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Non-random perturbations of the Anderson Hamiltonian

S. Molchanov and B. Vainberg1

Abstract. The Anderson Hamiltonian H0 D �� C V.x; !/ is considered, where V is a
random potential of Bernoulli type. The operatorH0 is perturbed by a non-random, continuous
potential �v.x/ � 0, decaying at infinity. It will be shown that the borderline between finitely
and infinitely many negative eigenvalues of the perturbed operator is achieved with a decay of
the potential �v.x/ as O.ln�2=d jxj/.
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1. Introduction

We will discuss the following problem in the spirit of the classical CLR-estimates for
the negative spectrum of multidimensional Schrödinger operators. Let

H0 D ��C hV.x; !/; x 2 Rd ; ! 2 .�; F; P / (1)

be the Anderson Hamiltonian on L2.Rd / (see remarks below concerning the lat-
tice case). The random potential we consider has the simplest Bernoulli structure:
consider the partition of Rd into unit cubes

Qn D fx W kx � nk1 � 1=2g; n D .n1; : : : ; nd / 2 Zd ;

and put

V.x; !/ D
X
n2Zd

"nIQn
.x/: (2)

Here "n are i.i.d. Bernoulli r.v., namely

P f"n D 1g D p > 0; P f"n D 0g D q D 1 � p > 0 (3)

on the probability space .�; F; P /.

1The work of both authors was supported in part by the NSF grant DMS-0706928.
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We call a domain D 2 Rd a clearing if V D 0 when x 2 D. Since P -a.s.
realizations of the potential V contain cubic clearings of arbitrary size l � 1, we
have Sp.H0/ D Œ0;1/.

Consider a perturbation of H0 by a non-random continuous potential

H D ��C hV.x; !/ � v.x/; v.x/ � 0; v ! 0 as jxj ! 1: (4)

The operator H is bounded from below, and its negative spectrum f�i g is discrete.
PutN0.v/ D N0.v; !/ D #f�i � 0g:The following theorem presents the main result
of the paper.

Theorem 1.1. There are two constants c1 < c2 which depend only on d and inde-
pendent of h and p, such that

a) the condition

v.x/ � c1

ln
2
d jxj ln 1=q

; jxj ! 1;

implies N0.v; !/ < 1 P -a.s.,
b) the condition

v.x/ � c2

ln
2
d jxj ln 1=q

; jxj ! 1;

implies N0.v; !/ D 1 P -a.s..

The proof of this theorem is based on a combination of probabilistic and analytic
ideas and will be presented in Sections 2–4.

Remark 1.2. The same proof with minor modifications is applicable for the lattice
Anderson model with the Bernoulli potential. Consider L2.Zd /; d � 1; and the
lattice Laplacian

�� .x/ D �
X

x0 W jx0�xjD1

Œ .x0/ �  .x/�; Sp.��/ D Œ0; 4d �: (5)

Put
H0 D �� C h".x; !/; x 2 Zd ;

where ".x/ are i.i.d.r.v.; P f".x/ D 1g D p > 0, P f".x/ D 0g D q D 1 � p > 0.
Consider the perturbation

H D ��C h".x; !/ � v.x/; v.x/ � 0; v ! 0; jxj ! 1: (6)

The lattice version of Theorem 1.1 has the same form (with different values of c1; c2).

Remark 1.3. A weaker form of Theorem 1.1 was proved in [14], see Theorem 2.1
in the next section.
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It looks natural to try to prove Theorem 1.1 using Cwikel–Lieb–Rozenblum (CLR)
estimates together with the Donsker–Varadan estimate. In Section 2 we describe
difficulties which did not allow us to use these approaches. Our proof is based
on percolation theory and Dirichlet–Neumann bracketing. The percolation theory
allows us to describe sets in Rd where V D 1. These results will be presented in
Section 3. After that, one can impose Dirichlet or Neumann boundary conditions on
some surfaces and reduce the problem to a study of the eigenvalues of the Schrödinger
operator in a bounded domain with a potential supported near the boundary. Some
general results on the latter problem will be presented in Section 4. The proof of
Theorem 1 will be completed in Section 5. Together with J. Holt we proved more
general results in the 1 �D case [8].

