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Abstract. In this paper, we obtain sharp estimates for the rate of propagation of the Fisher-KPP
equation with nonlocal diffusion and free boundaries. The nonlocal diffusion operator is given by
Jr J(x — y)u(r, y) dy — u(z, x), and our estimates hold for some typical classes of kernel func-
tions J(x). For example, if for |x| 3> 1 the kernel function satisfies J(x) ~ |x|~Y with y > 1, then
it follows from [Y. Du et al., J. Math. Pures Appl. 154, 30-66 (2021)] that there is a finite spreading
speed when y > 2, namely the free boundary x = h(t) satisfies lim;— o 2(t)/t = c¢ for some
uniquely determined positive constant c¢o depending on J, and when y € (1, 2], lim;— (t)/?
= 00; the estimates in the current paper imply that, for z > 1,

1 when y > 3, flnt h 5
n when y = 2,
cot —h(t) ~ 3 Int h =3, h(t) ~
0 (1) r;_ when y () {tl/(yl) wheny € (1,2).
t>77  wheny € (2,3),

Our approach is based on subtle integral estimates and constructions of upper and lower solutions,
which rely crucially on guessing correctly the order of growth of the term to be estimated. The
techniques developed here lay the groundwork for extensions to more general situations.
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1. Introduction

In this paper we determine the spreading rate for the Fisher-KPP equation with non-
local diffusion and free boundaries considered in [11, 17]. The problem is a “nonlocal
diffusion” version of the following free boundary problem with “local diffusion”:

Uy —duxy = f(u), t>0,g@0)<x <h(),
u(t,g(t)) =u(, h()) =0, t >0, (L
g'(t) = —pux(t, g(1)). (1) = —pux(t,h(t)), >0,

g(0) = go, h(0) = ho, u(0, x) = uo(x), go < x < ho,

where f isa C! function satisfying £(0) =0, u > 0 and go < h¢ are constants, and u is
a C? function which is positive in (go, &) and vanishes at x = go and x = hy. For Fisher-
KPP type of f(u), (1.1) was first studied in [18], as a model for the spreading of a new
or invasive species with population density u(¢, x), whose population range (g(t), i(t))
expands through its boundaries x = g(¢) and x = h(¢) according to the Stefan conditions
g (t) = —pux(t,g(t)), h'(t) = —pux(t, h(t)). A deduction of these conditions based on
some ecological assumptions can be found in [9].

By [18], problem (1.1) admits a unique solution (u(¢, x), g(¢), h(t)) defined for all
t > 0, and its long-time dynamical behaviour is characterised by a “spreading-vanishing
dichotomy”: Either (g(¢), h(¢)) is contained in a bounded subset of R for all # > 0 and
u(t, x) — 0 uniformly as t — oo (called the vanishing case), or (g(¢),h(t)) expands to R
and u(z, x) converges to the unique positive steady state of the ODE v’ = f(v) locally
uniformly in x € R as t — oo (the spreading case). Moreover, when spreading occurs,

tim 5@ _ 2O _

t—00 t t—00

k0>0,

and ko is uniquely determined by a semi-wave problem associated to (1.1).
Problem (1.1) is closely related to the corresponding Cauchy problem

{U, —dUgx = f(U), t>0, xR, 12

U0, x) = Up(x), x € R,

where

Uo(x) = uo(x), x € [go,hol,
0, x € R\ [go, hol.
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Indeed, it follows from [16] that the unique solution (u, g, &) of (1.1) and the unique
solution U of (1.2) are related in the following way: For any fixed T > 0, as u — oo,
(g(t),h(t)) - R and u(z, x) — U(¢, x) locally uniformly in (¢, x) € (0, T] x R. Thus
(1.2) may be viewed as the limiting problem of (1.1) (as u — 00).

Problem (1.2) with U, a nonnegative function having nonempty compact support
has long been used to describe the spreading of a new or invasive species; see, for
example, classical works of Fisher [25], Kolmogorov—Petrovskii—Piskunov (KPP) [33]
and Aronson—Weinberger [2].

In both (1.1) and (1.2), the dispersal of the species is described by the diffusion term
duyy, widely called a “local diffusion” operator, which is obtained from the assumption
that individuals of the species move in space according to the rule of Brownian motion.
The nonlocal diffusion version of (1.1) considered in [11] has the following form:!

Uy = d/ J(x —y)u(t,y)dy —du(t,x) + f(u), t>0, x €(g(t),h()),
R

u(t,g(t)) =u(t, h()) =0, t >0,
h(@) poo
() = /Lf / J(x — y)u(t, x)dy dx, t >0, (1.3)
g@) Jh()

h(t) rg()
(1) = —p / / Jo = yul.x)dydx, 150,
gt) J—oo

u(0,x) = uo(x), h(0) = —g(0) = ho. x € [~ho. hol.

where x = g(¢) and x = h(t) are the moving boundaries to be determined together with
u(t, x), which is always assumed to be identically O for x € R \ [g(¢), n(?)];> d and j are
positive constants. The initial function u¢(x) satisfies

ug € C([=ho. hol). uo(=ho) =uo(ho) =0, ug(x) >0 in (—ho.ho), (1.4)
with [—hg, ho] representing the initial population range of the species. The basic assump-
tions on the kernel function J : R — R are
I JeCR)NL®R), J >0, J(0) >0, [pJ(x)dx =1,J iseven.

The nonlocal free boundary problem (1.3) may be viewed as describing the spreading

of a new or invasive species with population density u(¢, x), whose population range
[g(2), h(t)] expands according to the free boundary conditions

h(@) poo
h) = / / J(x —y)u(t,x)dy dx,
g(t) Jh()

h(t) g
g(t)——M/() / J(x — y)u(t, x)dy dx,
g

that is, the expanding rate of the range [g(¢), &(¢)] is proportional to the outward flux of

IThe case f(u) = 0 was considered in [13], where the long-time dynamics are completely
different from the Fisher-KPP case in [11].

h
2Therefore [p J(x — y)u(t, y)dy = fg((tt)) J(x — y)u(t, y)dy.
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the population across the boundary of the range (see [11] for further explanations and
justification).

One advantage of the nonlocal problem (1.3) over the local problem (1.1) is that the
nonlocal diffusion term

d[ J(x —y)u(t,y)dy —du(t, x)
R

in (1.3) is capable of including spatial dispersal strategies of the species beyond random
diffusion modelled by the term duy, in (1.1). Here J(x — y) may be interpreted as the
probability that an individual of the species moves from x to y in a time unit.

If f is a Fisher-KPP function, namely it satisfies

o [ ECH f>0= 1O =fDin©.1). ') > 0> £'(D),
f(u)/u is nonincreasing in u > 0,

then the long-time dynamical behaviour of (1.3), similar to that of (1.1), is determined by

a “spreading-vanishing dichotomy” (see [11, Theorem 1.2]): As t — oo, either

(i) Spreading: lim;_o(g(2),h(¢)) = R and lim;_, o u(¢, x) = 1 locally uniformly in R,
or

(i1) Vanishing: lim;—o(g(t), h(t)) = (gc0, hso) is a finite interval and lim;— o0 u(Z, Xx)
= 0 uniformly for x € [g(¢), h(?)].

Criteria for spreading and vanishing are also obtained in [11, Theorem 1.3]. In particular,

if the size 2k of the initial population range is larger than a certain critical number, then

spreading always happens.

1.1. Threshold condition, spreading speed, and accelerated spreading

When spreading happens, the question of spreading speed was considered in [17]. In
sharp contrast to the corresponding local diffusion problem (1.1), it was shown in [17]
that (1.3) may spread superlinearly in time (a phenomenon known as accelerated spread-
ing), depending on whether the following threshold condition is satisfied by the kernel
function J:

A [o° xJ(x)dx < oo.
More precisely, we have

Theorem A ([17]). Suppose that (J) and (f) are satisfied, and spreading happens to the
unique solution (u, g, h) of (1.3). Then

A g {Co € (0.00) if (J1) holds.
lim — = — lim 2<% =
o0 if (J1) does not hold.

t—oo f t—>oo

As usual, when (J1) holds, we call ¢g the spreading speed of (1.3), which is deter-
mined by the semi-wave solutions to (1.3). These are pairs (c, ¢) € (0, 00) x C!((—00,0])
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determined by the following two equations:

0
d/ J(x = »)p(n)dy —dp(x) + c¢'(x) + f(#(x)) =0,  —oo<x <0,

$(—o0) =1, ¢(0) =0,
(1.5)
and

0 o0
= J(x — dydx. 1.6
¢ u/_w/O (x — »)p(x) dy da (1.6)

If (c, ¢) solves (1.5), then we call ¢ a semi-wave with speed c, since the function
v(t, x) := ¢(x — ct) satisfies

ct
Uy =d/ J(x —y)v(t,y)dy —dv(t,x) + f(v(t,x)), t>0,x <ct,
v(t,—o0) =1, w(t,ct) =0, t > 0.

However, only the semi-wave satisfying (1.6) meets the free boundary condition along
the moving front x = c¢, and hence is useful for determining the long-time dynamical
behaviour of (1.3).

The spreading speed ¢y is given by the following result:

Theorem B ([17]). Suppose that (J) and (f) are satisfied. Then (1.5)—(1.6) has a solution
pair (¢, ) = (co, p°) € (0, 00) x C((—00, 0]) with ¢°°(x) nonincreasing in x if and
only if (J1) holds. Moreover, when (J1) holds, there exists a unique such solution pair,
and (¢0) (x) < 0in (—00,0].

It was also proved in [17, Theorem 5.3] that as & — oo, the limiting problem of (1.3)
is the following nonlocal version of (1.2):

u,:d/ J(x —y)u(t,y)dy —du(t,x) + f(u), t>0,xeR,
R

u(0,x) = uo(x), x €R.

(1.7)

Problem (1.7) and its many variations have been extensively studied in the literature; see,
for example, [1,3-6,12,14,15,23,24,26,31,32,35,38,40,43] and the references therein.
In particular, if (J) and (f) are satisfied, and if the nonnegative initial function ¢ has non-
empty compact support, then the basic long-time dynamical behaviour of (1.7) is given
by

tli)n;o u(t,x) =1 locally uniformly for x € R.

Similar to (1.2), the nonlocal Cauchy problem (1.7) does not give a finite population range
when ¢ > 0. To understand the spreading behaviour of (1.7), one examines the level set

E)(t):={xeR:u(t,x) =1} withfixed A € (0, 1),
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by considering the large time behaviour of
x:{ (t):=supE,(t) and x; () =inf E;(¢).
Ast — 00, |let (t)| may go to oo linearly in ¢ or superlinearly in ¢, depending on whether
the following threshold condition is satisfied by the kernel function, apart from (J):
(J2) There exists A > 0 such that [ J(x)e** dx < oco.
Yagisita [43] has proved the following result on traveling wave solutions to (1.7):
Theorem C ([43]). Suppose that f satisfies (f) and J satisfies (J). If additionally J

satisfies (J2), then there is a constant c« > 0 such that (1.7) has a traveling wave solution
with speed c if and only if ¢ > cy.

Condition (J2) is often called a “thin tail” condition for J. When f satisfies (f), and
J satisfies (J) and (J2), it is well known (see, for example, [23,41]) that

+
x5 (f
Ol
t—00 t
with ¢, given by Theorem C. On the other hand, if (f) and (J) hold but (J2) is not satisfied,

then it follows from [41, Theorem 6.4] that |xAjE ()| grows faster than any linear function
of t ast — o0, namely, accelerated spreading happens:

Cx, (1.8)

+
xE(t
limuzoo

t—>00 t
See also [1,6,7,10,22,24,26,30,39,42] and references therein for further progress on
accelerated spreading for (1.7) and related problems.
It is easily seen that (J2) implies (J1), but the reverse is not true; for example, J(x) =
C(1 + x?)7° with o > 1 satisfies (J1) (for some suitable C > 0) but not (J2).
The relationship between co = co(u) obtained in Theorem B and ¢ in Theorem C is
given in the following result (see [17, Theorems 5.1 and 5.2]):

Theorem D ([17]). Suppose that (J), (J1) and (f) hold. Then co(w) increases to cx as
L — 00, where we define cx = 0o when (J2) does not hold.

