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Abstract. We consider the long time behavior of the solutions to the Burgers-FKPP equation with
advection of a strength ˇ 2 R. This equation exhibits a transition from pulled to pushed front
behavior at ˇc D 2. We prove convergence of the solutions to a traveling wave in a reference frame
centered at a position mˇ .t/ and study the asymptotics of the front location mˇ .t/. When ˇ < 2,
it has the same form as for the standard Fisher-KPP equation established by Bramson: mˇ .t/ D
2t � .3=2/ log t C x1 C o.1/ as t !1. This form is typical of pulled fronts. When ˇ > 2, the
front is located at the position mˇ .t/ D c�.ˇ/t C x1 C o.1/ with c�.ˇ/ D ˇ=2 C 2=ˇ, which
is the typical form of pushed fronts. However, at the critical value ˇc D 2, the expansion changes
to mˇ .t/ D 2t � .1=2/ log t C x1 C o.1/, reflecting the “pushmi-pullyu” nature of the front. The
arguments for ˇ < 2 rely on a new weighted Hopf–Cole transform that allows one to control the
advection term, when combined with additional steepness comparison arguments. The case ˇ > 2
relies on standard pushed front techniques. The proof in the case ˇ D ˇc is much more intricate and
involves arguments not usually encountered in the study of the Bramson correction. It relies on a
somewhat hidden viscous conservation law structure of the Burgers-FKPP equation at ˇc D 2 and
utilizes a dissipation inequality, which comes from a relative entropy type computation, together
with a weighted Nash inequality involving dynamically changing weights.

Keywords. Traveling waves, log delay, stability, Fisher-KPP, reaction-diffusion, pulled fronts,
pushed fronts, pushmi-pullyu fronts

1. Introduction

We consider the long time behavior of the solutions to the Burgers-FKPP equation

ut C ˇuux D uxx C u � u
2; t > 0; x 2 R: (1.1)
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Here, ˇ 2 R is a parameter that measures the strength of the advection effect. The rel-
evance of this type of nonlinear advection-reaction-diffusion model in biological and
chemical applications is discussed in [42, Chapter 13.4]. We refer the interested reader
to this book, as well as the references therein, rather than attempting to replicate the dis-
cussion here.

Our main interest is in the study of the transition from the “pulled” to “pushed” nature
of the Burgers-FKPP equation that happens at ˇc D 2 and its effect on the long time behav-
ior of the solutions. In order to motivate the basic questions addressed in the present paper,
and before introducing this transition phenomenon, we recall the well-known results for
the classical Fisher-KPP equation as well as the notions of “pulled” and “pushed” fronts.

The classical results for the Fisher-KPP equation. When ˇ D 0, the Burgers-FKPP equa-
tion (1.1) reduces to the classical Fisher-KPP equation

ut D uxx C u � u
2; (1.2)

which dates back to the seminal work of Fisher [21] and Kolmogorov, Petrovskii and
Piskunov [34], and has been studied extensively since. This equation arises in numer-
ous applications in the physical and biological sciences, also discussed in [42]. Beyond
this, it has been used to study the fine properties of branching Brownian motion after
McKean [40] discovered its connection to (1.2); see, for instance, [2, 3, 13, 14, 43] and
references therein.

Both of the original papers [21] and [34] showed that (1.2) admits traveling wave
solutions of the form u.t; x/ D Uc.x � ct/ for all c � c� D 2, which necessarily satisfy
the ODE

�cU 0c D U
00
c C Uc � U

2
c ; Uc.�1/ D 1; and Uc.1/ D 0: (1.3)

We denote by U�.x/ the traveling wave moving with the minimal speed c� D 2. Given
c � c�, solutions to (1.3) are unique up to translation in x. One may fix a normalization
for U�.x/, for example, by requiring that U�.0/ D 1=2.

It was observed already in [21, 34] (albeit at a different level of mathematical rigor)
that the solution to (1.2) with an initial condition that is a step function

u.0; x/ D 1.x � 0/ WD

´
1 if x � 0;

0 if x > 0;
(1.4)

converges in shape to a traveling wave: there exists a reference frame m.t/ such that

u.t; x Cm.t//! U�.x/ as t !1, uniformly in x 2 R. (1.5)

It was also argued informally in [21] and proved in [34] that

m.t/ D 2t C o.t/ as t !1. (1.6)

We refer to m.t/ as the location of the front at time t > 0 since, roughly, it separates the
regions ¹u.t; x/ � 1º for x � m.t/ and ¹u.t; x/ � 0º for x � m.t/.
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This result was refined in the pioneering works by Bramson [11, 12], who used prob-
abilistic techniques and the connection of (1.2) to branching Brownian motion to analyze
the front position m.t/. In particular, Bramson showed that there exists a constant x1,
depending on the initial condition uin.x/ for (1.2), such that

m.t/ D 2t � 3
2

log t C x1 C o.1/ as t !1. (1.7)

This asymptotic expansion holds as long as the initial conditions uin.x/ decay sufficiently
fast to zero as x!1. We also mention the related work by Uchiyama [52] and Lau [35],
based on PDE techniques, and more recent refinements and alternative proofs of Bram-
son’s result in [8, 27, 29, 44–46], which use both probabilistic and PDE methods. Very
recently, spectral techniques have been applied to study the “Bramson shift” in [4–6],
including some problems that do not obey the comparison principle.

In particular, it was shown in [27, 45] that convergence in (1.5) is only algebraic in
time:

ju.t; x Cm.t// � U�.x/j �
C.1C jxj/e�x

p
t

; x > 0: (1.8)

The more precise results in [27] show that the convergence rate cannot be improved to
an exponential-in-time rate: even convergence in shape to a traveling wave does not hold
beyond the order O.t�1/. The algebraic rate of convergence of the solution to (1.2) to a
shift of a traveling wave is closely related to the fact that FKPP fronts are “pulled” – that
is, the long time behavior of the solutions is governed by the behavior far ahead of the
front, where u is small. Hence, the problem is not compact in a certain sense, making the
algebraic-in-time (rather than exponential) rate of convergence natural.

The “pulled” behavior should be contrasted with the class of equations of the form
similar to (1.2):

vt D vxx C f .v/ (1.9)

but with solutions that behave as “pushed fronts” – that is, the long time behavior of the
solutions is governed by the behavior at the front, where u is neither small nor approx-
imately 1. An example of such an f is a bistable nonlinearity of the form f .v/ D

v.1 � v/.� � v/ with some � 2 .0; 1/. Unlike the Fisher-KPP equation, in the pushed
cases solutions to the initial value problem for (1.9) with a rapidly decaying initial condi-
tion v.0; x/ D vin.x/ converge to a shift of the traveling wave Uf .x/ for (1.9) exponen-
tially fast in time: there exists ! > 0 such that

jv.t; x Cmf .t// � Uf .x/j � Ce
�!t : (1.10)

Moreover, the front location has the asymptotics

mf .t/ D cf t C x1 as t !1; (1.11)

without any logarithmic-in-time correction. The rate of convergence in (1.10) is expo-
nential in time precisely because the fronts are “pushed,” so that the long time behavior
is determined by what happens in a compact region around the front, and not by the
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tail behavior as x ! 1. We refer to the monograph [37] and extensive presentations
in [19, 48] for, respectively, an applied mathematics and a physics perspective on pushed
and pulled fronts, and to [24] for a recent mathematical analysis, among many other ref-
erences.

The pulled-to-pushed-fronts transition in the Burgers-FKPP equation. As we have men-
tioned, the long time behavior of the reaction-diffusion equations that admit either pulled
or pushed fronts is reasonably well-understood, at least on an intuitive level. An inter-
esting aspect of the Burgers-FKPP equation (1.1) is that it exhibits a transition from the
pulled to pushed behavior at ˇc D 2.

The behavior of traveling waves for (1.1) already illustrates the change in behavior
at ˇc D 2. For a given ˇ 2 R, the Burgers-FKPP equation (1.1) admits traveling wave
solutions for all c � c�.ˇ/, with minimal speed

c� D

8<: 2 if ˇ � 2;
ˇ

2
C
2

ˇ
if ˇ � 2:

(1.12)

The minimal speed traveling wave �ˇ satisfies

�c��
0
ˇ C ˇ�ˇ�

0
ˇ D �

00
ˇ C �ˇ � �

2
ˇ ; �ˇ .�1/ D 1; and �ˇ .1/ D 0: (1.13)

Once again, the solution to (1.13) is unique only up to a translation in x. We fix the
normalization by requiring that �ˇ .0/ D 1=2. It happens that the traveling wave profile
for ˇ � 2 is explicit. Indeed, one can check by direct computation that

�ˇ .x/ D
1

1C eˇx=2
for ˇ � 2. (1.14)

On the other hand, when ˇ < 2, the profile of the minimal speed traveling wave is, to the
best of our knowledge, not explicit, and the asymptotics of �ˇ as x !1 are no longer
purely exponential, being given by

�ˇ .x/ � .Ax C B/e
�x as x !1 for ˇ < 2, (1.15)

with some A > 0 and B 2 R that depend on ˇ. This was shown, for instance, in [42] by
a phase plane analysis. It is discussed further in Appendix A.

As explained in [24, Remark 1], a quantitative mathematical criterion for a traveling
wave profile Uc.x/, which moves with a speed c � 0, to be pushed is that

Uc.x/e
cx=2
2 L2.R/: (1.16)

Otherwise, a traveling wave is pulled. We will see the motivation behind the criterion
(1.16) in the discussion of the long time behavior of the solutions to (1.1) for ˇ > 2, which
is contained in Section 7. According to this classification, the Burgers-FKPP traveling
waves are pushed for ˇ > 2, and pulled for ˇ � 2, as can be seen from (1.14) and (1.15).
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While the case ˇ D 2 obviously fails the pushed front criterion (1.16), it has an addi-
tional property distinguishing it from the case ˇ < 2. The traveling wave, still given by

�2.x/ D
1

1C ex
(1.17)

due to (1.14), satisfies the weaker condition (cf. (1.16), recalling that c� D 2 when ˇ D 2)
that

�2.x/e
x
D

ex

1C ex
2 L1.R/: (1.18)

As we will see, this reflects a very different long time behavior of the solutions to (1.1) at
ˇ D 2 compared both to ˇ < 2 and ˇ > 2. Borrowing the terminology of [39], we will
refer to such “dual nature” fronts at ˇ D ˇc as “pushmi-pullyu" fronts.

The large time behavior of the solutions. We now describe the main results of this paper
on the large time behavior of the solutions to the Burgers-FKPP equation (1.1) with
ˇ ¤ 0 and rapidly decaying initial conditions, generalizing the results on the standard
Fisher-KPP equation (1.2) discussed above. The main new feature is the aforementioned
transition from the pulled to pushed behavior at ˇc D 2. The analysis at ˇ D ˇc turns out
to be surprisingly delicate.

The study of the large time behavior in the present paper relies, in particular, on the
notion of steepness of the solution. While such arguments date back to the original KPP
paper [34], we were to a large extent motivated by the definition in the recent paper of
Giletti and Matano [26]. As we will only need it for smooth functions, we can formulate
their notion as follows. Let us denote by W the class of C 1 decreasing functions u.x/,
x 2 R, such that

lim
x!�1

u.x/ D 1; lim
x!1

u.x/ D 0: (1.19)

Let W be its closure in L1. Given two functions u1; u2 2 W , we say that u1 is steeper
than u2 if

ju01.u
�1
1 .z//j > ju

0
2.u
�1
2 .z//j for all z 2 .0; 1/. (1.20)

In other words, the graph of u1.x/ is steeper than the graph of u2.x/ when compared at
each fixed level z 2 .0; 1/, rather than at a fixed point x 2 R. This notion is translation
invariant; if u1 is steeper than u2, it is also steeper than any translate u2.� C h/, with
a fixed h 2 R. For u1; u2 2 W , we say that u1 is steeper than u2 if u1 and u2 can be
approximated by C 1 functions u1;" and u2;" as "! 0 such that u1;" is steeper than u2;"
for all ".

Equation (1.1) has the following important property.

Proposition 1.1. Let u1.t; x/ and u2.t; x/ be the solutions to (1.1) with the correspond-
ing initial conditions u10; u20 2 W . If u10 is steeper than u20, then u1.t; �/ is steeper
than u2.t; �/ for all t > 0.

This result was essentially proved for the classical Fisher-KPP equation (1.2) in the
original KPP paper [34]. For the convenience of the reader, we present the proof for the
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Burgers-FKPP case in Section 2. An interesting aspect here is that while the steepness
comparison is used throughout the paper, most of its applications are not in the spirit of
the elegant intersection number type arguments but to produce estimates. A novel element
of the use of these ideas in the present paper is their quantitative application. In contrast to
the qualitative arguments used in previous works, we use “steepness” to obtain estimates
on u and integral quantities involving it. An exception is the proof of Proposition 1.1 itself
and its consequences discussed in Section 2.

The main result of the present paper is the following:

Theorem 1.1. Let u.t; x/ be the solution to (1.1) with initial condition uin 2W such that
uin is steeper than the minimal speed traveling wave �� . Then, for each ˇ � 2, there exists
a constant x1 that depends on ˇ and on the initial condition uin such that

lim
t!1

u.t; x Cmˇ .t// D �ˇ .x/; (1.21)

with the function mˇ .t/ given by

mˇ .t/ D 2t �
3
2

log.t C 1/ � x1 C o.1/ as t !1 (1.22)

if ˇ < 2, and by

mˇD2.t/ D 2t �
1
2

log.t C 1/ � x1 C o.1/ as t !1: (1.23)

For ˇ > 2, there exists ! > 0, which depends on ˇ but not on uin, and K > 0, which
depends on both ˇ and uin, such that

sup
x2R
ju.t; x/ � �ˇ .x � c�t � x1/j < Ke

�!t : (1.24)

We note that the class of initial data considered in Theorem 1.1 includes the Heaviside
initial data: uin.x/D 1.x < 0/. Indeed, it is easy to see that uin is the limit in L1 as "! 0

of

uin;".x/ D

8̂̂<̂
:̂
1 if x � �";

�ˇ
�

x
"2�x2

�
if x 2 .�"; "/;

0 if x � ";

and uin;" is clearly steeper than �ˇ for " < 1.
Theorem 1.1 reflects the different nature of the Burgers-FKPP fronts we have dis-

cussed above for various values of ˇ 2 R. For ˇ < 2, the solution is pulled and the front
location has the same asymptotics (1.22) as (1.7) for the standard Fisher-KPP equation
(1.2). For ˇ > 2, the solution is pushed and the exponential-in-time convergence to the
traveling wave (1.24) agrees with what we have seen in (1.10) for pushed fronts. The new
asymptotics (1.23) for the “pushmi-pullyu” solutions at ˇ D ˇc is different from both
these cases.

One may ask if the asymptotics (1.22) and (1.23) can be refined, as was done in [7, 8,
19, 27, 45] for the standard Fisher-KPP equation (1.2). It seems that this is possible using
the fascinating, if formal, technique of [8]. Arguing in the manner of [8], it turns out that
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the o.1/ terms in the expansion of mˇ .t/ are exactly the same as in the Fisher-KPP case
when ˇ < 2; however, they are different when ˇ D 2. In this “pushmi-pullyu” case, one
finds

m2.t/ D 2t �
1

2
log t � x1 �

p
�

2
p
t
C
1 � log 2

4

log t
t
C o

�
log t
t

�
: (1.25)

The first terms in the expansion above agree with the formal computation in [19], per-
formed by a completely different method. While the error in [19] is given as O.1=t/, and
the O..log t /=t/ correction seems to be missing, it is tempting to conjecture that (1.25) is
universal for the “pushmi-pullyu” situations, such as, for instance, the reaction-diffusion
equation (1.28) below. The application of the formal technique of [8] to derive (1.25) is
contained in Section 8.

We should mention that the convergence of the solution to the Burgers-FKPP equation
(1.1) to a traveling wave was studied in [36] using the matched asymptotic expansions.
Their formal results agree with Theorem 1.1 in the cases ˇ < 2 and ˇ > 2 but unfortu-
nately overlook some of the details in the case ˇ D 2, leading to an incorrect prediction.
On the other hand, as we have mentioned, the matched asymptotics analysis in [19, 37]
predicts the shift .1=2/ log t for the “pushmi-pullyu" transition situations, such as (1.28)
below, mimicking, in a certain sense, the Burgers-FKPP equation at ˇ D 2.

Connection to other pulled-to-pushed transition problems. The Burgers-FKPP equation
at ˇ D 2 is not the only one example of a “pushmi-pullyu” front. A well-known instance
is a particular generalized Fisher nonlinearity considered in [28]:

ut D uxx C u.1 � u/.1C au/: (1.26)

Here, the situation is qualitatively and even quantitatively extremely similar to the
Burgers-FKPP picture: traveling waves exist for all c � c�.a/, with c�.a/ D 2 for all
0 � a � 2, and

c�.a/ D
p
a=2C

p
2=a for a > 2, (1.27)

as in (1.12). Even the traveling wave profile for a D 2 is given exactly by �ˇD2 in (1.17).
As explored in [19], (1.26) is a special case of the more general class of equations

ut D uxx C u.1 � u
n/.1C aun/; (1.28)

in which the pulled-to-pushed transition occurs at aD nC 1: when a� nC 1, the minimal

speed is c� D 2, and when a > n C 1, c� D
q

a
nC1
C

q
nC1
a
> 2. In the critical case

a D nC 1, the corresponding traveling wave is explicit,

�.x/ D .1C enx/�1=n; (1.29)

with the same purely exponential decay as in (1.17).
Numerous other examples, including the pushed-pulled transition for systems of

reaction-diffusion equations arising in chemistry and biology, are discussed in [48, Sec-
tion 3.13]. We also mention the repulsive Keller–Segel-FKPP equation that was recently
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used to model the spread of a population in which individuals reproduce and diffuse,
influenced by a preference for low population density regions with strength j�j. This is
seen, for instance, in slime molds [33] and bacteria [54]. Origins of some other similar
chemotaxis models have been discussed in [22, 23]. The pushed-pulled transition at the
level of traveling waves has been shown in [31]: there exists a threshold �0 > 0 such that,
when j�j < �0, the fronts are pulled, while, as �! �1, fronts are pushed. In the same
vein is a system of equations considered in [10]: one equation is a Fisher-KPP equation
for T with drift u and the other, which governs u, satisfies a Burgers type equation with a
Boussinesq-type forcing depending on T . Actually, this specializes to (1.1) for a certain
choice of parameters. As with the Keller–Segel-FKPP, a pushed-pulled transition occurs.
In both models, the pushed-pulled analysis in [10] is performed only at the level of the
traveling wave, which is a much simpler setting. The Cauchy problem, on the other hand,
appears to require new ideas.

A matched asymptotic analysis in [19, 37] predicts the results as in Theorem 1.1 to
hold for the long time behavior of the solutions of equations at the pushed-pulled transi-
tion, such as (1.28). However, to the best of our knowledge, there are no rigorous results
with this precision in any of such critical cases. The best result in this direction seems to
be the very recent paper [25], which shows that when aD 2, the level sets of the solutions
to (1.26) are located at a position

m.t/ D 2t � 1
2

log t C o.log t / as t !1.

As discussed in detail in [5, 6], the threshold cases that separate the pulled and pushed
fronts seem to be also outside the scope of the currently available spectral methods.

Comments on the proofs. Let us comment on the strategy of the proof of the three cases in
Theorem 1.1, in the order of increasing difficulty and intricacy. The case ˇ > 2 falls into
the category of pushed fronts, and the proof follows the classical strategy of [47, 49, 50],
with appropriate modifications.

For ˇ < 2 in Theorem 1.1, we use an extension of the arguments in [29, 44] for the
Fisher-KPP equation, approximating the dynamics by the Dirichlet problem for the linear
heat equation on a half-line. The Burgers drift term causes a difficulty, since the lineariza-
tion strategy used, for instance, in [27, 29, 30, 44, 45] taking out the spatial exponential
decay in the solution seems insufficient for 0 < ˇ < 2. To overcome this, we pass to the
moving frame x ! x � 2t , setting

yu.t; x/ D u.t; x C 2t/; (1.30)

and introduce a weighted Hopf–Cole transform

v.t; x/ D exp
�
x C

ˇ

2

ˆ 1
x

yu.t; y/ dy

�
yu.t; x/; (1.31)

combining the standard Hopf–Cole transform for the heat equation and the exponen-
tial weight used in the standard Fisher-KPP arguments. It turns out that if the initial
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condition uin for (1.1) is steeper than the traveling wave �ˇ , then v.t; x/ satisfies a differ-
ential inequality:

vt � vxx ; (1.32)

as in Proposition 3.1 below. We stress that the steepness comparison of the initial condi-
tion to a traveling wave plays a crucial role in showing that v.t; x/ satisfies the differential
inequality (1.32).

With (1.32) in hand, we are able to construct upper and lower barriers in the self-
similar variables for the linearized equation for v.t; x/ on the half-line, and then the
convergence in the tail implies the convergence in the bulk due to the pulled-front nature
of the dynamics, as in [44]. Interestingly, this last step also utilizes the assumption that
the initial condition, and hence the solution, is steeper than the minimal speed traveling
wave, in an explicit quantitative way. Qualitatively, the case ˇ < 2 is similar to the stan-
dard Fisher-KPP equation, and the weighted Hopf–Cole transform gives a tool to see that.
However, the repeated use of the steepness comparison is something new in this argument
for the Burgers-FKPP equation.

The weighted Hopf–Cole transform also indicates the technical reason for the transi-
tion at ˇ D 2: while it is easy to see from (1.31) that v.t; x/! 0 as x ! �1 for ˇ < 2
(recall that yu � 1), in the case ˇ D 2 the function v.t; x/ approaches a positive constant
as x ! �1. This modifies the boundary condition for the linearized problem for the
upper and lower barriers in the self-similar variables, and ultimately leads to the change
in the logarithmic shift from .3=2/ log t to .1=2/ log t at ˇ D 2.

Let us now discuss the ingredients of the proof of Theorem 1.1 in the critical case
ˇ D 2, which is remarkably different from the approach for the standard Fisher-KPP
equation. This analysis is probably the most novel part of the present paper. The first key
observation is that when ˇ D 2, the Burgers-FKPP equation (1.1) has a special structure:
the function

p.t; x/ D exyu.t; x/ (1.33)

satisfies a spatially inhomogeneous conservation law:

pt C .e
�xp2/x D pxx : (1.34)

Here, yu.t; x/ is defined in (1.30). An immediate consequence of (1.34) is a conservation
law for the exponential moment of yu.t; x/:

ˆ
exyu.t; x/ dx D

ˆ
exuin.x/ dx for all t > 0. (1.35)

This conservation law eventually leads to a lower bound for m2.t/ of the form

m2.t/ � 2t �
1
2

log t CO.1/ as t !1; (1.36)

see the proof of Lemma 5.2 in Section 5.3 below.
A matching upper bound for m2.t/ is related to the behavior of p.t; x/. Note that,

together with the explicit expression (1.17) for the profile �2.x/, the convergence to a
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traveling wave in shape in (1.21) yields, roughly,

p.t; 0/ � exp.�.2t �m2.t///: (1.37)

Thus, an upper bound of the form

m2.t/ � 2t �
1
2

log t CO.1/ as t !1 (1.38)

would follow from an L1-bound on p.t; x/ of the form

p.t; x/ �
C
p
t
: (1.39)

Such decay, while natural to expect in view of (1.34), is not automatic for solutions of
mass-conserving advection-diffusion equations, even if the advection is bounded: see the
end of Section 5.1 for simple examples of such equations with solutions that do not decay
in time.

