copy Si of Kr�1 to lie
in „.A/. If j; j 0 2 N T .i/ and the sets ¹XS W S 2…; RDj \XS ¤ ;º and ¹XS W S 2…;
RDj 0

\XS ¤ ;º are disjoint (here, as usual, we use RD to denote the removable vertices
of D), then already there are no candidates for Si in …. To fix this, we actually need that
when we choose a diamond tree D 2 J .A/, the set RD intersects almost all of the sets
¹XS W S 2…º. We achieve this by iterating Lemma 8.4, creating constantly many disjoint
diamond trees C that together hit almost all of the XS with their removable vertices. We
then connect all of these diamond trees C with a large diamond tree disjoint from the
setsXS to obtain the desired diamond tree D 2J .A/. This connecting process is similar
to (although slightly more involved than) the connecting process outlined in the previous
paragraph. We now give the full details for the proof of Proposition 8.3, concluding this
section and chapter.

Proof of Proposition 8.3. We begin by fixing " > 0 small enough to apply Corollary 3.5
with ˛3.5 D ˛

0 WD ˛2=.16r/ and to apply Proposition 4.1 and Lemma 8.4 each with ˛4.1 D

˛8.4 D ˛. We also take " small enough to force n to be sufficiently large and to guarantee
that p � C 0n�1=.2r�3/ for C 0 WD 2=˛02 using Fact 3.2. We further fix some template T
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with vertex sets I and J D J1 [ J2 of flexibility t and maximum degree 40 which we
know exists for n (and hence t ) sufficiently large by Theorem 3.14 of Montgomery [57].

We will find an absorbing structure with respect to T and so must prove the exis-
tence of a matching „.A/ D ¹Si W i 2 I º � Kr�1.GŒW �/ of 3t copies of Kr�1, and a
.4t;M/-orchard J D J .A/ D ¹Dj W j 2 J º such that the conditions of Definition 8.1
are satisfied. We will do this in three stages. In Claim 8.5, we fix some large matching
… � Kr�1.GŒW �/ of .r � 1/-cliques which will be candidates for the .r � 1/-cliques
which will feature in „.A/. We will guarantee that the cliques in … are contained in
many copies of Kr which will help as we proceed to build our absorbing structure. In
Claim 8.6, we will fix the Kr -diamond trees which will form our orchard J for our
Kr -absorbing structure. We will carefully control how these diamond trees intersect the
cliques in our candidate set … and their neighbourhoods. Finally, we will show that we
can find a suitable „.A/ � … so that we obtain the desired absorbing structure.

Claim 8.5. There exists a matching … D ¹S1; : : : ; S`º � Kr�1.GŒW �/ of ` WD ˛n2=3

copies of Kr�1 and sets Xh � W n V.…/ for each h 2 Œ`� such that the Xh are pairwise
disjoint, each has size 2n1=3 and for all h 2 Œ`� we have Xh � NG

W .Sh/.

Proof of Claim. We can do this by way of a simple greedy process choosing such an
.r � 1/-clique Sh and set Xh in order for h D 1; : : : ; `. When choosing Sh and Xh, we
look at the set of vertices Vh � W which have not been used in previous choices of Sh0
or Xh0 . We have

jVhj � jW j �
ˇ̌̌ [
h0<h

.Xh0 [ Sh0/
ˇ̌̌
� n=2� .`� 1/.r � 1C 2n1=3/ � .1=2� 2˛/n � n=4;

and an application of Corollary 3.5 (3) with W0 D W1 D W2 D Vh gives the desired Sh
and Xh in Vh since

˛02pr�1n � ˛02C 0n1�.r�1/=.2r�3/ � 2n1=3

due to Fact 3.2.

Next we turn to fixing our .4t;M/-orchard J .

Claim 8.6. Let Sh andXh for hD 1; : : : ; ` be as in Claim 8.5. Then there exists a .4t;M/-
orchard J D ¹D1; : : : ;D4tº such that V.J / � W and the following properties hold for
each Dj D .Tj ; Rj ; †j / with j 2 Œ4t �:

(1) the setRj of removable vertices intersects at least .1� ˛/` of the setsXh with h 2 Œ`�;

(2) V.Dj / intersects at most C WD log. 2˛ /

log. 4r
4r�1 /

of the Sh with h 2 Œ`�.

