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Abstract. In the paper, we study the plane Couette flow of a rarefied gas between two parallel infi-
nite plates at y = £ L moving relative to each other with opposite velocities (£aL, 0, 0) along the
x-direction. Assuming that the stationary state takes the specific form of F(y,vx —ay, vy, v;) with
the x-component of the molecular velocity sheared linearly along the y-direction, such steady flow
is governed by a boundary value problem for a steady nonlinear Boltzmann equation driven by an
external shear force under the homogeneous nonmoving diffuse reflection boundary condition. In
the case of the Maxwell molecule collisions, we establish the existence of spatially inhomogeneous
nonequilibrium stationary solutions to the steady problem for any small enough shear rate o > 0 via
an elaborate perturbation approach using Caflisch’s decomposition together with Guo’s L™ N L2
theory. The result indicates a polynomial tail at large velocities for the stationary distribution. More-
over, the large time asymptotic stability of the stationary solution with exponential convergence is
also obtained and as a consequence the nonnegativity of the steady profile is justified.
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1. Intoduction

The steady state of a rarefied gas between two parallel plates with the same tempera-
tures and opposite velocities is one of the most fundamental boundary value problems
in kinetic theory; see the books of Kogan [28], Cercignani [11], Garz6—Santos [22], and
Sone [33]. In particular, numerical analysis of the plane Couette flow of rarefied gas on the
basis of the nonlinear Boltzmann equation has been extensively conducted in the physics
literature; see [29-31, 34, 35]. On the other hand, the mathematical study of this prob-
lem, even in the case when there is a temperature gap between two plates and a constant
external force parallel to the boundaries, has been carried out by Esposito—Lebowitz—
Marra [18, 19], proving the hydrodynamic description of the steady rarefied gas flow via
approximation of the corresponding compressible Navier—Stokes equations with no-slip
boundary condition. The result in [19] for the hard sphere model was later extended in [13]
to the case of hard intermolecular potentials with Grad’s angular cutoff as well as to the
Maxwell molecule case for which only the polynomial decay of the stationary solution for
large velocities is obtained compared to the exponential decay for the hard sphere model.
In addition, closely related to the plane Couette flow, the stationary Boltzmann equation
for rarefied gas in a Couette flow setting between two coaxial rotating cylinders was also
extensively studied by Arkeryd—Nouri [3,4] in the fluid dynamic regime; see also a recent
work [1] for further investigation of the ghost effect induced by curvature.

The current study of the plane Couette flow with boundaries is motivated by the previ-
ous work [15] by the first two authors on uniform shear flow via the Boltzmann equation
without boundaries. We refer the readers to [9, 12,21, 27, 36, 37] and references therein
for more details on uniform shear flow. In particular, in recent significant progress [9],
Bobylev—Nota—Veldzquez studied the self-similar asymptotics of large time solutions for
the Boltzmann equation with a general deformation of small strength and also showed
that the self-similar profile can have finite polynomial moments of higher order as long
as the deformation strength is small. In this paper, we will take into account the effect of
shear force induced by the relative motion of the boundaries. We hope that the current
study can shed some light on the relation between the Couette flow with boundary and the
uniform shear flow without boundary. A rigorous justification of the behavior of solutions
as L — oo is left for future research.

To specify the problem, we consider the rarefied gas between two parallel infinite
plates with the same uniform temperature 7y > 0; the plate at y = +L is moving with
velocity (U4, 0,0) and Uy = «L and the other at y = —L is moving with velocity
(U-,0,0) and U- = —aL, where o > 0 is a parameter for the shear rate; see Figure 1
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Fig. 1. Plane Couette flow

below. Moreover, we assume that the gas molecules are of Maxwellian type and reflected
diffusively on the plates y = £ L.

Let F = F(y,v) > 0 be the unknown time-independent density distribution function
of gas particles with velocity v = (v, vy, v;) € R3 located at y € (—L, L) along the
vertical direction with slab symmetry in the horizontal (x, z)-plane in space. The motion
of such rarefied gas can be governed by the steady Boltzmann equation

1
vydyF = L~ O(F.F) (1.1)

subject to the diffuse reflection boundary conditions at y = +L, i.e.,
F(£L,v) = M7, (vx — Ux, vy, ;) F(£L,v)|va|dv forv, 20, (1.2)
vy S0

and with a given total mass

1 L
i/;L/RBF(y,v)dvdy—M (1.3)

for some positive constant M > 0. Here, the dimension parameter Kn > 0 is the Knud-
sen number given by the ratio of the mean free path length to the typical length and
Mr, = Mr,(v) associated with the uniform wall temperature 7y at y = £L is a global
Maxwellian of the form

1 _loxP4vy 2 +lvz|?

3
Mr, (v) = ﬁe 2To , U= (vx,vy,v;) €R".

For the Maxwell molecule model, the collision operator O, which is bilinear and acts only
on the velocity variable, takes the form

O(Fy. Fy)(v) = /R 3 [S Bofeos DI D0 — i) ()] dodve, (14

where the velocity pairs (v, v) and (v, v’) satisfy the relation

vl = v — [(Vx — V) - @]o, V' =v+ [(ve — V) 0], (1.5)
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denoting the w-representation according to conservation of momentum and energy in the
elastic collision, i.e., v« + v = vl + v" and |v«|> + |v|? = |[vL|?> + |v/|?. Throughout the
paper, we assume that the collision kernel Bg(cos 6) with cos 6 = (v — vx) - ®/|v — V4|,
depending only on the angle 6 between the relative velocity v — v« and w, satisfies Grad’s
angular cutoff assumption

0 < By(cos0) < C|cos 0| (1.6)

for a generic constant C > 0.
In this paper, for the boundary value problem (1.1)—(1.3) with finite Knudsen number,
we look for stationary solutions of the specific form

Fo(y,vx —ay, vy, vz), (L.7)

where the horizontal molecular velocity vy — ay is sheared linearly along the y-direction.
After plugging (1.7) into (1.1)—(1.3) and normalizing L, M and Ty to be 1 for simplicity,
the stationary distribution function Fy is determined by the following boundary value
problem:

vyayFst _avyavszt = Q(Fst, Fy), S (_l» 1)» vV = (Ux»vy»vz) € RS,

FuELolso = VaTu | FuELolylde, ve R
20 (1.8)

1 !
—/ / Fq(y,v)dvdy =1,
2 —1 JR3

with the global Maxwellian j« = (277)~3/2¢=1**/2_ This paper aims to establish the exis-
tence of solutions to the above boundary value problem (1.8) for any small enough shear
rate @ > 0, as well as its large time asymptotic stability.

To solve (1.8), we will apply the perturbation approach by taking the shear rate as a
small parameter. If @ = 0, then Fy = w is the unique equilibrium solution to the boundary
value problem (1.8). However, for o > 0, the external shear force drives the rarefied gas
far from the equilibrium. Precisely, we set

Fy =+ /i{aGy +o®GR} (1.9)
with

1 1
/ / nes dvdy:/ [ JIrGrdvdy = 0. (1.10)
—1JR3 -1 JR3

By plugging (1.9) into (1.8) and comparing coefficients of the equation in the order of «,
we obtain the equation for Gy:

0,0,G1 + LG = —vxvy /1 (1.11)

with boundary condition

GiEL V)0 = V2T [ VEGIGEL D)l dv. (1.12)
Uy<0
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and the equation for the remainder Gg:

v,0,Gr — vy 0y, GRr + %avxvyGR + LGpg
= 0,0y, G1 — %vxvyGl

+T(G1,Gy) + a{l'(Gr,G1) + I'(G1,GR)} + «®’T'(Ggr,Ggr) (1.13)

with boundary condition

Gr(£1,v)|y,s0 = V21 I GR(EL, v)|vy| dv. (1.14)

vy 20

Here, the linear and nonlinear collision operators L and I" are given by

Lf == 0. Vi )+ QI £ 1)}
and
I(f.g)=uYOWR fViEg) + QI g VI )}

Properties of these two operators will be presented in Section 2. Note that to solve Gy,
both (1.11) and (1.12) with the restriction f_ll Jr3 VI G1dv dy = 0 are invariant under
the transformation G1(y,v) — —G1(y, —Vvx, Uy, vz). Thus, if the solution is unique, then
G is odd in vy, i.e.

G1(y,v) = —=G1(y, —vx,Vy,v7), —1<y <1, v=(vy,vy,0;) €R?  (L.15)

Hence, the diffuse reflection boundary condition (1.12) for G; can be reduced to the
homogeneous inflow boundary condition

G1(£1,v)]y, <0 = 0. (1.16)

The first existence result for the Couette flow problem is stated as follows; we use a
velocity weight function
wy = wg(v) := (1+ |v[*)? (1.17)

with an integer g > 0.

Theorem 1.1. Assume that the Boltzmann collision kernel is of Maxwell molecule
type (1.6). Then the boundary value problem (1.8) admits a unique steady solution
Fy = Fy(y,v) = 0 of the form (1.9) satisfying (1.10) and the following estimates on
G1 and GR, respectively.

(1) The first order correction G; = G1(y, v), uniquely solving the boundary value prob-
lem (1.11), (1.16), satisfies (1.15), and for any integers m > 0 and g > 0,

lwgdy GillLee < Ci. (1.18)

where Cy > 0 is a constant depending only on m and q.
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(ii) The remainder Gr = GRr(y,v), uniquely solving the boundary value problem (1.13)—
(1.14), has the property that there is an integer qo > 0 such that for any integer q > qo,
there is g = ag(q) > 0 depending on q such that for any a € (0, ag) and any integer
m >0, 6R := /1 GR satisfies

lwgd? GrllLee < Cimg. (1.19)
where C'm,q > 0 is a constant depending only on m and q but independent of .

Here are some remarks on Theorem 1.1.

Remark 1.1. The steady solution F to the boundary value problem (1.8) is essentially
constructed in the regime where the collision is dominated and the shearing effect is weak.
By (1.18) and (1.19), the steady solution takes the form of

Fy=pu+a /G + 0()a? (1.20)

with the second order remainder decaying in large velocities only polynomially. The order
of the polynomial decay can be arbitrarily large as long as the shear rate is sufficiently
small. One generally has «g(q) — 0 as ¢ — o0, and in particular one may take

V
@0(q) = i

as shown in the proof. The result is consistent with the one in [15] for uniform shear flow
without boundaries in the spatially homogeneous setting.

Remark 1.2. Without using the odd-in-v, property as in (1.15), the existence of a solu-
tion G1(y, v) to the BVP (1.11) under the diffuse reflection boundary condition (1.12)
can also be established by the same approach as for the remainder Gr. Here, we take
this formulation only for brevity of presentation because the proof for the homogeneous
inflow boundary is relatively easier than that for the diffuse reflection boundary.

Remark 1.3. We notice that it is necessary to deal with the v, -derivative estimates due to
the appearance of the shear force term v, d,, Fy; in particular, the term v, d,, G; becomes
a source term in equation (1.13) for Gg. We emphasize that although one can obtain
the derivative estimates as in (1.18) and (1.19) in vy, it is impossible to obtain a similar
estimate on the v, -derivative because G;(y, v) is discontinuous at v, = 0; see (4.25) for
an explicit form of G; when the nonlocal collision term is omitted.

To establish the nonnegativity of the stationary profile Fy(y, v), we further study the
following initial boundary value problem for the Boltzmann equation with a shear force:
0 F+v,0,F—avydy  F =Q(F,F), t>0,ye(-1,1), v=(vx,v,,v;) € R3,
F(0,y,v) = Fo(y,v), ye(=1,1),veR3,
F(t, £1,v)|y,s0 = V21 p,/
>

Vy<

F(t,£L,v)|v,|dv, t>0,v e R3.
0
(1.21)
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One may expect that the solution of the time-dependent problem (1.21) tends in large time
toward that of the steady problem (1.8). In this connection, the second result is concerned
with the large time asymptotic stability of the stationary solution Fy which gives the
nonnegativity of Fj.

Theorem 1.2. Let Fy(y, v) be the steady state obtained in Theorem 1.1 corresponding
to a shear rate a € (0, ag). There are constants g9 > 0, Ag > 0 and C > 0, independent
of «, such that if the initial data Fo(y, v) > 0 satisfy

”wq [FO(yv U) - Fst(yv l)))]”Loo <&

with
1
/ / [Fo(y.v) — Fu(y.v)] dvdy = 0, (1.22)
—1 ]R3

then the initial boundary value problem (1.21) admits a unique solution F(t, y,v) > 0
satisfying the following decay estimate:

lwg[F (2, y,v) = Fa(y, 0)]llLee < Ce™ 0" Jwy[Fo(y, v) — Fu(y, v)]llee  (1.23)

foranyt > 0.

Remark 1.4. Thanks to Theorem 1.1, the expansion (1.20) for the steady state Fy(y, v)
is uniform in o € (0, ®g) when the large enough integer ¢ is chosen and hence oy =
ao(g) > 0is fixed. Thus, the exponential time decay estimate (1.23) also holds uniformly
in @ € (0, ap), in particular, C and A( are independent of @. As o — 0, we are able to
recover the exponential convergence of the solution F(z, y, v) to the global Maxwellian p
in L°° norm weighted by the polynomial velocity weight w (v).

In what follows we present the key points and strategy of the proof of the main results
stated above. As pointed out in a recent nice survey by Esposito—Marra [20], stationary
non-equilibrium solutions to the Boltzmann equation, despite their relevance in appli-
cations, are much less studied than time-dependent solutions, and no general existence
theory is available, due to technical difficulties. The readers may refer to [20] and refer-
ences therein for a thorough review of this subject. As for the Boltzmann equation for the
plane Couette flow, [13, 19] mentioned before seem to be the only mathematical works on
the fluid dynamic approximation solutions in the steady case for small Knudsen number.
But it remains unsolved how to justify the large time asymptotics toward the stationary
solution for the time-dependent problem in the same setting of the fluid limit. In this
paper, motivated by [15], instead of constructing the fluid dynamic approximation solu-
tions, we focus on the existence and dynamical stability of the plane Couette flow with
finite Knudsen number for both the steady and unsteady problems.

First of all, for the original Couette flow problem (1.1)—(1.3), we note that a direct
perturbation approach by linearization of the boundary condition in « with the techniques
of [13,16,18,19] can be applied to prove the existence of stationary solutions, because the
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inhomogeneous data appear only on the tangent (x, z)-plane. The solution thus obtained
has the structure around global Maxwellians of the form

F(y,v) = u(v) + V(o) (g1 + a’g2 + )

corresponding to the linearization of the wall Maxwellians at y = £+L,
(s £ aL, vy, v;) = p(v) + (FaL)pu (V) + (FaL)pa () + - .

On the other hand, in the formulation used in this paper, we rather look for the solution
of the specific structure (1.7), and hence the problem can be reduced to solving (1.8) for
the Boltzmann equation driven by an external shear force under the homogeneous non-
moving diffuse reflection boundary condition. This means that the solution to the Couette
flow problem (1.1)—(1.3) is established around the local Maxwellian p(vx — ay, vy, vz)
instead of the global Maxwellian @ such that the kinetic diffusive reflection boundary
condition (1.2) is satisfied for the background solution p(vx — aty, vy, v;). In addition, as
mentioned before, it seems more convenient to use the formulation with shear forces than
the original one driven by the relative motion of boundaries in order to understand the
asymptotic behavior of solutions as L — oo, that is, how the Couette flow with bound-
aries converges to a shear flow without boundary; that is closely related to what has been
studied in the previous works [15] for uniform shear flow in the spatially homogeneous
setting.

We also comment on the boundary value problem (1.11)—(1.12) for the first order cor-
rection term G (y, v). Notice that the inhomogeneous source term —vyv, ,/ft in (1.11)
does not satisfy the boundary condition (1.12), so a space-dependent nontrivial solution is
induced. If the boundary condition is omitted and only the spatially homogeneous equa-
tion is considered, the corresponding solution can be written as

_ 1
L™ (—vxvy /) = —mvxvyﬁ (1.24)

with the positive constant by := 37 f_ll Bo(2)z2(1 — z%) dz. The form (1.24) is then
consistent with the uniform shear flow in [15]. To solve the boundary value problem
(1.11)—(1.12), the same approach as for the remainder Gg can be applied. However, in
order to simplify the proof, we have made use of an additional property (1.15) to reduce
the diffusive reflection boundary condition (1.12) to the homogeneous inflow boundary
condition (1.16). To treat (1.11) and (1.16), we develop a direct L°°-1.2 method without
using the stochastic cycles as in [25]. In particular, thanks to the splitting L = vy — K, if
the nonlocal term K G is omitted, the solution to the boundary value problem

vyByGl +voGy = %‘, G](:El, U)|vy§0 =0,

can be explicitly expressed as

Y vo=yhH )

Gl(y,v)=1Uy>0/ e v v;l%(y’,v)dy’+lvy<0/ e W v;l%(y’,v)dy’.
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Moreover, we use the bootstrap argument as in [14] to treat the following problem with a
parameter o € [0, 1]:

vy8yG1 +v9G1 = 0KG; + §, Gl(:tl,l))|vy§0 =0.

With the solvability starting from o = 0, we are able to iteratively solve the above bound-
ary value problem for o over the intervals [0, 0«], [0«, 20«], and so on, where o4 > 0 is
small enough such that 0« KG; can be regarded as a source term in the L*° estimation.
Therefore, in the end, the original problem corresponding to ¢ = 1 can be solved. In this
procedure, the uniform L% estimate can be obtained through the interplay with the L2
estimates by using Guo’s technique [25]. Here, we have omitted the discussion of the
mass conservation (1.10) for G;. In fact, inspired by [25], an extra damping term € G,
with the vanishing parameter € > 0 has to be used; cf. Section 4 for details.

