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Abstract. We consider perturbations of Minkowski space as well as more general spacetimes on
which the wave operator �g is known to be essentially self-adjoint. We define complex powers
.�g � i"/�˛ by functional calculus, and show that the trace density exists as a meromorphic func-
tion of ˛. We relate its poles to geometric quantities, in particular to the scalar curvature. The
results allow us to formulate a spectral action principle which serves as a simple Lorentzian model
for the bosonic part of the Chamseddine–Connes action. Our proof combines microlocal resol-
vent estimates, including radial propagation estimates, with uniform estimates for the Hadamard
parametrix. The arguments work in Lorentzian signature directly and do not rely on transition from
the Euclidean setting.

Keywords. Spectral zeta functions, microlocal analysis, Lorentzian geometry, hyperbolic partial
differential equations, wave equation, Hadamard parametrix

1. Introduction

1.1. Introduction and main result

The relationships between the geometry of compact Riemannian manifolds and the spec-
tral theory of elliptic operators have been a rich ground for discovery for decades, owing
to powerful methods based on heat kernel and resolvent expansions, complex powers,
residue traces, zeta functions and related notions [9, 56, 86, 90, 97, 101, 103, 110]. They
have also profoundly influenced the world of relativistic physics, relying on the presump-
tion that a generalization to Lorentzian manifolds is possible [22, 26, 27, 62, 126]. This
generalization was however found to be problematic on many levels. In particular, while
it is possible to make sense of, e.g., formal heat kernel coefficients ¹aiº for the wave
operator �g on a Lorentzian manifold .M; g/ by writing transport equations analogous
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to the Riemannian case, and interpret them in terms of a Lorentzian Hadamard parametrix
[21, 91], their relation to global objects defined by spectral theory is vastly unclear.

On the other hand, it was recently found that if the spacetime .M;g/ has special sym-
metries, or if instead it is well-behaved at large distances, then it is possible to interpret
�g as a self-adjoint operator in the sense of the canonical L2.M/ space defined using
the volume form of g. In fact, the essential self-adjointness of �g on static spacetimes
was proved by Dereziński–Siemssen [34], and on non-trapping Lorentzian scattering
spaces by Vasy [131]; this was then generalized by Nakamura–Taira to other differen-
tial operators of real principal type on long-range perturbations of Minkowski space [93];
cf. [25, 35, 74, 119, 120] for related recent work on self-adjointness of non-elliptic oper-
ators. As a consequence of self-adjointness, it is possible to define, e.g., .�g � i"/�˛
for " > 0 and ˛ 2 C abstractly by functional calculus. However, the relation to the local
geometry is then an open question.

In the present paper we demonstrate that globally defined complex powers of �g
are in fact related to spacetime geometry in a way that parallels to a large extent the
results known in the Riemannian case. We consider the setting of non-trapping Lorentzian
scattering spaces introduced by Vasy [131], which assumes that the metric and the null
geodesic flow behave asymptotically in a certain way; see Section 2.3. The main fea-
ture is that this class contains perturbations of Minkowski space and other asymptotically
Minkowski spacetimes (including the class considered in [7, 49]), and no particular sym-
metry of .M; g/ nor real analyticity is assumed. We also make the assumption of global
hyperbolicity of .M;g/, which arises naturally in, e.g., the solvability of the Cauchy prob-
lem. Our main result is the following theorem.

Theorem 1.1 (cf. Theorem 8.3 and Proposition 8.5). Assume .M; g/ is a globally hyper-
bolic, non-trapping Lorentzian scattering space .or .M; g/ is an ultrastatic spacetime/
and assume its dimension n is even. Then for all "> 0, the Schwartz kernel of .�g � i"/�˛
has for Re ˛ > n=2 a well-defined on-diagonal restriction .�g � i"/�˛.x; x/, which
extends as a meromorphic function of ˛ 2C with poles at ¹n=2; n=2� 1, n=2� 2; : : : ; 1º.
Furthermore,

lim
"!0C

res˛Dn=2�1 .�g � i"/�˛.x; x/ D
Rg.x/

i6.4�/n=2�.n=2 � 1/
; (1.1)

where Rg.x/ is the scalar curvature at x 2M .

Theorem 1.1 can be seen as the Lorentzian version of a result attributed to Kastler [76]
and Kalau–Walze [75] in the Riemannian case (and announced previously by Connes as
a consequence of classical theorems in elliptic theory due to Minakshisundaram–Pleijel
[90], Seeley [108], Wodzicki [134] and other authors; see [27, Theorem 1.148] for the heat
kernel based argument and [56, Section 1.7] for an approach in the spirit of Atiyah–Bott–
Patodi [4]). This type of relationships has been used to justify definitions of curvature
in non-commutative geometry: see Connes–Marcolli [27, Definition 1.147] and Connes–
Moscovici [29].
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The " regularizer in (1.1) deals with the fact that in contrast to the compact Rie-
mannian setting,�g is not bounded from below. It is also responsible for the relationship
to Feynman inverses; see Section 1.2.

The importance of (1.1) in physics stems from the fact that the r.h.s. is proportional to
the Einstein–Hilbert Lagrangian, and the variational principle ıgRg.x/D 0 is equivalent
to the Einstein equations for g. The l.h.s., on the other hand, refers to the spectral theory
of the self-adjoint operator�g .

Remark 1.2. Our main cases of interest are perturbations of Minkowski space (in arbi-
trary spatial and time directions) as well as more general Lorentzian scattering spaces, but
the results are also valid for ultrastatic spacetimes .M; g/ in the sense that M D R � Y
and g D dt2 � h for some (t -independent) complete Riemannian manifold .Y; h/. In that
case, essential self-adjointness follows from [34] and the proof of Theorem 1.1 simplifies
considerably; see Remark 1.4.

The residues at the other poles can also be computed, and we show the following
result.

Theorem 1.3 (cf. Theorem 8.4). For any Schwartz function f with Fourier transform
supported in �0;C1� and any N 2 N>0, we have for " > 0 the large � > 0 expansion

f ..�g C i"/=�2/.x; x/ D
NX
jD0

�n�2jCj .f / aj .x/CO."; �n�2N�1/;

where each Cj .f / depends only on j 2 N>0, the space-time dimension n and f , and
aj .x/ are directly related to the Hadamard coefficients, in particular a0.x/ D .4�/�n=2,
C0.f / D i

�1ein�=4
R1
0
yf .t/tn=2�1dt and

a1.x/ D �.4�/
�n=2 1

6
Rg.x/; C1.f / D i

�1ei.n�2/�=4
Z 1
0

yf .t/tn=2�2 dt:

We refer to Theorem 8.4 for a precise calculation of the first three terms of the asymp-
totic expansion of f ..�g C m2 C i"/=�2/.x; x/ in terms of the regularizer " and also
the massm. This formulation parallels as closely as possible the spectral action principle
established in the Riemannian case by Chamseddine–Connes [22,26], which has become
a milestone in high energy physics developments driven by the noncommutative geome-
try program; see e.g. [23, 27, 43, 126, 127]. A feature of Theorem 1.3 is that in contrast to
results in the Riemannian setting, we do not allow for functions f supported away from
zero or in a half-line: intuitively, the reason is that the bottom of the spectrum plays a rôle
which cannot be harmlessly disregarded in the Lorentzian case.

1.2. Structure of proof

The primary difficulty is unquestionably the non-ellipticity of �g , which makes known
methods from the Riemannian setting inapplicable to our situation. We stress that except
at the very final stage (where we work locally with quadratic forms on Rn to compute
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numerical factors in the residues), our proof does not involve any kind of transition from
Euclidean to Lorentzian signature. Instead, we use techniques from partial differential
equations and microlocal analysis that emphasize the structure of the null geodesic flow
on the cotangent space and its asymptotic behavior; see Section 1.3 for bibliographical
remarks.

Theorems 1.1 and 1.3 rely on precise regularity estimates for the resolvent .�g�z/�1.
The key feature is that for Im z > 0, .�g � z/�1 is a Feynman inverse, meaning that
the singularities of the Schwartz kernel (characterized by its wavefront set) are the same
as for Duistermaat–Hörmander’s Feynman parametrix [39] and Feynman propagators in
quantum field theory and related contexts [49,102]. In consequence, close to the diagonal
in M �M , the Schwartz kernel of .�g � z/�1 can be approximated by the Feynman
version of the Hadamard parametrix, which is sufficiently explicit for the extraction of
local geometrical quantities. The complex powers .�g � i"/�˛ are then expressed in
terms of the resolvent as integrals over an infinite contour in the complex upper half-
plane. To be useful, however, this requires the estimates for the resolvent, parametrix
and errors to be uniform in z, with sufficient decay along the integration contour. This
complicates the analysis of the Hadamard parametrix, since apart from difficulties due to
light-cone singularities, there is competition between regularity and decay in jIm zj. It is
also worth stressing that it is not possible to eliminate any error term by solving a Cauchy
problem for�g � z because the associated retarded and advanced fundamental solutions
badly behave as jIm zj ! C1.

With these issues in mind, the proofs (in the Lorentzian scattering space case) are
organized as follows:

(1) Setting P D �g or P D �g C m2, we use radial estimates in weighted scattering
Sobolev spaces (due in the present context to Vasy [131] and generalizing results by
Melrose [87]) to derive the mapping properties of the resolvent .P � z/�1, uniformly
in z. By integrating on a contour 
" in the upper half-plane (see Figure 1 in Sec-
tion 2.6) we deduce the local mapping properties of .P � i"/�˛ in Sobolev spaces.

(2) In Section 3.5, for Im z > 0 we construct a z-dependent parametrix of P � z which is
the sum of two independent parts, each with singularities propagating in only one of
the two components of the characteristic set†. We show that the parametrix has Feyn-
man wavefront set uniformly along the contour 
". This step uses a time-dependent
factorization of P � z in Shubin’s parameter-dependent pseudo-differential calculus
[110] and the hyperbolicity of P .

(3) In Section 3.6 we relate .P � z/�1 to the parametrix from step (2). The argument
first emphasizes common behavior at the radial sets, and then uses radial estimates
and propagation of singularities to obtain a global result. The main conclusion is that
.P � z/�1 has Feynman wavefront set uniformly in z along 
".

(4) In Sections 4–5 we construct a z-dependent version HN .z; �/ of the Hadamard
parametrix of P � z, and show in Section 5 that it also has Feynman wavefront set
uniformly in z. We prove regularity estimates for HN .z; �/ and the remainders, with
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control of the decay for large jzj and the behavior near the real axis. Important pre-
requisites are Hölder–Zygmund and microlocal estimates shown in Section 4 for an
elementary family of distributions F˛.z; �/ on Rn, which serves as the building block
of the parametrix in normal coordinates.

(5) For Im z > 0, we relate the resolvent .P � z/�1 to the uniform Hadamard parametrix
HN .z; �/ using the estimates from step (4) and the Feynman form of the wavefront
set proved in step (3) by a composition argument. The local analysis of the Schwartz
kernel of .P � i"/�˛ and other functions of P is reduced in this way to contour
integrals involving HN .z; �/.

(6) The meromorphic continuation of ˛ 7! .P � i"/�˛ and its poles are computed on the
level of contour integrals of HN .z; �/. To compute the residues we use a homolog-
ical argument which can be interpreted as a local Wick rotation of quadratic forms.
Theorem 1.3 is deduced from the full version of Theorem 1.1 by a Mellin transform
argument.

Various auxiliary proofs are collected in the appendices.
We stress that although the occurrence of local geometric quantities in the Hadamard

parametrix is a well-known phenomenon, the relationship to globally defined functions of
P proved in steps (1)–(6) is new.

Remark 1.4. The case of .M; g/ ultrastatic is simpler because one can then give a
quasi-explicit formula for .P � z/�1 in terms of the Laplace–Beltrami operator �h on
the Cauchy surface. The formula implies that .P � z/�1 is already of the form of the
parametrix in step (2), so step (3) is no longer needed, and resolvent estimates can be
derived directly; see Appendix C.1. From that point on, steps (4)–(6) apply verbatim.

1.3. Bibliographical remarks

The construction of complex powers of elliptic operators is due to Seeley [108] in the
case of classical pseudo-differential operators on compact manifolds, and was extended
to various other elliptic settings, among others in works by Rempel–Schulze [104],
Guillemin [59], Grubb [58], Schrohe [106, 107], Loya [81, 82], Coriasco–Schrohe–Seiler
[30] and Ammann–Lauter–Nistor–Vasy [2]; cf. recent work by Hintz [64]. Various results
in the spirit of the Kastler–Kalau–Walze identity were obtained, e.g., by Ponge [98–100]
(in particular, [100] discusses lower-dimensional geometric invariants) and Battisti–
Coriasco [8]. The residues of the spectral zeta function have a natural interpretation in
terms of the Guillemin–Wodzicki residue [59, 134] (cf. Connes–Moscovici [28], Lesch
[78], Lesch–Pflaum [79], Paycha [96, 97], Maeda–Manchon–Paycha [83]); see [32] for a
generalization to the Lorentzian case considered here.

Complex powers of non-elliptic first order pseudo-differential operators were obtained
as paired Lagrangian distributions by Antoniano–Uhlmann [3]; see also Greenleaf–
Uhlmann [57, Section 3]. Using the calculus of paired Lagrangian distributions,
complex powers of the wave operator corresponding to a retarded or advanced problem
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were constructed by Joshi [73] in the case of time-independent coefficients. Enciso–
González–Vergara [44] later showed that a particular fractional power coincides with
the Dirichlet-to-Neumann map on static anti-de Sitter spacetimes. We remark that our
complex powers are different from Joshi’s, as the former are associated to a self-adjoint
operator and are related to a Feynman problem rather than to a retarded or advanced one.
However, it can be conjectured that they are paired Lagrangian distributions as well.

The approach to Lorentzian complex powers in the present paper builds on the non-
elliptic Fredholm theory introduced by Vasy [128], originally in the context of the retarded
and advanced problem on (Kerr–)de Sitter spaces, and further developed in a series of
works tailored to the study of wave and Einstein equations (see e.g. [7,63,65,66]), culmi-
nating in the resolution of the Kerr–de Sitter stability conjecture by Hintz–Vasy [67] and
the proof of linear stability of Kerr black holes by Häfner–Hintz–Vasy [61]. The global
approach to the Feynman problem for the wave equation on a class of Lorentzian scat-
tering spaces was pioneered by Gell-Redman–Haber–Vasy [49] (including a non-linear
version); cf. Baskin–Vasy–Wunsch [7] for previous work on the retarded and advanced
problem in that setting. The construction also applies to the Klein–Gordon operator on de
Sitter spaces, and in both settings, its positivity and microlocal properties were studied by
Vasy [129] and Vasy–Wrochna [133]. The Feynman invertibility of the Klein–Gordon
operator �g C m2 with m > 0 on asymptotically Minkowski spacetimes was proved
by Gérard–Wrochna [52, 53] (cf. [54] for a brief account) using an approximate diag-
onalization of the evolution, related to the parametrix in Section 3.5 (though the focus
here is on the behavior in z). In the already mentioned work of Vasy [131] on essen-
tial self-adjointness of �g , the resolvent is constructed in terms of a Feynman problem
which coincides with the Gérard–Wrochna definition by a result of Taira [121]. Vasy [131]
also shows a limiting absorption principle for�g Cm2, followed by an improvement by
Taira [121]; cf. the earlier work of Dereziński–Siemssen [34] for the limiting absorption
principle in the static case (possibly with electromagnetic potentials).

Related developments connecting the global theory of hyperbolic operators with
space-time geometry have included a Lorentzian Atiyah–Patodi–Singer index theorem
due to Bär–Strohmaier [5]; see also Braverman [18] for a spatially non-compact general-
ization, and very recently a local version was shown by Bär–Strohmaier [6]. Furthermore,
Strohmaier–Zelditch proved a Gutzwiller–Duistermaat–Guillemin trace formula and a
Weyl law for time-like Killing vector fields on stationary space-times [116–118], which
in particular provides a spectral-theoretic way of recovering the scalar curvature and thus
a spectral action in the stationary case. It is worth emphasizing that Feynman inverses
appear naturally in all these developments (and in [6] the relationship to the Hadamard
parametrix is used; see below).

We remark that non-elliptic Fredholm problems and radial estimates have arisen in
many contexts outside relativistic settings; see e.g. [40, 42, 50]. In particular, we empha-
size similarities to the work of Dyatlov–Zworski [40] on Anosov flows, which proves the
meromorphic continuation of the Ruelle zeta function using microlocal resolvent esti-
mates; we expect that semi-classical methods could provide useful alternatives to the
arguments in Section 3.6.
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The Hadamard parametrix for Laplace–Beltrami operators on pseudo-Riemannian
manifolds is a classical tool in analysis; see e.g. [69, 112, 137] for textbook accounts
focused on the Riemannian or Lorentzian time-independent case. This parametrix plays a
fundamental rôle in quantum field theory on curved spacetimes, where it is used to sub-
tract singularities fromN -point functions to get well-defined non-linear quantities [20,37,
46,68,77,91,102]. In particular, Radzikowski [102] proved a relationship between the bi-
solution Hadamard parametrix and the Feynman parametrix of Duistermaat–Hörmander.
In the present article we work directly with the (z-dependent) Feynman version of the
Hadamard parametrix. Its analogue for fixed z was constructed by Zelditch [136] in the
ultrastatic case, and by Lewandowski [80] and Bär–Strohmaier [6] in the general case
using a family of distributions with distinguished wavefront set (the former construction
also gives a unified treatment of even and odd dimensions). The Hadamard parametrix is
also useful in spectral theory, and was applied e.g. by Sogge [111], Dos Santos Ferreira–
Kenig–Salo [38] and Bourgain–Shao–Sogge–Yao [17] in the context of Lp resolvent
estimates on compact Riemannian manifolds (including estimates uniform in the spectral
parameter z), and by Zelditch [136] in the problem of analytic continuation of eigenfunc-
tions.

Finally, we mention, only very non-exhaustively, works in noncommutative geometry
aimed at establishing a Lorentzian theory [14,15,31,36,45,92,95,115,124,125]. In con-
trast to the problem considered here, their focus is mostly on the formalism of spectral
triples or on distance formulæ. In the last few years this has included progress on spectral
actions by D’Andrea–Kurkov–Lizzi [31], Devastato–Farnsworth–Lizzi–Martinetti [36]
and Martinetti–Singh [84], which involves however transition from Euclidean signature
and relies on special symmetries or analyticity, very differently from the present paper’s
result.

1.4. Remarks on assumptions; outlook

The essential self-adjointness in [131] and the results of the present paper extend in a
straightforward way to the Hermitian bundle setting provided that the principal symbol
of P is a scalar wave operator and formal self-adjointness of P holds true for a positive
scalar product. We further comment on this in Remark 3.21.

The assumptions on spacetime geometry in Theorems 1.1 and 1.3 are not expected
to be sharp. In fact, only steps (1) and (3) of the proofs use the hypothesis that .M; g/
is a Lorentzian scattering space, and one could try to adapt the arguments depending on
estimates available in a given class of spacetimes. For instance, in view of the estimates
in [128], a natural candidate could be the class of asymptotically de Sitter spacetimes.
The essential self-adjointness of �g is also conjectured to be true for asymptotically
static spacetimes (see Dereziński–Siemssen [33, Sections 5.8 and 8.6]), and it is therefore
natural to ask whether (1) and (3) remain valid in that general setting.

A mathematically delicate point is the " ! 0C limit of the Schwartz kernel of
.P � i"/�˛ and of other functions of P � i". Namely, observe that in Theorems 1.1 and
1.3 we first compute a residue or an expansion and then take the "! 0C limit, but one
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could ask whether the order of these operations can be reversed. We give an affirmative
answer in the setting of Theorem 1.3 if�g is replaced by P D�g Cm2 withm> 0 (this
then produces extra terms in the expansion which vanish as m! 0C; see Theorem 8.4)
– this, however, requires stronger assumptions including non-trapping at energy m2; see
Sections 2.3 and 2.7. For the sake of illustration, we also prove in Appendix C.2 a limiting
absorption principle for .P � i"/�˛ in the case of space-compact ultrastatic spacetimes,
with similar conclusions on the possibility of taking the "! 0C limit before computing
residues.

The study of the " ! 0C limit with m D 0 rather than m > 0 requires a different
approach, based for instance on recent work by Vasy [132]; cf. Bouclet–Burq [16].

Finally, we do not consider here functions of Dirac operators or generalizations needed
to derive a spectral action principle for the whole Standard Model in Lorentzian signature;
we expect this however to be a fruitful topic of research in the near future.

2. Complex powers on Lorentzian scattering spaces

2.1. Klein–Gordon operator

Let .M; g/ be a Lorentzian manifold. We use the convention .C;�; : : : ;�/ for the signa-
ture of g. We denote by L2.M/ the canonical L2 space associated to the volume density
dvolg of g, i.e. the L2.M/ norm is

kuk D

�Z
M

ju.x/j2 dvolg

�1=2
:

Let P D �g Cm2 be the wave or Klein–Gordon operator, i.e.

�g D
1p
jgj

@�.
p
jgjg��@�/

is the Laplace–Beltrami operator in Lorentzian signature, jgj D jdetgj and m2 > 0.

2.2. Lorentzian scattering spaces

We will need to make assumptions on the asymptotic structure of .M; g/ at spacetime
infinity. To that end it is convenient to assume thatM is the interior of a compact manifold
with boundary M .

We use the notation C1.M/ for the space of smooth function on M , meant in the
usual sense of smooth extensibility across the boundary (denoted in what follows by @M ).

Let � be a boundary-defining function of @M , i.e. a function � 2 C1.M/ such that
� > 0 on M , @M D ¹� D 0º, and d� ¤ 0 on @M . Recall that by the collar neighbor-
hood theorem, there exists W � @M , � > 0 and a diffeomorphism � W Œ0; �Œ � @M ! W

such that � ı � agrees with the projection to the first component of Œ0; �Œ � @M . We will
drop � in the notation when working close to the boundary, i.e. in the collar neighbor-
hood W . In this sense we can find local coordinates of the form .�; y1; : : : ; yn�1/, where
.y1; : : : ; yn�1/ are local coordinates on @M .
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We use the framework of Melrose’s sc-geometry [87], mostly following the presenta-
tion in [130,131]. Let scTM be the scattering tangent bundle (or for short, the sc-tangent
bundle) of M . Recall that scTM can be defined as the unique vector bundle over M such
that all of its smooth sections V 2 C1.M I scTM/ are locally of the form

V D V0.�; y/�
2@� C

n�1X
iD1

Vi .�; y/�@yj ; V0; Vi 2 C
1.U /; i D 1; : : : ; n � 1; (2.2)

on a chart neighborhood U with local coordinates .�; y1; : : : ; yn�1/. Away from the
boundary, scTM is defined in the same way as the tangent bundle TM , and there is
indeed a canonical isomorphism scTMM ! TM .

The sc-cotangent bundle scT �M is by definition the dual bundle of scTM . Thus, in
local coordinates .�;y1; : : : ;yn�1/, the smooth sections of scT �M areC1.M/-generated
by .��2d�; ��1dy1, : : : ; ��1dyn�1/. Again, over the interior there is a canonical isomor-
phism

scT �MM ! T �M: (2.3)

Next, an sc-metric is by definition a non-degenerate smooth section of the fiberwise sym-
metrized tensor product bundle scT �M ˝s

scT �M .

Definition 2.1. .M; g/ is a Lorentzian scattering space (or for short, a Lorentzian sc-
space) if g 2 C1.M I scT �M ˝s

scT �M/ is of Lorentzian signature.

Example 2.2. The standard example is M D Rn, with M D Rn the radial compactifi-
cation of Rn. Recall that Rn is defined as the quotient of Rn t .Œ0; 1Œ� � Sn�1y / by the
relation which identifies any non-zero x 2 Rn with the point .�; y/, where � D r�1 and
.r; y/ are the polar coordinates of x. The smooth structure near ¹� D 0º is the obvious
one in .�; y/ coordinates. Observe that the vector field @r D ��2@� is of the form (2.2).
More generally, switching now to standard coordinates .x0; : : : ; xn�1/ on Rn, the frame
.@x0 ; : : : ; @xn�1/ smoothly extends to scT �Rn, and any V 2 C1.RnI scT Rn/ is in the
C1.Rn/-span of .@x0 ; : : : ; @xn�1/, i.e. the coefficients smoothly extend across ¹�D 0º in
.�; y/ coordinates on top of being smooth in Rn. Similarly, any g 2 C1.RnI scT �Rn ˝s
scT �Rn/ is in the C1.Rn/-span of dx�˝s dx

� for �;� D 0; : : : ; n� 1. In particular, the
Minkowski metric �D dx20 � .dx

2
1 C � � � C dx

2
n�1/ on Rn extends to an sc-metric on Rn

and in this sense Minkowski space is a Lorentzian sc-space.

We will assume that g (the Lorentzian metric on the boundaryless manifold M )
extends to an sc-metric onM , and so .M;g/ is a Lorentzian sc-space. The volume density
of .M; g/, dvolg , extends then to an sc-density on M , meaning that in local coordinates
.�; y/ it is of the form �.�; y/j��2d� ��nC1dyj with � 2 C1.M/.

2.3. Bicharacteristics and Hamiltonian flow

When discussing microlocalization it is useful to compactify the fibers of scT �M . The
base manifold M having a boundary already, the fiberwise radial compactification of
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scT �M yields a manifold with corners (see [87, Section 6.4] for details), which we will
denote by scT �M .

As a manifold with corners, scT �M has two boundary hypersurfaces: the first one
is base infinity or spacetime infinity, which we denote by @scT �M (instead of using the
more pedantic, but heavier notation scT �

@M
M ), and the other one is fiber infinity, which

we denote by @scT �M: We stress that despite what the notation could suggest, these two
boundary hypersurfaces do intersect at the corner @scT �M \ @scT �M ¤ ;, and we have
of course

@scT �M D @scT �M [ @scT �M:

Let h�i�1 be the formal notation for a boundary-defining function of fiber infinity. For
z 2 C, the principal symbol of �g � z in the sense of the sc-calculus is the function pz
on @scT �M given by

pz.x; �/ D

´
�j�j�2.� � g�1�/ on @scT �M;

h�i�2.�� � g�1� � z/ on @scT �M:
(2.4)

This is well-defined at @scT �M thanks to the j�j�2 factor that compensates for the
degree 2 homogeneity of � � g�1� in �. This is also well-defined at @scT �M as a con-
sequence of the assumption that g extends to an sc-metric. Furthermore, the definition is
consistent at the corner.

The characteristic set of�g � z, denoted by†z , is defined as the closure of p�1z .¹0º/

in @scT �M . Note that †z � @scT �M unless z is real. Furthermore, †z \ @scT �M D

†0 \ @
scT �M is always non-empty but does not depend on z. This is why various

hypotheses can be simply written in terms of †� with � 2 R.
The Hamiltonian vector field of p0 on scT �M , denoted by Hp0 , is the extension of

the usual Hamiltonian vector field defined in the interior, i.e. the standard definition on
T �M induces a vector field on scT �MM via the isomorphism (2.3), and this then extends
to a vector fieldHp0 on scT �M . Similarly, scT �M has a symplectic and contact structure
inherited from T �M by extension; see e.g. [85, Section 2]. In local coordinates on scT �M

of the form .�; y; %; �/, where .%; �/ are the dual coordinates of .�; y/, Hp0 is given by

Hp0 D �
�
.@%p/.�@� C � � @�/ � .�@� C � � @�/p@% C

n�1X
iD1

�
.@�ip/@yi � .@yip/@�i

��
:

The rescaled Hamiltonian vector field Hp0 WD h�i
�1��1Hp0 extends to a smooth vector

field on scT �M which is tangent to @scT �M . We call its flow on @scT �M the Hamil-
tonian flow, and for � 2 R, the bicharacteristics are the integral curves of the rescaled
Hamiltonian vector field within †� .