For the local diffusion problem (1.1), sharp estimate for the spreading profile has been
obtained in [19]: When spreading happens,

lim [h(t) — kot] = Cq, lim [g(¢) + kot] = C3
—>00 t—>00

for some C;, C; € R depending on uy. Moreover, the solution u(z, x) exhibits the corre-
sponding semi-wave profile as ¢t — oo. This is strikingly different from the situation of
(1.2), where a well known logarithmic delay happens [8]:

m(t) ;= sup{x e R:U(t,x) = 1/2}

- B 3d N
=2/ f'(0)dt —2W1HZ+CO+O(1) ast — 0o
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for some Cy € R depending on the initial function Uy. We refer to [27-29,34,36,37] for
further advances in that direction.

In this paper, we aim to obtain sharp estimates for (1.3) in a similar spirit. It turns
out that when (J1) holds and so a finite spreading speed c¢ exists for (1.3), the functions
h(t) — cot and g(t) + cot need not be bounded as t — oco. For some rather general classes
of J, we will find the exact rate of growth for /(¢) — cot and g(¢) + cot when (J1) holds,
and determine the exact rate of growth of /(¢) and g(¢) when (J1) does not hold.

1.2. Description of the main results
We now describe our main results precisely. For o > 1, we introduce the condition
%) [ x*1J(x)dx < oo.

Let us note that (J?) is equivalent to (J1), and if (J2) holds, then (J%) is satisfied for all
o> 1.

Theorem 1.1. In Theorem A, suppose additionally (J*) holds for some a > 3, and f'(v)
is locally Lipschitz in [0, 00). Then there exists C > 0 such that for t > 1,

|h(t) — cot| +[g(t) + cot| = C,
PO(x—cot +C)+o(1) Su(t,x) < ¢d(x—cot —C)+o0(1) for x € [0, h(t)],
¢ (—x+cot +C)+o0(1) <u(t,x) < ¢ (—x+cot —C)+o(l) forx € [g(1).0],

where (co, 9°°) is the unique semi-wave pair in Theorem B, and o(1) — 0 uniformly as
t — oo.

Further estimates on g(¢) and /(¢) can be obtained for more specific classes of kernel
functions. We will write

n@) ~ &) if Ci&@) < n(r) < C5Q) (1.9)

for some positive constants C; < C, and all ¢ in the concerned range.
Our next two theorems are about kernel functions satisfying, for some y > 0,

J7) J(x) ~ |x|7 for |x| > 1.

Note that for kernel functions satisfying (j V), condition (J) is satisfied only if y > 1,
and (J1) is satisfied only if y > 2. Thus accelerated spreading can happen exactly when
y € (1, 2]. We have the following result on the exact growth rate of & (¢) and g(¢) in this
case:

Theorem 1.2. In Theorem A, if additionally the kernel function satisfies (jy) for some
y € (1,2], then fort > 1,

tint ify=2,
—g(),h(t) ~
g(t), h(r) {tl/(y—l) ifye(1,2).

We recall that the meaning of “~" is given in (1.9).
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For kernel functions satisfying (j V), clearly (J¢) holds if 0 < o < y. Therefore when
y > 3 the conclusions in Theorem 1.1 hold. The following theorem is concerned with the
remaining case y € (2, 3], which indicates that the result in Theorem 1.1 is sharp.

Theorem 1.3. In Theorem A, suppose additionally the kernel function satisfies (jy) for
some y € (2,3], f'(v) is locally Lipschitz in [0, 00), and

[f(v)/v] <0 forv>0. (1.10)
Then fort > 1,

Int ify=3,

cot + g([),C()l _h(l) ~ {13—7 ifye (2 3)

Note that (f) implies [ f(v)/v]’ < 0 for v > 0, and (1.10) is satisfied, for example, by
f(v) =av—>bv? witha,b > 0and p > 1.

The proofs of Theorems 1.1 and 1.3 rely on some of the following estimates on the
semi-wave solutions of (1.5), which are of independent interest.

Theorem 1.4. Suppose that f satisfies (f) and the kernel function satisfies (J), and ¢ (x)
is a monotone solution of (1.5) for some ¢ > 0. Then the following conclusions hold:

@A) If (J*) holds for some a > 1, then

-1
/ [ — $(0)]|x|* 2 dx < oo,

—00

which implies, by the monotonicity of ¢ (x),
0<1—¢(x)<Clx|'"™® forsomeC > 0andall x <O0.

(i) If (J%) does not hold for some a > 1, then

-1
| g ar = .
—0o0

The conditions on f and ¢ in Theorem 1.4 can be considerably relaxed; see Section 2
for details.

Remark 1.5. This paper seems the first to establish estimates of the type in Theorems 1.1
and 1.3 for nonlocal diffusion problems, with or without free boundary.

Remark 1.6. The proofs of Theorems 1.1-1.3 are based on subtle constructions of upper
and lower solutions. These constructions rely on first guessing correctly the order of
growth of the term to be estimated, which is perhaps the most difficult part of this research.
The techniques developed here lay the groundwork for extensions to more general situa-
tions.
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1.3. Organisation of the paper

The rest of the paper is organised as follows. In Section 2, we prove Theorem 1.4, where
subtle analysis is used to find out the relationship between the behaviour of the semi-
wave solution and that of the kernel function. Theorem 1.1 is proved in Section 3, through
careful constructions of upper and lower solutions, based on the estimate obtained in Sec-
tion 2. Section 4 is devoted to the proof of Theorem 1.3, where we completely determine
the growth rate of cot — () when J(x) ~ |x|~ with y in the range (2, 3]; note that the
case y > 3 is already covered by the more general Theorem 1.1. In Section 5, we prove
Theorem 1.2 by giving the exact growth rate of &(¢) when J(x) ~ |x|™Y with y € (1,2].

2. Proof of Theorem 1.4

The purpose of this section is to prove the following two theorems, which imply The-
orem |.4. For possible applications elsewhere, we prove the results under much less
restrictions on ¢ and f. We assume that f is C! and f(1) = 0 > f7(1), and ¢ satis-
fies, for some ¢ > 0,

0
d/ J(x=y)p(y)dy —dg(x) +c¢'(x) + f(¢(x)) = 0. ¢(x) €[0.1],

—00 < x <0, 2.D

p(—00) =1, ¢'(x) <0forx < —1.

Theorem 2.1. Suppose that the kernel function satisfies (J) and (J¢) for some o > 1, and
fis Clwith f(1) =0 > f'(1). If ¢(x) satisfies (2.1) for some ¢ > 0, then

f_l[l — ¢ (x)]|x]* 2 dx < oo,

o0

and therefore, by the monotonicity of ¢(x) near —oo,
0<1—¢(x)<Clx|'"™™ forsomeC > 0andall x < —1.
The next result shows that Theorem 2.1 is sharp.

Theorem 2.2. Suppose that f is C' with (1) = 0 > f'(1) and the kernel function
satisfies (J). If (J%) is not satisfied for some a > 1, and ¢(x) satisfies (2.1) for some
c > 0, then

-1
/_ [1—¢(x)]|x|*dx = oo. (2.2)

(e ]

The following three lemmas play a crucial role in the proof of Theorem 2.1.

Lemma 2.3. Suppose J(x) satisfies (J) and (J*) for some o > 2, and ¢ € L' ((—00,0])
is nonnegative and continuous in (—oo, 0. If ¥ is nondecreasing near —oo, and satisfies

0
/ Ix|P 1y (x)dx < 0o for some B > 1, (2.3)
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then for any o € (0, min{B, o — 1}], there exists C > 0 such that

0 0
I =1y = /_M |x|°[/ J(x—y)w(y)dy—l/f(x):| dx € [-C,C] forall M > 0.

—00

Proof. For fixed M > 0 we have
0 0 M x
/ / I° T (e — y)¥(y) dy dx =/ / X TGV (y —x)dy dx
—M J—00 0 —0o0
M 0 M x
=f0 /_oox J(y>w(y—x)dydx+/0 /0 X TO)Y (v — x) dy dx
0 M M M
- / / I (y - x)dxdy + / / x® J)W(y — x) dx dy
—o0 JO 0 y

0 M-y M M-y
- / / (x + 0)° TP (—x) dx dy + / / (x + )° TP (—x) dx dy.
—ooJ—y o Jo

and

0 M
/ v d = /R /0 X° ()9 (—x) dx dy.

Therefore we can write I = Z;zl I; with
0 M-y
i [ ) =W axdy
—ooJ—y
M M-y
[ e = uewen aray,
0 M-y 0 -y
I :=/_ /M x°J(y)¥(—x)dxdy —f_ /0 x°J(y)¥(—x)dxdy,

M M © oM
b= [ [ xsowenaray - [ [T smpen i,
0 M-y M 0
To estimate /; we will make use of some elementary inequalities. If 5,7 > 0 and
o € (0, 1], then it is easily checked that
(s +1)° —s% <1, (2.4)
If o = n + 6 with n > 1 an integer, and 6 € (0, 1], then by the mean value theorem,

5+ —s" =0+t <ots+1) =o0ts7 +ot[(s +1)° =57
n k-1 n—1
< Y [[Te = ns™ + [TTe = D]’ +1% - 5]
k=1 j=0 Jj=0

< i[lﬁ(g —j)]tksf’—k n [ﬁ(a _ j)]tn+0
k=1 j=0 =0

n
= Z cxt®s"* 4+ cpint®,
k=1

where ¢ € [0, 1] and ¢y = cx(0) > O0fork € {1,...,n + 1}.
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Applying this inequality to (x + y)° — x° with x + y > 0 and x > 0, we obtain, for
the case 0 > 1,

n
[(x+ )7 =x7 =D erlylFx"F 4 cagalyl”
k=1

witho —n =6 € (0,1] and n > 1 an integer, ¢y = cx(0) > O0fork e {1,...,n + 1}.
Therefore, in the case o > 1,

0 M-y _n
= / / [Z celyFxok +Cn+1|y|"]J(y)1//(—x) dxdy
Ty Tk
M M-y _n . .
+/0 fo [Z crly X +Cn+1|Y|U]J(y)w(—x)dxdy
k=1
n 00 0o
k=1 0 0

o0 o0

20 / ¥(—x)dx / V¥ I(y)dy
0 0

=: Cl.

Since 1 <k <n <o <min{f,« — 1}, by the assumptions on J and ¥ we see that C; is
a finite number.
If o € (0, 1], then

0 M-y M M-y
e / / Y17 T ()Y (—x) dx dy + /0 /0 170 (—x) dx dy
s

52/0 w(—x)dx/(; y?J(y)dy =: C; < o0.

Since ¥ (x) > 0 is continuous in x < 0 and nondecreasing near —oo, from (2.3) we
easily deduce

Y(—x) < My/x° for some M; > 0 and all x > 0.

Due to (J%) (o > 2), we have

o0
/0 yJ(y)dy < oo.

Therefore
0 M-y 0 -y
i [ [ muoacay+ [ [ mnsoavey
—o0 J M —00 JO

o0
— M, f I3 dy = C, < oo,
0



Y. Du, W. Ni 12

and
M [e%e)
= [ Mo+ [ s
0 M
o0
< M1/ yJ(y)dy =:C3 < 0.
0
We thus have
I|<Ci+Ci+C,+C3=:C <00 forall M > 0.
The proof is complete. ]

Lemma 2.4. Suppose that J(x) satisfies (J) and (J*) for some a € (1,2). Let Y be non-
negative, continuous in (—oo, 0], and nondecreasing near —oo. Then there exists C > 0
such that
0 0
S =Su :=/ |x|°‘_1[/ J(x—y)w(y)dy—lp(x)i| dx <C forall M > 0.
-M —o00

Proof. As in the proof of Lemma 2.3, we deduce for fixed M > 0 and o > —1,

0 0
/ f %I J(x — )Y () dy dx
—M J—o0
0 M-y M M-y
- / [ (x4 )7 TO)Y (—x) dr dy + / / (x + 9)° I (—x) dx dy.
—ooJ—y o Jo

and

0 M
/ v dx = /R /0 %1% J(7) Y (=) dx dy.

Hence S = Y7_, I; with
o= io [ A:_y[(x )7 — X7 ()W (—x) dx dy
+ ) / "l 40— W ) axay,
B [ (; /MM_y Ity - [ (; / Iy dxdy,
I := —fOM fM]: x?J ()Y (-x)dxdy — /Moo /OM xJ ()Y (—x) dx dy.