The authors are very grateful to O. Safronov for useful remarks.

2. CLR-estimates and large deviations

The classical approach to the study of the discrete negative spectrum of Schrödinger
type operators is based on Cwikel–Lieb–Rozenblum estimates, see [3], [9], [10], [15],
and [16] for original publications on these estimates. Some generalizations (abstract
phase spaces, more general operators, etc) and references to numerous papers on the
topic can be found in [14], [17], and [18].

In our particular case this estimate can be presented in the following form. Let
p0.t; x; y/ be the fundamental solution for the parabolic Schrödinger problem

@p0

@t
D �xp0 � V.x/p0; p0.0; x; y/ D ıy.x/: (7)

Here V � 0 and it is not essential that it is random. Consider the operator

H D ��C V.x/ � v.x/; v � 0; v.x/ ! 0; jxj ! 1:

Let N0.v/ D #f�j � 0g be the number of negative eigenvalues of H . Then

N0.v/ � 1

g.1/

Z 1

0

Z
Rd

p0.t; x; x/

t
G.tv/ dx dt; (8)

where G is a rather general function and g.1/ D R 1
0
z�1G.z/e�zdz. Usually, it is

enough to consider G.z/ D .z � �/C; � > 0; which leads to

N0.v/ � 1

c.�/

Z
Rd

dx v.x/

Z
�

v.x/

p0.t; x; x/ dt; (9)

where

c.�/ D
Z 1

0

z

z C �
ezC�dz:
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The convergence of the integral (9) determines whetherN0.v/ is finite or infinite. This
convergence connects the decay of v.x/ at infinity with asymptotics of p.t; x; x/ as
t ! 1. Usually p D O.t� /; t ! 1; which leads to the borderline decay of the
perturbation v.x/ (which separates cases of N0.v/ < 1 and N0.v/ D 1/ which
is defined by a power function. There are several examples in [14] when p decays
exponentially as t ! 1 (Lobachevski plane, operators on some groups). This leads
to much slower borderline decay of v. In those examples a fast decay of p is a
corollary of an exponential growth of the phase space.

In order to apply (9) to the operator with the Bernoulli piece-wise potential,
one needs to have a good estimate for p0.t; x; x/. A rough estimate of integral (9)
(through the maximum of the integrand) leads to the following result. The presence
of arbitrarily large clearings implies that P -a.s.

�.t/ � sup
x
p0.t; x; x/ D 1

.4�t/d=2

which provides the standard CLR-estimate:

N0.v/ � c.d/

Z
Rd

vd=2.x/dx; d � 3:

This estimate ignores the presence of the random potential V and therefore is very
weak for the Hamiltonian H0 D ��C hV .

Another possibility is to take the expectation (over the distribution of V.x; !/
in (9)). This leads to

hN0.v/i � 1

c.�/

Z
Rd

v.x/

Z
�

v.x/

hp0.t; x; x/idt dx: (10)

The following Donsker–Varadan estimate (see [4] and [5]) of hp0.t; x; x/i is one of
the widely known results in the theory of random operators (it is related to the concept
of Lifshitz tails for the integral density of states N.�/):

lnhp0.t; x; x/i D lnhp0.t; 0; 0/i � �c.d/t d
dC2 ; t ! 1;

i.e., for any " > 0,

hp0.t; x; x/i � e�.c1.d/�"/td=dC2

; t � t0."/:

Combination of this estimate and (10) leads to the following result [14].

Theorem 2.1. . Ifw.x/ � c= ln� .2Cjxj/; c > 0; � > 1C2=d , then hN0.v/i < 1
(which implies, of course, that N0.v/ < 1, P -a.s.).

This theorem requires a stronger decay of v .�/ than Theorem 1.1.



Non-random perturbations of the Anderson Hamiltonian 183

Asymptotics of mean values of random variables are known as annealed (or
moment) asymptotics. Alternatively, one can use P -a.s., or quenched, asymptotics.
The latter usually provides a stronger result. A quenched behavior of the kernel
p0.t; x; x; !/ was obtained by Sznitman [19]. He proved that when x is fixed the
following relation holds P -a.s.

lnp0.t; x; x; !/ � c1.d; p/
t

ln2=d t
: (11)

Unfortunately, the asymptotics in (11) is highly non-uniform in x. Besides, the field
p0.t; x; x; !/; x 2 Rd , has the correlation length of order t . As a result, formula
(11) can not be combined with (9), at least directly, to estimate N0.v/, though the
presence of the factor ln2=d t indicates that (11) reflects the essence of the problem.