Definition 2.3. For � 2R we say that .M;g/ is non-trapping at energy � if the following
conditions are satisfied:

(1) There are two submanifolds L� � @scT �M and LC � @scT �M , each transversal to
@scT �M \ @scT �M , which are sources, resp. sinks for the Hamiltonian flow in †� .
More precisely, this means that within †� ,
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(a) dp0 ¤ 0 on L˙ and Hp0 is tangent to L˙,

(b) there exists a quadratic defining function �˙ ofL˙ and a smooth function ˇ˙ > 0
satisfying

�Hp0�˙ D ˇ˙�˙ C s˙ C r˙

for some smooth s˙; r˙ such that s˙ > 0 onL˙ and r˙ vanishes cubically atL˙,

(c) there exists ˇ0;˙ 2C1.scT �M/ such that ˇ0;˙ >0 onL˙ and�Hp0�D ˇ0;˙�.

(2) Within†� , each bicharacteristic either goes from LC to L�, or goes from L� to LC,
or stays within LC or L�.

We say that .M; g/ is non-trapping if (1) and (2) hold true with †0 \ @scT �M instead
of †� .

We will simply refer to L� as sources and to LC as sinks. In (1) of Definition 2.3, by
saying that �˙ 2 C1.scT �M/ is a quadratic defining function of L˙ we mean that �˙ DP
i �
2
˙;i for finitely many �˙;i such that L˙ D

T
i¹�˙;i D 0º within †� \ @scT �M , and

the differentials d�˙;i are linearly independent on L˙ \†� . A more detailed discussion
of conditions (b)–(c) can be found in [130, Section 5.4.7].

Example 2.4. A (non-exhaustive) class of examples is provided by the non-trapping
Lorentzian scattering metrics introduced in [7] and further studied in the context of the
Feynman problem in [49]. Namely, one assumes the existence of a function v 2 C1.M/

such that for all V 2 C1.M I scTM/ the signs of g.V; V / and v are the same at @M D
¹� D 0º. Furthermore, near ¹v D � D 0º, the sc-metric g is assumed to be of the form

g D v
d�2

�4
�

�
d�

�2
˝s

!

�

�
�
Qg

�2
;

where ! is a smooth 1-form such that ! D dvCO.v/CO.�/, and the restriction of Qg 2
C1.M IT �M ˝s T

�M/ to the joint annihilator of d�; dv is positive. As discussed in [7,
Section 3.6], this implies the existence of sources/sinks at ¹�D vD 0; %D 
 D 0;�
 > 0º
in coordinates .�; v;w; %; ˇ; 
/ 2 scT �M . One then needs to ensure that the non-trapping
property (1) of Definition 2.3 holds true in†0 \ @scT �M ; see [7, Section 3.2]. Minkowski
space is a special case (see [7, Section 3.1]), and we also note that in practice it is possible
to consider perturbations that do not have the structure of sinks and sources, but for which
the propagation estimates used in the sequel remain valid nevertheless. We also refer to
[131, Section 2] for remarks on the assumption of non-trapping at � ¤ 0.

In [131], Vasy proves the following theorem; cf. the work of Nakamura–Taira [93]
for the case of real principal type operators of arbitrary orders on Rn under a similar
non-trapping condition.

Theorem 2.5 ([131, Theorem 1]). Assume .M; g/ is non-trapping. Then P acting on
C1c .M/ is essentially self-adjoint in L2.M/.

As a consequence, if we denote in the same way the closure of P acting on C1c .M/,
functions of P can be defined using the functional calculus for self-adjoint operators.
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We are particularly interested in Schwartz kernels of functions of P , and therefore we
need to know more precise mapping properties of the resolvent, also basing on the results
from [131].

2.4. Sobolev spaces

If s 2 Z>0, then the sc-Sobolev space of order s is by definition

H s;0
sc .M/ D

¹u 2 L2.M/ j 8k 6 s and V1; : : : ; Vk 2 C1.M I scTM/; V1 : : : Vku 2 L
2.M/º:

The definition of H s;0
sc .M/ and of its norm k � ks;0 for arbitrary s 2 R is most effi-

ciently formulated with the help of sc-pseudo-differential operators; see Appendix A.2.
The weighted Sobolev spaces are defined for non-zero ` 2 R by

H s;`
sc .M/ D �`H s;0

sc .M/;

with norm kuks;` D k��`uks;0, where � is as before a boundary-defining function of @M .
Thus, higher s means more regularity, and higher ` means more decay at spacetime
infinity, i.e. at @M . In the special case of Minkowski space modelled on Rn, the space
H s;0

sc .M/ coincides with the usual Sobolev spaceH s.Rn/, and if we choose as boundary-
defining function �D .1C jxj2/�1=2DW hxi�1 thenH s;`

sc .M/ coincides with the weighted
Sobolev space hxi�`H s.Rn/.

The definition of H s;`
sc .M/ can be usefully generalized to weight orders ` that vary in

phase space, i.e. to ` 2 C1.scT �M/ rather than just ` 2 R; see Appendix A.2. We will
also use the Fréchet spaces

H1;`sc .M/ WD
\
s>0

H s;`
sc .M/; H s;1

sc .M/ WD
\
`>0

H s;`
sc .M/:

We stress that unless s D ` D 0, the definition of H s;`
sc .M/ refers to the manifold

with boundary M . As a rule, we do not necessarily emphasize the dependence on M
or g in the notation if there is an “sc” subscript, which indicates the dependence on the
scattering structure already. Apart from the spaces with an “sc” subscript, we use standard
notation. For instance, C1c .M/, C1.M/, H s

c .M/ and H s
loc.M/ are the standard spaces

on the boundaryless manifold M (in contrast to the space of smooth functions C1.M/

on the manifold with boundary M ), and similarly for the space D0.M/ of distributions
and E 0.M/ of compactly supported distributions on M .

Note that for all s 2 R and ` 2 C1.scT �M/ we have the continuous inclusions

H s
c .M/ � H s;`

sc .M/ � H s
loc.M/ � D0.M/:

2.5. Estimates for imaginary spectral parameter

We now consider the operator P � z for z 2 C, focusing first on the case Im z > 0.
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For Im z ¤ 0, P � z 2‰2;0sc .M/ is microlocally elliptic in the sense of the sc-calculus
except at fiber infinity @scT �M ; propagation estimates take place inside †0 \ @scT �M .

For ` 2 C1.scT �M/ we set `˙ D `jL˙ . We will say that ` is monotone in †z if it
is monotone along the Hamiltonian flow restricted to †z . In various estimates, S; L 2 R
will always be sufficiently negative numbers, which can be taken arbitrarily negative.

For an arbitrary c > 0 let Z D ¹Im z > cjRe zjº, and let ı > 0.

Proposition 2.6 ([131, Proposition 2]). Let s 2 R, and let ` 2 C1.scT �M/ be monotone
in†0 and such that `� >�1=2 and `C <�1=2. Then for all s0 2R, all `0 2C1.scT �M/

with `0� 2 ��1=2; `�� and all u 2 H s0;`0

sc .M/,

kuks;` C .Im z/1=2kuks�1=2;`C1=2 6 C.k.P � z/uks�1;`C1 C kukS;L/; (2.5)

uniformly for z 2 Z \ ¹jzj > ıº.

Proof. The proof is based on a slight modification of the estimates in [130, Section 5.4]
and can be found in [131]. We only sketch it very briefly for the reader’s convenience.

The basic ingredients are the higher decay radial estimate at sources and the lower
decay radial estimate into the sinks, recalled in more detail in Appendix A.3; see also
Appendix A.2 for prerequisites on scattering pseudo-differential calculus. The first esti-
mate (see Proposition A.3) reads

kAuks;` C .Im z/1=2kAuks�1=2;`C1=2 6 C.kB.P � z/uks�1;`C1 C kukS;L/;

for all u 2 H s0;`0

sc .M/, ` > `0 > �1=2, s; s0 2 R, L� � Ellsc.A/, WF0sc.A/ contained
in a small neighborhood of L� in Ellsc.B/, and within Ellsc.B/, bicharacteristics from
WF0sc.A/ tend to L� in the forward direction along the flow. The second estimate (see
Proposition A.2) is

kAuks;` C .Im z/1=2kAuks�1=2;`C1=2

6 C.kB1uks;` C kB.P � z/uks�1;`C1 C kBuks0;`0 C kukS;L/

for all u 2 H s0;`0

sc .M/, ` < �1=2, `0; s; s0 2 R, LC � Ellsc.A/, WF0sc.A/ contained in
a small neighborhood of LC in Ellsc.B/, and within Ellsc.B/, bicharacteristics from
WF0sc.A/ nLC tend to LC in the forward direction along the flow, and intersect Ellsc.B1/

in the backward direction.
Thanks to the non-trapping assumption, by taking ` as in the assumption of the propo-

sition, the two estimates applied in a neighborhood of †0 \ @scT �M can be combined
with propagation of singularities estimates (Proposition A.1) and with the elliptic estimate
to yield (2.5) (see e.g. [50, Section 3.2] for a pedagogical explanation of how to combine
this type of estimates).

By iterating (2.5) we can conclude that for all Im z > 0 and all N 2 N>0,

.P � z/�N W L2c .M/! HN
loc.M/: (2.6)
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By replacing P by �P (the rôle of LC and L� is then exchanged) we also obtain (2.6)
for Im z < 0. Note that in contrast to the elliptic case, we cannot expect that the image is
in H 2N

loc .M/.
To show regularity properties of non-integer powers we will need the following more

precise statement.

Proposition 2.7. Let " > 0, N 2 N>0, s 2 R, and let ` 2 C1.scT �M/ be monotone
in †0 and such that `� > �1=2 and `C < �N . Then

k.P � i"/�N .P � z/�1f ks;` 6 C.Im z/�1=2.kf ks�N�1=2;`CNC1=2 C kf k/; (2.7)

uniformly for all z 2 Z \ ¹jzj > ıº and for all f 2 L2.M/ \H
s�N�1=2;`CNC1=2
sc .M/.

Proof. Since `� > �1=2 and `C < �N C 1=2, we can apply Proposition 2.6 with u D
.P � i"/�N .P � z/�1f 2 L2.M/ and then iterate the estimate, N times in total. By
dropping the part proportional to Im z from the l.h.s. each time, we obtain

k.P � i"/�N .P � z/�1f ks;` 6 C.k.P � z/�1f ks�N;`CN C kukS;L/:

Since `� CN � 1=2 > �1=2 and `C CN � 1=2 < �1=2, we can apply Proposition 2.6
to v D .P � z/�1f 2 L2.M/. By keeping only the part proportional to .Im z/1=2 on the
l.h.s. we obtain

.Im z/1=2k.P � z/�1f ks�N;`CN 6 C.kf ks�N�1=2;`CNC1=2 C kvkS;L/:

The terms kukS;L and kvkS;L above can be estimated by k.P � z/�1f k and thus by
.Im z/�1 using the self-adjointness of P . Combining the estimates yields (2.7).

Remark 2.8. Proposition 2.7 is also valid for N D 0 if `� > 0, as can easily be seen by
dropping the first part of the proof.

2.6. From resolvent to complex powers

As P is a self-adjoint operator, the complex powers .P � i"/�˛ are well-defined by func-
tional calculus for " > 0 and ˛ 2 C, and also for " D 0 if Re ˛ < 0. We deduce below
various regularity properties of .P � i"/�˛ from resolvent estimates.

We will express .P � i"/�˛ as an integral of .P � z/�1 over a contour 
" defined as
follows. Let Q
" be a contour going from Re z� 0 to Re z� 0 in the upper half-plane, of
the form

Q
" D e
i.���/��1; "=2� [ ¹"=2ei! j � � � < ! < �º [ ei� Œ"=2;C1Œ

for some fixed � 2 �0;�=2�. We then define 
" WD Q
"C i" (see Figure 1). We also define its
degenerate version 
0, which also goes from Rez� 0 to Rez� 0 in the upper half-plane
and is of the form


0 D e
i.���/��1; 0� [ ei� Œ0;C1Œ:
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"

"

"
2

Re z

i Im z

Fig. 1. The contour 
" used to express .P � i"/�˛ as an integral of the resolvent .P � z/�1 for P
self-adjoint. If " D 0 the contour degenerates to two half-lines intersecting the real line at 0.

Proposition 2.9. Assume .M; g/ is non-trapping.

(1) For all " > 0 and ˛ 2 C, H1;0sc .M/ � Dom .P � i"/�˛ .

(2) For all ˛ 2 C with Re˛ < 0, H1;0sc .M/ � Dom .P � i0/�˛ .

(3) For all u 2 H1;0sc .M/ and all " > 0, the functions C 3 ˛ 7! .P � i"/�˛u 2 L2.M/

and ¹Re˛ < 0º 3 ˛ 7! .P � i0/�˛u 2 L2.M/ are holomorphic.

(4) For all " > 0, ˛ 2 C with Re˛ < 0, s > 0 and � > 0,

.P � i"/�˛ W H s;1
sc .M/! H sC2bRe˛c�3=2;��

sc .M/

continuously.

(5) For all " > 0, ˛ 2 C with Re˛ > 1=2, s > 0 and � > 0,

.P � i"/�˛ W H s;1
sc .M/! H sCbRe˛�1=2cC1=2;�bRe˛�1=2cC1=2��

sc .M/

continuously.

Proof. (1) We write .P � i"/�˛ D .P � i"/�˛�N .P � i"/N for some N 2 N0 with
N > �Re˛. Then .P � i"/�˛�N is bounded on L2.M/ and .P � i"/N W H1;0sc .M/!

H1;0sc .M/ continuously, hence .P � i"/�˛ W H1;0sc .M/! L2.M/ continuously and the
claim follows.

(2) The assertion follows directly from (1) and the fact that (see Appendix B) for all
Re˛ < 0 and all " > 0, Dom .P � i0/�˛ D Dom .P � i"/�˛ .

(3) This follows easily from (1) and functional calculus.
(4) Let N D �bRe˛c C 1. By (B.6),

.P � i"/�˛ D
1

2�i

Z

0Ci"

.z � i"/�˛

.z � i/N
.P � i/N .P � z/�1 dz: (2.8)
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By P � i 2 ‰2;0sc .M/ and by Remark 2.8, for L 2 R sufficiently large,

.P � i/N .P �z/�1 WH s;L
sc .M/! H sC1=2�2N;��

sc .M/ has O.jIm zj�1=2/ norm: (2.9)

By dominated convergence, the integral (2.8) is bounded on the same spaces.
(5) We write .P � i"/�˛ D .P � i"/�N .P � i"/��, where N D bRe˛ � 1=2c and

Re� > 1=2, and then we express .P � i"/�� in terms of the resolvent of iP as a contour
integral using (B.4). This gives

.P � i"/�˛ D
1

2�i

Z

"

.z � i"/��.P � i"/�N .P � z/�1 dz: (2.10)

By Proposition 2.7 (with s CN C 1=2 instead of s and `C D �N � �), for L 2 R suffi-
ciently large,

.P � i"/�N .P � z/�1 W H s;L
sc .M/! H sCNC1=2;�N��

sc .M/ has O.jIm zj�1=2/ norm:

By dominated convergence, the integral (2.10) is bounded on the same spaces.

2.7. Estimates uniform down to the real axis

In [131], estimates uniform down to the real axis are obtained under the extra hypothesis
that P D �g C m2 with m2 ¤ 0 and .M; g/ is non-trapping at energy � D m2 (see
Definition 2.3). This is not necessary for our main results. However, we briefly discuss
the improved estimates here as they lead to stronger results (in terms of the dependence
on " for functions of P � i") in later sections.

The non-trapping at energy � D m2 ensures that the Fredholm estimates for P � i"
are uniform down to "D 0. Let us state this as a proposition (proved in analogy to Propo-
sition 2.6) for further reference.

Proposition 2.10 ([131, Proposition 2]). Let .M; g/ be a non-trapping Lorentzian scat-
tering space and assume it is non-trapping at energy � D m2 ¤ 0. Let s 2 R, and let
` 2 C1.scT �M/ be monotone in †� and such that `� > �1=2 and `C < �1=2. Then
there exists ı > 0 such that for all s0 2 R, all `0 2 C1.scT �M/ with `0� 2 ��1=2; `�� and
all u 2 H s0;`0

sc .M/,

kuks;` 6 C.k.P � z/uks�1;`C1 C kukS;L/;

uniformly in z 2 ¹Im z > 0º [ ¹jzj 6 ıº.

An injectivity property is needed to get an invertibility statement in weighted Sobolev
spaces down to Im z ! 0C.

Definition 2.11. We say that injectivity holds at � D m2 ¤ 0 if for some s 2 R and some
` 2 C1.scT �M/ monotone with `� > �1=2 and `C < �1=2,

.u 2 H s;`
sc .M/; Pu D 0/ H) .u D 0/:
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Sufficient conditions for injectivity with �1 < `C < �1=2 are discussed in [131].
As a consequence one concludes a limiting absorption principle, i.e. the existence of the
limiting operator .P � i0/�1 on weighted Sobolev spaces. We state here the following
variant.

Proposition 2.12. Let .M; g/ be a non-trapping Lorentzian scattering space and assume
non-trapping at energy � D m2 and injectivity. Let s 2 R and ` 2 C1.scT �M/ be as in
Hypothesis 2.11. There exists ı > 0 such that

k.P � z/�1f ks;` 6 Ckf ks�1;`C1; (2.11)

uniformly for Im z > 0, jzj < ı.

Proof. By [131, Theorem 5], if Im z > 0 and jzj < ı with ı sufficiently small then
.P � z/�1 tends to .P � i0/�1 in the weak operator topology as z ! 0. By compact-
ness of the embeddings H s1;`1

sc .M/ ,! H
s2;`2
sc .M/ for any s1 > s2 and `1 > `2, this

gives boundedness in norm, i.e. (2.11).

3. Wavefront set of the resolvent

3.1. Summary

Our next goal is to estimate the wavefront set of the resolvent .P � z/�1 and give suffi-
cient conditions for a given parametrix of P � z to be equal .P � z/�1 modulo smooth
terms (in the sense of having smooth Schwartz kernel in M �M ). This needs to be true
uniformly in z in an appropriate sense because we will then be interested in integrating
in z when considering complex powers.

We remark that techniques to deduce the wavefront set of resolvents from propa-
gation estimates were developed by Dyatlov–Zworski [40] in the semi-classical case,
originally in the context of Anosov flows. Here, we use an argument more similar to
the work of Vasy–Wrochna [133] and we also construct a parametrix related to that of
Gérard–Wrochna [52]. The disadvantage as compared to the semi-classical approach is
that it is less evident how to deal with possible singularities of Schwartz kernels which
are microlocally at o� T �M or T �M � o, where o is the zero section. This issue is how-
ever circumvented by considering an operator version of the wavefront set, similarly to
[47, 135].

3.2. Uniform operator wavefront set

Let Z � C and let h be a strictly positive function on Z. Suppose Gz W E 0.M/! D0.M/

for z 2 Z.

Definition 3.1. For s 2 R, we write

Gz D OH�!H�Cs .h.z//
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if for all l 2 R, h.z/�1Gz is a uniformly bounded family of continuous operatorsH l
c .M/

! H lCs
loc .M/. We write Gz D OC1!C1.h.z// if Gz D OH�!H�Cs .h.z// for some

s 2 R.

Note that Gz D OH�!H�Cs .h.z// implies G�z D OH�!H�Cs .h.z//, and also Gz D
OC1!C1.h.z// implies G�z D OC1!C1.h.z//.

We will be mostly interested in wavefront set estimates in the interior M of M . Over
the interior, @scT �M is isomorphic to @T �M , the boundary of the fiber compactifica-
tion of T �M . We denote by ‰s.M/ the class of properly supported pseudo-differential
operators of order s 2 R on M (in the sense of the usual calculus on the boundaryless
manifold M ). One says that A 2 ‰s.M/ is elliptic at q 2 @T �M if its principal symbol
is non-zero at q.

Definition 3.2. If Gz D OC1!C1.h.z// then its uniform operator wavefront set of
order s 2 R is the set WF0 .s/

h.z/
.Gz/ � @T

�M � @T �M defined as follows: .q1; q2/ …
WF0 .s/

h.z/
.Gz/ iff there exist Bi 2 ‰0.M/ elliptic at qi (i D 1; 2) and such that

B1GzB
�
2 D OH�!H�Cs .h.z//: (3.12)

We show several elementary properties of the uniform operator wavefront set, the
proof of which is to a large extent analogous to [135, Section 5.1].

Let us recall that for A 2 ‰s.M/, there is a closely related notion of operator wave-
front set WF0.A/ which characterizes the directions q 2 @T �M in which microlocally, A
does not behave as a regularizing operator.

Lemma 3.3. For any q1; q2 2 @T �M � @T �M , .q1; q2/ …WF0 .s/
h.z/

.Gz/ if and only if for
i D 1; 2 there exist neighborhoods �i of qi such that (3.12) holds true for all Bi 2‰0.M/

elliptic at qi and satisfying WF0.Bi / � �i .

Proof. Suppose .q1; q2/ …WF0 .s/
h.z/

.Gz/, so that there existsAi 2‰0.M/, i D 1;2, elliptic
at qi , such that A1GzA�2 D OH�!H�Cs .h.z//. There exists a compact neighborhood �i
of qi on which Ai is elliptic. Therefore, there exists A.�1/i 2 ‰0.M/ such that

WF0.A.�1/i Ai � 1/ \ �i D ;:

Let Bi 2 ‰0.M/ be elliptic at qi and such that WF0.Bi / � �i . These conditions imply
that

B1.A
.�1/

1 A1 � 1/ 2 ‰�1.M/; .A�2.A
.�1/

2 /� � 1/B�2 2 ‰
�1.M/: (3.13)

We can write

B1GzB
�
2 D B1A

.�1/

1 A1GzA
�
2.A

.�1/

2 /�B�2 C B1.1 � A
.�1/

1 A1/GzA
�
2.A

.�1/

2 /�B�2

C B1A
.�1/

1 A1Gz.1 � A
�
2.A

.�1/

2 /�/B�2

C B1.1 � A
.�1/

1 A1/Gz.1 � A
�
2.A

.�1/

2 /�/B�2 :
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By A1GzA�2 D OH�!H�Cs .h.z// and (3.13), all the summands are OH�!H�Cs .h.z//,
hence

B1GzB
�
2 D OH�!H�Cs .h.z//:

The opposite direction is trivial.

Lemma 3.4. If Gz ; G0z D OC1!C1.h.z//, then

WF0 .s/
h.z/

.Gz C QGz/ �WF0 .s/
h.z/

.Gz/ [WF0 .s/
h.z/

. QGz/:

Proof. If .q1; q2/ …WF0 .s/
h.z/

.Gz/ and .q1; q2/ …WF0 .s/
h.z/

. QGz/ then by Lemma 3.3 we can
choose B1; B2 elliptic at resp. q1; q2 such that

B1GzB
�
2 and B1 QGzB�2 are both OH�!H�Cs .h.z//:

Hence B1.Gz C QGz/B�2 is OH�!H�Cs .h.z// and thus .q1; q2/ …WF0 .s/
h.z/

.Gz C QGz/.

Proposition 3.5. Suppose WF0 .s/
h.z/

.Gz/ D ;. Then Gz D OH�!H�Cs .h.z//.

Proof. It suffices to show that for any x1; x2 2 M there exist �1; �2 2 C1c .M/ with
�i � 1 near xi such that �1Gz�2 D OH�!H�Cs .h.z//.

By definition of WF0 .s/
h.z/

.Gz/, for any q; q0 2 @T �M there exist B1;q; B2;q0 2 ‰0.M/

elliptic at resp. q, q0 such that B1;qGzB�2;q0 D OH�!H�Cs .h.z//. Let �1;q be the set on
which B1;q is elliptic.

Then ¹�1;q j q 2 @T �x1M º is an open cover of @T �x1M . By compactness we can find a
finite subcover ¹�1;qj º

N
jD1. Then B1 D

P
j B
�
1;qj

B1;qj 2 ‰
0.M/ is elliptic on @T �x1M .

In a similar way we construct B2 D
P
l B
�

2;q0
l

B2;q0
l
2 ‰0.M/ elliptic on @T �x2M . This

gives
B1GzB

�
2 D

X
j;l

B�1;qjB1;qjGzB
�

2;q0
l
B2;q0

l
D OH�!H�Cs .h.z//

using the fact that the sum is finite.
We can find a microlocal parametrix of B1 and B2, i.e. B .�1/i 2 ‰0.M/ such that

R1 D 1� B .�1/1 B1 and R2 D 1� B2B
.�1/

2 satisfy WF0.Ri /\ @T �xiM D ;. This implies
that there is a neighborhood Oi of xi in M such that WF0.Ri / \ @T �OiM D ;. Let �i 2
C1c .M/ be such that supp�i � Oi and �i � 1 near xi . We have

�1Gz�2 D �1B
.�1/

1 .B1GzB
�
2 /B

.�1/�

2 �2 C �1R1GzB
�
2B

.�1/�

2 �2

C �1B
.�1/

1 B1GzR
�
2�2 C �1R1GzR

�
2�2;

where all the summands are OH�!H�Cs .h.z//, hence �1Gz�2 2OH�!H�Cs .h.z//.

Lemma 3.6. If Gz DOC1!C1.h.z// then .q1; q2/2WF0 .s/
h.z/

.Gz/ if and only .q2; q1/2

WF0 .s/
h.z/

.G�z /.

Proof. If B1GzB�2 is OH�!H�Cs .h.z// then so is its formal adjoint B�2G
�
zB1, where

B�2 is elliptic at q2 and B�1 is elliptic at q1.
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Lemma 3.7. Let G1;z D OC1!C1.h1.z// and G2;z D OC1!C1.h2.z// and sup-
pose that the operators G2;z are properly supported for all z 2 Z. Then the composition
G1;zG2;z D OC1!C1.h1h2.z// is well-defined and satisfies

WF0 .s/
h1h2.z/

.G1;zG2;z/ �WF0 .s/
h1.z/

.G1;z/ ıWF0 .s/
h2.z/

.G2;z/; (3.14)

where the composition of �1; �2 � @T �M � @T �M is defined by

�1 ı �2 D ¹.q1; q2/ 2 @T
�M � @T �M j 9q 2 @T �M W .q1; q/ 2 �1; .q; q2/ 2 �2º:

Proof. For all A1; A2 2 ‰0.M/,

A1G1;zG2;zA
�
2 D

X
k

.A1G1;zB
�
k /.BkG2;zA

�
2/; (3.15)

where Bk 2‰0.M/ is an arbitrary family such that
P
k B
�
k
Bk D 1 as a locally finite sum.

By taking WF0.Bk/ sufficiently small and using (3.15) we obtain (3.14).

Let us now explain the relation with more standard notions which will be used in later
sections.