Take 0 = o — 2. It is clear that i3 < 0. For il, since 0 < 0,

(x+y)° —x? <0 whenx >0 andy > 0,
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and hence, by (J¥) ando + 1 =a —1 € (0, 1),

5 0 M-y
i< f / [ + )7 — XT3 (—x) dx dy
s

IA

0 M-y
11100 / / [+ )° — x°1J(y) dx dy
s

o+1 o+1

0
= Wleo [™ ot — (v — )1 4 ()77 )y
o+1J
0 o0
W e /_ () Iy dy = 1l fo Y () dy =: € < o0,

Moreover, by (J¢),0 + 1 =a —1 € (0,1) and (2.4),

B 0 M-y 0 M-y
i, < [_ fM X ()Y (=x)dx dy < [ loe /_ /M X® J(y) dx dy

Wl [ o1 _ o
= [ =y M) gy

_ Wl

oo
o+1 .
J(y)dy =: C; < 0.
= otl /0 y (y)dy > <00
Therefore, S < C; + C, := C < oo for all M > 0. The proof is complete. ]

Let ¢(x) be a solution of (2.1) with some ¢ > 0, and define

Y(x):=1-9¢x). [f):=—f1-u).

Then v satisfies

0 [ele]
0= d/_ TG = () dy — dy () +d/0 J(x—y) dy

+ ey’ (x) + f(Y(x)) forx <0,
Y(—00) =0, ¢¥'(x)>0 forx <« —1.

(2.5)

Since f/(0) = f’(1) < 0, there exist ¢ > 0 sufficiently small and some b > 0 such that
f(u) < —bu foru €[0,¢].
As Y (—o0) = 0and ¥(x) > 0 for x < 0, we thus have 0 < ¥ (x) < ¢ for x <« —1, and so
FW(x) < —by(x) forx < —1. (2.6)

Lemma 2.5. Suppose (J) is satisfied, and f is C' with f(1) = 0> f'(1). If (J¥) holds
for some a > 2, then the above defined r satisfies

0
/ ¥(x)dx < oo.
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Proof. A simple calculation gives

0 0o 0
/ J(Z—w)l//(w)dw—w(z)—i—/ J(z—w)dw:—/ J(z—w)p(w)dw + ¢(z).
o0 0 e8]

Integrating the equation satisfied by i over the interval (x, y) with x < y < —1, and
making use of (2.6), we obtain

oo

¥y 0
c(lp(y)—Ip(x))—i-d/ [/_ J(z—w)l,/f(w)dw—lﬂ(z)—i-/o J(Z—w)dw:| dz
y o y
—— [ Fwenazs [ vere

We extend ¢ toa C'! function ¢ over R satisfying ¢ (x) = 0 for x > 1 and |$(x)| <2/ ¢ ]lco
for x € [0, 1]. Then, due to (J¥), we have

y 0
/(/_ J(z—w)¢(w)dw—¢(z))dz

= /:(/R J(z—w)q%(w)dw—qi(z)) dz—/xy/OIJ(z—w)qS(w)dwdz

y ~ ~
/ /R J@)@G +w) - $() dwdz| + 2]$oo

= /xy/];gJ(w)/olwqg’(z+sw)dsdwdz

1
= | [ wie | [<£<y+sw>—q3(x+sw)1dsdw'+2||¢||oo
R 0

IA

+ 2[¢lleo

IA

2||43||00/R PITG) dy + 2l plles = M < o0,

Thus, forx < y « —1,
y
b [ WE =) =y @) + M = el +
X
which implies ffoo Y(z)dz < oo. ]
Proof of Theorem 2.1. Case 1: o > 2. We want to show
0
/ ¥ (x)|x]* 2 dx < oo.
—00

By Lemma 2.5 we have
0
/ Y(x)dx < oo.
—00

So there is nothing to prove if « = 2, and we only need to consider the case o > 2.
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Suppose o > 2 and

0
/ [x]” "'y (x)dx < oo forsome y > 1. 2.7

—00

Then by Lemma 2.3, for any f satisfying 0 < 8 < min{y, o — 1},

0 0
/_ [ [_ J(x— ¥ () dy — vf(x)}|x|ﬁ dx < C 2.8)

M

for some C > 0 and all M > 0. Moreover, if we fix My > 1 such that (2.6) holds for
x < —My, then for M > M, and B as above, we have

_MO —MO -
b/_M w(x>|x|ﬂdxs—/_M Fpolxl? dx

—My YA 0
= o/_M Iﬁ/(X)|x|ﬁ dx—l—d/_M |:/_oo J(x_y)l/f(J’)dy_W(x)}Mlﬂ dox

_MO oo
-i-d/_M /0 Ix|8J(x — y)dy dx.
By (2.8),
Mo
d f [ [ J(x— )Y () dy - w<x>]|x|ﬁdx

< dC—d/_M [/_ J(x—y)w(y)dy—W(X)}IXIﬁ dx
=:Cy <oo forall M > M,.

Moreover, if we assume additionally that 8 < o — 2, then we have

—My [ele)
[ / P J(x — y) dy dx
—-M 0

M proo M roo
5/ / xﬁJ(x—i-y)dydx:/ / xﬂJ(y)dydx
X

/ / BJ(y)dydx—’B_'_ /ooyﬂHJ(J’)dy =:1C; < 0.

Therefore, for € (0, min{y,a —2}] and M > M,,

—My —My
b/ v(x)|x|Bdx < c/ v () |x|Pdx + C1 +dCy
-M -M

M

M
< c/ Py’ (—x)dx + C; < c[ x7y'(—x)dx + C;3
1 1

M
=cy(=D+ c/ yx¥ 1y (—x)dx + C3 =: C4 < 0o by (2.7).
1
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It follows that o
/ U (x)]x|? dx < oo. (2.9)
—00

Thus we have proved that (2.7) implies (2.9) for any § € (0, min {y, @ — 2}].

If we write « —2 = n + 6 with n > 0 an integer and 6 € (0, 1], then by the above
conclusion and an induction argument we see that (2.9) holds with 8 = n. Thus (2.7)
holds for y = n 4 1. So applying the above conclusion once more we see that (2.9) holds
for every 8 € (0,min{n + 1, — 2}] = (0, o« — 2], as desired.

Case 2: o € (1,2). Let B = o —2. Asin Case 1, for M > My,
—My
b vl o
-M
—My —My 0
o Cwentaced [ [ st puiar - v as
-M -M —00
—MO o0
+d/ / x| J(x —y)dydx
- Jo
—My _ —My (o]
50/ v (x)|x|? dx+C1+d/ / Ix|2J(x — y)dy dx,
-M -M Jo
where C; > 0 is obtained by making use of Lemma 2.4. By (J*) and 8 + 1 =« — 1,

—My 0o 0o [oe]
/ / |x|ﬂJ(x—y)dydx§/ / xﬁ./(y)dydx
—-M 0 0 X
1 o0

= / Yl (y)dy =: C, < 0.
a—1 0

Due to 8 < 0, we have

—Mo M
[ @it a= [yt a
-M Mo
M
= Y (~MoM{ —y(~M)MP + B / ()P dx
Mo
<Y (—Mo)ME =: C5 < 0.
Hence
_MO _ ~ ~
b/ v (x)|x|fdx < C; + Cod 4 ¢C3 < 0
-M
for all M > My, which implies
-1
[ oo <
—0o0

The proof is complete. ]
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Proof of Theorem 2.2. We have
lg(¥(x))| < Ly(x) forsome L > 0andall x <O.
Now for M > My >» land B = o — 2,

—My —My
L/_M w(x)|x|ﬂdxz—/_M gy ()x]? dx
- My
_ B _ _ B
—c/_M ¥ (lx] dx+d/ [[ J(x = () dy vf<x)}|x| dx
Mo
+d/_M /0 Ix|2J(x — y)dy dx

—My —My [ele)
z—d/ V(x)|x|? dx+d/ / Ix|2J(x — y)dy dx
-M - Jo

Therefore, with L:=L+d , we have

—My
Z/_M 1p(x)|x|’3 dx

_d/_MO/oo|x|ﬁJ(x—y)dydx =d/MM[xooxﬂJ(y)dydx
N |:/M0 /MO /MO /MJ xPJ(y)dy dx

[ (MPH1 "”’“)J(y)dy+/ (AT - Mﬂ“)J(y)dy]

B+
d ﬂ+1 B+1
z J(y)dy — M, J()’)dy — ooas M — oo,
IB +1 My My
since B + 1 = « — 1. Therefore (2.2) holds, as we wanted. O

3. Proof of Theorem 1.1

Let us first observe that it suffices to estimate h(¢) — cof, since the estimate for
g(t) + cot follows by a simple change of the initial function: ((¢, x), g(¢), };(Z)) :
(u(t,—x), —h(t), —g(t)) is the unique solution of (1.3) with initial function #%¢(x) :=
Uug(—x).

Theorem 1.1 will follow easily from the following two lemmas and their proofs, where
more general and stronger conclusions are proved.

Lemma 3.1. In Theorem A, if additionally (J*) holds for some a > 2, and [ is locally
Lipschitz in [0, 00), then there exists C > O such that fort > 0,

t Dy 00
h(t) — cot z—C[l +/ (1 —l—x)l_“dx—i—/ sz(x)dx—i-t/Co xJ(x)dx]
0 ( St

where co > 0 is given in Theorem B.
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Proof. Let (co, $°) be the unique semi-wave pair in Theorem B. To simplify notations
we will write ¢ (x) = ¢(x). By (J¥) (¢ > 2) and Theorem 2.1 there is C > 0 such that

00
C

/ J()’)ya_ldJ’va 0<1l—9¢(x)< T for x < 0. (3.1)

0 X

Define
{ﬁ(r) = cot +68(1), >0,
u(t,x) = (1 —-e@)[p(x —h@) +¢(—x —h()) —1], =0, x€[-h(r) k)],
where (t) == (1 + 6)'* and

t t —D@+6) poo
S(Z)::Kl—K2/ E(T)dI—Z,LL/ / / J(x —y)dydxdr,
0 0o J- 0

(o]

with 8, K; and K, large positive constants to be determined.
For any M > 0,

[ [ o= [ sor0e

= /MOO/A: J(y)dxdy =/Moo(y—M)J(y)dy
E/Moo yJ(y)dy.

[e.o]

Hence, due to / yJ(y)dy < oo (because o > 2), we have
0

t p—L@+6) poo t ~D0 oo
2,u/ / / J(x—y)dydxdr§2u/ / J(x —y)dydxdr
0 J-oo 0 0 0

—0o0

00 o
=|2u 0eyJ(y)dy t= ot

C
2

provided that & > 0 is large enough, say 6 > 6,.
For any given small g9 > 0, due to ¢(—o0) = 1 there is K9 = Ko(gg) > 0 such that

1 —gop <¢(x) forx <—Ko,
which implies that
¢(x —h(1).¢(—x — h(@t)) € [l —&0.1] forx € [-h(1) + Ko.h(r) — Ko].  (32)

where we have assumed 42(0) = K; > K.
Clearly

t
KZ/ (t +0)™%dr < K,0'7% < %Ot
0
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provided @ > (4K, /co)'/@ D Therefore

h(t) > %"z F K > %‘)(r +6)> Ky forallz >0 (3.3)
provided that
K > %"9 and 0 > max {(4K>/co) /@D 6y, 2Ko/co). (3.4)
Define
= inf ! 0.
eri=  dnf el
Then
' (x —h(1)) < —&1 for x € [h(t) — Ko, h(1)], 35)
¢'(—x —h(t)) <—e1  forx € [<h(t), ~h(t) + Ko). '
Claim 1. For suitably chosen 0, K1, K,, we have
h(t) poo
vosuf [ se-puexan. o (3.6)
~h(@) Jh()

and

h@®) p—h(t)
—h'(t) = —u/h( )/ J(x —yu(t,x)dy, t>0.
—h(t) J—o0

Due to u(¢, x) = u(¢t,—x) and J(x) = J(—x), we just need to verify (3.6). We calcu-
late

h()

o0
% / J(x — y)u(r, x)dy dx
~h(t) Jh()

h(t)
0 o0
— (1— e /_ » /0 J(x = y)p(x) dy dx
70 ()
L (e /_ » /0 T — ) (—x — 2h(1)) — 1]dy dx
B —2h(t) oo
— (1= e(t))co — (1 — e / / J(xr — »)(x)dy d
o - —00 0
(- et /_ » /0 J(xr = )1 = $—x — 2h()] dy dx.
From (3.3), fort > 0,

—2h(t) (e’
(1 - e(t)u /_ /0 J(xr — 1) dy d

—h(t) poo
L (st /_ o fo J (e = )1 = $(—x — 2h(1)] dy dx

—h(@) oo ~D@+6) poo
§2u/ / J(x—y)dydx§2u/ / J(x —y)dydx.
—00 0 - 0

[e.]
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And by (3.1) we have, forz > 0,
0 o]
(1— e / / J(r = )1 — $(—x — 2h(1))] dy dx
—h(t) JO
0 o0
< ull — p(—h(0))] /_ o /0 J(x—y)dydx

<p—S /OfooJ( )dyd
Shpget | ), TG dydx

C o0
=pU— /0 yJ(y)dy
< C2 < Kz—C()
= Mo/ T + 0)= 1 = (1 + O)a 1

if
C2

° T o2 o0

Kzzc

Hence, when 0, K; and K> are chosen such that (3.4) and (3.7) hold, then

h(1)

o0
" / J G = (. x) dy dx
. h(?)