3. Percolation lemmas

We will prove below several results (some of them can be found in [1], [2], [6], [13])
on the geometric structure of the set X1 	 Rd where the potential

V.x; !/ D
X

n2Zd

"nIQn
.x/ (12)

is equal to one. Here "n are i.i.d. Bernoulli r.v., and (3) holds. This section will be
used to prove statement a) of Theorem 1.1, where estimates of the operator (4) from
below are needed. Thus, our goal here will be to show that set X1 is rich enough
(for any p; q). When the proof of statement b) is discussed (the last section) we will
need estimates of the operator (4) from above, and existence of large clearings where
V.x; !/ D 0 will be shown there.

Let us say that a cubeQn is black if "n D 1, and white if "n D 0: Let us introduce
the concept of connectivity for sets of cubesQn. Two cubes are called 1-neighbors if
they have a common .d �1/-dimensional face, i.e. the distance between their centers
is equal to one. Two cubes are called

p
d -neighbors if they have at least one common

point (a vertex or an edge of the dimension k � d � 1, i.e. the distance between
their centers does not exceed

p
d . A set of cubes is called 1-connected (or

p
d -

connected) if any two cubes in the set can be connected by a sequence of 1-neighbors
(
p
d -neighbors, respectively).
Let �b; �w be the sets of all black and white cubes, respectively. Let Cb.n; 1/ 2

�b; n 2 Zd , be a 1-connected component of the set of all black cubes which contains
the cube Qn. It is empty if "n D 0: The sets Cb.n;

p
d/; Cw.n; 1/; Cw.n;

p
d/ are

introduced similarly. We denote by jCbj and jCw j the volume of the corresponding
component (the number of cubes in this subset).

An infinite (maximal) 1-connected component z�B.1/ of black cubes will be called
a continent. A well known result by M. Aizenman, H. Kesten, C. M. Newman [2]
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states that P -a.s. there is at most one continent in Rd (even if 1-connectivity in the
definition of the continent is replaced by

p
d -connectivity). A continent can includep

d -connected lakes where "n D 0, the lakes can include islands, i.e. bounded
1-connected components where "n D 1, and so forth.

We will prove below (Lemma 3.4) that a continent exists P -a.s. if

q < Qq.d/ D 1

3d � 2 (13)

and find estimates from above for the sizes of the lakes (Lemmas 3.1, 3.2). Then we
will discuss the case when the inequality opposite to (13) holds (Lemma 3.5 with
Corollary 3.6 and Lemma 3.7). An estimate for the sizes of lakes from below will be
established in the last section in the proof of part b) of Theorem 1.1.

Most of the results discussed in this section are known in some form and rely
on the fundamental fact that the distribution of jCw.n;

p
d/j has exponential tails

(see next lemma) for q � qcr.d/ (
p
d percolation threshold). Unfortunately, the

exact value of qcr and related constants are not known. In order to make our paper
self-sufficient we will provide proofs of all results. Perhaps some of them will be not
the strongest possible (in particular, (13) will be used instead of q � qcr.d/), but our
proofs allow us to efficiently obtain all the constants.

Lemma 3.1 (exponential tails). If (13) holds, then there exists a constant c0 D
c0.d; q/ such that

P fjCw.0;
p
d/j � sg � c0e

��s; 	 D ln
1

q.3d � 2/ > 0: (14)

Proof. Consider all possible
p
d -connected sets S D S

Qn of the cubes Qn which
have volume s (each of them consists of s cubesQn) and contain the cubeQ0 (we do
not pay attention to the color of cubes in S). Grimmett [6] called sets S

p
d -animals.