Definition 3.8. Let X be a smooth (boundaryless) manifold and let ƒ � T �X n o be
conic. Let ¹uzºz2Z be a family of distributions on X . We write uz D OD0

ƒ
.h.z// iff for

all A 2 ‰0.X/ satisfying WF0.A/ \ƒ D ; we have Auz D OC1.h.z//.

Definition 3.9. Let � W T �M n o! @T �M be the quotient map for the R>0 action by
fiberwise dilations. For each conic set ƒ � T �.M �M/ n o we define

ƒ0 D ¹.�.x1I �1/; �.x1I ��2// j .x1; x2I �1; �2/ 2 ƒ; �1 ¤ 0; �2 ¤ 0º;

which is a subset of @T �M � @T �M .

Lemma 3.10. Supposeƒ� T �.M �M/ n o is conic andGz DOC1!C1.h.z//. If the
associated family of Schwartz kernels satisfiesGz.�/DOD0

ƒ
.h.z// then WF0 .s/

h.z/
.Gz/�ƒ

0

for all s 2 R.

Proof. For ease of notation we identify T �M n o with @T �M using the quotient map �.
Let q D .x1; x2I �1; �2/ 2 T �.M �M/ nƒ with �1 ¤ 0 and �2 ¤ 0, and let �i , i D 1; 2,
be a small conic neighborhood of .xi I �i /, to be fixed later on. Let Bi 2‰0.M/ be elliptic
at .xi I �i /, with WF0.Bi / � �i . Let A 2 ‰0.M �M/ be elliptic on �1 � �2 and with
symbol vanishing in a conical neighborhood of o� T �M and T �M � o. This implies that
A.B1˝B2/2‰

0.M/ and thatA.B1˝B2/ is elliptic at q. SinceGz.�/DOD0
ƒ
.h.z// and

q …ƒ, we can take �1;�2 such that WF0.A.B1˝B2// is in a small enough neighborhood
of q so that A.B1 ˝ B2/Gz.x; y/ D OC1.h.z//. By ellipticity of A on �1 � �2, this
implies .B1 ˝ B2/Gz.x; y/ D OC1.h.z//, where B1; B2 acts on the first, resp. second
variable of the Schwartz kernel ofGz . HenceB1Gz NB�2 DOH�!H�Cs .h.z// for all s 2R,
where NB�2 2‰

0.M/ is defined via complex conjugation of the Schwartz kernel of B�2 and
so is elliptic at .x2I ��2/. This implies ..x1I �1/; .x2I ��2// … WF0 .s/

h.z/
.Gz/ for all s 2 R

as claimed.
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3.3. Uniform parametrices

After these general considerations we return to the setting of the operator P � z, though
for the moment the only relevant assumption is that P is of real principal type.

Recall that @scT �M is identified with @T �M over the interior M of M , and in this
sense the characteristic set of�g � z over M is

† WD †z \ @T
�M

and does not depend on z. Let us denote by t 7! ˆt the bicharacteristic flow in †. For
q1; q2 2 @T

�M , we write

q1 � q2 .resp. q1 � q2; or q1 � q2/

if q1; q2 2† andˆt .q1/D q2 for some t 2R (resp. t > 0, or t < 0). If q1 � q2 we denote
by 
q1�q2 the closed bicharacteristic segment in † from q1 to q2.

We consider families ¹Gzºz2Z of operators parametrized by some Z � C. If the
reference weight h.z/ is identically 1 we simply write WF0 .s/.Gz/ for the uniform
Sobolev wavefront set instead of WF .s/1 .Gz/. Other particularly useful weights are
h.z/ D jIm zj�1=2, h.z/ D hIm zi�1=2 and h.z/ D hzi�1=2.

We state below a variant of Hörmander’s propagation of singularities theorem for the
uniform operator wavefront set. For convenience, we formulate it as a corollary of propa-
gation estimates in weighted Sobolev spaces recalled in Appendix A.3 in our setting. Note
that the statement is valid in greater generality (aspects at infinity of M being irrelevant),
as one can give a direct proof by adapting Hörmander’s positive commutator estimates
[70, Section 6.5] along the lines of Vasy’s work [131] to account for the case Im z ¤ 0.

Proposition 3.11. Let Z � ¹Im z > 0º. Assume Gz D OC1!C1.1/, and suppose that
.P � z/Gz D OC1!C1.1/ and

.q1; q2/ 2WF0 .s/.Gz/ nWF0 .s�1/..P � z/Gz/: (3.16)

Then q1 2 †, and .q01; q2/ 2 WF0 .s/.Gz/ for all q01 such that q01 � q1 provided that
.q; q2/ …WF0 .s�1/..P � z/Gz/ for all q 2 
q1�q01 . Similarly, if we assume Gz.P � z/D
OC1!C1.1/ and

.q1; q2/ 2WF0 .s/.Gz/ nWF0 .s�1/.Gz.P � z//; (3.17)

then q2 2†, and .q1; q02/2WF0 .s/.Gz/ for all q02 such that q02 � q2 provided that .q1; q/…
WF0 .s�1/.Gz.P � z// for all q 2 
q2�q02 .

Proof. For the first statement, suppose .q01; q2/ … WF0 .s/.Gz/. Then by definition there
exist B 01; B2 2 ‰

0.M/ elliptic at q01; q2 respectively such that for any bounded subset
H l

c .M/, the set B 01GzB
�
2U is uniformly bounded in H lCs

loc .M/. Without loss of general-
ity we can assume B 01 is supported away from @M , so that B 01 2‰

0
sc.M/ and WF0sc.B

0
1/\

@scT �M D ; (see Appendix A.2). We apply Proposition A.1 to each u 2 GzB�2U . More
precisely, we take ` arbitrary, A2 D B 01, and B;A1 2 ‰0.M/ supported away from @M
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such that A1 is elliptic at q1, WF0.A1/ is a small neighborhood of q1, and B is elliptic on

q1�q01

(note that in view of A1;A2;B being supported away from @M , this simply corre-
sponds to propagation of singularities at fiber infinity @T �M ). In consequence (using the
sign condition Imz > 0 to get rid of the .Imz/1=2 kA1uks�1=2;`C1=2 term in the estimate),
we conclude that A1GzB�2U is bounded in H lCs

loc .M/. Hence, .q1; q2/ … WF0 .s/.Gz/.
This proves the first statement.

The second statement follows by applying the analogue of the first statement for
Im z 6 0 to the adjoint families G�z and .P � z/� and then using Lemma 3.6.

Note that if Z � ¹Im z D 0º, then by considering �P instead of P one obtains prop-
agation in the other direction, and in consequence, in that case q01 � q1 and q02 � q2 can
be replaced by q01 � q1 and q02 � q2 in the statement of Proposition 3.11.

Remark 3.12. In (3.16) and (3.17) the set WF0 .s/.Gz/ can be replaced by

WF0 .s/.Gz/ [WF0 .s�1=2/
jIm zj�1=2

.Gz/;

and therefore by WF0 .s�1=2/
hIm zi�1=2

.Gz/. This is a consequence of the fact that for Im z ¤ 0,
the propagation estimates become stronger: indeed, instead of getting rid of the term
.Im z/1=2 kA1uks�1=2;`C1=2 in the proof of Proposition 3.11, we can use it to get an
estimate for kA1uks�1=2.

We use the notation qi D .xi I �i / for points in @T �xiM . The enlarged diagonal in
@T �M � @T �M is the set

T ��.M�M/ WD ¹.q1; q2/ 2 @T
�M � @T �M j x1 D x2º:

By abuse of notation, in later sections the image of T ��.M�M/ under the identification
of @T �M with T �M n o will also be denoted by T ��.M�M/ (note that by definition it
does not contain the zero section of T �.M �M/).

Definition 3.13. We say thatGz is a uniform parametrix of order s 2R inM0�M (more
precisely, a right parametrix) for the family ¹.P � z/ºz2Z if Gz D OC1!C1.hzi

�1=2/

and
.P � z/Gz D 1CRz on M0; (3.18)

for some Rz D OH�!H�Cs .1/. We say that Gz is a uniform local parametrix of order
s 2 R if (3.18) holds true for some Rz D OC1!C1.1/ satisfying merely

WF0 .s�1=2/.Rz/ \ U D ;;

where U is some neighborhood of T ��.M�M/.

Proposition 3.14. Suppose that Gz is a uniform local parametrix of order s in M which
satisfies

WF0 .s/.Gz/ � ¹.q1; q2/ 2 † �† j q1 � q2º [ T ��.M�M/: (3.19)
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If zGz is a local uniform parametrix of order s which also satisfies (3.19), then

WF0 .s/
hIm zi�1=2

. zGz �Gz/ \ U D ; (3.20)

for some neighborhood U of T ��.M�M/.

Proof. There exists a neighborhood U of T ��.M�M/ such that

WF0 .s�1=2/..P � z/. zGz �Gz// \ U D ;:

Suppose .q1; q2/ 2 WF0 .s/
hIm zi�1=2

. zGz � Gz/ \ U . Then by Proposition 3.11 and Remark

3.12, q1 2 † and .q01; q2/ 2WF0 .s/. zGz �Gz/ for some q01 � q1 with x01 ¤ x2 and such
that q01�q2 if q1 � q2. On the other hand, (3.19) and the analogous assumption for zGz
imply that q01 � q2 or x01 D x2, which gives a contradiction. This proves (3.20).

3.4. Global hyperbolicity

From now on we make the additional assumption that .M;g/ is a global hyperbolic space-
time.

Recall that .M; g/ is a spacetime if it is equipped with a time orientation. It is a
globally hyperbolic spacetime (or for short, globally hyperbolic space) if in addition it
admits a Cauchy surface, i.e., a closed subset of M which is intersected exactly once
by each maximally extended time-like curve. By a result of Geroch [55] and Bernal–
Sánchez [10,11], there exists an (n� 1)-dimensional smooth manifold Y and an isometric
diffeomorphism ' WM ! R � Y such that

'�g D c2.t; y/dt2 � ht .y/dy
2; (3.21)

where c 2 C1.M/, c > 0, R 3 t 7! ht .y/dy
2 is a smooth family of Riemannian metrics,

and for all t0 2 R, ¹t0º � Y is a smooth space-like Cauchy surface in R � Y .

3.5. Uniform parametrix construction

We will prove the existence of a Feynman parametrix in the sense of Duistermaat–
Hörmander, which has a special form and is uniform in z.

Thanks to (3.21) we can work on the n-dimensional manifold R � Y Š M with
coordinates denoted by x D .t; y/. We will need a t -dependent variant of the parameter-
dependent pseudo-differential calculus developed by Shubin [110].

Let Z � C. Let U � Rn�1 be an open set and s 2 R. Recall that the symbol space
S s.T �U/ consists of functions a.y; �/ 2 C1.T �U/ such that

.1C j�j/�sCjˇ j@˛y@
ˇ
�a.y; �/ is bounded on U �Rn�1

for all ˛; ˇ 2 Nn�1
>0 . We denote by C1.RIS sZ.T

�U// the space of functions a.t; z; y; �/
such that a.t; z0; y; �/ 2 C1.R � T �U/ for each fixed z0 2 Z, and

..1C j�j C jzj1=2/�sCjˇ j@


t @
˛
y@
ˇ
�a.t; z; y; �/ is bounded on I �Z �U �Rn�1 (3.22)
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for all 
 2 N>0, all ˛; ˇ 2 Nn�1
>0 and all intervals I b R. Note that taking the square

root of jzj is natural from the point of view of the spectral theory of second order elliptic
differential operators. The space C1.RIS s.T �U// is defined by replacing (3.22) by

.1C j�j/�sCjˇ j@


t @
˛
y@
ˇ
�a.t; z; y; �/ is bounded on I �Z � U �Rn�1

for all 
 2 N>0, all ˛; ˇ 2 Nn�1
>0 and all intervals I b R. Thus, elements of the space

C1.RI S s.T �U// depend on z 2 Z, but only in a very mild way, which is why we do
not indicate it in the notation explicitly.

Recall that all pseudo-differential operators in ‰s.Y / can be obtained first by reduc-
tion to the case of an open set U � Rn�1 (using a partition of unity subordinate to
a locally finite cover by charts), then by quantization of elements of S s.T �U/, and
finally by adding the ideal of smoothing operators. By applying an analogous procedure
to t - and z-dependent elements of S s.T �U/ we obtain classes of t - and z-dependent
pseudo-differential operators on Y . We denote by C1.RI‰sZ.Y // the class obtained
from elements of C1.RI S sZ.T

�U// (plus the ideal of t; z-dependent smoothing oper-
ators, with all t -derivatives bounded and rapidly decaying in jzj), and by C1.RI‰s.Y //
the class obtained from elements of C1.RI S s.T �U// (plus the ideal of t; z-dependent
smoothing operators, with all t -derivatives bounded and rapidly decaying in jzj, denoted
by C1.RI‰�1Z .Y // by abuse of notation). We say that A is properly supported if there
exists a closed set K � Y � Y with proper projections on each factor of Y � Y and such
that the Schwartz kernel of A is supported in K for all t 2 R and z 2 Z.

By the exact t -dependent analogue of the proofs in [110, Section 9] we can prove
properties of the C1.RI‰sZ.Y // and C1.RI‰s.Y // classes under composition and
taking adjoints. In particular, for all s1; s2 2 R, for properly supported operators we have

ŒA 2 C1.RI‰s1Z .Y //; B 2 C
1.RI‰s2Z .Y //� H) AB 2 C1.RI‰s1Cs2Z .Y //:

Of particular use for us are operators in C1.RI‰sZ.Y // with symbols that are one-step
poly-homogeneous in .�; z1=2/ (for j�j C jzj1=2 > 1), see [110, Section 9.1]. We say that
such an operator A is elliptic with parameter if it is properly supported and

as.t; z; y; �/ ¤ 0 if j�j C jzj1=2 ¤ 0;

where as is the leading order term in the poly-homogeneous expansion. Standard poly-
homogeneous expansion arguments can be used to show that if A 2 C1.RI‰sZ.Y // is
elliptic with parameter, then it has a parametrix in C1.RI‰�sZ .Y // which is also elliptic
with parameter, and the error is in C1.RI‰�1Z .Y //.

Example 3.15 (cf. [110, Example 9.1]). If L.t/ is a second order differential operator
on Y with coefficients in C1.RIC1.Y //, then the leading order term in the poly-homo-
geneous expansion of the symbol of L.t/ � z is simply �pr.L.t// � z, where �pr.L.t//

is the principal symbol in the usual ‰s.Y / sense. Therefore, L.t/ � z is elliptic with
parameter if �pr.L.t// does not intersect Z at ¹j�j D 1º.
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It is also occasionally useful to work with pseudo-differential operators of order not
consistent with the order of decay in z. Namely, we write R.t; z/ 2 C1.RI‰s1;s2Z .Y // if

R.t; z/ D

kX
iD1

R1;i .t; z/R2;i .t; z/

for some k 2 N>0 and R1;i 2 C1.RI‰s1.Y //, R2;i 2 C1.RI‰
s2
Z .Y //, i D 1; : : : ; k.

Using the trivial inclusion C1.RI‰sZ.Y //�C
1.RI‰s.Y // for s < 0whenever needed,

we can show that for all s1; r1; r2 2 R and all s2 < 0,

ŒA 2 C1.RI‰s1;s2Z .Y //; B 2 C1.RI‰r1;r2Z .Y //�

H) AB 2 C1.RI‰s1Cs2Cr1;r2Z .Y //;

ŒA 2 C1.RI‰s1;s2Z .Y //; B 2 C1.RI‰s2Z .Y //�

H) ŒA; B� 2 C1.RI‰s1Cs2�1;s2Z .Y //:

(3.23)

Notation. We denote by †C and †� the two connected components of †, distinguished
by the property that within †˙, bicharacteristics flow in the past/future direction.

Proposition 3.16. Assume global hyperbolicity. LetZ �C be an angle in the upper half-
plane ¹Im z > 0º with vertex at the origin. Let M0 � M be an open subset such that for
each t 2 R, '�M0 \ .¹tº � Y / is included in a compact set. Then for all s > 0, the family
¹.P � z/ºz2Z has a uniform parametrix Gz of order s 2 R in M0 of the form Gz D

GCz CG
�
z , where G˙z D OC1!C1.hzi

�1=2/ has the property that for each f 2 E 0.M/

there exists a Cauchy surface t0 2 R such that

suppG˙z f � .'
�1/�¹˙t > ˙t0º; (3.24)

and furthermore

WF0 .s/
hzi�1=2

.G˙z / � ¹.q1; q2/ 2 †
�
�†� j q1 � q2º [ T

�
�.M�M/: (3.25)

Proof. A straightforward computation shows that the differential operator

Q.t; z/ WD �c2.t/.'�.P � z//

is of the form
Q.t; z/ D D2

t CQ0.t/Dt �Q2.t; z/;

where Q0.t/ D @t .c�1.t/jh.t/j1=2/ 2 C1.RI‰0.Y // is a multiplication operator and

Q2.t; z/ D c.t/jh.t/j
�1=2

n�1X
i;jD1

Dic.t/h.t/
ij
jh.t/j1=2Dj � zc

2.t/ 2 C1.RI‰2Z.Y //

is elliptic with parameter. Our proof is divided into several steps.
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Step 1. We claim that for each i 2 N>0 there exist Ai .t; z/; Bi .t; z/ 2 C1.RI‰1Z.Y //,
each elliptic with parameter, and Ri .t; z/ 2 C1.RI‰

1�i;0
Z .Y //, such that

Q.t; z/ D .Dt � Ai .t; z//.Dt C Bi .t; z//CRi .t; z/: (3.26)

We show this inductively by adapting the arguments in [69, Section 23.2] and [51,
Section 6] to our setting.

Namely, suppose that (3.26) holds true for some i 2 N>0. We then set

Ci WD �Ri .Ai C Bi /
.�1/; Li WD Ri .1 � .Ai C Bi /

.�1/.Ai C Bi //; (3.27)

RiC1 WD ŒCi ;Dt �C ŒAi ; Ci �C C
2
i C Li ; (3.28)

where .Ai C Bi /.�1/ 2 C1.RI‰�1Z .Y // is an elliptic parametrix of Ai C Bi , and the
dependence on t; z is disregarded in the notation. Using (3.23), we obtain

Ci ; Li ; RiC1 2 C
1.RI‰1�.iC1/;0Z .Y //:

These operators are defined in (3.27)–(3.28) in such a way that they satisfy the identities

CiBi CRi D �CiAi C Li ; Ci .Dt � Ai /C Li D .Dt � Ai � Ci /RiC1;

which entail

.Dt � Ai /.Dt C Bi /CRi D .Dt � Ai � Ci /.Dt C Bi C Ci /CRiC1:

Thus, by setting

AiC1 WD Ai C Ci 2 C
1.RI‰1Z.Y // and BiC1 WD Bi C Ci 2 C

1.RI‰1Z.Y //

we conclude that (3.26) holds true for i C 1 in place of i .
Now, to show (3.26) it remains to check the base case i D 0. To that end we set

A0.t; z/ WD .Q2.t; z//
.1=2/
�
1
2
Q0.t/; B0.t; z/ WD .Q2.t; z//

.1=2/
C

1
2
Q0.t/;

where Q.1=2/

2 is an approximate square root obtained from the poly-homogeneous expan-
sion of Q2 in the parameter-dependent sense. By construction, Q.1=2/

2 ; A0; B0 are in
C1.RI‰1Z.Y //. Furthermore,

Q.z; t/ D .Dt � A0.t; z//.Dt C B0.t; z//CR0.t; z/;

where

R0 D
1
2
ŒQ0;Dt �C

1
4
Q2
0 C ŒQ

.1=2/

2 ;Dt � mod C1.RI‰�1Z .Y //: (3.29)

We want to show that R0 2 C1.RI‰
1;0
Z .Y //. The first two terms on the l.h.s. of (3.29)

clearly belong to that space as they are z-independent. The third term equals

i Œ@t ;Q
.1=2/

2 � D �1
2
@t .Q2/Q

.�1=2/

2 mod C1.RI‰�1Z .Y //

D �
1
2
@t .Q2/U

�1UQ.�1=2/

2 mod C1.RI‰�1Z .Y //; (3.30)
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where Q.�1=2/

2 2 C1.RI‰�1Z .Y // is an elliptic parametrix of Q.1=2/

2 and where U 2
C1.RI‰1.Y // is chosen elliptic and invertible. Then U�1 2 C1.RI‰�1.Y // and we
have

.@tQ2/U
�1
2 C1.RI‰1.Y //; UQ.�1=2/

2 2 C1.RI‰0Z.Y //;

where the second estimate is crude, but sufficient for our purpose. We conclude that the
operator in (3.30) is in C1.RI‰1;0Z .Y // as desired.

Step 2. We have proved in Step 1 that there exist A; B 2 C1.RI‰1Z.Y // elliptic with
parameter, and R 2 C1.RI‰�s�1;0Z .Y //, such that

Q.t; z/ D .Dt � A.t; z//.Dt C B.t; z//CR.t; z/: (3.31)

We can repeat the construction in Step 1 with the rôles of A0 and B0 reversed to obtain
QA; QB 2 C1.RI‰1Z.Y // elliptic with parameter, and QR 2 C1.RI‰�s�1;0Z .Y //, such that

Q.t; z/ D .Dt C QB.t; z//.Dt � QA.t; z//C QR.t; z/: (3.32)

To prove our main assertion, without loss of generality we can assume that Y D Rd , and
that QA.t; z/; B.t; z/ 2 C1.RI‰1Z.R

d // take values in the uniform pseudo-differential
class on Rd . In fact, at each time t 2 R we can modify the definition of Q.t; z/ outside
a compact set and then apply the construction from Step 1 to the modified operator. This
brings about an extra error term on the r.h.s. of (3.31) and (3.32), but this error term
vanishes outside M0 and for this reason it will be of no relevance in the rest of the proof
(as we only want a parametrix in M0). We disregard it for simplicity of notation.

In the simplified situation with Y D Rd , we want to show that Dt � QA.t; z/ has an
advanced inverse acting on H�Nc .R � Y /, denoted in the sequel by U�

QA
.z/, and Dt C

B.t; z/ has a retarded inverse UC
�B.z/. This means that U�

QA
.z/ and UC

�B.z/ are left
inverses onH�Nc .R� Y / of the respective operators, and for all f 2H�Nc .R� Y / there
exists t0 2 R such that

suppU�
QA
.z/f � ¹t 6 t0º; suppUC

�B.z/f � ¹t > t0º: (3.33)

Modulo a reparametrization of the time interval, the existence of UC
�B.z/ follows from

well-posedness of the inhomogeneous Cauchy problem for t 2 Œ0; T � (with T > 0 arbi-
trary) shown in [69, Theorem 23.1.4], provided the assumptions are satisfied. To that end
we need to check the boundedness from below:

� ImB.t; z/ > �C1 on H 1.Rd / (3.34)

for all t 2 Œ0; T �, where the constant C > 0 depends only on T (we use here the notation
ImB D 1

2
.B C B�/ and ReB D 1

2
.B � B�/). Indeed, by a direct computation we find

frac
ImB D C �1=4.ImQ/C1=4 C C0; (3.35)

where C1=4.t; z/ 2 C1.RI‰
1=4
Z .Rd // is an approximate square root of ReQ.1=2/.t; z/
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and C0.t; z/ 2 C1.RI‰0Z.R
d //, with values in the uniform pseudo-differential class

on Rd . In view of
� ImQ.t; z/ D �.Im z/c2.t/ > 0;

(3.35) implies (3.34) with C D supz2Z supt2Œ0;T � kC0.t; z/k < C1. The existence of
U�
QA
.z/ is shown analogously, with obvious sign changes.1 Furthermore, thanks to the fact

that the constant C does not depend on z, the proof of [69, Theorem 23.1.4] implies that

U�
QA
.z/ D OH�!H�.1/; UC

�B.z/ D OH�!H�.1/; (3.36)

where the notation refers to the mapping properties H l
c .R � Y /! H l

loc.R � Y / for all
l 2 R, uniformly in z.

Next, using (3.31)–(3.32) we compute

Q.U�
QA
� UC

�B/ D ..Dt C QB/.Dt � QA/C QR/U
�
QA
� ..Dt � A/.Dt C B/CR/U

C

�B

D QB C AC QRU�
QA
CRUC

�B :

If now . QB C A/.�1/ 2 C1.RI‰�1Z .Y // is an elliptic parametrix of QB C A, we conclude
that

U�
QA
. QB C A/.�1/ and UC

�B.
QB C A/.�1/ are OH�!H�.hzi�1/; (3.37)

and
Q.U�

QA
� UC

�B/.
QB C A/.�1/ D 1CE;

where E D OH�!H�Cs .1/.

Step 3. The wavefront sets of (3.36) can be estimated by a variant of Egorov’s theorem.
More precisely, let us first show

WF0 .s/.UC
�B.z/// � ¹.q1; q2/ 2 †

�
�†� j q1 � q2º [ T

�
�.M�M/: (3.38)

Let q1; q2 2 @T�M with base points .t1; y1/ ¤ .t2; y2/. If q1 … †� or q2 … †�

then .q1; q2/ … WF0 .s/.UC
�B.z// by microlocal ellipticity. Consider now q1 D

.t1; y1I �1; �1/ 2 †
�. By the arguments in the proof of [69, Theorem 23.1.4] there exists

S.t/ 2 C1.RI‰0.Y // such that

ŒDt C B.t; z/; S.t/� 2 C
1.RI‰�1.Y //; (3.39)

S.t1/ 2‰
0.Y / is elliptic at .y1I�1/ and WF0.S.t// is a neighborhood ofˆt�t1..y1I�1//.

Consider the tensor product operator S ˝ 1 acting on M D R � Y .2 Furthermore, if
q1 œ q2 then that neighborhood can be chosen in such a way that .S ˝ 1/S�2 2 ‰

�1.M/

is smoothing for some S2 2 ‰0.M/ elliptic at q2 since �2 ¤ 0 with the symbol of S2

1Note that for the advanced problem we need to solve the inhomogeneous Cauchy problem
backwards, so the analogue of (3.34) has reversed sign, hence the necessity of considering QA in
place of �B .

2Note that the tensor product of two pseudo-differential operators is not necessarily in the usual
calculus.
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vanishing in some conical neighborhood of � D 0 by [69, Theorem 18.1.35, p. 94]. In
view of q1 2 †� we have �1 ¤ 0 and therefore we can find T 2 ‰0.M/ such that S1 WD
T ı .S ˝ 1/ 2 ‰0.M/ and S1 is elliptic at q1 again by [69, Theorem 18.1.35, p. 94],
the symbol of T is also chosen to vanish in some conical neighborhood of � D 0.3 Using
(3.36), (3.39) and the fact that .S ˝ 1/S�2 is smoothing, we obtain

S1U
C

�B.z/S
�
2 D T .S ˝ 1/UC

�B.z/S
�
2 D T U

C

�B.z/.S ˝ 1/S�2 C T Œ.S ˝ 1/; UC
�B.z/�S

�
2

D OH�!H�Cs .1/:

Since Si is elliptic at qi this shows that .q1; q2/ … WF0 .s/.UC
�B.z//, and in this way we

get (3.38).
Using the support properties (3.33) we can improve on (3.38) and eliminate points

.q1; q2/ in the wavefront set such that, writing qi D .xi I �i /, x1 is in the past of x2. We
can also observe that for .q1; q2/ 2 †C �†C (resp. †� �†�) with q1 � q2, x1 is in the
past of x2 (resp. in the future) if and only if q1 � q2. Therefore,

WF0 .s/.UC
�B.z// � ¹.q1; q2/ 2 †

�
�†� j q1 � q2º [ T

�
�.M�M/:

In an analogous way we prove

WF0 .s/.U�
QA
.z// � ¹.q1; q2/ 2 †

C
�†C j q1 � q2º [ T

�
�.M�M/:

Since . QB C A/.�1/ 2 C1.RI‰�1Z .Y // it follows that

WF0 .s/
hzi�1=2

.UC
�B.
QBCA/.�1//� ¹.q1; q2/ 2†

�
�†� j q1 � q2º[T

�
�.M�M/;

WF0 .s/
hzi�1=2

.U�
QA
. QBCA/.�1//� ¹.q1; q2/ 2†

C
�†C j q1 � q2º[T

�
�.M�M/:

(3.40)

We have therefore constructed a parametrix with properties (3.33), (3.40) and (3.37)
analogous to the ones in the statement of the proposition, but for the auxiliary operator
Q.t; z/ instead of P � z.

