
J. Spectr. Theory 1 (2011), 273–298
DOI 10.4171/JST/12

Journal of Spectral Theory
© European Mathematical Society

Superconductivity between HC2
and HC3

Søren Fournais, Bernard Helffer, and Mikael Persson1

Abstract. Superconductivity for Type II superconductors in external magnetic fields of magni-
tude between the second and third critical fields is known to be restricted to a narrow boundary
region. The profile of the superconducting order parameter in the Ginzburg–Landau model is
expected to be governed by an effective one-dimensional model. This is known to be the case
for external magnetic fields sufficiently close to the third critical field. In this text we prove
such a result on a larger interval of validity.
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1. Introduction

1.1. Background. When studying superconductivity in the Ginzburg–Landau mo-
del in strong magnetic fields, one encounters three critical values of the magnetic
field strength. The first critical field is where a vortex appears and will not concern
us in the present text. At the second critical field, denoted HC2

, superconductivity
becomes essentially restricted to the boundary and is weak in the interior. At the
third critical field, HC3

, superconductivity disappears altogether. In this paper we
will discuss superconductivity in the zone between HC2

and HC3
.

The Ginzburg–Landau model of superconductivity is the following functional,

EŒ ;A� D
Z
�

j.r � i�HA/ j2 � �2j j2 C �2

2
j j4

C .�H/2jcurl.A � F/j2 dx:
(1.1)

Here  2 W 1;2.�/ is a complex valued wave function, A 2 W 1;2.�;R2/ a vector
potential, � the Ginzburg–Landau parameter (a material parameter), and H is the
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strength of the applied magnetic field. The potential F W � ! R2 is the unique vector
field satisfying,

curl F D 1; div F D 0 in �; N � F D 0 on @�; (1.2)

where N is the unit inward normal vector of @�.
With this notation, the critical fields behave as follows for large �:

HC2
� � C o.�/; HC3

� �

‚0
C o.�/; (1.3)

where ‚0 � 0:59 is a universal constant. The definition of ‚0 is recalled in (2.7)
below.

Therefore, when we study the Ginzburg–Landau functional for H D b�, 1 <
b < ‚�1

0 , superconductivity should be a boundary phenomenon. This was proved in
a weak sense in [11].

Theorem 1.1 ([11]). For any b 2 �
1;‚�1

0

�
, there exists a constantEb , such that, for

H D �b,

inf
. ;A/2W 1;2.�/�W 1;2.�IR2/

E�;H Œ ;A� D �p
�HEbj@�j C o.�/; as � ! 1:

(1.4)

Local energy results are also obtained in [11]. Theorem 1.1 indicates that super-
conductivity is uniformly distributed along the boundary. However, the constant Eb
is only defined as a limit and its calculation is not easy. A number of conjectures
related to the calculation of Eb are given in [11]. In [1] (see also [5], Chapter 14),
the constant Eb is determined for b in the vicinity of‚�1

0 . It turns out that the deter-
mination of the constant in this non-linear problem can be reduced to the positivity
of a linear operator. Define the space B1.RC/ as

B1.RC/ D f' 2 L2.RC/ W '0 2 L2.RC/ and t' 2 L2.RC/g: (1.5)

Define, for z 2 R, � > 0,

Fz;�.'/ D
Z C1

0

j'0.t/j2 C .t � z/2j'.t/j2 C �

2
j'.t/j4 � �j'.t/j2 dt; (1.6)

and let fz;� be a non-negative minimizer of this functional (see Theorem 3.1 below
for properties of minimizers – in particular the fact that fz;� exists and is unique).

For given � > 0, minimize Fz;�.fz;�/ over z and denote a minimum by �.�/ –
we will prove below that such a minimum exists when � 2 �‚0; 1�. By definition of
f�.�/;�,

Fz;�.'/ � F�.�/;�.f�.�/;�/; (1.7)
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for all .z; '/ 2 R � B1.RC/.
We also introduce a linear operator k�. Define, for � 2 R, � 2 RC, the operator

k� D k�.�/ to be the Neumann realization of

k�.�/ D � d2

dt2
C .t � �/2 C �f�.�/;�.t/

2; (1.8)

on L2.RC/. We denote by f�j .�/g1
jD1 the spectrum of k�.�/. Also fvj .t I �/g1

jD1
will be the associated real, normalized eigenfunctions.

Remark 1.2. Notice the following complication: since we do not know that �.�/ is
unique, the operator k�.�/ is really a family of operators,

k
.j /

�
.�/ D � d2

dt2
C .t � �/2 C �f�j .�/;�.t/

2;

one for every minimum �j .�/.1

It follows from [1] and [5] that

Theorem 1.3. Let � 2 �‚0; 1Œ. Suppose that there exists a minimum �.�/ such that
for the corresponding choice of the operator k�.�/ we have

� � inf
�2R

�1.�/ : (1.9)

Then

E��1 D �

2
kf�.�/;�k4

L4.RC/
: (1.10)

It is also proved in [1] and [5] (see Proposition 14.2.13 in [5]) that there exists
" > 0 such that (1.9) is satisfied for � 2 �‚0; ‚0 C "Œ. The objective of the present
paper is to give explicit bounds on the magnitude of ".

Remark 1.4. A minimizer fz;� of the functional Fz;� will be a solution to the Euler–
Lagrange equations for the minimization problem (1.6)

�u00 C .t � z/2uC �juj2u D �u; u0.0/ D 0: (1.11)

In particular, when � D �.�/ we have �1.�/ D �, since (by (1.11) with z D �.�/)
f�.�/;� will be a positive eigenfunction of k�.�.�//.

