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Approximate quantum and acoustic cloaking

Allan Greenleaf, Yaroslav Kurylev,
Matti Lassas and Gunther Uhlmann1

Abstract. For any E � 0, we construct a sequence of bounded potentials V E
n ; n 2 N,

supported in an annular region Bout nBin � R3, which act as approximate cloaks for solutions
of Schrödinger’s equation at energy E: for any potential V0 2 L1.Bin/ such that E is not a
Neumann eigenvalue of �� C V0 in Bin, the scattering amplitudes aV0CV E

n
.E; �; !/ ! 0

as n ! 1. The V E
n thus not only form a family of approximately transparent potentials, but

also function as approximate invisibility cloaks in quantum mechanics. On the other hand,
for E close to interior eigenvalues, resonances develop and there exist almost trapped states
concentrated in Bin. We derive the V E

n from singular, anisotropic transformation optics-based
cloaks by a de-anisotropization procedure, which we call isotropic transformation optics. This
technique uses truncation, inverse homogenization and spectral theory to produce nonsingular,
isotropic approximate cloaks. As an intermediate step, we also obtain approximate cloaking
for a general class of equations including the acoustic equation.
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1. Introduction

A fundamental problem is to describe the scattering of waves by a potential, as
governed by the time-independent Schrödinger equation at energy E � 0,

.��C V.x// .x/ D E .x/; x 2 Rd ; (1)

where x 2 Rd ,  .x/ D exp.iE1=2x� �/ C  sc.x/, � 2 Sd�1, and  sc.x/ satisfies
the Sommerfeld radiation condition. We restrict ourselves in this paper to compactly
supported potentials V, so

 sc.x/ D CdE
d�3

4

a
V

�
E; xjxj ; �

�
jxj d�1

2

exp.iE1=2jxj/C o.jxj� d�1
2 /; as jxj ! 1:

The function aV .E; !; �/ is the scattering amplitude at energy E of the potential V.
The associated inverse scattering problem consists of trying to determine V from the
scattering amplitude, or measurements of waves at the boundary of some region �
containing the support of V.
Recently, [22] described quantum mechanical cloaking at any fixed energy E.

Their construction starts with a homogeneous, isotropic mass tensor and a potential
V � 0, and subjects this pair to a singular change of variables. This “blowing up a
point” transformation had been used in [34] and [35] to produce conductivities that
hide objects from detection by electrostatic measurements,2 and was subsequently
used to describe the same phenomenon for electromagnetic waves [62]; one now
refers to a specification of material parameters having this effect as a cloak. The
cloaking Schrödinger equation in [22], which has an anisotropic, singularmass tensor,
is equivalent with the Helmholtz equation (at frequency ! D p

E/ for an associated
singular Riemannianmetric, and thus covered by cloaking for the Helmholtz equation
in 3D, as we analyzed in Section 3 in [24]. Similarly, cloaks for acoustics in 3D have
been described in [11] and [17];3 again, these are in fact direct consequences of
cloaking for the Helmholtz equation in 3D, cf. [28].
Thus, for ideal 3D cloaking in each of scalar optics, quantum mechanics and

acoustics, one knows from [24] that anyfinite energy distributional solution decouples
into a sum of a wave on the exterior of the cloak, unaffected (in terms of scattering
or boundary measurements) by the cloak, and a wave within the cloaked region
satisfying the Neumann boundary condition at the cloaking surface. Hence, if E
is not a Neumann eigenvalue, then the wave must vanish within the cloaked region
and cloaking works as advertised. On the other hand, if E is an eigenvalue, the
cloaked region supports interior resonances, or trapped states. This is an unphysical
situation, since the Dirichlet problem on � no longer has unique solutions, and this
can be considered as a failure of cloaking, per se. However, what emerges from this