The proof of (1.39), presented in Section 5, turns out to be rather intricate. While
(1.34) looks like a degenerate viscous conservation law, we have been unable to adapt the
methods of [16] or [32] to (1.34) and instead we take a different approach. The first step is
a relative entropy computation inspired by [17,41] where it was used for linear advection-
diffusion equations. An unusual twist is that we compute the relative entropy not with
respect to another solution but to a supersolution to (1.34). This leads to a weighted dissi-
pation inequality for the function

'.t; x/ D
p.t; x/

�.t; x/
; where �.t; x/ D 1 � u.t; x C 2t/; (1.40)

of the form
d

dt

ˆ
'.t; x/2�.t; x/ dx � �2

ˆ
'x.t; x/

2�.t; x/ dx: (1.41)

The dissipation identity (1.41) is similar to that for the standard heat equation, where it
takes the form

d

dt

ˆ
'.t; x/2 dx � �2

ˆ
'x.t; x/

2 dx; (1.42)

that is, as in (1.41) but without the weight �.t; x/. In the latter case, (1.42) combined with
the Nash inequality and a standard duality argument directly leads to the temporal decay
rate t�1=2 in R. Here, the time-dependent weight �.t; x/ that appears in (1.41) is degen-
erate as x ! �1, so the standard Nash inequality cannot be used. Instead, we obtain a
Nash-type inequality for weighted spaces for a certain class of degenerate weights: see
Proposition 5.9 below. The weights need to satisfy certain quantitative assumptions, and
we need to verify that the dynamics do not take the weight �.t; x/, defined in (1.40),
out of the class of the admissible weights or make the constants in the weighted Nash
inequality in Proposition 5.9 degenerate as t !1. Applying the weighted Nash inequal-
ity in (1.41) leads to the appropriate decay of '.t; x/ in a weighted L2-space. However,
the nature of the Nash inequality leads to an extra delay in time, before the decay sets in,
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which depends on the initial condition. This, among other issues, prevents us from using
the duality argument to establish the weightedL1-decay of '.t; x/ from theL2-estimate.
Instead, it comes from additional ad hoc arguments, first establishing the bound at a large
time t 0 less than, but comparable to, t and then extending it to the final time t . The decay
of p.t; x/ follows from that of '.t; x/ and from bounds on the weights.

An extra technical complication is that the function �.t; x/ appears in the denominator
in the definition (1.40) of the function '.t; x/ but vanishes as x ! �1. As a result, the
L2-norm of '.t; x/ is actually infinite for a large class of interesting initial conditions and
extra approximations have to be used to deal with this issue. At this stage, the assumption
that uin.x/ D 1 for x � L1 is actually not a simplification but a complication that cannot
be avoided if one wants to include the Heaviside function into the class of admissible
initial conditions. The need to control the behavior in the back of the front is another
reflection of the “pushmi-pullyu” nature of the solution.

Organization of the paper. This paper is organized as follows. Section 2 uses the steep-
ness comparison arguments to prove Proposition 1.1 and convergence of the solution to a
traveling wave in shape. Section 3 describes the weighted Hopf–Cole transform leading
to the differential inequality (1.32). The proof of Theorem 1.1 for ˇ < 2 is contained in
Section 4. Section 5 is devoted to the decay estimates of the solutions to the inhomo-
geneous viscous conservation law (1.34) that appears in the case ˇ D 2. It is here that
we prove the aforementioned L1-decay of the solutions to (1.34). Section 6 uses these
results to prove Theorem 1.1 for ˇ D 2, bootstrapping the bounds (1.36) and (1.38) to the
precise asymptotics (1.23). The case ˇ > 2 is considered in Section 7. Section 8 uses the
techniques of [8] to obtain, by formal arguments, further corrections to the front location
asymptotics given in Theorem 1.1 for ˇ � 2. The result for ˇ < 2 is identical to the stan-
dard Fisher-KPP equation but is different for ˇ D 2. Finally, Appendix A contains some
basic facts about the traveling waves for the Burgers-FKPP equation.

2. Convergence to a traveling wave in shape

In this section, as a preliminary step to the proof of Theorem 1.1, we use a strategy
inspired by the original KPP paper [34] to show convergence in shape of a solution to the
Burgers-FKPP equation to a traveling wave. As the first step, we prove Proposition 1.1.

The proof of Proposition 1.1. It is enough to assume that u10;u20 2W by standard density
arguments. Let u1.t; x/ and u2.t; x/ be the solutions to (1.1) with the respective initial
conditions u10; u20 such that u10 is steeper than u20. First, we note that since the initial
conditions are decreasing, both u1.t; x/ and u2.t; x/ are decreasing and have the left and
right limits as in (1.19), so that both u1.t; �/ and u2.t; �/ lie in W .

Recall the definition (1.20) of “steeper”. To show that u1.t; �/ is steeper than u2.t; �/
for any t > 0, consider the functions

w.t; xI k0/ D u1.t; x/ � u2.t; x C k0/; q.t; x/ D u1.t; x/C u2.t; x C k0/;
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for a fixed k0 2 R. The function w.t; xI k0/ satisfies

wt C
ˇ

2
.qw/x D wxx C w � qw (2.1)

with initial condition

w.0; xI k0/ D u10.x/ � u20.x C k0/: (2.2)

Since u10 is steeper than u20, it is also steeper than u20.� C k0/. Therefore, there exists
x0 such that

w.0; xI k0/

´
> 0 for all x < x0;

< 0 for all x > x0.

Asw.t; xIk0/ is a solution to the parabolic equation (2.1), a consequence of [1, Theorems
A and B] is that the functionw.t;xIk0/ has exactly one zero y.t Ik0/ for all t > 0. Indeed,
[1] shows that the number of zeros is nonincreasing and that a zero may only disappear
at a time t0 > 0 when two zeros “collide.” Hence w.t; xI k0/ > 0 for all x < y.t I k0/

and w.t; xI k0/ < 0 for all x > y.t I k0/, with y.0I k0/ D x0. In addition, we have

@xu1.t; y.t I k0// < @xu2.t; y.t I k0//: (2.3)

Since this is true for all k0 2 R, it follows that u1.t; �/ is steeper than u2.t; �/.

A standard approximation argument shows the following.

Corollary 2.1. Let v.t; x/ and u.t; x/ be the solutions to (1.1) with respective initial
conditions vin 2W and uin.x/D 1.x � 0/. Assume that vin.x/ is steeper than the minimal
speed traveling wave �ˇ .x/. Then for any t > 0 the solution v.t; �/ is steeper than �ˇ ,
and is less steep than u.t; x/.

Convergence in shape. We now establish convergence of the solution in shape to a trav-
eling wave.

Proposition 2.2. Let u.t; x/ be the solution to (1.1) with initial condition uin 2W that is
steeper than the minimal speed traveling wave �ˇ .x/, or with uin.x/ D 1.x � 0/. Then
there exists a function mˇ .t/ such that Pmˇ .t/! c�.ˇ/ as t !1 and

u.t; x Cmˇ .t//! �ˇ .x/ as t !1, uniformly on R. (2.4)

Here, �ˇ .x/ is a solution to (1.13) with minimal speed c� D c�.ˇ/.

Corollary 2.1 shows that it suffices to consider the solution u.t; x/ to (1.1) with ini-
tial condition u.0; x/ D 1.x � 0/. Note that for any � > 0, the function u.�/.t; x/ D
u.t C �; x/ is the solution to (1.1) with initial condition u.�/.0; x/ D u.�; x/ that is less
steep than u.0; x/. It follows that for any t > 0 and � > 0 the function u.t; �/ is steeper
than u.t C �; �/. In addition, u.t; �/ is steeper than the minimal speed traveling wave �ˇ .x/
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for all t > 0. Hence, if for each v 2 .0; 1/ and t > 0, we let x.t; v/ be the unique point
such that u.t; x.t; v// D v, then the function

E.t; v/ D ux.t; x.t; v// < 0 (2.5)

is increasing in t for all v 2 .0; 1/, and

E.t; v/ � NE.v/ WD �0ˇ .�
�1
ˇ .v//: (2.6)

Let nowmˇ .t/ be the position such that u.t;mˇ .t//D 1=2 for all t > 0, and consider
the translate

Qu.t; x/ D u.t; x Cmˇ .t//;

as well as the corresponding inverse �.t; v/ defined by Qu.t; �.t; v// D v for 0 < v < 1.
Observe that �.t; 1=2/D 0 for all t > 0. We see from (2.5)–(2.6) that the function E.t; v/
is negative and increasing in time. Thus, it has a limit

E.t; v/! E1.v/ � NE.v/ D �
0
ˇ .�
�1
ˇ .v// < 0 as t !1. (2.7)

Hence
@�.t; v/

@v
D

1

E.t; v/
!

1

E1.v/
as t !1,

and

�.t; v/ D

ˆ v

1=2

@�.t; v0/

@v0
dv0 !

ˆ v

1=2

dv0

E1.v0/
DW �1.v/: (2.8)

As a consequence, the function Qu.t; x/ also converges uniformly on compact sets to a
limit Qu1.x/:

Qu.t; x/! Qu1.x/ as t !1, (2.9)

with Qu1.x/ determined by
�1. Qu1.x// D x: (2.10)

Moreover, due to (2.7), we have

j�1.v/j D

ˆ v

1=2

dv0

jE1.v0/j
�

ˆ v

1=2

dv0

j NE.v0/j
DW N�.v/: (2.11)

This yields the correct behavior of the limits x !˙1:

Qu1.�1/ D 1; Qu1.1/ D 0: (2.12)

Indeed, considering for example the behavior as x !1, we have

1D lim
x!1

x D lim
x!1

�1. Qu1.x// � N�. Qu1.x//

and N��1.1/ D 0. The argument for x ! �1 is similar.



J. An, C. Henderson, L. Ryzhik 14

Furthermore, as u.t; x/ is strictly decreasing in x and ux.t; mˇ .t// < 0, the function
mˇ .t/ is differentiable in t . Hence, Qu.t; x/ satisfies

Qut � Pmˇ .t/ Qux C ˇ Qu Qux D Quxx C Qu.1 � Qu/: (2.13)

Notice that

Pmˇ .t/ D �
ut .t; mˇ .t//

ux.t; mˇ .t//
D �

ut .t; mˇ .t//

Qux.t; 0/
:

By parabolic regularity theory, the numerator is bounded and, by (2.6) with v D 1=2, the
denominator is bounded away from zero. It follows that Pmˇ is bounded uniformly in t .
Hence, for any sequence tn !1, there is a subsequence tnk !1 and a real number
c 2 R such that Pmˇ .tnk /! c. Using then the convergence (2.9), we deduce that

�c@x Qu1 C ˇ Qu1@x Qu1 D @
2
x Qu1 C Qu1.1 � Qu1/; (2.14)

where we have switched to @ notation to avoid the awkward double subscript.
From (2.14), we see that Qu1.x/ is a traveling wave solution to (1.1) moving with

speed c. It remains to show that c D c�.ˇ/. The key point is that the steepness comparison
argument above applies to any traveling wave solution to

�c�x C ˇ��x D �xx C � � �
2: (2.15)

In other words, if we set

E�.v/ D �
0.��1.v// for 0 < v < 1;

then we know that
E1.v/ � E�.v/

for any � that satisfies (2.15) with some c � c�.ˇ/. Therefore, the limit Qu1.x/ is the
traveling wave that is the steepest among all traveling wave solutions. Lemma A.2 implies
that Qu1.x/ D �ˇ .x/ is the minimal speed traveling wave and thus c D c�.ˇ/. By the
arbitrariness of the sequence tn, it follows that Pmˇ .t/! c�.ˇ/ as t !1. This finishes
the proof of Proposition 2.2.

3. The weighted Hopf–Cole transform

In this section, we discuss a weighted Hopf–Cole transform that will play a key role in the
analysis of the Burgers-FKPP equation for ˇ � 2. Let us recall that the standard Burgers
equation

ut C ˇuux D uxx (3.1)

can be linearized by means of the Hopf–Cole transform. Namely, if u is a solution to (3.1)
then the function

v.t; x/ D exp
�
ˇ

2

ˆ 1
x

u.t; y/ dy

�
(3.2)



Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation 15

satisfies the heat equation
vt D vxx : (3.3)

The second simple observation is that if yu.t; x/ is the solution to the standard Fisher-KPP
equation in a frame moving with speed c� D 2:

yut � 2yux D yuxx C yu � yu
2; (3.4)

then the function
v.t; x/ D exyu.t; x/ (3.5)

satisfies
vt D vxx � e

�xv2: (3.6)

The nonlinear term in (3.6) is negligible for x very large and positive but plays the role
of a large absorption for x very negative. Therefore, the solution to (3.6) should be well
approximated by the solution of the heat equation on a half-line x > 0 with the Dirichlet
boundary condition:

vt D vxx ; x > 0;

v.t; 0/ D 0:
(3.7)

This simple idea is what is driving the convergence to a traveling wave in [27, 29, 44, 45].
The weighted Hopf–Cole transform that we discuss below allows us to adapt this intu-

ition to the Burgers-FKPP equation (1.1) with ˇ � 2, and also shows why the transition
from pulled to pushed fronts happens at ˇ D 2.

We will consider the solution to (1.1) in the reference frame

Qu.t; x/ D u.t; x Cmˇ .t//; (3.8)

centered at

mˇ .t/ D 2t �
r.ˇ/

2
log.t C 1/: (3.9)

Here, we take

r.ˇ/ D

´
3 if ˇ < 2;

1 if ˇ D 2;
(3.10)

in accordance with the different behavior in Theorem 1.1 in these two cases. In the above
reference frame, (1.1) takes the form

Qut �

�
2 �

r.ˇ/

2.t C 1/

�
Qux C ˇ Qu Qux D Quxx C Qu � Qu

2: (3.11)

Motivated by (3.2) and (3.5), we introduce the weighted Hopf–Cole transform

v.t; x/ D exp.�.t; x// Qu.t; x/; �.t; x/ D x C
ˇ

2

ˆ 1
x

Qu.t; y/ dy; (3.12)

that is a combination of (3.2) and (3.5).
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Let us point out one way to see why ˇ D 2 is the critical value by using v. Since Qu is
steeper than �, and � converges exponentially to 1 as x ! �1, we find

�Ct �
ˇ

2
x �

ˇ

2

ˆ 1
x

Qu.t; y/ dy � Ct �
ˇ

2
x:

The constant Ct may depend on t , but not on x. From this, we see that, as x ! �1,

v.t; x/ D eO.1/Cx.1�ˇ=2/ !

8̂̂<̂
:̂
0 if ˇ < 2;

eO.1/ if ˇ D 2;

1 if ˇ > 2:

These differences reflect the three different behaviors in Theorem 1.1: when ˇ < 2, the
nonlinear term (integral of Qu) does not dominate, and when ˇ > 2, the nonlinear term
dominates.

The main result of this section is the following analogue of (3.6) in the standard
Fisher-KPP case. It will allow us to adapt an approximation similar to the linear Dirichlet
boundary problem (3.7) for ˇ < 2 in Section 4 and with a different boundary condition
for ˇ D 2 in Section 6. This will be extremely important for the proof of Theorem 1.1 for
ˇ � 2.

Proposition 3.1. Let u.t; x/ be the solution to (1.1) with ˇ � 2 and the initial condi-
tion u.0; x/ as in Theorem 1.1. Then the function v.t; x/ defined in (3.12) satisfies the
differential inequality

vt � vxx C
r.ˇ/

2.t C 1/
.vx � v/ � 0: (3.13)

As we will see in the proof, it is here, among other places, that the steepness assump-
tion on the initial condition u.0; x/ plays a crucial role, together with propagation of
steepness in Proposition 1.1.

Proof of Proposition 3.1. We claim that the function v.t; x/ satisfies an equation of the
form

vt � vxx C
r.ˇ/

2.t C 1/
.vx � v/ D �G.t; xI Qu/v; (3.14)

where

G.t; xI Qu/ D Qu.t; x/ �
ˇ

2

ˆ 1
x

Qu.t; y/.1 � Qu.t; y// dy: (3.15)

Let us verify that (3.14) holds. We compute

vt D e
�
Qut C

ˇv

2

ˆ 1
x

Qut .t; y/ dy and vx D e
�
Qux C

�
1 �

ˇ

2
Qu

�
v; (3.16)

so that

vxx D e
�
Quxx C

�
1 �

ˇ

2
Qu

�
e� Qux �

ˇ

2
Quxv C

�
1 �

ˇ

2
Qu

�
vx

D e� Quxx C 2

�
1 �

ˇ

2
Qu

�
vx �

�
1 �

ˇ

2
Qu

�2
v �

ˇ

2
Quxv: (3.17)
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Using these identities in (3.11) gives

vt �
ˇv

2

ˆ 1
x

Qut .t; y/ dy �

�
2 �

r.ˇ/

2.t C 1/

��
vx �

�
1 �

ˇ

2
Qu

�
v

�
C ˇv Qux

D vxx � 2

�
1 �

ˇ

2
Qu

�
vx C

�
1 �

ˇ

2
Qu

�2
v C

ˇ

2
v Qux C v � v Qu: (3.18)

To simplify this equation, we integrate (3.11) from x to1 to get
ˆ 1
x

Qut .t; y/ dy D �

�
2 �

r.ˇ/

2.t C 1/

�
QuC

ˇ

2
Qu2 � Qux C

ˆ 1
x

Qu.1 � Qu/ dy: (3.19)

Substituting this back into (3.18) gives, after some algebra,

vt � vxx C
r.ˇ/

2.t C 1/
.vx � v/C ˇv Qux

D
ˇv

2

ˆ 1
x

Qu.1 � Qu/ dy C ˇ Quvx C
ˇ2

2
Qu2v � ˇ Quv � v Qu: (3.20)

Using the second identity of (3.16) in the right side gives

vt � vxx C
r.ˇ/

2.t C 1/
.vx � v/ D

ˇv

2

ˆ 1
x

Qu.1 � Qu/ dy � v Qu; (3.21)

which is exactly (3.14)–(3.15).
Here is the key observation.

Lemma 3.2. If ˇ� 2 and the initial condition u.0;x/ is as in Theorem 1.1, thenG.t;xI Qu/
� 0 for all t > 0 and x 2 R.

Proof. The claim is trivially true for ˇ � 0, so we only consider the case 0 < ˇ � 2. Let
us first show that a traveling wave �ˇ .x/ satisfies the inequality

ˇ

2

ˆ 1
x

�ˇ .y/.1 � �ˇ .y// dy � �ˇ .x/ for all x 2 R. (3.22)

We will prove (3.22) for ˇ < 2, and deduce the conclusion for ˇ D 2 by continuity. Recall
that for ˇ < 2 the traveling wave has the asymptotics (A.24):

�ˇ .x/ � .Ax C B/e
�x as x !1,

with some constants A and B . As ˇ < 2, it follows that there exists L > 0 such that (3.22)
holds for all x � L, and we only need to prove this inequality for x < L.

Next, we integrate the traveling wave equation, with c�.ˇ/ D 2:

��00ˇ � 2�
0
ˇ C ˇ�ˇ�

0
ˇ D �ˇ � �

2
ˇ ;

�ˇ .�1/ D 1; �ˇ .1/ D 0;
(3.23)
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from x to1 to get

�0ˇ .x/C 2�ˇ .x/ �
ˇ

2
�ˇ .x/

2
D

ˆ 1
x

�ˇ .y/.1 � �ˇ .y// dy: (3.24)

Passing to the limit x ! �1 in (3.24), and keeping in mind that �ˇ .�1/ D 1, gives

ˇ

2

ˆ 1
�1

�ˇ .y/.1 � �ˇ .y// dy � �ˇ .�1/ D �
ˇ2

4
C ˇ � 1 D �

�
ˇ

2
� 1

�2
< 0:

Therefore, there exists L1 < 0 so that (3.22) holds for all x < L1. In order to show that
this inequality also holds for L1 < x < L, consider the function

G.x; �ˇ / D �ˇ .x/ �
ˇ

2

ˆ 1
x

�ˇ .y/.1 � �ˇ .y// dy: (3.25)

Note that

G0.x; �ˇ / D �
0
ˇ .x/C

ˇ

2
�ˇ .1 � �ˇ /:

Using (3.23), we obtain

G00.x; �ˇ / D �
00
ˇ C

ˇ

2
�0ˇ � ˇ�ˇ�

0
ˇ D �

2
ˇ � �ˇ � 2�

0
ˇ C

ˇ

2
�0ˇ :

Therefore, if x0 is a critical point of G.x; �ˇ /, then

�0ˇ .x0/ D �
ˇ

2
�ˇ .x0/.1 � �ˇ .x0//;

and

G00.x0; �ˇ / D
2

ˇ
�0ˇ � 2�

0
ˇ C

ˇ

2
�0ˇ D

�
2

ˇ
C
ˇ

2
� 2

�
�0ˇ < 0:

Hence, the only possible critical points of G.x; �ˇ / are local maxima. As G.x/ > 0 for
x > L and x < L1, we deduce that G.x; �ˇ / > 0 for all x 2 R, and (3.22) holds.

To finish the proof of Lemma 3.2, consider the integral

I.t; x/ D

ˆ 1
x

Qu.t; y/.1 � Qu.t; y// dy: (3.26)

To write this integral differently, define Qx by Qu.t; Qx.t; v// D v and note that

Qux.t; Qx.t; v// D E.t; v/ for 0 < v < 1; (3.27)

with E.t; v/ as in (2.5). Then, making the change of variables y 7! v via y D Qx.t; v/, we
find

I.t; x/ D

ˆ 1
x

Qu.t; y/.1 � Qu.t; y// dy D

ˆ Qu.t;x/
0

v.1 � v/
dv

jE.t; v/j

�

ˆ Qu.t;x/
0

v.1 � v/
dv

j NE.v/j
D

ˆ 1
��1
ˇ
. Qu.t;x//

�ˇ .y/.1 � �ˇ .y// dy; (3.28)
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with NE.v/ defined in (2.6). We have used (2.6) in the inequality in (3.28), employing the
assumption that the initial condition is steeper than the minimal speed traveling wave.
Using (3.22) in (3.28) we see that

I.t; x/ �

ˆ 1
��1
ˇ
. Qu.t;x//

�ˇ .y/.1 � �ˇ .y// dy �
2

ˇ
�ˇ .�

�1
ˇ . Qu.t; x/// D

2

ˇ
Qu.t; x/:

(3.29)
We conclude that

G.t; xI Qu/ D Qu.t; x/ �
ˇ

2
I.t; x/ � 0;

finishing the proof of Lemma 3.2, and hence that of Proposition 3.1 as well.

4. The proof of Theorem 1.1 for ˇ < 2

Outline of the proof. In this section, we prove Theorem 1.1 for ˇ < 2. The overall strategy
of the proof is similar to [44] which considers the classical Fisher-KPP equation with
ˇ D 0 but there are also nontrivial differences worth mentioning.