We now discuss some key points about estimating the remainder G solving the
boundary value problem (1.13)—(1.14). The direct L°°-L? approach is no longer avail-
able because the linear term %av xVy G g cannot be controlled in the large velocity regime.
Notice that this term arises from the action of the shear force on the exponential weight
function ,/p in the perturbation. To overcome it, as in [15], we apply Caflisch’s decom-
position

VirGr = Gr1+ /1t GRr.2,

where Gr,1 and G satisfy the coupled boundary value problems

UyayGR,l _O“)yavx GR,] + l)OGR,I = XMKGR,I - %a\/ﬁvxvyGR,z + F1,
(1.25)
GRr,1(£1,v)]y,s0 =0,
and
UyayGR,Z - O”JyavXGR,z + LGR,Z = (1 - XM)M_I/ZKGR,I + F2,
(1.26)

Gra(E1.)ls0 = V2T | JAGRGEL V) [dv.
Uy<0

respectively. Then, in (1.25), the term —%a 1w vxvyGR 2 can be controlled due to the
appearance of ,/ut. Here, since the operator norm of K may not be small, the term
xm K GRr,1 over the large velocity regime can be viewed as a source in (1.25) for Gg 1,
while the complementary term (1 — yar)u™V/2.K GR,1 is taken as a source in (1.26)
for Gg,2. A crucial observation inspired by [2] in estimating G g, is that the norm of the
weighted operator w, xp K on LY with the polynomial velocity weight wg = (1 + |v|?)4
can be arbitrarily small as long as M and g are chosen sufficiently large; see Lemma 2.4.
Notice that Lemma 2.4 holds only for the Maxwell molecule potential, as shown in the
proof. Compared to the previous work [15] for uniform shear flow, it is more complicated
to solve the coupling steady boundary value problems (1.25) and (1.26) in a bounded
domain. We now list the main steps in the proof.

e Step 1. We first modify the coupled boundary value problems with two parameters,
€ > 0 small enough and 0 < o < 1 (see (5.10)), and obtain the a priori estimates uniform
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in € and o in the L*° framework; see Lemma 5.1 and the proof of Proposition 5.1. For
the proof of Lemma 5.1, we apply Guo’s approach [25] to the shear flow problem
in a slab. In particular, we introduce the mild formulation (5.23) to treat the diffuse
boundary condition with the help of Lemma 8.1, and re-prove Ukai’s trace theorem in
Lemma 3.1 for the L? estimates.

e Step 2. Similar to finding the first order correction term G, we design an explicit
procedure to solve the parameterized boundary value problem (5.10) iteratively for
o €[0,1] from o = 0 to 0 = 1 for any fixed € > 0; see Lemma 5.2. Notice that the
problem for o = 0 is reduced to the one without the nonlocal collision terms under the
homogeneous inflow boundary condition so that the method of characteristics can be
directly applied.

e Step 3. We study the limit € — 0 to obtain the desired solution; see Section 5.4 for
details. The key point is to obtain the macroscopic estimates in order to bound the L2
norm of Gg » in terms of the L°° norm of Gg,;. We apply the dual argument developed
first in [16]. Note that it is delicate to make these estimates uniform for any small
parameter € > 0.

With the existence of a stationary solution F, the asymptotic stability of the per-
turbation F' = Fy + /;t f as in (6.1) is considered in the reformulated IBVP (6.2).
Technically, we follow the same strategy as for the steady problem. More precisely, we
also use the decomposition /it f = fi + /it f2 with fi, f, satisfying the coupled
IBVPs (6.4)—(6.5) and (6.6)—(6.7), respectively. In order to treat initial data with only the
polynomial velocity weight, we set f>(0, y, v) = 0 and the boundary conditions on f;
and f> both as diffuse reflections which are slightly different from (1.25) and (1.26) in
the steady problem. Moreover, in contrast with the steady case, we need to construct
suitable temporal energy functionals so as to close the a priori estimates. In particular,
the energy functional for the second component f; in Caflisch’s decomposition is com-
plicated, because there is a subtle interplay with f;. For this, we make use of a linear
combination of estimates for the two functionals, where the smallness of the shear rate
« and finiteness of the domain play an important role. Specifically, we obtain estimates
(7.2) and (7.3) for the weighted L norms. To treat the L? estimates on the right hand
side of (7.3), we construct another functional &;,(¢) in Lemma 7.2 (see (7.29)), to capture
the macroscopic dissipation, and conclude the desired estimates (7.33) and hence (7.36).

Finally, we remark that there have been extensive studies on the stability of shear flow
in the multi-dimensional space domain in the context of fluid dynamic equations [32];
in particular, we mention the important mathematical contributions by Bedrossian et al.
[5,7,8] for either an infinite 2D channel domain T, x Ry, or an infinite 3D channel domain
Ty xR, x T,, and an interesting work by Ionescu—Jia [26] on the asymptotic stability of
the Couette flow for the 2D Euler equations in the 2D finite channel domain Ty X [0, 1]
with the zero normal velocities on the two boundary planes y = 0, 1; see also the nice
survey [6] and references therein. In fact, in comparison with the 1D problem (1.8) under
consideration, it would be more interesting to study the existence and asymptotic stability
of stationary solutions in the multi-dimensional setting corresponding to those works on
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fluid dynamic equations. Moreover, it is also challenging to study the fluid dynamic limit
for these problems as in [13, 18, 19] when the vanishing Knudsen number is taken into
account. We expect that this paper together with [15] can shed some light on the above
problems.

The rest of this paper is organized as follows. In Section 2, we give some basic
estimates on the linearized and nonlinear collision operators. In particular, we obtain
Lemma 2.4 which is crucially used to obtain the smallness of the nonlocal operator X
for large velocity. In Section 3, we revisit Ukai’s trace theorem in both the steady and
time-dependent cases for the transport operator with shear force in the 1D setting under
consideration. In Sections 4 and 5, we establish estimates on the first order correction G
and the remainder G g, respectively, and hence complete the proof of Theorem 1.1 without
showing nonnegativity of the stationary solution. Then we study the time-dependent prob-
lem for local-in-time existence in Section 6 and the exponential time asymptotic stability
of the stationary solution in Section 7 so that the nonnegativity of the stationary solu-
tion follows. The appendix Section 8 includes some estimates on the boundary product
measure when there are multiple bounces induced by the diffuse boundary condition.

Notations. Throughout this paper, C denotes some generic positive (generally large) con-
stant and A denotes a generic positive (generally small) constant. D < E means that there
is a generic constant C > Osuchthat D < CE; D ~ Emeans D < Eand E < D;and 14
indicates the characteristic function of the set 4. We denote by || - || the L2((—1,1) x R3)

or L?(—1,1) or L?>(R3) norm. Sometimes, without any confusion, we use | - ||z to
denote either the L ([—1, 1] x R3) norm or the L>°(R3) norm. Moreover, (-, -) denotes
the L2 inner product in (—1, 1) x R3 with the L2 norm | - || and (-) denotes the L2 inner

product in R3. We denote by y4+ = {(1,v) | v € R, v, > 0} U{(—1,v) | v € R3, v, <0}
the outgoing set, by y— = {(1,v) | v € R3, v, <0} U {(=1,v) | v € R3, v, > 0} the
incoming set, and by yp = {(£1,v) | v € R3, v, = 0} the grazing set. Furthermore
| fl2,+ = | f1,, |2 represents the L? norm of f(y,v) on the boundary y = 1. Finally,
we define

Py f(£1,0) = vu(v) f )V @) (n(£1) -v') dv',

n(£1)-v'>0

where n(£1) = (0, £1,0). One sees that P, f defined on {£1} x R3 is an L2-projection
with respect to the measure |vy, |1/ (v) dv for any function f defined on y.

2. Basic estimates

In this section we summarize some basic estimates to be used in the following sections.
Let us first give some elementary estimates for the linearized collision operator L and the
nonlinear collision operator I', defined by

Lg=—p {0 g+ O(Jig. v} Q2.1
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and

T(fg)=p20(/R f. Vi Q)
— / / Bop ) f(0))g(W) — fon)gW)]dodve.  (2.2)
R3 JS2
It is known that
Lf =vf —Kf
with
V= /1;3 /;zBo(cos O)(vy) dw dvy = vy,

Kf = 200" fi ) + Ouin(s 1% )}

where Qg,in denotes the positive part of Q in (1.4). Note that vg is a positive constant
in the case of Maxwell molecule collision. The kernel of L, denoted as ker L, is a five-
dimensional space spanned by

v ol =30/ = {giiy.
Define a projection from L2 to ker L by
Pog = {ag +bg v+ (v> =3)egh /1t

for g¢ € L2, and correspondingly denote the operator P; by P;g = g — Pog, which is
orthogonal to Py in L2.
It is also convenient to define

Lf =0/ + Q. Ny =vf-Kf

(2.3)

with
l)f = UOfa ch = Q(f’ M) + anin(ﬂvf) = ﬁK(f/mv (2.4)

according to (2.3).

The following lemma is concerned with the integral operator K given by (2.3), and its
proof for the hard sphere model was given in [25, Lemma 3, p. 727]. Recall (1.17) for the
polynomial velocity weight wy.

Lemma 2.1. Let K be defined as in (2.3). Then

Kf(v) = [R K0 f(02) v

with 5
1 |wP=lvx1?

L ua2—
glo—vel =y T o

IK(v, ve)| < C{1 + |v — vi| 2}e

Moreover, let

Ky (v, v4) = wg(V)K(V, vx)w_g (V) (2.5)
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with q > 0. Then

/3 Ky (v, v*)eelv_v*lz/8 dvy <
R

for any ¢ > 0 small enough.

1+ |v|

For the velocity weighted v -derivative estimates of the nonlinear operator I", we have
the following lemma.

Lemma 2.2. In the Maxwell molecular case,

lwgdZ D)2 < C D Nwgd fll 2 llwg 0™ gl 2. (2.6)
m'<m

lwgd7 T (f. )llLoe < C Y Nwgdy. f oo llwg 07 ™ gll oo 2.7
m'<m

for any integers m > 0 and g > 0. Moreover, for ¢ > 3/2 and m > 0,

[wgdy. Q(F1, F2)|Lee < C Z [wgdy. ™ FillLee [lwg 05! FallLoe. (2.8)

mi<m

Proof. We prove (2.7) only, since the proofs for (2.6) and (2.8) are similar and they follow
from the proof of [23, Lemma 2.3, p. 1111] and [2, Proposition 3.1, p. 397] respectively.
By definition (2.2), we have

(e =, [ [ B0 f0he0) dodv,
__am 1/2
o [ B0 g ) do du.
=, fR \ /S | Bou! 2 () f(v)g (') dw v

—eotgw) [ n ) S0 do

where we have used sz By dw = ¢ for a constant ¢y > 0. Recalling (1.5), by the change
of variable # = v, — v we then have

9 / / Bop2(v,) f () g (V) dw dv,
R3 JS2
=y, /3 /2 Bou2(it + v) f(v +ii1)g(v + i) do di
R3 JS

= > c,;"lam/ / Bo (3™ 2) (i 4 v)
R3 JS2

mi+moy<m
X (@ ) + )32 8) (v + 1) do dii,

where 1] = (i - @)w and # | = 1 — . Then, by taking directly the L°° norm, (2.7) holds
because

[1;3 /;2 Bo(a:)nxul/z)(v*) dw dvy < 00

for any integer m > 0. This completes the proof of Lemma 2.2. ]
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The following lemma can be found in [24, Lemmas 3.2 and 3.3, pp. 638-639], where
the hard sphere model was considered.

Lemma 2.3. In the Maxwell molecular case, there is a constant 8¢y > 0 such that
(Lf.f) = (LP1fPLf) = So|[Py fII*. (2.9)
Moreover, for any integer m > 0, there are constants §; > 0 and C > 0 such that
@ LA f) =&y 12 =Cl I (2.10)

Proof. Since (2.9) is quite elementary, we only show (2.10). As in Lemma 2.2, the key
point here is to show that the action of the derivatives 97" on the nonlocal operator L does
not involve any other partial derivatives such as dy,, or d,.. By (2.1) and (2.9), we have

(O LLOT f) = (LO7 fO7 )+ Y Cor(dp=™ Loy .07 f)

mip<m
= SollPa[ay, f1IP = Y Cot @M LAy £ )] @A)
mi<m

with
1, <m Bf)"x_m‘ La’v"x‘ f

= — Z Cr:lnl,le/ / Bo(a:)l’lx—ml—szI/Z)(ﬁ_i_v)
mi+moy<m R3 JS2
X (A f)(v + i) @72 ) (v + 1)) do dii

+ 20 [ [ Bt f (w0 dodv,
R3 JS2

— Z Cr’r"l'll,mZ/ / Bo(ail’:’lx—ml—mzul/Z)(a + U)
mip+mo<m R3 JS2
X (O ) + i) @2 p?) (v + i L) dodil,

where we have used the change of variable # = v, — v again. Consequently, as in (2.6),
it follows that

ST ocmpamTmi Ly fom £ < nldm fI2+Cy Y am R

mi<m mp<m

<37 f1? + Comu 7. £ 12 + Coony I F 11
2.12)

for small enough constants n > 0 and n; > 0, where Sobolev’s interpolation inequality
[3v £ < nall 33 £ 11> + Coy || £ 117 has been used.
On the other hand, it can be easily checked that

P95, S = 195, I = P[0 f1Il = 1103 f Il = ClLAI- (2.13)

Finally, plugging (2.12) and (2.13) into (2.11) gives (2.10). This completes the proof of
Lemma 2.3. u
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Next, the following lemma which was proved in [15, Proposition 3.1, p. 13] plays a
significant role in obtaining L°° estimates of the first component in Caflisch’s decompo-
sition of solutions.

Lemma 2.4. Let K be given by (2.4). Then for any integer m > 0, there is C > 0 such
that for any arbitrarily large ¢ > 0 we have

C /
sup wg |7 K1 <= D [lwgdy fllzeo (2.14)
lvl=M o<m’<m
for some M = M(q) > 0. In particular, one can choose M = q>.

Proof. Since the general case

C ,
sup wgldT K F1 < — Y |lwgd fllzee
lv|=M o<m’<m
was proved in [15, Proposition 3.1, p. 13], as in Lemma 2.3 we only point out that the
derivative 9y’ acting on the nonlocal operator K does not involve other derivatives such
as dy,, or 0y, . Indeed, in view of (2.4), similar to the proof of Lemma 2.3, we have

mKf= D Cm /RS /Sz Bo(7 £)(v + L) (7™ ) (v + iiy) dow dii

mi<m

—8;’;,14(1))[1;{3 /82 Bo f(vs) dw dv

+ > m /RB fgz Bo@ £)(w + )@ w) (v + 1) do dit

mi<m

= e[| m@n e e dods,

mi<m

EDIC) /R . /S _ Bof(va) do dv,
w2 am [ B e e dod.

m|p<m

Then a similar calculation to estimating 41 and 5 in [15, Proposition 3.1, p. 13] yields
(2.14). This completes the proof of Lemma 2.4. ]

3. A trace theorem

In this section, we present the following version of Ukai’s trace theorem; see also [17,
Lemma 2.3, p. 22] and [17, Lemma 3.2, p. 56], respectively.

Lemma 3.1. Lete > 0and y € [—h, h] with 0 < h < 00, and denote the near-grazing set
of Y+ ory_ as

i = {(.v) €y vy <eorluy| = 1/e, v = (vx, vy, v2)}
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Then there exists a constant C,, > 0 depending on € and h such that

11w ler < Cenfll fll + {vydy —avydu, }f I} 3.1

Moreover,

T
| 1t @lrar

T
< cg,h{nf(mnu + /0 U Ollr + 148c + vydy — avydu,} £D)]]21] dr} (3.2)
forany T > 0.

Proof. To prove (3.1), we only consider the case that the boundary phase is outgoing,
because the incoming case can be treated similarly. We introduce a parameter ¢+ € R and
treat (y, v) as functions of z. Consider the characteristic line [s, Y (s; ¢, y, v), V(s;t, y, v)]
passing through (y, v) = (¢, y(¢), v(¢)) such that

dy dVy

ﬁ = Uy, W = —0Vy. (33)

Then
Y(s;t,y,v) =y — (. —s)vy, V(s:t,y,0) = (vx + a(t —5)v,, 0y, 0;), (3.4)
for (y,v) € y4+\y5. Along this trajectory, one has the identity
f,v) = f(Y(s5t,y,0),V(s;t,y,v))

t
+ / %f(Y(T; t,y,v),V(r;t,y,v))dr. (3.5)

On the other hand, (y,v) € y4+\y$ also implies he < 1,(y,v) < h/e, where 1, is as in
(5.17) below. Therefore, by taking s € [t — t,(y, v), t], we infer from (3.5) that

[ 1ol
14

+\rg

t
<Co / / LF(Y(s: 1, y.0). Visit. v, 0)] [vy] ds dv
y+\r§ Ji=b(y,v)

! d
+ Cs,h / /
y+\vi Ji=b(y,v)

%f(Y(S;t,y,v),V(s;t,y,v)) luy|ds dv

t
_ a,h/ / V(5319 0), V(si 1, 0)] [vy | ds d
y+\rg Je

—b(y,v)

t
+Cep / / [[vydy —avydy, ] f(Y(s;t,y,v), V(sit,y,v))||vy| dsdv.
y+\v{ J1=b(y,v)

(3.6)
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Next, in light of the Jacobian

v, 0 s 0

a(Y (s), V(s)) —avy 1 —as 0
_— = = Uy, 37
(s, v) o o 1 o ~ G-D

0 0o 0 1

and by the change of variable

[)7,1/{] = [Y(S;tv y,l)), V(S;t’ y,U)] = [y - (t _S)Uy»vx +Ol(l _S)vavyvsz

one gets

t h
/ / |f(Y<s;r,y,v>,V(s;z,y,vm|vy|dsdvs/ / 1G] d du.
v+ \vg Ji—tp(y,v) R3 J—h
(3.8)

Similarly, by noticing that dy f(Y, V) = 05 f(7,u), 0y, f(¥, V) = 0y, f(J,u) and v, =
uy, one has

t
/ / [[vydy —av,dy, ] f(Y(s;t,y,v), V(s;it,y,v))||vy| dsdv
y+\vi Ji—tp(y.v) i
< [ [ bt —audnfGanldsdu. G9)
Consequently, the desired estimate (3.1) in the case of outgoing boundary follows from

(3.8), (3.9) and (3.6).
We now turn to proving (3.2). For f € L'([Ty, T] x [=h, h] x R3), we first show that

T 0
/ / / UGt s Y s Eoypow) VG + 53 ypa0)] ]
T1 Jun(ys)>0 Jmax{—tp(y,.u),T1—1}

x dsdudt

T rh
5/ / / |f(t,y,v)|dydvdt, (3.10)
7 J-n JR3

Y@ +s:0,yr.u) =yr +suy, V(QE+s:0,yr,u) = (Uy — aSUy, Uy, Uz)

where yr = £h, T > T1 > 0 and

with
Y01, yr,u) =yr, V(@i yrou) =u= (ux,uy,uz).

Actually, given (¢, y,u) € [Ty, T] x [=h, h] x R3, letus define yr = y + tp(y, —u)u, =
+4, and denote

y=Y@:t—s,yr,u) =yr +su,, v=V({Et—s,yr,u) = (Ux —aSuy, Uy, Uz),

foru -n(ys) > 0.Itis easy to see that 0 > s > —#,(yr, u), and it is natural to require that
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t —s < T. By the change of variable (y, v) — (s, u) and using (3.7), one has

T 0
/ / [ @Yt — 5. y500) V(s — s, yp )] iy
T1 Jun(ys)>0

max{—tp (v ,u),—(T—1)}
x dsdudt

T ,h
E[ / / | f@ y,v)|dydvdt. (3.11)
T, J—n JR3

On the other hand, if we denote 7 = ¢ — s, then it follows that s > T; — due to t > Tj.
In summary, one has

§ = max {_tb(yfvu)’ Tl _f}a Tl = ff T.