-L@+6)

h(1)
K2 — Co

> (1—e(t))co —2u/ /0 J(x = y)¢p(x)dydx — (Y

—00
-2 +6)

— o — Kaelt) — 241 / fo J(x — y)p(x) dy d

—0o0
=n'(t) forallt >0,
which finishes the proof of (3.6).

Claim 2. With 0, K1, K5 chosen such that (3.4) and (3.7) hold, and K, suitably further
enlarged (see (3.8) below), 6y > 1 and 0 < g9 K 1, we have, for all t > 0 and x €

(—h(t). h(1))
h()
w1 x) < d f_ TP by = () £ f ),

A simple calculation gives

u, = —€'(Op(x — (1)) + ¢(—x —h(1)) — 1]
— (L =e()h' O)[¢'(x = h(1)) + ¢'(=x — h(1))]
= (=D +60)"[p(x —h(®) + ¢(—x — k(1)) — 1]
= (I =e(@)lco + 8 O][¢'(x = h(1)) + ¢'(—x = (1)),
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and using the equation satisfied by ¢ we deduce
— (1 —e(®)cold'(x — h(t) + ¢'(—x — h(1))]
h(r)
=(-¢) [a’/ J(x = y)p(y — h(t))dy — dp(x — k(1))

+d /_ By =) dy —dp(x h(t))]
b (1= e — A1) + F(d(—x — h()]
h()
y [ f J(x = yyult. v dy — (. x)}
)

—h(t

—h(t)
+(1—8(l))[a’/ J(x = y)¢p(y —h(r)) — 1]dy

—00
oo

+d J(=x —y)p(—y —h(t))dy — 1] dy]
110

+ (1= )G — hO) + f(@(—x — A1)
h()
<d [ / TG — . y)dy — u(t, x)}
—h(t)

+ (=) (P(x = (1)) + f(P(=x — 2(1)))].

Hence

h(?)
u, < d/ J(x = yu(t, y)dy —u(t, x) + fu(, x)) + A2, x) + A2(t, x),
—h(t)
where

A1t x) == (@ = D)t + 0)"*[p(x — h(1)) + p(—x — h(1)) — 1],
Az(t,x) == —(1 —e()8' (D[P (x — h(1)) + ¢'(—x — h(1))]
+ (L —e@)[f(P(x = ~(®) + f(P(—x = h(1))] — f(u(. x)).

To finish the proof of Claim 2, it remains to check that
A1(t,x) + Az(t,x) <0 fort >0, x € (—h(t),h(t)).
We next prove this inequality for x in the following three intervals, separately:

11(t) := [A(t) — Ko, h(1)].
Ir(t) := [=h(1). —h(t) + Kol
I3(1) := [=h(1) + Ko. h(1) — Ko].

For x € I1(t), by (3.1),

0= ¢(—x — h(t)) — 1 = (Ko — 2h(t) — 1 = d(—h(1)) — 1 = WCI
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Then by (f),

fp(=x = h@®))) = f((=x — k() = f(1) = L#

and
Sfu(t,x)) > (1 =) f(p(x — (1) + ¢p(—x — h(t)) — 1)
= (e 00 = hon) ~ Ly |
Thus from the definition of §(¢), (3.3) and (3.5), we deduce
Aa(t,x) < (1—e()[§' [P (x — h(1)) + ¢'(—x — h()] + f(@(x — (1))
+ f(p(—=x = h(®))) = f(p(x = h(1)) + p(—x — h(1)) — 1)]
<(1—2(@)) |:—8/(t)81 + 2LL}

h(l»)(x—l
e o+ 2L ]

<(1—e®)(t + 0)'™¥[—Kreq +2LC(2/co)* ).
Moreover,
Ar(t,x) S (@ =D +0)™ =2(1 —e()(@— D +6)7%,
where by enlarging 6y we have assumed that £(t) < 6}~* < 1/2. Hence

A1(t,x) + Ax(t,x) < (1 —e)(t + 0)"¥[—Kaey +2LC(2/co)* ! + 2(ax — 165 1]
<0

if additionally
Ky > el 2LC(2/co)* ! + 2(a — )65 1. (3.8)

This proves the desired inequality for x € I1(¢).

Since A;(t, x) + Ax(¢, x) is even in x, the desired inequality is also valid for x €
I>,(t) = —11(¢). It remains to prove the inequality for x € I5(¢).

The case x € I3(t) requires some preparations. Define, for 0 < ¢ < 1,

gu,v) =10 =-9fw)+ fW)] - f(A-e)u+v-1). uvekR.
For u, v € [0, 1], we may apply the mean value theorem to the function
)y =g(l+1(u—1).,1+1(v—-1))

to obtain
£(1) = £(0) +&'(¢) forsome ¢ € [0, 1].

Denote
u=1+¢u—-1), v:=1+¢w-1).
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Then the above identity is equivalent to

gu,v) =g(1,1) + 3,8, 0)(u — 1) + dyg(u, v)(v — 1)
=—f-—e)+U-g)f'@Wu—-1)+1-e)f'@)@w-1)
— (=) f (1 =) +7— 1)) —1)
—(—e)f (1 =& +7—1)w—1).

Note that & € [u, 1] and ¥ € [v, 1]. Since f” is locally Lipschitz, there is C; such that
|f'(w) — f'(v)| < Crlu—v| foru,v e |0,1].
It follows that
(I-gf/@Wu-1)—-A-e)f'(1-e)@+7—1)u—1)

=(0-o[f'@—f(1-e)@+v-1)]m—-1
<1 —=¢e)bi(1 —u),

where

by =Cilu—(1—e)@+0v—-1)| = Cyleu — (1 —&)(v — 1)]
<Ci(e+1—-v).

Similarly,
(1= f'@—-1)-1-e)f (1-e)@+7-1)w—1) < (1-eba(l —v),
where
by:=Cleb—(1—e)@i—1)] < Ci(e +1—u).
Thus

guv) = —f(1—¢)+ (1 —ebi(1—u)+ (1 —¢)b2(1-v)
—f—e)+Ci(e+1—-v) A —u)+Ci(e+1—-u)(1—v)
elf' (M +o)+ Ci(1—u+1—v)]+2C;(1—u)(1—v),

1A

where 0o(1) — 0 as & — 0.
For our discussions below, it is convenient to introduce the notations

p(t.x):=1-¢(x—h(r), q(.x):=1-¢(—x—h{)).
Then by (3.2) we have
p(t,x),q(t,x) €[0,80] forx e Iz3(t),t >0. (3.9)

Moreover, since min {x — h(t), —x — h(¢)} < —h(t) always holds, by (3.1) and (3.3), if
we denote C, := C(co/2)!™%, then

c
P (t)i‘il < Cyeoe(t) forx € Is(t), t > 0. (3.10)

pt,x)q(t, x) <
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Now due to §’(z) < 0 and ¢’ < 0, we have, by (3.9) and (3.10),

AZ(t’x) S g(l — D, 1 _q)
<e[f'(1)+ o) + Ci(p + 9] +2Cipgq
<e®)[f' (1) +o(l) + Csg9] forx € I5(z), t >0,

with C3 := 2(C; + C1C5). Since
Ar(1,x) < (@ =D +6)™ < (@— 1D e()
and f’(1) < 0, we thus obtain
A+ Az <e@)(f'(1) + [o(1) + Cze0 + (@ — 1)85']) <0 forx € I5(t), 1 >0

provided that 8y is sufficiently large and & is sufficiently small. The proof of Claim 2 is
now complete.

Claim 3. There exists to > 0 such that

{g(z +t0) = —=h(t), h(t +to) = h(t) fort =0, G
u(t +to.x) = u(t,x) fort =0, x € [=h(t),h(r)].
It is clear that
u(t, £h(r)) = (1 —e()[¢(=2h@)) —1] <0 forz = 0.
Since spreading happens for (u, g, i), there exists a large constant zy > 0 such that

g(to) < =Ky = —h(0) and h(0) = Ky < h(to),
u(to,x) = (1—0'"%) = u(0,x) forx € [-h(0), 2 (0)],

which, together with the inequalities proved in Claims 1 and 2, allows us to apply the
comparison principle in [11] to conclude that (3.11) is valid.

Claim 4. There exists C > 0 such that

t C—Ot o]
5(z)z—C[1+/ (1+x)1_"‘dx+/ ’ sz(x)dx—i—t/CO
0 0

e

xJ(x) dxi|.

Clearly
t t t
/ g(r)dr = / (x +60)%dx < / (x + H1I™*dx.
0 0 0

By changing the order of integrations we have

/ /_(IH)/O J(X—y)ddedfE/t/_?t/wJ(x—Y)dydxdr
Z/ / y——f J(y)dydr</ / yJ(y)dydt

)
= 30 2J(y)dy +t/ yJ(y)dy.
0 P

The desired inequality now follows directly from the definition of §(¢).
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Next we prove an upper bound for h(z) — cot. Let us note that we do not need the
condition (J%) in the following result.

Lemma 3.2. Under the assumptions of Theorem A, if (J1) holds, and additionally f’ is
locally Lipschitz in [0, 00), then there exists C > 0 such that

h(t) —cot <C forallt > 0. (3.12)

Proof. As in the proof of Lemma 3.1, (cg, $°) denotes the unique semi-wave pair in
Theorem B, and to simplify notations we write ¢0(x) = ¢ (x).
For fixed B > 1, and some large constants 8 > 0 and K; > 0 to be determined, define

h(t) :=co+8(t), t>0,
u(t,x) = (14 e()(x —h(t)), 120, x <h),
where ¢(¢) := (t + 0)~# and

co
1-8

8(1) == K1 + [t +6)'F —0'A.

By comparing u(¢, x) with a suitable ODE solution, we see that there is a large con-
stant 79 > O such that

u(t +to,x) <1+ %8(0) fort >0, x € [g(t + t0), h(t + to)].

Due to ¢(—o0) = 1, we may choose sufficiently large K; > 0 such that 4(0) = K; >
2h(ty), —h(0) = —K; < 2g(tp), and also

(0, x) = (14 £(0)p(—K1/2) = 1 + 3&(0) > u(fo, x). (3.13)
for x € [g(to), h(t0)]-
Claim 1. We have

B h(r) 0
() > /L/ [_ J(x —y)u(,x)dy fort>0.
g

(t+10) Jh(2)
A direct calculation shows

h(z) o0 R(t) oo
u/ / J(x— )it x) dy < u/ / J(x— yyia(e.x) dy
g h(t) —00 h(t)

(t+19)
0 o] _
= e [ [ 1=y = A+ e = 0.
—00
as desired.
Claim 2. If 6 > 0 is sufficiently large, then fort > 0 and x € (g(t + o), h(t)),
h(t)

ui(t,x) >d /(z+t ) J(x —y)u(t,y)dy —du(t,x) + f(u(t, x)). (3.14)
g(t+1o
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We calculate
(1, x) = —(1 + &(t))[co + 8'()]¢' (x — h(1)) + €' (t)p (x — h(t))
= —(1 + &(t))cod(x — h(t)) — (1 + &(t))8'(t)¢' (x — h(t))
— B +0)P P (x — h(r)

K@)
>d ( J(x —y)u(t,y)dy —du(t,x) + f(u(t, x)) + Az, x)
g(to+1)

with
A(t,x) i= (L +2(0) f(@(x = h(1)) — f((1+ @) (x — h(2)))
— (14 £0))8' (0)¢'(x —h(@)) — Bt + )P p(x — h(0)).
To prove the claim, we need to show
A(t,x) >0 forx € [g(to + 1), h(t)] and t > 0.