1Recently the authors obtained the uniqueness of � , see
http://www.math.u-psud.fr/~helffer/fhp-addendum.pdf.

http://www.math.u-psud.fr/~helffer/fhp-addendum.pdf
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1.2. Main results. We are not able to prove (1.9) for all � 2�‚0; 1�. Here we state
some partial results. Clearly, � D � is a stationary point for �1.�/. Our first result
shows that this is a local minimum.

Theorem 1.5. (1) Let ‚0 < � � 1. Then �1.�/ has a local minimum for � D �,
i.e. there exist positive constants ı� and c� such that for all j� � �j < ı� it holds that

�1.�/ � �C c�.� � �/2:

(2) Let � > ‚0; z 2 R; and let fz;� be a positive minimizer of Fz;�. Define

�1.�I z/ D inf Spec
n

� d2

dt2
C .t � �/2 C �f 2z;�

o
; (1.12)

where we consider the Neumann realization on L2.RC/ of the operator.

Then, �1.�I z/ ! 1 as � ! C1. Furthermore, there exists �0 D �0.�; z/ > 0

such that

�1.�I z/ > 1; (1.13)

for all � � �0.

Remark 1.6. The second item in Theorem 1.5 implies that (1.9) is not true for � > 1.
It is therefore natural to expect that (1.9) will be valid if and only if � 2 �‚0; 1�.
Notice that we will not prove that a minimum �.�/ exists for � > 1. This explains
the somewhat cumbersome statement in the second item in Theorem 1.5.

We also obtain an explicit range of values of � for which the condition (1.9) is
satisfied. The results contain some explicit universal constants that will be defined
later. In this introduction we will only state the numerical values obtained.

Theorem 1.7. (i) Let ‚0 < � � 1. For all � � 1:33 it holds that �1.�/ � �.

(ii) Let ‚0 � � � 0:8. Then (1.9) holds, i.e.

inf
�2R

�1.�/ � �:
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�

‚0

1

0:8

� 1:33 �� �

Figure 1.1. A schematic picture of what we know about �1.�/ from Theorems 1.5 and 1.7.
The gray dashed parts show two possible scenarios.

In Section 2 we recall some well-known results about the linear de Gennes op-
erator, and give some new spectral estimates. In Section 3 we study the nonlinear
problem appearing from the functional Fz;�.'/ in (1.6) and prove (1.13). In Sec-
tion 4 we consider the operator k�.�/ and prove the remainder of Theorem 1.5 and
Theorem 1.7.

2. The linear problem

2.1. Reminder for the de Gennes operator. Define

h.�/ D � d2

dt2
C .t � �/2; (2.1)

in L2.RC/ with Neumann boundary conditions at 0. We will denote the eigenvalues
of this operator by f	j .�/g1

jD1 and corresponding (real normalized) eigenfunctions
by uj .t/ D uj .t I �/.

From a similar calculation as the one leading to (A.18) in [2],

	1.�/ � 1 � C1� exp.��2/; (2.2)

for some constant C1 > 0 and for sufficiently large �. As part of the proof of
Proposition 2.2 below we will obtain a weaker asymptotics of 	1.�/.

A basic identity from perturbation theory (Feynman–Hellmann) is

	0
j .�/ D �2

Z C1

0

.t � �/juj .t I �/j2 dt: (2.3)
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An integration by parts, combined with the equation satisfied by uj .t I �/ yields
the useful alternative formula from Dauge–Helffer [3]:

	0
j .�/ D .�2 � 	j .�//juj .0I �/j2: (2.4)

From (2.4) it is simple to deduce that 	j has a unique minimum attained at �.j /0
satisfying

	j .�
.j /
0 / D .�

.j /
0 /2: (2.5)

Notice that, from (2.3), we obtain

�
.j /
0 > 0 ; (2.6)

for all j . We will sometimes write �0 D �
.1/
0 . By definition

‚0 D inf
�2R

	1.�/ D 	1.�
.1/
0 / D .�

.1/
0 /2: (2.7)

Finally, we recall that

	j .0/ D 1C 4.j � 1/; �Dj .0/ D 3C 4.j � 1/; (2.8)

where�Dj .�/denotes thej th eigenvalue of the Dirichlet realization ofh.�/ inL2.RC/.
These identities follow upon noticing that the eigenfunctions of the harmonic oscil-
lator on the entire line are respectively even or odd functions.

2.2. Comparison Dirichlet–Neumann. In this section we recall useful links be-
tween the Dirichlet spectrum and the Neumann spectrum of the family h.�/ (� 2 R)
inL2.RC/ . By domain monotonicity, it is standard that � 7! �Dj .�/ is monotonically
decreasing. By comparison of the form domains:

	j .�/ � �Dj .�/ : (2.9)

Also,

lim
�!C1

�D1 .�/ D lim
�!C1

	1.�/ D 1 ;

lim
�!C1

�D2 .�/ D lim
�!C1

	2.�/ D 3 :

Using Sturm–Liouville theory, we also observe that, for any j � 2 and any �, there
exists � 0 such that

	j .�/ D �Dj�1.� 0/ : (2.10)

In particular, using that
inf
�2R

�D1 .�/ D 1 ; (2.11)

we get
	2.�/ > 1 : (2.12)
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2.3. The virial theorem. For ` > 0, the map t 7! `t can be unitarily implemented
on L2.RC/ by the operator Uf .t/ D p

`f .`t/. Therefore, h.�/ is isospectral to the
(Neumann realization of the) operator

k` D �`�2 d2

dt2
C .`t � �/2:

Since the eigenvalues are unchanged when ` varies we can take the derivative at ` D 1

and find, using (2.3),

0 D
Z C1

0

ju0
j .t I �/j2 dt �

Z C1

0

t.t � �/juj .t I �/j2 dt

D
Z C1

0

ju0
j .t I �/j2 dt �

Z C1

0

.t � �/2juj .t I �/j2 dt C �

2
	0
j .�/:

Combined with the definition of the energy,

	j .�/ D
Z C1

0

ju0
j .t I �/j2 dt C

Z C1

0

.t � �/2juj .t I �/j2 dt;
we get Z C1

0

ju0
j .t I �/j2 dt D 	j .�/

2
� �	0

j .�/

4
; (2.13)

and Z C1

0

.t � �/2juj .t I �/j2 dt D 	j .�/

2
C �	0

j .�/

4
: (2.14)

2.4. Lower bounds on �j .�/

2.4.1. Estimates on �1. As a warm-up, we recall the lower bound on 	1.�/. Let
u1. � I �/ be the ground state of h.�/. We use this function as a trial state for h.0/ and
find

1 D inf Spec h.0/

< hu1. � I �/; h.0/u1. � I �/i

D 	1.�/C 2�

Z C1

0

.t � �/u1.t I �/2 dt C �2:

So we obtain the inequality:

1 < 	1.�/ � �	0
1.�/C �2: (2.15)

We insert �.1/0 , using .�.1/0 /2 D ‚0 D min� 	1.�/, 	0
1.�

.1/
0 / D 0 and get

1

2
< ‚0: (2.16)
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2.4.2. Estimates on �j , j > 1. From (2.5), (2.6) and the fact that lim�!C1 	j .�/ D
.2j � 1/ we find that

0 < �
.j /
0 <

p
2j � 1:

The function � 7! 	j .�/ decreases from its value 	j .0/ D 4j � 3 until it arrives

at its minimum at �.j /0 , after which it becomes increasing, so there exists a unique
point y�j > 0 such that 	j .y�j / D 2j �1. By comparison with the harmonic oscillator
on a half axis it can be seen that y�j coincides with the smallest value of � for which
h0
j .�/ D 0, where h0

j .�/ denotes the j th Hermite function. In particular one easily
finds that

y�2 D 1; and y�3 D
p
5=2: (2.17)

To get the behavior of y�j as j ! 1 we observe by reflection that �y�j is given by
the value of � for which 	1.�/ D 2j � 1.

Let us get an upper bound on 	1.�/ for � negative. For any 
 > 0 and any � 2 R
we use the inequality

.t � �/2 � .1C 
/t2 C .1C 1=
/�2

to obtain the quadratic form comparison (here and below
R C1
0

juj2 dt D 1)

Z C1

0

ju0j2 C .t � �/2juj2 dt �
Z C1

0

ju0j2 C .1C 
/t2juj2 dt C .1C 1=
/�2:

Comparing the first eigenvalue	.�/with the first eigenvalue of the (scaled) harmonic
oscillator, we find

	1.�/ � p
1C 
 C .1C 1=
/�2:

The upper bound we get from this seems to be poor.
For any 
 > 0 and any � 2 R we use the inequality

.t � y�j /2 � .1C 
/.t � �/2 C .1C 1=
/.y�j � �/2

to obtain the quadratic form comparisonZ C1

0

ju0j2 C .t � y�j /2juj2 dt

�
Z C1

0

ju0j2 C .1C 
/.t � �/2juj2 dt C .1C 1=
/.y�j � �/2:

By scaling and change of function, we have that the quadratic form on the right-hand
side is unitary equivalent to

p
1C 


Z C1

0

ju0j2 C .t � .1C 
/1=4�/2juj2 dt C .1C 1=
/.y�j � �/2:
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In particular, with the choice � D �
.j /
0 .1 C 
/�1=4 we obtain, comparing the j th

eigenvalue of the corresponding operators and using (2.5), that

2j � 1 D 	j .y�j / � p
1C 
	j .�

.j /
0 /C .1C 1=
/

�y�j � �.j /0 .1C 
/�1=4
�2

D p
1C 


�
�
.j /
0

�2 C .1C 1=
/
�y�j � �.j /0 .1C 
/�1=4

�2
:

Now let j D 2. By (2.17) we have

3 � p
1C 


�
�
.2/
0

�2 C .1C 1=
/
�
�
.2/
0 .1C 
/�1=4 � 1�2:

Completing the square, we get

�
�
.2/
0 � .1C 
/�3=4

�2 � 2


.1C 
/3=2
;

and hence the inequality

�
.2/
0 >

1C p
2


.1C 
/3=4
(2.18)

(since 1�p
2�

.1C�/3=4 < 1 for all 
 > 0. Indeed, the function 
 7! 1�p
2�

.1C�/3=4 starts at 1

for 
 D 0 and then decreases to its minimal value �1=p3 for 
 D 8 after which it
increases to 0 as 
 ! 1). Optimizing (2.18) in 
 > 0 we find that the maximal
value is attained for 
 D 1=2, for which we have

�
.2/
0 >

27=4

33=4
� 1:48:

The corresponding lower bound for 	2 is

	2
�
�
.2/
0

� � 27=2

33=2
� 2:18: (2.19)

Continuing with j D 3, we arrive at the inequality

5 � p
1C 


�
�
.3/
0

�2 C .1C 1=
/.�
.3/
0 .1C 
/�1=4 �

p
5=2/2:

The same type of calculation shows that

�
.3/
0 >

r
5

2

1C p



.1C 
/3=4
:

Optimizing over 
 > 0 yields 
 D 1
2

�
13 � 3

p
17

� � 0:32 with corresponding
inequality

�
.3/
0 >

p
5
�
2C

p
26 � 6p17

�
.30 � 6p17/3=4 � 2:01
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which in turn gives

	3.�
.3/
0 / �

5
�
2C

p
26 � 6p17

�2
.30 � 6p17/3=2 � 4:04:

Remark 2.1. We can compare these estimates with the numerical values

�
.2/
0 � 1:62; 	2.�

.2/
0 / � 2:64; �

.3/
0 � 2:16; and 	3.�

.3/
0 / � 4:65:

2.5. Asymptotics of u1. We end this section by giving an asymptotic formula for
u1. � I �/ for large �.

Proposition 2.2. For all ˛ < 1 there exist C˛ > 0 and „0 > 0 such that

ju1.t; �/ � 1p
�

expŒ�.t � �/2=2�j � C˛ exp.�˛�2=2/; (2.20)

for all t 2 RC and all � > „0.