Therefore, by the change of variable 1 — 7 we have

T 0
/ / f @Yt =50 ypau). VTt — s, ypa0)] ]
Ty Jun(yr)>0 Jmax{—ty(ys,u),—(T—1)}

X dsdudt

T 0
=/ [ / NfE s YT+ sty u), VE+ 510, yr.u))|uy
Ty Jun(ys)>0 Jmax{—ty(yr,u),T1—t}

x dsdudt. (3.12)
Consequently, (3.11) and (3.12) imply (3.10). In addition, it follows that

S yrou)y=ft +5,Y0+s:t,yr,u), V({E+ 558, yr,u))
04
+/ Ef(l+TvY(t+T§l,yf7u),V(l-i-T;l,yf,u))dT
S
=f+s,Yt+s:t,9r,u),V(E+s:t,yr,u))

0
+ / [0 +uydy —auydy, ) f(t +T,Y( + 158, yr,u), V(E+ 18, yr,u))dr.
S
(3.13)

For any (¢, yr,u) € [e1, T] x y4+\y§ with &1 > 0 to be determined later and for 0 > s >
max {—t,(yr,u), &1 —t}, we then find from (3.13) and (3.10) that

T
min{hs,el}/ / [ f(t, yr,u)|luy|dudt
g1 Jun(ys)>0

T 0
s/ / / 4+ 5. Y(t + 530 yp). VT + 5310, y70)] ]
g1 Jun(ys)>0 Jmax{—t,(ys,u),—t}

m

T 0 0
+ / / / / [0r + uydy — cuydu,]
g1 Jmax{—tp(ys,u),—t} Jun(ys)>0Js

S+, Y@t +0)V(+ 1) |uy|drdudt

X dt dsdu
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T 0
s/ / [ G+ 5, Y0+ 50,9520, V(T + 531, v7.10)] 1ty |
0 u-n(ys)>0 ax {—ty (¥ ,u),—t}

m

T 0 0
[ [ [ e s, — )
0 max {—ty(yr,u),—t} Jun(ys)>0Js
St +1.Yt+1),V(Et+1)||uy|drdudt
T rh
< [ [ [ 1yt au
0o J-hJR3
0

T 0
+/ / / / [[0; + uy0y — ottty 0y, ]
0 max {—ty(yr,u),—t} Ju-n(y,s)>0 s

fE+n.YE+0).V(E+ ) luyldrdudt,  (3.14)

x dtdsdu

where we have used the fact that
he <ty(yr,u) < hj/e

due to (yr,u) € y+\y5.
Next, applying Fubini’s theorem and using (3.10) again, one also has

T 0 0
f / / / [0r + uydy — cruy Oy ]
0 un(ys)>0 Jmax{—tp(ys,u),—t} Js

Jt+. Yt +1),V(E+ 1) |uy|drdudtds

T T 0
= / dt/ / ds/ dt
0 un(ys)>0 Jmax {—tp(ys,u),—t} max {—tp(y s ,u),—t}

X |[0r + uydy — @uydy, ] + 7)) |uy]
T 0
< / dt/ / dt
0 un(yr)>0 Jmax{—tp(yr,u),—t}

x [max {—ty(yr,u), =t} |[0s + uy0y — o1ty 0y ] f(t + T)| |uy]
T 0
< max{hs,sl}[ dt/ / dt
0 un(ys)>0 Jmax {—t,(y5,u),—t}
X [[0; + uy 0y — atty Oy ] f (2 + T)] uy]
T h
< max {hs,sl}/ dt/ dy/ du |[0; +uy0y, —auydy, ] f(t,y,u)]. (3.15)
0 —h R3

Once (3.14) and (3.15) are obtained, it remains to compute

€]
/ / | f(t, yr u)| luy| dudt.
0 un(ys)>0

In fact, if we choose ¢; to be small enough so that ; < he, at this stage, the backward
trajectory hits the initial plane first. Therefore, for (¢, yr,u) € [0,&1] x y4\y§, by directly
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using (3.7) and applying (3.10) once again, it follows that

€1
/ / | f(t,yr u)| luy|dudt
0 un(ys)>0

€1
< / [ | £(0,Y(0:¢,yr,u), V(0 2, yr,u))| luy| dudt
0 un(ys)>0

£1 0
+/ / [[0; + uydy —auydy, ) f(t + 1) luy|drdudt
0 un(ys)>0J—t

h
sc [ [ 170ywlaya
—h JR3
£1 h
+C[ //|[8,+uy8y—omyaux]f(t)|dydudt.
o J-nJr3

The proof of Lemma 3.1 is thus complete. ]

4. Steady problem: the first order correction

In this and the next sections, we are going to show Theorem 1.1 giving the existence of
solutions to the steady problem (1.8). Recall (1.9) and (1.10). For this purpose, we will
first study the first order correction term G determined by the boundary value problem
(1.11), (1.16). Notice that (1.15) and (1.12) are satisfied. Existence of the remainder G g
for the boundary value problem (1.13)—(1.14) will be considered in the next section.
Indeed, we have the following proposition.

Proposition 4.1. The boundary value problem (1.11), (1.16) admits a unique solution
G1 = G1(y,v) satisfying

1
Gicv) ==Giwo. [ [ Giavy =0, @
_1 2
and
lwgd} GillLe < Cu, (4.2)

for any integers m > 0 and q > 0, where Ci1 > 0 is a constant depending only on m and q.

To prove this proposition, let 0 < € < 1 and 0 <o < 1. Then we consider the following
general approximation problem:

Gy + UyayGl +v9G; = 0KGy + §, 4.3)
G1(£1,0)|y,s0 =0, (4.4)
where the source term § = §(y, v) is given and satisfies F(—vy) = —F(vx). Recall

that vo and K are defined by (2.3). The above boundary value problem can be formally



The Boltzmann equation for plane Couette flow 21

reduced to
vyayGl + LG, = %‘,
G1(£1,v)]y,s0 =0,

as o — 17 and € — 0. To prove this rigorously, we deduce the following a priori esti-
mate.

Lemma 4.1 (A priori estimate). The solution to the boundary value problem (4.3)—(4.4)
satisfies the following estimate uniform in both o and €:

Z [wg 9y GillLee < Co Z wg . Fllzoo, (4.5)

0<m<Ny 0<m=<Ny

where Ny is an arbitrary nonnegative integer and the constant Co > 0 is independent of
eando.

Proof. The proof of (4.5) is divided into two steps.

L estimates. Let &, = wy 5. G1 form > 0 and g > 0. Then &, solves the problem

€&y + v,0,8 + 106y
= ow K37 Gy + 0lyso Y Colwg (7™ K)(I7.G1) —wgd &, (4.6)

m’/<m
Gm(£1,0)]y, 50 = 0. 4.7)

We write the solution of (4.6)—(4.7) in the following mild form:

y vo+e ,
G0 =0 [ O kw607 dy
-1 Uy
, Y _vote, . w o ,
oo 0 € [ BT @ @ 1))y
m/'<m -1 Uy
Yo _NEe Wy / : o
—/_le vy Eavxg dy' =: Z“Si for v, > 0, 4.8)

i=1
and

1

_Yote ,_yyw
Gnlro0) =0 [ & B K, 6,)01) ay
y y

, 1 _vote, , ,
—0lpso »_ C / eV ”%(ag’x—m K)@™ G () dy'
¥y

m’'<m ¥

1 vote 7y w 6
+ / e vy -y )_qa:’)nvg' dy/ =: ZS} for vy < 0.
y vy i=4
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We next compute J; (1 <i < 6) term by term. Since

y vo+e 1 2(vg+e) 1
- 0=y, —1 5.7 -
lvy>0/ le vy v, dy' < (1 —e Tl ) <

Vo + € Vo + €’
. ’ ° 4.9)
0 (y— ), —1 1
1y, <0 e d )
: y vo + €
we see that

331,136 = Cllwg 0y, llLoe.
In view of definition (2.3) and Lemma 2.2,
132/, 35| < Clyuso Z Iqu(a’Z’x"" K)oy G1)||L°° < Clyso Z [[wqdy, "G
m’<m m’'<m
Consequently, we have
y v0+s

|@m(y,v>|51vy>oo/ ¢ (yy’;1/Rzkww,v'n@m(v',y’ndv’dy’

-1

1 +s
+1vy<00[ e O Yy~ 1/ ko (v, ) |GV, y')| dv' dy’
y R3
+Cluso ) wgdy Gilloe + Cllwgdy, &roe, (4.10)
m’'<m

where ky, is given in Lemma 2.1. Then we iterate (4.10) once more to obtain
6
Gn(y.0) < D 3, (4.11)
i=1
with

y v0+e , y, "0+5( )

o 2 =y, -1 ’ y=yo) o, -1

311 =1y,>00 f e v, /3kw(v,v )lu’y>0/ e vy,
-1 R -1

Xf kw(vl,vl/)|@m(vll,y//)| dvll dy// dv/ dy/,
R3

y v0+e , 1 "0+5( "y
o 2 o=y v-1 ’ y -y 7 1—1
12 =1y,>00 e vy, ky (v, 0)1y <0 | e vy |

—1 R3 y/

X/ kw(v/,v//)|@m(v//,y//)| dv// dy// dv/ dy/7
R3

4

1 vo+e y 10+e
_Yo —y/ o=y ,
2 -y -1 ’ y=y7) -1
J13=1y,<00 / e W [vy| /3kw(v»v)1v;>0/ e vy,
y R -1

X/ kw(v/,v//)|@m(v//,y//)| dv// dy// dv/ dy/7
R3
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1 _vote

1 vo+e r_y
_Y _y O'=y")
& 2 -y -1 ’ 7 /-1
J14=1y,<00 / e W [vy | /%kw(v,v )lu;<o/ e W [vy |
y R-

y/

X/ kw(v/,v//)|@m(v//,y//)| dv// dy// dv/ dy/7
R3

Yo voteyny /

- _

31,5 = ly,>00 e v v, %kw(v,v)
—1 R\

m’ m 1 1
Ux x
X (Clnzo Y- g2 Gillzoo + Cllwgd, Fllzoe ) dv' dy',
m’<m

_vote

1 7
31,6 =1uy<00f e ¥ y)|vy|_1/ ky (v, v)
y R3

x (c1m>0 3 lwgd Gl + C||wqa;"X;§||Loo) av' dy'.

m/'<m

By using (4.9) and Lemma 2.1, we see that the last two terms can be bounded as
13151 3161 = Clmmo Y l[wgd,Gullos + Cllwgd, Flroe.
m’/<m

For the other four terms, we only compute 3}, because the other three terms can be
treated similarly. The estimates are divided into three cases. First of all, we take M > 0
large enough.

Case 1: |v| > M. In this case, Lemma 2.1 and (4.9) directly give

1Gmllzoo.

Si2 <

14+ M

Case 2: |v| < M and |V'| > 2M, or |v'| < 2M and |v"| > 3M. In this case, we have
either |[v — v’'| > M or |v/ —v”| > M so that one of the following two estimates holds
respectively:

kw (U, U,) < C€—£M2/16kw (v’ v/)e€|v_v/|2/16’
ky (v, 0") < Ce M0k, (v, v")es V' V" P16,
This together with Lemma 2.1 and (4.9) gives
s1,2 =< C€_€M2/16||@m”Loo,

Case 3: |v| <M, |v'| <2M and |v”| < 3M. Inthis situation, we make use of the bound-
edness of the operator K on the complement of a singular set. For any large N > 0, we
choose a number M (N) to define

Ky m (v, V") = 1jy—yi>1/M, jv|<2m K (v, V),

4.12)
K, i (V' 0") = 1y —yri1/m, o7 <3mkw (V, 07),
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such that

IA

sup/ Ky a1 (0, V") — Ky (v, 0")] dV
v R3

IA

|- = -

sup/ Ky s (v, 0") — Ky (v, 07| dV”
R3

v/

Moreover, note that Ky, a7 (v, V'), Ky, m (v, ") < Cpgr. We further rewrite

Ky (v, V)Kyy (0, 0") = [Kyy (v, V) — Koy, 1 (v, 0')]Kyp (v, 0)
+ Ky, a1 (v, V) [k (V' V") — Koy ar (v, 1))
+ Ky (U, 0"k a1 (0, V).

The first two difference terms lead to the small contribution to 37, bounded by
C
— G m | Lee-
N 1GmllL

For the last term, we use the decomposition

-1

1 ¥ +no "0+6(y R A0 IR "o "o g g
ool [+ e [0y G (0", y")| v dy" do’ dy
y

Y'+no ’

2 ¢ UOJrG( -y vl / o
1,500 [ e v, / Ky, i (v, v)ky, e (v, 0")
[v/|<2M, |v"|<3M

II
—512"‘312’

where 79 > 0 is suitably small. For 37, since y” — y’

v

No, it follows that

IA

Mo

’

ke, C
1v§,<Oe K4 |vy|

which together with Lemma 2.1 as well as (4.9) implies

CM 1 1/2
31132 < _{/ / |aanG1(v//’y1/)|2 dv” dy”} )
1o |[v”’|<3M J—1

As for ?sllé, since y”" — y’ < 1o, we find that for 8 € (0, 1),
¥y'+no "°+€(y =",
[ oaaf e v [ dy” do’
y
v/

¥ +n0 ‘)0“‘€ o’'=y") "
- 1U;; 0 e
[v/|<2M ¥y’ y

¥ +no
<C oL T gy Py B Ay < Cynd P, 4.13)
¢ v =y y 0
v'|<2M y’

Y=y P

|y/ _ y//|—ﬂ|v;|—1+ﬂ dy”dv/
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where we have used the fact that

B

_v0+s
[}

1

=yl y —y
/
Uy

< Q.

Plugging (4.13) into 3112, we get

1_
310 < Cony P 1 Gomll oo

As a consequence,

C - -
S = {5+ Cunl 4 e N5, e + 0, Gl

Substituting the above estimates into (4.11), we conclude

IGmlizoe < Cluso 3 Iwgdl Gillze + CIOL Gl + Cllwgdl Flze.  (4.14)

m’'<m

A linear combination of (4.14) from m = 0 to m = Ny gives the a priori estimate

Yo AGumlre <C D 107G +C Y wgdy Flie,  (415)

0<m=<Ny 0<m=<Ny 0<m=<Ny
where C > 0 depends on Ny and ¢. This concludes the L°° estimate.

L? estimates. To close the L™ estimate (4.15), we need to derive an L? estimate for Gy.
For this, we first consider the zeroth order L? estimate on G. Notice that G; = PyG; +
P:G; and PyG; = [a1 +b;-v+cy (|U|2 — 3)]ﬁw1th b, = [bl,l,bl,z,b1,3]. Moreover,

ay = (Gls \/ﬁ)» bl = (lev\/ﬁ)v 1= é(le |v|2\/ﬁ)

On the other hand, from (4.8) with m = 0, one has Gi(y, —vx, vy, vz) =
—G1(y, vx, vy, Vz), 1.e. G1 is odd in vy. This implies

ay = bl,z = b1,3 =1 = 0. (416)

To obtain an L? estimate of the macroscopic component, it remains now to deduce an L?
estimate of b; ;. Actually, one can show that

Ib11I? < CIP1Gy|I? + C / 0 |G2(ED dv + CllwgF . (@17)

vy 20

where C > 0 is a constant independent of € and o. For this, we define

d
v = qul,l = vaxa(f)bl’l(y)\/_,

where
—¢Zu =b1,1, @b, (£1)=0.
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For the above boundary value problem on b; 1, one has

65,1 Ig> < Clibrall. ¢, , (EDI < Cllbyall. (4.18)

Taking the inner product of (4.3) and Wy, | over (—1, 1) x R3, we get

€(Gl’ qu]‘l) - (UyGl, 8yqu1,1) + <UyG1(1)’ qu]y] (1)> - <UyG1(—1)7 \Ijbli] (_1)>
+ (1 _O)VO(le "Ijbl,l) + O—(LGI’ lI”blj) = (%7 lIJb1’1)~ 4.19)

We now compute the terms in (4.19) one by one. By Cauchy—Schwarz’s inequality and
(4.18), one has

[e + (1 —0)vo][(G1, W5, ;)]
<[e+ (1 —0)vo]|(PoG1, ¥p, )| + [€ + (1 —0)vo]|(P1G1, W, )|
< nle + (1 =0)volllbr1 11> + Cyle + (1 — o) vol[IP1 G |1
—(vy Gy, 8y\IJle.) = —(vyPoGy, ay\pbl_i) — (vyP1Gq, 3yqu1.i)
> ||bya 1> = nllby1lI> — CylIP1 Gy )12,
(&, Wo, | < nllbrall? + CpllwgF |z oo

And by Lemma 2.2,
o|(LG1, Vs, )| < nllbrall® + CyIP1G 1%

For the boundary term, one deduces from (4.4) and (4.18) that

(vyG1(1), Wp, (1)) — vy G1(=1), ¥p, , (=1))

=/ OvyGl(l)\I’bl.l(l)dv—/ VyG1 (=)W, (=) dv

vy, <0

<albal?+C [

Vy<

lvy|GT(£]1) dv.
0

Combining the above estimates for the terms in (4.19), we get (4.17).
We now deduce an L? estimate of the microscopic component P;Gy. A direct energy
estimate for (4.3) gives

1
e+ A= amallGiIE + 8ol PGP + 5 [ oy [GHED o
vy 20

< 1lIG1I? + CyllwgFlzee.  (4.20)

Thus, (4.17) and (4.20) as well as (4.16) yield

G + [ 1uylGHED dv = C g @21
vy <
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Furthermore, to get higher order L2 estimates on Gy, we see from (03 Gy, 07 (4.3)) with
m > 1 that

[e + (1 = 0)vo 195, G11I> + Soo |17, G I

1
+ —/ vy |95 GE (£ dv < C||G1|? + Cllwgdy Flieo,  (422)
2 vy 20 x x

where Lemma 2.3 has been used for o(97' LG, 9y G1).
Finally, the a priori estimate (4.5) follows from (4.15), (4.21) and (4.22). This com-
pletes the proof of Lemma 4.1. |

With the a priori estimate (4.5), we now prove the following existence result for gen-
eral linear equations (4.3) and (4.4). Before doing this, we first define the function space

Xy, = {g =g(y,v) ’ Z [wgdy. gllLe < 00, g(—vx) = —g(Ux)}

OSmSNO

endowed with the norm

lgllzn, = Y llwgd gllzes.