Let g9, &1 and Ko be given as in the proof of Lemma 3.1. For x € [h(t) — Ko, h(?)]
and ¢t > 0, by (3.5), we have

At x) > —(1 + )8 ()¢ (x — (1)) — Bt + )P~ p(x — h(1))
=—(1+e&)colt +0) P (x —h(t)) — Bt + )P p(x — h(r))
>colt +0)Per =B+ 0P > (1 +0) P eoher — B1 > 0

provided 6 is large enough.
We next estimate A(z, x) for x € [g(t + o), h(t) — Ko]. Define, for 0 < ¢ <« 1 and
u,v >0,

gu) = (1+¢) f(u)— f((1+eu).
Then for u,v € [0, 1],

guw) =g() + g @ —1)
=—f+e+A+e)f' @Mu—1)—1+e)f ((1+e)i)u—1)
=—f(l+e)+ A +)lf'@— f((1+e)D)]u—1)

for some 7 € [u, 1]. Since f” is locally Lipschitz, there exists C; > 0 such that
| ') — f'(v)] < Cilu—v| foru,ve]0,2].
Therefore
gu)=—f(1+¢e)— (1 +e)eCi(1—u)>—ef'(1) + o(e) —2C1e(1 — u).
By (3.2) we have

—g0 < ¢p(x —h(t))—1<0 forx e [g(to+1),h(t) — Ko, t > 0. (3.15)
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Using (3.2), 8’ > 0,¢’ <0and e(t) = (t + ) # < 67F, we obtain
At x) = (14 2(0) f(¢(x — () = f((1 + &)p(x — h(1)))
— Bt +6)Pp(x — h(1))
=g(@(x —h(1) — Bt +0) P ¢ (x —h())
> e(t)[~ /(1) + o(1) — 2e0Cy — PO
>0 forx e[g(to+1),h(t)—Ko],t>0

provided 6 is large enough and g9 > 0 is small enough, since f’(1) < 0. We have now
proved (3.14).
Due to the inequalities proved in Claims 1 and 2, (3.13) and

u(t,g(t +10)) >0, u(t.h(1)) = (1+e)p(h(t) —h(t)) =0 fort >0,
we are now able to apply the comparison principle to conclude that

h(t + to) < h(1), 1 >0,
u(t +to,x) <u(t,x), t=>0,x¢€lglt+ty),h()].

The desired inequality (3.12) follows directly from 6(¢) < Ky + [%9 =B and h(t + 1) <
h(t). The proof is complete. ]

Proof of Theorem 1.1. Since a > 3, from the definitions of /(¢) and A(r) in the proofs of
Lemmas 3.1 and 3.2 it is easily seen that

Co := sup[|A(t) — cot| + |h(t) — cot|] < oc.
t>0

Hence for large fixed 6 > 0 and all large ¢, say ¢t > ft,,
[g(1), h(1)] D [—h(t —t0), h(t — 10)] D [—cot + C,cot —C] with C := Cy + colo,
and
u(t, x) Zzu(t, x) = (1 —e@)]p®(x —cot + C) + ¢ (—x —cot + C) — 1]

for x € [—cot + C, cot — C], where &(t) = (t + 6)!~%. This inequality for u(z, x) also
holds for x € [g(z), h(¢)] if we assume that ¢p°°(x) = 0 for x > 0, since when x lies
outside of [—cot + C, cot — C] the right side is negative.

From the proof of Lemma 3.2 we see that the following analogous inequalities hold:

g(t) = —h(t —10). u(t.x) < (1 + (1)) (—x — h(t — 19))
fort > tg and x € [g(t), h(z)]. We thus have

[g(t), ()] C [=h(t — t9), h(t — t)] C [—cot — C,cot + C],
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and
u(t,x) <u(t,x) < (1 —e&())min{p(x —cot — C), p°(—x — cot — C)}

fort > tg and x € [g(¢), h(?)]-
Finally we note that as 1 — oo,

@0 (—x —cot £ C) — 1 uniformly in [0, 00),
¢°(x —cot £ C) — 1 uniformly in (—o0, 0],

and the conclusions for u(z, x) in Theorem 1.1 thus follow directly. [ ]

4. Proof of Theorem 1.3

In this section we determine the growth rate of cot — h(¢) and cot + g(¢) when the kernel
function satisfies, for some y € (2, 3],

J(x) ~ |x|7Y  for |x| > 1. 4.1)

That is, (j”) holds with y € (2, 3]. As before, we will only estimate ¢yt — h(t), since
the estimate for cot 4+ g(¢) follows by making the variable change x — —x in the initial
function.

The upper bound for cot — h(¢) follows directly from Lemma 3.1, so we only need
to obtain a suitable lower bound. It turns out that the case f’(0) > d is more difficult to
treat than the case f’(0) < d. Therefore we will consider the case f'(0) < d first, and
then handle the more difficult case f’(0) > d by appropriate modifications of the proof
for the first case.

4.1. The case f'(0) <d

Lemma 4.1. Suppose that the assumptions in Theorem 1.3 are satisfied and f'(0) < d.
Then there exists 0 = o(y) > 0 such that for all large t > 0,

ot — (1) > o> ifye(2,3), 42)
0 “|lolnt ify=3. .

Proof. Let B :=y —2 € (0, 1], and (cg, ¢) be the semi-wave pair in Theorem B. Define
t
) =K1t +0)78, §(1):=K,— K3/ e(7)dr
0
and

h(t) = cot + 8(1), t >0,
u(t,x) == (1 + e®)¢(x —h(®)) + p(t.x), >0, x <h(),
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where B
p(t. x) := Ka&(x — h(1))e(1),
with £ € C2(R) satisfying

0<&(x)<1, E&(x)=1for|x|<é& §&(x)=0for|x|> 28, (4.3)

and the positive constants 6, K;, K5, K3, K4, € are to be determined.
We are going to show that it is possible to choose these constants and some 7y > 0
such that

h(t)

U > d/ J(x — y)u(t, y)dy —u + f@) fort >0, x € (g(t + 1), h(r)),
g(t+1o)
(4.4)
. h() 0
H(t) > u/ /: J(x — y)u(t, x)dy fort > 0, 4.5)
g(t+10) Jh(®)
u(t,g(t +10)) =0, wu(t,h(r)) =0 fort >0, (4.6)
(0, x) > u(to.x), h(0) > h(to) for x € [g(to), h(to)]. 4.7

If these inequalities are proved, then by the comparison principle, we obtain
h(t) = h(t +to), u(t,x) >u(t +1t9,x) fort >0, x € [g(t + to), h(t + 1)].

and the desired inequality for cot — h(z) follows easily from the definition of % (z).
Therefore, to complete the proof, it suffices to prove the above inequalities. We divide
the arguments below into several steps.
Firstly, by Theorem A, there is C; > 1 such that

—g(t),h(t) <(co+ 1)t +C; fort>0. (4.8)
Let us also note that (4.6) holds trivially.

Step 1. Choose ty = typ(60) and K, = K> () so that (4.7) holds.

For later analysis, we need to find 79 = #9(6) and K, = K5(8) so that (4.7) holds and
at the same time they grow slower than linearly in 6.

Since /(1) < 0, there exists small g, > 0 such that for any k € (0, &x],

f+k) < f() <0< f()k<f(l k).

It follows that, for & := f'(1)/2,
W) =1+ 4%, w(t) =1 — ey’

are a pair of upper and lower solutions of the ODE w’ = f(w) with initial data w(0) €
[1 — &x, 1 + &4]. By (f), the unique solution of the ODE

=FW), W) = |luole
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satisfies lim;_,», W(¢) = 1. Hence there exists z, > 0 such that
W(ts) € [1 — €4, 1 + £4].
Using the above defined upper solution w(¢) we obtain
W(t + t5) <1+ g% fort > 0.
By the comparison principle we deduce

Ut + 14, X) S Wt +12) <146, fort >0, x € [g(t + 1), h(t + 12)].

Hence
u(to.x) < 14£(0)/2  forx € [g(t). h(10)]
provided that
In(2e«/K
to = 10(0) := iln@ + M + 1y
o o]

By (4.1), for any fixed w« € (B,y — 1), we have

/ J(x)|x]** dx < oo.
R
Then by Theorem 1.4, there is C, such that
1—¢(x) < Cy/|x|?* forx <-—1.
Hence, for K > 1 we have

(14+e(0)p(—=K) — (1 +£(0)/2) = (1 +(0)[1 = C2K™**] — (1 4+ £(0)/2)
= K08/ 2—CK 1+ K6 F)=0

provided that
2C,

K® > 2C; + 71(9/3.
Therefore, for all Ky € (0,1],6 > 1 and K > (4C2/K1)1/“’* 0B/®x e have
(1 +£(0)9(—K) — (1 +(0)/2) = 0.
Now define
K> () := 2max {(4C2/ K1) 08/ (co + 1)1o(0) + C1}. (4.9)
Then for K, = K,(6) we have
h(0) = Kz > K2/2 = (co + Do + C1 = h(to).
and for x € [g(t0), h(10)],
u(0,x) = (1 +(0)¢(x — K2) = (1 +(0))p(—K2/2) = 1 +£(0)/2.

Thus (4.7) holds if 7y and K, are chosen as above, for any 6 > 1, K; € (0, 1].



Fisher-KPP equation with nonlocal diffusion and free boundaries 31

Step 2. We verify that (4.5) holds if 6, Ky, K3 and K4 are chosen suitably.
Denote

0 [oe] [oe]
C3:=u/ /O J(x—y)dydx:ufo J(y)ydy. (4.10)

A direct calculation shows, writing &(¢) = &,

ﬁ(t) 00
pL/ /_ J(x — y)u(t,x)dydx
g(t+10) Jh(®)

h(t) oo (+t0) poo
e [—Oot /f_l(t) T =yt )y ds —p /::H /ﬁ(t) J(x —y)u(t, x)dy dx
0 poo ~
= 'U“/ / J(x — W[ + &)p(x) + p(t, x + h())] dy dx
—o0 J0

g(t+10)—h(r) poo _
iy / / TG = I+ )p(x) + plt.x + ()] dy dx
0

—00
g(t+19)—h()
< +¢&)co+ C3K48—,u/

—0o0
gt+19)—h()

/0 0= )1+ 9)p(x) dy dx

< (1 +¢e)co +C3K48—,u/

—0o0

/0 J(x = »)(x)dy dx.

By elementary calculus, for any & > 1,

—k poo 1 —k poo 1 . .
—dydx:/ / ——dydx=8""(1+p8)""k". (&l
/_oo/o |x — y[>+F N

Due to (4.1) and (4.8), there exists C4 > 0 such that

g(t+10)—h(t) poo
u f fo J(xr = »)(x)dy d

—00

. g(t+t0)—h(t) poo
= Cupelt + 1)~ (1) | | e
—00 0 |X - yl

gt+10)—h(t) poo 1 5.Ca . ;
> ¢, C = dvdx = f4t N

> ﬁ(‘ﬁ*—f‘ﬂ)[(co + 1)(t + to) + C1 + cot + Ka] 7P
_ $+Cs [ «m-+1y0+-cl+-K¢}—ﬂ 12
B+ B)(2co + 1)B (2co + 1) ’ :

where ¢y 1= d(—1) < Pp(—K2) < p(g(t + to) — h(t)). Therefore, for all § > 0 so large
that
(co + 1)l0 + Ci1 + K>

0> (2co + 1)

, (4.13)
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which is possible since #y(6) and K, (6) grow slower than linearly in 6, we have

h(z) o0
[L/ /_ J(x —y)u(t,x)dydx
g h(t)

(t+19)
_ ¢+ Cy -8
< (1 +e&(t))co + C3K4e(t) B+ B)2co T 1)P (t+0)
_ _ ¢*C4
=cot ‘9(’)[‘“ TR T BT Be + 1)4

< co— Kae(t) = h'(1)
provided that K, K3 and K4 are small enough that

¢*C4
K1(00+C3K4+K3) < IB(] —{—/3)(200—{— 1)ﬁ' 4.14)

Therefore (4.5) holds if we first fix K¢, K3, K4 small so that (4.14) holds, and then choose
0 large such that (4.13) is satisfied.