The first step is to get control of the solution on the spatial scales x � O.
p
t /. This

is done using the self-similar variables. The estimates are precise enough to include the
tail behavior of Qu.t; x/ on the intermediate scales x � O.t /, with  2 .0; 1=2/ that are
between the traveling wave scale x � O.1/ and the diffusive scale x � O.

p
t /. Unlike

in [44], in this step we rely crucially on the weighted Hopf–Cole transform and Proposi-
tion 3.1 to construct upper and lower barriers for the solution. The main estimate is the
following:

Lemma 4.1. For ˇ < 2, let Qu.t; x/ be the solution to (3.11) with the initial condition
as in Theorem 1.1. There exist ˛1 > 0 and "0 > 0 such that, for any 0 <  < 1=2 and
" 2 .0; "0/, there exists T"; > 0 such that

j Qu.t; x / � ˛1xe
�x j � "xe

�x for all t > T"; ; (4.1)

where x D .t C 1/ .

The second step is to use the pulled nature of the problem to show that the control of
Qu given in Lemma 4.1 at x D x .t/ induces convergence to a traveling wave on the scales
x �O.1/. Before discussing the modifications required for ˇ ¤ 0, we recall the argument
in [44]. It proceeds by constructing solutions Qu˛ to the same equation as satisfied by Qu
(which in [44] is (3.11) with ˇ D 0), considered on the half-line .�1; .t C 1/ /, with the
boundary condition

Qu˛.t; .t C 1/
 / D ˛xe

�x ;

and with ˛ D ˛1 ˙ " (cf. [44, Section 4]). Then the analogue of (4.1) for ˇ D 0, which
is [44, Lemma 5.1], and the comparison principle imply that

Qu˛1�" � Qu � Qu˛1C":



J. An, C. Henderson, L. Ryzhik 20

One concludes after proving the convergence of Qu˛.t; x/ as t ! 1 to a suitable shift
'˛.x/ of the traveling wave, showing that the shifts for the waves '˛1˙" are O."/ apart
and finally letting "! 0.

Unfortunately, a direct attempt to do this in our setting fails for several reasons. The
convergence of Qu˛ to '˛ in [44] is achieved by the construction of an explicit superso-
lution for the equation for the difference ex. Qu˛ � '˛/. However, the Burgers term in our
context leads to a growth term in this equation when ˇ > 0 (see, in contrast, (4.63) when
ˇ � 0). We bypass this issue by working with the weighted Hopf–Cole transforms of Qu
and the traveling wave. One might be tempted to define Qu˛ as above and then take its
weighted Hopf–Cole transform. However, there is no apparent reason for Qu˛ to be steeper
than the traveling wave, meaning that Lemma 3.2 does not apply, and we cannot deduce
the key differential inequality (3.13). To bypass this difficulty, we work at the level of
the weighted Hopf–Cole transform, defining v˛ solving (3.14) treated as a linear equation
with the Qu terms serving as given coefficients (see (4.29)–(4.31) below), with a suitable
boundary condition at x D .t C 1/ . Proceeding as in [44], we obtain an upper bound
on v˛ given by a shift of the weighted Hopf–Cole transform of the traveling wave and
a decaying term. The lower bound is obtained using yet another steepness comparison.
Afterwards, an additional argument is needed to upgrade this to the convergence of Qu due
to the fact that Qu and v are connected in a nonlocal fashion.

Below, we first prove Lemma 4.1, then apply it to show closeness of the weighted
Hopf–Cole transforms of Qu and the traveling wave �ˇ in Lemma 4.3, and finally deduce
the closeness of Qu and �ˇ from this. For the sake of concreteness, we take Qu.0; x/ D
1.x � 0/. The argument for general initial conditions as in Theorem 1.1 is nearly the
same.

Analysis in the self-similar variables

We start with equations (3.14)–(3.15) and pass to self-similar variables: let

� D log.t C 1/; � D
x

p
t C 1

and !.�; �/ D v.e� � 1; �e�=2/e��=2: (4.2)

In these variables, (3.14)–(3.15) becomes

!� CL! C 3
2
e��=2!�

D e�!

�
ˇ

2

ˆ 1
�e�=2

Qu.1 � Qu/ dy � Qu.e� � 1; �e�=2/

�
; � > 0; � 2 R; (4.3)

with the operator L defined by

L! WD �!�� �
�

2
!� � !: (4.4)

Note that when ˇ D 0, which is the classical Fisher-KPP equation, (4.3) reduces to a local
equation

!� CL! C 3
2
e��=2!� D �e

3�=2�� exp.�=2/!2; � > 0; � 2 R: (4.5)
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In that case, the nonlinear term on the right side is very small for �> 0 but plays the role of
a large absorption for � < 0. This was used in [44] to show that (4.5) is well-approximated
by the linear problem

N!� CL N! C 3
2
e��=2 N!� D 0; � > 0; (4.6)

with the Dirichlet boundary condition N!.�; 0/ D 0. This is the main intuition behind the
proof of the long time asymptotics of ! in [44].

We now collect the ingredients that would allow us to use the arguments of [44].
First, Lemma 3.2 implies that, as long as the initial condition u.0; x/ is steeper than the
minimal speed traveling wave, the right hand side of (4.3) is nonpositive. Hence, the
solution to (4.6) is still a supersolution to (4.3).

Second, the coefficient in the parenthesis on the right side of (4.3) can be bounded
below as follows: by Lemma 3.2, we have

ˆ 1
�e�=2

Qu.1 � Qu/ dy �
2

jˇj
Qu;

leading to

e�
�
ˇ

2

ˆ 1
�e�=2

Qu.1 � Qu/ dy � Qu

�
� �2e� Qu: (4.7)

It follows that the solution to

!� CL! C 3
2
e��=2!� D �2e

�
Qu! (4.8)

is a subsolution to (4.3).
The third observation is that the right side of (4.3) is very small for �� e��=2. To see

this, we first show that, if ˇ < 2, then there exist A > 1 and L > 0 such that

u.t; x/ � Nu.t; x/ WD
A

1C ex�2t�L
for all x 2 R: (4.9)

Indeed, the function Nu.t; x/ satisfies (we set L D 0 momentarily to simplify the notation)

Nut D
2Aex�2t

.1C ex�2t /2
; Nux D �

Aex�2t

.1C ex�2t /2
; Nuxx D �

Aex�2t .1 � ex�2t /

.1C ex�2t /3
:

Hence, as long as ˇ < 2, we may choose A 2 .1; 2=ˇ/ so that

Nut C ˇ Nu Nux � Nuxx � Nu.1 � Nu/ D A
.2 � ˇA/ex�2t

.1C ex�2t /3
� 0 (4.10)

With this choice of A, the function Nu.t; x/ is a supersolution to (1.1) for any L 2 R. Since
A > 1, we can choose L > 0 sufficiently large so that 1.x � 0/ � Nu.0; x/ for all x 2 R.
Then the comparison principle for (1.1) implies that (4.9) holds. As a consequence, we
see that the right side of (4.3) can be bounded by

Qu.t; x/ � min
²
1;

A

1C ex�.3=2/ log.tC1/�L

³
; (4.11)
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whence
ˆ 1
x

Qu.t; y/ dy �

´
C C 3

2
log.t C 1/ � x if x � 3

2
log.t C 1/;

C.t C 1/3=2e�x if x � 3
2

log.t C 1/;
(4.12)

which are double-exponentially small on the scales �DO.e�.
1
2�/� / for any  2 .0; 1=2/

(recall that x D �e�=2).
Finally, the asymptotics in (4.12) yield the approximate Dirichlet boundary condition

for ! at � D �e�.1=2�/� . Indeed, we have

!.�;�e�.1=2�/� / D e��=2 Qu.e� � 1;�e� / exp
²
�e� C

ˇ

2

ˆ 1
�e�

Qudy

³
� C exp¹� � e� .1 � ˇ=2/º: (4.13)

In order to analyze the long time behavior of !, the main point is the following.
The above arguments show that !.�; �/ should be well-approximated by the solution to
the linear problem (4.6) with the Dirichlet boundary condition. The linear operator L,
given by (4.4), is compact and self-adjoint on H 1

0 .e
�2=4d�IRC/. Its spectrum consists

of the eigenvalues 0; 1; 2; : : : ; and its principal eigenfunction is �e��
2=4 (in general, the

eigenfunctions are given by the odd Hermite polynomials). Hence, the dominant behavior
for !.�; �/ as � ! 1 should be given by ˛1�e��

2=4 for some ˛1 depending on the
initial data. This simple picture is complicated by the error terms in (4.3) and the “not
quite zero” boundary condition (4.13). However, they have “fast” decay, so, with careful
analysis, they can be suitably controlled. This is the argument in a nutshell, even though
the details of the proof are more intricate.

In order to carry out this strategy, the authors of [44] require exactly the four
ingredients listed above: equations for the super- and subsolutions (given in our case
by (4.6) and (4.8)), double-exponential decay of the coefficients on the right side of (4.3)
(see (4.11) and (4.12)), and the approximate Dirichlet boundary condition, as in (4.13).
Thus, the strategy of that paper, which involves constructing successively more precise
sub- and supersolutions of ! using the spectral properties of L, can be applied without
alteration. Consequently, we state the following lemma giving the asymptotics of ! and
omit the details.

Lemma 4.2. Let !.�; �/ be the solution of (4.3) on R, with the initial condition !0.�/
such that !0.�/ D 0 for all � > A for some A > 0, and !0.�/ D O.e.1�ˇ=2/�/ for � < 0.
Then, for ˇ < 2, there exists a constant ˛1 > 0 and functions h and R such that

!.�; �/ D .˛1 C h.�//�e
��2=4

CR.�; �/e��
2=6; � � 0; (4.14)

and, for any  0 2 .0; 1=2/,

lim
�!1

h.�/ D 0 and jR.�; �/j � C 0e
�.1=2� 0/� :
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The proof of Lemma 4.1. We now establish Lemma 4.1 using Lemma 4.2. Let us recall,
from (3.12) and (4.2), that

v.t; x/ D exp
�
x C

ˇ

2

ˆ 1
x

Qu.t; y/ dy

�
Qu.t; x/ D

p
t C 1!

�
log.t C 1/;

x
p
t C 1

�
:

It follows from (4.12) that we can take T" sufficiently large, so that when t > T", we have

e�C.tC1/
3=2e�.tC1/

p
t C 1!

�
log.t C 1/;

x
p
t C 1

�
� e
�
ˇ
2

´1
x
Qudy

v.t; x / D e
x Qu.t; x / (4.15)

and

ex Qu.t; x / D e
�
ˇ
2

´1
x
Qudy

v.t; x /

� eC.tC1/
3=2e�.tC1/

p
t C 1!

�
log.t C 1/;

x
p
t C 1

�
; (4.16)

recalling that x D .t C 1/ . Using (4.15)–(4.16) first, and then recalling Lemma 4.2,
yields

jex Qu.t; x / � ˛1x j �

ˇ̌̌̌
ex Qu.t; x / �

p
t C 1!

�
log.t C 1/;

x
p
t C 1

�ˇ̌̌̌
C
p
t C 1!

�
log.t C 1/;

x
p
t C 1

�
je

x2
4.tC1/ � 1j

C

ˇ̌̌̌
p
t C 1!

�
log.t C 1/;

x
p
t C 1

�
e

x2
4.tC1/ � ˛1x

ˇ̌̌̌
� C

�
.t C 1/2e�.tC1/



C
x2

4.t C 1/

�
!

�
log.t C 1/;

x
p
t C 1

�
C

�
jh.log.t C 1//j C

p
t C 1

x
jR.�; x=

p
t /j

�
xe
�

x2
6.tC1/ : (4.17)

Using the fact that h.log.t C 1//! 0 and choosing  0 2 .0; /, we bound the second term
on the right side above by

p
t C 1

x
jR.�; x=

p
t /j � C 0.t C 1/

�.� 0/
! 0 as t !1:

To handle the first term on the right side of (4.17), we simply notice that ! is bounded due
to Lemma 4.2 and the time-dependent terms in front of ! tend to zero. This gives (4.1).

From the scales x � O.t / to x � O.1/

The next step is to pass from the control of the solution on the spatial scales x � O.t /,
provided by Lemma 4.1, to the spatial scales x � O.1/ using the pulled nature of the
Burgers-FKPP equation for ˇ < 2.
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The arguments are a bit different for ˇ � 0 and ˇ 2 .0; 2/. We first discuss the latter
case where the arguments deviate from [44], as discussed in the outline of this section,
and later explain why the case ˇ < 0 is quite similar to what was done in [44] for ˇ D 0,

The case 0 < ˇ < 2. We are going to use an argument inspired by [44] but we will only
apply it after an application of the weighted Hopf–Cole transform, and the conclusion is
different as a result. We take a traveling wave �ˇ .x/, and shift it into the moving frame:

'˛.t; x/ D �ˇ .x C �˛.t//; (4.18)

leaving the definition of �˛.t/ open for the moment. This function satisfies

@t'˛ � @
2
x'˛ �

�
2 �

3

2.t C 1/

�
@x'˛ C ˇ'˛@x'˛ � '˛ C '

2
˛

D

�
3

2.t C 1/
C P�˛

�
@x'˛: (4.19)

Next, we define its Hopf–Cole transform as

 ˛.t; x/ D e
�˛.t;x/'˛.t; x/; �˛.t; x/ D x C

ˇ

2

ˆ 1
x

'˛.t; y/ dy; (4.20)

Noticing that

@x'˛.t; x/ D �
0
ˇ .x C �˛.t//; @t'˛.t; x/ D P�˛.t/�

0
ˇ .x C �˛.t// D

P�˛.t/@x'˛.t; x/;

(4.21)
we obtain an equation for the function  :

@t ˛ � @
2
x ˛ C

3

2.t C 1/
.@x ˛ �  ˛/ �

ˇ ˛

2

ˆ 1
x

'˛.1 � '˛/ dy C  ˛'˛

D
ˇ P�˛e

�˛'˛

2

�ˆ 1
x

@x'˛ dy

�
C e�˛@x'˛ P�˛

� e�˛
�
�
ˇ

2
@x'˛'˛ C

�
1 �

ˇ

2
'˛

�2
'˛ C 2.1 �

ˇ

2
'˛/@x'˛ C @

2
x'˛

�
C

3e�˛

2.t C 1/

�
@x'˛ �

ˇ

2
'2˛

�
�
ˇe�˛'˛

2

ˆ 1
x

'˛.1 � '˛/ dy C e
�˛'2˛

D e�˛
�
P�˛ C

3

2.t C 1/

��
�
ˇ

2
'2˛ C @x'˛

�
C
ˇe�˛'˛

2

�
@x'˛ �

ˇ

2
'2˛ C 2'˛ �

ˆ 1
x

'˛.1 � '˛/ dy

�
D �e�˛

�
P�˛ C

3

2.t C 1/

��
2'˛ �

ˆ 1
x

'˛.1 � '˛/ dy

�
: (4.22)

We have used (3.24) in the last step above.
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For each ˛ 2 .˛1=2; 2˛1/, where ˛1 > 0 is defined in Lemma 4.1, we fix �˛.t/ by
the normalization

 ˛.t; .t C 1/
 / D ˛.t C 1/ : (4.23)

We note that, differentiating (4.20) and using the asymptotics (A.24) of �ˇ , it is easy to
check that  ˛ is increasing in x when x � 1. Hence, �˛ is well-defined for t sufficiently
large. In the sequel, we work with ˛ D ˛1 ˙ ", in which case  ˛ approximately matches
v at x D .t C 1/ . Note a difference with [44]: the shift is determined by the value of
 ˛.t; x/ at the point x D .t C 1/ , and not by the value of '˛.t; x/ as in [44].

Next, using the asymptotics (A.24) of �ˇ , we find that

�˛.t/ D � log˛ �
log˛
.t C 1/

C o.t� /; (4.24)

and
j P�˛.t/j �

C

.t C 1/1C
; (4.25)

where C is independent of ˛ over the interval .˛1=2; 2˛1/. In addition, using (A.24)
again, we find that

e�˛
�
'˛ C

ˆ 1
x

'˛.1 � '˛/ dx

�
� C.jxj C 1/: (4.26)

In view of (4.22), (4.25), and (4.26), we find, when jxj � .t C 1/ ,ˇ̌̌̌
@t ˛ � @

2
x ˛ C

3

2.t C 1/
.@x ˛ �  ˛/ �

ˇ ˛

2

ˆ 1
x

'˛.1 � '˛/ dy C  ˛'˛

ˇ̌̌̌
�

C

.t C 1/1�
: (4.27)

Let us also recall that the Hopf–Cole transform v.t; x/ of the function Qu, defined in
(3.12), satisfies (3.14)–(3.15):

vt � vxx C
3

2.t C 1/
.vx � v/D�

�
Qu.t;x/�

ˇ

2

ˆ 1
x

Qu.t;y/.1� Qu.t;y//dy

�
v: (4.28)

For ˛ ¤ ˛1, we define v˛.t; x/ as the solution to (4.28), thought of as a linear equation
for v, with prescribed function Qu.t; x/:

@tv˛ � @
2
xv˛ C

3

2.t C 1/
.@xv˛ � v˛/

D �

�
Qu.t; x/ �

ˇ

2

ˆ 1
x

Qu.t; y/.1 � Qu.t; y// dy

�
v˛ (4.29)

over x < .t C 1/ and t > T" with the boundary condition

v˛.t; .t C 1/
 / D ˛.t C 1/ (4.30)
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and the initial condition
v˛.T"; x/ D v.T"; x/; (4.31)

where T" is that of Lemma 4.1 with " D j˛ � ˛1j.
We now make a couple of observations. First, note that the normalization (4.23) and

the boundary condition (4.30) imply that

v˛.t; .t C 1/
 / D  ˛.t; .t C 1/

 / for all t > T" and " > 0. (4.32)

Next, we claim that for any " > 0, we have

v˛1C".t; x/ > v.t; x/ > v˛1�".t; x/ for all t � T" and x < .t C 1/ . (4.33)

This follows from the fact that v and v˛1˙" satisfy the same linear parabolic equations
(4.28) and (4.29) and the same initial condition (4.31), but take ordered values at the
boundary. Indeed, with the help of Lemma 4.1, we obtain

v.t; .t C 1// D exp
²
.t C 1/ C

ˇ

2

ˆ 1
.tC1/

Qu.t; y/ dy

³
Qu.t; .t C 1/ /

� .˛1 C "=2/.t C 1/
 exp

²
ˇ

2

ˆ 1
.tC1/

Qu.t; y/ dy

³
� .˛1 C "=2/.t C 1/

 exp¹C.t C 1/3=2e�.tC1/


º

� v˛1C".t; .t C 1/
 / (4.34)

for t > T", up to increasing T" to deal with the different exponential factors in the second
line above. A similar argument gives v˛1�".t; .t C 1/

 / < v.t; .t C 1/ /. Thus, compar-
ison yields (4.33), as claimed.

Finally, we observe that

v˛1C".t; x/ �
˛1 C "

˛1 � "
v˛1�".t; x/ for all t � T" and x < .t C 1/ : (4.35)

The above is due to a comparison argument using the fact that the function on the right side
of (4.35) solves the same linear equation as v˛1C", with the same boundary condition,
but with larger initial data. The important consequence of (4.35), along with (4.33), is that

v˛1C".t;�.t C 1/
 / �

˛1 C "

˛1 � "
v˛1�".t;�.t C 1/

 / �
˛1 C "

˛1 � "
v.t;�.t C 1/ /

D
˛1 C "

˛1 � "
exp

²
�.t C 1/ C

ˇ

2

ˆ 1
�.tC1/

Qudy

³
Qu � Ce�

1
2 .1�ˇ=2/.tC1/



: (4.36)

For the last inequality, we have used (4.12).
Let us define, for any " 2 .�1; 1/,

s".t; x/ D v˛1C".t; x/ �  ˛1C".t; x/; x < .t C 1/ ; t > T": (4.37)

The following bound will be crucial for us.
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Lemma 4.3. There exists � > 0 such that, for any " > 0,

s".t; x/ �
C

.t C 1/�
for all t > T" and jxj � .t C 1/ . (4.38)

Proof. We temporarily abuse notation and denote s" D s in this proof. Using (4.27)
and (4.29), we find, for jxj � .t C 1/ ,

st � sxx C
3

2.t C 1/
.sx � s/C s

�
�
ˇ

2

ˆ 1
x

Qu.1 � Qu/ dy C Qu

�
C  

�
Qu � ' C

ˇ

2

�ˆ 1
x

'.1 � '/ dy �

ˆ 1
x

Qu.1 � Qu/ dy

��
�

C

.t C 1/1�
: (4.39)

Using (4.36), we see that

s.t;�.t C 1/ / � Ce�
1
2 .1�ˇ=2/.tC1/



; (4.40)

and, by (4.32),
s.t; .t C 1/ / D 0: (4.41)

Inequality (4.40) is another reminder of the importance of the condition ˇ < 2 here.
Lemma 3.2 tells us that the zero order coefficient in (4.39) is positive:

G.t; x/ D Qu.t; x/ �
ˇ

2

ˆ 1
x

Qu.t; y/.1 � Qu.t; y// dy � 0: (4.42)

In addition, we claim that

. Qu � '/C
ˇ

2

�ˆ 1
x

'.1 � '/ dy �

ˆ 1
x

Qu.1 � Qu/ dy

�
� 0: (4.43)

Indeed, recalling from (4.21) that 'x.t; x/ D �0ˇ .x C �.t//, and using the notation E and
NE set in (2.6), we find

ˆ 1
x

'.1 � '/ dy �

ˆ 1
x

Qu.1 � Qu/ dy

D

ˆ '.t;x/

0

z.1 � z/
dz

j NE.z/j
�

ˆ Qu.t;x/
0

z.1 � z/
dz

jE.t; z/j

�

ˆ '.t;x/

0

z.1 � z/
dz

j NE.z/j
�

ˆ Qu.t;x/
0

z.1 � z/
dz

j NE.z/j

D �

ˆ Qu.t;x/
'.t;x/

z.1 � z/
dz

j NE.z/j
: (4.44)

As we show in (A.23), we have
z.1 � z/

j NE.z/j
�
2

ˇ
; (4.45)

and (4.43) follows from (4.44) and (4.45).
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We deduce from (4.39), (4.42), and (4.43) that s.t; x/ satisfies a differential inequality

st � sxx C
3

2.t C 1/
.sx � s/CG.t; x/s �

C

.t C 1/1�
; (4.46)

withG.t; x/� 0 and boundary conditions (4.40)–(4.41). We can now argue as in [44] that
we can find �; ; " sufficiently small such that, for

Ns.t; x/ D
1

.t C 1/�
cos
�

x

.t C 1/C"

�
; (4.47)

we have
Nst � Nsxx C

3

2.t C 1/
.Nsx � Ns/CG.t; x/Ns �

C

.t C 1/1�
(4.48)

for t � T , up to possibly increasing T . The choice of  occurs in this step. Hence, Ns is a
supersolution of (4.39) and, up to multiplying Ns by a large constant so that s.T; �/� Ns.T; �/,
we have

s.t; x/ � Ns.t; x/ for all t � T and jxj � .t C 1/ :

From this, (4.38) follows, finishing the proof of Lemma 4.3.

By virtue of Lemma 4.3, we have now established that, for t > T" and jxj � .t C 1/ ,

v � v˛1C" D s" C  ˛1C" �  ˛1C" C
C"

.t C 1/�
: (4.49)

The first inequality is due to (4.33) and the second is due to (4.38). We point out that
we do not have a more precise lower bound. This is another place where the steepness
comparison will play a crucial role.