Step 4. It now remains to reformulate the parametrix construction in terms of P � z.
Recall that P and Q are related by Q D �c2.'�.P � z//, so by setting

G�z WD �.'
�1/�

�
U�
QA
.z/. QB C A/.�1/.t; z/

�
c.t/�2;

GCz WD �.'
�1/�

�
�UC
�B.z/.

QB C A/.�1/.t; z/
�
c.t/�2;

and Gz WD GCz CG
�
z we obtain a parametrix for P � z with the desired properties.

3.6. Wavefront set of the resolvent

We now proceed to estimate the uniform wavefront set of .P � z/�1. Recall that 
" is the
contour in the complex upper half-plane defined in Section 2.6 (see Figure 1).

3We have followed the method of Hörmander [69, p. 390] to convert space to spacetime wave-
front bounds.
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Lemma 3.17. Assume that .M; g/ is non-trapping and " > 0. Then ¹.P � z/�1ºz2
"
satisfies

.P � z/�1 D OC1!C1.hzi
�1=2/: (3.41)

Assuming in addition non-trapping at energy � D m2 ¤ 0 and injectivity, (3.41) also
holds true for ¹.P � z/�1ºz2
0 .

Proof. By (2.9) with N D 0, .P � z/�1 and .P � Nz/�1 are O.jIm zj�1=2/ for z 2 C nR
as bounded mapsH l

c .M/!H
lC1=2
loc .M/ for all l > 0. The analogous claim for l negative

follows by duality. Finally, the 
0 case is shown similarly using (2.11) to get control for z
down to the real axis.

We now state the key lemma.

Lemma 3.18. Assume that .M; g/ is globally hyperbolic, non-trapping, and let " > 0.
For each bicharacteristic 
 there exists U
 � M such that if Gz , z 2 Z, is a uniform
parametrix in U
 as in Proposition 3.16, then for all s 2 R,

WF0 .s/
hzi�1=2

..P � z/�1 �Gz/ \ .
 � @T
�M/ � T ��.M�M/:

Proof. Let U
 be a small enough neighborhood of the base projection of 
 so that for
each t 2 R, '�U
 \ .¹tº � Y / is included in a compact set. Then Proposition 3.16 yields
a uniform parametrix Gz D GCz C G

�
z in U
 , where G˙z solves a pseudo-differential

retarded/advanced problem. Let L˙� D L� \ †
˙ be the future/past component of the

sources L�. By Fredholm estimates, i.e. Proposition 2.6, for any s 2 R and any bounded
subset U �H s�1

c .M/, the set .P � z/�1U is uniformly bounded inH s;`
sc .M/ for arbitrary

s 2R and for some `with `� >�1=2, thus in particular with ` >�1=2 in a neighborhood
of L�� . By support properties of G˙z , i.e. by (3.24), G˙z U vanishes in the far past/future.
Therefore, G˙z U is uniformly bounded in H s;`

sc .M/ (after possibly modifying the defini-
tion of ` outside a neighborhood of L˙� ).

We can therefore apply the higher decay radial estimate (Proposition A.3) to the fam-
ily .P � z/�1 � G˙z , which is a uniform bi-solution of P � z microlocally near 
\†�.
This allows us to conclude that B˙..P � z/�1 � G˙z /U is OC1.hzi

�1=2/ for some
B˙ 2 ‰0;0sc .M/ elliptic on L�� . Thus, in 
 � @T �M , L�� � @T

�M is disjoint from
WF0 .s/
hzi�1=2

..P � z/�1 � G˙z /. By the non-trapping assumption and propagation of sin-

gularities, the whole flow-out of L�� � @T
�M (in the first variable) within †� is disjoint

from WF0 .s/
hzi�1=2

..P � z/�1 �G˙z / in 
 � @T �M . This means that

WF0 .s/
hzi�1=2

..P � z/�1 �G˙z / � †
˙
� @T �M

in 
 � @T �M . We now combine this with (3.25) to conclude that

WF0 .s/
hzi�1=2

..P � z/�1 �Gz/ �WF0 .s/
hzi�1=2

..P � z/�1 �G˙z /CWF0 .s/
hzi�1=2

.G�z /

� .†˙ � @T �M/ [ T ��.M�M/

in 
 � @T �M . Since †C \†� D ;, this implies the assertion of the lemma.
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Theorem 3.19. Assume that .M; g/ is non-trapping, globally hyperbolic, and let " > 0.
Then for any s 2 R, the family ¹.P � z/�1ºz2
" satisfies

WF0 .s/
hzi�1=2

..P � z/�1/ � ¹.q1; q2/ 2 † �† j q1 � q2º [ T
�
�.M�M/: (3.42)

Moreover, suppose that Hz is a local uniform parametrix of order s for P � z in the
sense of Definition 3.13, and Hz also satisfies (3.42). Then for all x 2 M there exists
� 2 C1c .M/ with �.x/ D 1 such that

�.P � z/�1� D �Hz�COH�!H�Cs .hzi�1=2/: (3.43)

Proof. The estimate (3.42) follows now directly from Lemma 3.18 applied to all bichar-
acteristics 
 and from the fact that

WF0 .s/
hzi�1=2

.Gz/ � ¹.q1; q2/ 2 † �† j q1 � q2º [ T
�
�.M�M/

by Proposition 3.16. The second assertion follows directly from (3.42) and Proposi-
tion 3.14.

We will show that a local uniform parametrix of arbitrarily high order can be obtained
by a z-dependent variant of the Hadamard parametrix construction.

The result (3.43) is satisfactory for many purposes, we remark however that it does
not give stronger decay of the error term on the r.h.s. even if .P � z/Hz � 1 has bet-
ter decrease in z. For this reason in Section 6 we will use a more precise composition
argument.

Remark 3.20. Assuming in addition non-trapping and injectivity at energy � D m2 ¤ 0,
Lemma 3.18 and Theorem 3.19 also hold true for 
0 instead of 
".

Remark 3.21. All the results in Sections 2–3 generalize in a straightforward way to
the case when P is a principally scalar wave operator on a finite-dimensional Hermitian
bundleE, provided thatP is formally self-adjoint for the canonical scalar product induced
by the Hermitian form on fibers and by the volume form. We stress that this requires hav-
ing a scalar product which is in particular positive. In more general situations such as the
wave equation on tensors, the propagation estimates need to be modified (see e.g. [63]).

4. The elementary family F˛.z; x/

4.1. Definition of the family F˛.z; x/

In this section we define a family F˛.z; �/ of distributions on Rn which is the first ingre-
dient in the Hadamard parametrix construction. We analyze its regularity properties and
its dependence on the complex parameter z. More precisely, we control the wavefront
set uniformly in z along the contour 
" defined in Section 2.6. We also study the Hölder
regularity asymptotically in the parameter z on the upper half-plane ¹Im z > 0º down to
z 2 R n ¹0º.
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Let ˛ 2 C. When writing complex powers we always use the usual branch of the log
defined on C n ��1; 0�. For Im z > 0, we define the distribution in the x 2 Rn variable

F˛.z; x/ D
�.˛ C 1/

.2�/n

Z
eihx;�i.j�j2� � z/

�˛�1 dn� (4.44)

in the sense of an inverse Fourier transform, where �D dx20 � .dx
2
1 C � � � C dx

2
n�1/ is the

flat Minkowski metric, and j�j2� D�� � �
�1� D��20 C

Pn�1
iD1 �

2
i is defined for convenience

with a minus sign. The distribution (4.44) is Lorentz invariant.
Next, we extend the definition (4.44) to z 2 R n ¹0º. To that end we define the family

of distributions .j�j2� � z � i0/
�˛�1 corresponding to taking the limit of .j�j2� � z/

�˛�1

as Im z ! 0C. More precisely, denoting Q.�/ D j�j2� , for z 2 R we define as in [48, III,
Section 2.4],

.Q.�/ � z � i0/�˛ D lim
"!0C

.Q.�/ � z � i"/�˛;

considered first as a distribution on Rn n ¹0º.

Proposition 4.1. The family ¹.Q.�/ � i0/�˛º˛2C of distributions is well-defined on
Rn n ¹0º by pull-back. It extends homogeneously to Rn as a meromorphic family in ˛ 2C
with simple poles contained in N C n=2. The residues at the poles are distributions sup-
ported at 0 2 Rn.

On the other hand, if z 2 R n ¹0º, then ¹.Q.�/ � z � i0/�˛º˛2C is a holomorphic
family of distributions on Rn.

Proof. The meromorphic family of distributions .t � i0/�˛ in S 0.R/ has singular support
only at t D 0. Observe that along the cone Q D 0, we have dQ.�/ ¤ 0 when � ¤ 0.
Therefore, the pull-back Q�.t � i0/�˛ is well-defined on Rn n ¹0º with wavefront set
contained in ¹.�I y�/ j Q.�/ D 0; y� D �dQ.�/; � < 0º by the pull-back theorem [71,
Theorem 8.2.4, p. 263]; see also [71, (8.2.6), p. 265]. The distribution Q�.t � i0/�˛

is homogeneous of degree �2˛, hence by [71, Theorem 3.2.3, p. 75], it has a unique
extension as a holomorphic family of distributions in ˛ 2C n ¹0; 1; 2; : : : º defined on Rn.
It has poles which are contained in ¹0; 1; 2; : : : º by [71, Theorem 3.2.4]. Furthermore,
[48, III, Section 2.4] tells us that the poles are simple, they are actually contained in
N C n=2 [48, p. 275] and the residues are derivatives of ı0 [48, .1/; .1/0, p. 276].

In the case of .Q.�/ � z � i0/�˛˛2C , we start from the holomorphic family of distribu-
tions .t � z � i0/�˛ which has singular support at t D z ¤ 0. The difference is that the
pull-back by the map

Rn 3 � 7! Q.�/ � z 2 R

can be applied everywhere since for all � such thatQ.�/� z D 0 we have dQ.�/¤ 0.

Corollary 4.2. By inverse Fourier transform,

F˛.z; x/ D
�.˛ C 1/

.2�/n

Z
eihx;�i.j�j2� � i0 � z/

�˛�1 dn�

is a well-defined family of distributions on Rn, holomorphic in ˛ 2 C n ¹�1;�2; : : : º for
z 2 ¹Im z > 0º n ¹0º.
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Thus, to regulate the infrared poles of the family F˛.0; x/ one can introduce a mass
m > 0 and consider F˛.�m2; x/.

4.2. Hölder estimate on F˛.z; �/

For large Re ˛, F˛.z; �/ has Fourier transform .Q � z/�˛�1, which has good decay at
infinity except along the light-cone, so the pressing question is: can we control F˛.z; �/
in Sobolev or Hölder spaces of high regularity? The answer is yes, but the price to pay is
that we need to lose in terms of the decay in z. We trade decay in z for regularity in the
x 2 Rn variable.

4.2.1. Estimates on .Q� z/�˛ as distributions. We first discuss the case of .Q.�/� z/�˛

for ˛ 2 N. We start from the family log.t � i"/ for " > 0, which is a well-defined dis-
tribution on R. Uniformly in ", we have jhlog.t � i"/; 'ij 6 CKk'kL2.R/ for all test
functions ' supported in a fixed compact set K. It follows that for all test functions '
supported in a fixed compact set K and for all ˛ 2 N,

jh.t � i"/�˛; 'ij D C˛jh@
˛
t log.t � i"/; 'ij D C˛jhlog.t � i"/; @˛t 'ij 6 CC˛k'kH˛.R/;

where the estimate still holds uniformly in " > 0. For large Im z > 0 and ' supported in
a fixed compact set K,

jh.t � z/�˛; 'ij D jh.t � Re z � i Im z/�˛; 'ij

D jh.t � i Im z/�˛; '.� � Re z/ij 6 jIm zj�˛CK;˛k'kL2.R/:

The case of small Im z is handled by the previous estimates. So in general, for ' 2
C1c .Rn/ supported in a fixed compact set K, we have the estimate

jh.t � z/�˛; 'ij 6 .1C jIm zj/�˛CKk'kH˛.R/; (4.45)

where CK does not depend on z on the upper half-plane. As before, let Q be the
quadratic form of signature .n � 1; 1/ for the Minkowski metric and let ˛ 2 N. The
pull-back Q�.t � z/�˛ D .Q � z/�˛ is well-defined as a distribution of order ˛ in
D0.Rn n ¹0º/, uniformly in Im z > 0 since dQ.�/ ¤ 0 for all � ¤ 0. It follows that
for any function � supported in a compact set K which does not intersect 0, we have
jh.Q.�/� z/�˛; �ij 6 .1C jIm zj/�˛CKk�kH˛.Rn/ where the pull-back is well-defined.
For non-integer ˛, it suffices to start from .t � z/�˛ which is well-defined in L1loc.R/ for
Re˛ < 1, hence defines a holomorphic family of distributions of order 0 in D0.R/ in the
half-plane Re˛ < 1. This description is uniform in z 2 ¹Im z > 0º. Then, to extend to all
˛ 2 C n Z, for k < Re˛ < k C 1, we use successive integration by parts:

.t � z/�˛ D
1

.�˛ C k/ : : : .�˛ C 1/
@kt .t � z/

�˛Ck

for k D bRe˛c, which shows that the l.h.s. is a well-defined holomorphic family of dis-
tributions of order k, uniformly in z 2 ¹Im z > 0º. Again by pull-back, this shows that for
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any compactly supported function � supported in a compact setK which does not meet 0,
we have

jh.Q.�/ � z/�˛; �ij 6 .1C jIm zj/�Re˛CKk�kHbRe˛c.Rn/;

where the pull-back is well-defined.

4.2.2. The Hölder–Zygmund estimate on F˛.z; �/. In this subsection, we deal with
Euclidean harmonic analysis of the holomorphic family F˛.z; �/ 2 D0.Rn/.

Recall that the Littlewood–Paley decomposition starts from a partition of unity 1 D
�0 C

P1
jD0 �.2

�j �/. A function u belongs to the Zygmund class Cr .Rn/ [88, p. 294],
[72, Section 8.6, p. 201], [122, Section 8, p. 40] iff

k�0.2
�j
p
��/ukL1 C sup

j

2jrk�.2�j
p
��/ukL1 < C1; (4.46)

and this also defines a Banach norm k � kCr on Cr .Rn/ (if r > 0 is not an integer
then Cr .Rn/ coincides with the usual Hölder class). The local version of Cr .Rn/ is
denoted by Crloc.R

n/. The equivalence of (4.46) with a Fourier transform characteriza-
tion is recalled in Appendix D.3.

We will use the dyadic decomposition to analyze the family of distributions F˛.z; �/.
For  2 C1c .Rn/, we estimate the norm of  �.2�j

p
��/F˛ for Im z > 0, namely



 .x/ Z

Rn
.Q.�/ � z/�˛�1�.2�j j�j/eihx;�idn�






L1x

D 2jn




 .x/ Z

Rn
2�2j.˛C1/.Q.�/ � 2�2j z/�˛�1�.k�k/eih2

j x;�i dn�






L1x

: (4.47)

Note the important 2�2j z term which explains why at high frequencies, even if z has
large imaginary part, the dyadic scaling will push 2�2j z arbitrarily close to the real
axis so that for large j , .Q.�/ � 2�2j z/�˛ behaves more and more like the distribution
.Q.�/ � i0/�˛ . For k D bRe˛c C 1, by (4.47) we find

k�.2�j
p
��/F˛.z; �/ kL1

D 2j.n�2Re˛�2/




 .x/ Z

Rn
.Q.�/C 2�2j z/�˛�1�.k�k/eih2

j x;�i dn�






L1x

6 2j.n�2Re˛�2/.1C 2�2j jIm zj/�Re˛�1

� C sup
x2supp 

k�.k�k/eih2
j x;�i
kHk

�
.Rn/

6 C12j.n�2Re˛�2/.1C 2�2j jIm zj/�Re˛�1.1C 2jR/k

6 C22j.n�2Re˛Ck�2/.1C 2�2j jIm zj/�Re˛�1:

In the last two inequalities, we have made crucial use of the fact that � is supported in
a compact ball ¹j�j 6 Rº and also that the support of  is compact so that we have the
simple bound supx2supp k�.k�k/e

ih2j x;�ikHk
�
.Rn/ . .1C 2

jR/k . Let us now interpolate
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the above inequality to show the interplay between decay in Im z and also decay in the
dyadic scaling, which expresses Hölder regularity. Choosing some a 2 Œ0; 1�, we get

k�.2�j
p
��/F˛.z; �/ kL1 6 C22j.n�2Re˛Ck�2/.1C 2�2j jIm zj/�Re˛�1

6 C22j.n�2Re˛Ck�2/22ja.Re˛C1/.22j C jIm zj/�a.Re˛C1/

� .1C 2�2j jIm zj/�.1�a/.Re˛C1/

6 C22j.n�2Re˛Ck�2C2a.Re˛C1//.1C jIm zj/�a.Re˛C1/:

To estimate the low energy part  �0.
p
��/F˛ , we first need that Im z > 0, jzj >

" > 0 to avoid the infrared pole in the massless case when ˛ is an integer. However, for
˛ 2 C n .N C n=2/, we can still let "! 0, which means the real part of z is allowed
to vanish. The element limIm z!0C; jzj>".Q.�/ � z/

�˛�1 extends as a distribution weakly
homogeneous of degree �2˛ � 2, hence it extends by [89, Section 2] as a distribution of
order p D b2Re˛ C 2 � nc C 1. This implies that



 .x/ Z

Rn
.Q.�/ � z/�˛�1�0.�/e

ihx;�i dn�






L1x

6 Ck kL1.1C jIm zj/�Re˛�1 sup
x2supp 

k�0e
ihx;�i
kCp

�
.Rn/:

Now we can deduce the Hölder regularity estimates of our family F˛.z; �/ for Imz > 0,
jzj > " > 0:

kF˛.z; �/ kCs.Rn/ D sup
j2N

2jsk�.2�j
p
��/F˛.z; �/ kL1 C k�0.

p
��/F˛.z; �/ kL1

6 C.1C jIm zj/�a.Re˛C1/

if n� 2Re˛C k � 2C 2a.Re˛C 1/C s 6 0, hence if s 6 .2� 2a/.Re˛C 1/� k � n.
So if we want high Hölder regularity, we have to choose large Re˛.

The proof also shows that for Re˛ > L;L 2 R, the series
1X
jD1

�.2�j
p
��/F˛.z; �/ C �0.

p
��/F˛.z; �/ 

converges absolutely in C.2�2a�1/.LC1/�n.Rn/ where each term is holomorphic
in ˛. Therefore F˛.z; �/ is holomorphic in ˛ with values in the Banach space
C.2�2a�1/.LC1/�n.Rn/.

We summarize the estimates as follows for ˛ 2 C n ¹�1;�2; : : : º.

Proposition 4.3. Let k D bRe˛c C 1 and F˛.z; �/ 2 D0.Rn/ as defined in (4.44). For all
" > 0, if z 2 ¹Im z > 0; jzj > "º then F˛.z; �/ 2 C.2�2a/.Re˛C1/�k�n

loc .Rn/ with decay in z
of order O..1C jIm zj/�a.Re˛C1// for a 2 Œ0; 1�.

For Re ˛ > L; L 2 R>�1, the family F˛.z; �/ is holomorphic in ˛ 2 ¹Re ˛ > Lº

with values in the Fréchet space C.2�2a�1/.LC1/�nloc .Rn/, with decay in z of order
O.jIm zj�a.LC1// for a 2 Œ0; 1�.

As expected, we always have to trade regularity for decay in Im z.
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4.3. Microlocal estimates

To prove microlocal bounds, we will need to represent the distribution F˛.z; �/ as the sum
of two oscillatory integrals which account for the high (UV) versus low (IR) frequency
parts. Both require a careful treatment of the Im z ! 0C limit.

4.3.1. Oscillatory integral representation formula. We first prove the following impor-
tant technical lemma.

Lemma 4.4. Let  2 C1c .RI Œ0; 1�/ be such that  D 1 near 0. For �1 < Re˛ < 0 and
Im z > 0, we have

F˛.z; �/ D IIR C IUV;

where

IIR D
e�i.˛C1/�=2

.4�i/n=2.�1/.n�1/=2

Z 1
0

eu
Q.x/
4i eiz=u .u/un=2�˛�2 du;

IUV D
e�i.˛C1/�=2

.4�i/n=2.�1/.n�1/=2

Z 1
0

eu
Q.x/
4i eiz=u.1 �  /.u/un=2�˛�2 du:

Furthermore, in the sense of distributions in D0.Rn n ¹0º/, the ˛; z-dependent oscil-
latory integral IUV extends uniquely to a holomorphic family in ˛ 2 C, uniformly in
z 2 ¹Im z > 0º. The term IIR extends uniquely as a distribution in D0.Rn/, depending
holomorphically in ˛ in the half-plane Re˛ < n=2 � 1, uniformly in z 2 ¹Im z > 0º.

The difficulty is in proving that the two oscillatory integrals on the r.h.s. have well-
defined distributional limits for all ˛ 2 C.

Proof of Lemma 4.4. We start from an elementary representation formula for Im z > 0:

.Q.�/ � z/�˛�1 D
e�i.˛C1/�=2

�.˛ C 1/

Z 1
0

e�iu.Q.�/�z/u˛ du;

where Q is the quadratic form of signature .n � 1; 1/. When Im z > 0 and Re ˛ > �1,
the r.h.s. converges absolutely and is holomorphic in ˛. Let ' be a Schwartz function. We
study the following integral:Z 1

0

u˛
�Z

Rn
e�iu.Q.�/�z/ y'.�/ dn�

�
du

D

Z 1
0

Z
Rn
'.x/

.2�/ne
Q.x/
4ui

.4�i/n=2.�1/.n�1/=2
eiuzu˛�n=2 dnx du;

where we have used the Plancherel formula and the Fourier transform of complex Gaus-
sians to obtain the last equality. The integral on the r.h.s. is well-defined for Re ˛ � n=2
> �1. So after a change of variables in u, we get another oscillatory integral representa-
tion for Re˛ > n=2 � 1, Im z > 0:Z 1

0

u˛
�Z

Rn
e�iu.Q.�/�z/ y'.�/ dn�

�
du D C.˛/

Z 1
0

heu
Q.�/
4i ; 'ieiz=uun=2�˛�2 du;
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where we have absorbed all normalizations in the holomorphic constant C.˛/ for simplic-
ity, since they play no rôle in the oscillatory bounds. Then we just use the test function  
to divide the integration in u 2 R>0 into two parts to separate the IR and UV problems:

e�i.˛C1/�=2

.4�i/n=2.�1/.n�1/=2

Z 1
0

˝
eu

Q.�/
4i ; '

˛
eiz=u.1 �  .u//un=2�˛�2 du„ ƒ‚ …

UV part

C
e�i.˛C1/�=2

.4�i/n=2.�1/.n�1/=2

Z 1
0

˝
eu

Q.�/
4i ; '

˛
eiz=u .u/un=2�˛�2 du„ ƒ‚ …

IR part

:

The IR part is well-defined for all values of ˛ and all z s.t. Im z > 0 since eiz=u DO.u1/
as u! 0C. Another observation is that we can take the Im z ! 0C limit when Re ˛ <
n=2 � 1, since un=2�˛�2 is Riemann integrable near u D 0 so there is no problem to let
Im z ! 0C and there are no constraints on Re z.

Now we need to justify that the integral representation of the UV part is well-defined
as a distribution on the half-plane Imz > 0which is holomorphic in ˛ 2C. For Re˛ >�1
and Im z > 0 and for any test function ' 2 C1c .Rn n ¹0º/,Z 1

0

˝
eu

Q.�/
4i ; '

˛
eiz=u.1 �  /.u/un=2�˛�2 du

D

Z 1
0

˝
e
uQ.�/
4i
Ciz=u; .tL/N'

˛
.1 �  /.u/un=2�˛�2 du;

where L D .4i/hrQ;ri

ukrQk2
is a well-defined differential operator since dQ ¤ 0 on Rn n ¹0º,

N is an arbitrary integer and the integral is holomorphic in ˛ on the half–plane Re ˛ >
N C n=2 � 1 since .tL/N' D O.u�N / uniformly in z 2 ¹Im z > 0º.

Next, we make an observation on the large Im z behavior of F˛.z; �/ outside ¹0º � Rn

which follows from the oscillatory integral representation.

Lemma 4.5. For all ˛ 2C, all ' 2 C1c .Rn n ¹0º/ and all Imz > 0, we have hF˛.z; �/; 'i
D O.jIm zj�1/.

Proof. Let ' 2 C1c .Rn n ¹0º/. For the UV part, outside x D 0, set L D 4i hrQ;ri
ukrQk2

. Thenˇ̌̌̌ Z 1
0

˝
euQ.�/=4i ; '

˛
eiz=u.1 �  .u//un=2�˛�2 du

ˇ̌̌̌
D

ˇ̌̌̌Z 1
0

˝
eu

Q.�/
4i ; .tL/N'

˛
eiz=u.1 �  .u//un=2�˛�2 du

ˇ̌̌̌
6 C

Z 1
0

e�Im z=u.1 �  .u//k.tL/N'kL1.Rn/u
n=2�Re˛�2„ ƒ‚ …

DO.un=2�Re˛�2�N /

du

6 C jIm zjn=2�Re˛�2�N
Z 1
0

e�u
�1

.1 �  .u Im z//un=2�Re˛�2�N du;
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where the integral on the r.h.s. is uniformly bounded as Im z ! C1. Therefore we get
IUV D OD0.Rnn¹0º/.jIm zj�1/.4

For the infrared part, one immediately deduces from the integral representation thatˇ̌̌̌Z 1
0

˝
eu

Q.�/
4i ; '

˛
eiz=u .u/un=2�˛�2 du

ˇ̌̌̌
6 Ck'kL1

Z 1
0

 .u/e�Im z=uun=2�Re˛�2 du;

hence IIR D OD0.Rn/.jIm zj�1/.5

4.3.2. Bounds on the seminorms k � kN;V;�. Recall that for a closed conic set � �
T �Rn n o, the topology of D0� is given by the continuous seminorms k � kN;V;�,

ktkN;V;� D sup
�2V

.1C k�k/N jbt�.�/j;
where supp.�/ � V \ � D ;, plus the weak or strong topology of distributions. Note that
throughout the paper, we typically control the size of distributions in a stronger topology
than the weak or strong topology on D0 because we operate with Hölder norms.