Step 3. We show that (4.4) holds when K3 and K4 are chosen suitably small and 6 is
large.
We have

(1,x) = =(1 + &(0)[co + 8’ (O’ (x = h(1)) + &' () (x — A1) + p (1, %),

and, writing £(¢) = ¢ to simplify the notation,
—(1 + &)cod’(x — h(1)

h(t) _ _ -

= (1+8)[df_ J(x=y)p(y—h()) dy—d¢(x—h(t))+f(¢(x—h(t)))]
h(t) _

=d/_ J(x=y)u(t, y)—p(. y)dy —du(r, x)—p, x)]+ (1 +) f (@ (x —h(?)))
h(t)

>d J(x—y)u(t, y)dy —du(t, x)+ f(u(, x))
g(t+10)

10) _
+d[0(l,x)—/_ J(x—y)p(t, y)dy} +(1+¢) f(p(x—h(2))) — fu(, x)).

Hence
h(t)

u(t,x)>d /(H_t ) J(x —y)u(t,y)dy —du(t,x) + fu(t,x)) + Az, x)
g(t+1o

with

k() _
At x) = d[pa,x)— f_ J(x—y)p(t,y)dy} (1 +) @ (=) = £t )
— (1408 ()¢ (= (1)) + (¢ (x— (1)) + pr (1. ).
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Therefore to complete this step, it suffices to show that we can choose K3, K4 and 6 such
that A(z, x) > 0. We will do that for x € [h(t) — &, h(t)] and for x € [g(top + 1), h(t) — £]
separately.

Claim 1. If € > 0 in (4.3) is sufficiently small and 6 is sufficiently large, then

() _
[pa, o[-0y dy] (1t ) S (x —R(1) — fat.x)

= d_Tf/(O),O(l,x) >0 forxelh(t)—&h@)]. (4.15)

We have, for x € [h(t) — & h(t)],

h(t)
d|:p(l,x)—f J(X—J/)P(t,y)dY]

—00

- 0 i
= K4e(t) d—d/ J(x—h(t)—y)é(y)dy]

R(t)—x
> K4s(t) d d/ J(x —h(1) — )dy:| K48(t)[d d
28

,od- f(O)}
4

J(y) dy}

h(t) xX—28

> Keet[a—a [ J0)0y] = Ko
= |:d — d_Tf/(O)}p(t,x)

provided & € (0, g1] for some small ; > 0.
On the other hand, for x € [h(t) — &, h(t)], by (f) we obtain

(1+ &) f(p(x —h(1)) — f@(E, X)) = f((1+ &)p(x — k(1)) — f(@(t, x))
= f((t,x) — p(t.x)) — f((t, x)),
anddueto 0 < K4 < 1,
0<u(t,x) < (1+e)¢p(E) + Kae <2¢(3) +07°.

So u(t, x) and p(¢, x) are small for small & and large 6. It follows that

J@(t, x) = p(t,x)) = f@(t, x)) = —p(t, )[f'@(t, x)) + o(1)]

= —p(t. )[f"(0) + o(1)] > —[f ) + (. x)

d— f © )}
for x € [h(r) — &, h(r)] provided that & is small and 6 is large. Hence, (4.15) holds.
Denote

= sup [¢'(x)].

x<0
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For x € [ﬁ(t) — &, };(Z)], by (4.15) we have

A 2 L 00 (1) 09— 7)) + O~ B0 + it )

(r)[ f() 2K3M—ﬂ(z+9)—1—K45(t+9)—1]

— 170
> s(z)[%K —2K3M —07'B(1+ K4)] >0
provided that we first fix K3 and K4 so that (4.14) holds and at the same time
d— f'(0
%KA; —2K3M > 0, (4.16)

and then choose 0 sufficiently large. )
Next, for fixed small & > 0, we estimate A(¢, x) for x € [g(¢t + to), h(t) — &].

Claim 2. For any given 1 > n > 0, there is ¢; = ¢1(n) such that
A+e)fw)— f(1+e)v)>cre forvenlland0 <e K 1. 4.17)

Indeed, by (1.10) there exists ¢; > 0 depending on 7 such that

f)—vf'(v) >2c; forv e [n,1].
Since

i LES@ = (40

e—>0 &

uniformly for v € [n, 1], there exists 9 > 0 so small that

d+e)f@) - fA+ev)

&

for v € [, 1] and € € (0, g¢]. This proves Claim 2. .
By Claim 2 and f € C', there is a positive constant Cy such that, for v = ¢ (x — h(z))

€ [¢(=8). 1],

(1+¢e)f()— f((1+e)v+p)
=1 +e)f() = f((1+ev)+ f((1+e)v)— f((1+e)v+p)
> c1e— CrKye

when ¢ = &(¢) is small.
We also have

10 h(t)
d[p(t,X) —/ J(x = y)p(, y)dy} > —d/_ J(x = y)p(t,y)dy > —dK4e(?),

—00
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and
pi(t.x) = —E'h' Kae(t) + EK4e' (1) > —E.Kae(t) — Kot + 0) 'e(1)
> —(&« + BOT)Kae(1)

with &, 1= co maxxer | (x)]. .
Using these we obtain, for x € [g(to + 1), h(t) — £],

A(t,x) = —dKae(t) +(1+6) f($ (x —h(1) — f(@(t. x) +2M 8 (1) +¢€'(1) + pe (1. %)
> e(t)[c1—Ka(Cr+d)—2MK3—B(1 +60) 7" — (6« + BO") K]
> e(t)[e1 — Ka(Cr +d)—2MK3—£.Ka— P07 (14 K4)] = 0
provided that we first choose K3 and K4 so small that
c1 — K4(Cr +d) —2MK3 — §.K4 > 0

while keeping both (4.14) and (4.16), and then choose 6 > 0 sufficiently large.
Therefore, (4.4) holds when K3, K4 and 6 are chosen as above. The proof of the
lemma is now complete. ]

4.2. The case f'(0) > d
Lemma 4.2. In Lemma 4.1, if f'(0) > d, then (4.2) still holds.

Proof. This is a modification of the proof of Lemma 4.1, where in the definition of u, we
add a new term A(¢) and change p(¢, x) to —p(z, x); see the details below.

We will use similar notations. Let 8 = y — 2 € (0, 1], and for fixed & > 0, let £ € C2(R)
satisfy

0<&é(x) <1, &(x)=1for|x| <&, E&(x)=0for|x|>2¢.
Define
{E(Z) = cot + 8(1), >0,
u(t,x):= (14 &@)g(x —h(t) —A@)) —p(t,x), t>0,x <h(r),

where
t
et):=Ki(t +0)78, §(1):=K,— K3/ e(r)dr,
0

p(t,x) := Kak(x = h(0)e(t), A(t) := Kse(0),

and the positive constants 0, £ and K1, K5, K3, K4, K5 are to be determined.
Let

Cz:= min [¢'(x)].
x€[—2¢8,0]

Then for x € [h(r) — 28, h(t)],
u(t, x) = ¢(=A@)) — p(t, x) = CeA(t) — Kae(t) > e(1)(CeKs — Kq) > 0
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if
K4 = C:K5/2, (4.18)
which combined with £(x) = 0 for |x| > 2¢& implies

u(t,x) >0 fort >0, x <h(). (4.19)

Let 79 = 19(6) and K> = K»>(0) be given by Step 1 in the proof of Lemma 4.1. Then
[g(t0), h(ty)] C (—o0, K»/2), and due to p(0,x) = 0 for x < h(ty) < K2/2 < Ky = h(0),
we have

u(0,x) = (1 +e(0)p(x — K2 —4(0)) > (1 + £(0))p(—K>/2)
> 1+ ¢(0)/2 > u(ty,x) forx e [g(to),h(ty)]- (4.20)

Step 1. We verify that by choosing K, K3 and K5 suitably small,

_ h(2) 00
() > /,L/( )/ﬁ( ) J(x — y)u(t,x)dydx forallt > 0. 4.21)
g+t t

By direct calculations we have

h(@) o0
u/ /_ J(x —y)u(t,x)dydx
g(t+t0) Jh(1)

h(z) 00 _
<u / / (= )1+ &) (x — k(1) — A1) dy dx
g

(t+10) Jh()

0 o0
—(+ S)u/_ /0 TG — ) (x — A(0)) dy dx

g(t+10)—h(t) poo
(1 +ou / /0 J(x = »)p(x — A1) dy dx

—00

0 o0
< (14 e)co+ (1+ e)u/_ /0 J(x = PIp(x — A1) — $(0)]dy d

g(t+t0)—h(t) poo
(4o / /0 J(x — y)p(x) dy dx.

—00

Let M := sup, g |¢'(x)| and C3 be given by (4.10). Then

0 o0
(1+ o)u /_ [0 J(x = M — A1) — (0] dy dx < 2C3 MA (D).

By (4.12),

g(t+1t9)—h(t) poo
" / /0 J(x = )¢ () dy dx

—0o0

- $+Cy [ (co+ Do + C1 + Kz]_ﬂ
~ B+ B)(2co + l)ﬂ (2co + 1) '
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Therefore, as in the proof of Lemma 4.1, for 6 so large that

. (co+ Dty +C1 + K> 4.22)
(26‘0 —+ l) ’ ’

we have

h(t) o0
u/ /_ J(x —y)u(t,x)dydx
g(t+t0) Jh(®)

+«C. _
< (1 e)eo + 263 M0 — g ;(2;‘0 e iaad s
*C
=co + 8(l) |:Co +2C3M K5 — Klﬂ(l —|—¢13)(;C0 n 1)ﬂ:|

< co— Kae(1) = h'(1)
provided that K1, K3 and K5 are suitably small so that

C
Ki(co +2C3M Ks + K3) < 0= Ca (4.23)

T B+ B)(2co + DE

Step 2. We show that by choosing K3, K5 suitably small and 0 sufficiently large, for ¢t > 0
and x € [g(t + t0), h(?)],

h(t)
u(t,x)>d / J(x —y)u(t,y)dy —u(t,x) + f(u(, x)). (4.24)
g(t+to)
Using the definition of u, we have
U (t,x)=—(1+e)h +1)p'(x —h—A)+ep(x —h— 1) —p,
=—(1+8fco+8+Np'(x—h—=2)+ep(x—h—2)—p,

and
—(1 4 &)cod’(x —h —A)

h+A B _ -
s +e)[d/ J(x—y>¢(y—h—A)dy—dsb(x—h—m+f(¢<x—h—x))}

—0o0

h _ _ -
= (1 +8)[d/ J(x—y)qb(y—h—l)dy—d¢(x—h—/\)+f(¢(x—h—)t))}

—00

h -
= d/_ J(x =), y) + pldy —d[u(t. x) + p] + (1 + &) f(¢(x —h = 1))

h(z)
- / J(x — y)a(t. y) dy — dia(t. x)

—0o0

@) _
—d [p(t, x) — / J(x = y)p(,y) dy} + (1 +e)f(p(x—h—2))

—0o0
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h(r)
> d / J(x = y)ia(t, y) dy — di(.x) + fGi(t.x))
g(t+10)

() _
—d [p(t, x) — / J(x = y)p(t,y) dy} + (1 +e)f(p(x —h—2A)— fu(, x)).

—0o0
Hence
h(t)
ur(t,x) > d / J(x —y)u(t, y)dy —du(t, x) + f(u(, x)) + B(#, x)
g(t+10)
with

h
B(t.x) = —d [p(z,x) [ e dy}

+ (1 +e) f(p(x —h— 1) — f(u(t, x))
—(1+e)F + A (x —h—2A) +ep(x —h—21) — p;.

To show (4.24), it rel}lains to choose suitable K3, K5 and 8 such that B(¢,x) > 0fort > 0
and x € [g(t + t0), h(?)].