Finally, note that the shifts corresponding to  ˛1˙" satisfy, as in (4.24),

�˛1˙".t/ D � log.˛1 ˙ "/CO.t� /: (4.50)

The end of the proof of Theorem 1.1 for ˇ < 2.

The case 0 < ˇ < 2. The definitions (3.8) of Qu and (4.18) of the difference '˛1 , and the
asymptotics (4.24) of � imply that Theorem 1.1 reduces to the uniform convergence of
Qu � '˛1 to zero on R. So far, we have only shown a weak version of closeness for their
weighted Hopf–Cole transforms in (4.49). Indeed, notice that

 ˛1C".t; .t C 1/
 / � v.t; .t C 1/ / D ."C o.1//t ; (4.51)

where o.1/ vanishes as t !1. It follows that the established inequalities are quite far
apart due to the t factor. We handle this issue now.

Before going into the proof, note that the uniform convergence to zero of Qu � '˛1
reduces to showing that, for any L > 0,

lim
t!1

sup
x2Œ�L;L�

j Qu.t; x/ � '˛1.t; x/j D 0: (4.52)

This is sufficient due to the convergence in shape in Proposition 2.2.



Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation 29

Fix any " 2 .0; ˛1=2/. We note that, due to (4.50), we have

j'˛1.t; x/ � '˛1˙".t; x/j � C" for all t sufficiently large and any x: (4.53)

Hence, it suffices to establish upper bounds on Qu � '˛1C" and '˛1�" � Qu.
We establish the latter first, as it is much simpler. Indeed, note that

'˛1�".t; .t C 1/
 / D exp

²
�.t C 1/ �

ˇ

2

ˆ 1
.tC1/

'˛1�".t; y/ dy

³
 ˛1�".t; .t C 1/

 /

� .˛1 � "/.t C 1/
 exp.�.t C 1/ /:

Thus, due to Lemma 4.1, we have '˛1�".t; .t C 1/
 / < Qu.t; .t C 1/ /. Since Qu is steeper

than �ˇ (recall Proposition 1.1), we get

'˛1�".t; x/ < Qu.t; x/ for all t sufficiently large and x < .t C 1/ ; (4.54)

whence, for t sufficiently large,

sup
x2Œ�L;L�

.'˛1�".t; x/ � Qu.t; x// � 0: (4.55)

Next, we consider the much more involved upper bound on Qu � '˛1C". Fix any x in
Œ�L;L� and t sufficiently large and write

Qu.t; x/ � '˛1C".t; x/

D exp
²
�x �

ˇ

2

ˆ 1
x

Qudy

³
v.t; x/ � exp

²
�x �

ˇ

2

ˆ 1
x

'˛1C" dy

³
 ˛1C".t; x/

D exp
²
�x �

ˇ

2

ˆ 1
x

'˛1C" dy

³
.v.t; x/ �  ˛1C".t; x//

C e�xv.t; x/

�
exp

²
�
ˇ

2

ˆ 1
x

Qudy

³
� exp

²
�
ˇ

2

ˆ .tC1/

x

Qudy

³�
C e�xv.t; x/

�
exp

²
�
ˇ

2

ˆ .tC1/

x

Qudy

³
� exp

²
�
ˇ

2

ˆ .tC1/

x

'˛1C" dy

³�
C e�xv.t; x/

�
exp

²
�
ˇ

2

ˆ .tC1/

x

'˛1C" dy

³
� exp

²
�
ˇ

2

ˆ 1
x

'˛1C" dy

³�
DW I1 C I2 C I3 C I4: (4.56)

As ˇ > 0, we immediately see that
I2 � 0: (4.57)

Hence, we need only bound I1, I3, and I4.
To handle the term I1 in (4.56), we apply (4.49) to find, since ˇ 2 .0; 2/,

I1 �
C"

.t C 1/�
exp

²
�x �

ˇ

2

ˆ 1
x

Qudy

³
�

C"

.t C 1/�
eL: (4.58)
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The term I4 is the next simplest. Using (4.12), we see that

e�xv.t; x/ � C.t C 1/3=2: (4.59)

Using (4.59) and also (A.24) to handle the tail integral over ..t C 1/ ;1/, we obtain

I4 � C.t C 1/
3=2

�
exp

²
�
ˇ

2

ˆ 1
x

Qudy

³
� exp

²
�
ˇ

2

ˆ .tC1/

x

'˛1C" dy

³�
D C.t C 1/3=2 exp

²
�
ˇ

2

ˆ .tC1/

x

'˛1C" dy

³�
1 � exp

²
�
ˇ

2

ˆ 1
.tC1/

'˛1C" dy

³�
� C.t C 1/3=2

�
1 � exp

²
�
ˇ

2

ˆ 1
.tC1/

'˛1C" dy

³�
� C.t C 1/3=2e�.tC1/



: (4.60)

We now handle I3. If the bracketed term in the definition of I3 is nonpositive, there is
nothing to prove as I3 � 0. If the bracketed term is positive, we write

I3 D e
�x Œv.t; x/ �  ˛1C".t; x/�

�

�
exp

²
�
ˇ

2

ˆ .tC1/

x

Qudy

³
� exp

²
�
ˇ

2

ˆ .tC1/

x

'˛1C" dy

³�
C e�x ˛1C".t; x/

�
exp

²
�
ˇ

2

ˆ .tC1/

x

Qudy

³
� exp

²
�
ˇ

2

ˆ .tC1/

x

'˛1C" dy

³�
DW I31 C I32:

The reason for the extra step here is that we do not know a priori that e�xv is bounded;
however, we do know that e�x ˛1C" is.

For I31, we use (4.49), the positivity of the bracketed term, and the fact that the brack-
eted term is smaller than 1 (again recall that ˇ 2 .0; 2/) to find

I31 �
C"

.t C 1/�
e�x

�
exp

²
�
ˇ

2

ˆ .tC1/

x

Qudy

³
� exp

²
�
ˇ

2

ˆ .tC1/

x

'˛1C" dy

³�
� eL

C"

.t C 1/�
:

For I32, we first notice that

e�x ˛1C".t; x/ � Ce
L:

In addition, from (4.54), we see that

exp
²
�
ˇ

2

ˆ .tC1/

x

Qudy

³
< exp

²
�
ˇ

2

ˆ .tC1/

x

'˛1�" dy

³
:

Thus, we find

I32 � Ce
L

�
exp

²
�
ˇ

2

ˆ .tC1/

x

'˛1�" dy

³
� exp

²
�
ˇ

2

ˆ .tC1/

x

'˛1C" dy

³�
:
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Taylor expanding the exponential and using the asymptotics (4.50) of �˛1˙" and (A.24)
of �ˇ , we see that

I32 � CL

ˆ .tC1/

x

.'˛1C" � '˛1�"/ dy � CL":

We conclude that

I3 �
C"e

L

.t C 1/�
C CL": (4.61)

Combining (4.56)–(4.58), (4.60), and (4.61), and increasing t suitably, we obtain

sup
x2Œ�L;L�

. Qu.t; x/ � '˛1C"/ � CL": (4.62)

The claim (4.52) then follows from (4.53), (4.55), and (4.62). This concludes the proof
for ˇ 2 .0; 2/.

The case ˇ � 0. This case is essentially the same, except for some simplifications, so we
only highlight the changes that need to be made. The key estimate is to obtain an upper
bound on

s".t; x/ D e
x. Qu.t; x/ � '˛1C"/:

Now, '˛ is defined so that

'˛.t; .t C 1/
 / D ˛.t C 1/e�.tC1/

�t2�1=4:

In this case �˛ has the same asymptotics as in (4.50). Then s" satisfies

st � sxx C
3

2.t C 1/
.sx � s/C ˇ Qu.sx � s/C s. QuC '˛1C"/

D �ˇs@x'˛1C" � @x'˛1C"

�
P�˛1C" C

3

2.t C 1/

�
�

C

.t C 1/1�
: (4.63)

The last inequality holds when jxj � .t C 1/ for the same reasons as in (4.27) and due to
the fact that ˇ � 0 and @x'˛1C" D �

0
ˇ
� 0. Thus, the same upper bound as in Lemma 4.3

holds.
On the other hand, it is easy to check that Qu > '˛1�" on x < .t C 1/ for t sufficiently

large. This is due to Lemma 4.1, which yields the correct ordering at x D .t C 1/ , and
the fact that Qu is steeper than '˛1�".

The combination of the above with a simpler version of the argument for ˇ 2 .0; 2/
yields the desired convergence. This finishes the proof of Theorem 1.1 when ˇ < 2.

5. The case ˇ D 2: Bounds on the front location

We now turn to the case ˇ D 2, where the analysis is particularly delicate. Let us define
the shift �.t/ by

u.t; 2t � �.t// D 1=2: (5.1)
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Note that, due to the sign convention in (5.1), an upper bound on �.t/ is a lower bound on
the front location and vice versa. Our goal in this section is to prove the following upper
and lower bounds on �.t/.

Proposition 5.1. Let u.t; x/ be the solution to the Burgers-FKPP equation (1.1) with the
initial condition as in Theorem 1.1, and let �.t/ be defined by (5.1). There exists m0 > 0
that depends on u.0; x/ such that

1
2

log t �m0 � �.t/ � 1
2

log t Cm0 for all t � 1. (5.2)

Later, in Section 6, we will improve these bounds to the precise asymptotics of Theo-
rem 1.1:

�.t/ D 1
2

log t C x0 C o.1/ as t !1. (5.3)

Proposition 5.1 is, however, a crucial step in the proof of (5.3). Its proof occupies almost
all the rest of this section and is the heart of this paper. In order to explain the outline of
the proof, we will need to do some preliminary transformations, leading to Lemmas 5.2
and 5.4 below that imply the conclusion of Proposition 5.1. We will discuss their proofs
when we come to their respective statements. As a technical comment, we mention that
without loss of generality we will once again take u.0; x/ D 1.x � 0/.

At the very end of this section, we use Proposition 5.1 to obtain a helpful bound in an
intermediate region in a short Section 5.6.

5.1. Outline of the proof of Proposition 5.1

5.1.1. An exponential moment. We first give a heuristic argument to explain the delay in
the case ˇ D 2 and the role of ˇ. Consider the Burgers-FKPP equation, in the moving
frame x ! x � 2t C �.t/, with an unknown shift �.t/:

Qut � 2 Qux C �
0.t/ Qux C ˇ Qu Qux D Quxx C Qu � Qu

2: (5.4)

To highlight the role of ˇ, we have not yet specified it to the value ˇ D 2. A simple
computation, using only (5.4) and several integration by parts, shows that the exponential
moment

I.t/ D

ˆ
Qu.t; x/ex dx (5.5)

satisfies an ODE

dI.t/

dt
D

ˆ
.2 Qux � �

0.t/ Qux � ˇ Qu Qux C Quxx C Qu � Qu
2/ex dx

D

ˆ
.�2 QuC �0.t/ Qu �

ˇ

2
. Qu2/x � Qux C Qu � Qu

2/ex dx

D

ˆ
.�2 QuC �0.t/ QuC

ˇ

2
Qu2 C QuC Qu � Qu2/ex dx

D

ˆ ��
ˇ

2
� 1

�
Qu2 C �0.t/ Qu

�
ex dx D �0.t/

ˆ
Quex dx D �0.t/I.t/: (5.6)
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In the first equality, we have simply used (5.4). In the second-to-last inequality, we used
the fact that ˇ D 2. In every inequality between, we only integrated by parts and cancelled
terms. Therefore,

I.t/ D I.0/e�.t/; (5.7)

as long as we choose �.0/ D 0. As is clear from (5.6), this algebraic property is specific
to ˇ D 2.

If �.t/ is the “correct frame”, in the sense that Qu.t; x/ converges to a traveling wave,
we expect from the philosophy of the self-similar variables that Qu.t; x/ has asymptotics

Qu.t; x/ �
1

1C ex�x0
e�x

2=.4t/ for t � 1 and x � 0. (5.8)

This indicates that if I.t/ is computed in the correct reference frame, then

I.t/ D

ˆ
ex Qu.t; x/ dx �

ˆ 1
0

ex

1C ex�x0
e�x

2=.4t/ dx � C0
p
t for t � 1, (5.9)

with an explicit constant C0 that depends on x0. For this to be consistent with (5.7), we
should have

�.t/ � 1
2

log t C C1 for t � 1, (5.10)

explaining the .1=2/ log t shift for the front position. The rest of this section and the
following one is a justification of (5.10).

5.1.2. An inhomogeneous conservation law. In order to outline the proof of Proposi-
tion 5.1, we need to introduce a change of variable related to the evolution of mass for the
exponential moment in (5.6). Let u.t; x/ be the solution to the Burgers-FKPP equation
(1.1) with the specific value ˇ D 2, and set

yu.t; x/ D u.t; x C 2t/; (5.11)

which satisfies

yut � 2yux C 2yuyux D yuxx C yu.1 � yu/; (5.12)

Note that we use a slightly different notation here for the shifted function yu rather than Qu.
This is to denote the difference in shift: yu is shifted into the moving frame 2t , while Qu is
shifted to the moving frame 2t � �.t/ matching the front, as, for instance, in the proof of
Proposition 2.2.

The first key observation is that the function

p.t; x/ D exyu.t; x/; (5.13)

satisfies a viscous spatially inhomogeneous conservation law:

pt C .p
2e�x/x D pxx ; (5.14)



J. An, C. Henderson, L. Ryzhik 34

with initial condition
p.0; x/ D ex1.x � 0/: (5.15)

Recall that we assume, without loss of generality, that u.0; x/ D 1.x � 0/. Notice
that (5.14) conserves mass for p.t; x/:

ˆ
p.t; x/ dx D

ˆ
p.0; x/ dx D 1: (5.16)

The normalization (5.1) in terms of yu.t; x/ becomes

yu.t;��.t// D 1=2; (5.17)

which translates into
p.t;��.t// D 1

2
e��.t/: (5.18)

A simple preliminary observation is that the solution to (5.14)–(5.15) satisfies

p.t; x/ � ex for all t � 0 and x 2 R, (5.19)

simply because yu.t; x/ � 1. Note also that p.x/ D ex and

p.x/ D
ex

1C e.x��/
(5.20)

are exact solutions to (5.14) for any shift � 2 R.
The proof of Proposition 5.1 relies on the analysis of the solution to (5.14)–(5.15) and

proceeds in the following steps. First, we prove an upper bound on �.t/.

Lemma 5.2. There exists K1 > 0 such that �.t/ defined by (5.17) satisfies

�.t/ � 1
2

log t CK1 for all t � 1. (5.21)

Lemma 5.2 is proved in Section 5.3. Let us give a brief outline of the proof. It is based
on the conservation (5.16) of the total mass of p.t; x/, together with estimating the mass
of p.t; x/ separately in the regions ¹x < ��.t/º, ¹��.t/ < x < N

p
tº and ¹x > N

p
tº.

First, we will show that the mass of p.t; x/ in the region ¹x > N
p
tº is exponen-

tially small in N by an argument that bounds exponential moments of p. Next, using the
simple exponential bound (5.19), we can check that the mass in the region ¹x < ��.t/º
is bounded above by exp¹��.t/º.

To bound the mass in the middle region, recall that when ˇ D 2, the traveling wave
moving with minimal speed c� D 2 is explicit and is given by (1.14):

�.x/ D
1

1C ex
: (5.22)

From this and the steepness comparison in Proposition 1.1, we immediately deduce the
following useful property.



Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation 35

Lemma 5.3. If u.0; �/ is steeper than � given by (5.22), then, for each v 2 .0; 1/ and
t > 0, we have

u.t; x/ �

8̂̂<̂
:̂
�
1C

1 � v

v
ex�x.t;v/

��1
if x < x.t; v/;�

1C
1 � v

v
ex�x.t;v/

��1
if x > x.t; v/:

(5.23)

Here, x.t; v/ is defined implicitly by v D u.t; x.t; v//.

By Lemma 5.3 and (5.18), we know that

p.t; x/ D exyu.t; x/ �
ex

1C exC�.t/
� e��.t/ for x > ��.t/: (5.24)

It follows that the mass in the region ��.t/ � x � N
p
t is bounded by 2N

p
t e��.t/

(it is easy to prove the weak bound �.t/ < N
p
t , see (5.28) below). Combining all three

bounds and recalling mass conservation (5.16) of p, we deduce that �.t/ must satisfy the
upper bound in Lemma 5.2. The details are given in Section 5.3.

To prove a lower bound for �.t/ we use the following lemma.

Lemma 5.4. There exist C > 0 such that, for all x 2 R and t > 0,

p.t; x/ � C=
p
t : (5.25)

The constant C depends on the initial data nontrivially.

We prove Lemma 5.4 in Section 5.4, and its surprisingly delicate proof is outlined
there. When combined with (5.18), Lemma 5.4 implies the lower bound in Proposition 5.1,

�.t/ � 1
2

log t � C for all t � 1. (5.26)

Let us make a brief comment that the t�1=2 decay rate in (5.25) is standard for
parabolic equations in one dimension, and would be expected for a solution to (5.13).
Nevertheless, the proof of Lemma 5.4 is much less straightforward than one would naively
expect. To illustrate the potential obstacles, notice that (5.14) can be written as

pt C .yup/x D pxx : (5.27)

One might hope to “forget” the connection between yu and p, and prove t�1=2 decay for
linear divergence form advection-diffusion equations of the form (5.27) in general, with
an advection term yu.t; x/ that, say, connects two constants on the left and on the right.
This seems to be a good cartoon for yu.t; x/. However, such decay cannot hold in general.
Indeed, consider the following explicit example. Let

q.x/ D
1

ex C e�x
and v.x/ D �

ex � e�x

ex C e�x
;

so that q.x/ is a steady solution to

qt C .vq/x D qxx :
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The function q.x/ is rapidly decaying at infinity but, of course, it does not decay in time.
This shows that the boundedness or existence of the limits at infinity of yu are not suffi-
cient to determine the decay. It is crucial that yu is negligible on RC and its profile does
not move much – these are, however, exactly the properties that we are trying to prove.
Circumventing these difficulties requires interesting a priori estimates for our specific
problem, which will be discussed in Section 5.4.

To summarize, Proposition 5.1 reduces to Lemmas 5.2 and 5.4 and we prove these
lemmas in the rest of this section.

5.2. Preliminary weak bounds on �

Let us first give some very poor bounds on �.t/ that, at least, ensure that it does not
behave too wildly. These are useful in the sequel.

For a very simple bound, a comparison to the standard KPP equation with ˇ D 0 that
uses monotonicity of u.t; x/ in x implies that

�.t/ � 3
2

log t C C; (5.28)

with a universal constant C .
We now use the conservation of mass for p (5.16) to obtain a lower bound on �.

Recalling Lemma 5.3 and the definition (5.1) of �, we find

p.t; x/ D exyu.t; x/ �
ex

1C exC�.t/
for x < ��.t/.

We emphasize that the proof of Lemma 5.3 is independent of all other lemmas in this
section – it is simply a consequence of the steepness comparison. Therefore, we have

1 D

ˆ 1
�1

p.0; x/ dx D

ˆ 1
�1

p.t; x/ dx

�

ˆ ��.t/
�1

ex

1C exC�.t/
dx D e��.t/

ˆ 0

�1

ex

1C ex
dx �

1

2
e��.t/:

We conclude that
�.t/ � � log 2: (5.29)

The bounds (5.28) and (5.29) will be greatly improved below.

5.3. An upper bound on the shift: The proof of Lemma 5.2

As we have mentioned, the strategy of the proof is to show that if �.t/ is too large then
p.t; x/ cannot have a mass larger than 1=10 in any of the three regions

L D ¹x < ��.t/º; M D ¹��.t/ � x � N
p
tº; R D ¹x > N

p
tº; (5.30)

provided that N is also chosen sufficiently large. This would contradict (5.16). Note that
(5.29) impliesN

p
t � ��.t/ for t � 1 andN sufficiently large, so that the regions above

are well-defined.



Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation 37

For the left region L, we simply apply (5.19) and write
ˆ
L

p.t; x/ dx D

ˆ ��.t/
�1

p.t; x/ dx �

ˆ ��.t/
�1

ex dx D e��.t/: (5.31)

For the middle region M , we also have a simple estimate that uses Lemma 5.3:

ˆ
M

p.t; x/ dx D

ˆ N
p
t

��.t/

exyu.t; x/ dx �

ˆ N
p
t

��.t/

ex

1C exC�.t/
dx

D e��.t/
ˆ N

p
tC�.t/

0

ex

1C ex
dx � CNe��.t/

p
t (5.32)

for all t � 1. We have used (5.28) in the last step above.
Now, we deal with the right region R. First we state a bound on an exponential

moment of p. Fix any m 2 .0; 1=2/ and let

Im.t/ D

ˆ
.emx C e�mx/p.t; x/ dx: (5.33)

We claim that
Im.t/ � Ce

Cm2t : (5.34)

We postpone the proof of (5.34) momentarily and show how to deduce the bound for the
integral over R. For N > 1 large, using (5.33) with m D 1=

p
t gives

ˆ
R

p.t; x/ dx D

ˆ 1
N
p
t

p.t; x/ dx

�

�ˆ 1
N
p
t

ex=
p
tp.t; x/ dx

�1=2�ˆ 1
N
p
t

e�x=
p
tp.t; x/ dx

�1=2
� C

�ˆ 1
N
p
t

e�x=
p
tp.t; x/ dx

�
� C

�ˆ 1
N
p
t

e�Np.t; x/ dx

�1=2
� Ce�N=2: (5.35)

We have used the conservation of mass (5.16) in the last step.
We may now put the estimates (5.31), (5.32) and (5.35) together to obtain

1 D

ˆ 1
�1

p.0; x/ dx D

ˆ 1
�1

p.t; x/ dx

D

ˆ
L

p.t; x/ dx C

ˆ
M

p.t; x/ dx C

ˆ
R

p.t; x/ dx

� e��.t/ C CN
p
t e��.t/ C Ce�N=2: (5.36)

Choosing N D 2 log.2C / gives

1=2 � e��.t/ C C
p
t e��.t/; (5.37)
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so that
e�.t/ � C.1C

p
t /; (5.38)

and (5.21) follows, as desired.
All that remains to finish the proof of Lemma 5.2 is to establish (5.34), which we do

now. Recalling Im from (5.33), multiplying (5.14) by emx C e�mx , and integrating yields

d

dt
Im D m

2

ˆ
.emx C e�mx/p.t; x/ dx Cm

ˆ
e�x Œemx � e�mx �p.t; x/2 dx: (5.39)

We decompose the last integral:

Jm D m

ˆ
e�x Œemx � e�mx �p.t; x/2 dx

D m

ˆ
e�x tanh.mx/Œemx C e�mx �p.t; x/2 dx

� m

ˆ log2

�1

e�xjtanh.mx/jŒemx C e�mx �p.t; x/2 dx

Cm

ˆ 1
log2

e�xjtanh.mx/jŒemx C e�mx �p.t; x/2 dx D J�m C J
C
m : (5.40)

For J�m , we use (5.19), the bound

jtanh.mx/j � mjxj; (5.41)

and the assumption 0 < m < 1=2 to obtain

J�m � m

ˆ log2

�1

jtanh.mx/jŒemx C e�mx �ex dx � m2
ˆ log2

�1

jxje.1�m/x dx � Cm2:

(5.42)

On the other hand, as x > log 2 > ��.t/, by (5.29), we may apply Lemma 5.3 to obtain

JCm D m

ˆ 1
log2
jtanh.mx/jŒemx C e�mx �yu.t; x/p.t; x/ dx

� m

ˆ 1
log2
jtanh.mx/jŒemx C e�mx �

p.t; x/

1C exC�.t/
dx

� m2
ˆ 1

log2

jxj

1C exC�.t/
Œemx C e�mx �p.t; x/ dx

� m2e��.t/
ˆ 1

log2
Œemx C e�mx �p.t; x/ dx:

In the second inequality, we have used (5.41), and in the last inequality, we have used the
fact that

jxj � ex � e��.t/.1C exC�.t//:

Recalling that ��.t/ � log 2 from (5.29), we find

JCm � Cm
2Im: (5.43)
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The combination of (5.42) and (5.43) yields

dIm

dt
� C0m

2.Im C 1/

for some universal constant C0. This implies that

Im.t/ � e
C0m

2t ŒIm.0/C 1� � 5e
C0m

2t ;

since, recalling that m < 1=2,

Im.0/ D

ˆ 0

�1

ex.emx C e�mx/ dx � 4:

This concludes the proof of (5.34), and thus that of Lemma 5.2.