Let us estimate the number 
s of all animals of volume s from above. There is only
one animal of volume 1 (it consists ofQ0), and therefore, 
1 D 1. The

p
d -neighbors

of Q0 together with Q0 fill out the cube of edge length 3, i.e. 
2 D 3d � 1. Each
animal of volume s can be obtained by adding a new cube to some animal of volume
s� 1. Each cube in that smaller animal has exactly 3d � 1 neighbors and at least one
of them belongs to the animal. Thus, 
s � 
s�1.3

d � 2/; s > 2, and therefore,


s � .3d � 1/.3d � 2/s�2; s � 2: (15)

The probability that any fixed animal of volume s has only white cubes is qs , i.e

P fjCw.0;
p
d/j D sg � qs.3d � 1/.3d � 2/s�2 � c1e

��s; s � 2:

This implies (14).
The proof (it is similar to the method of generations in [13]) is complete.
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The following statement follows immediately from Lemma 3.1.

Lemma 3.2. If (13) holds, then there exists a non-random constant a.d; q/ such that
P -a.s. the following estimate holds for any n such that Qn 2 Cw.n;

p
d/:

jCw.n;
p
d/j < a ln jnj; jnj > r0.!/:

Remark 3.3. Obviously, the last inequality can be written in the form

jCw.n;
p
d/j < a ln r; r D min

x W x2Cw

jxj; r > r0.!/:

Proof. Consider the events

B.n/ D f! W jCw.n;
p
d/j > a ln jnjg:

Due to Lemma 3.1,
P.B.n// � c0e

��a ln jnj D c0

jnj�a
:

If a > d=	 , then
P

n2Zd P.B.n// < 1 and the statement of the lemma follows
immediately from the Borel–Cantelli lemma.

The next statement is not used in the proof of Theorem 1.1, and we provide it here
only for the sake of a better understanding of the percolation structure of the potential
V.x; !/.

Lemma 3.4. If (13) holds (i.e. p > 1 � 1=3d � 2), then P -a.s. �b has a unique
infinite 1-connected component (continent) z�b.1/.

Proof. The uniqueness is proved in [2]. We need to prove only the existence of the
continent.

Since the existence of z�b.1/ does not depend on the color of a finite number of
cubes, the probability of its existence can be equal only to zero or one. Besides,
without loss of generality we can assume that the cubeQ0 is black. We will say that
a set S of cubes separate the origin and infinity if any 1-connected path of cubes (of
any color) from Q0 to infinity intersects S .

Assume that an infinite component z�b.1/ does not exist. Then one can find
infinitely many

p
d -connected white subsets Sj 2 �w which do not have common

cubes and each of them separate the origin and infinity. In fact, consider the bounded
set A1 D Cb.0; 1/. Its boundary S1 D @Cb.0; 1/ consists of all the white cubes
which have a common face with one of the cubes from A1. It is

p
d -connected and

it separates the origin and infinity. We change the color of S1 to black and consider
the bounded set A2 which is the 1-connected black component of the set of black
cubes containing A1

S
S1. Its white boundary S2 is

p
d -connected and it separates

the origin and infinity, etc.
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Let us introduce the following event: Bs D f!: there exists a
p
d -connected

white set Sw separating the origin and infinity and such that jSw j D sg: Note that
the set Sw intersects the x1 axis. To be more exact, it contains a cube Qmi

; mi D
.i; 0:::0/; 0 < i < s. Then using (15) we obtain

P.Bs/ �
X

0�i�s

P fjCw.mi ;
p
d/j D sg � sqs.3d � 1/.3d � 2/s�2:

If q < 1=3d �2, then
P

s P.Bs/ < 1 and from the Borel–Cantelli lemma it follows
that P -a.s. there are only finitely many events Bs . The contradiction proves the
lemma.

We will use the following trick when (13) is violated. Consider the partition ofRd

into cubesQ.l; nl/of edge length l centered at pointnl : Rd D S
n2Zd Q.l; nl/; l �

1 is integer. Consider an individual cube Q. The realization of V.x/ inside Q in-
cludes m D ld Bernoulli r.v. "s; s D 1; 2; : : : m. Let us fix a number 0 < p� < p.
We will call cubeQ gray if #fs W "s D 1g � p�m and we will call the cubeQ yellow
in the opposite case. Thus, Q is gray if V.x/ D 1 on some part of this cube of at
least p� portion of its volume.

The following estimate is well known in the theory of Bernoulli experiments. It
is simply one of the forms of the exponential Chebyshev inequality.