2The 2D version has the same electrostatic cloaking property [42].
3See [16] for the 2D case, and [52] and [58] for more regarding elastic and acoustic cloaking.
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failure in the setting of approximate cloaking described below is, we believe, quite
useful.
In this paper, we construct for the Schrödinger equation, for each energy E, a

family fV En g1
nD1 of potentials, supported in an annulus Bout n Bin � R3, which are

not only almost transparent, in that the scattering amplitudes aVE
n
.E; �; �/ ! 0 as

n ! 1, but also act as approximate cloaks for potentials supported in the inner ball
Bin: for any potential V0 2 L1 .Bin/ for which E is not an eigenvalue of ��C V0
in Bin, the scattering amplitudes aV0CVE

n
.E; �; �/ ! 0 as n ! 1, as well. There

are also approximate versions of the interior resonances supported by the ideal cloak:
there exist energies close to the Neumann eigenvalues of the cloaked regionBin, near
which there are waves largely concentrated in Bin, which we call almost trapped
states. Furthermore, the quality of the approximate cloaking degrades as we move
towards these energies, with waves being able to penetrate Bin, and the presence of
this region and V0 detectable by scattering or boundary measurements. In addition,
we are able to include a magnetic potential in the Schrödinger equation; this allows
one to switch between the approximate cloak and almost trapped state alternatives
by application of a suitable homogeneous magnetic field. We have given physical
applications of this in [29] and [30].
The inverse problemof recovering a potential from theDirichlet-to-Neumannmap

(near field) or scattering amplitude (far field) associated to the Schrödinger equation
has been extensively studied in the mathematical literature, see, e.g., [7], [70], [59],
[46], [55], [9], [20], [54], [69], and [8]. Unique identifiability of the potential, as well
as counterexamples, have been shown under various regularity assumptions in [65],
[56], [67], [36], [60], [33], and [37].
We construct the families fV En g of approximately cloaking potentials by means

of a result of independent interest. The use of changes of variables to produce novel
optical effects on waves or to facilitate computations has been considered in the
physics literature (see, e.g., Dolin [19]4 or more recently Ward and Pendry [72])
and is now generally referred to as transformation optics (TO). However, to produce
cloaking and other extreme effects, nonsingular changes of variables are insufficient.
The recently proposed plans for cloaking are based on singular transformations and
consist of medium parameters which are both anisotropic and singular,5 whether
for the conductivity (electrostatics) [34] and [35], index of refraction (Helmholtz)
[48], [24], and [41], permittivity and permeability (Maxwell) [62] and [24], mass
density (acoustic) [16], [11], [17], and [28], or effective mass (Schrödinger) [22].
Physical realization of such designs is now potentially feasible due to the rapidly
developing area of metamaterials, but the singularity and extreme anisotropy make
characterizing and fabricating the materials to implement such designs an enormous
obstacle tomanufacturing invisibility devices. These same remarks are valid for other
TO designs, such as [49], [10], [14], [25], [27], and [63], some of which are singular.

4We thank A. Kildishev for this reference.
5By singular we mean that at least one of the eigenvalues goes to zero or infinity at some points.
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We propose here a general method, which we refer to by the oxymoronic isotropic
transformation optics, for dealing with both the anisotropy and singularity of TOma-
terial parameters. We describe this in detail in the context of cloaking, but it should
be applicable to a wider range of TO designs. We in fact derive the quantum me-
chanical approximate cloaks from approximate cloaks for a general class of equations
that includes the acoustic equation. Using ideas from Nguetseng [57], Allaire [1],
Cherkaev [15], and elsewhere, we show how to find cloaking material parameters that
are at once both isotropic and nonsingular, at the price of replacing perfect (ideal)
cloaking with approximate cloaking (of arbitrary accuracy). This method, starting
with transformation optics-based designs and constructing approximations to them,
first by nonsingular, but still anisotropic, material parameters, and then by nonsingular
isotropic parameters, appears to be a very flexible tool for creating physically realis-
tic theoretical designs, easier to implement than the ideal ones due to the relatively
tame nature of the materials needed, yet (up to an arbitrarily small error) essentially
capturing the desired effects on wave propagation.
We review the ideal electrostatic cloak of [34], and extend this in Section 2.1