Proof. Let ' be smooth, '.t/ D 0 for t � 1, '.t/ D 1 for t � 2 and define

Qu.t/ D '.t/
1p
�

expŒ�.t � �/2=2�: (2.21)

An elementary calculation now yields (for � > 2 and some constant C > 0)

kŒh.�/ � 1� Quk2 � C�2 exp.�.� � 2/2/; (2.22)

Using the lower bound on 	2.�/ and the spectral theorem this implies that

j	1.�/ � 1j � C exp.�˛�2=2/; (2.23)

and the existence of a (possibly non-normalized) ground state eigenfunction u1 such
that

k Qu � u1k2 � C exp.�˛�2=2/: (2.24)

One now obtains the similar estimate inW 1;2.RC/, from which the pointwise estimate
follows.

3. Estimates on the non-linear problem

We now analyse the functional Fz;� defined in (1.6).
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3.1. Preliminaries. We introduce the notation

I.�/ D f� 2 R W 	1.�/ < �g: (3.1)

For future reference, we notice that if‚0 < � < 1, then there exist �1.�/; �2.�/ > 0
such that

I.�/ D �
�1.�/; �2.�/

�
: (3.2)

For � D 1 we have I.�/ D Œ0;1Œ.

Theorem 3.1. (i) For all z 2 R; � > 0; the functional Fz;� admits a non-negative
minimizer fz;� 2 B1.RC/, which is non-trivial if and only if � > 	1.z/. The
minimizer fz;� is a solution to the Euler–Lagrange equation (1.11) and satisfies the
bound

kfz;�k1 � 1 : (3.3)

Furthermore, minimizers are unique up to multiplication by a constant c 2 S1 � C.
(ii) For all " 2 �0; 1=2Œ, � > 0 and z 2 I.�/, there exist constants c"; C" > 0

such that

c" exp
�

�
h1
2

C "
i
.t � z/2

�
� fz;�.t/ � C" exp

�
�

h1
2

� "
i
.t � z/2

�
: (3.4)

Proof. The first item in Theorem 3.1 is a slight improvement of known results (see [5],
Propositions 14.2.1 and 14.2.2), so we will only give brief indications of proof. For
given z and � the functional is clearly bounded from below, so the existence of
minimizers is standard. Also, by differentiation of the absolute value, we see that
minimizers can be chosen non-negative. The proof of the non-triviality statement
is also straightforward. Equation (1.11) follows by variation around a minimum,
and (3.3) is a consequence of the maximum principle applied to (1.11).

We finally consider the uniqueness question. Letu be a minimizer and letf D juj.
By the Euler–Lagrange equation (1.11) we see that

k�.z/f D �f; k�.z/u D �u: (3.5)

By Cauchy uniqueness, we therefore have u D cf for some c 2 S1. Therefore, to
prove uniqueness it suffices to prove uniqueness of non-negative minimizers. The
proof of this (which does not use any bound on the value of �) is given in the proof
of Proposition 14.2.2 in [5] and will not be repeated.

The upper and lower bounds in (3.4) can both be proved using the following
strategy, so we only consider the upper bound. We start from the equation for fz;� in
the form

f 00
z;�.t/ D Œ.t � z/2 C �f 2z;�.t/ � ��fz;�.t/: (3.6)

Define, for ˛ < 1, the function g as g.t/ D C exp.�˛
2
.t � z/2/, for some constant

C > 0. Then
g00.t/ D Œ˛2.t � z/2 � ˛�g.t/: (3.7)
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Choose T > z so large that

0 < Œ˛2.t � z/2 � ˛� � Œ.t � z/2 C �f 2z;�.t/ � ��; (3.8)

for all t � T . This is possible since ˛ < 1. Choose C > 0 in such a way that

g.T / > fz;�.T /: (3.9)

Suppose that the inequality g.t/ � fz;�.t/ fails for some t > T . Since both functions
tend to 0 at C1 (at least along some sequence, since f 2 L2.RC/), we deduce that
u D f � g has a positive maximum at some point t0 > T . Thus u00.t0/ � 0. But,
for t � T , we have

u00.t/ D Œ.t � z/2 C �f 2z;�.t/ � ��fz;�.t/ � Œ˛2.t � z/2 � ˛�g.t/
� Œ˛2.t � z/2 � ˛�u.t/: (3.10)

At t0 this is strictly positive and we get a contradiction.

By a continuity argument, we find

Proposition 3.2. For 0 < � � 1, the function

R 3 z 7! Fz;�.fz;�/ (3.11)

admits a minimum �.�/ > 0.

Notice that for � > 1, the existence of a minimum is an open problem.

Proof. Only the case� D 1 needs some consideration. We will prove that the minimal
energy in that case tends to 0 as z ! C1. By continuity this implies the proposition.
We calculate, for arbitrary ' 2 B1.RC/ and ˛ 2 �0; 1Œ, and estimating (part of) the
quadratic expression from below by the linear ground state energy

Fz;1.'/ �
Z C1

0

Œ˛.t � z/2 C .1 � ˛/	1.z/ � 1�j'j2 C 1

2
j'j4 dt

�
Z

fjt�zj�p
Œ1�.1�˛/	1.z/
=˛g

Œ.1 � ˛/	1.z/ � 1�j'j2 C 1

2
j'j4 dt

� �Œ.1 � ˛/	1.z/ � 1�2
r
1 � .1 � ˛/	1.z/

˛

D �Œ1 � 	1.z/C ˛	1.z/�
2

r
1 � 	1.z/C ˛	1.z/

˛
;

(3.12)

where the last inequality follows by completing the square. We choose ˛ D ˛.z/ D
1 � 	1.z/ ! 0 as z ! C1 to get the conclusion.
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We can now prove (1.13).