Lemma 3.5. . The following estimate holds

P fQis yellowg � exp.�mH.p�//; m D ld ; (16)

where

H.x/ D x ln
x

p
C .1 � x/ ln

1 � x
1 � p � 0

is the “entropy” functional.

Proof. If � > 0, then

P f"1 C � � � C "m � mp�g D P fe��."1C���C"m/ � e��mp�g

� min
�>0

Ee��."1C���C"m/

e��mp�
D min

�>0

.e��p C q/m

e��mp�
D min

�>0
emŒ�p�Cln.e��pCq/�:

(17)

The equation for the stationary point � D �0 has the form

p� � e��p

e��
D 0;

which implies

e��0 D p�

.1 � p�/
.1 � p/
p

:

After substitution of the latter formula into (17), we arrive at (16).
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Now let us take p� D p=2 and put c.p/ D H.p=2/ > 0. Then formula (16)
implies

P fQ is yellowg � e�c.p/ld

:

This estimate justifies the following corollary of the previous lemma.

Corollary 3.6. For each p > 0 there exists l D l.p/ � 1 such that

Nq D P fQ.l; nl/ is yellowg < 1

3d � 2; Np D P fQ.l; nl/ is grayg > 1 � 1

3d � 2;

and at the same time at least p=2 portion of the volume of each gray cube is covered
by black sub-cubes of edge length one where V.x/ D 1.

One can apply our previous percolation lemmas to the systems of yellow and
gray cubesQ.l; nl/ instead of white and black cubesQn. For these cubes,

p
d -con-

nectivity and 1-connectivity have to be replaced by l
p
d -connectivity and l-con-

nectivity respectively (for example, two cubes Q.l; nl/ have a common face if the
distance between their centers is l). Thus, the following result is valid.

Lemma 3.7. The following statements hold P -a.s.:
1) the set �g of all gray cubes Q.l; nl/ has an infinite l-connected component

(continent) z�g ,
2) if Cy is a yellow lake (l

p
d -connected components of yellow cubes), then

jCy j � a.d; q/ ln r; r D min
x W x2Cy

jxj; r > r0.!/:

We will need to make sure that yellow lakes are separated by gray layers of
thickness of at least two cubes. In order to achieve this, we choose l D 2l 0 even and
so big, that Np defined in Corollary 3.6 is so close to one that Np2d

> 1 � 1=.3d � 2/.
Then we divide each cube Q.l; nl/ into 2d equal cubes with edge length l 0 D l=2

and call Q.l; nl/ ultra gray if each sub-cube of the linear size l 0 is gray (i.e. V D 1

on the corresponding portion of each sub-cube). We call Q.l; nl/ mixed if it is not
ultra gray. Then

Qp D P fQ.l; nl/ is ultra grayg > 1 � 1

3d � 2;

Qq D P fQ.l; nl/ is mixedg < 1

3d � 2:

Thus, the following analogue of Lemma 3.7 holds.

Lemma 3.8. The following statements hold P -a.s.:
1) the set �ug of all ultra gray cubesQ.l; nl/ has an infinite l-connected compo-

nent (continent) z�ug ;
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2) if Cm is a mixed lake (l
p
d -connected components of mixed cubes), then

jCmj � a.d; q/ ln r; r D min
x W x2Cm

jxj; r > r0.!/:

Now for each lake of mixed cubes Q.l; nl/, we divide the cubes in the lake into
2d equal sub-cubes Q.l 0; nl 0/ and consider l 0

p
d -boundary of the lake. Since the

l
p
d -boundary consists of ultra gray cubes, we obtain the following result.

Lemma 3.9. The l 0
p
d -boundaries of mixed lakes consist of gray cubes, and the

boundaries for different lakes do not intersect.

4. Schrödinger operator with a potential
supported in a neighborhood of the boundary

The proof of Theorem 1.1 will be based on the results obtained in the previous
section and Dirichlet–Neumann bracketing. For example, an estimate of N0 from
above will be obtained by imposing the Neumann boundary condition on the surfaces
surrounding the lakes of white cubes and reducing the problem to the study of the
Neumann problem for a Schrödinger operator on a bounded domain with a potential
supported near the boundary. A couple of general statements concerning the latter
problem will be proved in this section. The proof of Theorem 1 will be completed in
the next section.