Claim. There exist small &y € (0,%/2) and some Jo > 0 depending on & but independent
of &¢ such that

h _
—d[p(l,X)—/_ J(X—y)P(l,y)dy} + (A +8) f(p(x —h—2) — f(u(. x))

> Jop(t,x) forx €[h(t) — &0, h(t)]. (4.25)

Indeed, for x € [A(r) — &9, h(1)],

7@) () _
d [p(r,x) - [ J(x - y)p(z,y)dy} _ K2€(f)[d _d [ J(x = 0EQy — (1)) dy}

h(t) h(t)—x
< Kre(t) |:d — d/_ J(x—y) dyi| = Kre(t) |:d —d
h(t)—¢

0 0
<a[i- [ sow]=afi- [ smw]

On the other hand, for x € [h(t) — &y, h(1)], we have

_ J(x—y) dy}
h(t)—&e—x

(A+e) f@px—h—=2) = f@) = f(A+e)p(x —h—2)— f@)
= f@+p)— f@@) = p(f' (@) + o(1)) = (f'(0) + o(1)p

since both (7, x) and p(z, x) are close to 0 for x € [h(t) — &y, h(t)] with &y small.
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Hence, for such x and &, since f'(0) > d,

() _
—d [p(l, X) — / J(x = y)p(t.y) dy] + (1 + &) f(p(x —h(2))) — f(u(t,x))

—0o0

0
= o<1+ [ J0)ay |+ 00+ o
0

- - d
> Jop(t,x) with Jy:= E/~

-3/

J(y)dy.
2

This proves (4.25).
Clearly
—pe(t,x) = BK4K (¢ + ) F~1 > 0.

Denoting M := sup, ., |¢'(x)|, we obtain, for x € [h(t) — &0, h(t)] and small &,
B(t.x) = JoKae(t) + 2(8'(1) + M'(1)) My + €' (1)
= JoKae(t) + 26(t)(—K3 — Ksp(t + 0)" )My — Bt + 6)'e(t)
> e(t)[JoKa2 — 2(K3 + Kspo~ )My — 6]
= e(t)[JoK> — 2K3M; — 07 (KspM; + B)] = 0

provided that K3 is chosen so small that (4.23) holds, and
JoK> —2Ks My > 0, (4.26)

and 6 is chosen sufficiently large.’ .

We next estimate B(t, x) for x € [g(t + ty), h(t) — &p]. From Claim 2 in the proof of
Lemma 4.1, and the Lipschitz continuity of f, there exist positive constants C; = C;(&o)
and Cr such that, for v = ¢(x — h(t — A(2))) € [p(—F0), 1],

(I+e)f(w)— f((A+e)v—p)

=1 +8)f() = f((1+e)v) + f((1+e)v) — f((1+e)v—p)
> Cie — Cfp > Cie — CfK48

when ¢ = () is small. Hence
(14 (D)) f(@(x = h(t) = A1) — f(@(t, x))
> Cre(t) — CrKqe(t) forx € [g(t + to), h(t) — &), 0 < & < 1.

Clearly,

h(z)
d [p(r,x) - / J(x —y)p(hy)dy} > _dKse(0),

—00

3In fact, by the choice of K5 = K3(0) in (4.9), for fixed K3, (4.26) always holds for large
enough 6.
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and
pe(t,x) = —K4&'H (1)e(t) + Ka&e' (1) < ExKae(t)

with &4 1= co maxyer |£'(X)|. .
We thus obtain, for x € [g(t 4 #9), h(t) — &) and 0 < & K 1,

B(t,x) > —Kse()d + (1 + &) f(p(x —h)) — f1) +2M (8" + 1) + & — p;
> Cre(t) — Kae(t)(d + Cy + E4) + 2My[—K3e(t) + Ks&'(1)] + €/(¢)
> e(1)[C; — Ka(d + Cr + &) —2M1 (K3 + KsB(t + 0)7') — Bt + 6)7']
> e(t)[Cr — Ka(d + Cr + &) —2M 1 K3 — 67! B2M K5 + 1)] = 0

if we choose K3 and K5 so small that (4.23) and (4.26) hold and at the same time, due to
(4.18),
C[ — K4(d + Cf + E*) — 2M1K3 > 0,

and then choose 6 sufficiently large. Hence, (4.24) is satisfied if K3 and K5 are chosen
small as above, and 6 is sufficiently large.
From (4.19), we have

u(t,g(t +10)) >0, u(t, h(t))>0 fort>0.

Together with (4.20), (4.21) and (4.24), this enables us to use the comparison principle to
conclude that

h(t +10) < h(t), u(t +19.x) <u(t,x) fort >0, x € [g(t + 1), h(1)],

which implies (4.2). The proof of the lemma is now complete. ]

4.3. Proof of Theorem 1.3

By Lemma 3.1 and then by (4.1), there exists Cy > 0 such that

t 0, 00
h(t) —cot > —C[l + / 1+ )77 dx + / ’ x2J(x)dx + t/ xJ(x) dx]
0 0 04

2

] 1 cTOt oo
> —C[l +— +/ J(x)dx + Co/ x>V dx + Cot/ X!y dx].
y—2 0 1 €0

>t

Therefore when y € (2, 3) we have
h(t) —cot > —C[C +1In(t + 1) 4+ C1t>77] = =C11>77  forallt > 1
and some él, C, él > (0, and when y = 3,
h(t) —cot > —6‘2 Int forallt > 1 and some 6‘2 > 0.

These combined with Lemmas 4.1 and 4.2 yield the conclusion of Theorem 1.3. ]
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5. Proof of Theorem 1.2

Throughout this section, we assume that J satisfies (J) and (jy) for some y € (1, 2]. So
there exist positive constants C; and C, such that

Cy

W <Jx) < | |y for x € R and some y € (1,2]. 5.1

Clearly now (J1) is not satisfied.

The purpose of this section is to prove Theorem 1.2, and as before we will only prove
the estimate for h(t), since that for g(¢) follows by the change of variable x — —x.
Theorem 1.2 will follow directly from the lemmas in Sections 5.1 and 5.2 below.

5.1. Upper bound
This is the easy part of the proof.

Lemma 5.1. Assume that (J) and (f) hold. If spreading happens, and (5.1) is satisfied,
then there exists C = C(y) > 0 such that

h(t) < Ci/o7ify e (1.2), (5.2)
“ | Ctint ify=2. '

Proof. Define, fort > 0,
Ry = (Kt +6)1/=D ify € (1,2],
T (Kt +0)In(Kt +60) ify =2,
u(r,x) =% :=max {Juolloo. 1}, x € [=h(2), ()],

with positive constants 6 and K to be determined.
We start by showing

h() e
W () > /L/ /_ J(x —y)u(t,x)dydx fort >0, (5.3)
h(t) Jh(r)

and

k() —h()
—h'(t) < u/ / J(x —y)u(t,x)dydx fort > 0.
h(t) J—oo

Since u(¢, x) = u(t,—x) and J(x) = J(—x), it suffices to prove (5.3).
By simple calculations and (5.1), for any k& > 1,

0 o) k poo k o0
/k/ J(x—y)dydx=/ f J(y)dycbc=/0 J(y)ydy+uk/ J(y)dy
- 0 0
k o) 1
ok [ iers [eas [ Fa 7]
< dy +k dy < Cydy + d +k —d,
_[o a1 s G y
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and so

2T -1+ S iy e (1.2
// J(x —y)dydx < ( )+ ify e 54

Clearly

h(t) o) 0 00
/ /_ J(x—y)ﬁ(t,x)dydx:ﬁ/ ) / J(x —y)dydx.
h(t) h(t) —2h() JO
Hence for 1 <y < 2,by (5.4),

h(@t) poo
/ /_ J(x —y)u(t,x)dydx
h(t)

h(r)
[C2+22 V( ©2 & )(Kt+0)(2 M= 1)]
2—-y y-—-
K

< I(Kt + 9)(2—)/)/(}'—1) — f;/(l)

<

provided that K > 0 is large enough. And for y = 2,

h(t) [es)
/ /_ J(x — y)i(t, x)dy dx < pi(2C; + C, In[2(Kt + 0) In(Kt + 6)))
h(t) Jh@)

< pit(2C; + C2 n2(Kt + 0) + CoIn[In(Kt + 0)]) < KIn(Kt + 60) + K = 1 (t)

if K >> 1. This finishes the proof of (5.3).
Since w > 1 is a constant, we have, for ¢ > 0, x € [—h(?), h(?)],

h(t)
u(t,x) =0>d /—E(t) J(x —y)u(t,y)dy —du(t,x) + f(u(t, x)). (5.5)

Moreover, h (0) > hy for large 6, and obviously

u(t,+h(t)) >0 fort >0,
u(0,x) > u(0,x) forx € [—hy, hol.

Hence we can apply the comparison principle to conclude that

[g(t + to). h(t + t0)] C [~h(t).h(1)]. t >0,
u(t +to, x) <u(t, x), t>0,x€[gt+t),h(t+ 1)

Thus (5.2) holds. ]

5.2. Lower bound

We will consider the cases y € (1,2) and y = 2 separately.
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5.2.1. The case y € (1,2). We start with a result from [20].

Lemma 5.2 ([20, (2.1D)]). If J satisfies (J), then for any & > 0, there is L, > 0 such that
foralll > L, the function Y (x) := | — |x| satisfies

1
[_ =) dy = (=) in (L] (5.6)

Lemma 5.3. Assume that the conditions in Theorem 1.2 are satisfied and y € (1,2). Then
there exists C = C(y) > 0 such that
h@) = CtVo Y fore > 1. (5.7)
Proof. Define
h(t) := (K1t + )00, 1 >0,

h(r) — |x|

u(t, x) = KZW,

t >0, x €[-h(t), ()],

with positive constants 6 and K7, K5 to be determined.
Step 1. We show that, for large K,
h(t) poo
(1) < /L/ / J(x —y)u(t,x)dydx fort > 0. (5.8)
—h(t) Jh(t)

By simple calculations and (5.1), we obtain

h(t)

h(t) — x
l,l/ -_—

o0 h(t) poo
/ J(x —y)u(t,x)dy dx Z/,LKzf / J(x —y)= dy dx
h(®) o Juw h()

wky [ [ wKy RO oo
N J(x = y)(=x)dydx = 2= J(y)xdyd
0] /_hmfo (=ndyar =522 [T [T r0cayax

h@) ry oo ph(r) h(?)
(L) Tl L
= + J(y)xdxdy > J(»y)y=d
o\ Jo Thols )R =50, IO

pK,Cy (RO )2 o BEG h@® d _ MGy h(t)>Y

h(1)

> d 2=y
=20 Jo 17T e S Y YT s 3—y

A K
= Co(Kit 4+ )@ M/@=D > 1 —(Kat 4 0)@7/07D = 1 (1)

provided that 0 < K; < Co (y — 1) and € > 1. This finishes the proof of Step 1.
Step 2. We show that, by choosing K1, K5 and 0 properly, for ¢ > 0 and x € (—A(t), h(t)),

h()
u,(t.x) = d /_ IO )+ ). 59)
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From the definition of u, for t > 0 and x € (—A(?), h(?)),

|x[A'(1) _ K W) _ KiK>

— 1-
(1) = Kas 2 < KoT s = S0,

Claim 1. For x € [—h(t), h(t)], there exists a positive constant ¢ depending only on y
such that
() X
[ sty = Gkaho)' . (5.10)
—h(t)
By (5.1), writing h(¢) = h for simplicity of notation, we have

h h—x
/ J(x —y)u(t,y)dy = / J(y)u(t,y +x)dy

—h —h—x

L[ G e,
- 2 .
—h—x ly|” + 1 h

Thus, for x € [h/4, k],

h 0
= Cl h — |y + X|
JGr = yult, y)dy > K / b dy
[_h 2 byl + 1 h

0 Ci h- 0 C —
:Kz[ ! = (y+X)dyZK2/ 1 —ydy
—n/a ¥l +1 h —na P +1 h

_K (Mt Gy >C1K2/h/4
hJo yr+1 y= 2h

CIKZ 2— A 1—
————— (/D" = C1 K .
> 4(2—)/)h(_/) 1K2h

And for x € [0, h/4],

& be ¢ h—ly+x|
J(x —y)u(t,y)dy > K = d
[ ey nay= k[ A

y' 7V dy

h/4
> Kz/ G Xdy > €1 Kh' Y
o Y +1h

by repeating the last few steps in the previous calculations.
This proves (5.10) for x € [0, A]. It also holds for x € [—#, O] since both J(x) and
u(t, x) are even in x.

Claim 2. We can choose small K, and large 6 such that, for x € [—h(t),h(t)] andt > 0,
h

. J(x = yu(z, y)dy

h
d [ JGxr = yut ) dy — du(t.x) + f@(t.x) = Fs /
—h

for some positive constant F.