Proof of the second item in Theorem 1.5. Let z 2 R and let fz;� be a positive mini-
mizer of Fz;�. Notice that z and � will be fixed in the remainder of the proof. We
therefore writef instead offz;�. We also denote by Q�j .�/ D �j .�; z/ the eigenvalues
of the operator in (1.12).

We apply Temple’s inequality (see [10]) with u1 D u1. � I �/ as a test function.
Under the condition that Q�2.�/ > A, Temple’s inequality says that

Q�1.�/ � A � B

Q�2.�/ � A; (3.13)

where

A D
D
u1;

n
� d2

dt2
C .t � �/2 C �f 2

o
u1

E
D 	1.�/C �kf u1k22

and

B D
���n

� d2

dt2
C .t � �/2 C �f 2

o
u1

���2
2

� A2 D �2kf 2u1k22 � �2kf u1k42:

Using the upper bound in (2.20) and (3.4), kf u1k2 ! 0 as � ! 1. Since Q�2.�/ �
	2.�/ we see that the condition Q�2.�/ > A is satisfied for large �’s, and there

Q�1.�/ � 	1.�/C �kf u1k22 � C�2kf 2u1k22; (3.14)

for some C > 0 independent of �.
Using the upper bounds in (2.20) and (3.4), we get for all 0 < ˛ < 1, and large �,

kf 2u1k22 � C exp.�˛�2/

C C

Z C1

�1
exp.�2˛.t � z/2/ exp.�˛.t � �/2/ dt

� C exp.�˛�2/C C 0 exp.�2˛0�2=3/;

(3.15)

where ˛0 < ˛ is arbitrary.
Without striving for optimality, we make the simple estimate

kf u1k22 �
Z �=2C1

�=2�1
f 2u21 dt: (3.16)

In this interval of integration it follows from (2.20) that u21 � C exp
��.�=2C 1/2

�
and from (3.4) that f 2 � C exp.�ˇ�2=4/ for any ˇ > 1. Inserting in the integral
yields, for any ˇ0 > 1,

kf u1k22 � C exp.�ˇ0�2=2/: (3.17)
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Combining (3.14), (3.15), (3.17) and the asymptotics of 	1 from (2.2) gives that

Q�1.�/ > 1; (3.18)

for large �, which is (1.13).
To prove that Q�1.�/ ! 1, we use the variational principle with u1 D u1. � I �/

as a test function. Notice that by the lower bound just established, we only need to
prove an upper bound with limit 1 at infinity. The variational principle gives

Q�1.�/ � 	1.�/C �kf u1k22: (3.19)

Since we have seen above that kf u1k2 ! 0 and 	1.�/ ! 1 in the large � limit, this
implies the upper bound required.

3.2. A virial-type result. The function f�;� satisfies the Euler–Lagrange equa-
tion (1.11). Since, � D �.�/ is a minimum for the non-linear energy, we getZ C1

0

.t � �/f 2�;� dt D 0: (3.20)

In particular it holds that �.�/ > 0.
Moreover, multiplying (1.11) by f�;� and integrating, we obtain

kf 0
�;�k22 C k.t � �/f�;�k22 C �kf�;�k44 D �kf�;�k22 : (3.21)

Lemma 3.3. Assume that ‚0 � � � 1 and that .�; f�;�/ is a minimizer of the
functional (1.6). Then

kf 0
�.�/;�k22 � k.t � �.�//f�.�/;�k22 C �

4
kf�.�/;�k44 D 0 ; (3.22)

2kf 0
�.�/;�k22 C 5�

4
kf�.�/;�k44 D �kf�.�/;�k22 ; (3.23)

and

2k.t � �.�//f�.�/;�k22 C 3�

4
kf�.�/;�k44 D �kf�.�/;�k22 : (3.24)

Proof. By a change of variable and of function in the functional Fz;� we get a rescaled
functional

' 7!
Z C1

0

�2j'0.t/j2 C
� t
�

� �
�2j'.t/j2 C ��

2
j'.t/j4 � �j'.t/j2 dt

with same infimum. Expressing that the infimum is independent of �, we obtain at
� D 1 and � D �.�/, using (3.20), the identity (3.22). Combining with (3.21) we
also get (3.23) and (3.24).



Superconductivity between HC2
and HC3

287

3.3. Different bounds on f�;�

Proposition 3.4. Assume that ‚0 � � � 1 and let .�; f�;�/ be a minimum of the
function .z; f / 7! Fz;�.f / with F defined in (1.6). Then

f�;�.0/
2 D 2

�
.� � �2/: (3.25)

Furthermore,

2.� � �2/ � �kf�;�k21
� 9

24=3
�2=3�1=3

�1
2

� 5.� �‚0/
12�1=2�ku1. � I �0/k24

�1=3
.� � 	1.�// (3.26)

and
� �‚0

ku1. � W �0/k24
� �kf�;�k24 � 3

2
�1=2.� � 	1.�//: (3.27)

Remark 3.5. A numerical calculation yields the approximate value ku1. � I �0/k44 �
0:584. One can also get a lower bound to ku1. � I �0/k44 using (3.27): We have

ku1. � I �0/k44 � 4

9
lim
�!‚0

.� �‚0/2
�.�/

�
� � 	1.�.�//

�2 D 4

9�0
� 0:579:

Proof. The lower bound in (3.26) is an easy consequence of (3.25). Both are proved
in [11]. We reproduce the short proof for the sake of completeness. Indeed, define
the function