5.4. A lower bound on the shift: The proof of Lemma 5.4

The proof of Lemma 5.4 is quite a bit more involved than that for Lemma 5.2. Let us
first explain the main steps of the proof. Recall that the standard L1-decay for diffusion
equations of the self-adjoint form

zt D r � .a.x/rz/; x 2 Rn; (5.44)

with a uniformly positive and bounded diffusivity a.x/ is obtained as follows. First, one
gets the dissipation inequality

1

2

d

dt

ˆ
jz.t; x/j2 dx � �C

ˆ
jrz.t; x/j2 dz: (5.45)

An application of the Nash inequality leads, after solving an elementary differential
inequality, to the L1-L2 decay estimate

kz.t; �/kL2 �
C

tn=4
kz.0; �/kL1 : (5.46)

The self-adjoint form of (5.44) and the estimate (5.46) give the dual bound

kz.t; �/kL1 �
C

tn=4
kz.0; �/kL2 : (5.47)

The last step is to apply the semigroup property and the above estimates to deduce that

kz.t; �/kL1 �
C

tn=4
kz.t=2; �/kL2 �

C

tn=2
kz.0; �/kL1 : (5.48)

See, e.g., [18, Section 2.4] for a full treatment of this.
It seems impossible to directly obtain a dissipation inequality for the L2-norm of the

function p.t; x/, starting with (5.14), due to the spatial inhomogeneity of the nonlinear
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term. Instead, to get an analogue of (5.45), we will use a suitably chosen weight �.t; x/
that weighs RC more than R�, and establish anL2w -dissipation inequality for the function

' D p=�: (5.49)

Here we use w as a subscript to emphasize that we are working in weighted Lebesgue
spaces. Such a weight allows one to focus on where advection is negligible and diffusion
dominates the evolution of (5.27).

It turns out that the weight �.t; x/ D 1 � yu.t; x/ can actually be used to produce a
dissipation inequality because, as we will see, the function 1 � yu is a supersolution for
(5.14) satisfied by p.t; x/. This property is not purely algebraic: it will, once again, use
the steepness comparison of yu.t; x/ to the traveling wave. The dissipation computation
is directly inspired by the relative entropy arguments for linear advection-diffusion equa-
tions in [17, 41]. Here, however, we compute the entropy relative not to a solution but a
supersolution, and the nonlinear nature of the present situation requires specific cancella-
tions. This is the subject of Proposition 5.8 below.

We also establish a weighted Nash inequality stated in Proposition 5.9 below. When
adapted to our setting, it yields the appropriate long time decay of the L2w -norm of ',
up to a (potentially large) boundary layer in time. An interesting complication is that
the weighted Nash inequality holds for a nontrivial class of weights satisfying certain
assumptions, and we need to control the fact that our weight, coming from the solution to
a nonlinear evolution equation, satisfies these assumptions for all t > 0 in a uniform way.
This is done in the course of the proof of Lemma 5.7 below.

In contrast to the standard proof for diffusion equations, we cannot directly pass from
L2w -decay to L1-decay. Indeed, due to the weight, the aforementioned L2w -decay esti-
mate is not an L1w ! L2w estimate as the boundary layer depends on the initial L2w -norm
of ', and hence the usual adjointness trick in (5.47), used to establish the L1-decay, is
not available. This complication is present even for the linear equation (5.27) when the
relationship between p and yu is “forgotten.” In fact, decay inL1w of ' is not even expected
in the setting in which we find ourselves. To pass from the L2w -bounds for the function
'.t; x/ to the L1-decay for p.t; x/, we use time averages to find a particular intermediate
time Tg < T at which ' satisfies “good” pointwise bounds in a region of interest. Those
bounds, stated in Lemma 5.10, can be transferred to show that p is bounded by both ex

and C=
p
T . We can then “trap” that estimate going forward in time, from time Tg until

time T , by breaking p up into a small mass part, which necessarily stays small due to
conservation of mass and parabolic regularity theory, and a part that sits under an explicit,
small supersolution. This will conclude the proof.

As the reader will surely have noticed, there is a subtle but serious issue in the above
outline. The L2w -decay requires that the initial L2w -norm be bounded, which, as can be
immediately seen from (5.49), is not true when yu.0; �/ is the Heaviside function, the func-
tion p.0; �/ is given by (5.15), and �D 1� yu. This requires an extra step where we choose
an approximate initial condition

yua.0; x/ D
1

1C e.x�a/
1.x � 0/ (5.50)
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with  2 .1; 2/ to obtain new solutions yua and pa. Here, a > 0 is a parameter depending
on the final time T at which we wish to establish the upper bound. A careful analysis
shows that, with an appropriate choice of a, the two solutions, p and pa, stay O.1=

p
T /

away from each other, due to the error estimate in Lemma 5.6.
Below, we state the upper bound on the modification pa and show how to bootstrap

that bound to the decay of p itself. This is done in Section 5.4.1. Then, in Section 5.4.2,
we give the proof of the upper bound on pa following the outline above.

5.4.1. The proof of Lemma 5.4.

A modified initial condition. We first construct the modified solution pa.t; x/. Recall that
yu.t; x/ is the solution to the Burgers-FKPP equation

yut � 2yux C 2yuyux D yuxx C yu � yu
2 (5.51)

with initial condition yuin.x/D 1.x � 0/. For any a > 0 and  2 .1; 2/, let yua.t; x/ be the
solution to (5.51) with initial condition

yua.0; x/ D
1

1C e.x�a/
1.x � 0/; (5.52)

and set
p.t; x/ D exyu.t; x/; pa.t; x/ D e

x
yua.t; x/: (5.53)

As in (5.14) and (5.27), the function pa satisfies

@tpa C @x.p
2
ae
�x/ D @2xpa (5.54)

and
@tpa C @x.yuapa/ D @

2
xpa: (5.55)

We have made the switch to @t;x notation to avoid the awkward double subscript. It is easy
to observe that yua � 1, and by the comparison principle (notice that ex solves (5.54)) we
have

pa.t; x/ � e
x for all t � 0; x 2 R: (5.56)

Two important quantities of interest for us are

Ma.t/ D

ˆ �
pa.t; x/

1 � yua.t; x/

�
.1 � yua.t; x// dx D

ˆ
pa.t; x/ dx DMa.0/;

Ia.t/ D

ˆ �
pa.t; x/

1 � yua.t; x/

�2
.1 � yua.t; x// dx D

ˆ
pa.t; x/

2

1 � yua.t; x/
dx:

(5.57)

The last equality in the first line above follows by conservation of mass. Note thatMa and
Ia are, respectively, the weightedL1- andL2-norms of the function 'Dpa=.1� yua/with
weight 1 � yua. Two easy computations show that Ma.0/ is uniformly bounded in a > 0:

log 2 D
ˆ 0

�1

ex

1C ex
dx �Ma �

ˆ 0

�1

ex dx D 1; (5.58)
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and Ia.0/ is finite for all a > 0:

Ia.0/ D

ˆ
e2xyua.0; x/

2

1 � yua.0; x/
dx �

ˆ 0

�1

e2x

1 � yua.0; x/
dx D

ˆ 0

�1

e2x
1C e.x�a/

e.x�a/
dx

� 2ea
ˆ 0

�1

e.2�/x dx D
2

2 � 
ea; (5.59)

but is not uniformly bounded as a !1. Note that an analogous estimate for I.0/ with
ua and pa replaced by u and p, respectively, does not hold, as

p.0; x/2

1 � u.0; x/
D C1 � 1.x < 0/: (5.60)

This is what prevents us from establishing the decay of p directly.
As we see in the sequel, another crucial feature of this altered initial condition is that

yua.0; �/ is steeper than the traveling wave 1=.1C ex/. This is why we take  > 1 in (5.52).
The restriction  < 2 comes from the upper bound on Ia.0/ in (5.59).

The main estimate we establish on pa is:

Lemma 5.5. Let yua.t; x/ be the solution to (5.51) with initial condition (5.52) for some
a > 0 and 1 <  < 2, and pa.t;x/D exyua.t;x/. There exists a universal constantC5.5 > 0

such that the following holds. Set

t1.a/ D C5.5Ia.0/ (5.61)

with Ia defined in (5.57). There exists K > 0 that does not depend on a > 1 such that

pa.t; x/ � K=
p
t for all t � 4t1.a/: (5.62)

We postpone the proof of Lemma 5.5 until Section 5.4.2. First, we obtain a closeness
estimate on p and pa. Its proof is succinct enough to give it immediately.

Lemma 5.6. Fix a 2 R and  > 0. Let yu.t; x/ and yua.t; x/ be the solutions to (5.51) with
initial conditions yu.0; x/ D 1.x � 0/ and (5.52), respectively. There is a constant C > 0

that does not depend on a or  such that p.t; x/ D exyu.t; x/ and pa.t; x/ D exyua.t; x/
satisfy

0 � p.t; x/ � pa.t; x/ � Ce
�a for all x 2 R and t � 1. (5.63)

Proof. Let h.t; x/D p.t; x/� pa.t; x/ for all t � 0 and x 2 R. Note that h.0; �/ � 0 and,
due to (5.14) and (5.54), h satisfies the parabolic equation

ht � hxx D �.p
2e�x/x C .p

2
ae
�x/x D �.hw/x (5.64)

with
w.t; x/ D e�x.pa.t; x/C p.t; x// D yu.t; x/C yua.t; x/:

Hence, the comparison principle implies that h� 0. This yields the lower bound in (5.63).



Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation 43

To get the upper bound, we use mass conservation for p.t; x/ and pa.t; x/. Indeed,ˆ
h.t; x/ dx D

ˆ
.p.t; x/ � pa.t; x// dx D

ˆ
.p.0; x/ � pa.0; x// dx

D

ˆ 0

�1

ex
e.x�a/

1C e.x�a/
dx D ea

ˆ �a
�1

e.1C/x

1C ex
dx

�
1

1C 
eae�.1C/a D

1

1C 
e�a: (5.65)

Using parabolic regularity theory together with (5.65) and positivity of h, we immediately
get

sup
x
h.t; x/ � Ce�a for all t � 1 and x 2 R, (5.66)

finishing the proof. The constant C does not depend on a or  .

Proof of Lemma 5.4. We are now in a position to combine Lemmas 5.5 and 5.6 in order
to prove Lemma 5.4. One delicate point is that Lemma 5.6 requires taking a large. On the
other hand, Ia.0/ in (5.59) blows up as a!1. This will require careful balancing.

We note that we need only prove Lemma 5.4 for T sufficiently large, as the claim
follows for “smaller” T by simply increasing the constant C .

Let  D 3=2, and let C5.5 be the universal constant from Lemma 5.5. Given any

T > .16C5.5/
2
C 1; (5.67)

choose
a D

1

2
log.T / > 0: (5.68)

Recall from (5.59) and the choice of  that

Ia.0/ �
2

2 � 
ea D 4ea: (5.69)

By our choice of a and (5.61), it follows that

4t1.a/D 4C5.5Ia.0/ � 16C5.5e
a
D 16C5.5e

. 12 logT /
D 16C5.5

p
T � T; (5.70)

where the last inequality follows from (5.67). Due to (5.70), we may apply Lemma 5.5 to
find

sup
x
pa.T; x/ � K=

p
T : (5.71)

We may also use Lemma 5.6 to see that

0 � p.t; x/ � pa.t; x/ � Ce
�a for all x 2 R and t > 1. (5.72)

Recalling the choice (5.68) of  and a in (5.72) and using (5.71) to t D T , we deduce that

sup
x
p.T; x/ � sup

x
pa.T; x/C Ce

�a
� K=

p
T C C=

p
T ;

finishing the proof of Lemma 5.4.
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5.4.2. The proof of Lemma 5.5. We now prove Lemma 5.5, following the outline from
the beginning of Section 5.4.

Step 1: Decay in a weighted L2-space. Our first goal is to obtain an L2-decay estimate,
an analogue of (5.46) in the present situation. We will work with norms weighted by

�a D 1 � yua; (5.73)

and make a change of function

'a D
pa

1 � yua
D
pa

�a
: (5.74)

The main goal of this step is the decay rate of Ia, which we state here. Recall that yua and
pa are defined in Lemma 5.5.

Lemma 5.7. For a > 0 and  2 .1; 2/, let t1.a/,Ma, and Ia.0/ be as in (5.61) and (5.59).
Then

Ia.t1/ D

ˆ
'a.t1; x/

2�a.t1; x/ dx � 1; (5.75)

and

Ia.t/ D

ˆ
'a.t; x/

2�a.t; x/ dx �
C

1C
p
t � t1.a/

for t � t1.a/. (5.76)

Note that Ia may be thought of as k'ak2L2.�a/. To prove Lemma 5.7, we obtain a
more general result for weighted L2-decay, identifying assumptions on the weight under
which decay holds. Afterwards, we show that �a satisfies these assumptions and apply the
general result to our setting.

The first step is a dissipation inequality, inspired by the relative entropy arguments for
linear equations in [17, 41]. As in [17], given a weight �.t; x/ and an advection v.t; x/,
we consider an operator D� defined by

D�q D �
�2@x.�

2@xq/ � v@xq: (5.77)

Proposition 5.8. Let v.t; x/ be a smooth bounded function, let q.t; x/ be a solution to

qt C .vq/x D qxx ; (5.78)

and let �.t; x/ be a supersolution to (5.78):

�t C .v�/x � �xx (5.79)

with initial conditions p.0; x/ � 0 and �.0; x/ > 0 such that
ˆ
'.0; x/2�.0; x/ dx <1; (5.80)
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where '.t; x/ D q.t; x/=�.t; x/ for all t � 0 and x 2 R. Then ' satisfies

't �D�' D �'
2

�
�t � �xx C .v�/x

�

�
; (5.81)

and
d

dt

ˆ
'.t; x/2�.t; x/ dx � �2

ˆ
'x.t; x/

2�.t; x/ dx: (5.82)

The main difference from [17, 41] is that the function �.t; x/ is not a solution to the
advection-diffusion equation (5.78) but a supersolution.

The second general result is an adaptation of the Nash inequality for weighted spaces.
This allows us to make use of the dissipation inequality in Proposition 5.8.

Proposition 5.9. Let r 2 L1.R�/ \ C.R/ be an increasing function that satisfies the
following assumptions:

(i) lim
x!�1

r.x/ D 0; 0 < lim
x!1

r.x/ D rC <1;

(ii) r.x/ � C1 max ¹1; r.x/2º r.x/ for all x 2 R;
(5.83)

with

Nr.x/ D

ˆ x

�1

r.y/ dy; r.x/ D

ˆ x

�1

Nr.y/ dy: (5.84)

Then, for any � > 0 and any smooth nonnegative function '.x/ that is sufficiently rapidly
decaying as x !1 and bounded as x ! �1, we have
ˆ
'.x/2r.x/ dx �

2

�

�ˆ
'.x/r.x/ dx

�2
C 8C1 max ¹1; �2º

ˆ
j'x.x/j

2r.x/ dx:

(5.85)

Let us point out that the weight

r.x/ D 1 � �2.x/ D
ex

1C ex

satisfies the assumptions of Proposition 5.9, and this is an example the reader may want
to keep in mind.

Let us also briefly note the connection with the standard Nash inequality. A key step
in the proof of the latter is to establish (5.85) with max ¹1; �2º replaced by �2. The change
here reflects the fact that the measure induced by r is finite on R�.

The proofs of Propositions 5.8 and 5.9 are postponed until Section 5.5. We first apply
these results to establish the L2-decay of pa, that is, Lemma 5.7.

Proof of Lemma 5.7. We first assume that the assumptions of the dissipation and Nash
inequalities, that is, Propositions 5.8 and 5.9, hold in a uniform way for �a.t; x/, and show
how to conclude. Afterwards, we show how to verify those assumptions.
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Assuming that we can apply Propositions 5.8 and 5.9, we proceed as follows. By
Proposition 5.8, we have

d

dt

ˆ
'a.t; x/

2�a.t; x/ dx � �2

ˆ
.@x'a/

2.t; x/�a.t; x/ dx: (5.86)

Moreover, recalling the definition of Ma from (5.57) and the fact that it is uniformly
bounded, as in (5.58), and applying Proposition 5.9, we find, for any � > 0,

ˆ
'a.t; x/

2�a.x/ dx �
C

�
C C max¹1; �2º

ˆ
j@x'a.t; x/j

2�a.t; x/ dx; (5.87)

with a constant C that does not depend on t ,  , or a.
There are two cases to consider: First, assume that at some t > 0 we have

ˆ
j@x'a.t; x/j

2�a.t; x/ dx � 1: (5.88)

Then from (5.86) we get

d

dt

ˆ
'a.t; x/

2�a.t; x/ dx � �2: (5.89)

On the other hand, if (5.88) fails, so that
ˆ
j@x'a.t; x/j

2�a.t; x/ dx < 1;

we can use (5.87) with the constant

� D

�ˆ
j@x'aj

2�a dx

��1=3
� 1:

Keeping in mind the upper bound (5.58) on Ma, this leads to

ˆ
'a.t; x/

2�a.x/ dx � C

�ˆ
j@x'a.t; x/j

2�a.t; x/ dx

�1=3
:

Therefore, in the second case we have

d

dt

ˆ
'a.t; x/

2�a.t; x/ dx � �
1

C

�ˆ
'a.t; x/

2�a.t; x/ dx

�3
: (5.90)

Putting (5.89) and (5.90) together, we find

d

dt

ˆ
'a.t; x/

2�a.t; x/ dx � �
1

C
min

²
1;

�ˆ
'a.t; x/

2�a.t; x/ dx

�3³
: (5.91)

Setting
t1.a/ D CIa.0/ � C.Ia.0/ � 1/C; (5.92)
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we see from (5.91) that ˆ
'a.t1; x/

2�a.t1; x/ dx � 1: (5.93)

Therefore, for t � t1.a/, we have

d

dt

ˆ
'a.t; x/

2�a.t; x/ dx � �C

�ˆ
'a.t; x/

2�a.t; x/ dx

�3
; (5.94)

and ˆ
'a.t; x/

2�a.t; x/ dx �
C

1C
p
t � t1

: (5.95)

Hence, all that remains in the proof of Lemma 5.7 is to verify the assumptions of Propo-
sitions 5.8 and 5.9.

We consider first the assumptions of Proposition 5.8. In the notation of that propo-
sition, we have q D pa, v D yu, and � D �a. In view of (5.55) and (5.59), the assump-
tions (5.78) and (5.80) are satisfied. Hence, the only assumption to check is (5.79), a
somewhat miraculous property that

@t�a C @x.yua�a/ � @
2
x�a: (5.96)

First, since yua satisfies (5.51), we find

@t�a C @x.yua�a/ � @
2
x�a D �@t yua C @xyua � 2yua@xyua C @

2
xyua

D �@xyua � yua.1 � yua/: (5.97)

The initial condition for yua in (5.52) was chosen to be steeper than the traveling wave �
given by (5.22) – this is why we needed to take  > 1 in (5.52). Using Proposition 1.1, we
deduce that yua.t; x/ is steeper than � for all t > 0. Applying this property to (5.97) gives

@t�a C @x.yua�a/ � @
2
x�a D �@xyua � yua.1 � yua/

� ��x.�
�1.yua// � �.�

�1.yua//.1 � �.�
�1.yua///: (5.98)

Using the explicit expression (5.22) for �, it is straightforward to check that the right side
of (5.98) is nonnegative everywhere:

��x � �.1 � �/ D �

�
�

ex

.1C ex/2

�
�

ex

1C ex
1

1C ex
D 0: (5.99)

This can, of course, be also obtained from (3.24). Hence, (5.96) is established.
Next, we verify that �a satisfies assumptions (i) and (ii) of Proposition 5.9 uniformly

for all t > 0. Assumption (i) holds automatically since �a is increasing in x (recall that
yua is decreasing in x), with �a.t;�1/ D 0 and �a.t;1/ D 1 for all t > 0. Assumption
(ii) in (5.83) requires that

�a.t; x/ � C1 max ¹1; �a.t; x/
2
º �a.t; x/ for all x 2 R: (5.100)
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It is useful to (implicitly) define the analogue �a of � for yua:

yua.t;��a.t// D 1=2: (5.101)

Consider first the case when x < ��a.t/. As yua.0; �/ is steeper than the traveling wave,
so is yua.t; �/, by Proposition 1.1, and we know from Lemma 5.3 that, if y � x, then

�a.t; y/ D 1 � yua.t; y/ �
�a.t; x/e

y�x

1 � �a.t; x/C �a.t; x/ey�x
: (5.102)

This gives

N�a.t; x/ D

ˆ x

�1

�a.t; y/ dy �

ˆ x

�1

�a.t; x/e
y�x

1 � �a.t; x/C �a.t; x/ey�x
dy

�
�a.t; x/

1 � �a.t; x/

ˆ x

�1

ey�x dy D
�a.t; x/

1 � �a.t; x/
� 2�a.t; x/: (5.103)

In the last line we have used x < ��a.t/, so that

1 � �a.t; x/ D yua.t; x/ � 1=2:

This implies (5.100) for x such that �a.t; x/ < 1=2:

�a.t; x/ D

ˆ x

�1

�a.t; y/ dy � 2

ˆ x

�1

�a.t; y/ dy D 2�a.t; x/ � 4�a.t; x/: (5.104)

On the other hand, when x � ��a.t/, we have �a.t; x/ � 1=2, so that

�a.t; x/ � 2�a.t; x/�a.t; x/ for x � ��a.t/. (5.105)

Since �a.t; x/ and �a are increasing, we find, using (5.103) for y < ��a.t/ and (5.105)
for y > ��a.t/,

�a.t; x/ D

ˆ x

�1

�a.t; y/ dy D

ˆ ��a.t/
�1

�a.t; y/ dy C

ˆ x

��a.t/

�a.t; y/ dy

� 2

ˆ ��a.t/
�1

�a.t; y/ dy C 2

ˆ x

�1

�a.t; y/�a.t; y/ dy

� 2�a.t;��a.t//C 2�a.t; x/

ˆ x

�1

�a.t; y/ dy

� 4�a.t;��a.t//C 2�a.t; x/
2
� 4�a.t; x/C 4�a.t; x/

2�a.t; x/

� 8max ¹1; �a.t; x/
2
º �a.t; x/: (5.106)

Taking the maximum of (5.104) and (5.106), we arrive at (5.100). We deduce that the
function �a.t; x/ satisfies the assumptions of the weighted Nash inequality in Proposi-
tion 5.9 for all t > 0. This concludes the proof of Lemma 5.7.