0<m=<Np
And for convenience, we also define a linear operator £, by
Ls8 = [€ +vy0y +vo —0K]g.
Lemma 4.2. Assume & = &(y, v) satisfies

Fve) =—F@e). Y wgdl FllLee < oo. (4.23)

0<m=<Ny

Then there exists a unique solution G; = G1(y,v) to (4.3)—(4.4) with o = 1 satisfying

G1(—vx) = —G1(vx),

and

D wgdy Gl <€ Y (wgdF Fllioe. (4.24)

0<m=<Ny 0<m=<No
where Cy > 0 is a constant depending only on Ny and q.
Proof. The proof is based on a bootstrap argument in the following three steps.
Step 1: Existence for o = 0. If 0 = 0, then (4.3)—(4.4) is reduced to the problem

€G1 4+ v,0,G1 +v9G1 = F,
G1(£1, )]y, 50 = 0,



R.-J. Duan, S.-Q. Liu, T. Yang 28

which has a unique explicit solution
Y _woteow—y) 1 , ,
Gi(r0) = Lo [ TR G 0 dy
-1
I wotow—y) 1 , ,
+ lvy<0/ e vy v, &L v)dy'. (4.25)
y
Moreover, one sees that G; (—vy) = —G1(vy) according to (4.23), and a direct calculation

implies

D> Nwgdl Gl <Co Y [lwgdy Flroe

0<m=<Ny 0<m=<Ny

Step 2: Existence for any o € [0, 0] with some o, > 0. Suppose o € (0, 1], and consider
a more general problem

eGy + UyayGl +v9G; = 0KGy + §, (4.26)
Gq(£1, v)|Uy§0 =0. 4.27)

To solve this boundary value problem, we design the following approximation problem:

€G! + 0,8, G1 T + G = 0KGT + F,
Gy (£1,0)|yys0 = 0,

starting from G? = 0. Once G7 is given, G/ ! is well-defined by Step 1 and satisfies the
estimate

1
Y lwgdy GI e

<Co Y llwgdy KGillLeo +Co Y [lwgdy, e

0<m<N; 0<m=<Ny
<CoCio Y Nwgd) GlllLee +Co Y [wgdy Fllzee,  (4.28)
0<m=<N; 0<m<Ny

where €1 > 0 depends only on K. If we choose o, > 0 such that CyCiox < %, then (4.28)
implies

D wgd Gl <2C0 > wgd Fllzes (4.29)

0<m=<Ny 0<m=<Ny

for any n > 0. Furthermore, one can also show that for o € [0, 0],
IIGT*! = GTlllzy, < CoC10llIGT = GT My, =< 5G] = GT ' Nlzy,. (430)

which implies that G} — G strongly in X y,. In addition, it is easy to see that G} t(—vy)
= —Gf'H (vx) if G} (—vx) = —G7(vx). Thus, for o € [0, 0], there exists a unique solu-



The Boltzmann equation for plane Couette flow 29

tion G; € Xy, to the problem (4.26)—(4.27). Actually, the a priori estimate (4.5) implies
that we still have the bound

Yo lwgd Gilleee <€ Y [[wgdy Fllroe.

0<m=<Ny 0<m=<Ny

In other words, it follows that

125 Bz, = CollFlzy,- 4.31)

Step 3: Existence for o € [0,20«]. By using (4.31) and performing similar calculations
to those resulting in (4.29) and (4.30), one can see that there exists a unique solution
G1 € X, to the lifted equation

€G1 +vy0yG1 +v9G1 —0xKG1 = 0KG1 +F, Gi1(£1,v)]y,50 =0,

with o € [0, 04]. Therefore, the solution mapping 2;;* is also well-defined on Xy, and
the estimate (4.24) holds for 0 = 20.

Finally, repeating the above procedure step by step, one can reach o = 1 so that €7
exists and (4.24) also follows simultaneously. This completes the proof of Lemma4.2. =

Proof of Proposition 4.1. By setting § = —vxv, /it in Lemma 4.2, we see that for any
€ > 0 there exists a unique solution G§ € X, to the boundary value problem

€G] +vy0y,G} + LG = —vxvy /i, Gi(£1,v)]y,s0 = 0.
Notice that G{ satisfies (4.1) and the estimate

1G5 llzy, < Ci.

where C; > 0 is independent of €. Furthermore, we consider a positive sequence {e, booq
such that |, 11 — €| <27, and €, — 07 as n — 0o. We consider the following approx-
imation problems:

€nGY" + vy0,G" + LG = —vyv, J/IL,
Gy (%1, V)|, s0 = 0.
Then letting &, 11 = G;"*' — G, one sees that &, 1 satisfies
MG +0,0,6,11 + LGG, 1 = —(" — MG,
Gnt1lvyso = 0.
Thanks to Lemma 4.2, it follows that
IS t1llzy, < Cole"t! —€"[IG5" ||z, < CC1le"H! —€].

This means that {G{"}2 , is a Cauchy sequence in X y,. Thus, letting n — oo, the limit
function denoted by G is the unique solution of (1.11), (1.16). Moreover, G, satisfies

(4.1) and the bound (4.2). The proof of Proposition 4.1 is thus complete. ]
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5. Steady problem: remainder

Based on Proposition 4.1, one can further show the following existence result for the
remainder Gr. Recall the steady problem (1.8) as well as (1.9) and (1.10).

Proposition 5.1. The boundary value problem (1.13)—(1.14) admits a unique solution
Gr = Gr(y,v) with Gg = /it GR satisfying

1
/ / Gr(y.v)dvdy = 0.
—1 JR3

And there is an integer qo > 0 such that for any integer q > qo, there is g = ag(q) > 0
such that for any a € (0, ap) and any integer m > 0,

lwg 03, GrllLe < Ck,

where Cg > 0 is a constant depending only on m and q but independent of «.

5.1. Caflisch’s decomposition

To prove Proposition 5.1, we follow the strategy of the proof in [15] for treating the shear
force term in the framework of perturbation. In fact, notice that there is a growth term
%avx vy G in equation (1.13). To treat this growth in velocity, the key point is to use
Caflisch’s decomposition [10] and an algebraic weighted estimate introduced originally
by Arkeryd—Esposito—Pulvirenti [2]. For this purpose, we first decompose the remainder
GR as

VIWGr =GRr1+ /WGRr2, (5.1

where Gg,1 and G satisfy the following two boundary value problems, respectively:

UyayGR,l _avyavx GR,l + VOGR,I
= xmKGr1— %aﬂvxvyGR,z — % woxvyGr + /L vy 0y, Gy
+ 0(V Gy, /1nGy)
+ a{Q(VEGr, VEG1) + Q(JEG1, JEGR)}
+a2Q(JRGR. JEGR), ye(=1,1),veR? (5.2)
Gri(£1.v)|y,s0 =0. veR? (5.3)
and

UyayGR,z — Otl)yavaR,z + LGR,Z
= — )W PKGr1, ye(=1,1),veR3 (54

GRro(£1,v)]y,s0 = V271 VIEGR(EL V) vy|dv, v eR>. (5.5)

vy 20
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Here ys(v) is a nonnegative smooth cutoff function such that

1, v|=M+1,

V) =
o @) {o, ol < M,

and X is defined by (2.4). Existence of solutions for (5.2)—(5.3) and (5.4)—(5.5) can be
proved via the approximation sequence by iteratively solving the systems

eGﬁJfll + vy8yG;’§11 — Uy 0y, Gxﬁl + vOGE'I1
= XMJCGEEI - %(x ;vavyG;'{El —% 1wuxvyGi + /I vy 0y, Gy
+ O(J/1Gy, JiuGy)

+a{Q(JuGR, VL G1) + O(V1 G1, /1 GR)}
+a2Q(Jr G, JiLGR), ye(—1,1), v eR3, (5.6)

G (£1,V)|oys0 =0, v eR?, (5.7)

and

n+1 n+1 n+1 n+1
eGR’2 +vy8yGR’2 —ozvyavaR’z —i—LGR’2

= (- )p PG, ye(-1.1).veR3 (58

Ggf;(il,v)|vy§o = sz/ Oﬂcg+l(i1,v)|vy|dv, veR3, (5.9)
vy Z

for a small parameter € > 0, where we have set [G% |, G% ,] = [0,0] forn = 0.

The proof of Proposition 5.1 is in three steps. Fifst, sirflilarly to treating the existence
of G1, we introduce a modified coupled boundary value problem with two parameters
€ > 0 and 0 < o < 1. This boundary value problem is directly solvable via the method
of characteristics in the case of 0 = 0 corresponding to the homogeneous inflow data,
and we then lift the value of o from o = 0 for the zero inflow data to o = 1 for the full
diffuse reflection boundary condition by a bootstrap argument. Second, we establish the
limit n — oo for any fixed € > 0. Third, we let € — 07 to obtain the desired solution
which satisfies (5.2)—(5.3) and (5.4)—(5.5). As a result, with the help of (5.1), we get the
solution to the original boundary value problem (1.13)—(1.14).

5.2. A priori estimates with parameters € and o

Let us first show that [GZTII, G}'C'zl] is well-defined once [G} |, G} ,] is given. To do this,
we apply the contraction method. We define the linear vector operator parameterized by
o € [0, 1] as follows:

Ls[61.62) = (L4, L2][%1. %],
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where
Li161, %)
_ {651 +vy0y 91 — vy 0y, G + VoG —0oxm KGy +avx2vy Vg, ye(=11),
F1(£1,v) 1, <0},
and
L3[61. 9]

eﬁz—i—vyayﬁz—avyavxﬁz—i—voﬁz—UKﬁz—U(l—)(M),u_l/zxﬁl, ye(-1,1),

ﬁz(:tl,v)l{vygo}—a.ﬂnp,/ _ (61 + /1L 52)(£1, v)|vy| dv.
vy 20

We then consider the solvability of the following coupled linear system:

Li16,. 6] = F,, L2[6,,6] =%, e (—-1,1),
{U[l 2] 1 191, 9] 2, Y E( ) (5.10)

Lé[gl,gz] = 0, chr[gl,gz] = :'Fz,b, y = Zl:l,
where #7, ¥1 and 5, 3 are given, and (¥7, 1) 4 (F2, \/it) = 0. In the rest of the proof,
for brevity, we denote

- F1, ye(—1,1), ~ ¥, y € (—1,1),
F1 = FHr =
0, y = =+l1, Frp(£l,v), y==%1.

In what follows, we look for solutions to the system (5.10) in the Banach space
Xavo = {191 | D lwg 161 e < oo (5.11)
0<m=<Np
endowed with the norm
191 Sllxowy = 9 {lwgd Gllzee + [wgd Gallzos).
0<m=<Ny
Let us now deduce an a priori estimate for the parameterized linear system (5.10).

Lemma 5.1 (A priori estimate). Let [§),8,] € Xq, N, witha > 0 and Ny > 0 be a solution
to (5.10) with € > 0 suitably small and o € [0, 1], and let [ﬁl, ??2] € Xq,Np With (F1,1) +
(F2, /i) = 0. There is qo > 0 such that for any q > qo arbitrarily large, there are
ag = ao(q) > 0 and large M = M(q) > 0 such that for any 0 < o < , the solution
[61, 9] satisfies the estimate

[51. %2]lIxa vy = I1£5" 11, P2]lIxa v,

<Cc Y Allwgd) Fillree + lwgd) Follroe + llwgFaplree},  (5.12)

0§m§N0

where the constant C; > 0 may depend on € but not on ¢ or «.
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Proof. The proof is divided into two steps.

Step 1: L™ estimates. Let0 < m < Ny and g > 0, and denote
[Hl,m, H2,m] = [wqaqfxgl , wqagﬁcgz]«

Then we see that [Hy ., Ha m] satisfies

vy U
€y +vy0y Him — vy 0y Hy jp + anﬁHLm +voH1im
H 4 ’ ’
Wq 1<m’/<m
+a Y c;"/wqa;"x’(”";y ﬁ) I Gy = wg T (5.13)
0<m’<m
Him(£1,0)|(n,s0y = 0, (5.14)
and
Uy v
€H2’m + Uyasz,m - Otvyavaz’m + 2q0l—1 _: |;C|2H1’m + Uon,m
— aqu(Hz’m) —0lm>o Z Co wq ¥y KO 6
wq X X

1<m’/<m

—0 Y CrlwgdT (1= )™ AT K G = wy 0. Fa. (5.15)

0<m’<m

Hy p (£1, )1y, 50y — awqa’g’x(\/Zn,u)/ (%1 + V1 8)(£1,v)|vy| dv
vy 20
= wgdy Fap(£1).  (5.16)

Recall the trajectory [Y(s;¢, y,v), V(s;t, y, v)] defined in (3.4). In addition, for (y, v) €
[—1,1] x R3, we define the backward exit time f, (y,v) as

t(y,v) =inf{s:y —sv, ¢ (—1,1), s > 0}, (5.17)

which is the first time that the backward characteristic line [Y (s;¢, y, v), V(s;t, y,v)] exits
(=1, 1). Note that at the boundary y = %1, #,(y, v) is well-defined if v, > 0. For any
(y,v), we use f,(y, v) when it is well-defined. Furthermore, we denote

(. v) =y —(y,v)vy € {—1,1},

and for a random variable vy, we define the backward time cycle

(to, yo,vo) = (t,y,v),

(5.18)
(tk415 Y415 V1) = (e — 5 (Vk> V), Yo (Vi Vi) V1), k>
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We also set

Ycll(S; Ly, U) = l[tH.],t])(s){yl + (S - l])l)]y},

Vcll(S; Ly, U) = l[t[+1,t/)(s)(le + Ol(ll - S)Ulyv Vly, U[Z).
Note that [Yc‘l)(s), Vc(l)(s)] = [Y(s), V(s)] and y; = +£1 for [ > 1. Moreover, #; can be
negative.

Define V; = {v; € R3 | v; -n(y;) > 0}, where n(y;) = (0,1,0)if y; = 1 and n(y;) =
(0,—1,0) if y; = —1. Let the iterated integral for k > 2 be defined as

k—1
/ [] doi :=/ {/ dak_l}dol, (5.19)
/=i v Vi Vie—1

=1

where do; = 27 1(vp)|vy| dvg is a probability measure.

Without loss of generality, we assume limys|—oo[H1,m, H2,m](t) = 0. Along the char-
acteristic line (3.3), for (y,v) € [—1,1] x R3\ (y_ U yp), we write the solution of the
system (5.13)—(5.14) in the mild form as follows:

Hym(t) = Him(y(1),v(1))
_ ft —f{o‘“(r V(r))dz Hl,m
=0 t e Js : AMWgK ” (Y(s),V(s)) ds

q

t
+ 0lpso / o™l ACEV@IT NP o 3 (g KOO G (Y (), V(5)) ds
t

1 1<m’/<m

d 5 € ’ ’ ’
— 0[[ e_jst A€ (t,V(r))dt Z C,:,n {wqa:)nx (szvy \/ﬁ) a:}nx—m gz}(Y(S), V(S)) ds

1 o<m’<m

t t e
N / o™ I ACEVEAT (5 ) (Y (5), V(5)) s,
121

where
B(OVe() _
L+ V()2 ~

provided that € > 0 and g > 0 are suitably small. By Lemma 2.4, it is straightforward to
see that

AS(t, V(1)) = vo + € + 2qa vo/2, (5.20)

sup  [[Hym(1)[|Loo

—00<I <00

C
<= Y sup [Hiw®lzee+Ca Y sup [Hpm(@)llLoo

q e ~OO<E<00 g ~OO<E<00

+  sup  [lwgdy F1(0)]lLee. (5.21)

—00<I <00
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By taking ¢ sufficiently large, (5.21) further gives
Y N Himlie <Ca S (Hamlze + Y Jwgd Fillze.  (5.22)
0<m=<Ny 0<m=<Nyp 0<m<Ny

Similarly, one can also write the solution of (5.15)—(5.16) in the mild form of

t o
Hy pm(t) = gf e—/j As(r,V(r))dz{qu(

141

Ham )}(Y(sx V(s)) ds
Wq

I

t
+0lm>o / o Js A @V (@) dr SO g (B KT Ga)(Y(s). V(s)) ds
1

1<m’<m

I

+o f I AV AT SN o o (1) 2 K (Y (s), Vs) ds
t .

0<m’<m

I3

t P gt €
N / e ATV ATy 5m 7o) (v (5), Vis)) dste” I A VO T am gy v, Vi)
131

Iy
+ Z I, (5.23)

where (y,v) € [-1,1] x R3 \ (y= U yp), and for k > 2,

Is ="' V2n e~ n 'Ae(r’v(r))dr[wqagfx(x/D](V(ll))

w
<[ Sy VT 00 d i 00,
j=1"YJ
k—1
le= Y oW [ T VT @)z @),
11521V,
=2 j=1"%j
k—1
17=azzw/ . / wy Fo (YL VI (s) d =i (s) ds,
I=1 =1V Jtp

l=o ’ZW/H o (B ok v asio as
Iy = ’Zw/

i

Iio=0 WZ/

)

o L o= (S ok v azi as
= 1 I

q

., (—ﬁl)(n Y VA @) d (1),
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In the above expressions we have used the notations

k—1
z € [ -
Sis) = [] doje b A drg, ) do,
j=1+1
-1

8 W (v;) e—f,’jH AV dT

2 o (5.24)
j=1 w2(Vcl (tj+l))

and
2 (v) = (V2mwy /i)~ (5.25)

L estimates for H, , are more complicated because K has no smallness property.
To overcome this, we have to iterate (5.23) twice. Let us first compute I, (1 <n < 10)
term by term. Recalling the definition (2.5) of k,,, one directly has, by (5.20),

t V,
|11 5/ e—%’(f—s)[3kw(V(s),v’)|H2,m(s, Y(s),v")| dv’ ds.
131 R

By Lemma 2.2, it follows that

t
’ _Y0 (4
L] < Clpso Y. ||wqa;';g2||m/ o9 g

m' <m—1 n

<Clyso Y [wgdt 8o,

m'<m—1

and similarly

131 <C ) llwgd %1 llLoe.

m'<m
It is straightforward to see that
[14] = Cllwgdy, F2llLee + Cllwg 0y, F2pllLoe-
Next, notice that
|W| < Cm!4glev0t=11)/2,
In the sequel, for simplicity, we denote by €, , the constant m!49¢g!. By Lemma 8.1,
_CTS/4 _Yo
|5 < CCp 27210 ™ 2T Hapll1os,

—20 (- lrod lrod

6] + |I7] < CkCpge™ 2 I Jwy Fall Lo + lwgFapllree),
_Yo

Lo, |T10] < CCmgke™2 V|| Hy gl| oo,
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Y0 i
|Is] < CCypge= T /H Y I I A TORIE TS OS]
j=1Y; Y41
x dv' dZ;(s) ds,

where we have taken Ty = 1 — 1, with k = C; T05/4, and both C; > 0 and C, > 0 are
given in Lemma 8.1.