H.t/ D f 0
�;�.t/

2 � .t � �/2f�;�.t/2 C �f�;�.t/
2 � �

2
f�;�.t/

4:

A calculation, using (1.11) shows that H 0.t/ D �2.t � �/f�;�.t/
2. By exponential

decay it also holds that limt!1H.t/ D 0. Hence, by (3.20) we have that H.0/ D
� R 1

0
H 0.t/ dt D 0. On the other hand we also have H.0/ D .� � �2/f�;�.0/

2 �
�
2
f�;�.0/

4. Since f�;�.0/ ¤ 0, we get the equality in (3.25).
We continue with the lower bound in (3.27). By definition we have

��
2

kf�;�k44 D F�;�Œf�;�� D inf
z2R;'2B1

Fz;�Œ'�: (3.28)

We insert the trial state z D �0, ' D �u1. � I �0/, with

� D
q
.� �‚0/=Œ�ku1. � I �0/k44�;

in (3.28). This yields,

��
2

kf�;�k44 � ��
2

.� �‚0/2
�2ku1. � I �0/k44

: (3.29)
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This finishes the proof of the lower bound in (3.27).

Finally, we turn to the upper bounds. Using the variational characterization of
	1.�/; equation (3.21) implies that

�kf�;�k44 � .� � 	1.�//kf�;�k22 : (3.30)

We estimate, using (3.20), and for ˛ > 1 (recall that � > 0),

kf�;�k22 �
Z ˛�

0

jf�;�j2 dt C 1

�.˛ � 1/
Z C1

˛�

.t � �/jf�;�j2 dt

D
Z ˛�

0

˛� � t
�.˛ � 1/ jf�;�j2 dt (3.31)

� �1=2

s
˛3

3.˛ � 1/2 kf�;�k24:

We choose the optimal ˛ D 3 and implement (3.30) to get

kf�;�k22 � 3

2
�1=2kf�;�k24 � 3

2
�1=2

r
� � 	1.�/

�
kf�;�k2; (3.32)

i.e.

kf�;�k2 � 3

2
�1=2

r
� � 	1.�/

�
: (3.33)

Combining (3.30) and (3.33) yields the upper bound (3.27).

One easily obtains

f�;�.t/
3 D �

Z C1

t

.f 3�;�/
0.
/ d
 � 3kf�;�k24kf 0

�;�k2 : (3.34)

From (3.23), (3.29) and (3.32) we have

kf 0
�;�k22 D �

�1
2

kf�;�k22 � 5

16
kf�;�k44

�
(3.35)

� �kf�;�k22
�1
2

� 5

12�1=2
kf�;�k24

�
(3.36)

� �kf�;�k22
�1
2

� 5.� �‚0/
12�1=2�ku1. � I �0/k24

�
; (3.37)
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which combined with (3.30), (3.33) and (3.34) implies

�kf�;�k21 � �f3kf�;�k24kf 0
�;�k2g2=3

� �
n
3
1p
�
.� � 	1.�//1=2kf�;�k2

p
�kf�;�k2�1

2
� 5.� �‚0/
12�1=2�ku1. � I �0/k24

�1=2o2=3
(3.38)

� �
n
3.� � 	1.�//1=2 9

4
�
1

�
.� � 	1.�//

�1
2

� 5.� �‚0/
12�1=2�ku1. � I �0/k24

�1=2o2=3

� 9

24=3
�2=3�1=3

�1
2

� 5.� �‚0/
12�1=2�ku1. � I �0/k24

�1=3
.� � 	1.�//:

3.4. Bounds on �.�/. It follows from Theorem 3.1 that �.�/ 2 I.�/. These bounds
on � can be sharpened considerably.

Lemma 3.6. Let ‚0 < � � 1. It holds that

p
�=2 � �.�/ �

p
�: (3.39)

Proof. From (3.25) we find that �2 < �. Moreover, by the bound (3.3), kf�;�k1 � 1,
combined with the lower bound (3.26), we easily obtain the lower bound �.�/ �p
�=2.

Remark 3.7. The lower bound in Lemma 3.6 can be improved using both the lower
and upper bounds in (3.26), see Figure 3.1.
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Figure 3.1. Different bounds on �.�/. Using Lemma 3.6 we find that �.�/ should be between
the dashed lines. Numerically, with the help of (3.26) instead of (3.3) we find that �.�/ belongs
to the shaded area. The dotted line is the graph of 	1.�/.

4. The analysis of k�.�/

4.1. Starting point. Recall the operator k�.�/ with associated eigenvalues f�j .�/g
defined in (1.8). We will for shortness write f instead of f�.�/;� and � instead of
�.�/ in this section. From the sign of the perturbation and Proposition 3.4 we get:

Proposition 4.1. Let‚0 � � � 1. We have the following estimates on the eigenvalues
of k�.�/:

	j .�/ � �j .�/

� 	j .�/C 9

24=3
�2=3�1=3

�1
2

� 5.� �‚0/
12�1=2�ku1. � I �0/k24

�1=3
.� � 	1.�//; (4.1)

and

	1.�/ � �1.�/ � 	1.�/C 33=4

21=2
�1=2.� � 	1.�//

�
	1.�/=2 � �	0

1.�/=4
�1=4

: (4.2)

Proof. The estimate (4.1) is an immediate consequence of (3.26). To show the second
estimate (4.2), we notice that

�1.�/ � hu1; k�.�/u1i D 	1.�/C �kf u1k22;� 	1.�/C �kf k24ku1k24;
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and

ku1k24 � 21=2

31=4
ku1k3=22 ku0

1k1=22 � 21=2

31=4
.	1.�/=2 � �	0

1.�/=4/
1=4: (4.3)

The first inequality in (4.3) is due to Nagy [12], while the second one follows
from (2.13). The upper bound in (4.2) now follows from the upper bound in (3.27).