Step 2: Pointwise bounds at a particular time. We now find a “good time” Tg < T when
'a satisfies the desired bounds via a time averaging. The catch is that we do not have



Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation 49

control over Tg , and thus a third step is required afterwards, to control the solution on the
time interval Tg � t � T .

Lemma 5.10. For a > 0 and  2 .1;2/, let t1.a/ be as in (5.61). Given any T > 4.t1C 1/,
there exists Tg 2 ŒT=2; 3T=4� such that

(i) sup
x���a.Tg/

'a.tT ; x/ �
C
p
T

and (ii) �a.Tg/ � 1
2

log.T / � C; (5.107)

where C does not depend on a or  .

Proof. We first note that (5.107) (ii) follows immediately from (5.107) (i). Indeed, (5.101)
yields

'a.t;��a.t// D e
��a.t/; (5.108)

which in turn implies, using (5.107) (i),

�a.Tg/ D � log'a.t;��a.t// � 1
2

logT � C;

which is (5.107) (ii). Thus, we focus on proving (5.107) (i).
To this end, we use time averages in order to find the “good time” Tg when the

(weighted) L2-bound of @x'a is small. Since T=2 � 2t1.a/, Lemma 5.7 yields
ˆ
'a.t; x/

2�a.t; x/ dx �
C
p
t

(5.109)

for all t � T=2. Integrating the dissipation inequality (5.82) and using (5.109), we obtain

4

T

ˆ 3T=4

T=2

ˆ
j@x'a.s; x/j

2�a.s; x/ dx ds �
C

T 3=2
:

As a result, there exists Tg 2 ŒT=2; 3T=4� such that
ˆ
j@x'a.Tg ; x/j

2�a.Tg ; x/ dx �
C

T 3=2
: (5.110)

Heuristically, we conclude by arguing that, due to (5.110), if 'a is “too big” some-
where to the right of ��a.t/, then it must be “too big” on a large set. However, in this
region, �a is bounded above and below and pa and 'a are comparable. As a result, pa will
be “too big” on a large set, violating mass conservation. The key point here that makes
the above reasoning work is that, by the definitions (5.73), (5.74), and (5.101) of �a, 'a,
and �a, we have

1
2
� �a.t; x/ � 1 and 1

2
'a.t; x/ � pa.t; x/ � 'a.t; x/ for x > ��a.t/, (5.111)

In particular, working on x > ��a.t/ is crucial here as �a is potentially small to the left
of ��a.t/.

To make this reasoning rigorous, we take any x0 � ��a.Tg/, and use the Newton–
Leibniz formula for any y 2 Œx0; x0 C

p
T � along with (5.110)–(5.111), to obtain a lower
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bound for 'a.Tg ; y/:

'a.Tg ; x0/ � 'a.Tg ; y/C

ˆ y

x0

j@x'aj dx � 'a.Tg ; y/C

ˆ x0C
p
T

x0

j@x'aj dx

� 'a.Tg ; y/C
p
2 T 1=4

�ˆ x0C
p
T

x0

j@x'aj
2�a dx

�1=2
� 'a.Tg ; y/C

C
p
T
:

Using again (5.111) yields

inf
x2Œx0;x0C

p
T �

pa.Tg ; x/ �
1

2

�
pa.Tg ; x0/ �

C
p
T

�
: (5.112)

Recalling mass conservation (5.16) and using (5.112) we arrive at

1 D

ˆ
pa.Tg ; x/ dx �

ˆ x0C
p
T

x0

pa.Tg ; x/ dx

�

ˆ x0C
p
T

x0

1

2

�
pa.Tg ; x0/ �

C
p
T

�
dx D

p
T

2
pa.Tg ; x0/ �

C

2
:

Rearranging the above and using the arbitrariness of x0 > ��a.t/, as well as (5.111), to
translate this into a bound for 'a.t; x0/ finishes the proof of Lemma 5.10. .

Step 3: Preserving the L1-smallness over ŒTg ; T �. We are now in a position to combine
the results in the first two steps to finish the proof Lemma 5.5, establishing the upper
bound (5.62) on pa.

Proof of Lemma 5.5. Combining (5.111), Lemma 5.10, and (5.56), we find C > 1 such
that

pa.Tg ; x/ � min ¹ex ; C=
p
T º: (5.113)

The function

P.x/ D
ex

1C
p
T

2C
ex

(5.114)

is a steady solution to equation (5.54) that pa satisfies, because

@x.P
2e�x/ D @2xP: (5.115)

Moreover, it obeys a uniform bound

sup
x
P.x/ � 2C=

p
T : (5.116)

The next step is to split pa into a portion bounded above by P and a small error part. Let
us write

pa.t; x/ D  P .t; x/C  E .t; x/ for Tg � t � T . (5.117)

Here, the “P -portion”  P � 0 solves

@t P C @x. 
2
P e
�x/ D @2x P ; Tg � t � T; (5.118)
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with initial condition

 P .Tg ; x/ D min ¹pa.Tg ; x/; P.x/º; x 2 R: (5.119)

The “error part”  E � 0 solves

@t E C @x..2 P C  E / Ee
�x/ D @2x E ; Tg � t � T; (5.120)

with initial condition

 E .Tg ; x/ D pa.Tg ; x/ �min ¹pa.Tg ; x/; P.x/º: (5.121)

We now estimate  P and  E at time T . From (5.115) and (5.119), it is clear that

 P .Tg ; x/ � P.x/ for all x 2 R;

and both functions solve (5.118). Hence, the comparison principle implies that  P .T; x/
� P.x/ for all x 2 R. Using this and (5.116), we find

sup
x
 P .T; x/ � sup

x
P.x/ � C=

p
T ; (5.122)

as desired.
On the other hand, (5.120) implies that the total mass of  E is conserved:ˆ

 E .T; x/ dx D

ˆ
 E .Tg ; x/ dx: (5.123)

We now bound the right hand side. First, by (5.113) and (5.114),

pa.Tg ; x/ � C=
p
T � P.x/ for all x � �1

2
log.T /C log.2C /:

From this and (5.120), it follows that

 E .Tg ; x/ D 0 for all x � �1
2

logT C log.2C /:

Hence, using (5.121) and (5.56), we obtain
ˆ
 E .Tg ; x/ dx D

ˆ � 12 logTClog.2C/

�1

 E .Tg ; x/ dx �

ˆ � 12 logTClog.2C/

�1

pa.Tg ; x/ dx

�

ˆ � 12 logTClog.2C/

�1

ex dx D 2C=
p
T : (5.124)

Invoking (5.123), we obtain ˆ
 E .T; x/ dx � 2C=

p
T :

Recall that Tg � 3T=4 and T is sufficiently large. We may thus apply parabolic regularity
theory (recall that  E solves (5.120)) to conclude that, up to increasing C , we have

sup E .T; x/ � C
ˆ
 E .T; x/ dx � C=

p
T : (5.125)

Combining (5.117), (5.122), and (5.125) finishes the proof of Lemma 5.5.



J. An, C. Henderson, L. Ryzhik 52

5.5. The weighted L2 framework: The proof of Propositions 5.8 and 5.9

First, we establish the dissipation inequality in Proposition 5.8.

Proof of Proposition 5.8. Following [17], let us write an equation for h D H.'/, with
a given function H , and not just for the cases H.'/ D ' and H.'/ D '2 we use here.
Setting

D�h D
1

�2
@x.�

2@xh/ � v@xh; (5.126)

we find

@th �D�h D H
0.'/'t �

1

�2
.�2H 0.'/'x/x C vH

0.'/'x

D H 0.'/

�
qt

�
�
q

�

�t

�

�
� 2

�x

�
H 0.'/

�
qx

�
�
q

�

�x

�

�
�H 00.'/'2x

�H 0.'/

�
qxx

�
� 2

qx�x

�2
�
q

�

�xx

�
C 2q

�2x
�3

�
C vH 0.'/

�
qx

�
�
q�x

�2

�
: (5.127)

We now use (5.78) to obtain

@th �D�h D �H
0.'/

q�t

�2
� 2

�x

�
H 0.'/

�
qx

�
�
q

�

�x

�

�
�H 00.'/'2x

CH 0.'/

�
2
qx�x

�2
C
q

�

�xx

�
� 2q

�2x
�3

�
C vH 0.'/

�
�
q�x

�2

�
� vxH

0.'/
q

�

D �H 00.'/'2x �H
0.'/

q

�2
.�t � �xx C .v�/x/: (5.128)

When H.'/ D ', this establishes (5.81).
Let us now specialize to the case hDH.'/D '2 to prove (5.82). Multiplying (5.128)

by � and integrating by parts, we find

@t

ˆ
�'2 D @t

ˆ
�h

D

ˆ
�thC

ˆ
�

�
1

�2
.�2hx/x � vhx � 2'

2
x

�
� 2

ˆ
h.�t � �xx C .u�/x/

D

ˆ
�thC

ˆ
�xhx C

ˆ
.�v/xh �

ˆ
2�'2x � 2

ˆ
h.�t � �xx C .u�/x/

D

ˆ
h.�t � �xx C .�v/x/ �

ˆ
2�'2x � 2

ˆ
h.�t � �xx C .v�/x/

D �

ˆ
2�'2x �

ˆ
h.�t � �xx C .v�/x/ � �

ˆ
2�'2x ; (5.129)

finishing the proof.

Next, we prove the analogue of Nash’s inequality. Due to the inhomogeneity, we are
not able to use the standard Fourier-based proof. The proof is more similar to that of
Carlen and Loss [15], which is based on the Poincaré inequality. A complication in our
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setting is that the decay of r on the left makes our space more akin to RC than R; however,
we only have a mild “boundary condition” on the left in that we only know that '2r is
integrable.

Proof of Proposition 5.9. Let us first assume that ' is not only nonnegative, bounded,
and decays to zero sufficiently fast as x !1, but that it is also decreasing. Fix � 2 RC
and notice that, due to the assumptions on r , we may find L 2 R such that Nr.L/ D � . Fix
" > 0 to be chosen, and write

0 �

ˆ L

�1

ˇ̌̌̌
'x

p
r C "'

rp
r

ˇ̌̌̌2
dx D

ˆ L

�1

�
j'xj

2r C ".'2/xr C "
2'2

r2

r

�
dx

D

ˆ L

�1

�
j'xj

2r � "'2r C "2'2
r2

r

�
dx C "r.L/'.L/2: (5.130)

Note that, since '.x/ is decreasing,

'.L/r.L/ �

ˆ L

�1

'r dx �

ˆ 1
�1

'r dx: (5.131)

Rearranging (5.130) and using (5.131), we find that

"

ˆ 1
�1

'2r

�
1 � "

r2

rr

�
dx �

ˆ L

�1

j'xj
2r dx C

"

r.L/

�ˆ 1
�1

'r dx

�2
: (5.132)

Since r is increasing, we have

r.x/2 D 2

ˆ x

�1

Nr.y/ Nry.y/ dy D 2

ˆ x

�1

Nr.y/r.y/ dy

� 2r.x/

ˆ x

�1

Nr.y/ dy D 2r.x/r.x/: (5.133)

Hence, using (5.133) and choosing " D 1=4, (5.132) becomes
ˆ 1
�1

'2r dx � 8

ˆ L

�1

j'xj
2r dx C

2

r.L/

�ˆ 1
�1

'r dx

�2
: (5.134)

Next, using assumption (ii) in (5.83), together with monotonicity of Nr.x/ gives
ˆ 1
�1

'2r dx � 8C1 max ¹1; Nr.L/2º
ˆ 1
�1

j'xj
2r dx C

2

r.L/

�ˆ 1
�1

'r dx

�2
;

(5.135)
proving (5.85) for decreasing functions '.x/ as Nr.L/ D � .

In order to complete the proof for nonnegative functions '.x/ that are not decreasing,
we define an analogue of the decreasing rearrangement. Let mr be the measure

mr .A/ D

ˆ
A

r dx; (5.136)
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and for any measurable set A define

A� D ¹x W Nr.x/ < mr .A/º:

Note that A� is a half-line of the form A� D .�1; x�.A// such that

mr .A/ D Nr.x
�.A// D mr .A

�/: (5.137)

We may then define rearrangements of functions through the “layer cake decomposi-
tion”:

'�.x/ D

ˆ 1
0

1¹yW'.y/>tº�.x/ dt:

As with the usual symmetric decreasing rearrangement, we immediately find that '� is
decreasing, the functions ' and '� have superlevel sets of equal measure, and, for any
p > 0, ˆ

j'�.x/jpr.x/ dx D

ˆ
j'.x/jpr.x/ dx: (5.138)

We claim that an analogue of the Pólya–Szegö inequality holds:
ˆ
j'�x .x/j

2r.x/ dx �

ˆ
j'x.x/j

2r.x/ dx: (5.139)

Since we have already established (5.85) for decreasing functions, the fact that (5.85)
holds for a general function ' is an immediate consequence of (5.138) and (5.139).

We now prove (5.139). In principle, it is an immediate consequence of a more general
result in [51]. For the convenience of the reader, we present a simpler proof in our present
one-dimensional setting. We may assume without loss of generality that the function '.x/
is positive everywhere, smooth, and takes each value finitely many times. A useful conse-
quence is that any level set of '� has at most one point.

First, we use the coarea formula to rewrite
ˆ
'x.x/

2r.x/ dx D

ˆ 1
0

X
x2'�1.t/

j'x.x/jr.x/ dt: (5.140)

Then, we note thatX
x2'�1.t/

r.x/ �
� X
x2'�1.t/

r.x/j'x.x/j
�1=2� X

x2'�1.t/

r.x/

j'x.x/j

�1=2
; (5.141)

so that (5.140) becomes
ˆ
'x.x/

2r.x/ dx �

ˆ 1
0

.
P
x2'�1.t/ r.x//

2P
x2'�1.t/

r.x/
j'x.x/j

dt: (5.142)

Next, we show that both the numerator and the denominator on the right hand side
of (5.142) may be replaced by their analogues with '� in place of ', up to an inequality.
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First, since

r..'�/�1.t// D mr .¹'
� > tº/ D mr .¹' > tº/ � r.sup'�1.t//;

we see that .'�/�1.t/ � sup'�1.t/. Since r is increasing, we conclude thatX
x2'�1.t/

r.x/ � r.sup'�1.t// � r..'�/�1.t//: (5.143)

On the other hand, by the coarea formula, for any t > 0 we have

mr .¹x W '.x/ > tº/ D

ˆ
¹xW'.x/>tº

r.x/ dx D

ˆ 1
t

� X
x2'�1.s/

r.x/

j'x.x/j

�
ds:

An immediate consequence is that

d

dt
mr .¹x W '.x/ > tº/ D �

X
x2'�1.t/

r.x/

j'x.x/j
:

The analogous formula holds for '�. Since mr .¹x W '.x/ > tº/ D mr .¹x W '�.x/ > tº/
for all t , it follows thatX

x2'�1.t/

r.x/

j'x.x/j
D

X
x2.'�/�1.t/

r.x/

j'�x .x/j
D

r..'�/�1.t//

'�x ..'
�/�1.t//

: (5.144)

The last equality above is due to the fact that .'�/�1.t/ is a one-point set.
Including (5.143) and (5.144) in (5.142), we conclude that
ˆ
'x.x/

2r.x/ dx �

ˆ 1
0

r..'�/�1.t//2

r..'�/�1.t//

'�x ..'
�/�1.t//

dt D

ˆ 1
0

'�x ..'
�/�1.t//r..'�/�1.t// dt:

Reapplying the coarea formula to the rightmost quantity above yields
ˆ
'x.x/

2r.x/ dx �

ˆ
'�x .x/

2r.x/ dx:

which concludes the proof of (5.139) and thus of Proposition 5.9.

5.6. A lower bound on p.t; x/ in the middle region

We finish this section with a lower bound on p.t; x/ in an intermediate region that will be
useful to us later on.

Lemma 5.11. Let u.t; x/ be the solution to the Burgers-FKPP equation (1.1) with initial
condition u.0; x/ D 1.x � 0/, and let p.t; x/ be given by (5.11) and (5.13). There exist
k > 0, T0 > 0, and c0 > 0 such that

p.t; x/ � c0=
p
t for all t � T0 and �1

2
log t � x � k

p
t . (5.145)
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Proof. Let us take t > 0 sufficiently large. We argue by contradiction. For " 2 .0; 1=10/
and k > 0 to be chosen, suppose there exists

x0 2
�
�
1
2

log t; k
p
t
�

(5.146)

such that
p.t; x0/ � "=

p
t ; (5.147)

whence
yu.t; x0/ D e

�x0p.t; x0/ �
"
p
t
e�x0 : (5.148)

We will show that this violates mass conservation (5.16):
ˆ
p.t; x/ dx D

ˆ
p.0; x/ dx; (5.149)

if " and k are chosen sufficiently small.
The first step is to notice that the mass to the left of .�1=2/ log t is small. Indeed, due

to the upper bound (5.19),
ˆ �.1=2/ log t

�1

p.t; x/ dx �

ˆ �.1=2/ log t

�1

ex dx D
1
p
t
: (5.150)

We also know that the mass to the far right is small. Indeed, recall from (5.35) that there
exist T0 and N0 such that for all t > T0 and N > N0, we have

ˆ 1
N
p
t

p.t; x/ dx � Ce�N=2: (5.151)

To estimate the mass of p in the middle region, we split it into two parts. When
x 2 Œk

p
t ; N
p
t �, we use (5.148) together with the steepness estimate in Lemma 5.3 to

find

p.t; x/ D exyu.t; x/ � ex
�
1C

�
1

yu.t; x0/
� 1

�
ex�x0

��1
� ex

�
1C

�p
t

"
ex0 � 1

�
ex�x0

��1
� ex

�
1C

p
t

2"
ex0ex�x0

��1
�
2"
p
t

for x > x0: (5.152)

We have used (5.146) in the second inequality above. It follows that

ˆ N
p
t

k
p
t

p.t; x/ dx � N
p
t
2"
p
t
D 2"N: (5.153)

On the other hand, when x 2 Œ�.1=2/ log t; k
p
t �, we use Lemma 5.4 to find

ˆ k
p
t

�.1=2/ log t
p.t; x/ dx � 2k

p
t
C
p
t
D 2kC: (5.154)
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Putting together (5.150), (5.151), (5.153), and (5.154) yields
ˆ
p.t; x/ dx �

1
p
t
C Ce�N=2 C 2"N C 2kC:

Taking " and k sufficiently small, and N sufficiently large, we obtain a contradiction
to (5.149). The conclusion of Lemma 5.11 follows.

6. The proof of Theorem 1.1 for ˇ D 2

We now prove Theorem 1.1 in the critical case ˇ D 2. As in the case ˇ < 2 considered
in Section 4, the proof is based on the analysis in the self-similar variables, and using
the pulled nature of the problem to show that convergence on the diffusive scales implies
convergence to a traveling wave on scales x � O.1/. The key difference from the situa-
tion for ˇ < 2 is that, as mentioned previously, the Dirichlet boundary condition at � D 0
for the function v, introduced by the weighted Hopf–Cole transform (3.12), no longer
approximately holds in the self-similar variables. Instead, the function v has a positive
but a priori unknown limit on the left: see Lemma 6.1 below. The bounds in Proposi-
tion 5.1 will be a crucial ingredient in establishing the correct boundary condition in the
self-similar variables. After we pass to the self-similar variables, the nonzero boundary
condition changes the long time behavior in those variables. This is an algebraic reason
for adjusting the logarithmic shift .3=2/ log t in the front position to .1=2/ log t . With
these bounds in hand, the argument has many similarities to the case ˇ < 2, so we will
omit many of the details, only highlighting the differences. As before, we will assume
without loss of generality that the initial condition is u.0; x/ D 1.x � 0/.

The weighted Hopf–Cole transform. Motivated by Proposition 5.1, we consider the mov-
ing frame x ! x � 2t C .1=2/ log.t C 1/, and set

Qu.t; x/ D u
�
t; x C 2t � 1

2
log.t C 1/

�
: (6.1)

Here, u.t; x/ is the solution to the Burgers-FKPP equation (1.1) in the nonshifted refer-
ence frame. We stress the difference between the function yu.t; x/ defined in (5.11) and
used throughout Section 5, and the function Qu.t; x/ used in the present section. The for-
mer is u.t; x/ in the reference frame x ! x � 2t , while the latter refers to the solution
in the reference frame used in (6.1). In particular, the function p.t; x/ used throughout
Section 5 and Qu.t; x/ are related by

p.t; x/ D exyu.t; x/ D exu.t; x C 2t/ D ex Qu
�
t; x C 1

2
log.t C 1/

�
: (6.2)

The function Qu.t; x/ satisfies

Qut � 2 Qux C
1

2.t C 1/
Qux C 2 Qu Qux D Quxx C Qu.1 � Qu/: (6.3)
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We will use the weighted Hopf–Cole transform as in (3.12) with ˇ D 2:

v.t; x/ D exp
�
x C

ˆ 1
x

Qu.t; y/ dy
�
Qu.t; x/: (6.4)

This gives

vt � vxx C
1

2.t C 1/
.vx � v/ D v

�ˆ 1
x

Qu.1 � Qu/ dy � Qu

�
: (6.5)

The key step in the proof will again be to analyze the long time behavior of v at scales
O..t C 1/ / for  2 .0; 1=2/, and this will be done through the use of self-similar vari-
ables. However, the key difference from the case ˇ < 2 is that v does not decay to zero as
x ! �1 (cf. (4.13)). This is quantified in the following:

Lemma 6.1. There exist T0, k0, b0, b1 > 0 such that

v.t; x/ � b0 <1 for all t � T0 and any x; (6.6)

and
0 < b1 � v.t; x/ for all t � T0 and x � k0

p
t . (6.7)

Proof. Let us define Q�.t/ by
Qu.t; Q�.t// D 1=2: (6.8)

Proposition 5.1 in terms of Q�.t/ says that there exists a constant K > 0 and T0 > 0 such
that

j Q�.t/j � K for all t � T0: (6.9)

Lemma 5.3 and (6.9) imply that

Qu.t; x/ �
1

1C ex�K
for t � T0 and x > K, (6.10)

and
Qu.t; x/ �

1

1C exCK
for t � T0 and x < �K: (6.11)

Hence, for x � 0 we can estimate v.t; x/ from above by

v.t; x/ D Qu.t; x/ exp
�
x C

ˆ 1
x

Qu.t; y/ dy

�
� exp

�ˆ 0

x

. Qu.t; y/ � 1/ dy C

ˆ 1
0

Qu.t; y/ dy

�
� exp

�ˆ 1
0

Qu.t; y/ dy

�
� exp

�
K C

ˆ 1
K

dx

1C ex�K

�
� C; (6.12)

which is (6.6). The proof for x � 0 is simpler and follows directly from (6.10).
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To obtain (6.7), we first use (6.11) to write, for x � �K,

v.t; x/ D Qu.t; x/ exp
�
x C

ˆ 1
x

Qu.t; y/ dy

�
�
1

2
exp

�ˆ 0

x

. Qu.t; y/ � 1/ dy C

ˆ 1
0

Qu.t; y/ dy

�
�
1

2
exp

�
�K �

ˆ �K
�1

�
1 �

1

1C exCK

�
dy

�
� C: (6.13)

In order to extend this lower bound on the right, we recall the lower bound in Lemma 5.11.
Combined with the change of variables (6.2), it shows that we can find c0 > 0 and k0 > 0
such that for 0 � x � k0

p
t and t � T0 we have

Qu.t; x/ D
p
t C 1e�xp

�
t; x � 1

2
log.t C 1/

�
� c0e

�x : (6.14)

We deduce that

v.t; x/ D Qu.t; x/ exp
�
x C

ˆ 1
x

Qu.t; y/ dy

�
� c0 for all t � T0 and 0 � x � k0

p
t .