Before proving the claim, let us see how it implies the proposition. Indeed, taking
the .4t;M/r orchard J from Claim 8.6 as J .A/, we just need to choose a matching of
.r � 1/-cliques „.A/ D ¹Si W i 2 I º so that Si \ V.J / D ; for all i 2 I and whenever
ij 2 E.T /, there is a vertex in Rj which forms a copy ofKr with Si . We do this greedily,
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showing that for each i D 1; : : : ; 3t in order, there is a suitable choice for Si in…. We ini-
tiate by fixingL� Œ`� to be the indices h 2 Œ`� such that Sh \ V.J /D;. By condition (2)
in Claim 8.6, for large n we have

jLj � ` � 4C t � .1 � ˛/`

at the beginning of this process, recalling that ` D ˛n2=3 and t D ˛n1=8. Now for i D
1; : : : ; 3t , we find an index h D h.i/ 2 L such that Sh forms a copy of Kr with a vertex
in Rj for all j such that ij 2 E.T /. We fix Si D Sh and delete h from L. If this process
succeeds in finding a suitable h D h.i/ for each i 2 I then the resulting „.A/ D ¹Si W
i 2 I º along with J form the desired Kr -absorbing structure.

It remains to check that we are successful at each step. So consider step i� 2 Œ3t �.
We have that jLj � .1 � ˛/` � .i� � 1/ � .1 � 2˛/` at the beginning of the step. Now
for each j 2 J which is a neighbour of i� in the template T , by Claim 8.6 (1) there are
at most ˛` indices h 2 Œ`� such that no vertex of Rj forms a Kr with Sh in G. Indeed,
for almost all choices of h, we have Rj \ Xh ¤ ; and Xh � NG.Sh/. Given that T has
maximum degree 40, this gives at most 40˛` indices h 2 L that would not be a good
choice for h.i�/. Therefore there are at least .1 � 42˛/` indices h 2 L which can be
chosen as h.i�/ and we simply choose one arbitrarily.

This shows that the algorithm is successful in generating the desired absorbing struc-
ture and so it only remains to prove Claim 8.6, which we do now.

Proof of Claim 8.6. We will find the diamond trees Dj , j D 1; : : : ; 4t , one by one so
that they are vertex disjoint and satisfy the two conditions in the statement of the claim as
well as the further following condition:

(3) V.Dj / intersects all but at most Cn1=2 of the Xh with h 2 Œ`� in more than 2Cn1=6

vertices.

We will initiate the process with ƒ WD Œ`� and Uh D Xh for all h 2 Œ`�. These sets
Uh will keep track of vertices in Xh that we are still allowed to use, that is, those ver-
tices which have not been used in previously chosen diamond trees. Furthermore, the set
ƒ � Œ`� will keep track of all indices which are alive. When we choose a Dj for some
j 2 Œ4t �, we kill (and remove fromƒ) all the indices h 2 Œ`� such that V.Dj / intersectsXh
in more than 2Cn1=6 vertices. We also kill any index h such that V.Dj / intersects Sh. Due
to our conditions (2) and (3), throughout the process we have

jƒj � ` � 4t.C C Cn1=2/ � .1 � ˛=2/`

for n large, recalling that ` D ˛n2=3 and t D ˛n1=8. Moreover, due to condition (3), at
any point in the process, for all alive indices h in ƒ, the size of Uh � Xh is at least

jUhj � jXhj �
X
j

jV.Dj / \Xhj � 2n
1=3
� 8tCn1=6 � n1=3

for n sufficiently large. We remark that it is crucial in the previous two calculations that
t D n1=8 and so when choosing our diamond trees, we do not kill too many indices or
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make too many of the sets Xh too small to be used by subsequent diamond trees. In fact,
any t polynomially smaller than n1=6 would suffice for this.

So let us suppose that we are at step j � 2 Œ4t � where we look for Dj� and we have
some fixed set ƒ of alive indices and subsets Uh � Xh for h 2 ƒ. We run a subalgorithm
that finds Dj� in two phases. We begin by setting � D ƒ and C D ;. The first phase of
the subalgorithm works by finding at most C small order diamond trees whose removable
vertices intersect many of the Uh for h 2 ƒ. The family C will collect these small order
diamond trees and the set � will keep track of the indices h in ƒ for which we have not
yet intersected Uh. In the second phase of the algorithm, we will form Dj� by joining
together the diamond trees in C so that they form one diamond tree. By guaranteeing that
our diamond trees in C have removable vertices that intersect most of the sets Uh, we will
guarantee condition (1) of the claim. Before starting, we also initiate by setting W 0 � W
to be

W 0 D W n
� [
h2Œ`�

.Sh [Xh/ [
[
j<j�

V.Dj /
�
:

In words, W 0 is the subset of vertices of W that has not been used in any of the structures
that we have found so far. Finally, we initiate a counter by setting s D 1.