We need to estimate the seminorms k � kN;V;� for F˛.z; �/ uniformly in z 2 ¹Imz > 0º.
We will also need to control these seminorms down to Im z ! 0C with Re z ¤ 0. Now
we can bound the wavefront set of F˛.z; �/ using the oscillatory integral representation of
Lemma 4.4 which involves oscillatory integrals with complex phase. For Im z > 0, they
have exponential decay and the oscillatory integrals are well-defined for all ˛ 2 C. But
when Im z ! 0C, they converge to some oscillatory integrals with real phase so we can
control the integration in u for Im z ! 0C only when Re˛ < n=2.

Step 1 (ultraviolet part). We first deal with the UV partZ 1
0

eu
Q.x/
4i eiz=u.1 �  /.u/un=2�˛�2 du:

Assume that supp� � V does not meet ¹.xI �/ j Q.x/ D 0; � D �dQ; � < 0º [ T �0 Rn,
which in particular implies that 0 … supp�. Our proof is inspired by [113, Theorem 0.5.1,
p. 38, Theorem 0.4.6, p. 34]. We choose some smooth  and a smooth bump function ˇ
supported in Œ1=2; 2� such that  .u/C

P1
jD0 ˇ.2

�ju/ D 1; this is a dyadic partition of
unity. Set ǰ .�/ D ˇ.2

�j �/. Then for � 2 V , we need to consider the series

1X
jD0

Z 1
0

�Z
Rn
�.x/e�i.h�;xiCuQ.x/=4/dnx

�
eiu
�1z

ǰ .u/u
n=2�˛�2 du:

4To get large decay in Im z the distribution is viewed as an element of high order, and we need
to differentiate the test function ' many times.

5Here it is a distribution of order 0 for all orders of decay in Im z.
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We fix j and rewrite one term of the series after a change of variables:Z 1
0

�Z
Rn
�.x/e�i.h�;xiCuQ.x/=4/dnx

�
eiu
�1z

ǰ .u/u
n=2�˛�2 du

D 2j.n=2�˛�1/
Z 1
0

�Z
Rn
�.x/e�i.h�;xiC2

juQ.x/=4/dnx

�
ei2
�ju�1zˇ1.u/u

n=2�˛�2 du:

The phase function �.x; �; j; u/ D h�; xi C 2juQ.x/=4 is non-degenerate since dx� D
� C 2judQ.x/=4 2 C1.Rn � V � �0;C1�IRn/ never vanishes because � 2 V does
not meet R<0dQ.x/ for all x in the support of the test function �. Define the differen-
tial operator L D 1Chrx�;rxi

1Chrx�;rx�i
. Observe that the term hrx�;rx�i in the denominator is

bounded from below by 



� C 2judQ.x/4





2 > C.k�k C 2j /2
for some C > 0 uniformly in � 2 V and u 2 Œ1; 4� since u lives in the support of ˇ1
and dQ.x/ ¤ 0 because 0 … supp �. By 3N integrations by parts with respect to L as
in [113, Lemma 0.4.7, p. 35], since j > 1, we get the bound

sup
u2�0;C1�

ˇ̌̌̌ Z
Rn
�.x/e�i.h�;xiC2

juQ.x/=4/ˇ1.u/ d
nx

ˇ̌̌̌
6 C.k�k C 2j /�3N

6 C.1C k�k/�N 2�j2N :

Therefore for j > 1,ˇ̌̌̌
2j.n=2�˛�1/

Z 1
0

�Z
Rn
�.x/e�i.h�;xiC2

juQ.x/=4/ dnx

�
e�2
�ju�1zˇ1.u/u

n=2�˛�2 du

ˇ̌̌̌
6 C.1C k�k/�N

�Z 4

1

e�2
�ju�1 Im zun=2�Re˛�2 du

�
2j.n=2�Re˛�1�2N/:

Using the elementary estimatesZ 4

1

e�2
�ju�1 Im zun=2�Re˛�2 du D

Z 1

1=4

e�2
�ju Im zuRe˛�n=2 du

6 C1
Z 1

1=4

e�2
�ju Im z du 6

3

4
C1e

� Imz
4�2j 6 C2;N

�
1C
jIm zj

2j

��N
6 C2;N 2jN .1C jIm zj/�N

combined with the above stationary phase estimate, we deduce thatˇ̌̌̌ Z 1
0

�Z
Rn
�.x/e�i.h�;xiCuQ.x/=4/dnx

�
eiu
�1z

ǰ .u/u
n=2�˛�2 du

ˇ̌̌̌
6 C3;N .1C k�k/�N .1C jIm zj/�N 2j.n=2�Re˛�1�N/:
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Now, for all N > n=2 � Re ˛ � 1, the series in j converges absolutely and yields an
estimate of the formˇ̌̌̌ 1X

jD1

Z 1
0

�Z
Rn
�.x/e�i.h�;xiCuQ.x/=4/dnx

�
eiu
�1z

ǰ .u/u
n=2�˛�2 du

ˇ̌̌̌
6 C3;N .1C k�k/�N .1C jIm zj/�N :

Step 2 (infrared part). To conclude the estimate, we still need to deal with the infrared
part

hIIR; 'e
ih�;�i
i D

e�i.˛C1/�=2

.4�i/n=2.�1/.n�1/=2

Z 1
0

˝
e
Q.�/
4iu ; 'eih�;�i

˛
eizu .u�1/u˛�n=2 du

for � 2 V and ' 2 C1c .Rn/, where we have made the change of variable u 7! u�1. We
first assume that Im z > " > 0. The function e

Q.x/
4iu '.x/ is smooth in x uniformly in u 2

supp .u�1/. Therefore jhe
Q.�/
4iu ; 'eih�;�iij 6 CN .1C k�k/�N for all N 2 N. If Im z > 0,

then R 3 u 7! eizu .u�1/u˛�n=2 is Riemann integrable on R, hence we immediately
find that for all N ,

jhIIR; 'e
ih�;�i
ij 6 jC.˛/j

Z 1
0

ˇ̌˝
e
Q.�/
4iu ; 'eih�;�i

˛ˇ̌
e� Im zu .u�1/uRe˛�n=2 du

D O.e� Im zı=2
k�k�N / D O.jIm zj�N k�k�N /;

where ı > 0 is such that Œ0; ı� \ supp. .u�1// D ;. Now when Re ˛ < n=2 � 1, then
the above bound holds true uniformly on ¹Im z > 0º since  .u�1/uRe˛�n=2 is Riemann
integrable andZ 1

0

ˇ̌˝
e
Q.�/
4iu ; 'eih�;�i

˛ˇ̌
e� Im zu .u�1/uRe˛�n=2 du

6 CN .1C k�k/�N e�ı Im z=2
Z 1
0

 .u�1/uRe˛�n=2 du„ ƒ‚ …
<C1

6 C2;N .1C k�k/�N .1C jIm zj/�N :

Step 3 (conclusion). Let

ƒ0 D ¹.xI �/ j � D �dQ.x/; Q.x/ D 0; � < 0º [ .T
�
0 Rn n o/ � T �Rn:

For all � 2 C1c .Rn n ¹0º/ and all cones V such that supp� � V does not meet ¹.xI �/ j
Q.x/ D 0; � D �dQ; � < 0º [ .T �0 Rn n o/, for Im z > " > 0, we deduce an estimate of
the form

jF .F˛.z; �/�/.�/j 6 C.1C k�k/�N jIm zj�N

uniformly in � 2 V , where F denotes the Fourier transform. In other words, in terms
of the continuous seminorms k � kN;V;� of the D0ƒ0 topology, the above estimate reads
kF˛.z; �/kN;V;� 6 C jImzj�N for Imz > " > 0. When Re˛ < n=2� 1, we have a stronger
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estimate which holds true for Im z > 0:

kF˛.z; �/kN;V;� 6 C.1C jIm zj/�N : (4.48)

Combining this with the Hölder estimates of Section 4.2.2 and Lemma 4.5, we get the
following result.

Proposition 4.6. Letƒ0D ¹.xI�/ j � D �dQ.x/; Q.x/D 0; � < 0º [ .T �0 Rn n o/. Then:

(1) The family .1C jIm zj/Re˛C1F˛.z; �/, Im z > 0, jzj > " > 0, is bounded in D0ƒ0.R
n/.

(2) For all " > 0 the family jIm zjNF˛.z; �/, Im z > ", is bounded in D0ƒ0.R
n n ¹0º/ for

all N 2 N.

(3) If Re˛ < n=2� 1 then the family .1C jIm zj/Re˛C1F˛.z; �/, Im z > 0, is bounded in
D0ƒ0.R

n/.

(4) If Re ˛ < n=2 � 1 then the family .1 C jIm zj/NF˛.z; �/, Im z > 0, is bounded in
D0ƒ0.R

n n ¹0º/ for all N 2 N.

Using the notation introduced in Definition 3.8, statement (1) is equivalent to F˛.z; �/
D OD0

ƒ0

.jIm zj�Re˛�1/ in Im z > 0, and we can rephrase (2)–(4) similarly.

4.4. The holomorphic family of distributions F˛.z; �/ for Re˛ > 0

We need to verify algebraic relations satisfied by the holomorphic family of Lorentz
invariant distributions F˛.z; �/ 2 D0.Rn/ which will appear in the asymptotic expansion
of Feynman powers.

Let 
" be the contour in the upper half-plane introduced in Section 2.6. We will need
the following lemma when inserting the parametrix for .P � z/�1 in contour integrals
along 
". It is precisely the family of distributions F˛.z; �/ that will contribute to the
singularities near the diagonal of the Schwartz kernel of the complex powers.

Lemma 4.7. Let F˛.z; �/2D0.Rn/, ˛ 2C, Imz > 0, be the family of distributions defined
by (4.44). For all k 2 N, m 2 R, " > 0, they satisfy the contour integral identity

1

2�i

Z

"

.z˙i"/�˛Fk.z �m
2; �/ dz D

.�1/k�.�˛ C 1/

�.�˛ � k C 1/�.˛ C k/
F˛Ck�1.�m

2
� i"; �/;

where both sides converge in D0.Rn/ for Re˛ > 0. For�� D �ij @xi @xj , we also have

.�� � z/F˛.z; �/ D ˛F˛�1.z; �/:

Proof. We claim that by density of compactly supported functions in L2.Rn/ and the
Cauchy residue formula,6

1

2�i

Z

"

.z C i"/�˛�1.Q.�/ � z/�1 dz D .Q.�/C i"/�˛�1 W L2.Rn/! L2.Rn/;

where the l.h.s. is norm convergent in B.L2.Rn// when Re˛ > 0.

6Beware that our contour 
" is oriented counterclockwise but we integrate against .Q.�/� z/�1

instead of .z �Q.�//�1.
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Indeed, when we multiply 1
2�i

R

"
.z C i"/�˛�1.Q.�/ � z/�1 dz by some compactly

supported '.�/, the values of Q.�/ when multiplied in .Q.�/ � z/�1'.�/ lie in a com-
pact K � C. We can enclose K with a large piece of 
" \ B.0; R/, which we close up
with a circle arc of the form ¹Rei� j � 2 Œ�!; !�º. This arc has size � R but the inte-
grand on it decays like R�Re˛�1 so this large portion tends to 0 as R ! C1. The part

" \ B.0; R/

c on the complement of the ball of radius R also decays when R ! C1.
Therefore, Cauchy’s formula tells us that the identity

1

2�i

Z

"

.z C i"/�˛�1.Q.�/ � z/�1 dz D .Q.�/C i"/�˛�1

holds true as operators acting on compactly supported smooth functions of � . But since
these are dense in L2, this identity extends to operators in B.L2.Rn//. By inverse Fourier
transform, this yields

1

2�i

Z

"

.z C i"/�˛�1F0.z; �/ dz D �.˛ C 1/
�1F˛.�i"; �/:

We have to extend the above discussion to the case

1

2�i

Z

"

.z C i"/�˛Fk.z; �/ dz

still in the region Re˛ > 1. Recall that in Fourier space,

FFk.z; �/.�/ D kŠ.Q.�/ � z/�k�1:

For every holomorphic f , Cauchy’s formula says that i
2�

R


f .z/.z � z0/

�k�1 dz D

f .k/.z0/
kŠ

if 
 is a clockwise oriented contour around z0. Therefore arguing as above yields

1

2�i

Z

"

.z C i"/�˛kŠ.Q.�/ � z/�k�1 dz

D .�1/k
i

2�

Z

"

.z C i"/�˛kŠ.z �Q.�//�k�1 dz

D .�1/k.�˛/ : : : .�˛ � k C 1/.Q.�/C i"/�˛�k ;

where both sides converge when Re˛ > 0 as multiplication operators in B.L2.Rn//. By
inverse Fourier transform, using the definition of F˛Ck�1.�i"; �/ yields

1

2�i

Z

"

.z C i"/�˛Fk.z; �/ dz D
.�1/k�.�˛ C 1/

�.�˛ � k C 1/�.˛ C k/
F˛Ck�1.�i"; �/;

where the integral makes sense as a bounded operator acting on L2.Rn/.

4.4.1. Analytic continuation of the microlocal estimates and Bernstein–Sato polynomial.
Our next goal is to prove an analytic continuation of the microlocal estimates on F˛.z; �/
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for all ˛ 2 C and z 2 ¹Im z > 0; jzj > " > 0º. The idea is to prove the existence of a
functional equation satisfied by F˛.z; �/ involving Bernstein–Sato polynomials [12, 13,
105].

If z ¤ 0, observe that

@2�i .Q.�/ � z/
�˛
D �2˛�i i .Q.�/ � z/

�˛�1
C 4˛.˛ C 1/�2i i �

2
i .Q.�/ � z/

�˛�2;

which implies, after division by �i i and summation over i ,

nX
iD1

@2
�i

�i i
.Q.�/ � z/�˛ D �2˛.Q.�/ � z/�˛�1 C 4˛.˛ C 1/Q.Q.�/ � z/�˛�2;

hence
nX
iD1

@2
�i

�i i
.Q.�/ � z/�˛ D �2˛.Q.�/ � z/�˛�1 C 4˛.˛ C 1/.Q.�/ � z/�˛�1

C 4˛.˛ C 1/z.Q.�/ � z/�˛�2;

and consequently�
Q.�/Q.@�/C 2˛ � 4˛.˛ C 1/

�
.Q.�/ � z/�˛ D 4˛.˛ C 1/z.Q.�/ � z/�˛�1:

By inverse Fourier transform this yields the functional equation satisfied by the family
F˛.z; �/,

A.˛; x;Dx/F˛.z; �/ D F˛C1.z; �/; (4.49)

where A is the differential operator with polynomial coefficients

A.˛; x;Dx/ D
˛
�
Q.@2x/Q.x/C 2.˛ C 1/ � 4.˛ C 1/.˛ C 2/

�
4.˛ C 1/.˛ C 2/z

;

which is holomorphic on the half-plane Re˛ > �1. Using the functional equation (4.49),
denoting by F the Fourier transform, we deduce the identity

F .F˛C1.z; �/�/.�/ D
Z

Rn
�.x/eih�;xiA.˛; x;Dx/F˛.z; x/ d

nx

D

Z
Rn
F˛.z; x/

tA.˛; x;Dx/.�.x/e
ih�;xi/ dnx

D

XZ
Rn
F˛.z; x/.A.1/.s; x;Dx/�.x//

�
A.2/.s; x;Dx/e

ih�;xi
�
dnx

D

XZ
Rn
F˛.z; x/.A.1/.s; x;Dx/�.x//

�
A.2/.s; x; �/e

ih�;xi
�
dnx;

where we split the differential operator tA into two pieces in all possible ways using the
Leibniz rule.7 The above sum is finite and the degree of A.2/ in both x and � is always

7This can also be stated in terms of the coproduct � tA D
P
A.1/ ˝ A.2/ in the coalgebra of

differential operators with polynomial coefficients, following Sweedler’s notation.
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less than 2. Therefore for all z 2 ¹Im z > 0; jzj > " > 0º, for Re ˛ < n=2 � 1 and all
N2 2 N, we can bound the seminorms of F˛C1.z; �/ in terms of those of F˛.z; �/:

kF˛C1.z; �/kN;V;� D sup
�2V

.1C k�k/N jF .F˛C1.z; �/�/.�/j

D sup
�2V

.1C k�k/N
ˇ̌̌̌XZ

Rn
F˛.z; x/.A.1/.s; x;Dx/�.x//

�
A.2/.s; x; �/e

ih�;xi
�
dnx

ˇ̌̌̌
6 C

X
kF˛.z; �/kNC2;V;�1;2 6 C.1C jIm zj/�N2 ;

where all above sums are finite and the smooth test functions �1;2 depend on the operators
A.1/;A.2/. Integrating these bounds, we propagate the microlocal estimates from the half-
plane Re˛ < n=2 � 1 to ˛ 2 C. We deduce that for any continuous seminorm k � kN;V;�
of D0ƒ0 , for all z 2 ¹Im z > 0; jzj > " > 0º and all ˛ 2 C, N2 2 N,

kF˛C1.z; �/kN;V;� 6 C.1C jIm zj/�N2 :

We summarize this in the next theorem, together with other results from this section.

Theorem 4.8 (Analytic properties of F˛). Let k D bRe˛c C 1 and F˛.z; �/ 2 D0.Rn/ as
in (4.44). Then for a 2 Œ0; 1� and " > 0, F˛.z; �/ 2 C.2�2a/.Re˛C1/�k�n

loc .Rn/ with decay
in z 2 ¹Im z > 0; jzj > "º of order O..1C jIm zj/�a.Re˛C1//.

Letƒ0 D ¹.xI �/ j � D �dQ.x/; Q.x/D 0; � < 0º [ .T �0 Rn n o/� T �Rn. For all z 2
¹Im z > 0; jzj > " > 0º and all ˛ 2C, the family .1C jIm zj/1CRe˛F˛.z; �/ is bounded in
D0ƒ0.R

n/. Moreover, for every N 2 N and " > 0, ¹jIm zjNF˛.z; �/ºz2¹Im z>"º is bounded
in D0ƒ0.R

n n ¹0º/.

5. Formal Hadamard parametrix for the resolvent

5.1. Pull-back by exponential maps

Next, we introduce the main ingredient in the construction of the formal Hadamard para-
metrix, namely, the pull-back of the distributions F˛.z; �/ near the diagonal � �M �M
using the exponential map.

5.1.1. Moving frame. We use the notation .xI v/ for elements of TM , where x 2 M
and v 2 TxM . Let N be a neighborhood of the zero section o in TM for which the
map N 3 .xI v/ 7! .x; expx.v// 2 M

2 is a local diffeomorphism onto its image (expx W
TxM !M is the exponential geodesic map).

The construction of the exponential in the pseudo-Riemannian setting is explained in
detail in [72, Appendix A]. The subset U D expN �M 2 is a neighborhood of� and the
inverse map U 3 .x1; x2/ 7! .x1I exp�1x1 .x2// 2 N is a well-defined diffeomorphism. Let
� be an open subset of M and let .e0; : : : ; en/ be a time oriented orthonormal moving
frame on � (i.e. for all x 2 �, gx.e�.x/; e�.x// D ��� , and e0 is future directed), and
.s�/� the corresponding orthonormal moving coframe.
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5.1.2. Pull-back. We denote by �� the canonical basis of Rn. The data of the orthonormal
moving coframe .s�/� allows us to define for .x1; x2/ 2 U the submersion

G W .x1; x2/ 7! G�.x1; x2/�� D s�x1„ƒ‚…
2T �x1M

.exp�1x1 .x2//„ ƒ‚ …
2Tx1M

�� 2 Rn: (5.50)

For any distribution f in D0.Rn/, the composition U 3 .x1; x2/ 7! G�f .x1; x2/ defines
the pull-back of f on U �M 2. If f isO.1;n� 1/"C-invariant, then the pull-back defined
above does not depend on the choice of orthonormal moving frame .e�/� and is thus
intrinsic (since all orthonormal moving frames are related by gauge transformations in
C1.M IO.1; n � 1/

"

C/).
This allows us to canonically pull back O.1; n � 1/"C-invariant distributions to distri-

butions defined on a neighborhood U of �.

Definition 5.1. We apply this construction to the family F˛.z; �/ 2 D0.Rn/ constructed
in Proposition 4.1, and we obtain the distribution F˛.z; �/ D G�F˛.z; �/ 2 D0.U /.

Lemma 5.2. Let .M; g/ be a globally hyperbolic Lorentzian manifold, U the neighbor-
hood of the diagonal��M �M defined in Section 5.1.1,G WU!Rn the map defined in
(5.50), and F˛.z; �/ 2D0.Rn/ the family of distributions defined in (4.44). Then the wave-
front set of the distribution F˛.z; �/DG�F˛.z; �/ is contained in the Feynman wavefront8

ƒ � .T �M n o/ � .T �M n o/, defined by

ƒ0 D ¹.q1; q2/ 2 † �† j q1 � q2º [ T
�
�.M�M/ (5.51)

using the notation introduced in Definition 3.9.

The proof of Lemma 5.2 will be given in Appendix D.2.
We conclude this section by our main result on the regularity of the family F˛.z/ D

G�F˛.z/ 2 D0ƒ.U / which follows from continuity in the normal topology [19, Proposi-
tion 5.1, p. 211] of the pull-back G� W D0ƒ0.R

n/! D0ƒ.U / and Proposition 4.6.

Proposition 5.3 (Boundedness of F˛). Let .M; g/ be a globally hyperbolic Lorentzian
manifold, U the neighborhood of the diagonal � � M �M defined in Section 5.1.1,
G W U ! Rn the map defined by (5.50), and F˛.z; �/ 2 D0.Rn/ the family of distribu-
tions (4.44). For every ˛ 2 C, the family of distributions F˛.z/ D F˛.z; �/ D G�F˛.z; �/,
z 2 ¹Im z > 0; jzj > " > 0º, has the property that .1C jIm zj/Re˛C1F˛.z/ is bounded
in D0ƒ.U /.

5.1.3. Preliminary identities. Recall that our differential operator of interest is of the
form

P � z D .@xj g
jk@xk Cm

2
� z/C bj @xj : (5.52)

8Note that in the literature on quantum field theory on curved spacetime, the opposite convention
is often used for Feynman propagators and for the Feynman wavefront.
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In the formal calculus9 used in the Hadamard parametrix construction, the part in paren-
theses on the r.h.s. of (5.52) has weight 2, in particular the parameter z is included in the
weight 2 part.

We first state the key identities satisfied by the family F˛.z; �/ on Rn.

Lemma 5.4. For all z 2 ¹Im z > 0; z ¤ 0º, the family of distributions F˛.z; �/ on Rn

satisfies the identities

.���@x�@x� � z/F˛.z; �/ D ˛F˛�1.z; �/ if ˛ ¤ 0;

.���@x�@x� � z/F0.z; j � jg/ D ı0;
(5.53)

2@x�F˛.z; �/ D ���x
�F˛�1.z; j � jg/: (5.54)

Proof. The first two identities follow from Lemma 4.7. The third identity follows from
the representation formula from Lemma 4.4, namely

F˛.z; x/ D
e�i.˛C1/�=2

.4�i/n=2.�1/.n�1/=2

Z 1
0

e
uQ.x/
4i
Cizu�1un=2�˛�2 du;

and we differentiate under the integral and use the chain rule to obtain the desired result.
In more detail, this reads10

@xj
e�i.˛C1/�=2

.4�i/n=2.�1/.n�1/=2

Z 1
0

e
uQ.x/
4i
Ciu�1zun=2�˛�2 du

D �2�j ix
i e�i.˛C1/�=2

.4�i/n=2.�1/.n�1/=2

Z 1
0

u

4i
e
uQ.x/
4i
Ciu�1zun=2�˛�2 du

D
�j ix

i

2

ei�=2e�i.˛C1/�=2

.4�i/n=2.�1/.n�1/=2

Z 1
0

e
uQ.x/
4i
Ciu�1zun=2�˛�1 du D

�j ix
i

2
F˛�1.z; x/:

The fact that we can differentiate under the integral is justified for Im z > 0 and Re ˛ >
n=2 � 2 (this guarantees all integrals converge absolutely and we can differentiate under
the integral) and the general result follows from analytic continuation of the identity
2@xjF˛.z; �/ D �j ix

iF˛�1.z; �/ in ˛ and the weak convergence of both sides in the dis-
tribution sense when Im z ! 0C.

5.1.4. Identities in normal coordinates. We consider the family of distributions F˛.z; �/2
D0.U / introduced in Definition 5.1, which play the role of the building blocks of the
parametrix.

The parametrix is constructed in normal charts. This means that we fix a point x0 2M ,
and then we express the distribution x 7! F˛.z; x0; x/ in normal coordinates centered

9We remark here that in applications it could be advantageous to make the connection with a
systematic calculus tailored to computations near the diagonal; see [33].

10The minus sign comes from Q.x/ D ��ij x
ixj .
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at x0. The fact that we can freeze x0 and view x 7! F˛.z; x0; x/ as a distribution of the
second variable x comes from the wavefront set of F˛.z; �; �/ 2D0.U /, which is contained
in ƒ � T �.M �M/. Near the element .x0; x0/ on the diagonal, the set ƒ is close to the
conormal N �� and therefore ƒ is locally transverse to the conormal N �.¹x0º �M/ D

T �x0M � o of the submanifold ¹x0º �M near the diagonal .x0; x0/. Hence, the pull-back
theorem of Hörmander allows us to restrict the distribution F˛.z; �; �/ to ¹x0º �M , which
means in practice that we freeze the variable x0 and consider F˛.z; x0; �/ as a distribution
of the second variable. In the sequel, we work in normal coordinates centered at x0.

Definition 5.5. Instead of Tx0M � U 3 v 7! F˛.z; x0; expx0.v//, we use the simplified
notation F˛.z; j � jg/ 2 D0.U /, where jyj2g is the pseudodistance squared from y to 0 2
Tx0M which represents the point x0 in the normal chart around x0 and g is the metric
pulled back onto Tx0M by the exponential map.

The fundamental equation satisfied by the normal coordinates reads [72, equa-
tion A 2.3, p. 271]

gjk.x/x
k
D gjk.0/x

k
D xj ; (5.55)

and this very general result is valid in pseudo-Riemannian geometry. This implies that
jyj2g D gjk.0/y

jyk D �jky
jyk . The second key observation is the statement of the next

lemma.