(6.15)

Finally, for x 2 .�K; 0/, we see from the monotonicity of Qu.t; x/ and (6.14) that Qu.t; x/
� c0, so that

v.t; x/ D Qu.t; x/ exp
�
x C

ˆ 1
x

Qu.t; y/ dy

�
� c0e

�K for all t � T0.

This proves (6.7).

Analysis in the self-similar variables. We now outline the main ingredients required to
establish the long time behavior of v. The thrust of the argument is similar to the case
ˇ < 2, so the outline will be made in reference to the ideas used in Section 4.

First, apply the familiar self-similar change of variables:

v.t; x/ D w

�
log.t C 1/;

x
p
t C 1

�
: (6.16)

Then (6.5) leads to the evolution equation

w� CLw C 1
2
e��=2w� D e

�w.�; �/

�ˆ 1
�e�=2

Qu.1 � Qu/ dy � Qu

�
; (6.17)

with the operator L defined by

Lw WD �w�� �
�

2
w� �

1

2
w: (6.18)

This is different from the operator L in (4.4) by a multiple of the identity. Considering
L as an operator on H 1.e�

2=4d�IRC/ with Neumann boundary conditions, its spectrum
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consists of the eigenvalues 0; 1; 2; : : : with (unnormalized) principal eigenfunction

 0.�/ D e
��2=4:

Importantly, Lemma 3.2 shows that the right side of (6.17) is negative:
ˆ 1
x

Qu.1 � Qu/ dy � Qu � 0 for all x 2 R. (6.19)

Recall the major ingredients in establishing the long time dynamics in self-similar
variables when ˇ < 2: (1) a supersolution of a tractable equation; (2) a subsolution
of a (potentially different) tractable equation; (3) smallness of the right hand side when
�� e��=2; (4) an approximate boundary condition when �� �e��=2. We now check
that analogous ingredients are available in this case.

First, we find a supersolution. This follows directly from Lemma 3.2. Indeed, any
solution to

Nw� CL Nw C 1
2
e��=2 Nw� D 0; � > 0; � > �e�.1=2�/� ; (6.20)

with appropriate boundary conditions on Nw�.�;�e�.1=2�/� / (see the fourth point below),
is a supersolution to (6.17).

Second, we see that the solution w to

w� CLw C 1
2
e��=2w� D �e

�w Qu; � > 0; � > e�.1=2�/� ; (6.21)

is a subsolution to (6.17), up to stating an appropriate boundary condition that we do now.
Due to the fact that Qu is steeper than �2, (3.24), (3.15), and Lemma 3.2, notice that

w�.�; �/ D . Qux C Qu.1 � Qu// exp
²
�=2C x C

ˆ 1
x

Qudy

³
� 0: (6.22)

Hence, we may take Neumann boundary conditions for w�:

w�.�; e
�.1=2�/� / D 0 (6.23)

and we are guaranteed that, with ordered initial data, w � w.
Third, we establish the smallness of the right hand side of (6.17) whenever � �

e�.1=2�/� . This follows directly from (6.19), Lemma 6.1, and (6.10):

0 � e�
�ˆ 1

�e�=2
Qu.1 � Qu/ dy � Qu.e� ; �e�=2/

�
w.�; �/

� �e� Qu.e� ; �e�=2/w.�; �/ � �Ce���e
�=2

� �Ce��e
�

: (6.24)

Hence, the right hand side of (6.17) is double-exponentially small.
Finally, we address the approximate boundary conditions of ! at � D �e�.1=2�/� .

Keeping Lemma 6.1 in mind, an approximate Dirichlet boundary condition is not possible.
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This is, of course, part of the reason for the different shift when ˇ D 2. Instead, we have
an approximate Neumann boundary condition. First notice that, due to (6.11),

j1 � Qu.e� ;�e� /j � Ce�e
�

: (6.25)

By parabolic regularity theory, we find

j Qux.e
� ;�e� /j � Ce�e

�

: (6.26)

Using (6.25) and (6.26) in (6.22), we obtain

jw�.�;�e
�.1=2�/� /j � Ce��e

�

: (6.27)

Hence, w satisfies an approximate Neumann boundary condition with double-exponen-
tially small error.

Thus, the main ingredients to an argument analogous to that for ˇ < 2 are in place,
with the only major difference being the change from approximate Dirichlet boundary
conditions to approximate Neumann boundary conditions. The change in boundary con-
ditions changes the principal eigenfunction of L and suggests that the long-time behavior
of w should look like ˛1e��

2=4 for � � 0. This is confirmed by the following key esti-
mate, which is the analogue of Lemma 4.2. As the proof follows from similar arguments
to those for Lemma 4.2, using the four ingredients above and our knowledge of the spec-
trum of L, we omit the details.

Lemma 6.2. Given w solving (6.17) with initial conditions w.0; �/ D 1.� � 0/, there
exists a constant ˛1 > 0 and a function R such that

w.�; �/ D ˛1e
��2=4

CR .�; �/e
��2=6 for � � �e�.1=2�/� ; (6.28)

for any  2 .0; 1=2/, and

lim
�!1

jR .�; �/j D 0 uniformly for � � �e�.1=2�/� : (6.29)

Before proceeding, we note that the role of Lemma 6.1 in the proof of Lemma 6.2
is to guarantee the positivity of ˛1 and the boundedness of w. From Lemma 6.2, we
immediately obtain the long time behavior of Qu at scales between O.1/ and O.

p
t /.

Corollary 6.3. Let  2 .0; 1=2/, fix " > 0, and set x D .t C 1/ . There exist ˛1 > 0

and T"; such that

j Qu.t; x / � ˛1e
�x j � "e�x for all t > T"; : (6.30)

Convergence to a single wave: The proof of Theorem 1.1 for ˇ D 2. With Lemma 6.2 and
Corollary 6.3 in hand, the rest of the proof is quite straightforward; however, it deviates
somewhat from the proof for ˇ < 2 in Section 4. The main reason is that we cannot verify
that an analogously defined v˛ satisfies a small boundary condition at x D �.t C 1/

(cf. (4.40)).
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As in (4.18), we take
'˛.t; x/ D �2.x C �˛.t//; (6.31)

and perform the corresponding weighted Hopf–Cole transforms:

 ˛.t; x/ D e
�˛.t;x/'˛.t; x/; where �˛.t; x/ D x C

ˆ 1
x

'˛.t; y/ dy: (6.32)

Similarly to (4.23), we define a shift of the traveling wave, fixing �˛.t/ by the normaliza-
tion

 ˛.t; .t C 1/
 / D ˛: (6.33)

Recalling that �2.x/ D 1=.1C ex/, we can easily compute thatˆ 1
x

'˛.y/ dy D

ˆ 1
xC�˛

1

1C ey
dy D �.x C �˛/C log.1C exC�˛ /; (6.34)

so that

˛ D  ˛.t; .t C 1/
 / D e��˛ ; or equivalently �˛.t/ D � log˛: (6.35)

Fix " > 0. As in the proof of Theorem 1.1 when ˇ < 2, it is enough to obtain precise
upper bounds on '˛1�" � Qu and Qu � '˛1C" because j'˛1 � '˛1˙"j � C". We do this
now.

First consider '˛1�" � Qu. In exactly the same manner as we established (4.54), we
see that

'˛1�" � Qu < 0 for all t sufficiently large and x < .t C 1/ : (6.36)

Here we have used Corollary 6.3.
We now turn to Qu � '˛1C". We claim that

Qu � '˛1C" < C" for all t sufficiently large and jxj < .t C 1/ ; (6.37)

which is enough to conclude the proof. To prove (6.37), we apply Lemma 6.2 to take t
sufficiently large, so that v � ˛1 C " on jxj < .t C 1/ . Then, rewriting Qu and using
(6.34)–(6.36), we find, on jxj < .t C 1/ ,

Qu.t; x/ D v.t; x/ exp
²
�x �

ˆ 1
x

Qudy

³
� .˛1 C "/ exp

²
�x �

ˆ 1
x

Qudy

³
� .˛1 C "/ exp

²
�x �

ˆ 1
x

'˛1�" dy C

ˆ 1
.tC1/

'˛1�" dy

³
D .˛1 C "/

e�˛1�"

1C exC�˛1�"
eCe
�.tC1/

� .˛1C "/
e�˛1�"

1C exC�˛1�"
CCe�.tC1/



D .˛1C "/

1
˛1�"

1C ex 1
˛1�"

CCe�.tC1/


D
1

˛1�"
˛1C"

C
1

˛1C"
ex
C Ce�.tC1/



�
1

1
˛1C"

ex C 1 � 2"
˛1

C Ce�.tC1/


�
1

1
˛1C"

ex C 1
C C"C Ce�.tC1/



: (6.38)
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Using (6.35), it is easy to see that

'˛1C".x/ D
1

1C exC�˛1C"
D

1

1C 1
˛1C"

ex
:

Using this along with (6.38) yields (6.37), concluding the proof of Theorem 1.1 when
ˇ D 2.

7. Convergence to pushed fronts for ˇ > 2

In this section, we consider convergence to the minimal speed traveling wave in the case
ˇ > 2. As mentioned in the introduction, the proof is quite standard and follows the
classical approach of [47, 49, 50] for the convergence to a traveling wave in the pushed
front regime. Let us recall that for all ˇ > 0 there is a traveling wave solution to the
Burgers-FKPP equation (1.1) of the form

�ˇ .x/ D
1

1C eˇx=2
(7.1)

that moves with speed

c�.ˇ/ D
ˇ

2
C
2

ˇ
� 2: (7.2)

A key point is that for ˇ � 2, the speed c�.ˇ/ given by (7.2) also happens to be the
minimal front speed. In other words, for ˇ � 2 the minimal speed wave profile is explicit
and given by (7.1). Another property that will be crucial for the analysis is that for ˇ > 2
we have

�ˇ .x/e
c�x=2 2 L2.R/: (7.3)

According to the criterion of [24], this puts the traveling front (7.1) into the category of
pushed fronts, unlike the fronts for ˇ � 2, for which (7.3) does not hold. Accordingly,
the proof of the large time convergence of the solutions to the initial value problem for
(1.1) with ˇ > 2 consists of three steps that are common in such results for pushed fronts:
compactness, local stability and quasi-convergence.

Compactness

As the first step, we show that the solution u.t; x/ to (1.1) with ˇ > 2 can be trapped
between an explicitly constructed supersolution Nu and a subsolution u. Each of them will
converge to a separate shift of the traveling front, exponentially fast in time. Here, we
follow the construction in [47]. We denote by c� D c�.ˇ/, as given by (7.2), and drop the
subscript ˇ in the notation for the traveling wave profile �ˇ .x/ given by (7.1). Consider
the moving frame z D x � c�t , setting

yu.t; z/ D u.t; z C c�t /: (7.4)
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This function satisfies

MŒyu� WD yut � c�yux C ˇyuyux � yuxx � yu.1 � yu/ D 0; (7.5)

with the initial condition yu.0; z/ D uin.z/. The sub- and supersolutions in the moving
frame are described by the following lemma.

Lemma 7.1. Fix � 2 .2=ˇ; ˇ=2/ and z0; z0 2 R. For q
0
; q0; � > 0, let

v.t; z/ WD �.z C �.t// � q.t; z C z0/;

v.t; z/ WD �.z � �.t//C q.t; z � z0/ for all t > 0; z 2 R (7.6)

with

q.t; z/ D q
0
e��t min ¹exp.��z/; 1º and q.t; z/ D q0e

��t min ¹exp.��z/; 1º;

and, for K > 0,
� 0.t/ D Kq

0
e��t and �

0
.t/ D Kq0e

��t : (7.7)

Suppose, for some D0 > 0,

Kq
0

�
;
Kq0
�
; j�.0/C z0jj�.0/C z0j � D0: (7.8)

If q
0
; q0 and � are sufficiently small and K is sufficiently large, all depending only on

ˇ, �, and D0, then v and v are sub- and supersolutions of (7.5), respectively.

Proof. We only prove the claim for v. We drop the subscripts of q1;2 and �1;2 and super-
scripts of q.1;2/0 and z.1;2/0 in order to simplify the notation. Let us insert the ansatz for
v.t; z/ given by the left side of (7.6) into the desired inequality

MŒv� � 0; (7.9)

which has to hold for v.t; x/ to be a subsolution to (1.1). This gives

MŒv� D � 0.t/�0 � qt C ˇ.� � q/.�
0
� qz/ � c�.�

0
� qz/ � �

00
C qzz � F.� � q/

D � 0.t/�0 � qt C c�qz � ˇ�qz � ˇq�
0
C ˇqqz C qzz C F.�/ � F.� � q/:

(7.10)
Here, we have set

F.u/ D u.1 � u/:

We fix a sufficiently small ı > 0, and consider (7.10) in three regions of z 2 R separately.
The far right region:

R D ¹z W �.z � �.t// � ıº: (7.11)

In other words, z � �.t/C ��1.ı/. Thus,

z C z0 � �
�1.ı/C �.t/C z0: (7.12)
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By (7.7)–(7.8),
j�.t/C z0j � 2D0: (7.13)

Hence, by choosing ı > 0 sufficiently small depending only on D0, we have

z C z0 � 0; (7.14)

so that
q.t; z C z0/ D q0 exp¹��t � �.z � z0/º for all z 2 R: (7.15)

It follows that

qt D ��q; qz D ��q; qzz D �
2q for all z 2 R:

As � 0.t/ > 0, �0 < 0, and �.t; x/ < ı for all x 2 R, we deduce that

MŒv� D � 0.t/�0 C .� � c��C �
2
C ˇ�� � ˇ�0/q C F.�/ � F.� � q/ � �ˇq2

� .� � c��C �
2
C ˇı� � ˇ�0/q C F.�/ � F.� � q/: (7.16)

Noticing that the traveling wave satisfies

c�� �
ˇ

2
�2 D ��0 C

ˆ 1
x

�.1 � �/ dy; (7.17)

we see that

�0 D �c�� C
ˇ

2
�2 C

ˆ 1
x

�.1 � �/ dy � �c�� for all x 2 R: (7.18)

In addition, we have

F.�/�F.� � q/D � � �2 � �C qC .� � q/2 D q � 2�qC q2 � .1C q0/q: (7.19)

Using these inequalities, together with (7.11), in (7.16) gives

MŒv� � .�2 � c��C ˇı�C �C 1C q0 C c�ˇı/q: (7.20)

Due to the assumption on �, we have �2 � c�� C 1 < 0. Then take ı; �; q0 > 0 all
sufficiently small, depending on �, so that

MŒv� � 0: (7.21)

We stress that here we use the assumption that ˇ > 2, which makes c� > 2.
The middle region:

M D ¹z W ı � �.z � �.t// � 1 � ıº: (7.22)

There exists ˛ı > 0, which depends on ı > 0, such that for all z in the middle region we
have

�0.z � �.t// � �˛ı : (7.23)
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We need to consider separately the points where z � z0 or z < z0, as this changes the
definition of q.t; z/. If z > z0, then q satisfies (7.15), and we use (7.23) to obtain, using
positivity of � 0.t/ once again,

MŒv� D � 0.t/�0 � qt C c�qz � ˇ�qz � ˇq�
0
C ˇqqz C qzz C F.�/ � F.� � q/

� �˛ı�
0.t/C .�C �2 � c��C ˇ��C c�ˇ�/q C .1C q/q � �ˇq

2

� �˛� 0.t/C Cq0e
��t : (7.24)

Above we have used F.�/� F.� � q/ � q.1C q/. Due to the assumption on �, we have
�ˇ > 1, which implies that

q2 � �ˇq2 � 0:

It follows that C does not depend on q0.
On the other hand, if z � z0, then

qt D ��q; qz D 0; (7.25)

and, as long as we choose q0 < ı, we get, after another appplication of (7.18),

MŒv� � � 0.t/�0 C .�C c�ˇ�/q C F.�/ � F.� � q/

� �˛ı�
0.t/C .�C c�ˇ C 1/q

� �˛ı�
0.t/C Cq0e

��t : (7.26)

It follows that MŒv� � 0 in both (7.24) and (7.26) since, by (7.7),

� 0.t/ D Kq0e
��t
�
C

˛ı
q0e
��t ; (7.27)

after possibly increasing K depending only on ı, which in turn depends on D0 and �.
The far left region:

L D ¹z W �.z � �.t// � 1 � ıº: (7.28)

Arguing as in the far right region setting, we see that, up to further decreasing ı depending
on D0, we have z C z0 � 0. Therefore, q.t/ satisfies (7.25), and we have

MŒv� D � 0.t/�0 � qt C c�qz � ˇ�qz � ˇq�
0
C ˇqqz C qzz C F.�/ � F.� � q/

D � 0.t/�0 C .� � ˇ�0/q C F.�/ � F.� � q/: (7.29)

The explicit form (7.1) of the profile �.x/ as x ! �1 implies that in the far left region
we have

�
ˇ

2
ı � �0 < 0: (7.30)

As also F 0.1/ D �1, we can ensure that

MŒv� � .�C ˇ2ı=2/q C F.�/ � F.� � q/ � 0; (7.31)

as long as we choose � > 0 and ı > 0 sufficiently small.
Thus, in all cases, we have show that MŒv� � 0, which finishes the proof of

Lemma 7.1.
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Local stability

Lemma 7.1 implies a certain compactness for the solution v.t; z/ to (7.5), which will
eventually lead to the nonlinear stability result. To formulate it, we need to introduce the
weighted Banach space

B� D ¹u 2 C.R;R/ W kuk� <1º;

with the norm

kvk� D max
z2R

jv.z/j

�.z/
; where �.z/ D min ¹1; exp.��z/º: (7.32)

We also introduce the norm

kvk�;1 D kvk� C kvzk� (7.33)

for later use. Let us define the !-limit set of uin 2 B� with respect to the evolution (7.5)
as

!.uin/ WD ¹ 2 B� \ C
2.R/ W 9tn !1 s.t. v.tn; �/!  .�/ in C 2loc.R/º:

By the standard parabolic regularity theory (see, e.g., [38, Chapter IV]), we know that the
“orbit” ¹v.t; �/ W t � 1º is relatively compact in C 2loc.R/. Thus, the set !.uin/ is nonempty
for a given initial condition uin 2 B�. Proposition 2.2 implies that each element of !.uin/

is either a constant 0 or 1, or a shift of the traveling wave �.x/. Indeed, v is simply u
in the moving frame c�t . Hence, if mˇ .tn/ � c�tn ! 1, then Proposition 2.2 implies
that v.tn; �/! 1 as the front mˇ .tn/ is “far ahead.” Similarly, if mˇ .tn/ � c�tn ! �1,
then v.tn; �/! 0. Finally, if mˇ .tn/ � c�tn converges to a constant, then Proposition 2.2
implies that v.tn; �/ converges to (a shift of) the traveling wave.

Lemma 7.1 rules out the possibility of convergence to a constant. Our goal is to prove
that it consists of exactly one element, and that the solution converges exponentially fast
to that particular shift of a traveling wave.

Lemma 7.1 implies the following local stability result.

Lemma 7.2. Fix � 2 .2=ˇ; ˇ=2/. For every " > 0, there exists  > 0 such that whenever

kv.0; �/ � �.� � s0/k� < ; (7.34)

we have
kv.t; �/ � �.� � s0/k� < " for all t � 0. (7.35)

Proof. Let us assume that s0 D 0. We see from (7.34) that

�.z/ � �.z/ < v.0; z/ < �.z/C �.z/ for all z 2 R: (7.36)

This allows us to apply Lemma 7.1 with �.t/ satisfying (7.27) and �.0/ D 0:

�.t/ D
K

�
.1 � e��t /;
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leading to

�.z � �.t// � �.z/ < v.t; z/ < �.z C �.t//C �.z/; t � 0; z 2 R:

Because
�.z/ � e�ˇz=2 as x !1,

and � < ˇ=2, there exists a constant K1 such that

k�.�/ � �.� ˙ �.t//k� � K1�.t/ � K1; t � 0;

finishing the proof.

Quasi-convergence and exponential stability

Now, convergence in shape in Proposition 2.2 and the steepness comparison in Proposi-
tion 1.1, together with Lemma 7.2, imply the following quasi-convergence property.

Corollary 7.3. Fix � 2 .2=ˇ; ˇ=2/. Let v.t; x/ be the solution to (7.5) with initial condi-
tion v0.x/ D 1.x � 0/. Then there exists a sequence tn !1 and s0 2 R such that

lim
n!1

kv.tn; �/ � �.� � s0/k� D 0: (7.37)

To improve the result of Corollary 7.3 to exponential convergence, we will use the
method of the papers [49, 50], which consider convergence to traveling waves for equa-
tions of the form

ut D uxx C f .u; ux/:

In the Burgers-KPP case, we have

f .u; ux/ D �ˇuux C u.1 � u/:

If one looks for solutions that are perturbations of a traveling wave, that is,

u.t; x/ D �.x � c�t /C w.t; x/;

then in the moving coordinate z D x � c�t , the equation of w can be decomposed as

@w

@t
D Lw CR.w/:

Here, the linearized operator is

Lw D wzz C c�wz C
@f

@�0
wz C

@f

@�
w

D wzz C .c� � ˇ�/wz C .�ˇ�
0
C 1 � 2�/w: (7.38)

The remainder R is a nonlinear operator whose Fréchet derivative vanishes at w D 0.
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The main result of [50] is that a local stability result, as we have in Corollary 7.3,
implies exponential convergence to a traveling wave, as long as the operator L satisfies
certain spectral assumptions that we will now recall and specify to the Burgers-FKPP
equation. Let us put the linearized operator in the form

Lw D w00 � 2bw0 C qw; b D 1
2
.ˇ� � c�/; q D �ˇ�

0
C 1 � 2�; (7.39)

and set

B.z/ D

ˆ z

0

b.s/ ds:

To remove the drift term in the operator L in (7.39), Sattinger introduces the operator

zM D e�BLeB ;

so that

zMw D w00 C pw; p D b0 � b2 C q: (7.40)

In our case, with �.x/ given explicitly by (7.1), and c� by (7.2), we have the left and right
limits

bC D lim
x!1

b.x/ D �
c�

2
D �

ˇ

4
�
1

ˇ
;

b� D lim
x!�1

b.x/ D
1

2
.ˇ � c�/ D

1

2

�
ˇ

2
�
2

ˇ

�
;

q˙ D lim
x!˙1

q.x/ D ˙1:

We see that
p˙ D lim

z!˙1
p.z/

are given by

pC D �b
2
C C qC D �

�
ˇ

4
C
1

ˇ

�2
C 1 D �

�
ˇ

4
�
1

ˇ

�2
< 0;

as ˇ > 2, and

p� D �b
2
� C q� D �

�
1

ˇ
C
ˇ

4

�2
� 1 < 0:

As both pC <0 and p� <0, the operator zM is stable both as x!1 and as x!�1, and
Theorems 1 and 2 in [50] imply that convergence in Corollary 7.3 is actually exponential
in time.