Let � be a bounded domain with a C 2 boundary and j�j � 1. Let !l consist of
points of � which belong to the l-neighborhood of its boundary:

!l D fx 	 � W dist.x; @�/ < lg:
Consider the operator

Lu D .��C hV.x//u; x 2 �I @u

@

D 0; x 2 @�; (18)

where 
 is the unit normal vector to @�; h 2 .0; 1/.

Lemma 4.1. Let the main curvatures of the boundary @� be bounded by a constant
k < 1, and let the potential V have the form

V D 1; x 2 !l ; V D 0; x 2 �n!l :

Then there is a constant c0 D c0.k; l; h; d/ such that the following estimate is valid
for the minimal eigenvalue �0 of operator L:

�0 � c0

j�j2=d
; j�j � 1: (19)
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Proof. Obviously, there exists a function ˛ D ˛.x/ 2 C1.�/ such that ˛.x/ D 1

in a neighborhood of @� and

˛.x/ D 0; x 2 �n!l ; j˛j C jr˛j < C.k; l/:
Assuming that the statement of the lemma is wrong, one can construct domains

� D �" such that j�"j � 1 and the minimal eigenvalue �0;" of L in �" satisfies the
estimate

�0;" <
"

j�"j2=d
; " ! 0:

Let u" be the ground state of L in �", and ku"kL2.�/ D 1. Since

.Lu"; u"/ D
Z

�"

.jru"j2 C hV.x/ju"j2/dx D �0;" <
"

j�"j2=d
; (20)

we get

ku"k2
L2.!l /

<
"

hj�"j2=d
; (21)

kru"k2
L2.�"/

<
"

j�"j2=d
: (22)

Then

kr.˛u"/k2
L2.�"/

<
C"

j�"j2=d
: (23)

Let �D be the energy of the ground state of the negative Dirichlet Laplacian in
�". For all domains �" of the same volume, the minimum of �D is achieved when
�" is a ball, i.e.

�D � c.d/

j�"j2=d
:

Since v" D .1 � ˛/u" vanishes at the boundary of �", we have

krv"k2
L2.�"/

� �Dkv"k2
L2.�"/

>
c.d/

j�"j2=d
kv"k2

L2.�"/
:

From ku"k D 1 and (21) it follows that kv"kL2.�"/ ! 1 as " ! 0: Thus,

krv"k2
L2.�"/

>
c.d/

2j�"j2=d
; " ! 0; (24)

which together with (23) contradicts (22). This contradiction proves Lemma 4.1.

Our next lemma concerns a similar situation. However, now V.x/ D 1 only
on some portion of the whole l-neighborhood of the boundary and this portion is
distributed with some “uniform density” over the whole neighborhood. The corre-
sponding statement could be proved in a general form, but for transparency we restrict
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ourselves to the only case which we need below, when the domain consists of the gray
and mixed cubesQ.l; nl/. Recall thatRd D S

n2Zd Q.l; nl/where cubesQ.l; nl/
have edge length l and are centered at nl . A cubeQ.l; nl/ is called gray if V.x/ D 1

on a part of it whose volume of at least pjQ.l; nl/j=2 D pld=2.
Consider a domain of the form � D ! [ O! where ! D S

n2M Q.l; nl/ is any
bounded set of cubes and O! is its l

p
d -boundary which is assumed to be gray. The

boundary consists of all cubesQ.l; nl/which do not belong to!, but have a common
point with a cube from !. Let @� be the geometric boundary of the domain � in
Rd . Let �0 be the minimal eigenvalue of the operator (18), which needs to be defined
through a quadratic form since @� is not smooth, i.e.