Lemma 5.6. Let F˛.z; j � jg/ 2 D0.U / be the family of distributions from Definition 5.5.
In the normal coordinate system .xj /njD0 on U defined in (5.55), we have the identities

2gjk.x/@xkF˛.z; jxjg/ D xjF˛�1.z; jxjg/;

.@xj g
jk@xk � z/F0.z; jxjg/ D jg.x/j

�1=2ı0.x/;

.@xj g
jk@xk � z/F˛.z; jxjg/ D ˛F˛�1.z; jxjg/:

Proof. The proof is completely analogous to the Riemannian case (see [69, (17.4.2),
(17.4.3), pp. 31–32]). The important property used to derive these identities is that in
the normal coordinate system, for any function f .j � j2g/ of the square geodesic length, we
have

gjk.x/@xkf .jxj
2
g/ D g

jk.0/@xkf .jxj
2
g/:

The first equation follows from the fact that

2gjk.x/@xkF˛.z; jxjg/ D 2gjk.0/@xkF˛.z; jxjg/ D gjk.0/�kixiF˛�1.z; jxjg/
D xjF˛�1.z; jxjg/;

where we have used (5.54) and gjk.0/ D �jk . The second equation follows from the first
equation, (5.53) and the properties of the normal coordinate chart:

.@xj g
jk@xk � z/F0.z; jxjg/ D jg.x/j

�1=2ı0.x/:
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5.2. Deriving the transport equations

Recall that �g is the Lorentzian Laplace–Beltrami operator and P D �g C m2 is the
Klein–Gordon operator. The parametrix construction involves transport equations because
even though the operator @xj g

jk.x/@xk C m
2 � z has a fundamental solution which is

F0.�m2 C z; jxj2g/, the operator P � z is not necessarily of the form @xj g
jk.x/@xk C

m2 � z but is rather given by the more general expression

P � z D @xj g
jk.x/@xk C b

j .x/@xj Cm
2
� z

with a non-trivial subprincipal part bj .x/@xj . This subprincipal part will be responsible
for the appearance of the scalar curvature as we will later see.

For Im z > 0, let f .z; �/ be the unique Schwartz distribution such that

F0.z; x/ D
1

.2�/n

Z
eihx;�i.j�j2� � i0 � z/

�1 dn� D f .z; jxj2�/:

We have the following Fourier integral representation for f :11

f .z; q/ D
e�i�=2

.4�i/n=2.�1/.n�1/=2

Z 1
0

e
q
4ui
Ciuzu�n=2 du:

The existence of f .z; �/ 2 D0.R/ and of f .z; j � j2g/ 2 D0.U / for Im z > 0 follows from
the oscillatory integral proofs of Lemma 4.4. We have the following key lemma, which
again parallels the Riemannian case [69, (17.4.5), p. 32].

Lemma 5.7. Let F˛.z � m2; j � jg/ 2 D0.U / be the family of distributions from Defini-
tion 5.5, in the normal coordinate system .xj /njD0 on U � Tx0M defined in (5.55), and
let Re˛ > 0. For any u 2 C1.U /,

.P � z/.uF˛/ D ˛uF˛�1 C .Pu/F˛ C .huC 2�u/
F˛�1
2

; (5.56)

where
h.x/ D bj .x/�jkx

k and � D xk@xk :

For ˛ D 0 and all u0 2 C1.U /,

.P � z/u0F0 D u0jg.x/j�1=2ı0.x/C .Pu0/F0 C 2hu0f 0.z; j � jg/

C 4xj
@u0

@xj
f 0.z; j � jg/; (5.57)

where f 0 is the distributional derivative of f .

11It is related to Bessel–Macdonald K functions, sometimes called modified Bessel functions of
the second kind.
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Proof. By definition and using all identities from Lemma 5.6,

.P � z/.uF˛/ D .Pu/F˛ C u
�
.@xkg

jk.x/@xk � z/F˛
�
C 2.@xj u/g

jk.x/.@xkF˛/

C ubj .x/.@xjF˛/

D .Pu/F˛ C u˛Œ�6pt�F˛�1 C .xj @xj u/F˛�1 C
ubj .x/�jkx

k

2
F˛�1

since
2gjk.x/@xkF˛ D xjF˛�1;

which implies

2@xiF˛ D 2gik.x/g
kj .x/@xjF˛ D gik.x/xkF˛�1 D gik.0/xkF˛�1 D �ikxkF˛�1:

The second equation is obtained in the same way.

The existence of f 0.z; j � jg/ follows from the same arguments as in the proof of
Lemma 4.4.

5.2.1. Parametrix from transport equations. In this subsection we construct the formal
parametrix in the normal coordinate chart U � Tx0M centered around x0 2 M . We
start from equation (5.57). We need to solve away the term in front of f 0 which reads
4xj @u0

@xj
C 2hu0, so we must look for u0 2 C1.U / solving the first transport equation

2�u0 C hu0 D 0

with initial condition u0.0/ D 1. So we see immediately that there is a potential problem
since there is still a term .Pu0/F0 which is singular. To kill this singular term, we look
for u1 2 C1.U / satisfying

�u1 C u1 C
h

2
u1 D �Pu0;

since for such a pair of smooth functions .u0; u1/ 2 C1.U /2, we would immediately find
that

.P � z/.u0F0 C u1F1/ D u0jgj�1=2ı0.x/C .Pu0/F0 C u1F0 C .Pu1/F1

C .hu1 C 2�u1/
F0
2

D jgj�1=2ı0.x/C .Pu1/F1:

Applying the above algorithm recursively, we see that at order N we have to look for
a parametrix HN .z/ of the form

HN .z/ D

NX
kD0

ukFk.z �m2; j � jg/ 2 D0.U /;
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where the sequence .uk/1kD0 of functions in C1.U / solves the well-known hierarchy of
transport equations

2kuk C huk C 2�uk C 2Puk�1 D 0; (5.58)

where for k D 0, we choose the convention that uk�1 D 0. This would kill all terms in
front of f 0; F0; : : : ; FN�1, therefore in the normal chart near x, HN .z; �/ satisfies the
equation

.P � z/HN .z; �/ D jgj
�1=2ı0 C .PuN /FN :

Note that the solutions .uk/1kD0 of the transport equations do not depend on z or on the
mass term m. This dependence is absorbed in the distributions Fk.z �m2; j � jg/.

The next lemma is fully analogous to [69, Lemma 17.4.1, p. 33]:

Lemma 5.8. The hierarchy of transport equations always has solutions in C1.U / where
U � Tx0M is any open neighborhood of 0 2 Tx0M such that expx0 WU !M is injective.

The formulation of Hörmander is practical for proving estimates and fairly general,
but to extract the scalar curvature we will later have to specialize to the case of the pseudo-
Riemannian Laplace–Beltrami operator.

5.2.2. Going back to a neighborhood of the diagonal �. For the moment we have con-
structed a parametrix Tx0M � U 3 x 7! HN .z; x/ around some fixed x0 2M . Now we
need to treat x0 as a parameter and prove that everything depends nicely on x0 2M . First,
observe that the solutions .uk/k of the transport equations are smooth in C1.U /. Recall
that .s�/� is the coframe from Section 5.1.1 and U � M �M is a neighborhood of the
diagonal � � M �M . Therefore, U 3 .x1; x2/ 7! uk.s.exp�1x1 .x2/// is smooth in both
arguments by composition and smoothness of the inverse exponential map on U . The dis-
tributions F˛.z; �/D G�F˛.z; �/ 2 D0.U / are also well-defined on the neighborhood U of
the diagonal (with wavefront set in ƒ). Therefore the parametrix

HN .z; x1; x2/ D

NX
kD0

uk.s.exp�1x1 .x2///G
�F˛.z �m

2; x1; x2/

describes in fact an element of D0ƒ.U /. For the sake of brevity, by slight abuse of notation
we simply write uk for the solution of the transport equation (the inverse exponential map
is dropped), and the parametrixHN .z; x/ depending on the variable x in the normal chart
around x0 or its pull-back HN .z; s.exp�1x1 .x2/// on U are both denoted by HN . So from
now on, one should always be aware that all objects are defined in terms of the exponential
map. With these conventions the Hadamard parametrix HN .z; �/ reads

HN .z; �/ D

NX
kD0

ukFk.z �m2; j � jg/ 2 D0.U /:

In the sequel, we shall use the notation ı� for the distribution defined locally by pull-
back as ı� DG�ı0 which we can extend globally by a partition of unity. By construction,
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ı� is a conormal distribution supported by the diagonal��M �M and ı�.x;y/jgj�1=2

is the Schwartz kernel of the identity map.12

6. The Hadamard parametrix approximates the resolvent

6.1. Summary

From now on, we assume that .M; g/ is globally hyperbolic with non-trapping Lorentz
scattering metric g.

The goal of this section is to prove that the formal parametrix HN .z; �/ constructed in
Section 5 truly approximates the resolvent .P � z/�1 in the space D0ƒ.U / of distributions
defined near the diagonal, whose wavefront set is the Feynman wavefront ƒ.

By Lemma D.3 proved in the appendix which shows that the Hölder regularity of
F˛.z; �/ is preserved under pull-back by G; and by Theorem 4.8 giving the microlocal
properties of the family F˛.z; �/, combined with Proposition 5.3, we have the following
bounds.

Lemma 6.1. Let U � M �M be the neighborhood of the diagonal � � M �M as
defined in Section 5.1.1, and let a 2 Œ0; 1�. The family of distributions hIm ziRe˛C1F˛.z; �/
is bounded in D0ƒ.U / and the family hIm zia.Re˛C1/F˛.z; �/ is bounded in Csloc.U / uni-
formly in z 2 ¹Im z > 0; jzj > " > 0º for all s 6 .2 � 2a/.Re ˛ C 1/ � k � n where
k D bRe˛c C 1.

Moreover, for every N 2 N and " > 0, .jIm zjNF˛.z; �//z2Im z>" is bounded
in D0ƒ.U n �/ uniformly in ˛ 2 C. If z 2 ¹Im z > 0; Re z > m2 > 0º, then
.hIm ziNF˛.z; �//z2¹Im z>0;jzj>">0º is bounded in D0ƒ.U n�/ uniformly in ˛ 2 C.

6.2. Resolvent approximation

Let � 2 C1.M �M I Œ0; 1�/ be such that � D 1 near the diagonal � � M �M and
�.x;y/D 0 outside the neighborhood U defined in (5.50). Recall that the Feynman wave-
front set is defined in (5.51).

We interpret the family

HN .z �m
2; �/� D

NX
kD0

ukFk.z �m2; �/� 2 D0ƒ.U /

as a family of Schwartz kernels, and we show that near the diagonal, the corresponding
family of operators is a parametrix which approximates the resolvent .P � z/�1.

Let QU be a neighborhood of the diagonal � such that �j QU D 1 and QU � U . Let

ƒ� D ¹.x; yI �; �/ j .x; yI �; �/ 2 ƒ; .x; y/ … QUº;

12We need to multiply by jgj�1=2 in order to take into account integration against the volume
element.
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so ƒ� D ƒ \ T �..M �M/ n QU / is a truncation of the Feynman wavefront set ƒ where
we removed the neighborhood QU near the diagonal.

Lemma 6.2. Assume .M; g/ is globally hyperbolic and set P D �g C m2. For every
s 2 R>0, p 2 Z>0, and m > 0 there exists N large enough such that for every z 2
¹Im z > 0; jzj > " > 0º,

.P � z/
� NX
kD0

ukFk.z �m2; �/�
�

D jgj�1=2ı� C .PuN /FN .z �m2; �/�C rN .z/; (6.59)

where

(1) jgj�1=2ı� 2 D0.M �M/ is the Schwartz kernel of the identity map,

(2) hzip.PuN /FN .z �m2; �/� is bounded in Csloc.U /,
(3) rN .z; �/ 2 D0.M �M/ vanishes on QU � U and outside U �M �M . In particular,

rN .z; �/ is the Schwartz kernel of a family of properly supported operators. Further-
more, rN .z; �/ is bounded in D0ƒ�.M �M/ uniformly in z 2 ¹Im z > 0; jzj > " > 0º,
and rN .z; �/ D OD0

ƒ�
.hIm zi�1/:

Note that in the above formulæ, the coefficients .uk/1kD0 of the transport equations do
not depend on the mass m or on the spectral parameter z.

Proof of Lemma 6.2. We start from the result from Section 5 which says that in the sense
of distributions in D0.U /,

.P � z/
� NX
kD0

ukFk.z �m2; �/
�
D jgj�1=2ı� C .PuN /FN .z �m2; �/; (6.60)

where FN .z; �/ 2 C.2�2a/.NC1/�N�nloc .U / with decay in z of the form hIm zi�a.NC1/ for
a 2 Œ0; 1� by Lemma 6.1, and FN .z; �/ is bounded in D0ƒ.U / by Proposition 5.3. Now,
multiplying the parametrix defined near the diagonal by the cut-off function � creates an
additional term. Namely, it turns (6.60) into

.P � z/
� NX
kD0

ukFk.z �m2; �/�
�
D jgj�1=2ı� C .PuN /FN .z �m2; �/�C rN .z; �/;

where

rN .z; �/ D 2
D
r�;r

� NX
kD0

ukFk.z �m2; �/�
�E
C .P�/

� NX
kD0

ukFk.z �m2; �/
�
:

The term rN .z; �/ vanishes whenever either � D 1 or � D 0, since it involves products
with derivatives of the diagonal cut-off function �. This means that rN .z; x; y/ D 0 for
.x; y/ 2 QU , which is near the diagonal �, and also rN .z; x; y/ D 0 for .x; y/ … U .
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This implies that the Schwartz kernel rN .z; �/ 2 D0.M �M/ defines a proper oper-
ator. Therefore, rN .z; �/ is bounded in D0ƒ� with a bound of the form rN .z; �/ D

OD0
ƒ�
.M�M/.jIm zj�1/ since it is defined in terms of the distributions Fk.z; �/ D

OD0
ƒ
.Un�/.jIm zj�1/ restricted outside the diagonal and because of its support that we

have just discussed.

We are now ready to conclude that near the diagonal, our parametrix is a good approx-
imation of the resolvent .P � z/�1.

We denote by rN .z/ the operator with Schwartz kernel rN .z; �/, and similarly for other
Schwartz kernels. Recall that 
" is the integration contour needed to define the complex
powers (see Section 2.6 and Figure 1 therein).

Proposition 6.3. Assume that .M; g/ is a globally hyperbolic non-trapping Lorentzian
scattering space and let " > 0. Set P D �g C m2. For every s 2 R>0, p 2 Z>0, and
m > 0, there exists N large enough such that uniformly in z 2 
", we have the identity

.P � z/�1 D
� NX
kD0

ukFk.z �m2; �/�
�
CEN;1.z/CEN;2.z/ (6.61)

in the sense of operators OC1!C1.hzi
�1=2/, where EN;1.z/ D .P � z/�1rN .z/ satis-

fies
WF0 .s/
hzi�1

.EN;1.z// � ƒ
0
�; (6.62)

and EN;2.z/ D .P � z/�1.PuN /FN .z/� satisfies EN;2.z/ D OH�!H�Cs .hzi�p/. Fur-
thermore ifm¤ 0 and assuming in addition injectivity and non-trapping at � Dm2, then
the estimates and (6.61) hold uniformly in z 2 
0.

In particular, (6.62) implies that EN;1.z/ is smooth near the diagonal.
As explained earlier, there are inevitable losses in decay in z in the high regularity

estimates, and the O.hzi�p/ bound requires choosing N extremely large.

Proof of Proposition 6.3. Recall that .P � z/�1 D OC1!C1.hzi
�1=2/ along 
" by

Lemma 3.17. By Lemma 6.2 (2), for every .p; a/ 2 N � R, for N large enough, in U
we have hzip.PuN /FN .z/� 2H aCn�0

loc .M �M/ uniformly in z along 
" by the Sobolev
embeddings Caloc.M �M/ ,!H aCn�0

loc .M �M/ recalled in Lemma D.2 in the appendix.
For every b 2 R and s 2 R>0, the external tensor product H b

c .M/ � H�b�sc .M/ 3

.v1; v2/ 7! v1 ˝ v2 2 H
inf.b;�b�s;�s/
c .M �M/ is linear continuous [73, Theorem 3.2,

p. 140], therefore choosing n large enough so that a C nC inf.b;�b � s;�s/ > 0, we
find that

H b
c .M/ �H�b�sc .M/ 3 .v1; v2/ 7! hv2; hzi

p.PuN /FN .z/�v1iM
D hhzip.PuN /FN .z/�; v1 ˝ v2iM�M

is bilinear continuous by Sobolev duality uniformly in z along 
". Therefore we have
(for N large enough)

.PuN /FN .z/� D OH�!H�Cs .hzi�p/: (6.63)
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Since the operators in (6.63) are properly supported,

EN;2.z/ D .P � z/
�1.PuN /FN .z/� D OH�!H�Cs .hzi�p/

follows by composition.
Next, by Lemma 6.2 (3), rN .z; �/ D OD0

ƒ�
.hzi�1/ along 
". Consequently, in terms

of the operator wavefront set we have WF0 .s/
hzi�1

.rN .z// � ƒ
0
� by Lemma 3.10. We also

know from Theorem 3.19 that

WF0 .s/
hzi�1=2

..P � z/�1/ � ƒ0:

By the composition rule for operator wavefront sets (Lemma 3.7), we obtain

WF0 .s/
hzi�1

.EN;1.z// � ƒ
0
ıƒ0�: (6.64)

It is easy to show using the transitivity of � that ƒ and ƒ� have the remarkable property

ƒ0 ıƒ0 � ƒ0 and ƒ0 ıƒ0� � ƒ
0
�: (6.65)

From (6.64) and the second property in (6.65) we conclude (6.62) immediately. The case
of 
0 is fully analogous.

7. Parametrix for complex powers and functions of the wave operator

7.1. The case of complex powers .P � i"/�˛

Our next objective is to study analytic properties of complex powers in a neighbor-
hood U � M �M of the diagonal using the relationship between the resolvent and the
Hadamard parametrix shown in Proposition 6.3.

Let " > 0. We already know that the contour integral

.P � i"/�˛ D
1

2�i

Z

"

.z � i"/�˛.P � z/�1 dz

makes sense as an operator in B.L2.M// for Re ˛ > 0. Using the decay along 
" of the
various terms, stated in Lemma 6.1 and Proposition 6.3, we can insert the r.h.s. of (6.61)
into the above contour integral. For Re˛ > 0 this yields

.P � i"/�˛ D
1

2�i

Z

"

.z � i"/�˛.P � z/�1 dz

D

NX
kD0

�uk
1

2�i

Z

"

.z � i"/�˛Fk.z/ dz

C
i

2�

Z

"

.z � i"/�˛.EN;1.z/CEN;2.z// dz;
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and this extends to ˛ 2 C provided we check that the summands have an analytic contin-
uation.

By Lemma 4.7 and continuity of the pull-back by G, we know that

1

2�i

Z

"

.z � i"/�˛Fk.z; �/ dz D
.�1/k�.�˛ C 1/

�.�˛ � k C 1/�.˛ C k/
FkC˛�1.i"; �/;

which is a well-defined holomorphic family of distributions in D0.U /. Therefore the finite
sum

PN
kD0 �uk

1
2�i

R

"
.z C i"/�˛Fk.z; �/ dz in fact reads

NX
kD0

�uk
.�1/k�.�˛ C 1/

�.�˛ � k C 1/�.˛ C k/
FkC˛�1.�i"; �/

and is a well-defined holomorphic family of distributions in the parameter ˛ 2 C.
The error term

RN .z; ˛/ WD
i

2�

Z

"

.z � i"/�˛.EN;1.z/CEN;2.z// dz

is smooth near the diagonal.
It follows that we have a decomposition of the Schwartz kernel of .P � i"/�˛ which

has to be understood in the sense of germs of distributions defined near the diagonal
� �M �M . The germ is the only information we need to take the diagonal restrictions:

Lemma 7.1. Let .M; g/ and P be as in Proposition 6.3. Then for every s 2 R>0 and
p 2 N, there exists N > 0 such that in D0. QU / we have the decomposition

.P�i"/�˛ D

NX
kD0

uk
.�1/k�.�˛C1/

�.�˛�kC1/�.˛Ck/
FkC˛�1.�m2Ci"/CRN .i"; ˛/; (7.66)

RN .i"; ˛/ 2 C
s.U /; (7.67)

where the terms on the r.h.s. depend holomorphically on ˛ in the half-plane Re ˛ > �p
and the r.h.s. is well-defined as an element of D0. QU /.

Corollary 7.2. For Re˛ > nC s .where nD dimM/ and s > 0, the operator .P � i"/�˛

has Hölder regularity Csloc.U / in a neighborhood of the diagonal��M �M , and under
the non-trapping and injectivity assumption at � Dm2 ¤ 0 the limit lim"!0C.P � i"/

�˛

exists in the sense of Csloc.U /.

Remark 7.3 (Checking the combinatorial factors). In the ˛ ! 1 limit, we get

.�1/k�.�˛ C 1/

�.�˛ � k C 1/�.˛ C k/
! 1

since the poles of �.�˛ C 1/ and �.�˛ � k C 1/ compensate each other. Therefore,
Lemma 7.1 is consistent with the formula .P � i"/�1 D

PN
kD0 ukFk.i"/CRN .i"; ˛/ as

expected.
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7.2. The case of f .PCi"
�2

/

With the spectral action in mind we now discuss other functions ofP . For that purpose it is
actually slightly more convenient to work withP C i" instead ofP � i", which in practice
amounts to considering �P instead of P . Note that .P C i"/�1 and the corresponding
Hadamard parametrix have anti-Feynman rather than Feynman wavefront set because the
sinks and sources are interchanged, but this has no practical significance in the discussion
below.

Definition 7.4. We denote by S�1C .R/ the set of Schwartz functions f such that yf is in
C1c .�0;C1�/.

First, observe that by the Paley–Wiener theorem, each f 2 S�1C .R/ has a unique
holomorphic extension to the upper half–plane ¹Im z > 0º and that the analytic extension,
still denoted by f , has exponential decay when Im z !C1. Also note that f .� C i"/ 2
L1.R/\C1.R/. Recall that the Mellin transform of yf 2 C1c .�0;C1�/ is by definition
the function

M yf .˛/ D

Z 1
0

�˛�1 yf .�/ d�:

By assumption on yf , the Mellin transform M yf has fast decay, and the Mellin inversion
yields yf .�/ D 1

2�i

R
Re˛Dc �

�˛M yf .˛/ ds, where the integral is absolutely convergent
uniformly in � 2 K � �0;C1� for any compact K. By inverse Fourier transform of ��˛C ,
for every " > 0, we have the formula

f .t C i"/ D
1

2�i

Z
Re˛Dc

ei˛�=2.t C i"/�˛�.˛/M yf .˛/ d˛:

The l.h.s. makes sense when " > 0 since f has an analytic continuation to the upper half-
plane ¹Im z > 0º. Note that for " > 0 the integral on the r.h.s. converges absolutely and
that for t 2 K in some compact K � R n ¹0º away from 0, the integral in

f .t/ D lim
"!0C

1

2�i

Z
Re˛Dc

ei˛�=2.t C i"/�˛�.˛/M yf .˛/ d˛

also converges absolutely. This allows us to give a representation formula for f .P C i"/
involving complex powers:

f .P C i"/ D
1

2�i

Z
Re˛Dc

ei˛�=2.P C i"/�˛�.˛/M yf .˛/ ds: (7.68)

As long as " > 0, the integral on the r.h.s. is norm convergent in B.L2.M// and the
identity follows by Borel functional calculus. It should be noted that one can choose c > 0
arbitrarily large on the r.h.s.; this does not affect the convergence properties.

Recall U is a neighborhood of the diagonal��M �M . Setting now c > dimM C s
for s > 0, we know by Corollary 7.2 that the Schwartz kernel of .P C i"/�˛ belongs to
Csloc.U / uniformly in ˛ 2 ¹Re ˛ D cº. Note that to take the limit " ! 0C, we need to
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assumem¤ 0 and non-trapping and injectivity atm2, in which case lim"!0C.P C i"/
�˛

D .P C i0/�˛ has Schwartz kernel in Csloc.U / uniformly in ˛ 2 ¹Re˛ D cº.
Therefore by the fast decay of M yf .˛/ on the vertical line ¹Re ˛ D cº, we find that

f .P C i"/ has Schwartz kernel which belongs to Csloc.U /. Ifm2 is non-trapping, the same
result holds for lim"!0C f .P C i"/ D f .P C i0/, which implies we can take "! 0C

on the r.h.s. of (7.68), which makes sense as Schwartz kernel near � �M �M and one
can take the restriction to the diagonal as f .P C i0/.x; x/. If " > 0, we do not need the
mass term and both sides of (7.68) make sense as operators acting on L2 whose Schwartz
kernel is Cs near the diagonal �.

So ifm2 non-trapping, in the limit "! 0C, we take the formula on the r.h.s. of (7.68)
as the definition of f .P C i0/ and both sides are no longer viewed as operators but as
germs of Schwartz kernels defined near the diagonal � �M �M :

f .P C i0/.�; �/

WD lim
"!0C

1

2�i

Z
Re˛Dc

ei˛�=2.P C i"/�˛.�; �/�.˛/M yf .˛/ ds 2 Csloc.U /: (7.69)

Since s and hence the parameter c can be chosen arbitrarily large, we have proved:

Lemma 7.5. Let .M; g/ be a globally hyperbolic non-trapping Lorentzian scattering
space and let " > 0 and P D �g Cm2, m > 0. Then for all f 2 S�1C .R/, f .P C i"/ W
L2.M/! L2.M/ exists and has smooth Schwartz kernel in some neighborhood U of the
diagonal � �M �M .

Moreover, if m ¤ 0 and assuming injectivity and non-trapping at energy � D m2, for
all f 2 S�1C .R/, the limit

f .P C i0/.�; �/ WD lim
"!0C

1

2�i

Z
Re˛Dc

ei˛�=2.P C i"/�˛.�; �/�.˛/M yf .˛/ ds (7.70)

exists in D0ƒ.M �M/ and is smooth in a neighborhood U of �.

8. Diagonal restriction, poles and residues

8.1. Summary

We make the central observation that F˛.z;0/D F˛.z;x;x/ for every x 2M by construc-
tion, therefore to study the restriction to the diagonal we only need to study the analytic
continuation in ˛ of F˛.z; 0/.

8.2. Meromorphic continuation of F˛.z; 0/

The value at 0 2 Rn of the distribution F˛.z; �/ that we denote by F˛.z; 0/ is studied. By
the Hölder regularity shown in Proposition 4.6, F˛.z; �/ 2 Cs.Rn/ for s 6 Re˛ C 1 � n,
therefore the value F˛.z; 0/ at 0 is well-defined when Re ˛ > n � 1 and depends holo-
morphically on ˛ 2 ¹Re ˛ > n � 1º, and also the limit when Im z ! 0C, jzj > m2 > 0
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is well-defined. We prove it admits an analytic continuation as a meromorphic function
with simple poles at ˛ 2 ¹n=2 � 1; n=2 � 2; : : : º.

8.2.1. A warm-up calculation. The pole of F˛.z; 0/ comes from its representation as
an integral of symbols on cones, where the decay of the symbol approaches the critical
dimension of the cone. We will also have to take into account the � factor. A typical
example reads Z

Rn
.k�k2 � z/�˛ dn�;

where k�k is the Euclidean norm of �. We assume for the moment z < 0 so that z acts
as mass squared to regulate infrared divergences since we only want to deal with UV
problems.

To compute residues of such integrals, observe that the poles ofZ
Rn
.k�k2 � z/�˛ dn� D

1

�.˛/

Z 1
0

�Z
Rn
e�t.k�k

2�z/ dn�

�
t˛�1 dt

are the poles of

1

�.˛/

Z 1

0

�Z
Rn
e�t.k�k

2�z/ dn�

�
t˛�1 dt

D
.2�/n

�.˛/.4�/n=2

1X
kD0

zk

kŠ

Z 1

0

t˛�n=2Ck�1dt D
�n=2

�.˛/

1X
kD0

zk

kŠ.˛ � n=2C k/
:

All poles are simple and located at ˛ D n=2; : : : ; 1 and have zk in the numerator; there are
compensations for ˛ 2 �N due to the � factor. So the residue at ˛D k 2 ¹1; : : : ; n=2� 1º
is

res˛Dk

Z
Rn
.k�k2 � z/�˛ dn� D

zn=2�k�n=2

.n=2 � k/Š�.k/
:

8.3. The Wick rotation by homological methods

We need to deal with similar integrals to those in the above subsection but with the
Minkowski quadratic form instead of the Euclidean one. We present a geometric approach
to the analytic continuation of the residue which is close to the Wick rotation in the physics
literature but is fully rigorous.