Corollary 7.4. Let v.t;x/ be the solution to (7.5) with initial condition v0.x/D 1.x � 0/.
There exist C > 0, !0 > 0, and s0 2 R such that

kv.t; �/ � �.� � s0/k� � Ce
�!0t : (7.41)

Using k � kL1 � k � k� now completes the proof of Theorem 1.1 for ˇ > 2.
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8. An informal derivation of the higher corrections

We explain in this section how the nonrigorous but extremely interesting methodology of
[8] can be used to predict the higher order corrections to the logarithmic shift in the front
position. This strategy was applied in [8] for the classical Fisher-KPP equation, and the
first two extra terms in the expansion were rigorously confirmed in [27,45], leading to the
long time front position asymptotics

m.t/ D 2t �
3

2
log.t C 1/C x1 �

3
p
�

p
t C 1

C
9

8
.5 � 6 log 2/

log.t C 1/
t C 1

C o

�
log t
t

�
;

(8.1)

a significant refinement of Theorem 1.1. The terms that appear in (8.1), except for x1,
do not depend on the initial conditions. Moreover, they are expected to be universal for a
large class of Fisher-KPP type problems. That is, this expansion has been shown to hold,
with exactly the same coefficients, for all equations of the form

ut D uxx C f .u/ (8.2)

with a nonlinearity f .u/ of the Fisher-KPP type, normalized so that f 0.0/ D 1 as long as
f 2 C 1;ı near 0 (see [9] for the treatment of the less regular case).

An analysis similar to what we do in this section for ˇ D 2 would show that (8.1)
holds with exactly the same coefficients for the Burgers-FKPP equation (1.1) for all ˇ < 2,
confirming the universality prediction of [8]. We omit the details. The goal of this section
is to show that when ˇ D 2 this expansion changes the coefficients but not the form of the
individual terms to

m.t/ D 2t �
1

2
log.t C 1/ � x1 �

p
�

2
p
t C 1

C
1 � log 2

4

log.t C 1/
t C 1

C o

�
log t
t

�
:

(8.3)

It is tempting to conjecture that the expansion (8.3) is also universal for problems that
combine the pulled nature with traveling waves that decay as e�x rather than the Fisher-
KPP asymptotics xe�x . This regime is referred to as Case (II) in [37, Chapter 2] for
reaction-diffusion equations of the form (8.2).

We begin with the following observation, inspired by [8], that we state for all ˇ � 2.
Let u.t; x/ be the solution to (1.1) with initial condition uin.x/ and set

'.t; r/ D

ˆ
R
u.t; z/2erz dz; ˆ1.r/ D .1 � rˇ=2/

ˆ 1
0

'.t; r/e�.r
2C1/t dt; (8.4)

and

ˆ.r/ D

ˆ
R
uin.x/e

rx dx: (8.5)

Note that the function ˆ.r/ is smooth for all r > 0, as long as the initial condition uin.x/

is compactly supported on the right. On the other hand, as we will see below, the function
ˆ1.r/ may potentially blow up as r ! 1�. This possibility is removed by the following
identity.
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Proposition 8.1. Assume that the initial condition uin.x/ for (1.1) satisfies

uin.x/ �
1

1C ex�L0
for all x 2 R; (8.6)

with some L0 > 0. Then

ˆ.r/ D ˆ1.r/ for all ˇ � 2 and r 2 .0; 1/: (8.7)

Proof. The proof is a modification of the argument in [8]. Without loss of generality we
assume that L0 D 0. First, we recall that, as shown in (4.9)–(4.10), for all ˇ � 2, we have
the upper bound

u.t; x/ � Nu.t; x/ WD
1

1C ex�2t
for all x 2 R: (8.8)

It follows that '.t; r/ is defined and differentiable in r for all r < 2. This also shows that
for all r 2 .0; 1/ we have

g.t; r/ WD

ˆ
R
u.t; x/erx dx �

ˆ
R

erx

1C ex�2t
dx D I0.r/e

2rt (8.9)

with

I0.r/ D

ˆ
R

erx

1C ex
dx <1;

since r 2 .0; 1/. Next, differentiating g.t; r/ in t , we obtain

gt .t; r/ D

ˆ
R
ut .t; x/e

rx dx D

ˆ
R

�
�
ˇ

2
.u2/x C uxx C u � u

2

�
erx dx

D .1C r2/g.t; r/ � .1 � rˇ=2/'.t; r/: (8.10)

Integrating this identity from 0 to t and using the definition of ˆ.r/, we see that

g.t; r/e�.1Cr
2/t
D ˆ.r/ � .1 � rˇ=2/

ˆ t

0

'.s; r/e�.1Cr
2/s ds:

As 2r < 1C r2, we may use (8.9) to pass to the limit t !1 and obtain (8.7).

An immediate consequence of Proposition 8.1 is that the function ˆ1.r/ remains reg-
ular and even infinitely differentiable, with bounded derivatives as r ! 1�. A surprising
discovery of [8] is that for the classical Fisher-KPP equation one can perform a careful
analysis of that limit in terms of the front location m.t/ and this regularity alone can be
used to obtain the asymptotics (8.1) ofm.t/ as t !1. As noted above, this approach can
be applied nearly verbatim for ˇ < 2, so we only consider ˇ D 2 below.

Assumptions on the rate of convergence. Let us now formalize the assumptions that go
into the derivation of (8.1) and (8.3). We know from Proposition 2.2 that there is a refer-
ence frame m.t/ such that

u.t; x Cm.t//! �2.x/; (8.11)
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and from Theorem 1.1 that, when ˇ D 2,

m.t/ D 2t � .t/; .t/ D a log.t C 1/ � ˛.t/; ˛.t/ D x1 C o.1/ as t !1:
(8.12)

Of course, we already know that a D 1=2 when ˇ D 2 but we leave this coefficient unde-
termined for now, to show how this value can be discovered by the arguments below. One
assumption of [8], later proved in [27], is that the analogue of (8.11) with ˇ D 0 holds at
the rate O.1=t/. For the Burgers-FKPP equation this translates into the assumption that

u.t; x Cm.t// D �2.x/C
1

t
�.t; x/ as t !1, (8.13)

with a function �.t; x/ rapidly decaying in space (but not necessarily in time). A result
of [27] for ˇ D 0 is that �.t; x/ has a positive limit as t !1, and the rateO.t�1/ cannot
be improved. We stress that (8.13) is an assumption and not a rigorous claim, even though
we believe that it holds, as it does for the classical Fisher-KPP equation.

Let us now rewrite the function ˆ1.r/ in terms of m.t/. We introduce

'm.t; r/ D

ˆ
R
u.t; z Cm.t//2erz dz

D e�rm.t/
ˆ

R
u.t; z/2erzdz D e�rm.t/'.t; r/; (8.14)

and write

ˆ1.r/ D .1 � r/

ˆ 1
0

'm.t; r/e
rm.t/�.r2C1/t dt: (8.15)

Given the exponential decay of u.t; x/ and �2.x/, and assumption (8.13), we deduce that
there exists a function Q�.t; r/ such that

'm.t; r/ D

ˆ
R
u.t; z Cm.t//2erzdz D Q'.r/C

1

t C 1
Q�.t; r/ (8.16)

with
Q'.r/ WD

ˆ
R
�2.z/

2erz dz (8.17)

and
j Q�.t; r/j � K for all t > 0 and r 2 .1=2; 3=2/. (8.18)

Inserting (8.16) into (8.15) gives

ˆ1.r/ D .1 � r/

ˆ 1
0

�
Q'.r/C

1

t C 1
Q�.t; r/

�
erm.t/�.r

2C1/t dt: (8.19)

Higher order corrections from the limit r ! 1�. We now pass to the limit r ! 1� in
(8.19) and use the regularity of ˆ1.r/ in this limit, implied by Proposition 8.1, to get
extra terms in the asymptotic expansion for m.t/ as t !1. We take r D 1 � " in (8.19)
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with " 2 .0; 1/ and use the expression (8.12) for m.t/:

ˆ1.1 � "/ D "

ˆ 1
0

�
Q'.1 � "/C

1

t C 1
Q�.t; 1 � "/

�
e.1�"/.2t�.t//�..1�"/

2C1/t dt

D Q'.1 � "/I."/CE."/:

(8.20)
Here, the main term is

I."/ D "

ˆ 1
0

e�.1�"/.t/�"
2t dt; (8.21)

and

E."/ D "

ˆ 1
0

1

t C 1
Q�.t; 1 � "/e�.1�"/.t/�"

2t dt (8.22)

is the error term.
In order to avoid additional technicalities in an argument that is not rigorous (because

assumption (8.13) has not been justified), we use (8.13) to replace the rigorous claim that
ˆ1.1 � "/ remains regular as "! 0 by the assumption that

I."/ remains strictly positive and regular as "! 0, (8.23)

neglecting the error term E."/. Note that the function Q'.r/ is regular near r D 1, as can
be seen immediately from its definition (8.17). The positivity of I."/ holds because we
know from (8.7) that ˆ1.1 � "/ is finite and not small for any " > 0, and so is Q'.1/.

The surprising fact is that (8.23) by itself leads to the asymptotic expansion (8.3) for
m.t/. We first explain how we can find from (8.23) that the coefficient a that appears in
(8.12) equals 1=2, as expected. Using the expression for .t/ in (8.12), we write

I."/ D "

ˆ 1
0

e�"
2tC.1�"/˛.t/

.t C 1/a.1�"/
dt D "

ˆ 1
0

e�sC.1�"/˛.s="
2/

.s="2 C 1/a.1�"/
ds

"2

D ".1C o.1//e.1�"/x1
ˆ 1
0

"2a.1�"/�2

.s C "2/a.1�"/
e�s ds

D "2a.1�"/�1.1C o.1//e.1�"/x1
ˆ 1
"2

e�rC"
2

ra.1�"/
dr; (8.24)

where the o.1/ is according to the limit "! 0. We replaced ˛.s="2/ by its limit x1 in
the second-to-last step above. If a > 1, then the nonintegrability of r�a near the origin
will cause the integral to grow like "�2.a�1/. In this case, we deduce that I."/ � ", which
cannot happen as I."/ is uniformly positive by (8.23). A similar argument applies to the
case a D 1. Hence, a < 1. In this case, the integral is finite, so that I."/ � "2a�1. Since I
is positive and bounded (again, by (8.23)), the only choice is a D 1=2 as in Theorem 1.1.

Next, we show how the remaining terms in (8.3) come about. Taking aD 1=2 in (8.24)
and writing

˛.t/ D x1 C p.t/; p.t/! 0 as t !1; (8.25)
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leads to

I."/ D "e.1�"/x1
ˆ 1
0

1
p
t C 1

e."=2/ log.tC1/C.1�"/p.t/�"2t dt: (8.26)

Let us assume without loss of generality that x1 D 0, and note that

I."/!

ˆ 1
0

e�t
p
t
dt D

p
� as "! 0; (8.27)

so the positivity requirement in (8.23) holds automatically. Expanding further gives

I."/ D
p
� C "

ˆ 1
0

1
p
t C 1

�
"

2
log.t C 1/C p.t/

�
e�"

2tdt C o." log "/: (8.28)

Note that the first term in the integral above has the asymptotics

"2

2

ˆ 1
0

log.t C 1/
p
t C 1

e�"
2tdt D

"2

2

ˆ 1
1

log t
p
t
e�"

2tdt C o." log "/

D
"

2

ˆ 1
"2

log.t="2/
p
t

e�tdt C o." log "/ D �
p
� " log "C o." log "/: (8.29)

We now make an ansatz

p.t/ D
b
p
t
C o.t�1=2/ as t !1; (8.30)

with the constant b to be determined, and insert it into the second integral in (8.28):

"

ˆ 1
0

p.t/
p
t C 1

e�"
2t dt D "b

ˆ 1
1

e�"
2t

t
dt C o." log "/

D "b log."�2/C o." log "/: (8.31)

Taking into account the regularity of I."/ together with (8.28)–(8.29) and (8.31), we con-
clude that, since the overall coefficient in front of " log " has to cancel, we must have

b D
p
�=2: (8.32)

We deduce that when ˇ D 2, the front location has the asymptotics

m.t/ D 2t �
1

2
log t � x1 �

p
�

2
p
t
C o.t�1=2/ as t !1, (8.33)

recovering all but the last term in the right side of (8.3).
A similar computation, expanding I."/ further in ", and observing that the terms of

order "2 log " must cancel, improves (8.33) to

m.t/ D 2t �
1

2
log t � x1 �

p
�

2
p
t
C
1 � log 2

4

log t
t
C : : : (8.34)

which is (8.3). We leave the computational details to an interested reader.
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Appendix A. Traveling waves for the Burgers-FKPP equation

In this appendix, we recall some basic facts on the Burgers-FKPP traveling waves. Most
of them can be found in [42, Section 13.4], at least on a formal level, and also in [53] for
ˇ < 0.

We will use the notation
f .u/ D u.1 � u/ (A.1)

for the reaction term, and write the traveling wave Burgers-FKPP equation as

�cU 0 C ˇUU 0 D U 00 C f .U /; U.�1/ D 1; U.1/ D 0: (A.2)

Existence of traveling waves

We first state the result on the existence of traveling waves.

Proposition A.1. A traveling wave solution to (A.2) exists for all c � c�.ˇ/ with

c�.ˇ/ D

8<: 2
p
f 0.0/ D 2 if ˇ < 2;

ˇ

2
C
2

ˇ
if ˇ � 2:

(A.3)

Proof. First, we note that the boundary conditions in (A.2) allow us to use the sliding
method to deduce that any traveling wave solution U.x/ to (A.2) is decreasing. Introduc-
ing V D �U 0 > 0, we write (A.2) as a system

dU

dx
D �V;

dV

dx
D .ˇU � c/V C f .U /: (A.4)

This leads to

dV

dU
D c � ˇU �

f .U /

V
: (A.5)

Consider the plane formed by the horizontal U -axis and the vertical V -axis. The explicit
form of f .u/ in (A.1) shows that the system (A.4) has two equilibrium points

E1 D .0; 0/ and E2 D .1; 0/.

A traveling wave is a heteroclinic orbit of (A.4) that goes from E2 to E1.
The linearization of (A.4) around E1 is

d

dx

�
QU
QV

�
D

�
0 �1

f 0.0/ �c

��
QU
QV

�
:

The eigenvalues of this matrix are

�1;2 D
�c ˙

p
c2 � 4

2
; (A.6)

and are both real and negative if c � 2. Thus, the pointE1 is a stable equilibrium of c � 2.
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On the other hand, the linearization of (A.2) around E2 is

d

dx

�
QU
QV

�
D

�
0 �1

f 0.1/ ˇ � c

��
QU
QV

�
:

The eigenvalues of this matrix are

�˙ D
ˇ � c ˙

p
.ˇ � c/2 C 4

2
: (A.7)

They are real and have opposing signs, so E2 is a saddle point.

Existence of traveling waves for c � c�.ˇ/. We prove existence of a heteroclinic orbit by
constructing an invariant region in the .U; V /-plane that contains the unstable manifold
of the point .1; 0/. The regions are different for ˇ � 2 and ˇ < 2, so we consider them
separately.

When ˇ � 2, we consider the regionD1 formed by the interval `1 D Œ0; 1�� ¹0º along
the U -axis, and the curve `2 D ¹V D .ˇ=2/f .U /º that connects the equilibrium points
E1 and E2 and lies in the upper half-plane ¹V > 0º. Note that the slope of `2 at E2 is
�ˇ=2, while the slope eu of the unstable orbit at E2 is ��C. Hence, the unstable orbit
starting at E2 enters the region D1 at E2 if �C < ˇ=2. This condition is satisfied if

�C D
ˇ � c C

p
.ˇ � c/2 C 4

2
<
ˇ

2
; (A.8)

or

c > c�.ˇ/ D
ˇ

2
C
2

ˇ
: (A.9)

Now, we check that the regionD1 is invariant. Along the interval `1, we have, from (A.4),

dU

dx
D 0;

dV

dx
D f .U / > 0; (A.10)

so the trajectories point upward, into D1. Along the curve `2, we have, from (A.5),

dV

dU
D c � ˇU �

2

ˇ
: (A.11)

The slope of the curve `2 itself is

ˇ

2
f 0.U / D ˇ

�
1

2
� U

�
: (A.12)

Thus, the trajectories along `2 point into D1 if

c � ˇU �
2

ˇ
> ˇ

�
1

2
� U

�
for all U 2 Œ0; 1�, (A.13)

or equivalently

c > c�.ˇ/ D
ˇ

2
C
2

ˇ
: (A.14)
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This shows that traveling waves exist for all c > c�.ˇ/ when ˇ � 2. It is easy to see that
the curve `2 itself forms a heteroclinic connection between E1 and E2 when c D c�.ˇ/.

When 0 < ˇ < 2, we consider a different region D2 formed by the same interval
`1 D Œ0; 1� � ¹0º and the curve `3 D ¹V D f .U /º, also connecting the points E1 and E2
through the upper half-plane. The slope of `3 at E2 is �1, hence the condition that the
unstable direction eu points into the region D1 at E2 is �C < 1, which is

�C D
ˇ � c C

p
.ˇ � c/2 C 4

2
< 1: (A.15)

This condition holds as soon as c > ˇ.
To check that the region D2 is invariant, we first note that, just as for ˇ � 2, the

trajectories point upward and insideD2 along the interval `1. The slope of the curve `3 is
1 � 2U , and we have, from (A.5),

dU

dx
< 0;

dV

dU
D c � ˇU � 1 � 1 � 2U for all U 2 Œ0; 1�; (A.16)

as long as c � c� D 2. We use here the fact that ˇ < 2. Thus, the region D2 is invariant.
As the unstable direction eu enters D2, existence of the heteroclinic orbit connecting E2
and E1 follows.

Nonexistence of traveling waves for c < c�.ˇ/. Consider first the case ˇ� 2. Suppose that
c < c�.ˇ/ D 2. Given a wave U.x/ that satisfies (A.2), define the normalized translates

Un.x/ D
U.x C n/

U.n/
;

which satisfy

�cU 0n C ˇU.n/UnU
0
n D U

00
n C Un � U.n/U

2
n ; Un.0/ D 1: (A.17)

As U.n/! 0 as n!1, the Harnack inequality and the normalization Un.0/ D 1 imply
that the sequence Un.x/ converges locally uniformly to a limit NU.x/ > 0 that satisfies

�c NU 0 D NU 00 C NU ; NU.0/ D 1: (A.18)

Since c < 2, solutions to (A.18) are exponentials of the form

NU.x/ D A1e
�1x C A2e

�2x

with �1;2 2 C n R given by (A.6). On the other hand, NU is real and positive. This is
only possible if A1 D A2 D 0, which violates the normalization NU.0/ D 1. This is a
contradiction, and thus c < 2 is not possible when ˇ � 2.

In the case ˇ � 2 we argue as follows to show that no wave can exist for c < c�.ˇ/.
First, the same argument as for ˇ < 2 implies that there exist no waves for c < 2. Let us
assume that there there exists a heteroclinic orbit connectingE2 toE1 for some c < c�.ˇ/.
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Then (A.6) implies that its slope at E1 D .0; 0/ is

dV

dU

ˇ̌̌̌
.0;0/

D
c �
p
c2 � 4

2
: (A.19)

On the other hand, its slope at E2 is still given by ��C, and we see from (A.8) that it
goes out of the region D1 when it leaves E2. Moreover, looking at (A.11) and (A.12) we
see that if c < c�.ˇ/, then the heteroclinic orbit cannot re-enter the domain D1 along the
curve `2 at a point with 0 < U < 1. Therefore, if it arrives at E1, it has to do that above
the curve `2, and its slope at this point has to satisfy

dV

dU

ˇ̌̌̌
.0;0/

>
ˇ

2
: (A.20)

Combining (A.19) and (A.20) gives

c �
p
c2 � 4

2
>
ˇ

2
: (A.21)

It follows that
ˇ <

4

c C
p
c2 � 4

�
4

c
� 2; (A.22)

as we already know that c � 2. This contradicts the assumption that ˇ � 2, finishing the
proof of Proposition A.1.

Remark. When c D 2 and ˇ 2 .0; 2/, the above proof shows that for ˇ 2 .0; 2/, all
trajectories are trapped in the region bounded by the curves `2 D ¹V D .ˇ=2/f .U /º and
`3 D ¹V D f .U /º, that is,D2 nD1. The reasons for this are that the inequality in (A.13)
is reversed and (A.16) holds, so this region is invariant, and ˇ=2 < �C < 1, so trajectories
enter D2 nD1 from E2. This implies that for any 0 < z < 1 we have

z.1 � z/

j NE.z/j
�
2

ˇ
(A.23)

with NE.z/ defined in (2.6).

The asymptotic profile of the traveling waves. We briefly summarize asymptotic profiles
of traveling wave solutions. The details are essentially identical to the Fisher-KPP equa-
tion; see, for instance, [37] for a detailed analysis.

When ˇ < 2, the minimal speed traveling wave has the following asymptotics on the
right:

U.z/ D .Az C B/e�z CO.e�.1Cı/z/ as z !1; (A.24)

with A > 0 and ı > 0. When ˇ � 2, the critical front has an explicit form

U.z/ D
1

1C eˇz=2
: (A.25)
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Steepness comparison of the waves. Finally, we present a steepness comparison for the
traveling waves that is used to show convergence of the solution in shape to the minimal
speed traveling wave.

Lemma A.2. Fix any ˇ 2 R. Let U1 and U2 be two traveling waves with speeds c1 and
c2, respectively. If c1 � c2, then U1 is steeper than U2.

Proof. The proof follows an approach from [20]. If we define

NEi .z/ D �U
0
i .U

�1
i .z//; (A.26)

it is enough to show that

NE1.z/ � NE2.z/ for all z 2 .0; 1/. (A.27)

Using (A.5), we obtain

NE 0i .z/C ˇz C
f .z/

NEi .z/
D ci ; (A.28)

so that

NE 01.z/ �
NE 02.z/ �

f .z/

NE1.z/ NE2.z/
. NE1.z/ � NE2.z// D c1 � c2: (A.29)

It follows that the function

F.z/ D . NE1.z/ � NE2.z// exp
�
�

ˆ z

1=2

f .z0/

NE1.z0/ NE2.z0/
dz0
�

satisfies

F 0.z/ D .c1 � c2/ exp
�
�

ˆ z

1=2

f .z0/

NE1.z0/ NE2.z0/
dz0
�
: (A.30)

Observe that NE1 � NE2! 0 as z! 1. It follows that F.z/! 0 as well. On the other hand,
since c1 � c2, we see from (A.30) that F.z/ is decreasing. It follows that F.z/ � 0 for
all z, which implies (A.27) and concludes the proof.
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