to a class of equations which will allow us to deal with both general acoustic and
magnetic Schrödinger equations. These equations have coefficientswhich, borrowing
the terminology from acoustics, we refer to as mass density and bulk modulus and
which are singular at the cloaking surface†, i.e. the interface between the cloaked and
uncloaked regions. The desingularization process begins in Section 2.2, by truncating
themass density away from†, on the outer side ofwhich the ideal cloaking parameters
are singular. (Similar truncations have been considered before in the context of
cylindrical or 2D cloaking, cf. [66], [26], [12], and [42].) We show in Section 2.3
that the Dirichlet forms for the ideal cloaks are well approximated (in the sense of
�-convergence) by these truncations, and then desingularize the bulk modulus in
Section 2.4.
So far, the approximately cloaking mass densities are still anisotropic. As is well

known in effective medium theory, homogenization of isotropic material parameters
may lead to anisotropic ones [51]; in Section 3 and Section 4, we use this phenomenon
in reverse, showing that the Dirichlet forms obtained in Section 2 can be well approx-
imated by those for certain nonsingular isotropic conductivities, which thus provide
approximate cloaks for the general class of acoustic-like equations. These then allow
us to obtain in Theorem 5.1 families of approximate quantum cloaks. In Section 6 we
study failure of cloaking near exceptional energies, mirroring the failure of the exis-
tence of unique solutions for the ideal cloak at Neumann eigenvalues of the cloaked
region; see Remark 6.2 at the end of the section. We point out that these almost
trapped states make sense for waves modeled by the Helmholtz equation, such as in
acoustics, but for simplicity we present the details only for the Schrödinger equation.
Further physical applications, including a new type of ion trap, can be found in [29]
and [30]. Finally, numerical simulations are presented in Section 7.
One can use the resonances of the approximative cloaks analyzed in this paper to

construct various physical applications, for instance, to create almost invisible sen-
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sors, that is sensorswhich cause only an arbitrarily small perturbation for themeasured
field. Such sensors based on materials with negative refractive index have been pro-
posed earlier [3], but using the approximate cloaks, the sensors can be obtained using
materials with strictly positive refractive index. Indeed, an almost invisible sensor
can be obtained by placing a carefully chosen object inside an approximative cloak
so that the interior of the cloak is not in a resonance but very close to it. Then, the
object is almost cloaked but the external field penetrates inside the cloaked region,
see [31]. Such a construction is an example how delicate phenomena may happen
for an invisibility cloak near a resonance.

2. Approximating cloaking material parameters
by nonsingular anisotropic parameters

We will denote by B.a;R/ the ball of radius R centered at a in R3, sometimes
denoted simply B.R/ when centered at the origin O. Let M1 D xB.O1; 3/ � R3

andM2 D xB.O2; 1/, with O1 and O2 being two copies of O, considered as disjoint
compact manifolds with boundary; setM D M1 [M2. Also, let � D xB.3/ � R3,
and F 1 W M1 n fO1g ! � n xB.1/ � R3 be the map

F 1.x/ D x for 2 < jxj � 3;

F 1.x/ D
�
1C jxj

2

� x
jxj for 0 < jxj � 2:

(2)

Define also F 2 W M2 ! xB.1/ as the identity map,
F 2.x/ D x: (3)

Together, these form a surjective map F D .F 1; F 2/ from the cloaking manifold
(or virtual space) M n fO1g to the cloaking device (or physical space) �. By a
conductivity we mean a measurable map with values in the symmetric non-negative
R3�3 matrices. Let �0 D 1 be the constant isotropic conductivity on R3 and define
the conductivity �1 on � as

�1 D F 1� �0 for x 2 � n xB.1/;
�1 D 2F 2� �0 for x 2 B.1/; (4)

which has a singularity on the cloaking surface † D @B.1/, both in that one of the
eigenvalues (corresponding to the radial direction) tends to 0 as r & 1 and that there
is a jump discontinuity across the sphere †. This conductivity �1 is, up to the radius
of � and the factor 2 in the second of formulae (4), used here for technical reasons,
the one introduced in [34] and [35] and shown to be indistinguishable from �0,
vis-a-vis electrostatic boundary measurements at @�. In fact, �1jB.1/ can be replaced
by any smooth, non-degenerate anisotropic conductivity tensor and its values will be
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undetectable at@�. The sameconstruction of�1j�nB.1/, applied instead to the electric
permittivity " and magnetic permeability � in Maxwell’s equations, was proposed
in [62] (see also [48]) to cloak the region B.1/ from observation by electromagnetic
waves at positive frequency; we thus refer to �1 as a cloaking conductivity, and,
following the physics literature, we will refer to .�; �1/ as the ideal cloak.
This gives rise to the Dirichlet problem for the singular conductivity equation,