�0 D min
u2H 1.�/

R
�
.jruj2 C hV.x/juj2/dxR

�
juj2dx :

Lemma 4.2. Let a domain � D ! [ O! have the form described above. Then there
is a constant c0 D c0.p; l; h; d/ such that the following estimate is valid:

�0 � c0

j�j2=d
: (25)

Proof. The proof follows the same pattern as the proof of Lemma 4.1. First of all,
we may assume that V D 0 in ! since �0 may only decrease if the values of V
are decreased. Assuming that (25) is wrong, there exists a sequence of domains
�" D !" [ O!" for which (20) holds. Obviously, there exists a function ˛ D ˛.x/ 2
C1.Rd / such that ˛.x/ D 1 in a neighborhood of the geometric boundary of �",
˛.x/ D 0 in !" and j˛j; jr˛j < C.d/. Under the conditions of Lemma 4.2, the
estimate (21) does not follow immediately from (20). However, if its analogue

ku"k2
L2.!l /

<
C"

j�"j2=d
(26)

holds, then all other steps in the proof of Lemma 4.1 can be repeated. Thus, Lemma 4.2
will be proved as soon as (26) is derived from (20).

In order to prove (26) it is enough to show that the following inequality holds for
an arbitrary function u in an individual cube Q D Q.l; nl/:Z

Q

kuk2dx � C
�
h

Z
Q0

kuk2dx C
Z

Q

kruk2dx
�
; (27)

whereQ0 is an arbitrary part ofQ, measQ0 � pjQj=2 D pld=2, andC D C.l; p; h/.
Obviously, it is enough to prove (27) for the cube Q D fx W 0 � xi � lg. We extend
u to the bigger cube zQ D fx W � l � xi � lg as an even function with respect to all
variables and then extend the result periodically onto the whole space. After that, the
function u can be expanded as the Fourier series

u D ˛ C w; w D
X

0¤m2Zd

ame
i �

l
mx; rw D

X
0¤m2Zd

amme
i �

l
mx:
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Then

kwk2

L2. zQ/
D

X
0¤m2Zd

jamj2
ld

�
X

0¤m2Zd

jamj2jmj2
ld

D l2

�2
kruk2

L2. zQ/
;

and therefore

kwk2
L2.Q/

� l2

�2
kruk2

L2.Q/
: (28)

Further,
Z

Q0

˛2dx D
Z

Q0

.u � w/2dx

� 2

Z
Q0

.juj2 C jwj2/dx

� 2

Z
Q0

juj2dx C 2

Z
Q

jwj2dx

D 2

Z
Q0

juj2dx C 2l2

�2
kruk2

L2.Q/
;

which implies

Z
Q

˛2dx � 4

p

�Z
Q0

juj2dx C l2

�2
kruk2

L2.Q/

�
:

This and (28) justify (27) and complete the proof of Lemma 4.2.

5. Proof of Theorem 1

Proof of part a) when p > 1 � 1=.3d � 1/. Let zv.x/ D min.h=2; v.x//. Sincev.x/
! 0 at infinity, jN0.v/�N0. Qv/j < 1, i.e. without loss of generality we may assume
that v.x/ < h; x 2 Rd .

The set �b D fV .x/ D 1g contains a unique infinite 1-connected continent z�b

(Lemma 3.4) with small embedded lakes �i , where small means that j�i j have expo-
nential tails (see Lemma 3.2), i.e., P -a.s.,

j�i j � a.p; d/ ln ri ; ri D min
xWx2�i

jxj; ri > r0.!/: (29)

Let @�i be a
p
d -boundary of �i , i.e. @�i is a set of cubes Qn which do not

belong to �i , but have a common point with at least one cube from �i . Obviously,
j@�i j � c.d/j�i j. Let Si be C 2-surfaces surrounding �i which have the following
properties:

Si 	 @�i ;
1

4
< dist.Si ; �i / <

1

2
;
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and the main curvatures of the surfaces Si are bounded by a constant k < 1 which
does not depend on i or a point on Si .

Let N0;N be the number of negative eigenvalues of the operator HN in L2.Rd /

defined by the expression ��ChV .x/�v.x/ and the Neumann boundary condition
. � D 0/ imposed on all surfaces Si ; i D 1; 2; : : : . It is well known [15] that

N0;N .v/ � N0.v/: (30)

Thus, it is enough to show that N0;N < 1 P -a.s.
Note that N0;N is the sum of the numbers of the eigenvalues of the Neumann

problems for the operatorH in bounded domainsUi surrounded bySi and unbounded
domain � D Rd n [ Ui . Domains Ui consist of lakes (on the continent and inside
the islands) with small shorelines, and � consists of the continent and the islands
without shorelines which are included inUi . The potential V.x; !/�v.x/ > 0 in�.
Thus, the Neumann problem in� does not have negative eigenvalues. Each problem
inUi has a finite number of negative eigenvalues. Hence, it is enough to show that the
Neumann problem in Ui does not have negative eigenvalues P -a.s. when i > i0.!/.