Putting all the estimates for 7,, (1 < n < 10) above together and adjusting the con-
stants, we have

|H2,m(t)|

< cemqe—%‘)(f—m/

1

_Y0 -
+C€m’qe > ( t1)Z[k_l / / kw(Vcll(S)JJ/)
1=1 =1V Yty JR

X |Hao(s, Y (s:2,y,0),v")| dv' dZ;(s) ds
+Q®), (5.26)

t

e_VTO(’_S)/ Ky (V(5), V") [ Ham(s, Y (552, y,v),0")| dv ds
R3

where

Q1) =Clpso »_  sup |[Hyw (e +C Y sup [Hym(s)|zoo
m <m—1 —oo<s<t m<m —00<s<t

+C sup wgd Fa(s)llLoe +C sup [lwgdy F2,5(s)| Lo

—oo<s<t —oo<s<t

_ 5/4
+ CCp g2 70" sup  ||Hao(s)||oe + CCmgk sup ||Hyo(s)| Lo

—00<s<t —00<s<t

+ C\em,qk sup ”wqj:Z(S)”Loo + C.em,qk sup ”wqj'vz,b(s)”LO“
<t —00<Ss<t

—0o0<s

Then let us define a new backward time cycle as
(g1 Vo1 Verr) = (g — (g, vp), yo (Vg vp), Vi)
and the starting point
(th. v, v5) = (5. ¥, V) 1= (5, Y(5), V) or (5, Y}(s), ).
for some s € R and / € Z7. Furthermore, for £ € ZT, we also denote
Ya(s'ss.y'0) = Ty oy (S0 + (5" = 1)vg, )
Lo
Va(s'ss, " 0") = 1y () (g, + (g = )vey, vpy,, v,)-

To be consistent, we set [Y3(s"), V.I(s")] := [V (s), V(s')].
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Iterating (5.26) again, one has

|H2,m(t)|
t v, S v , _
sceh, [ [ e [ e FO [ i ve ..
U R3 i R3
X |Hym(s', Y (s': Y (5),v"),v")| dv" ds’ dv' ds

t v v ’
+ce?, / e~ 2 =9 / 3kw(V(s),v’)e_70(s_’l)
1 R

t
1—1 té
X Ky (VE(s": Y (5),0),0")
DY B Ay

e+
X |Hao(s", V(s Y(5),0'), v")| dv” d Z¢(s") ds' dv' ds

k-1 4
tCenggy [ [ ke
; =i vy Juy, Jr3 ¢
s

X/
’
1

X |Hao(s', Y (s'; Yh(5),v)),v")| dv” ds' dv' d 2 (s) ds

k—1 1 . ,
LD By I B B R R
o S v g JR3

1—1 té
>
1—1
e=171=1")

e—UTO(S—s’) AS kw(I?(s/; Ycl](s)v U/), v//)

; /ﬂ; K (Vi (s Ya(5), 0, 0") Hoo (57, Y 873 Y (9),v1), 0")]
+1

x dv"dZy(s))ds dv' dZ;(s) ds

t v,
+thm,qt>o,q/ e_TO(’_S)/3kw(V(s),v’)(,‘2(s)dv’ds
t R

k—1
+cCex, Z/
=1

1

7]

/ / Ky (VA(5),v)Q(s) dv' d ;(s) ds, (5.27)
szt vy Jog JR3

where according to Lemma 8.1 and Remark 8.1, we choose 7 € Z* such that: ~ (TO)S/ 4
with Tp = s — ¢/ being suitably large. We claim that

[ HamllLoe <= nill HamllLoe + [1Hz20lloo} + C(To){1107, %2l + 19211}
+ C sup Q(s), (5.28)
s<t
where 1 > 0 is suitably small. To prove (5.28), we only estimate the fourth term on the
right hand side of (5.27), because the other terms can be estimated similarly. For any
sufficiently small no > 0, we first divide [¢,_ . 7/] as [t; .7, — no] U (; — o, 2], then
rewrite the fourth term on the right hand side of (5.27) as
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k-1 4
Y0 (g—¢/
g = C€m,q'€o,q Z/k—l / / kw(I/cl](s;U),U/)e 2 (s tl)
I=1 ]_[j=1Vj t]+1 R3
1—1

o ‘e Lot vl A
[ () [ ke
=1 Y=V, \Je ty—no/ JR3

éJrl
X |Hao(s', YE(s YA (), v"), v") | dv" dS¢(s") ds’ dv' d S (s) ds
=: J1 + 2.

By Lemma 8.1, it is easy to see that

F2 = CCngCoqnotl Hz oL
For &1, the computation is divided into the following three cases.
Case 1: [Vi(s;v)| > M or |[V4(s'; YL(s),v")| > M. In this case, by Lemma 2.1,

C(q)

[ Vgt = S0 or [ k(g v, 000010 < S0

where C(g) > 0 and depends on g!. Therefore, by using Lemma 8.1 again one has

Cfm,q€0,qcz(61)

<
] = =

| H2,0l Lo

Note that here and in the sequel, / and £ run over [1,k — 1] and [1, 1 — 1], respectively.
Case 2: |Vi(s;v)| < M and |v'| > 2M, or |VE(s'; Yi(s),v))] < M and [v"| > 2M. Tn
this regime, we have either |V (s; v) — v'| > M or |[Vi(s'; YA(s),v') —v"| > M. Then
the following two estimates hold respectively:

kw(I/cl](S, 'U), v/) < C€_8M2/16kw(VcIl(S; U), v/)es|Vcl|—U/|2/16,

kw(I;vcllf(S/; Ycl](s), U/), v//) E Ce—8M2/16kw(I7cf(s/; )/cll(s)7 U/), v//)eé‘”—/c{—l)”‘z/lﬁ.
This together with Lemma 2.1 implies

_ 2
1] < CCmgCoqC7(@)e M /8| Ha ol 00

Case 3: |Vi(s;v)| < M, |v'| <2M, |VE(s'; Yh(s),v')| < M and |v"| < 2M. The key
point here is to convert the L! integral with respect to the double v variables into the L?
norm with respect to the variables y and v. To do so, for any large N > 0, we choose a
number M(N) to define Ky, s (4, v’) as in (4.12), then decompose

K (VA 0"k (VE,0") = (Ko (VA V) — K ar (VA 0) Yk (VS 0"

(K (Vi 0") = e na (Vi 0" e e (V)
+ Kt (Vg 0 )k pa (Vg 0").
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From Lemma 8.1, the first two difference terms lead to a small contribution to §; bounded
by
Ct’m,q'eO,qcz(CI)
N

For the remaining main contribution of the bounded product ky,, m(VE 0 VK, u(VE ARIOR
we denote

I Hz,0([ Lo

= Ycli(s : cl(s) V) =y, — (1t —s')véy

and apply the change of variable v;y — ¥. Then one has

ay
8v;y

I(yy — (tg = sHvy,)
‘ - = |t; — "] = no.

Ui
8vly

We now estimate this part as follows:

17 v ,
CCnqCoyq Z / / / k.ot (Vi (s30).v)e™ 2 671D
H, Vv Jyg Jvi<em

1—1 zg no
XZ/ y / / K (T YA(5), 1), 1)
oI, Je lv|<2M

e+1
X |Hao(s'. YE(s": YA (), 0"). 0") | dv" dSy(s") ds’ dv' d Sy(s) ds

SC(M,m,q)Z/ / it
41
— t¢=mo "
Z[ [ 15", T4 Y0, 0).0")
—1 ]'Vj t [v|<2M, |v”|<2M

2+1
x dv” dv' dZ(s") ds’dEl(s) ds
C M7 5 | volt1—s) v ’ t; v (t —s’
< S gy sup{ [ P e / e gy ds}
/Mo s<t v,v’ Wty t

C(M,m,q)
< ————su g S)|.
==/ SEI;II 2(5) |l

Putting all the estimates for §; and J, together, we now obtain

CC4C0,4C3(q)
F < CCnqCoqnotlHaollLoe + mlq+ X/I | H2,0llLo0
2 _£M2
+C€m,q€0,qc (g)e™ 1o ||H2,0||L°°
C¢€,,,€,C C(M,m,
1+ EGnaC0a €@y oo CILD g ).

N ’ 1o s<t
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As mentioned before, by performing similar calculations for the other terms on the
right hand side of (5.27), one gets

Cﬁm,qEO,qCZ(Q)

_ 2
o Hamlles + CCngCogCP(@e ™ 1] Haoml 0w

||H2,m||L°° =<

CCn4Co.q(49q")?
1+ M

CCpqCo,qC
F CCgCogC2 (e M Hyg 4 1 04D

C(M,m, m
. m.q) sup [[%2(s)|| + C(M,m, q) sup |07 G2(s)|| + C supQ(s). (5.29)
/1o s<t s<t s<t

Since 1 ~ (Ty)*/*, by taking M and N large enough and 1o = (Tp)~>/? small enough,
(5.29) further yields (5.28). Finally, taking a linear combination of (5.28) with m =
0,1,..., Ny, we conclude that

Y I HamlLe

0<m=<Ny

+ CCngCognotllHaollLoe + | H2,0llzo0

| Hz0llzoe

<CWNo.q.To) Y 197 %]+ C(No.q. To) Y [ Himllzeo

0<m=<Ny 0<m=<Ny
+C(No.q.To) Y {llwgdy Fallree + w0, Fppllroe}- (5.30)
0<m=<Nyp

Remark 5.1. We point out that the estimates (5.22) and (5.30) obtained above are inde-
pendent of €. Moreover, both Ty and 7} are independent of ¢, because starting from any
t € (—00,00) we can trace back k times to some #; which can be negative.

Step 2: L? estimate. To close the final estimate, we turn to the L estimate of 87" &, with
0 < m < Ny. The goal is to prove that for a given € > O there exists C(€) > 0 such that

STl slr+ D> 107.%15

0<m=<Ny 0<m=<Ny
<CE Y Mwgdy Gilie +ClO) Y wgdy Falee
0<m=<Np 0<m=<Nyp
+CEO Y Nwgdy Faplio (5.31)
OfmfNo

For this, we begin with the following equations for §,:
€62+ 0,0, 92 — 00,0y Gr + 05 —0K G —o(1— ) V2K G = Fo,
ye D (53
G>(£1, V)1, <0y —0 271k JIEE(EL V)|, |dv = Fpp.

vy 20
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Taking the inner product of (5.32); and &, over (y,v) € (—1,1) x R we have, for > 0,

(e + 1 =o)o)%:7 + 080 P1&a|* + 2T — P}&a13 . + 31 —0)|Py5a5 ¢
< (G2, 72| + (1 = xa) 2K 61, 9)
+0Py&al5 4 + Cyllwgilliee + CpllwgFapllios,  (5:33)

where the following estimate on the boundary term has been used:
[ v, 67 (1) dv —f v, 9% (—1)dv
R3 R3
= / vy 83(1) dv — / vy (0P G2 + 0 PyG; + F3 )% (1) dv
vy >0 vy <0
—/ v, 63 (~1) dv —/ vy (0P Gy + 0 PG + 55 ) (1) dv
vy <0 vy >0

> (1—-0?) vy (Py82)*(1) dv + / vy({T — Py }%:)% (1) dv

vy >0 vy >0

+(1-0?) / oy | (P20 (—1) dv + / [y (T = Py}%2)2(=1) dv
vy, <0 vy

<0

_y / 0y (P §2)* (1) dv — Cyllwg Fap (1) 2e — 7 / oy | (P 62)2(~1) dv
vy <0 v

y>0

— CyllwgFap(—1)[700 — Cp /

vy <

lvy| | Py &1 (1) dv
0

-G, / vy | [Py 1 (—1) > dv
vy >0

> {1 - P)}&l5 .+ (1—0)|Py%al5 . —nlPySl5
— Cpllwg F2p(ED)[F o — CpllwgFil|F oo

Here we have used the notation

Py (1) = 27 G1(£1)|vy|dv

vy 20

and the estimate

< C|lwgéi|Lee forg >5/2.

| _ aEnimla
vy 20

Next, since

2
e = [ [ sengiisia] sl
vy20LJvy,20

2
_ [/ >0§2(il)ﬂ|vy|dv] ,
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by dividing the integration domain as

{veR3:vy>0}={veR3:0<vy<80rvy>1/8}U{U€R3:8§vy§1/8},

VE
one sees that the grazing part of | P, 52(1)@, 4 is bounded by the Holder inequality as
(/ n)|vy| dv) / |§2(1)|2vy dv < 8/ |§2(1)|2vy dv. (5.34)
ve vy >0 vy >0
For the nongrazing region, we see by using the trace Lemma 3.1 that
/ 192D Pvy dv < Cl[GIP + C vy, 82 — vy du, 821
{veR3:v,>0}\Ve
< CI%I° + Cl(LE. ) + CI((1 = )™ P K61, )| + (52, 2]
< Cl%|? + Cllwgbi i~ + ClIF2]*. (5.35)
Putting (5.34) and (5.35) together, one has
P23y < el = P}y + CIIP + Clughillie + CIRIR (536
Consequently, (5.33) and (5.36) give
19217 + 9215 1 < C)llwgF2ll7o0 + wgFapll7 o + [wgill7 oo} (5.37)
Remark 5.2. Note that the constant C(¢) in (5.37) is independent of the parameter o.

It remains to deduce an L? estimate of higher order velocity derivatives. For this,
applying 97’ (m > 1) to (5.32) we have
€0y G2 +vy,0,07 G2 — avya;”jlﬁz + uoa;’;gz - 08Tx K$,

— o0 [(1 = ya)w 2K G] = 0" F5. ye(=11), (5.38)

G (£1,v) 1y, 50y — 0 V2 a’v"x(ul/z)/ i VIE(EL)|vy| dv = 07 F 4.
vy<0
Taking the inner product of (5.38); and 97 %>, we deduce

(e + (1 = o)) |07 G2 ]1* + 08107 G ||* + 1107 6,3
SCI%IP+C Y wgd i} + Cm) P %13,

m'<m

+ Cl07 F2|* + Cllwgd7. Fap oo, (5.39)

where we have used the following estimates for the incoming boundary term in (5.38),:

[l g ot s o
vy

=>

< Cm)|Py&l5 1 + CllwgGil7eo + Cllwgdl 2.5l co.

Then (5.39) and (5.37) give (5.31). With (5.31), (5.12) follows from (5.22) and (5.30).
This completes the proof of the lemma. ]
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5.3. Existence for the linear problem witho = 1 and € > 0

With Lemma 5.1, we now turn to the existence of solution to (5.10) for a fixed parameter
€ > 0 in the L* framework by the contraction mapping argument.

Lemma 5.2. Under the same assumption of Lemma 5.1, there exists a unique solution
(91, 92] € Xo,n, to (5.10) with o = 1 satisfying

Y Allwgd Grllzee + [lwgd7. Ga| oo}

OfmfNO

<C Z Hlwg 05 FillLee + [[wgdy FallLee + |wgdy F2p(s)lLoe}.  (5.40)

0<m=<Ny

Proof. The proof is based on the a priori estimate (5.12) established in Lemma 5.1 and a
bootstrap argument. Just as for Lemma 4.2, the proof is divided into three steps.

Step 1: Existence for o = 0. If 0 = 0, then (5.10) is reduced to

VUx U
"X G =F, ye(-11),

€891 +v,0,8 —0v,0,, 91 + V%1 +a 5

51 (:i:l, v)l{vy§0} =0,
and
€9 + Uyaygz —O[Uyavxgz +vo8 = F,, ye(-1,1),
G (1, )1y, <0y = Fa.,

respectively. Then, in this simple case, the existence of L° solutions can be directly
proved by the method of characteristics so that

1£6 M 1%1. Fallxang < CelllF1. P2l u, - (5.41)
Step 2: Existence for o € [0, 0] for some o, > 0. Letting o € (0, 1], we now consider

UxVy

2 NI
=oxmKG + %, ye(L1), (542

€91 +v,0,9 —av,0,, 9 + V5 + o

G1(£1,0) 1, <0y = 0, (5.43)

and

€9 + 0,0,9 — vy 0y, 5 + Vo5
=oK% +0(1— ) 2KG + Fo, ye(=11), (544

GEL s = 0V2m [ (S + JEI)EL D)oyl dv + Fop. (545

vy 20
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For the above system, we design the following approximation scheme:

€Mt +v,0, 9 — vy d, G +veg ! + a%\/ﬁﬁf“
—omKE +F1 = F, (546
G (£1, )1y, 0y = 0, (5.47)
and
€GIT 4+ 0,0,971! — vy 0, G5! 4 vogy !

= oKG! +0(1— u)p 2KE! + 7 = 7V, (5.48)

Gy (£1, )1y, s0y

— g\/an/ & + VR (EL )|y dv + Fop = FN, (5.49)
vy 20 ’

with [§0, 8] = [0, 0]. The goal in the following proof is twofold: (i) [&]', €715, is
uniformly bounded in Xo n,, and (ii) [§]", 7172, is a Cauchy sequence in Xy, n,. By
(5.41), it follows that

1 5 Iy = Ce T F Ny + 2 N0qdit Fopllioo

0<m<Nyp

< CeoCilI8] . 95 x
+Co Y Allwgdy, Frlleee + wgdy Fallzoe + lwgdy, FaplLoe}.  (5.50)

0<m=<Nyp

Mo
where C; > 0 is independent of o and n. Choosing 0 < 0 < 1 suitably small such that
Cro+Ci < 1/2, (5.51)
(5.50) implies that
157 93 X v, < 2Mo (5.52)
for all n > 0. Moreover, by (5.46)—(5.49) and applying (5.41), one has
I+ G = 191 93 lIxa ny < CooCilllE]. 931 = 1677 95 lixan,
< IE G =157 9  Mxaw,  (5:53)

with the condition (5.51). Consequently, (5.53) and (5.52) imply that the systems (5.42)—
(5.43) and (5.44)—(5.45) have a unique solution [§1, §>] € Xq,n, for any o € [0, 0%].
Moreover, by Lemma 5.1, we have the uniform estimate

11, Gallxan, < Ce D Hwgdy Fillee + [wgdy, Fallzoo + wgdy Faplzee},

0<m<Ny
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which is equivalent to
1L P P2y ny < ColllFr. Fallxy g - (5.54)

Step 3: Existence for o € [0, 204] for some o« > 0. By using (5.54) and performing
similar calculations to those leading to (5.52) and (5.53), for o € [0, 0], one can see that
there exists a unique solution [§1, §,] € Xq,n, to the lifted system

UxV
=2 i — o xm K G

€91 +v,0,9 —avy0,, 91 + Vo5 + o 5
ZOXMJ{§1+\771’ ye(_lvl)y

G1(£1,v)1y, 50y = 0,
and

€9 +0,0,9 — vy 0y, G + V95 — 0« KG — 0 (1 — )(M),u_l/zJC‘gl
= 0K +o(l— ) PKG + Fa, ye(=11),
G101y, 50— w270 [ (51 + VEE)(EL )[vy| dv

vy 20

—oV2mu | (G + JEE)EL Yy dv + Fap.
vy 20
In other words, we have shown the existence of L;;* on Xy, N, and (5.12) holds true for
0 = 20%.
Therefore, by repeating this procedure finitely many times, one can see that £7 ! exists
when o = 1 and (5.40) follows correspondingly. This completes the proof of Lemma 5.2.
|

5.4. Estimates on the remainder

We are ready to complete the proof of Proposition 5.1.

Proof of Proposition 5.1. We now prove existence for the coupled system (5.2) and (5.4)
under the diffuse boundary conditions (5.3) and (5.5), respectively.

Let us first go back to the approximation system (5.6)—(5.9). By applying Lemma 5.2,
for fixed € > 0, we see that [G;’efll, GZTZI] is well defined when [G} |, G% ,] is given and
the solution belongs to X, n,, defined in (5.11) for Ny > 0.