Consider Cn viewed as a Kähler manifold with coordinates .z1; : : : ; zn/, and some
complex parameter u 2 C that will take values in the upper half-plane ¹Im u > 0º. Set
Q.z/ D

Pn
iD1 z

2
i and consider the complex valued n-form

!˛ D
� nX
iD1

z2i � u
��˛

dz1 ^ � � � ^ dzn 2 �
n;0.U IC/;

which is well-defined on the Zariski open set U D ¹z 2 Cn j Q.z/� u … ��1; 0�º since
we chose the usual branch of log which avoids the negative reals.
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For all � 2 ���=2; �=2� let P� D ¹.ei�z1; : : : ; zn/ j .z1; : : : ; zn/ 2 Rnº, considered
as an oriented n–chain.

Proposition 8.1 (Stokes’ theorem). For all ˛ 2 C, the differential form !˛ is closed, and
for all � 2 ���=2; �=2� and all Re˛ > n=2,Z

P�

!˛ D

Z
P0

!˛: (8.71)

Proof. It is obvious that d!˛ D 0. One has to be careful when applying Stokes’ theorem
since our “cycles” have their boundaries along sectors at infinity. Denote by B.R/ D
¹kzk2 6 R2º the ball of radius R in Cn.

After intersecting our chains P� with B.R/, the usual Stokes’ theorem yieldsZ
P�\B.R/

!˛ �

Z
P0\B.R/

!˛ D

Z
D�

d!˛„ ƒ‚ …
D0

�

Z
R�

!˛;

where D� is the angular sector D� D ¹.z1; : : : ; zn/ j 0 6 arg.z1/ 6 �; .z2; : : : ; zn/ 2
Rnº \ B.R/ and R� D ¹.z1; : : : ; zn/ j 0 6 arg.z1/ 6 �; .z2; : : : ; zn/ 2 Rn; kzk D Rº.
Let us bound the integral on the arc R� :Z
R�

!˛ D

Z
¹
Pn
iD2 z

2
i

6R2º

�Z �

0

�
e2ia.R2�

nX
iD2

z2i �u/C

nX
iD2

z2i

��˛
ieiada

�
dz2 : : : dzn

6 CRn�1R�2Re˛;

which tends to 0 asR!C1. Since for all � 2 ���=2;�=2� the integral
R
P�
!˛ converges

absolutely when Re˛ > n=2, we can take the limit R!C1, which yields

lim
R!C1

Z
P�\B.R/

!˛ D lim
R!C1

Z
P0\B.R/

!˛:

It follows from the identity
R
P�
!˛ D

R
P0
!˛ for Re ˛ > n=2 as holomorphic func-

tions, and from the fact that
R
P0
!˛ is a meromorphic function with simple poles at

˛ 2 ¹n=2;n=2� 1; : : : ; 1º, that both sides coincide in the sense of meromorphic functions
for all ˛ 2 C n ¹n=2; : : : ; 1º by analytic continuation in ˛. Define the linear invertible
holomorphic map ˆ� W .z1; : : : ; zn/ 7! .ei�z1; : : : ; zn/. Since ˆ� is invertible and does
not reverse orientation, by the pull-back theorem we getZ

P�

!˛ D

Z
ˆ� .P0/

!˛ D

Z
P0

ˆ��!˛:

Combined with the equality
R
P�
!˛ D

R
P0
!˛ , this means thatZ

Rn

� nX
iD1

z2i � u
��˛

dz1 ^ � � � ^ dzn D

Z
P0

!˛ D

Z
P0

ˆ��!˛

D ei�
Z

Rn

�
e2i�z21 C

nX
iD2

z2i � u
��˛

dz1 ^ � � � ^ dzn:
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When � ! �.�=2/C, the term .e2i�z21 C
Pn
iD2 z

2
i � u/ has non-positive imaginary part

and the integrand .e2i�z21 C
Pn
iD2 z

2
i � u/

�˛ converges to .�z21 C
Pn
iD2 z

2
i � u� i0/

�˛

in the sense of distributions by Lemma D.1 proved in the appendix. By weak homogeneity
at infinity and using a Littlewood–Paley decomposition 1 D

P
j �0.jzj/C  .2

�j jzj/ as
in Section 4.2.2, one can show that

lim
�!�.�=2/C

Z
Rn

�
e2i�z21 C

nX
iD2

z2i � u
��˛

dz1 ^ � � � ^ dzn

D

Z
Rn

�
�z21 C

nX
iD2

z2i � u � i0
��˛

dnz; (8.72)

where the bound

sup
�2���=2;0�

ˇ̌̌̌ Z
Rn

�
e2i�z21 C

nX
iD2

z2i � u
��˛

 .2�j jzj/ dz1 ^ � � � ^ dzn

ˇ̌̌̌
D sup
�2���=2;0�

2j.n�2Re˛/
ˇ̌̌̌��

e2i�z21 C

nX
iD2

z2i �
u

22j
� i0

��˛
;  

�ˇ̌̌̌
6 C2j.n�2Re˛/

ensures that both sides of (8.72) can be written as convergent series and both are holo-
morphic in ˛ when Re˛ > n=2.

By Proposition 8.1 and the warm-up calculation in Section 8.2.1, for all � 2 ���=2;0�,Z
Rn

�
e2i�z21 C

nX
iD2

z2i � u
��˛

dz1 ^ � � � ^ dzn D e
�i�

Z
P0

!˛

extends as a meromorphic function in ˛ with simple poles at ˛ D n=2; : : : ; 1. Hence the
limit on the l.h.s. of (8.72) which equals i

R
P0
!˛ also does. Therefore the r.h.s. of (8.72)

equals i
R
P0
!˛ , which is meromorphic with simple poles at ˛ D n=2; : : : ; 1; this finally

yields

res˛Dk

Z
Rn

�
�z21 C

nX
iD2

z2i � u � i0
��˛

dnz D i res˛Dk

Z
Rn

� nX
iD1

z2i � u
��˛

dnz

D
i�n=2un=2�k

�.k/.n=2 � k/Š
:

8.3.1. Conclusion and structure of residues. Therefore, we can go back to the residue of
the diagonal restriction of F˛.z; x; x/; for all z ¤ 0, Im z > 0, we find that

res˛Dn=2�k �.˛ C k/�1F˛Ck�1.˙z; x; x/

D
1

.2�/n
res˛Dn=2�k

Z
Rn
.Q.�/� .z C i0//�˛�k dn�

D ˙
i

2n�n=2.n=2 � 1/Š
:
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The poles of �.˛ C k/�1F˛Ck�1.˙z; x; x/ occur at ˛ D ¹1 � k; : : : ; n=2 � kº. For j 2
¹1 � k; : : : ; n=2 � kº,

res˛Dj �.˛ C k/�1F˛Ck�1.˙z; x; x/ D ˙
i.˙z/n=2�k�j

�.j C k/2n�n=2.n=2 � k � j /Š
:

Applying this result to the parametrix of the Feynman powers, we note that

�.�˛ C 1/

�.�˛ � k C 1/
D .�˛/ : : : .�˛ � k C 1/;

which means that this term has no poles for every ˛ 2 C and does not contribute to the
residues of .P ˙ i"/�˛.x; x/. We would like to study the residue in the variable s of
.P ˙ i"/�˛ at p D n=2; n=2 � 1; : : : in two cases.

Case 1. When p D n=2; : : : ; 1, we find that for ˛ near p,

.P ˙ i"/�˛ D

1X
kD0

.�1/k.�˛/ : : : .�˛ � k C 1/„ ƒ‚ …
¤0

�.˛ C k/�1F˛Ck�1.�m2 � i"; x; x/„ ƒ‚ …
simple poles at ¹1�k;:::;n=2�kº

;

which implies that

res˛Dp .P ˙ i"/�˛

D

n=2�pX
kD0

.�1/k.�p/ : : : .�p � k C 1/ res˛Dp �.˛ C k/�1F˛Ck�1.�m2 � i"; x; x/:

The only residue which is independent of ";m reads

res˛Dn=2�k.�1/k
uk.x; x/FkCs�1.�m2 � i"; x; x/�.�˛ C 1/

�.˛ C k/�.�˛ � k C 1/

D �uk.x; x/

�
k �

n

2

�
: : :

�
1 �

n

2

�
.�1/ki

2n�n=2�.n=2/

D �uk.x; x/
.n=2 � 1/Š

.n=2 � k � 1/Š

i

2n�n=2�.n=2/
D �

uk.x; x/

.n=2 � k � 1/Š

i

2n�n=2
:

Case 2. When p 6 0, we find for ˛ near p that

.P ˙ i"/�˛ D

1X
kD0

.�1/k.�˛/ : : : .�˛ � k C 1/„ ƒ‚ …
simple zeroes for k>1�p

�.˛ C k/�1F˛Ck�1.�m2 � i"; x; x/„ ƒ‚ …
simple poles at ¹1�k;:::;n=2�kº

;

therefore

res˛Dp .P ˙ i"/�˛

D

�pX
kD0

.�1/k.�p/ : : : .�p � k C 1/ res˛Dp �.˛ C k/�1F˛Ck�1.�m2 � i"; x; x/„ ƒ‚ …
no poles at ˛Dp

D 0;

where �.˛ C k/�1F˛Ck�1 has no poles at ˛ D p because p C k 6 0 and
�.˛ C k/�1F˛Ck�1 has no poles in the region Re˛ C k 6 0.
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Remark 8.2. We recover the well-known fact that on a compact Riemannian manifold,
if 0 … sp.��g/ then the meromorphic continuation of ¹Re˛� 0º 3 ˛ 7! Tr..��g/�˛/
has no pole at ˛ D 0; 1; 2; : : : .

In summary, we have proved the following result.

Theorem 8.3. Let .M; g/ be a globally hyperbolic non-trapping Lorentzian scattering
space of even dimension n and let P D �g . Then the Schwartz kernel Ks.�; �/ of the
operator .P ˙ i"/�˛ exists as a family of distributions near the diagonal depending holo-
morphically to ˛ on the half-plane Re ˛ > �1. Its restriction to the diagonal K˛.x; x/
exists and is holomorphic for Re˛ > n=2, and it extends as a meromorphic function of ˛
with simple poles along the arithmetic progression ¹n=2; n=2 � 1; : : : ; 1º. Furthermore,

lim
"!0C

res˛Dn=2�k .P ˙ i"/�˛.x; x/ D �
iuk.x; x/

2n�n=2.n=2 � k � 1/Š
:

8.4. Residues for the spectral action

To recover the spectral action principle, we must study the pole structure of the restriction
�.˛/.P C i"/�˛.x; x/ where we must take into account the non-trivial effect of the �
factor for ˛ 6 0. For usual applications of the spectral action principle, we need the first
three poles at ˛ D n=2;n=2� 1;n=2� 2 of �.˛/.P ˙ i"/�˛.x; x/ that we will explicitly
calculate in terms of the mass term m2 and the regulator "; after tedious bookkeping of
all the formulæ from the previous subsection we find:

res˛Dn=2 �.˛/.P ˙ i"/�˛.x; x/ D �
i

2n�n=2
;

res˛Dn=2�1 �.˛/.P ˙ i"/�˛.x; x/ D �
i.�m2 � i"/

2n�n=2
�
iu1.x; x/

2n�n=2
;

res˛Dn=2�2 �.˛/.P ˙ i"/�˛.x; x/ D �
i.�m2 � i"/2

2nC1�n=2
�
i.�m2 � i"/u1.x; x/

2n�n=2

�
iu2.x; x/

2n�n=2
:

In conclusion, this yields the following result.

Theorem 8.4. Let .M; g/ be a globally hyperbolic non-trapping Lorentzian scattering
space of even dimension n and let P D �g Cm2, m > 0, be the corresponding Klein–
Gordon or wave operator. Then for every f 2 S�1C .R/, the Schwartz kernel f .PCi"

�2
/.�; �/

is smooth near the diagonal and admits an asymptotic expansion of the form

f

�
P C i"

�2

�
.x; x/ D

ein�=4c0

i2n�n=2
�n C

ei..n�2/�/=4c1

i2n�n=2

�
.�m2 � i"/C u1.x; x/

�
�n�2

C
ei.n�4/�=4c2

i2n�n=2

�
.�m2 � i"/2

2
C .�m2 � i"/u1.x; x/C u2.x; x/

�
�n�4 CO.�n�5/;

where uk are the Hadamard coefficients and ck D
R1
0
yf .t/tn=2�k�1 dt .
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We remark that in the case when m ¤ 0, assuming injectivity and non-trapping at
energy � D m2 we have an analogous result with " D 0 and with f .PCi0

�2
/.x; x/ defined

by (7.70).

Proof of Theorem 8.4. Since we are interested in the first three terms of the asymptotic
expansion, we choose n=2 � 3 < c2 < n=2 � 2. By Lemma 7.1, we can start from the
diagonal expansion for .PCi"/�˛:

.PCi"/�˛ D

NX
kD0

.�1/kuk
�.�˛ C 1/

�.˛ C k/�.�˛ � k C 1/
FkC˛�1.�m2�i"/

CRN .�i"; ˛/: (8.73)

By Lemma 7.1, for any p 2 N with �p < c2 and s > 0, we may always choose N large
enough so that the remainder term RN .�i"; ˛/ has Csloc regularity, hence it has a well-
defined diagonal restriction which is holomorphic and bounded on Re ˛ > �p. We have
also proved that the term FkC˛�1.�m2�i"; x; x/ has a well-defined diagonal restriction
which is holomorphic on the vertical line Re˛ D c2 since this line does not meet the poles
of FkC˛�1.�m2�i"; x; x/. This means that the term ei˛�=2.PCi"/�˛.x; x/�2˛�.˛/ in

f

�
PCi"

�2

�
.x; x/ D

1

2�i

Z
Re˛Dc

ei˛�=2.PCi"/�˛.x; x/�2˛�.˛/M yf .˛/ ds

has simple poles at n=2; n=2 � 1; n=2 � 2.
Then the result follows by moving the contour from Re˛ D c to Re˛ D c2 and using

the Cauchy residue formula (we are allowed to do so because of the fast decay of M yf .˛/

when jIm˛j ! C1) to get

f

�
PCi"

�2

�
.x; x/

D

2X
kD0

.res˛Dn=2�k �.˛/.PCi"/�˛.x; x//ei
�
2 .n=2�k/�n�2kM yf .n=2 � k/

C
1

2�i

Z
Re˛Dc2

ei˛�=2.PCi"/�˛.x; x/�2˛�.˛/M yf .˛/ ds„ ƒ‚ …
O.�2c2 /

;

where the underbraced O.�2c2/ term is of lower order than the preceding ones.

8.5. Extraction of the scalar curvature

Finally, we specialize the discussion of the formal parametrix construction in Section 5 to
the Laplace–Beltrami operator P D �g to explain how one can extract the scalar curva-
ture from the residue of .P˙i0/�˛.x; x/ at ˛ D n=2 � 1.
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To that end we need to understand the geometric nature of the term bj @xj appearing
in P , and also to interpret geometrically the first transport equation on u0; u1. Recall that
the operator P is defined in any coordinate system as (see [72, p. 270])

Pu D jgj�1=2@xj .jgj
1=2gjk@xku/

for all u 2 C1.M/, where we sum over repeated indices.13 Therefore P D @xj g
jk@xk

C bk.x/@xk where by [72, p. 270], bk.x/D jg.x/j�1=2gjk.x/.@xj jg.x/j
1=2/. This leads

us to the identity

P D @xkg
kj .x/@xj C g

jk.x/.@xj log jg.x/j1=2/@xk

which holds true in normal coordinates centered at an arbitrary point x0. These formulæ
are completely analogous to the well-known ones for the Laplace–Beltrami operator on
Riemannian manifolds [112, pp. 41–42].

Recall that when we introduced the transport equations to study the parametrix, in
Lemma 5.7 there was a function h defined in normal coordinates as h.x/ D bj .x/�jkxk .
It can be written as

h.x/ D bj�jkx
k
D glj .x/.@xl log jgj1=2/�jkxk D xk@xk log jgj1=2 D � log jgj1=2;

where � is the Euler vector field induced by the pseudo-Riemannian metric. The first
transport equation 2�u0 C hu0 D 0 now reads [112, (2.4.18), p. 43]

2�u0 D �� log jgj1=2u0; u0.0/ D 1;

hence u0.x/ D jg.0/j1=4jg.x/j�1=4 The second transport equation is

�u1 C u1 C
h

2
u1 D �Pu0:

Since both �u1 and h D � log jgj1=2 vanish at the origin, this implies that

u1.0/ D �Pu0.0/ D �P.jg.0/j
1=4
jg.x/j�1=4/jxD0:

Now in normal coordinates jg.0/j1=4 D 1 and from the Taylor expansion of the metric in
normal coordinates [1, (5.2), p. 82], [9, Proposition 1.28, p. 37],

gij .x/ D �ij C
1
3
Rikjlx

kxl CO.jxj3/:

Therefore [1, p. 84] we get the Taylor expansion of jg.x/j�1=4 in normal coordinates:

jg.x/j�1=4 D
ˇ̌
j�j exp

�
Tr log

�
ıij C �

i1
i
1
3
Ri1kjl .0/x

kxl CO.jxj3/
��ˇ̌�1=4

D
�
1C 1

3
Tr.�i1i Ri1kjl .0/x

kxl /
��1=4

CO.jxj3/
D 1C 1

12
Rickl .0/xkxl CO.jxj3/;

13Our convention follows Hörmander [72, p. 270].
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since Tr.�i1i Ri1kjl .0/x
kxl /Dıij�

i1
i Ri1kjl .0/x

kxlD�ijRikjl .0/x
kxlD�Rickl .0/xkxl

where Rickl is the Ricci tensor. This implies that

�P jg.x/j�1=4 D �1
6
gklRickl .0/„ ƒ‚ …
DRg.0/

CO.jxj/;

where we recognize Rg.0/ D gklRickl to be the scalar curvature. Finally, u1.x; x/ D
�Rg.x/=6.

We are done with extracting the scalar curvature from the coefficient u1.0/ of the
transport equations. We have thus deduced the following result.

Proposition 8.5. As a particular case of Theorem 8.3, if in addition the dimension of M
is n > 4 then

lim
"!0C

res˛Dn=2�1 .P ˙ i"/�˛.x; x/ D ˙
iRg.x/

6.4�/n=2.n=2 � 2/Š
;

where Rg.x/ is the scalar curvature at x.

Put together with Theorem 8.3, this proves our main result stated in the introduction,
i.e. Theorem 1.1.

Appendix A. Propagation estimates

A.1. Summary

The purpose of this appendix is to supplement the material in Sections 2.1–2.4 with a very
brief summary on scattering calculus and propagation estimates.

Propagation estimates in the scattering setting are due to Melrose [87]. The gener-
alization to variable weight orders presented here is due to Vasy [130, 131]; see [50,
Sections 2–3] for a concise introduction, cf. [41, Appendix E.4]. The scattering calculus in
the model case Rn was earlier developed among others by Shubin [109] and Parenti [94].

A.2. Scattering calculus

We use the notation already introduced in Sections 2.1–2.4; recall in particular that � is
a boundary-defining function and y are local coordinates on @M , extended onto a collar
neighborhood of @M . Let .�; y; %; �/ be local coordinates on scT �M such that .%; �/ are
the dual coordinates of .�; y/. Recall that we introduced the formal notation h�i�1 for the
boundary-defining function of fiber infinity.

The class of scattering symbols of order s; ` 2 R, denoted by S s;`sc .T
�M/, is defined

away from @M in the same way as the usual symbol class S s.T �M/, whereas near the
boundary, any a 2 S s;`sc .T

�M/ is a smooth section of T �M that satisfies the estimate

8j; k 2 N; ˛; ˇ 2 Nn�1; j.�@�/
j @˛y@

k
%@
ˇ
�a.�; y; %; �/j 6 Cjk˛ˇ �

�`
h�is�k�jˇ j:

(A.1)
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The model example is as always Rn with standard coordinates .x; �/ on T �Rn. In this
case, by using spherical coordinates x D .r; y/ and setting �D r�1, � D .%; ��1�/, hxi D
.1C jxj2/1=2 and h�i D .1C j�j2/1=2, one finds that (A.1) is equivalent to

8˛; ˇ 2 Nn; j@˛x@
ˇ

�
a.x; �/j 6 C˛ˇ hxi`�j˛jh�is�jˇ j:

The class ‰s;`sc .M/ of scattering pseudo-differential operators is obtained from sc-
symbols a 2 S s;`sc .T

�M/ by reduction to quantization of symbols on T �Rn. This requires
choosing a partition of unity ¹ iºi subordinate to a finite chart covering of M as well as
suitable diffeomorphisms close to @M (one can show that in the end different choices give
the same operator modulo an element of ‰s�1;`�1sc .M/). One also includes in the defini-
tion of ‰s;`sc .M/ a class of regularizing operators in the sense that their Schwartz kernels
KA.x; x

0/ are smooth and decrease rapidly (with all derivatives) as the distance between
x 2M and x0 2M tends to infinity. We refer the reader to, e.g., [130] and [123, Section 2]
for an introduction; cf. [87] for the original, more geometric description of the Schwartz
kernels of scattering pseudo-differential operators.

In the sc-calculus, the principal symbol of A 2 ‰s;`sc .M/ is the equivalence class of
the symbol of A in S s;`sc .T

�M/=S s�1;`�1sc .T �M/. It is often useful to consider the more
narrow class of classical pseudo-differential operators which is obtained from classical
symbols, i.e. from symbols of the form a D h�is��` Qa with Qa 2 C1.scT �M/. In the sim-
plest case ofA 2‰0;0sc .M/ classical, it is possible to identify the principal symbol with the
restriction of a 2 C1.scT �M/ to @scT �M . For classical A 2 ‰s;`sc .M/ of arbitrary order
there is also a natural identification of the principal symbol with a function on @scT �M ;
see for instance (2.4) for the explicit formula for the principal symbol pz of�g � z.

The microsupport WF0sc.A/ of A 2 ‰s;`sc .M/ is the complement of the set of points
q 2 @scT �M such that the (full) symbol of A coincides in a neighborhood of A with a
symbol in S�N;�Lsc .T �M/ for all N; L 2 R. If A is classical, then its elliptic set is the
complement Ellsc.A/ D @scT �M n †sc.A/ of the characteristic set †sc.A/, defined as
the closure of the zero set of the principal symbol.

In the context of propagation estimates it is useful to allow for weight orders ` that
vary on scT �M . On top of the obvious modifications of the definitions of S s;`sc .T

�M/ and
‰s;`sc .M/, the cost to pay is that one needs to slightly relax the decay stated in (A.1), and
require instead that

j.�@�/
j @˛y@

k
%@
ˇ
�a.�; y; %; �/j 6 Cjk˛ˇ �

�`�ı.jCkCj˛jCjˇ j/
h�is�k�jˇ j: (A.2)

for some ı > 0. This circumvents logarithmic losses one would otherwise have when dif-
ferentiating `. Apart from that, the change of definition (A.2) has however no big practical
significance and will be disregarded in the notation entirely.

Now, if s > 0 and ` 2 C1.scT �M/, we define the weighted Sobolev space of variable
weight order to be

H s;`
sc .M/ D ¹u 2 L2.M/ j Au 2 L2.M/º;
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where A 2 ‰s;`sc .M/ is a classical elliptic operator (i.e., Ellsc.A/ D @scT �M ) which can
be chosen arbitrarily. One can fix in particular an invertible A, and the norm can then be
defined as kuks;`DkAuk (different choices ofA give equivalent norms). This agrees with
the definition for s 2 Z>0 given in the main part of the paper. For s 6 0, H s;`

sc .M/ can be
defined as the dual of H�s;�`sc .M/. Then, for all s; ` 2 R and any elliptic A 2 ‰s;`sc .M/,

H s;`
sc .M/ D

°
u 2

[
s0;`0

H s0;`0

sc .M/
ˇ̌̌
Au 2 L2.M/

±
:

A.3. Propagation estimates

We now consider the setting of the wave or Klein–Gordon operatorP � z on non-trapping
Lorentzian scattering spaces introduced in Sections 2.1–2.3. We review various microlo-
cal estimates for P � z, following [130, 131], with a particular emphasis on the depen-
dence on the complex parameter z, which we assume to vary in some set Z � C.

Recall that with the notation from Section 2.3, the characteristic set of P � z is
†sc.P � z/ D .†0 \ @

scT �M/ [ .†z \ @
scT �M/.

We first state the analogue of Hörmander’s propagation of singularities theorem in our
setting. The fixed z version is due to Melrose [87]; see [130, Theorem 5.4] and the remarks
in [131] for the uniform version below including the Im z term. As in the main part of the
text, we write q � q0 if q and q0 are connected by a bicharacteristic in †sc.P � z/, and
we denote the closed bicharacteristic segment from q to q0 by 
q�q0 . The notation q � q0

means that q � q0 and q comes after q0 along the flow.

Proposition A.1 (Propagation of singularities). Let s 2 R and let ` 2 C1.scT �M/ be
non-decreasing along the Hamiltonian flow. Let A1; A2; B 2 ‰0;0sc .M/ be such that
WF0sc.A1/ � Ellsc.B/ and for all z 2 Z the following control condition is satisfied:

8q 2WF0sc.A1/ \†sc.P � z/; 9 q
0
2 Ellsc.A2/ W q � q

0 and 
q�q0 � Ellsc.B/: (A.3)

Suppose A2u 2 H s;`
sc .M/ and ¹B.P � z/uºz2Z is bounded in H s�1;`C1

sc .M/. Then for
all u 2 H S;L

sc .M/,

kA1uks;` C .Im z/1=2 kA1uks�1=2;`C1=2

6 C.kA2uks;` C kB.P � z/uks�1;`C1 C kukS;L/

uniformly in z 2 Z \ ¹Im z > 0º.

The control condition (A.3) means in particular that the knowledge about u being in
H s;`

sc .M/ microlocally is propagated forward (from Ellsc.A2/ to Ellsc.A1/), consistently
with the sign of Im z.

Beside propagation of singularities one can also show a uniform version of the simpler
elliptic estimate [130, Corollary 5.5].
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Next, recall that in our setting, LC are the sinks and L� the sources. Below, ` 2
C1.@scT �M/ and `˙ D `jL˙ as in the main part of the text.

We now state the radial estimates for P � z. The low decay radial estimate can be
used to propagate decay properties of u into LC from a punctured neighborhood U n U1.
The higher decay radial estimate serves to gain decay properties in a neighborhood of L�
provided it is already better than the threshold value �1=2.

We refer again to [87] and [130, Proposition 5.27] for the fixed z version, and to [131]
for the modifications in the proof needed to accomodate the Im z term.