Lemma 4.2. If � 62 I.�/ then �1.�/ � �.

Proof. If � 62 I.�/ then, by (4.1), we get �1.�/ � 	1.�/ � �.

We continue with some identities.

Proposition 4.3. Suppose that �0 is a stationary point for �1, i.e.

�0
1.�0/ D 0 : (4.4)

Then we have the following identities:

f�1.�0/ � �20 � �f 2.0/gv21.0I �0/ D 2�

Z C1

0

v21.t I �0/f .t/f 0.t/ dt ; (4.5)Z C1

0

.t � �0/v21.t I �0/ dt D 0 ; (4.6)

k.t � �0/v1. � I �0/k22 C �

Z C1

0

tv21.t I �0/f .t/f 0.t/ dt D kv0
1. � I �0/k22 ; (4.7)

kv0
1. � I �0/k22 C k.t � �0/v1. � I �0/k22 C �kf v1. � I �0/k22 D �1.�0/ : (4.8)

Proof. Equation (4.5) is a Dauge–Helffer type formula, (4.6) is the Feynman–Hell-
mann formula, (4.7) follows by the virial theorem and (4.8) is just the energy equation.

Corollary 4.4. If 0 < � < �0, �0
1.�0/ D 0 and

R C1
0

v21.t I �0/f .t/f 0.t/ dt � 0 then
�1.�/ > �.

Proof. From (4.5) and (3.25) we get

�1.�0/ � �f .0/2 C �20 D �C .� � �2/C .�20 � �2/ > �;
since � � �2 by (3.39) and �20 > �

2 by the assumption.

Remark 4.5. From Theorem 1.7 we notice that it is enough to consider �0 > 1:33

and so the condition on �0 and � is not restricting since � < 1.
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It is also worth to notice that if
R C1
0 v21.t I �0/f .t/f 0.t/ dt < 0 then alsoZ C1

0

tv21.t I �0/f .t/f 0.t/ dt < 0;

since there exists a t0 such that f 0.t/ is positive for t 2 �0; t0Œ and negative for
t 2 �t0;1Œ, see [11].

4.2. Lower bound on �1.�/

Lemma 4.6. If �2.�/ > �C .� � �/2 then it holds that

�1.�/ � �C .� � �/2
h
1 � 4k.t � �/f k22

.�2.�/ � � � .� � �/2/kf k22
i
: (4.9)

Proof. The Temple inequality (see [10]) with f=kf k2 as trial state, implies that if
�2.�/ > A then

�1.�/ � A � B

�2.�/ � A; (4.10)

where

A D hf; k�.�/f i
kf k22

D �C .� � �/2

and

B D hf; .k�.�/ � A/2f i
kf k22

D hf; k�.�/2f i
kf k22

� A2:
Using that k�.�/f D �f , we find that

k�.�/f D �f � 2.� � �/.t � �/f C .� � �/2f;
and so

kk�.�/f k2 D �
�C .� � �/2�2kf k22 C 4.� � �/2k.t � �/f k22:

We conclude that

B D 4.� � �/2 k.t � �/f k22
kf k22

:

Inserting these expressions for A and B into (4.10) yields (4.9).

Proof of Theorem 1.5. We only consider (1), since the second item has already been
established. Combining the lower bounds on kf k4 from (3.32) and (3.27) we first
get

2k.t � �/f k22 D �kf k22 � 3�

4
kf k44

� �kf k22
�
1 � 1

2�1=2
kf k24

�

� �kf k22
�
1 � � �‚0

2��1=2ku1. � I �0/k24
�
:

(4.11)
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We implement this in (4.9) and use the simple inequality �2.�/ � 	2.�/,

�1.�/ � �C .� � �/2
h	2.�/ � �

3� � ��‚0

�1=2ku1. � I�0/k2
4

� � .� � �/2
�2.�/ � � � .� � �/2

i
: (4.12)

By continuity it suffices to verify that

	2.�/ �
�
3� � � �‚0

�1=2ku1. � I �0/k24
�
> 0; (4.13)

and

�2.�/ � � > 0: (4.14)

This last inequality is trivially satisfied since �2 � 	2 which satisfies the lower
bound (2.19). Thus we only have to consider (4.13). Notice that the parenthesis
in (4.13) is strictly less than 3. Since 	2 is decreasing on Œ0; 1� and 	2.1/ D 3 this
finishes the proof.

Define the set X.�/ � I.�/ as the possible values of �, i.e.

X.�/ D f� 2 R W the function R 3 z 7! Fz;�.fz;�/ has a minimum at �g: (4.15)

By Lemma 3.6 we have X.�/ � Œ
p
�=2;

p
��, but from Figure 3.1 it actually follows

that
X.�/ � Œ�0;

p
�� (4.16)

We can summarize the result (4.12) of Temple’s inequality as follows

Proposition 4.7. Let ‚0 � � � 1. Assume that

	2.�/ �
�
3� � � �‚0

�1=2ku1. � I �0/k24
�

� .� � �/2 � 0; (4.17)

and
	2.�/ � � � .� � �/2 > 0 (4.18)

for all � 2 X.�/ and � 2 I.�/. Then �1.�/ � � for all � 2 I.�/.

Proof of Theorem 1.7. We will use Proposition 4.7. We start by verifying (4.18). To
prove (i) we need only to consider 0 � � � 1:33 and to prove (ii) it suffices to consider
0 � � � 1:5 since the right endpoint of the interval I.0:8/ is less than 1:5 (solving
the equation 	1.�/ D 0:8 gives a numerical value � � 1:496). The inequality (4.18)
holds for all 0 � � � 1:5, � 2 X.�/ and‚0 � � � 1. Indeed, .���/2 < 1 by (4.16)
and 	2.�/ � 2:18 by (2.19).