r � �1ru D 0 in �; uj
@�

D h; (5)

and to the corresponding singular conductivity operatorA,

Au D � g�1=2r � �1ru; (6)

that we consider with Dirichlet boundary condition uj
@�

D 0: Here, we use the
singular Riemannian metric .gjk/3j;kD1 associated to the conductivity �1, namely,

g1=2gjk D �
jk
1 ; g D jdetŒgij 	j�1 D jdetŒ� ij1 	j2; (7)

cf. [34] and [35]. We denote by g both the metric and the corresponding scalar
function, the meaning being clear from the context.
A rigorous definition of the meaning of (5) and the operatorA is given in the fol-

lowing sections. In particular, the operatorA is self-adjoint on L2g.�/, the weighted
L2-space defined using the weight g1=2. For a general weight w.x/ � 0, we denote
by L2.�;w dx/ D L2.w dx/ the weighted space,

L2.�;w dx/ D
n
u W � ! C measurable; kuk2

L2.wdx/
D

Z
�

juj2w dx < 1
o
:

For simplicity, we denote L2g D L2g.�/ D L2.�; g1=2dx/, the natural L2-space for
the metric g, and the norm in this space by k � kg . Note that

L2.�/ � L2g.�/; kukg � p
8 kuk: (8)

We also use the Sobolev spaces

H 1
g .�/ D

n
u 2 L2g.�/ W uj�n† 2 H 1

loc.� n†/;
Z
�n†

�
jk
1 @ju @kudx < 1

o
;

H 1
0;g.�/ D fv 2 H 1

g .�/ W vj
@�

D 0g:
Here and below, we use Einstein summation convention, summing over indices j and
k appearing both as sub- and super-indices. Observe thatH 1.�/ � H 1

g .�/ and

kuk
H1

g
D

�
kuk2

L2
g

C
Z
�

�
jk
1 @ju @kudx

� 1
2 � p

8 kuk
H1 : (9)

Throughout, we also use the following standard terminology: when considering
convergence of sequences fxng1

nD1 in a Hilbert space H, we say that xn converges
strongly to x inH if kxn � xkH ! 0, as n ! 1, while xn converges weekly to x if
.xn � x; y/H ! 0, as n ! 1, for any y 2 H.
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2.1. Ideal cloaking for more general equations. In this paper we treat equations
more general than (5), which are important for physical applications, cf. [29] and [30].
To this end, consider a family of equations that simultaneously includes both the
magnetic Schrödinger equation and the acoustic equation; for simplicity, we will
refer to equations of this type as acoustic. Let q and b D .b1; b2; b3/ be, respectively,
scalar-valued and vector-valued functions, which eventuallywill represent the electric
and magnetic potentials; we will assume that

q 2 L1.�I R/; q � 0; and b 2 L1.�I R3/:

We note that the condition q � 0 is merely a convenience, since for general q 2
L1.�I R/ we can always add a constant to achieve positivity, and of course this just
shifts the spectrum.
To deal rigorously with the elliptic boundary value problem

� g�1=2.r C ib/ � �1.r C ib/uC qu � 
u D f; uj
@�

D h; (10)

where ib acts as a vector-valued multiplication operator. Since (10) has singular
coefficients, we consider the corresponding quadratic form. In the following, we use
the notation

rb D r C ib.x/:

Lemma 2.1. The quadratic form

a1Œu; u	 D
Z
�n†

�1rbu � rbudx C
Z
�n†

qg1=2juj2 dx; (11)

defined in the domainD.a1/ D H 1
0;g.�/ is closed. Moreover, the embeddingD.a1/

,! L2g.�/ is compact, and there is Cb > 1 so that

C�1
b kuk2

H1
0;g
.�/

� kuk2g C a1Œu; u	 � Cbkuk2
H1

0;g
.�/
: (12)