At step s, we apply Lemma 8.4 on the sets W 0 and ¹Uh W h 2 �º. We thus find a
Kr -diamond tree Cs D .T; R;†/ which we add to C, which has the following properties
guaranteed by Lemma 8.4:

(i) † � Kr�1.GŒW 0�/ and we delete V.†/ from W 0;

(ii) R �
S
h2� Uh and defining �s � � to be �s WD ¹h0 W R \ Uh0 ¤ ;º, we have j�sj �

j�j=.4r/; we delete �s from �;

(iii) the order of Cs is at most n2=3;

(iv) there is a setˆs � �s � � � Œ`� of at most n1=2 indices such that for all h 2 Œ`� nˆs
we have jV.Cs/ \ Uhj � n1=6.

Finding such a Cs concludes step s. If j�j < ˛`=2, we terminate this phase and move on
to the next phase. If j�j � ˛`=2, we move to step s C 1.

We must check that the conditions for Lemma 8.4 are satisfied throughout this phase
in order to find the required diamond trees Cs at each step. Indeed, this follows because

˛2

2
n2=3 D

˛

2
` � j�j � ` D ˛n2=3

throughout, and jUhj � n1=3 for all h 2 � since � �ƒ is a subset of alive indices. Finally,
jW 0j � n=4 throughout this process. Indeed, note that due to condition (ii) and the fact that
we only continue until j�j � ˛`=2, the process runs for a maximum of C steps, recalling
the definition of C from condition (2) of the claim. That is, jCj � C throughout and so

jW 0j � jW j �
X
h2Œ`�

.jShj C jXhj/ �
X
j<j�

jV.Dj /j �
X
C2C

V.C/

�
n

2
� ` � 3n1=3 � 8trM � Cn2=3 �

�
1

2
� .4C 8r/˛

�
n �

n

4
; (8.2)
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Fig. 8. An example of Dj� and its components. In this case, we have c D 2, h1 D 1 and h2 D h.

due to our upper bound on ˛, for n sufficiently large. This verifies that we find Cs at
every step s of this process and so we finish this phase with j�j < ˛`=2 and some family
C D ¹C1; : : : ;Ccº of c � C vertex disjoint Kr -diamond trees.

Now we describe how we generate Dj� which will have all the diamond trees Cs 2 C
as sub-diamond-trees. We refer the reader to Figure 8 to keep track of the many compo-
nents that contribute to our Dj� . One thing to note is that the sum of the orders of the
diamond trees in C is far too small for us to just build Dj� from the diamond trees in C.
Indeed, the sum of the orders is O.n2=3/ and we want Dj� to have order M D n7=8.
Therefore we will have to find the majority of the Kr -diamond tree Dj� elsewhere. In
order to prepare for this, we first split W 0 arbitrarily into U0;W0 and Z0 of roughly equal
size and note that due to our lower bound (8.2) on jW 0j, each of these sets has size at least
n=16. Next we fix d� WD ˛2pr�1n and z D ˛2n and apply Proposition 4.1 with respect to
the sets U0 andW0 to get disjoint setsX;Y � U0 as detailed there. Note that jX j � 2n2=3.
Indeed, if jX j > 1, then jX j � 2z=d� � 2p1�r � 2n2=3 due to Fact 3.2.

Now for 1 � s � c, define Zs WD
S
h2�snˆs

.Uh n V.Cs//. In words, Zs is the union
of the sets Uh which Cs intersects, after removing the sets Uh0 which Cs intersects in too
many vertices and then removing the vertices of Cs . Now, for each s 2 Œc�,

jZsj � .j�sj � jˆsj/.n
1=3
� n1=6/ �

˛`n1=3

8r
� 2n5=6 �

˛2n

16r
� ˛0n

for n large, as the Uh are pairwise disjoint. Note also that as the �s are pairwise disjoint,
so are the Zs for s 2 Œc�. Now for 1 � s � c, apply Corollary 3.5 (3) to find an .r � 1/-
clique S 0s � Kr�1.GŒZ0�/ such that there is a vertex zs 2 Zs \ NG.S 0s/ and a vertex
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xs 2 .X [ Y / \N
G.S 0s/. We delete the S 0s from Z0 and move to the next index s C 1 or

finish if s D c.
Now choose some Y 0 � Y such that xs 2 X [ Y 0 for all s 2 Œc� and

jY 0j C jX j C
X
s2Œc�

.jRCs j C 1/ DM:

This is easily done as jX j C jY j D ˛2n is linear and jX j; jRCs j � 2n
2=3 for all s 2 Œc�,

which is much smaller than M D n7=8. By Proposition 4.1, there is a Kr -diamond tree
QD D . QT ; QR; Q†/ with QR D X [ Y 0 and Q† � Kr�1.GŒW0�/ a matching of .r � 1/-cliques

inW0 �W 0. Our diamond tree Dj� is then obtained by connecting QD and all the Cs 2 C.
In more detail, for each s 2 Œc�, there exists some hs 2 �s such that zs 2 Uhs � Xhs . We
define

Rj� WD QR [
[
s2Œc�

.RCs [ ¹zsº/ and †j� WD Q† [
[
s2Œc�

.†Cs [ ¹S
0
sº [ ¹Shs º/;

where †Cs is the set of interior .r � 1/-cliques of Cs; S 0s 2 Kr�1.GŒZ0�/ is the .r � 1/-
clique which forms a clique with both zs and xs defined above; and Shs is the .r � 1/-
clique corresponding to the set Xhs (which contains zs) in Claim 8.5. We claim that there
exists a diamond tree Dj� of order M which has Rj� as a set of removable vertices
and †j� as a set of interior .r � 1/-cliques. Indeed, we can form the defining auxiliary
tree Tj� by starting with the forest of the disjoint union of QT and the TCs for s 2 Œc�, where
TCs denotes the defining tree for the Kr -diamond tree Cs . For each s 2 Œc�, we then add
a path of length 2 (with two edges) between some vertex in V.TCs / and V. QT /. The edges
of this path correspond exactly to the internal .r � 1/-cliques Shs and S 0s and thus the
vertices of this path correspond to xs , zs and some vertex in RCs \ Uhs for each s 2 Œc�.

This defines Dj� and so we update all the Uh to be Uh n V.Dj�/ for h 2 Œ`� and kill
any indices h 2 ƒ such that either V.Dj�/ intersects Sh or jXh \ V.Dj�/j � 2Cn

1=6.
We now need to check that conditions (1)–(3) hold for Dj� . To see (1), note that Rj�
contains all the RCs for s 2 Œc� and so intersects Xh for all h 2

S
s2Œc� �s . Moreover,

taking � as defined at the end of finding the Cs , we have j� [
S
s2Œc��sj � .1� ˛=2/` and

j�j � ˛`=2, and so this confirms (1). To see (2), note that the only times we used vertices
of the Sh with h 2 Œ`� to construct Dj� was when we added the Shs for s 2 Œc� to the set
of interior cliques. Thus we intersected exactly c � C of these with V.Dj�/. Finally, (3)
for Dj� is implied by conditions (iv) when we found the Cs . Indeed, Rj� \

S
h2Œ`�Xh DS

s2Œc�.RCs [ ¹zsº/ and so for any index h that does not lie in
S
s2Œc�ƒs (which has size

at most Cn1=2), we have

jV.Dj�/ \Xhj �
X
s2Œc�

j.V .Cs/ [ ¹zsº/ \Xhj � C.n
1=6
C 1/ � 2Cn1=6:

This concludes the finding of Dj� , and doing this for all j � 2 Œ4t � gives the desired claim
and hence the proposition.
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9. Concluding remarks

In this paper, we showed that a condition of ˇ D o.pkn/ in an n-vertex .p; ˇ/-bijumbled
graph guarantees aKkC1-factor. We conjecture that the same condition in fact guarantees
any subgraph with maximum degree k.

Conjecture 9.1. For any k 2 N�2 and c > 0 there exists an " > 0 such that any n-vertex
.p; ˇ/-bijumbled graph with ı.G/ � cpn and ˇ � "pkn is k-universal, that is, given any
graph F on at most n vertices, with maximum degree at most k, G contains a copy of F .

Note that Corollary 1.5 settles Conjecture 9.1 for k D 2. For k � 3, the best known
result comes from the sparse blow-up lemma of Allen, Böttcher, Hàn, Kohayakawa and
Person [2] which gives a condition of ˇ D o.p.3kC1/=2n/ guaranteeing k-universality in
a .p; ˇ/-bijumbled graph.