We now show that {[G} . G ,]}32, is a Cauchy sequence in Xy, n,, Which implies
that its limit denoted by [G§ ;. G ,] is the unique solution of the system

GG;e,l + UyayG;z,l _O‘Uyavaje,l + VOG;e,l - XMJCG;,l
= _%O‘ ﬂvayG;,z - % mwuxvy Gy + /I vy 0y, G + O (/i Gr, /it Gy)

+a{Q(JIE Gy, VI G1) + Q(JIE G, JEGR)} + * (VI G, JEGR)
=N, ye(=1,1), veR3 (5.55)
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Goi(E1,v)|ys0 =0, veR’, (5.56)

and

Gy + vyé)yGfe’2 —avydy, GR, + LGR,

= (- V2KGE,. ye(=1,1), veR? (557)

Gro(E1L )|y, s0 = \/271”/ VGG (£ v)|vy|dv, v e R, (5.58)
vy 20

Furthermore, we will show that the convergence of the sequence {[G% |, G} ,]}ne, is
independent of €. For this, we first prove that

lG 1. Gl allxeny < 2Co. (5.59)

where €y > 0 is independent of € and n for all » > 0. We apply induction on n. Notice
[GY ,.G%,] =[0,0]. If n = 1, then the system (5.6)—(5.9) reads

€GR1+vydyGr —avydy, Gpy+v0Gp — M KGhy + 32 /1vsv,Gh
= -2/ vx0,G1 4+ R Vydy, G1 + 0(G1.Gy) := 8% y € (-1,1), veR’,
(5.60)

Gri(£LV)|y,s0=0, veR3, (5.61)

and

€Gro+vy0yGp, —avydy Gp, + LGh,

= (- ) VPKGh,. ye(-1L1),veR? (562
Gro(£1L )|y, s0 = \/271“/ VIEGR(ELv)|vy|dv, veR3. (5.63)
vy 20

Performing similar calculations to those in deriving (5.22) and (5.30), one has

Z ||wqaZnXG112,1||L°°§C05 Z ||wqa:;nxG11e,2||L°°+C Z ||wqa:)nx80||L°°

0<m<Nyp 0<m<Nyp 0<m<Nyp
<Ca Y [wgdl GgollLe + C, (5.64)
0<m=<Ny
and
1 1 k+1
> Mwgdy GrollLe <C Y7 (107 Groll +C D fwgdy GRH oo,
0<m=<Ny 0=m=<Nyp 0=m=<Ny

(5.65)

where the constant C > 0 is independent of ¢; see also Remark 5.1.
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Since the mass of Glle , 1s not conserved, in order to estimate the macroscopic com-
ponent of Glle,z we instead turn to the L? estimate of G}e. Recall /i GIIe = Glli,l +
I Glle - By (5.60)—~(5.63), it is easy to see that G]}2 satisfies

€Gh +vydyGp —avydy, Gp + Saviv,Gp + LGk = pu~'/28°, (5.66)

and

GRr(ELV)|y,s0 = V270 VI GR(£1,0)|vy| dv.

vy 20

Next, for n > 1, denote

PoGh = (@" +b" v+ " (v - 3) /i,

n n n n 2 (5'67)
PoGR o = (a3 +b5-v+c3(v]” = 3) Vi,
and define the projection Pg from L2 to ker &£ as
PoGh | = (@} + b7 v+l (> =) (5.68)

We will also use the notations
b} = [bi",l,b,-",z,bfﬁ], i =12, b"=I[b], b} b3

Note that

1
a" =al +ay, b"=b]+b), " =cf+c3, / a(y)dy =0. (5.69)
-1

Since
Ila}.b}.cf1ll < ClIPeGR || < CllwgGh yllLee (5.70)

for ¢ > 5/2, to obtain the estimate of ||[a}, b}, c;]| it suffices to derive L? estimates of

[a',b!, c!]. In what follows, we will show that the L2 norm of the macroscopic part of

G}{ can indeed be dominated by its microscopic component and other known terms. We

estimate [a!,b!, c!] by the dual argument. First of all, we let U(y,v) € C®([—1,1] x R3),

and take the inner product of (5.66) and ¥ over (—1, 1) x R3 to obtain

€(GR. W) = (vyGp.9y®) + (vy Gr(1), W(1)) = (vy GR(=1), W(=1)) + (vy G . D, ¥)
+ la(vyv, G W) + (LGR, W) = (u™'/28°, ). (5.71)

Estimate of a'. Let
d 2
U=y, = vy5¢a1(y)(|v| —10)./1,
where

¢l =a', ¢l (£]) =0. (5.72)

al —
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Thus
gt llzr2 < Clla'|l. (5.73)

Plugging ¥ = W, into (5.71), we now compute the equation term by term. First of all,
by the Cauchy—Schwarz inequality with n > 0 and using (5.73), one has

€[(Gk: Ya1)| < €|(PoGk, W)| + €|(P1G g, V)|
< Cella'|? + Ce{|P1G g olI” + [wgG gy ll7 o} + Cellby]I,
—(vyG R, 9V, 1) = —(v,PoGk, 0y ¥ 1) — (vyP1G g, 9y W,1)
> 5lla' (1 = nlla" | = Co{IP1G g olI* + lwgG Ry I7 00}

and
a|(vy G . 0y, Y1)l + 3| (vxvy G . Yo1)| < Ca(||bi|I* + lwgG gy 7o + 1GR I

Then by Lemmas 4.1 and 2.2, it follows that
(M_1/280,l11a1) = [|(vydv, G1 — %vayGl +I'(G1.G1), Y1)
1
<0l + GG +C, [ [ MGG dvay
-1

1
< lla" |2 + CyllwgGr 2w + G [ 1G1 [ *dy
< nlla' |2 + CyllwgGr 200 + CyllwgGr |2 |G % < nllal | + Cy.  (5.74)
provided that ¢ > 3/2.

Next, noting that LG = —{I'(G}. /it) + ' (\/it, G})}, by a similar argument one
has

(LGR. W) < [(L(GR ™), W) + (LG R 5. W)
< nlla'|> + Cy(lwgGr 4 Iz + IP1G R [1%). (5.75)

The last boundary term (vy G x(1), ¥, 1 (1)) — (v, G x(—1), ¥,1(—1)) vanishes because
of (5.72).
Putting all the estimates above together, we have
la'|? < ClIP1G R, |I* + CllwgGp 1 l7oe + CalllGp|? + lIb1117)
+ C|b3|I* + C. (5.76)

Estimate of b'. Let
vy Vx 5 by (0) VL =1

v = \Ijbil = vyvzj7¢b%(y)f, i =3,
0 (01> = 5) b ) VR =2,
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where
~¢p =bi, ¢ (E) =0.
Then
Iy 12 = ClIb I, [y (EDI = Clbi . (5.77)

We now compute each term in (5.71) with ¥ = W, 1. By the Cauchy—Schwarz inequality
and (5.77), one has

€l(GR. Wy))| < €|(PoGR, Wy1)| + €| (P1G R, Wy
< Ce|lbi I + Ce{|P1G,lI” + lwgGr 1 700} + Celiza|ic! |,
—(vyGh, 0y Wy1) = —(vyPoGh, 0y W) — (v,P,Gp, 0y Wy1)

1B} 17 = nllb} 12— CotIPL G, |7 + g Gy [20c). i = 1.3,
6116117 = nllb} 2 = CpllP1 Gy o |2 + g Gy [3oeh i =2,

>

and
05|(vyGIIQ’ 8vx\ybl.1)| + %“KvxvyGIl?» ‘Ilbil)|
< Ca(llla’, ¢"TI? + lwgGr1ll700 + IGR 1)
Similar to (5.74) and (5.75), it follows that
(w128 W) < il I + C.
and
(LG Wp)| < [(L(GR ™). W,1)| + (LGR2. W)
< nlbi > + Cp(lwgGroallzoe + IP1GR2I).
For the boundary term, noting that
Gr(EDo, 20 = PyGR(£1) +{I = Py}Gr(£ D]y, 20. (5.78)
we have
(vy Gr(1). Wy, (1)) — (1,9 (=1). ¥p, (=1))
= (vy PyGR(1). Wy, (D) + (vp{I = Py}G (Do, >0, ¥, (1)
— (vy PyGR(=1), Wy, (=1)) = (vy{I = Py}GR(=Dlv,<0. ¥p, (~1))

= (Uy{I = Py}G r(D)v,>0. Wp, (1)) — (vy{] — P, }G p(=1)]v, <0. ¥p, (—1))
< nlb!I? + Cyl{I — PV}GIIQ,2|§,+ + Cn”qulle,l 170

where the fact that (v, PyG}e(:l:I), Wy, (£1)) = 0 has been used.



The Boltzmann equation for plane Couette flow 51

We now conclude from the above estimates for bl.1 with 1 <i < 3 that
Ib' > < CIP1GR,IP + CllwgGh 130 + CallGh, I + a1
+ C{I = Py}Gp,l3 4 + Clc'|I? + C. (5.79)
Estimate of ¢'. Let

d
V=W, =vy(jvf —5)54561@)\/_,

where )
—gb;’] =c, ¢a(£1)=0.
One has

Igetllmz = Clie'll. ¢4 (ED] < Clictl. (5.80)
By the Cauchy—Schwarz inequality and (5.80), it follows that
c|(G R Wo1)| < €|(PoG . W1)| + | (PG k. W)
Cellel? + CelllP1G g I* + wgGR 11 Zoe )
—(vyGh,0,¥,1) = —(v,PoGg, 3, ¥,1) — (v,P1G}, 3, ¥,1)
> 30]c! 1> = nllc'I* — CollP G g oI + lwgG R,y 700}

IA

and

@|(vyG g, By, Wer)| + 30| (Uxvy G R, Wer)| < Ca(|lby | + [lwgGg 17 + G R 2 117)-
Also similar to (5.74) and (5.75), one has

(280 W) < lle'|? + ¢,
and
(LG W) < |(L(Gh 1™ ?), W) + [(LGra2. W)
<nlc'* + Cﬂ(”quIlQ,l”%,OO + ||P1G11e,2||2)-
For the boundary term, by applying (5.78) and using
(vy Py GR(£1), Wer (£1) =0,
we have
(0yGr(1). Wi (1) = (vy GR(=1). Wer (=1)
<nlct|? + Cyl{I — PV}GIIQ,2|§,+ + C']”quIIQ,l ||12J>°
Combining the above estimates of ¢! gives
le'* < CIP1GR 1> + CllwgGr 7 + CallGRoll* + 1157117}
+ CllwgGllfee + CRI — Py}GRol5 4 + Co®. (5.81)
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Finally, a linear combination of (5.76), (5.79) and (5.81) gives
e, b, c'1|? < CIP1Gk,lI* + ClwgGg 7 + Cal|GR 5|
+CH{I — Py}Gr,l3. +C. (5.82)
This together with (5.69) and (5.70) implies that
llaz. b3, 31> < CIP1GR,|* + CllwgGr,ylI7e
+CH{I - P,}Gg,l3 . +C. (5.83)

In order to obtain estimates for |P; G , ||, we have to further consider the BVP for G ,
as follows:

6Glle,z + UyayG}e,z - O‘Uyavalle,z + LGIIQ,Z —(1- XM)M_l/zJCGllz,l =0,
Gllg’z(:l:l, V)1, <0y = \/27r,u/ N VIEGR(£1,v)|vy| dv.
Uy<0

Applying the estimates (5.33), (5.36) and (5.39) witho =1, ¥, = 0 and 5, = 0, one
has
e||G}m||2 + 50||P1G11e,2||2 + 311 - Py}G}e,2|§,+
= 77|PyG11e,2|%,+ + 77||G11e,2||2 + Cn”quIle,l”IZJOO’ (5.84)

|PyG11Q,2|§,+ <el{l - Py}Gilz,2|§,+ + C”Gilz,z”z + C||qu11e,1 ||1%<Xn (5.85)
and
€||8:;nxG112,2||2 + 8ol 95" G112,2||2 + %Wﬁ( Glle,2|§,+

<CGRal? +C Y lwgdy Giyllzes + COM)IPyGRol3 4. (5.86)

m'<m

where all the constants on the right hand side are independent of €. Then (5.82) and
(5.84)—(5.86) give

Yo 80 GralP+ D 187 GRraliy

0<m=<Nyp 0<m=<Np

<C Y |wgd) Gryllzee +C. (587

OfmfNo

Consequently, a linear combination of (5.64), (5.65) and (5.87) gives

> {lwgd7. GhyllLos + llwgdy. Gy} < €o

OfmfNo

for some suitably large € > 0. Therefore (5.59) holds forn = 1.
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We now assume that (5.59) is valid for n = k > 1 and we will prove it forn = k + 1.
In fact, applying the estimates (5.22) and (5.30) to the systems (5.6)—(5.7) and (5.8)—(5.9)
with n = k, one has

k+1
Z ||wq3;"XGR:"1 oo

0<m=<Ny

<Ca Y wgdp Gl +C Y wgdy 8Kz, (5.88)

OfmfNO 0§m§N0
and

k+1
> lwgdl G5 lzee

0<m=Nop

<C > Nwgdn GEENI+C Y lwg @ GE I, (5.89)

0<m=<Nyp 0<m=<Ny
where
$K = —L /vxvy Gy + vy, G + Q(VRGr. /1 G1)
+o{Q(VIEGE. VILG1) + O(VIEGr. JEGR)} + 0 O(JIE GE, /1L GF).
By Lemmas 4.1 and 2.2 and the induction assumption, we have

Y wgdy $FlLe <C +Ca Y {lwgdy G yllzes + 1wy 07 Gy Lo}

O§m§N0 OsmsNo

+Co? Y Allwg 7 Gy llFee + w7 Gy ll7ec}.  (5.90)

0<m<Ng
For the L? estimate, by performing a parallel calculation to (5.83), one has
llaf B eI < CIPLGRE P + Cllwg GRE I + CHI =PGRS 4
3
+C YIS ). (5.91)
Jj=1
Here W; (1 < j <3)arechosenas W k+1, \Ilb[H] and W k+1 in the same way as for W1,
W, 1 and W 1, respectively. Hence, (5.91) also gives
a3 1 D5 NP < CIPIGRE P+ Cllwg G T +C I =PGRS 4 +C
+ Co*{|wg Gl 17 oe + WG 2l 7oc)
+ Ca*{[lwg Gl 1 I1oo + Wy Gl ol 200}, (5.92)

by applying Lemma 2.2 and (5.69).
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On the other hand, similar to the estimates (5.84)—(5.86), it also follows that

el GRL I + SolP1GRENI + ST — PYGRE' 3,

<Py GG 3y + nllGRL? + Cyllwg G i, (5.93)

|P,GRE 34 < elll — PYGRE B4 + CIGEL 1P + Cllwg G 7o, (5.94)
and

k+12 k+1)2 k+1,2
eldy GREM + Soll 0y R + 5197 GRE'5 4

< CIGRE'IP +C D wgdy GRi 7o + CIPyGRE' G 4. (5.95)

m'<m

As a consequence, combining the estimates (5.92)—(5.95) gives

k+1)2 k+1,2
2. IGREIP+ 3o 105 GRE

0<m=<Ny 0<m=<Ny
k+1)2 2 k 2 k 2
<C > Nwgdl GRHMIZeo + Co?{|lwg Gl yFoe + lwgGh o}
0<m=<Ny
4 k 4 k 4
+ Ca {||quR,1||Loo + |wgGRrallfeo}- (5.96)

Finally, by taking C; > 0 suitably large, we infer from (5.88)—(5.90) and (5.96) that
IGE - GRE NN n, = Co+ Cral(Gle 1. GRollixg.n, + C1a? G 1. GRollR, y,
< Co{l + 26, Crax + 4C1EFa?} < 2€

provided that « is chosen to be sufficiently small. Thus (5.59) holds for n = k + 1. There-
fore, it holds for all n > 0.
We now prove that {[Gﬁ’1 , Gﬁ’l]};'fzo is a Cauchy sequence in X, v,,. For this, denote

MI/ZG§+1 _ G;:T I MI/ZG;{}—ZI
with
(G GRE =[G =GRy GRY =GRl
Then [G?{fll, G;j'zl] satisfies
6G~'I’JII + vy8yG~;’;f11 —avyavaZlel + voézﬁl — XMJ(G;QLII + %a\/ﬁvxvyéﬁle
= a{Q(VUGR. V11 G1) + Q(VI G1. J1tGR)}

+a*{Q (/G VG + O(VuGh. VR GE ) + O(JVrGE . JuGh)}
=N, ye(=1,1), veR3

G (£ v)|y,50 =0, veR?,



The Boltzmann equation for plane Couette flow 55

and
eG;’le + vyayéﬁjrzl - avya,,xéggf; + LG%E‘ —(1— )(M)/L_I/ZJ(GKT =0,
ye(-1,1), ve R3,
GREN (EL )|y, 50 = \/H/ Oﬂéyl(il,vnvﬂdv, v eR3.
vy 2
We claim that
HGRE G ey < CnelC 1. G olxeng (5.97)

under the condition (5.59). In fact, on the one hand, by performing a similar calculation
to those leading to (5.88), (5.89) and (5.96), one has

G G lxgn, <C 3 Nwgd N (G Gl

0<m=<Ny

On the other hand, from Lemma 2.2 we have

> lwgdf N(GR. Gl <Ca D Allwgdf . Gh Lo + lwgdy. G 5o}

0<m=<Ny 0<m=<Ny
, .
+Co? Y wgd7 Grlee Y [lwgdy GllLoe.
0§m§N0 OfmfNO

which is further bounded by

Ca Y Allwgdy G illee + lwgdy, Gk ollree),
0<m=<Ny
according to (5.59). Thus, the claim (5.97) holds. In other words, if « > 0 is suitably
small, then {[Gﬁ,l, G;’m] o o is a Cauchy sequence in X, y,. Hence,

[G?Q,P G?z,z] d [G;e,v Gf{,z]

strongly in X, N, as n — 0o. Moreover, the convergence is uniform with respect to €, and
the limit [Gfe,p Gjm] is a unique solution to (5.55)—(5.56) and (5.57)—(5.58). In addition,
[GR.1- Gk ,l also satisfies

1G1. G allxan, < C. (5.98)

where C > 0 is independent of €.

Furthermore, by taking the limit ¢ — 0, we can repeat the same procedure as when
letting n — oo so that the limit function [Gr,1, Gr2] € Xa,n, is the unique solution of
(5.2)—(5.3) and (5.4)—(5.5) with the same bound as in (5.98). Thus the proof of Proposi-
tion 5.1 is complete. |

Finally, Theorem 1.1 is an immediate consequence of Propositions 4.1 and 5.1, except
for the nonnegativity of the solution Fy(y, v) that will be proved from the dynamical
stability of Fy(y, v) in Theorem 1.2. |
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6. Unsteady problem: local existence

We now turn to the time-dependent situation. To solve the initial boundary value problem
(1.21), we set the perturbation as

F(t,y,v) = Fa(y,v) + i f(t,y,0). (6.1)
Then f = f(z,y,v) satisfies
0 f +vy0y f —av,dy, f + %avxvyf + Lf
=TI(f. /) +a{l'(G1 + aGR. f) + T'(f.G1 + aGRr)}.
t>0,y€(=1,1), v=(vy,vy,v;) € R3,
VIEFO0,y,0) =t fo(y,v) = F(0,y,0) = Fa(y,v),  y € (=1,1), v e R,

[t £1L,v)|y,s0 = 2mp f@, £Lv)/wlvyldv, t>0,ve R3.

vy 20

(6.2)

The goal of this section is to construct a local-in-time solution to the initial boundary
value problem (6.2). The proof of the global existence of solutions as well as the large
time behavior will be left to the next section. To resolve the difficulty caused by the
growth term %avx vy f, it is still necessary to introduce the decomposition

VI f = fi+Jufa, (6.3)

where f1 and f; satisfy the initial boundary value problems

0: f1 + vydy f1 — vy 0y, f1 + Vo 1
= K fi — 30/ xvy fo + a{Q(JR f. /1t {G1 + aGR})
+ 0(VuiGr + aGrl Vit )} + Qi [/ ). (6.4)

10, y,v) = fo(y,v) = Fo — Fy.