We now consider (4.17). If 0 � � � �, �0 � � � 1 and ‚0 � � � 1 then

	2.�/ � 3� � .� � �/2 � 	2.�/ � 3 � .� � 1/2: (4.19)
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From Figure B.2 it is clear that 	0
2.�/ < 2.� � 1/ on 0 � � � 1. Hence, the function

� 7! 	2.�/�3�.��1/2 is decreasing on this interval. Since	2.1/ D 3we find that
the right-hand side of (4.19) is bounded from below by 0, and it follows that (4.17)
holds for � � �.

To complete the proof of (i) it is sufficient to show that the inequality (4.17) holds
for �0 � � � p

�, � < � � 1:33 and ‚0 � � � 1. From Figure B.1 we note that 	2
is decreasing for these values of �, and so since � > � it follows that the left-hand
side in (4.17) is decreasing as a function of �. Hence we get a lower bound replacing
� by the right endpoint 1:33. Moreover, 1:5 � 3 � 1=

�
�
1=2
0 ku. � I �0/k24

�
> 0 so we

also get a lower bound if we replace � by 1, i.e.

	2.�/ �
�
3� � � �‚0

�1=2ku1. � I �0/k24
�

� .� � �/2

� 	2.1:33/ �
�
3 � 1 �‚0

�1=2ku1. � I �0/k24
�

� .1:33 � �/2:
(4.20)

Differentiating the right-hand side of (4.20) with respect to � and estimating on
�0 � � � 1 we find

d

d�

h
	2.1:33/ �

�
3 � 1 �‚0

�1=2ku1. � I �0/k24
�

� .1:33 � �/2
i

D � 1 �‚0
2�3=2ku1. � I �0/k24

C 2.1:33 � �/

� � 1 �‚0
2�
3=2
0 ku1. � I �0/k24

C 2.1:33 � 1/

� 0:26:

Thus, we get a lower bound of the right-hand side of (4.20) by inserting the left
endpoint � D �0. The lower bound is

	2.1:33/ �
�
3 � 1 �‚0

�
1=2
0 ku1. � I �0/k24

�
� .1:33 � �0/2 � 0:01:

This finishes the proof of (i).

We continue with (ii). It is sufficient to show that the inequality (4.17) holds for
�0 � � � p

�, � < � � 1:5 and ‚0 � � � 0:8, where the endpoint 1:5 is chosen to
be slightly larger than the right endpoint of the interval I.0:8/.

Again 	2 is decreasing for these values of �, and so since � > � it follows that
the left-hand side in (4.17) is decreasing as a function of �. Hence we get a lower
bound replacing � by 1:5. In the same way as for (i) we also get a lower bound if we
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replace � by the right endpoint 0:8, i.e.

	2.�/ �
�
3� � � �‚0

�1=2ku1. � I �0/k24
�

� .� � �/2

� 	2.1:5/ �
�
3 � 0:8 � 0:8 �‚0

�1=2ku1. � I �0/k24
�

� .1:5 � �/2:
(4.21)

We differentiate the right-hand side of (4.21), and estimate for �0 � � � p
0:8, to

find

d

d�

h
	2.1:5/ �

�
3 � 0:8 � 0:8 �‚0

�1=2ku1. � I �0/k24
�

� .1:5 � �/2
i

D � 0:8 �‚0
2�3=2ku1. � I �0/k24

C 2.1:5 � �/

� � 0:8 �‚0
2�
3=2
0 ku1. � I �0/k24

C 2.1:5 � p
0:8/

� 1:0:

Hence, we get a lower bound of the right-hand side of (4.21) by inserting the left
endpoint � D �0. The lower bound we get is

	2.1:5/ �
�
3 � 0:8 � 0:8 �‚0

�
1=2
0 ku1. � I �0/k24

�
� .1:5 � �0/2 � 0:026:

This finishes the proof of (ii).

A. Comments on the numerical calculations

We give some details on how the numerical calculations were done. The solutions to
the eigenvalue equation h.�/u D 	.�/u, not taking the Neumann boundary condition
into account, are given by

u.t/ D c1e
� 1

2
.t��/2H 1

2
.	.�/�1/.t � �/C c2e

1
2
.t��/2H� 1

2
.	.�/C1/.i.t � �//: (A.1)

Here, H�.t/ solves the Hermite equation (see Section 10.13 in [4])

�y00.t/C 2ty0.t/ � 2�y.t/ D 0;

and is polynomially bounded at infinity. Hence, for the functionu in (A.1) to be square
integrable, we must set c2 D 0. Using the well-known relations for the derivative of
H� , d

dt
H�.t/ D 2�H��1.t/, we find that the Neumann condition u0.0/ D 0 reads

.	.�/ � 1/H 1
2 .	.�/�3/.��/C �H 1

2 .	.�/�1/.��/ D 0: (A.2)
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Hence, for � 2 R, the j th eigenvalue 	j .�/ of the operator h.�/ is given by the
j th (positive) solution 	.�/ of (A.2). To obtain an equation for 	0

j .�/ we differenti-
ate (A.2) implicitly.

We use the software Mathematica from Wolfram Research (who claims that Math-
ematica is able to calculate these special functions to any given precision2) to solve
these equations numerically and draw the plots. By inserting (2.5) into (A.2) we are
also able to calculate the constant ‚0 to any precision (see also Remark A.6 in [7]).

B. Additional graphs

In this appendix we have collected some additional graphs that have to do with the
eigenvalues 	j .�/ of h.�/.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

�
.1/
0 �

.1/
2

Figure B.1. A plot of 	1 (dashed) and 	2 (solid).

2See http://reference.wolfram.com/mathematica/ref/HermiteH.html.

http://reference.wolfram.com/mathematica/ref/HermiteH.html
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Figure B.2. A plot of 	0
1

(dashed) and 	0
2

(solid).
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