The conjecture echoes the notion that a KkC1-factor is the ‘hardest’ maximum
degree k graph to find. This idea has manifested itself in various other settings. For exam-
ple, we know from the theorem of Hajnal and Szemerédi (Theorem 1.1) that any n-vertex
graphG with ı.G/� .k=.kC 1//n contains aKkC1-factor and that this is tight. Bollobás
and Eldridge [15], and independently Catlin [19], conjectured that the same minimum
degree condition actually guarantees k-universality. This has been proven for k D 2; 3

[1,7,25] but remains open in general. In the case of random graphs, Johansson, Kahn and
Vu [39] proved that the threshold for the appearance of a KkC1-factor is of the order of

p�k.n/ WD n
�2=.kC1/.logn/2=.k

2Ck/:

A recent breakthrough result of Frankston, Kahn, Narayanan and Park [28] implies that
for any n-vertex graph F with maximum degree k, the threshold for the appearance of F
inG.n;p/ is at most p�

k
.n/. Note that this is not implying thatG.n;p/ is k-universal whp

when p D !.p�
k
.n// as we can only guarantee that some fixed F appears whp. However,

the stronger version that p�
k
.n/ is the threshold for k-universality is believed to be true

but only verified for k D 2 [26].
One thing that sets aside the pseudorandom setting in stark contrast to the other

settings discussed above is that it might be possible to replace aKkC1-factor as the bench-
mark for the ‘hardest’ graph to find in the host graph, by a single copy of KkC1. Indeed,
various authors [22, 27, 53, 64] have stipulated that n-vertex KkC1-free .p; ˇ/-bijumbled
graphs exist with ˇ D ‚.pkn/. Such graphs would witness the tightness of both Theo-
rem 1.4 and Conjecture 9.1 for all values of k � 2 (taking r D k C 1 in the setting of
Theorem 1.4). Focusing on optimally pseudorandom graphs (that is, fixing ˇ D ‚.

p
pn/

in .p; ˇ/-bijumbled graphs), we expect to be able to find KkC1-free optimally pseudo-
random graphs with p D �.n�1=.2k�1//. These are only known to exist when k D 2.
Indeed, we discussed the triangle-free construction of Alon in the introduction, and other
constructions [21,48] have also been given which are (near-)optimal. For k � 3, however,
this remains a key challenge in the understanding of pseudorandom graphs, with the best
known general construction coming from a recent improvement of Bishnoi, Ihringer and
Pepe [13] who giveKkC1-free optimally pseudorandom graphs of density pD‚.n�1=k/.
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Further interest in finding denser such graphs comes from a recent remarkable connection
discovered by Mubayi and Verstraëte [60] that shows that if, as we expect, the KkC1-
free optimally pseudorandom graphs with density p D �.n�1=.2k�1// do exist, then it
is possible to improve the lower bound on the off-diagonal Ramsey numbers to match
the upper bound and thus determine the asymptotics of this extremal function. In detail,
they show that if these pseudorandom graphs exist, then the off-diagonal Ramsey num-
ber is R.k C 1; t/ D tkCo.1/ as t tends to infinity. In fact, even a construction with
p D !.n�1=.kC1//would improve on the current best known lower bound on off-diagonal
Ramsey numbers due to Bohman and Keevash [14].

We conclude by noting that Theorem 1.2 is, in some sense, the first result of its
kind, giving a tight condition on pseudorandomness to guarantee the existence of a span-
ning structure. Indeed, the case of Hamilton cycles remains an intriguing open problem.
Krivelevich and Sudakov [52] conjectured that a condition of � D o.d/ is sufficient in
.n; d; �/-graphs and proved the currently best known bound of

� D o

�
.log logn/2d

logn.log log logn/

�
:

For hypergraphs of higher uniformity, one can easily generalise the notion of bijumbled-
ness in Definition 1.3 but the picture becomes considerably more complex. Indeed, it turns
out that the only subgraphs that one can guarantee by imposing conditions on bijumbled-
ness are linear subgraphs, those in which pairs of hyperedges intersect in at most one
vertex. Building on previous work [23, 47, 55, 56] mainly concerned with dense hyper-
graphs (the so-called quasirandom regime), Hiê.p Hàn, Jie Han and the author [30, 31]
recently gave the best-known conditions on pseudorandomness that guarantee different
linear subgraphs of hypergraphs. These include all fixed sized linear subgraphs as well
as F -factors for linear F (including perfect matchings) and loose Hamilton cycles. The
tightness of these results is unclear as no good constructions are known for F -free pseu-
dorandom hypergraphs. In general, the appearance of subgraphs in sparse pseudorandom
(hyper-)graphs remains a fascinating area which is far from being understood.
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