Since j@�i j < c.d/j�i j, (29) implies

jUi j � a2.p; d/�i ; �i D min
x W x2Ui

ln jxj; i > i0.!/:

From Lemma 4.1 it follows that the minimal eigenvalue of operator (18) with � D
Ui ; i > i0, greater than or equal to c=�2=d

i . On the other hand, we have that

v.x/ � c1=.�
2=d
i ln 1=q/. Thus, if c1 is small enough, the operator which corresponds

to the Neumann problem in Ui ; i > i0; forH D L� v is non-negative and does not
have negative eigenvalues.

Proof of part a) when p < 1 � 1=.3d � 1/. If p is small, then we coverRd by cubes
Q.l; nl/with l so large that Lemmas 3.8 and 3.9 hold, and we splitRd into noninter-
secting domains Ui and� D Rd n [Ui , where Ui consist of mixed lakes surrounded
by a boundary layer of gray cubes and � consists of gray cubes. We impose the
Neumann boundary condition on boundaries of domains Ui and use (30) to estimate
N0.v/. The Neumann problem in Ui does not have eigenvalues if i > i0.!/. It can
be justified in an absolutely similar way to the case p > 1 � 1=.3d � 1/; one needs
only to refer to Lemma 4.2 instead of Lemma 4.1. The operator in � will be non
negative if v.x/ is replaced by Qv D min.1=C; v.x//, where the constant C is defined
in (27).

Proof of part b). In fact, statement b) can be found in [14]. Since the proof of that
part is not very complicated, we will recall it here.

The proof is based on the following statement opposite to Lemmas 3.1, 3.2, which
gives the existence of large white lakes at distances which are not too large. Let us
divide Rd into spherical layers

Ll D ˚
x W a.l�1/d

< jxj < ald �
; l D 1; 2; : : : ;
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with some integer a � 1 which will be selected later. We are going to show that
P -a.s. each layerLl with l > l0.!/ contains a cubeQ.l; nl/where V.x; !/ D 0. In
order to show that, let us estimate the numberN.l/ of cubesQ.l; nl/ located strictly
inside of Ll . Obviously, N.l/ � V.l/=ld, l � 1; where V.l/ is the volume of the
layer

L0
l D ˚

x W a.l�1/d C l
p
d < jxj < ald � l

p
d

�
:

Hence,
N.l/ > ˛.d/adld

=ld > ˇ.d/adld

; l � 1;

where ˛ > ˇ > 0 are arbitrary constants such that ˛.d/ is smaller than the volume
of the unit ball in Rd .

Consider the following event Al D feach cube Q.l; nl/ 	 Ll contains at least
one point where V.x/ D 1g. Obviously,

P.Al/ D .1 � qld

/N.l/ � e�qld
N.l/ � e�ˇ.ad q/ld

:

We will choose a big enough, so that adq > 1: Then
P
P.Al/ < 1; and the

Borel–Cantelli lemma implies that P -a.s. there exists l0.!/ such that each layer Ll ;

l � l0.!/; contains at least one cube Q.l; nl/; n D n0.l/; where V D 0:

LetN0;D.v/ be the number of negative eigenvalues of the operatorHD inL2.Zd /

defined by (4) with the Dirichlet boundary conditions on the boundaries of all cubes
Q.l; n0l/; n D n0.l/: Then N0.v/ � N0;D.v/, and the statement will be proved if
we show that N0;D.v/ D 1. Since V D 0 in Q.l; n0l/ it remains to show that the
Dirichlet problem for the operator �� � v.x/ in Q.l; n0l/ has at least one negative
eigenvalue if l is big enough. From condition b) it follows that v.x/ in the layerLl is
bounded from below by a O.c2=..ln a/ld ln 1=q//. We choose c2 in such a way that
v.x/ � .�=l/d in Ll . Then �� � v.x/ has at least one eigenvalue and the proof of
the theorem is complete.
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