Proposition A.2 (Low decay radial estimate [131, (5)]). Let s 2 R and assume that ` is
non-decreasing along the Hamiltonian flow and `C < �1=2. Let A; B; B1 2 ‰0;0sc .M/

and let U1; U be open neighborhoods of LC in @scT �M and assume U1 � Ellsc.A/,
WF0sc.A/ � Ellsc.B/ � U and WF0sc.B1/ � U n U1. Assume that for all z 2 Z the fol-
lowing control condition is satisfied:

8q 2WF0sc.A/ \†sc.P � z/ n LC; 9 q
0
2 Ellsc.B1/ W q � q

0 and 
q�q0 � Ellsc.B/:

Suppose B1u 2 H s;`
sc .M/ and ¹B.P � z/uºz2Z is bounded in H s�1;`C1

sc .M/. Then for
all u 2 H S;L

sc .M/,

kAuks;`C .Im z/
1=2
kAuks�1=2;`C1=2 6 C.kB1uks;`CkB.P � z/uks�1;`C1CkukS;L/

uniformly in z 2 Z \ ¹Im z > 0º.

Proposition A.3 (Higher decay radial estimate [131, (4)]). Let s 2 R and assume that `
is non-decreasing along the Hamiltonian flow and `� > �1=2. Let A;B 2 ‰0;0sc .M/ and
let U be a sufficiently small open neighborhood ofL� in @scT �M . AssumeL� � Ellsc.A/

and WF0sc.A/ � Ellsc.B/ � U . Suppose ¹B.P � z/uºz2Z is bounded in H s�1;`C1
sc .M/.

Then for all s0 2 R, `0 2 ��1=2; `� and u 2 H S;L
sc .M/ such that Bu 2 H s0;`0

sc .M/,

kAuks;`C .Imz/
1=2
kAuks�1=2;`C1=2 6 C.kBuks0;`0 CkB.P � z/uks�1;`C1CkukS;L/

uniformly in z 2 Z \ ¹Im z > 0º.

Appendix B. Complex powers via functional calculus

Suppose P is a (possibly unbounded) self-adjoint operator acting in a Hilbert space H.
If ˛ 2 C and " > 0, or if Re ˛ < 0 and " > 0, then the operator .P � i"/�˛ is well-

defined by the Borel functional calculus for self-adjoint operators. In the particular case
Re˛ > 0 and " > 0, it satisfies

.P � i"/�˛ D
e�i�˛=2

�.˛/

Z 1
0

s˛�1e�"seiP s ds:

in the sense of convergence of the integral in the strong operator topology.
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From our point of view it is more useful to express .P � i"/�˛ in terms of the resol-
vent .P � z/�1 as a contour integral, the precise form of which we briefly recall. It is
actually more instructive to work with A D iP instead of P . The reason is that A and
A C " are sectorial operators (of angle �=2), and therefore their complex powers are
special cases of a large and systematically studied functional calculus based on contour
integrals; see [60, Section 2] and references therein. By [60, Proposition 7.1.3], the Borel
functional calculus definition of .AC "/�˛ coincides with the sectorial calculus defini-
tion. This has the following immediate consequences.

First, let " > 0. If Re ˛ > 0, then consistency with the sectorial calculus implies the
formula

.AC "/�˛ D
1

2�i

Z
�ı

z�˛.z � .AC "//�1 dz; (B.4)

where 0 < ı < " and �ı is an arbitrary contour going from Im z � 0 to Im z � 0 of the
form

�ı D e
i� �C1; ı� [ ¹ıei! j �� < ! < �º [ e�i� Œı;C1Œ

for some � 2 ��=2; ��. More generally, for any ˛ 2 C,

.AC "/�˛ D .1C A/N
1

2�i

Z
�ı

z�˛

.1C z/N
.z � .AC "//�1 dz; (B.5)

where N 2 N>0 is an arbitrary number such that N > �Re ˛. Furthermore, DomAN

is a core for .A C "/�˛ [60, Proposition 3.1.1]. Observe that if Re ˛ < 1 then it is not
necessary to surround 0 in the integral, and so the contour �ı in (B.5) can be replaced by

�0 D e
i� �C1; 0� [ e�i� Œ0;C1Œ:

For Re ˛ < 0, .AC "/�˛ is in general not bounded, it is however still a closed operator,
with domain independent of " > 0.

Let now " D 0. If Re˛ < 0 then again

A�˛ D .1C A/N
1

2�i

Z
�0

z�˛

.1C z/N
.z � A/�1 dz; (B.6)

and the domain is DomA�˛ DDom .AC "/�˛ for " > 0 arbitrary [60, Proposition 3.1.9].
Furthermore,

A�˛u D lim
"!0C

.AC "/�˛u; u 2 DomA�˛:

In the special situation 0 … sp.A/, A�˛ is well-defined for all ˛ 2 C, and

A�˛ D .1C A/N
1

2�i

Z
�ı

z�˛

.1C z/N
.z � A/�1 dz

for all sufficiently small ı > 0.
Using back the relation A D iP and changing the integration variable z ! i.z C "/

one finds integrals with .P � z/�1 over the contour 
" used in the main part of the text
(see Section 2.6).
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Appendix C. The ultrastatic case

C.1. Resolvent bounds and Feynman wavefront sets for ultrastatic spacetimes

Let .Y; h/ be a complete Riemannian manifold of dimension n � 1 and let

M D R � Y; g D dt2 � h (C.7)

be the corresponding ultrastatic Lorentzian manifold of dimension n.
The wave operator is then �g D @2t � �h, where �h is the Laplace–Beltrami oper-

ator on .Y; h/ (with the convention ��h > 0). As explained in [34], the essential self-
adjointness of�g in that case can be shown using Nelson’s commutator theorem.

For s 2 R and p > 1=2, we recall the definition of weighted Sobolev spaces
L
2;p
t H s.Y / on M :

kuk
L
2;p
t H s.Y /

D

�Z
R
hti2pku.t; �/k2H s.Y /

�1=2
;

where H s.Y / D h��hi
�sL2.Y / is the usual Sobolev space on Y .

Theorem C.1. Let .Y; h/ be a complete Riemannian manifold, let .M; g/ be as in (C.7)
and let P D�g . Let s 2 R and p > 1=2. Then for z 2 ¹Im z > 0; jRe zj > " > 0º, P � z
admits a Feynman inverse .P � z/�1 W L2;�pt H s

y .Y /! L
2;p
t H sC1

y .Y / which satisfies a
bound of the form

k.P � z/�1uk
L
2;�p
t H sy

6 Ckuk
L
2;p
t H s�1y

: (C.8)

Furthermore, if Re˛ > 0 and Im z > 0 then .P � z/�˛ WH s.M/!H s.M/ is well-
defined for all s 2 R.

In particular, the above bound (C.8) holds true when Im z ! 0C, Re z ¤ 0, which
yields a limiting absorption principle for the Klein–Gordon resolvent .�gCm2 � i0/�1
as also proved in [34].

Proof of Theorem C.1. The starting point is the well-known ansatz for Im z > 0:

..P � z/�1u/.t; �/ D �1=2

Z
R

e�i jt�sj
p
��h�z

p
��h�z

u.s; �/ ds:

We first prove a rough bound for low values of Im z > 0, jRe zj > ":

k.P � z/�1uk2
L
2;�p
t H sy

D
1

4

Z
R
hti�2p





Z
R

e�i jt�sj
p
��h�z

p
��h�z

u.s; �/ ds





2
H sy .Y /

dt

6
1

4

Z
R
hti�2p dt sup

t

�Z
R
hsi�phsip





e�i js�t jp��h�zp
��h�z

u.s; �/






H sy .Y /

ds

�2
:
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Then by the Cauchy–Schwarz inequality in s,Z
R
hsi�phsip





e�i js�t jp��h�zp
��h�z

u.s; �/






H sy .Y /

ds

6
�Z

R
hsi�2p ds

�1=2
sup
t

�Z
R
hsi2p





e�i js�t jp��h�zp
��h�z

u.s; �/





2
H sy .Y /

ds

�1=2
6 C

�Z
R
hsi2pku.s; �/k2

H s�1y .Rn�1/
ds

�1=2
D Ckuk

L
2;p
t H s�1y

using the fact that
e�i jt�sj

p
��h�z

p
��h�z

W H s
y .Y /! H sC1

y .Y /

is bounded for all s 2 R uniformly in Im z > 0, kRe zk > ". Finally, for small Im z, we
get

k.P � z/�1uk2
L
2;�p
t H sy .Rn�1/

6 C 2kuk2
L
2;p
t H s�1y

;

which shows that .P � z/�1 W L2;pt H s
y .Y /! L

2;�p
t H sC1

y .Y / is invertible on the half-
plane Im z > 0, jRe zj > ".

Next, we refine the above bounds for large jzj along the contour 
" defined in Sec-
tion 2.6 to get decay in z. We denote byE.�/d� the projection-valued measure associated
to the functional calculus of ��h, which is well-known to be self-adjoint by complete-
ness of Y [24, 114]. For u 2 C1c .M/, we define yu D

R
R e
�i� tE�.u.t; �// dt . Then we

get

k.P � z/�1uk2H s.M/ D

Z
R�R>0

.1C j� j2 C �/skyu.�; �/k2
L2.Y /

j��2C� � zj2
d� d�

.
1

jIm zj2
kuk2H s.M/:

For " > 0, this implies by a contour integration argument as in the proof of Lemma 4.7
that the complex powers .P � i"/�˛ , Re ˛ > 0, are well-defined and can be represented
as

.P � i"/�˛u D
1

2�

Z
R�R>0

ei� t .��2C� � i"/�˛yu.�; �/ d� d� (C.9)

for all u 2 H s.M/.
The bound on the wavefront set of .P � z/�1 is an immediate consequence of the

explicit formula for the Feynman inverse and follows the discussion in Section 3.5.

C.2. Limiting absorption principle for Feynman powers

In this second part of Appendix C, for the sake of illustration we specialize to ultrastatic
Lorentzian manifolds R � Y which are space-compact, i.e. Y is compact Riemannian.
We give an elementary proof of the limiting absorption principle for Feynman powers,
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by which we mean that the limit lim"!0C.P � i"/
�˛ W C1c .M/ ! D0.M/ exists for

P D �g Cm2 with m > 0. This amounts to showing that one can take the "! 0C limit
in (C.9), and then to finding suitable weighted Sobolev spaces on which the complex
Feynman powers are well-defined.

Definition C.2 (Weighted anisotropic Sobolev spaces). We define the following product-
type weighted Sobolev norms on M depending on three indices, H .s;`/;p.M/, where s is
the time regularity, ` is a weight on the time variable and p is the space regularity:

kukH .s;`/;p.M/ D

�Z
M

jhDt i
s
hti`h��hi

p=2uj2dvolg

�1=2
:

An important property of these spaces is that Fourier transform in the time variable
exchanges the first two indices, i.e. u 2 H .s;`/;p.M/ implies Ft .u/ 2 H .`;s/;p.M/.

Lemma C.3. Let m > 0 and ˛ 2 C with Re˛ > 0. Then .��2C�Cm2 � i0/�˛
�2R>0

is a
family of tempered distributions which satisfies

k.��2C�Cm2 � i0/�˛kH`�Re˛;�s1 .R/ D O.��Re˛=2/ (C.10)

for all ` 2 Œ0; 1=2Œ, s1 > 1=2, where H `�Re˛;�s1.R/ denotes the weighted Sobolev space
htis1H `�Re˛.R/.

Proof. We cut the domain into three regions using a smooth partition of unity 1 D �1 C
�2C�3, where supp�3�¹� > ı>0º, supp�1�¹� 6�ı<0º and supp�2�¹j� j6m=2º.

Observe that �2.��2C�Cm2 � i0/�˛ is smooth, compactly supported and uniformly
bounded in the space of Schwartz functions of � 2 R>0, so this term satisfies (C.10).

Let us examine the term �1.��
2C�Cm2 � i0/�˛ . On the support of �3, � C

p
�Cm2 > ı > 0 uniformly in �, therefore in the factorization

�1.��
2
C�Cm2 � i0/�˛ D �1.�/.� C

p
�Cm2/�˛.��C

p
�Cm2 � i0/�˛;

the term �1.�/.� C
p
�Cm2/�˛ is OC1.R/.�

�Re˛=2/. By inverse Fourier transform
in � , we get

F .��C
p
�Cm2 � i0/�˛ D Ceit

p
�Cm21R>0.t/t

˛�1;

where C is some constant. Thus,

jh�1.��C
p
�Cm2 � i0/�˛;  ij D jC j

ˇ̌̌̌ Z
R
eit
p
�Cm21R>0.t/t

˛�1 y .t/ dt

ˇ̌̌̌
6 jC j

Z 1
0

ˇ̌
t˛�1 y .t/

ˇ̌
dt

6 jC j.khtiRe˛�` y kL2.R/ C k y kH s1 .R//

. k y kH s1;Re˛�`.R/ D k kHRe˛�`;s1 .R/

if ` 2 Œ0; 1=2Œ, ` 6 Re˛ and s1 > 1=2. By duality, �1.��C
p
�Cm2 � i0/�˛ is bounded

in the dual weighted Sobolev space H `�Re˛;�s1.R/.
The term with �3 is treated in the same way.
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Our objective is to study the regularity of the distribution hu2; lim"!0C.P � i"/
�˛u1i

where P is the Klein–Gordon operator. By compactness of Y , one has a discrete spectral
resolution of the Laplacian ��h W C1.M/ ! L2.M/; there is an orthonormal basis
.e�/�2sp.��h/ of L2.M/, where ��he� D �e�. By functional calculus, for any f 2
L1.R>0/, we have

f .��h/u D
X

�2sp.��h/

f .�/hu; e�ie�;

where f .��h/ W L2.Y /! L2.Y / acts as a bounded operator.
For all test functions u 2 C1c .M/, we define

yu.�; �/ D

Z
R
e�it� h.u.t; �/; e�i dt 2 S.R/:

By Fourier transform we are reduced to studying the pairingD
u2; lim

"!0C
.P � i"/�˛u1

E
D

X
�2sp.��h/

Z
R

yu2.�; �/yu1.�; �/

.��2C�Cm2 � i0/˛
d�

for all test functions u1 and u2. The functions yu1; yu2 are Schwartz in � , more preciselyX
�2sp.��h/

Z
R
.1C �C �2/N kh@� i

N
yui .�; �/k

2
L2.Y /

d� <1

for all N , hence the product yu2.�; �/yu1.�; �/ is Schwartz in � with fast decay in �,
which implies the distributional pairing

R
R

yu2.�;�/yu1.�;�/

.��2C�Cm2�i0/˛
d� is well-defined for all

� 2 �.��h/.
Now using the crucial Lemma C.3, we getˇ̌̌D
u2; lim

"!0C
.P � i"/�˛u1

Eˇ̌̌
6

X
�2sp.��h/

ˇ̌̌̌�Z
R

yu2.�; �/yu1.�; �/

.��2C�Cm2 � i0/˛
d�

�ˇ̌̌̌
6 C

X
�2sp.��h/

h�i�Re˛=2
kyu2.�; �/yu1.�; �/kHRe˛;s1 .R/

for some s1 > 1=2. Now if s2 > 1=2 and s2 > Re˛, the Moser estimates yield

kuvkH s2 .R/ . kvkH s2 .R/kvkH s2 .R/;

or in the weighted version,

kuvkH s2;s1 .R/ . kvkH s2;`1 .R/kvkH s2;`2 .R/

where `1 C `2 D s1 > 1=2. This implies that for each � 2 sp.��h/,

kyu2.�; �/yu1.�; �/kHRe˛;s1 .R/ 6 Ckyu1.�; �/kH s2;`1� .R/
kyu2.�; �/k

H
s2;`2
� .R/

:
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Therefore, using the Cauchy–Schwarz inequality we obtainˇ̌̌D
u2; lim

"!0C
.P � i"/�˛u1

Eˇ̌̌
6

X
�2sp.��h/

C h�i�Re˛=2
kyu1.�; �/k

H
s2;`1
� .R/

kyu2.�; �/k
H
s2;`2
� .R/

6 C
� X
�2sp.��h/

h�i�2p1kyu1.�; �/k
2

H
s2;`1
� .R/

�1=2
�

� X
�2sp.��h/

h�i�2p2kyu2.�; �/k
2

H
s2;`2
� .R/

�1=2
;

where p1 C p2 D Re˛=2.
To estimate the r.h.s. we need the following simple result.

Lemma C.4. For all u 2 C1c .M/,X
�2sp.��h/

h�ipku�k
2

H
s;`
t .R/

D kuk2
H .s;`/;p.M/

;

where k � kH .s;`/;p.M/ is the product-type weighted norm from Definition C.2.

Proof. By definition of k � kH .s;`/;p.M/ and Fubini’s theorem,X
�2sp.��h/

h�ipku�k
2

H
s;`
t .R/

D

X
�2sp.��h/

h�ip
Z

R
jhDt i

s
hti`hu.t/; e�ij

2 dt

D

Z
R

X
�2sp.��h/

h�ip
ˇ̌˝
.hDt i

s
hti`u/.t/; e�

˛ˇ̌2
dt

D

Z
R
k.1 ��h/

p=2
hDt i

s
hti`uk2

L2.Y /
dt D kuk2

H .s;`/;p.M/
;

where we have used functional calculus and the fact that the spectral projection commutes
with operators depending only on the t variable.

Therefore, we find thatˇ̌̌D
u2; lim

"!0C
.P � i"/�˛u1

Eˇ̌̌
6 Cku1kH .`1;s2/;p1 .M/ku2kH .`2;s2/;p2 .M/

for all s2 > 1=2, s2 > Re˛, `1 C `2 > 1=2 and p1 C p2 D Re˛=2, which concludes the
proof of the limiting absorption principle stated below.

Theorem C.5. Let M D R � Y be an ultrastatic Lorentzian manifold such that Y is
compact, and let P be the Klein–Gordon operator with m > 0. The complex Feynman
power acts as a continuous map between weighted Sobolev spaces, namely, the weak
operator limit

.P � i0/�˛ W H .`1;s2/;p.M/! H .�`2;�s2/;p�Re˛=2.M/

is well-defined and continuous for all p 2 R, s2 > 1=2, s2 > Re˛ and `1 C `2 > 1=2.
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Appendix D. Various auxiliary proofs

D.1. A Wick rotation lemma

We state below a lemma used several times in the main part of the text. As in Section 4,
Q is the quadratic form Q.�/ D ��20 C

Pn�1
iD1 �

2
i on Rn.

Lemma D.1. Let ˛ 2 C. When � ! ��=2, the distribution .ei2��21 C �
2
2 C � � � C �

2
n/
�˛

! .Q.�/ � i0/�˛ in D0�.Rn n ¹0º/, � D ¹.�I �dQ.�// j Q.�/ D 0; � < 0º.

Proof. The proof follows closely the proof of [71, Theorem 3.1.15] for the convergence
in D0. For the control of the wavefront set, the proof follows closely [71, Theorem 8.4.8],
which gives a wavefront bound in the sense of quasi-analytic classes.

D.2. Wavefront set of the pull-back G�F˛.z; �/

We compute the wavefront set of the germ of distribution G�F˛.z; �/ as stated in Lem-
ma 5.2. Let us recall that F˛.z; �/ is the elementary family of distributions on Rn intro-
duced in Section 4.1, and the pull-back by the submersion G defined in Section 5.1.2
gives a distribution defined on a neighborhood U of the diagonal � in M �M .

Proof of Lemma 5.2. Step 1. An application of the pull-back theorem [71, Theo-
rem 8.2.4] in our situation gives

WF.G�F˛/ � ¹.x1; x2I k ı dx1G; k ı dx2G/ j .G.x1; x2/; k/ 2WF.F˛/º (D.11)

We denote by .x1; x2I �1; �2/ an element of T �V � T �M 2 and .h�I k�/ the coordinates
in T �Rn. The pull-back with indices reads

.x1; x2I k ı dx1G; k ı dx2G/ D .x1; x2I k�dx1G
�; k�dx2G

�/:

Step 2. We first compute WF.G�F˛/ outside the set � D ¹x1 D x2º. The condition
.G.x1; x2/; k/ 2WF.F˛/ in (D.11) reads

.G�.x1; x2/I k�/ D .G
�.x1; x2/I����G

�.x1; x2//;

where � < 0. We obtain

.x1; x2I�k ı dx1G; �k ı dx2G/ D .x1; x2I�G
����2dx1G

�2 ; �G����2dx2G
�2/

and alsoG�.x1; x2/���G�.x1; x2/D 0. Now set �.x1; x2/DG�.x1; x2/���G�.x1; x2/.
The key observation is that dx1� D 2G

����dx1G
� and dx2� D 2G

����dx2G
� , hence

WF.G�F˛/ � ¹.x1; x2I�dx1�; �dx2�/ j �.x1; x2/ D 0; � 2 R<0º:

We first interpret the term

¹.x1; x2I�dx1�; �dx2�/ j�.x1; x2/ D 0; � < 0º
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appearing in the last formula as the subset of all elements in T �U of the conormal bundle
of the conoid ¹� D 0º such that elements of positive energy are propagated in the future
and elements of negative energy are propagated in the past: this is exactly the Feynman
condition. In fact, if we use the metric to lift the indices, dx1�.e�.x1//�

��e�.x1/ and
dx2�.e�.x2//�

��e�.x2/ are the Euler vector fields r1�;r2� defined by Hadamard. The
vectors r1�;�r2� are parallel along the null geodesic connecting x1 and x2 (which is
easily checked using normal coordinates centered at x1, proving .dx1�;�dx2�/ are in fact
coparallel along this null geodesic. Denoting q1 D .x1I �dx1�/ and q2 D .x2I �dx2�/,
the relation expx1.r1�/ D x2 implies that r1� points to the future (resp. past) if and
only if q1 � q2 (resp. q2 � q1), which implies the Feynman condition.

Step 3 (“diagonal”). For any function G on M 2, we uniquely decompose the total dif-
ferential into two parts as follows:

dG D dx1G C dx2G; where dx1Gj¹0º�Tx2M D 0; dx2GjTx1M�¹0º D 0:

Let i be the diagonal inclusion map i WD M 3 x 7! .x; x/ 2 � � M . Then for x 2 M ,
G ı i.x/ D 0 implies dxG ı i D 0, which is equivalent to dx1G ı di C dx2G ı di D 0.
Since

dx2G
�.x; x/ D dx2s

�
x1
.exp�1x1 .x2//jx1Dx2Dx D s

�
x1
.dx2 exp�1x1 .x2//jx1Dx2Dx D s

�.x/;

because dx2 exp�1x1 .x2/jx1Dx2Dx D idTxM!TxM D e�.x/s
�.x/, we see that dx1G

�.x;x/

D �s�.x/ and

¹.x1; x2I k ı dx1G; k ı dx2G/ j x1 D x2º D ¹.x; xI �k�s
�.x/; k�s

�.x// j x 2M º:

This concludes the proof of Lemma 5.2.

D.3. Hölder, scaling and Fourier decay

We now turn our attention to the proof of regularity estimates for G�F˛.z; �/ which are
uniform in z.

We first recall a position space definition of Hölder Cs.Rn/ functions which coincides
with the Fourier definition for non-integer s > 0. The equivalence is proved in [122, Propo-
sition 8.1], [72, Proposition 8.6.1]. Let us recall a version adapted to our discussion.

Lemma D.2. Let s 2 R. Then u 2 Csloc.R
n/ iff for every test function � 2 C1c .Rn/,

jcu�.�/j 6 C.1C j�j/�s�n:
As a consequence, we have a continuous injection Csloc.R

n/ ,! H
sCn=2�"
loc .Rn/ for all

" > 0.

Proof. If u 2 Cs.Rn/ with s > 0; k < s < k C 1 then for any x, there exists a polynomial
P of degree k, which is nothing but the Taylor polynomial of u at x, such that for all test
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functions ' 2 C1c .Rn/ (one could also take ' in the Schwartz class)ˇ̌̌̌ Z
Rn
.u � P /.�.y � x/C x/'.y/ dny

ˇ̌̌̌
6 C�sk'kL1 :

Now let u 2 Csloc.R
n/, hence we may multiply u with some cut-off � 2 C1c .Rn/ so that

u� 2 Cs . In particular, choosing the function '.x/ D eih�;xi on the r.h.s. yields

sup
0<�61

��s sup
16j�j62

jh.u� � P /.��/; eih�;�iij 6 ku�kCs sup
16j�j62

keih�;�ikL1 D ku�kCs :

Therefore, using the fact that h.u� � P /.��/; eih�;�ii D hu�.��/; eih�;�ii since the Fourier
transform restricted to j�j > 1 does not see the polynomial, and hu�.��/; eih�;�ii D
��ncu�.�=�/, we get

sup
0<�61

��s�n sup
16j�j62

jcu�.�=�/j 6 ku�kCs :
Hence for j�j > 1, we get

jcu�.�/j D jcu�.�j�j=j�j/j 6 ku�kCs j�j�s�n;
and finally this means that

jcu�.�/j 6 C.1C j�j/�s�n:
Conversely, if we have the Fourier decay jcu�.�/j 6 C.1C j�j/�r for r 2 R>0, then

the Littlewood–Paley blocks are bounded by

k .2�j
p
��/.u�/kL1 D kF�1. .2�j j�j/cu�.�//kL1 6 Z

Rn
j .2�j j�j/cu�.�/j dn�

6 2jn
Z

Rn
j .j�j/cu�.2�j �/j dn� 6 C2jn Z

Rn
 .j�j/.1C 2j j�j/�r dn�

6 C2j.n�r/
Z

Rn
 .j�j/.2�j C j�j/�r dn� . 2j.n�r/:

This means that u 2 Cr�nloc .Rn/.

Let ˛ 2 C with Re ˛ > 0. We consider the Hölder regularity under pull-back of
G�F˛ 2 D0.U / where U � M �M is the neighborhood of the diagonal and G W U 3
.x; y/ 7! G.x; y/ 2 Rn is the C1 submersive map defined by (5.2).

Lemma D.3. Let k D bRe˛c C 1 and F˛.z; �/ 2 D0.Rn/ as defined in (4.44). Let G be
the C1 submersive map defined in (5.2). Then the pull-back F˛.z; �/ D G�F˛.z; �/ is in
C.2�2a/.Re˛C1/�k�n

loc .U / with decay in z of order O.jIm zj�a.Re˛C1// for a 2 Œ0; 1�.

Proof. Let U be a small geodesically convex open subset inM . We choose a test function
� 2 C1c .U / in such a way that, in the support of �˝ �, we have a local diffeomorphism
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E W U �Rn 3 .x; h/ 7! .x; expx.h// 2 U � U . Then by definition of G and of the expo-
nential map, we have the identity

E�.�˝ �G�F˛.z; �//.xI h/ D F˛.z; jhjg/�.x/�.expx.h// 2 D0.U �Rn/:

Now observe that F˛.z; jhjg/ D OCs ..1 C jIm zj/�a.Re˛C1// for a 2 Œ0; 1� and s 6
.2 � 2a/.Re˛ C 1/ � k � n, and that �.x/�.expx.h// 2 C

1
c .U �Rn/, hence the result

follows.
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[33] Dereziński, J., Latosiński, A., Siemssen, D.: Pseudodifferential Weyl calculus on (pseudo-)
Riemannian manifolds. Ann. Henri Poincaré 21, 1595–1635 (2020) Zbl 1436.81072
MR 4087364
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