AL Ds0 = VI [ Aol (©2)
vy
and
i f2+ vy fo — avydu, fo + Lfa = (1 — )™ 2K fi, (6.6)
£0.y.0) =0, fo(£1,0)|y,s0 = V27 _ VELELD o (67)

respectively. Note that the initial data for f; is set to be zero.
We will look for solutions to (6.4)—(6.5) and (6.6)—(6.7) in the function space

Yor = {6191 | sup {lwg )l + w50 L} < oof

0<t<T

endowed with the norm

181 &2lllver = supT{Iquﬁl(t)llLoo + w2 (1) [ Lo}

0<t<
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Theorem 6.1 (Local existence). Under the assumptions of Theorem 1.2, there exists
T« > 0 depending on o such that the coupled systems (6.4)—(6.5) and (6.6)—(6.7) admit a
unique local-in-time solution [ f1(t, y,v), f2(t, y,v)] satisfying

ILf1, 2lllve. 7, < Cogo
for some Cy > 0.
Proof. We first consider the following systems for approximation solutions:

1 1 1
atf1n+ + vyayfer— _ avyavxf1n+l + V0f1n+

= XMthln_%a wuxvy fo + HU ), (6.8)

A0y, v) = fo(y,v) = Fo — Fy,

6.9
A EL Oz = VT [ L do, (69)
vy 20

and

atf2n+1 + vyayf2n+l _avyavxf2n+] + 1)szn-i-l

=Kf'+ (=) V2K [ (6.10)

2n+1(0’y, U) — 0,

6.11)
AU EL )]y, 20 = \/271#[ VAL,
vy Z

where

H(f ) = Qi 7.V iG1 + aGRr}) + Q(VuiGr + aGrl. /i f7)}
+ oW/ ",

and «/ﬁfn = fln + \/I_szn Set [flo’ f20] = [/o,0].

Next, one can show inductively that there exists a finite 7, > 0 such that

sup Jlwg[fi", 2" 1(0)[lLee < Cogo (6.12)

0<t<Tx«
for any m > 0 provided that
lwg [, £ Nllzee = llwg[Fo(y, v) = Fa(y, )]z < €o.

This also implies that [f"*", £'!] is well-defined by (6.8)~(6.9) and (6.10)~(6.11) if
[f", /'] is bounded as in (6.12). Denote

(&7, &3] = wel /1", '], V6" =61 + /3.
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Then &7 and &} satisfy
v
3G 4+ 0,0, — vy, GPT 4 2qa%@’f“ + &It
@? 1 n n n
= ymwg K o) 2 wuxv, &3 +w,H(f '), (6.13)
q

G0, y,v) = wy fo(y.v),

6.14
G (£, V) |y, s0 = w;lf W1 V2w u&(£1,v)|vy| dv, ©.14)
vy 20
and
01t + 00,65t a0, 0, 65 + 2qa ’r'l)zp@g“ + @It
G _
- qu(w—Z) + (1= a)wg 2K f1, (6.15)
q
6’5’“(0, y,v) =0,
(6.16)

G (L V) |y, s0 = 1I)2_1/ WaN 27 u &5 (£1,v)|vy| dv,

vy, 20
with [0, 9] = wy[£2. £2] = wqlfo. 0]. Here
Wy = 1 (v) = (V2 wep) ",

and w5 is given by (5.25).
Along the same characteristic line (3.3), by noting that s is no longer a parameter and
it is nonnegative, (6.13)—(6.14) and (6.15)—(6.16) are equivalent to

Gt y,v)
= 1,y <o e ARV Ty £ (¥(0), V(0))

— t ~— ~
+1;50e Ju A(T’V(r))drwl 'V (1)) Wi 2w ST (t1, y1,v1)|viy| dvr
n(y1)-w1>0
gD
' —[E A V(D) de &1
+ e Js B amwg K| — )1 (V(s))ds
max {0,1 } Wy

—a /t e s "“’(”V(f))d’wJﬁ(V(s))@S’g(V(s)) ds

ax {0,¢1}

! 1
+ f e~ s AV AT () (1 £ (V(s)) ds. (6.17)

max {0,¢1 }
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= 1,1 >0 € le AT V() dz ~_I(V(Z‘l)) 11)2\/ 2 M(S’;(ll,yl, v1)|v1y| dUl
n(y1)v1>0
J[(JZ)
t ¢ @n
+/ e s ,Au(r,V(r))dr{(l _ XM)M—I/zqu((_I)}(V(S)) ds
max {0,71 } Wq
t ¢ (S,n
n f e~ s ATV(D)dr [qu(J)](V(s)) ds, (6.18)
max {0,771 } Wq
where
Vy (0)Vy (7)
AT, V() = vo + 2q0e———> > 19/2
(r. V(D) = vo + 2qe 7 =50 = vol

provided that g« is suitably small.
For the boundary terms Jlgl) and ‘]1(72) , we use equations (6.17) and (6.18) recursively

to obtain
5
n _ (1 @ _ @)
AR UL oY)
Jj=1 j=1
with

v
Jil) — 1t1>0 e*le A(I,V(f))d‘fwl—l (V(l]))

()
WO

X/ o Lo ST R ey, VET 00) d 2D, (),
l_[j 1Y

JICEEPI Z / i zo1 (20 ) V40)) 45 (0),

1) _ ap) " " &
I3 =W, Z/ {1{t1+1<0<t1}/ +1{t1+1>0}/t }{XMWTK( wg )}
14+1

X (Yo Vi () d =V (s) ds,

t 174
1 1 UxV _
1 = —a Wy )§ /, { <z1+lso<z,}/ +1{t1+1>0>/ H—x ~ViG; l}
[1i= 117 0 41 2

X (Y5, VE(5) d =D (s) ds,

c> "l

17 171
J(l) W(l) Z/ {l{t,+1<0<t,}/ +1{tl+1>0}[ }(qu(fln_lv fzn_l))
t

I+1

X (Y5, VA (5) d =P (s) ds,
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—J] AV @)dT ~— - -
J£2) — 1t1>0 e fll (7,V(7)) ‘sz I(V(tl)) /ll[k_l , ltk>0 @g-‘rl k(tk7 Vs I/cllc l(lk))
j=17Yj

@
WO

x dEP (1),

) @) - g f Gl
1D — W / {1 0 / +1 0/ }{w K( )}
’ ° ; Mzt v, Vi1 <0<t 0 r+1>0} p 4 Wy

I+1

x (Y, Vi (s) dEP (s) ds,

k—1 t 1
@) 2
"QS = WO Z/‘kf1 {1{t1+150<t/}/ +1{tl+1>0}/ }
1=1/1li=1Yi 0 t

I+1
2 (G Iyl 5 (2)
(I = xm)wgpn™ 7K - (Yo, Vo (s) d X7 (s) ds,
q

where k > 2. Here, similar to (5.24), i;i)(s) (i =1,2) is given by

k—1

— (s 13

E;Z)(S) — 1_[ do—] e_fsl ,A(T,Vcl](f))drwi(vl) dO'l
j=l+1

= W) YAVl d
% 1—[ _ t] j e_ftj+1 (z.V4(0) rdo_,-.
i1 Wi (Vg (t41))

To obtain (6.12), one can first prove that for fixed finite k > 0 and any ¢t > 0,

sup sup [[[G, &L1(s) L < Ck)|lwg follLee < 1 Coto, (6.19)

0<l<k 0<s<t

by choosing Cy > 0 suitably large. Note that (6.19) can be easily obtained by using (6.17)
and (6.18) recursively because k is finite.

In the following, we prove (6.12) for m = n 4 1 under the assumption that it holds for
m < n. By letting t < T, with T, > 0 suitably small and applying Lemma 8.1, we have

sup &7 ||
0<t<Tx

<(C/g+C& sup sup |G |Loo +Ca sup sup [|&GFT oo
1<li<k 0=<t=<T%x 1<l<k 0<t<Tx

+C sup sup (G720 + 1652 00) + Cllwg foll Lo
1<l<k 0<t<T«

< Cllwg follLee + (C/q + Ca + C&)Coep + CCiel, (6.20)
and
sup |63 poe < CTy sup  sup [|G7H7||1e0
0<t<Tx« 1<l<k 0<t<T«

+ C(Tx + &) sup sup ||(S’£’+1_l||Loo, (6.21)
1=<i<k 0=r=<Tx
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where Lemma 2.4 has been used to have the factor 1/¢ in (6.20), and the coefficient T
on the right hand side of (6.21) comes from the last two terms in (6.18) as well as J;Z)
and 4 gz) . Choosing T and ¢ suitably small so that C(Tx + &) < 1/8, and using an induc-
tion argument, we deduce from (6.21) and (6.20) that

1
n+1
”@2 lLoo < W

8kC "

I
Jup 163 zee

{Cllwg follLe + (C/q + Ca + C&)Cogo + CCZel}, n >k,

where [n/ k] stands for the largest integer no more than n/ k. Therefore,

1
+1 +1 l
&7 e + 1637 e < 7Kl Sugk 165 oo
8kCT\ +7 _
+ ————A{Cllwg folle= + (C/q + Ca + C&)Cozo + CCieg}, n = k.

This together with (6.19) implies that (6.12) holds for m = n + 1 because g > 0 can be
sufficiently large and €9 > 0 as well as o > 0 can be suitably small.

Letus now show that {[ /", f3']};2, converges strongly in the space Y7, . We denote
[(S’”, (S’”] (&7 — G &Y — &5 forn > 1. Then (G, (S’"] satisfies

3, &M 4 v,0,& ! —av,d, G+ 2610t1 ":|y| (CLARINENN LS

n

& ~ _ ne
:Xqu‘K(w_l)_%a ﬂvxvy@g+wq[H(f1nvf2n)_H(f1n I,fz 1)],
q

G0, y,0) =0, GTT(£1,0)]y, 50 = w;l/ Wy V27 p&T (£1,v)|vy | dv,

vy 20

and

at@g-i-l + Uyay@';—‘rl — vy dy @,n+l +2qa Ux |Y|2@,n+l + v (S,n-i-l

@f” i
= qu(w—z) + (1= yan)wgu V2K £,
q

G0, y.0) =0, GFTN(ELv)|y,s0 = u?;lf W2V 21 &g (£1,0)[vy | dv,
vy 20
where f' = f7 — f77', and Ju&" = &7 4+ /I &2, Then similar to (6.20) and (6.21),
one has

sup &7 oo
0<t<Tx

<(C/g+C&) sup sup &7 Lo + Ca sup  sup G510
1<l<k 0<t<T« 1<l<k 0<t<Tx

+Ceo sup  sup (|G| + |67 | 10), (6.22)

1<l<k 0<t<T«
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and

sup &5 ||
0<t<Tx

<CTy sup sup [|GIH1 7o + C(Tu 4+8) sup sup [|GIH 7| L.

1<l<k 0<t<Tx 1<l<k 0=<t<T«

(6.23)

Plugging (6.22) into (6.23) gives

sup &S| Lo
0<t<Tx

<CU/g+a+e+Te+& sup sup [[GMH &I, (6.24)
1<l<k 0<t<Ty
By taking ¢ > 0 sufficiently large and o > 0, g9 > as well T, > O suitably small, we see
from (6.24) and (6.22) that

- ~ 1 - -~
sup (167 oo + 1637 leoe) < g sup sup (67, lllees, 0 > k.
0<t<Tx 0<l<k 0<t<Tx

On the other hand, supy ;< Supo<;<7., | [@’{, @S’é] ||Loo is bounded due to (6.12). Hence
LA 152, is a Cauchy sequence in Yo 7, , and there is a unique [fi, f2] € Yo 1,
such that [ f}", f;}] converges strongly to [fi, f2] as n — oo and [fi, f>] is the desired
local-in-time solution to the coupled systems (6.4)—(6.5) and (6.6)—(6.7). This completes
the proof of Theorem 6.1. ]

7. Unsteady problem: asymptotic stability and positivity

This section is about the global existence and large time behavior of solution to the initial
boundary value problem (6.2). Recall the decomposition (6.3) with f; and f, satisfying
the coupled systems (6.4)—(6.5) and (6.6)—(6.7). Firstly, we focus on uniform L>® N L?
estimates under the a priori assumption

sup (X0 lwg f1(s, y, V) |Loo + €% wy fols, y,v) oo} < &, (7.1)

s>0

for a constant &€ > 0 suitably small, where Ao > 0 independent of « is to be determined
later. And then we will give the proof of Theorem 1.2.

7.1. L estimates

As in the proof of Theorem 6.1, an L estimate of f follows from uniform L° estimates
of f 1 and f 2.
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Lemma 7.1. Let 0 < Ag < vo/4. Then under the assumption (7.1),

sup €™ |wg £1(s) oo

0<s<t
< Cgllwg follee + Cla + &) sup e lwy fo(s) Lo, (7.2)
0<s<t
S e 205 |lwg f2(5)[Loe < Cllwg follzee + C sup. ||eA°sz<s>|| (7.3)
<s<t
foranyt > 0.

Proof. For brevity, set

[g1.g2](t, v, v) = ™" w (V)[ fi. £1(t. y.v) (7.4)

with A9 > 0 to be chosen. Then the IBVP for g1, g2] is as follows:

0rg1 +vydygr —avydy, g1 + 2qa g1+ (vo — Ao)g1

P
= XquJC(i—;) — la/mvvy g + MM w H(f1. fo),

€10, v, v) = wq fo(x., v),

1Lz =07 [ @VET pgi(EL vl dv.

vy 20
and

Ux
+ (vo— 2
+| |2gz (vo — A0)g2

0:82 + 0y, 82 — vy 0y, &2 + 2q ]

= qu(w )+(1—XM)wqu 1/2J<(w )
q q

(0, y.v) = 0, gz(il,v)|vy§o=w;1/ a2 ga (1, v) vy | dv.

vy 20

Along the characteristic line (3.3) the solution to the above problem can be written in the
mild form

gi(t,y,v) =14<0 e o AEVONT (4, £3)(Y(0), V(0))
4 t
+[ o A1<r,V<r))dr{XMw j{( )}(V(s))ds

max {0,¢1}

—oz/t o MG V(r))drwf(V(s))gz(V(S)) ds

max {O,tl}

+ [ L e, (qu(fl,fz))(V(s»dHZsz“’ (7.5)

max {0,¢1 } n=1
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and
t o
gz(f, ¥y, v) - / e—fst Al(r,V(r))dr{(l _ XM)M—I/quJ{(&)}(V(S)) ds
max {0,¢1 } Wgq
t ) 3
+ / el v“ﬂ(f’”f))df[qu(Q)}(V(s)) ds+ Y 4. (16
max {0,¢1 } Wq n=1
where
Vy (7)) Vi ()
AT V(D) = vop — Ao + 2ga 222~
1(7. V(7)) 0 0 q 1+ V()2

We will take 0 < A9 < -2 and let 2qa < =2 such that A (z, V(r)) > 2. Moreover, for

an integer k > 2, the terms 3’,(,1) (1 <n <5)in (7.5) are given by

t
fl) — 1t1>0 e_le AI(T’V(I))dTlZ)II(V(l‘l))

o)
wl

X/ o Lo R ey VAT 00) A Y, (),
[ v

k—1
M= WOy /n om0 ) (V0). VA0) dEP )

- ji=17%j

k—1 1 1
= <0 +1 0 AMWg K
’ 1 I=1 =i v, ==l 0 fr+1=0) 41 ! Wq

x (Y4 V() dEWD (s) ds,

k—1 4 "
1) w® Ux Uy
¢ / {1 =0 / ! 0 / }{ gz}
) 1 ; 1_[]/(;]1 V; ¥r10<ar) 0 tr+1>0) t 2

I+1

x (YL V() dED (s) ds,

174

1) _ 4y
Fs =W Z/,H {1{t1+lso<n}/ +1{z,+1>o}/
I=1 szlvj 0 1

1+

}(qu(fl, )

x (Y}

cl’

Vi) (s)d SV (s) ds.

And the terms gl,?) (1 <n <3)in (7.6) are

—J{ A @V @) dT ~— _
@ = 1ypmg e N MEVO T () /1‘["“12 Ly >0 82(tk. yie. V™ (1))
j=17Yj

@
wl

x dE2 (1),
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17 171
0 +1 0 wye K| —
2 Z l_[, Ly, {t1+15 <t} o {t;+1>0} s q Wg

X (Y5, Vi) (s) dE (5) ds,
2) _ 4@ 1 t
3 W Z/ _ {1{t1+l<0<t1}/(; +1{t1+1>0}/; }

I+1

{(1—XM)wqu—”2JC(j—l)}< LV (s)dED (5) ds.
q

where
_ k-1 .
Eg’)(s) = l_[ doj e~ I M@V AT (v)) doy
j=I+1

Lj I
% l—[ wl(v] ft;+] 'AI(T’VCI(I))dr dO'j, l = 1,2
1w,( (tj+l))

Consequently, for any ¢ > 0, by applying Lemmas 2.2, 2.4 and 8.1 as well as the a priori
assumption (7.1), we deduce from (7.5) that

sup [[g1(s,y.v)[lLe < Cyllwg follLee + (C/q + Cé&) S lg1(s, y,v)llLee

0<s<t

+ C(a +8) Osup {llgi(s, y, U)||L°° + [lg2(s. ¥, v)|lLoe},
<s<t

which gives (7.2).
For g, similar to (5.26), one has

lg2(t, y,v)|

V t v,
< qu_TO(t_t')[ e =9 / ky (V(5),v)|g2(s, Y(s:t, y,v),v)|dv’ ds
max {¢1,0} R3

P (@—11) I ’
+C e 2 Z/k I'V /r.nax{t[+1 0}/ kw(I/d(S),v)

X |ga(s, cl(s t,y,v),v)| dv dE(z)(s)ds
P(2), (7.7)

where

P(t) =Cq sup [g1(s)[Loe +ECq sup [|g2(s)l|Loe. (7.8)

0<s<t 0<s<t
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We now have, by iterating (7.7),

lg2(t, y,v)|

t v, v ,
< Cq/ 6_700_”/ w(V(s),v )/ e 2 =)
max {¢1,0} max {¢1,0}

x/ Ky (V(s":Y(s),v"),v")|g2(s", Y (s'; Y (5),v),v")| dv" ds’ dv’ ds
R3

t Vv, V, 7 l_l té
+Cq / e 3 [ K (V(5),v/)e™ 3 0= Z [ L f f
max {¢1,0} R3 l/,l YV, Jmax {té_,’_1 ,0} JR3

Ko (VE(: Y (5).0').0")|ga(s". YE(s: Y (s). v) v”)|dv”d2(2)(s)ds dv' ds

+ G Z/ [ [ e [ eten |
]_[j I'V max {t; 41,0} max {¢],0} R3

ku (V (53 YA (5), ), v")g2(s", Y (55 Y4 (5), '), v")| dv” ds’ dv' d £P (s) ds

Yo 7
+C / / f Ky (VA (s:0),v)e™2 671
q Z j‘ } V; Jmax{t; 41,0} ohd
x ku (V4 (5" Y5 (5). v), v")
Z/’j 11 v, [nax{t£+l 0}/ whd CI

x |g2(s, Y, cl ; cl(s) V), v")|dv”d2(2)(s)ds dv’ dE(z)(s) ds

t v,
+C, f e~ 2 =s) / ku (V(5), V)P (s) dv’ ds
R3

max {¢1,0}

+CqZ / 1y, / / ky (VA(5), v))P(s) dv' d£P (s) ds. (7.9)
[17=1 max {t; 41,0}

With (7.9), similar to (5.28), for sufficiently large Tp > 0, we have

sup [|g2(s)[lzee = C& sup |Ig2(s) Lo + C(To) sup | f2(s)ll
0<s<Tp 0<s<Tp 0<s<Tp
4+ C sup P(s),

0<s<Tp

which together with (7.8) gives

sup [|lg2(s)[lzee = C sup lg1(s)]lzee + C(To) sup | f2(s)]- (7.10)

0<s<Tp 0=<s<Tp 0<s<T)y

Next, combining (7.2) at¢t = Ty and (7.10), one gets
sup [|[g1, &2](s)lee < Cllwg[f1(0, y,v), f2(0,y, v)][[Lee + C(To) sup | f2(s)]
0<s<To 0<s<Tp

= Cllwg follLoe + C(To) sup | f2(s)].