It is clear that 0 < u(¢, x) < K», and thus for small K, > 0,

flu(t.x)) = [£(0) + o(Du(t, x) = 3 f'(O)u(t, x).
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Moreover, by (5.6), there is L; > 0 such that for pY =1 > L,

/
0
PO a3 2 dutt. ) forx & (0. A1)
Therefore Claim 2 is valid with F, = f/(0)/2.
Combining Claims 1 and 2, we obtain

h(t)
d / JGr = yult, y)dy +
—h(t)

h
d f_h J(x —y)u(t, y)dy —du(t, x) + f(u(, x))
= RG0! = TE0 ! 2 1,00, )

provided that K; < F, C‘l(y — 1). This proves (5.9).

Step 3. We prove (5.7) by the comparison principle.
It is clear that

u(t,£h(t)) =0 fort > 0.

Since spreading happens for (u, g, /), for fixed 6 > 1 and small K, K, as chosen above,
there exists a large #o > O such that

[—£(0), h(0)] C [g(t0)/2. h(10)/2].
u(to.x) = Ko 2 u(0,x) forx € [=h(0), 2(0)].
Moreover, since J(x) and u(z, x) are both even in x, (5.8) implies
h(t) p—h(@)
—h'(t) > /L/ / J(x — y)u(t,x)dydx fort > 0.
—h(t) /—o0

These combined with the estimates in Steps 1 and 2 allow us to apply the comparison
principle to conclude that

[=h(1). k()] C [g(t + 10), h(t + 10)]. =0,

u(t, x) Z u(t + fo, x), 120, x € [=h(@),h(1)].
Hence (5.7) holds. [
5.2.2. The case y = 2. The following simple result will play an important role in our
analysis later.

Lemma 5.4. Let [ and [, with 0 < [y < [, be two constants, and define

I — |x]

1

¥(x) = ¥(x;l1,1l) ;= min {1,

If J satisfies ()), then for any € > 0, there is L, > 0 such that for all l; > L, and [, —
> L,

}, x € R.

153
[ I )y = (=) in [ 5.11)
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Proof. Since f]R J(x)dx = 1, there exists B > 0 such that

B
/ J(x)dx >1—¢/2. (5.12)
-B

In the following discussion we always assume that /; > B and [, —[; > B. Clearly, for
X € [—(12 — 11) + B, (12 — 11) — B], due to

Y(x)=1 in[~(2 —11),l — 1],

we have

=

123 =l - ~
/ I — )Y () dy z/ J(x— ) dy =/ J(x—y)dy

- —(l2—1) —(2-11)

=/lz_ll_x J(»)dy z/_i J(y)dy

—(l2=11)—x
>1—¢/2> (1 —-e)Y(x).

It remains to prove (5.11) for x € [, —(l» — 1) + B]U [(l» — 1) — B, 5]. By the
symmetric property of ¥ (x) and J(x) with respect to x, we just need to verify (5.11) for
x € [(I; — ly) — B, I5], which will be carried out according to the following three cases:

(1)x (S [12—11 —B,lz—ll + B], (11)x € [12—11 + B,lz—B], (111)x S [lz—B,lz].

(i) For x € [l —[; — B,l, — 1 4+ B], since ¥ (z) is nonincreasing for z > 0, we have

123 Ih—x
/ TG — () dy = / T (y + x)dy

—12 —lz—x
B

B
> /_ JTOW (& +x)dy > / IOWO 0 d

2l>+11+B -
B

> / JOWO + 1 — 11 + B)dy.
-B

By the definition of v, for y € [-B, B] we have
lLhb—(y+b~-0IL+B) _ y+B

V(y+hb—11+B)=
l] ll

Hence,

B B B B
[ sowo vt ma= [ a0 Ry
-B -B -B 1

2B?
>1—¢g/2— ||J||L°°(]R)T >l-e=(1-9y(x)

provided
li = 4] J ||y B/,
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which then gives

>
/_, Jo =Y dy = (1— ey (x) forx e [la—1 — By — Iy + B,

(ll) For x € [12 —ll + B,lz — B],

153 Ir—x
[_l J(x =¥ (y)dy = / JY(y +x)dy

—lz—x
B

B
> /_ JOW (@ +x)dy > / IOWO +x)dy.

2l,—B+1, -
From the definition of v, for x € [l —; + B,l, — Bl and y € [-B, B],

L=—(y+x)_bL-x
I A

Y +x) = —%=1/f(x)—%.

Thus, by (5.12),

123 B
/ Jx = )Y () dy = / T ( + x)dy
-1 B

B B B
_—_ /_B J(y)dy —/_B IO dy = ) /_B J)dy = (1 -y (x).

(iii) For x € [l — B, ],

12 lzfx
/_ =) dy = / T (o + x)dy

—lh—x

Ir—x Ir—x
> / TG +x)dy = /_ IO+

—2I,—B+1
B

B
= /_B JOY(y +x)dy —/ JY(y +x)dy

Ir—x
As in (ii), we see that
B B
| 1owo 0ty =ve [ 16y = =,
By the definition of ,
V(y+x) <0 forxe[l—B,L] yel—x, Bl

which indicates

I B
/_ =) dy = [ JOW (O +x)dy = (1— &)y ().

The proof is now complete. u
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Lemma 5.5. If the conditions in Theorem 1.2 are satisfied and y = 2, then there exists
C > 0 such that
h(t) > CtInt fort > 1. (5.13)

Proof. Fix g € (0, 1) and define

h(t) := K1(t + 0)In(t + 0), t >0,
w(t.x) := Ky min {1, %} {0, x € [=h(1). h(0)]

with constants € > 1 and 1 3> K; > 0,1 > K, > 0 to be determined. Obviously, for
any ¢ > 0, the function d,u(t, x) exists for x € [—h(t), h(?)] except when |x| = h(t) —
(t + 0)8. However, the one-sided partial derivates d,u(f & 0, x) always exist.

Step 1. We show that by choosing 6 and K7, K5 suitably,

h@®) oo
W(t) < /L/ / J(x —y)u(t,x)dy dx fort > 0, (5.14)
—h(#) Jh(r)
h@®) —h@®)
—h'(t) > —/L/ / J(x —y)u(t,x)dydx fort > 0. (5.15)
—h(r) /-0

Since u(t, x) = u(t,—x) and J(x) = J(—x), we see that (5.15) follows from (5.14).
By elementary calculations and (5.1), we have

h(t) poo h(@)—(@+6)8  poo
pf gy aar =g | st=puexdyar
—h(t) Jh(t) 0 h(t)
h(t)

—(4+0)f oo
=MK2/ / J(x —y)dydx = puk>
—h(t) 0 (t+6)8

h(t) y oo rh(1)
:MKZ( [+ )J(y)dxdy
t+0)8 J@e+0)f  Jh(t) J(+6)8

h() y h() —(t + 0)8
ZMKz/ / J(y)dxdszCle/ y§—+)d
(t+6)8 J(t+6)8 t+0)p  y*+1

/xoo J(y)dy dx

KO, (4 0)B
P = L
a+op 2y
1 (t +0)8
= Kr,—|1 —p1 — -1
pCiKag (o) - pine + )+ L8

> jCy Koy (nh(o) — FIn(e +6) 1)

= /LCle%(ln Ky +1In(t + 0) + In(In(z + 0)) — BIn(t + 6) — 1)

o HCiKs (1= B)

> 5 In(t +0) + 1] > Ky In(t + 0) + Ky = I'(¢)
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provided
In(lnf) > —InK; +2 and 0< Ky < uC1K>(1—8)/2, (5.16)

which then finishes the proof of Step 1.

Step 2. 'We show that by choosing K, K5 and 6 suitably, for # > 0 and x € [—A(¢), h(t)]
with |x| # h(1) — (¢ + 6)®,

h()
w,(t.x) < d /_ Oy dy e, )+ fou ), (5.17)

From the definition of u, for ¢ > 0,

oy = | KSR+ Gl ith@) = (4 0)F < Ixl < h(),
! if |x| < h(t) — (¢ + 0)P.

Claim 1. For x € [<h(t),—h(t) + (t + )P U [h(t) — (t + 0)P, h(1)] and large 6,

J(x = y)u(t,y)dy >

/”(’) C1K»B1n(t + 6) 5.18
—h(t) 4(l + 9)’3 ’ ’

where C1 > 0 is given by (5.1).
A simple calculation yields, for x € [h(z) — (t + 0)8, h(?)],

10 10 h(t) —
J(x — y)u(t,y)dy > K [ Jx—y)——=%
/—h(t) (- yult, ) dy = Ko h()—(t+6)5 (l+9)’3

K2 h(t)—x
T+ 0P J(IA@) - dy.
(t +0)8 /,1(t)_(t+9)ﬂ_x M[h(t) — (y + x)]dy

Hence, for x € [A(t) — %(l + 0)8  h(1)], by simple calculations and (5.1),

h(t) K> 0
J(x— yult. y)d z—f J()(=y)d
/_hm Yu(t, y)dy T 07 |rorpa ) (=y)dy
K, (t+6)8 /4 K, (t+6)# /4 y
(z+0)ﬁ/0 (y)yy_(t+0)ﬂ/ y2+1 Y
B
C1K» /(t+9) o CK,
_— ———[BIn(t + 6 In4
T 2(t + 0)B y o= 2(1+0)f3[ﬂ n(+0)—Ind]
- C1K,B1n(t + 6)
4(t + 0)F

provided that
gan > In4. (5.19)
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And for x € [h(1) — (t + 0)P, h(1) — 2(t + 6)P],

3(t+60)8 /4

h(t) K
/ T =yt ) dy = /0 TR — (v + )] dy

—h(z)

K. (t+6)7/4 K>B1n(t + 6
t+ 62 J 4(t +0)8

This proves (5.18) for x € [h(t) — (t + 6)2, h(?)].
For x € [—h(t), —h(t) + (t + 6)#], (5.10) also holds since both J(x) and u(z, x) are
even in x. Claim 1 is thus proved.

Claim 2. We can choose small K, and large 0 such that, for x € [—h(t), h(?)],

h(t)
| J(x = y)u(t, y)dy
t

h(t)
d/ J(x = y)u(t, y)dy —du(t,x) + f(u(, x)) = F[
~h(1)

(5.20)
for some Fy > 0.
For small K, > 0, from 0 < u(z, x) < K, we obtain
S, x)) = 3 O)u(, x).
For large 6 and ¢ > 0, we have
h@t)— @ +60)F > 0P (K10 PIno—1)> 065, (5.21)

Hence, by (5.11), there is large L; > 0 such that, for 0F > Ly,

2O /'(0)
d | - JCe=yulty)dy + = =ult,x) = dult,x) for x € [<h(1), h(1)].
—h()

Therefore (5.20) holds with Fy, = f'(0)/2.
Applying (5.18) and (5.20), for x € [=h(t),—h(t)+ (t +0)P)U (h(t) — (t + 6)8  h(1)]
we have

h()
d / I = yut. ) dy —u(t.x) + flut,x)
—h(t)

FuCyKaBIn(t + 6) In(t + ) + 1
Y R T
e =B+ 0) 1 KaBh(n)
N VR N)Y: (1 + 0)1+P
(=BGt +0)+1  Kaplx|
R N PN (C+ )1+

=u,(t, x)
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if apart from the earlier requirements, we further assume
In6 >2 and K; < F.C18/8. (5.22)

For |x| < h(t) — (t + 6)8, u(t,y) = K, and
h(t)
d / J(x = y)u(t, y)dy —du(t,x) + fu(, x))
—h()

h(t)
= F [y dy 2 0 = )
—h()

Thus (5.17) holds. (Let us stress that it is possible to find Ky, K, and large 6 such that
(5.16), (5.19), (5.21) and (5.22) hold simultaneously.)

Step 3. We finally prove (5.13).
Clearly, u(¢, £h(t)) = 0 for t > 0. Since spreading happens for (u, g, ) and K, > 0
is small, there is a large constant 7o > 0 such that

[=£(0), 2(0)] C [g(20)/2. h(t0)/2],
u(0,x) < Kz < u(ty,x) forx € [=h(0), h(0)].

By [21, Remark 2.4], we see that the comparison principle still applies to our situation
here, even though du, (¢, x) has a jumping discontinuity at |x| = A(¢) — (t + )8 . There-
fore we have

[=h(t), k()] C [g(t +10),h(t +10)], >0,
u(t, x) < u(t +to, x), 1 >0, x € [=h(r), ()]

So (5.13) holds. This completes the proof of the lemma. ]
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