0<s<To
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Then it follows that for any ¢ € [0, Ty],

lwglfi. £2)(O) Lo < Ce™ " lwg follLoe + C(To)e ™ sup | fa(s)].  (7.11)

0<s<Tp

In particular, we have

lwglf1, f21(To) Lo
< Ce 70 lwg[£1(0.y.v). f2(0, y. v)][[Loe + C(To)e ™0™ sup || f2(s)]

0§S§T0

< Ce™0T0|wy, follzeo + C(To)e™0T0 sup || fo(s)|- (7.12)

0=<s=<Tp

Moreover, (7.11) can be extended to

lwqlfis 1Oz = Ce™ D gl fi, AI6)llzoe + C(To)e ™ sup || H(@)]
(7.13)

for any ¢ € [s,s + Tp] with s > 0.
Next, for any integer m > 1, we can repeat the estimate (7.12) finitely many times so
that the functions [ f1, 2]({To + s) forl =m —1,m —2,...,0 satisfy

lwg[f1, f2)(mTo)| Lo
< Ce™™T0||wy[ f1, f](im — 13To)|| oo + C(Tp)e 070 sup 1 £2(5)]

{m—1}To<s<mTy
< Ce ™0 ||y [ f1, f2](4m — 13Tp)l| oo
+ C(Ty)e *oTog=*olm=1To sup lle** £2(s)]|

{m—1}To<s<mT

<Ce ™m0 |lwy [ f1, 2)(0)|oe

m—1
+C(Tp) Y e7mtoTo sup le*o* fa(s)ll
=0 {m—1-1}To<s<(m-D)To
<Ce*mTo||yy, folLoo + C(To)e™*0T0  sup [[e?0 f(s)]. (7.14)

0<s<mTy
Furthermore, for any ¢ > T, we can find an integer m > 0 such thatt = mTy + s with
0 < s < Tp. Then, on the one hand, by (7.14) we have

g1 g210nTo)lloo < Cllwg follos + C(To) sup > fa(s)]|. (7.15)

0<s<mTy

On the other hand, (7.13) implies that

lwal f1. £21() oo = llwglfi. fo1(mTo + 5)|| oo
< Ce™5 |wy[f1, £2]mTo) oo + C(To)e ™05 sup  [e* fo(v)],

mTo<t<mTo+s
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which is equivalent to

lwglgr, &2]1()llo = llwglg1, &21(mTo + 5)|| Lo
< Cllwglgr. g2)mTo)lloo + C(To)  sup ™" fo(D)l.  (7.16)

mTo<t<mTy+s

Consequently, applying (7.15) to (7.16) gives the second estimate (7.3). This together with
(7.2) yields the L estimate of f1 and f>, and thus completes the proof of Lemma 7.1. =

7.2. L? estimates

In order to close the L estimate in terms of (7.2) and (7.3), we need to deduce the L?
estimate of €20’ f5(z, y, v). As pointed out in Section 4, the key is to obtain the dissipation
estimate of the macroscopic component of f> as well as f7 through the conservation of
mass. Therefore, we need to resort to the original perturbation /it g := g1 + /It &2
with some abuse of notation,

[g1.82](t. ¥, v) := ™[ f1, fo](t. ¥, V). (7.17)

compared to (7.4) in the previous subsection. Note that the velocity weight is no longer
needed for the L2 estimates. Indeed, the only time-weighted function g satisfies the
IBVP

3:8x + vyOyga — vy Oy, g1 + 2avxV,gx + Lgi — Aoga
= PUT(f, f) + e’ {T(Gy + aGr, f) + T(f,G1 + aGg)},
H
t>0,y¢€(=1,1),v=(vx,vy,v;) € R (7.18)

\/ﬁgk(o’y’v) = f()(y’v) = F(Ovyvv)_ FSl(yvv)v y € (_17 1)7 v E R3v

g;t(t,:l:l,v)|vy§0 = ‘/271“/ Jiga, £1,v)|vyldv, t>0,ve R3.
vy 20

Note that since f_ll Jr3 f(t,y,v)/dvdy = 0 according to (1.22) and (6.2), it is direct
to see that

1
/ [ grt,y,v)/wdvdy =0, Vt=>0.
-1 JR3
Next, as in (5.67) and (5.68), we define

Pogs = (ax + by -v+ci(lv]* —3) /1.
Pog> = (ara +biz-v+can(v]® —3) Vi,
Pogi = (ax1 +ba1-v+ci(v]* —3)u.
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We also use the notation b, = (b1, bﬁ, bi) Obviously,
ar=aza1+axs, byi=byi+bis ca=citn,

1 (7.19)
/ a(t,y)dy =0, Vt=>0.
-1

As in Section 4, we are able to prove the following result in order to capture the
macroscopic dissipation of g;.

Lemma 7.2. Under the assumption (7.1), there exists an instant functional & (t) satis-
fying
1Ein (D] < N1g211* + llwggr oo (7.20)

such that for any t > 0,

d
77 Em(0) + Mllax, b, eall? < ClIP1g21? + Clwggr 7

+Ca@+dgll> + CH{I — Pylgal5 4. (721)

Proof. The proof of (7.21) is similar to that of (5.82) in Section 5. For brevity, we only
show how to derive an L? estimate of a,. By letting ¥ = W(z, y, v) € C*(]0, 00) x
[—1,1] x R?) be a test function and taking the inner product of (7.18) and ¥, one has

d
E(gx, V) — (g2, 0: %) — (vyga, 0y ¥) + (vy, (g2 ¥)(1)) — (vy, (g2 ¥)(=1))
+ o (vyga. 0p, W) + 2a(vxvy g2, W) + (Ao + L)ga. @) = (. @).  (7.22)

Choose
v = \I’al = Uyay¢al(th)(|v|2 - 10)«/_7
where
1
Pa, =anr. 0ya, (£1) =0, / a,(y)dy = 0. (7.23)
-1
It follows that
pa; g2 < Cllaxll. (7.24)

We now estimate the terms in (7.22) one by one. The Cauchy—Schwarz inequality and
(7.24) directly give

(g2 Wa,)| < Cllg2l* + Cllwg g1l oo
a|(vyga. v, Wa, )| < Carflgal?
5| (vxvy 81, Yoy )| < Callgal® + Callwygi |7

I(Lgx, Va,)| < nllaz2l® + Cpllg2ll* + Cpllwgg1 |7 co-

+ Calwgg[Feo.
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And from Lemma 2.2 and the a priori assumption (7.1) we have

(3, o)l = Cle + &+ mllazl® + Cole + Bl wgg2l7oe + lwagil7oo}.

where we have used
€™ T(f. ). Va,)|
1
< nllax||2+Cn/1/W[e*°’F(ﬁ Plvyl(lvl* = 10)* /]* dv dy

1 2
< tlaa P+ Gyl 0 a1 el [ ([ walis o = 107 ) dy

< nllaxl® + Cyllwgn' g2l 2o
< nllaal® + CyE{llwggallzos + llwggillzes}-

For the second term on the left hand side of (7.22), from the inner product {(7.31), /i),
we have

d:ay + Bybi =0
in the weak sense, which yields
(g2 8¢ Wa,)| < Cl1D311* + ClIP1g2]1* + Cllwggi |7 oo

In particular, the third term on the left hand side of (7.22) gives the following main con-
tribution:

—(vyga. 0yWa,) = —(vyPoga. 0y W; o) — (VyP1g1, 0y W)
> 5llaxll? = nllaxll> = CyIP1gA ]l

The boundary term (v,,, (g2 Wa, ) (1)) — (vy, (g2 Wa, )(—1)) vanishes due to the boundary
condition in (7.23). Putting all the above estimates for a, together, we have

d

(g Vay) + Kz |

< ClIby 1 + ClP1g2ll* + Cllwggilzoe + Clar + &)l|lwggallfes.  (7.25)

Next, let
vyvxéi—y%a,l(y)«/_, i=1,
W=y = 0y e, s 0) VI i=3,
V2([2 = 5) E b, () i =2,
where
—ty =bh by (1) =0,
and

d
\IJ:\IJC)L Zvy(|v|2_5)@¢cl(Y)\/_,
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where
_¢£‘/)L = C), ¢C,\ (:bl) =0.
Similar to (5.79) and (5.81), one can show that
d
=7 (83 Pn) + Kbl < Clieall® + ClPiga2ll* + Cllwggilzeo
+ C(@ + 8)llwggallfoo + CHI = Pylgals o (7.26)

and

d
—-(82. Wey) + kllea]” < ClIP1ga> + Cllwggill7os
+C@ +8)|wggallfoe + CHI — Pylgals 4, (7.27)

respectively. Note that the decomposition /it g2 = g1 + /it &2 has also been used to
handle the terms involving (v, ({1 — Py}ga¥)(1)) — (vy, {1 — Py}gr¥)(—1)).

Consequently, by choosing 0 < k1 <K k3 <K 1, from k1 X (7.25) + k5 x (7.26) + (7.27)
we get

O fr (. W,) + ka8 W)+ (83, W)} + o b P
= CIP1g2|* + Cllwggilzee + Cle + &)lwyg2lZoo + CHI — Pylgals 4. (7.28)
Finally, (7.21) follows from (7.28) by defining
Einc(t) = Kk1(ga, Wb, ) +k2(ga, Wn,) + (g2, Ye,). (7.29)
Note that (7.20) is satisfied. Thus the proof of Lemma 7.2 is complete. [

Now, with Lemmas 7.2 and 7.1, we are ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. The global existence of solution to the problem (6.2) follows from
the local existence established in Section 6 and the a priori estimates in the weighted L*°
space by the continuity argument. Therefore, to prove Theorem 1.2, it remains to show
the uniform estimate (1.23) under the a priori assumption (7.1). Indeed, by (7.19), we can
rewrite (7.21) as

%Sim(t) + A|Pog2|l” < ClIP1g2* + Cllwggil7oe + Clar + &)l wgg2ll7 oo
+CHI - Pylgal3 4. (7.30)

where [g1, g2] is defined in (7.17). For an L? estimate of P; g», note that g, satisfies
0:82 + vydy g2 — aVydy, &2 + (—ho + L)ga = (1 — )™ 2 Kg1. (731

and

2O =0 gEL o= V[ VAol d
vy<0
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By taking the inner product of (7.31) and g, with respect to y and v over (—1, 1) x R3,
one has

d
E”gzﬂz + {T = Pylg2l3 4 + SollP1g2l?
< Cyllwggiliee + C(n+ o) |wegal®>.  (7.32)

Let C > 0 be a constant sufficiently large. By taking the sum of C x (7.32) and (7.30) we
have

d -
Z{Cngz(t)nz + &)} + Alg2ll” + AT — Py)gal3
< Clwggilioo + Cla + 8)|wgg2llfeo.  (7.33)

Denote
E(1) = Clg20))? + Em(0).

For C > 0 large enough, from (7.20) there exist constants Cy, C, > 0 such that for any
t>0,

2C 21 + Callwgg1 ()70 = €(1) = 3C 18201 = Cilwgg1 (D7 . (7.34)

Then, from (7.33) and (7.34), it follows that

d

24 -
G EO+ ZEO AT = Plgals 1 = Cllwgg o + C@ + Dl wgg2lfo.

Hence

T2y >
EW)+A [ e ¢ I — Pyiga(s)l5 4 ds
0
t
< 8(0)6_%z + C/ e_%(t_s)angl ()7 oo ds
0

T 22
L Cla+ 8 / D w00 (5) o ds
0

<&(0)+C sup [[wgg1(s)|7eo + Cla + &) sup [lwgga(s)|7ee  (7.35)
0<s<t 0o<s<t

for any ¢t > 0. Therefore, by using (7.34) and (7.17), it follows from (7.35) that

sup %[ f2(s)|| < C sup €% |lwg f1(s) | oo

0<s<t 0<s<t

+Cla+8) sup e lwg f2(5)[[Loe.

0<s<t

By putting the above estimate back to (7.3) and using the smallness of « and &, one has

sup e’ |wy fo(5) Lo < Cllwg follLoe + C sup e**|wy fi(s)[Loe.  (7.36)

0<s<t 0<s<t
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Moreover, by plugging (7.36) into (7.2) and using the smallness of & and ¢ as well as
(7.36), one obtains

sup e*%[lwg [ 1, £](5)l|loe < Cllwg follzse,

0<s<t

which gives (1.23). Since ||wg fo|| oo is sufficiently small, the a priori assumption (7.1) is
closed.

Finally, the nonnegativity of the global solution constructed above can be proved sim-
ilarly to [15], so that the proof of Theorem 1.2 is complete. ]

8. Appendix

Recall the backward time cycle starting at (¢g, yo, Vo) = (¢, ¥, v) in (5.18), the boundary
probability measure do; on V; in (5.19) and the product measure d 3 (s) over ]_[f;% Vi
in (5.24). The following lemma gives an estimate on the measure of the phase space
]_[f;} V; when there are k bounces.

Lemma 8.1. For any £ > 0 and any Ty > 0, there exists an integer ko = ko (&, Ty) such
that for any integer k > ko and any 1 > 1o > 0 and for all (t,y,v) € [0, Tg] x [-1,1] x R3,

k—1
no 2 _
[k_l Ly wnvi_n>0y | [ €2 7 doy <& 8.1
[i=1 Vi I=1

In particular, for Ty > 0 large enough, there exist constants C1 and C, > 0 independent

of Ty such that for k = C, TOS/ * with a suitable choice of C1 such that k is an integer and
forall (t,y,v) € [0,00) x [—1, 1] x R3, one has

5/
1 CoTy
/]_[k 1{tk(ty VU] 5eees Vg —1)>0} He 2 il dUZ =< {2} . (8.2)

Furthermore, for any q > 0 in the weight function wy (v), there exist constants Cz,C4 > 0
independent of k and Ty such that

/l:[k Ly, ;1(’/+1<0<t1}/ dX(s)ds < Cs, (8.3)

1 > [ d¥;(s)ds < C. (8.4)
Ak l’vj; {t1+1 0} l() 4.

Proof. We only give the proof for (8.1) and (8.3), since (8.2) and (8.4) can be proved
similarly by using Lemma 23 in [25, p. 781]. By definition (5.19), we rewrite

2 1 2 _Ivy?
enollel do-l = —v¢ 2 ‘le‘ e b3 |Uly|dvl
2
1 \v1y|2+|v, 2
= —e2(”° Dlvzxl? dvj,e” lviy| dvgy dvp.

2
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On the other hand, if we choose 79 so that 0 < 1y < ﬁ, then we have
k—1
l_[(«/Zn)—I/ o3 Mmo=Dlvix|? dvr, = (1 _UO)_(k_l)/z <el/2,
R
=1

Thus for 0 < 5o < lel, one gets

/]._[kl'V l{tk(tyvvl ..... Vi—1)>0} He 2 vl doy
=1 "1

where

_ 2 _ Iv,yl +\U12|
Vi ={(jy,vj;) e R*|vj-n(y;) >0}, o7 =e" [viy| dvgy dvy;.

Next performing similar calculations to the proof of (194) in [25, Lemma 23, p. 781], we
can obtain

- _1 2_
/k_l Yy >0y do1 < € 12,
[Tr=1 Vi

which together with (8.5) implies that (8.1) is valid.
We now turn to the proof of (8.3). Recall the definition (5.24). We have

s

k—1

Zl{tl+1<0<tl}/ dE[(S) ds

J/ 1=1

" by

_ [l e ~
Zl{tl+l<0<tl}/ 1_[ dU e /a A€(T,V, (T))drw(vl) dO]
J1=1 j=I+1
-1 -~ .
y W) [, AV dr

— doj ds,
j=1 w(Vcl (tj+1))

which, using direct calculations, can be bounded by

/k_l k<0/ 1_[ doje” 2 % (v;) doy

j=1Y j=l+1
-1 () o
< [[ =———e > %+ dojds
o1 BV (t41)
-1

171 v
< c/ / e~ 2G5 (v)) doy [] dojds <c.
Hi‘:l v; Jo

j=1
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Here we have used, for 0 < no < 1,

~ .12
/ Wo(vy) doy < o0, / eolvjxI7/4 do; < o0,
vV, 'Vj

and
D) we(Vd ) (Ve (1)
BV (tj41) wy (v 172 (v;)
V@GP PG
(e

Croa?(ty ()v;,)2+nglv, 1%
)

< 201+ Vg (t41) — v e
2 Molvxl?
<29(1 + 40{2)qu"0“ e 4
by Peetre’s inequality and the fact that |t (v )vjy | < 2. Thus the proof of the lemma is
complete. ]

Remark 8.1. The time interval [0, Tp] in Lemma 8.1 can be replaced by any interval [s, ]
of length t — s = Tj. In addition, since

/ wi(vy)do; < o0, ¢q>3/2,
Vi

and A€, A and 47 have the same lower bound.vo /2, the statement in Lemma 8.1 is also
valid if X;(s) is replaced by either ¥;(s) or E;’)(s) (i=12).
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