Proof. To prove the assertion, we need to show two facts. First, we need to prove
that a1Œu; u	 < 1 for u 2 H 1

0;g.�/. Second, we have to prove the closedness of the
form a1 onH 1

0:g.�/.
We start with the fact [24] that the map F� is unitary from L2 .M1/˚L2.M2/ to

L2g.�/ and from H 1
0 .M1/ ˚ H 1.M2/ to H 1

0;g.�/, respectively. For v D .v1; v2/

and u D F�v, we have

.v1; v2/ 2 L2 .M1/˚ L2.M2/ iff u 2 L2g.�/;

.v1; v2/ 2 H 1
0 .M1/˚H 1.M2/ iff u 2 H 1

0;g.�/:
(13)

Hence, as H 1.Mj /, j D 1; 2 is compactly embedded into L2.Mj /, we see that the
spaceH 1

g .�/ is compactly embedded into L
2
g.�/.
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Using definition (4) and the transformation rule for 1-forms, we see that

a1Œu; u	 D ˛Œv; v	 D ˛1Œv1; v1	C ˛2Œv2; v2	I

˛1Œv1; v1	 D
Z
M1

jrv1 C iˇ1 v1j2dx C
Z
M1

�1 jv1j2dx; (14)

˛2Œv2; v2	 D 2

Z
M2

jrv2 C iˇ2 v2j2dx C 8

Z
M2

�2 jv2j2dx:

Here the 1-forms ˇ1 D ˇjM1
, ˇ2 D ˇjM2

, and functions �1 D �jM1
, �2 D �jM2

, are
given by b D F�ˇ, q D F��, that is,

bj .x/ D @F k

@yj
.y/ ˇk.y/; q.x/ D �.y/; x D F.y/ 2 � n†:

It follows from (2) and (3) that ˇ2; �1 and �2 are bounded, but ˇ1 has a singularity at
x D 0, of the order 1=jxj, and

jˇ1.x/j � Ckbk
L1

jxj : (15)

Consider ˛2Œv2; v2	 as an unbounded non-negative quadratic form in L2.M2/,
with domain D.˛2/ D H 1.M2/. Then ˛2 is closed. The quadratic form ˛1Œv1; v1	
requires further analysis. We consider ˛1Œv1; v1	 as an unbounded non-negative
quadratic form in L2.M1/ having the domain

D.˛1/ D fv1 2 L2.M1/ W rv1 C iˇ1v1 2 L2.M1/; v1j@M1
D 0g: (16)

Note that the condition rv1 C iˇ1v1 2 L2.M1/ implies that the trace v1j@M1
is

well-defined. By [47] and [68], C1
0 .M1/ is dense on D.˛1/ and ˛1 on D.˛1/ is a

closed, non-negative quadratic form.
By Hardy’s inequality [43], it follows from (15) that

kˇ1v1kL2.M1/
� Ckbk

L1 kv1kH1.M1/
; (17)

so that

H 1
0 .M1/ � D.˛1/ is dense: (18)

Let v1 2 D.˛1/. Then, by [47], jv1j 2 H 1
0 .M1/. Using (17) again, we obtain

kˇ1v1kL2.M1/
D kˇ1jv1jkL2.M1/

< 1:

Thus, by definition (16), this yields thatrv1 2 L2.M1/, and hencev1 2 H 1
0 .M1/.

This shows thatD.˛1/ � H 1
0 .M1/which, together with (18), implies thatD.˛1/ D

H 1
0 .M1/. Thus, the domain of the closed form ˛ is D.˛/ D H 1

0 .M1/˚H 1.M2/.
Using the transformation rule (14) for u D F�v and (13) we conclude that a1Œu; u	 <
1 for allu 2 H 1

0;g.�/ and that the quadratic forma1with domainD.a1/ D H 1
0;g.�/

is closed. The inequality (12) follows from this by the open mapping theorem.
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By the theory of quadratic forms [39], the closed quadratic form a1Œu; u	 defines
an associated non-negative self-adjoint operatorA1 in L2g.�/, having domain

D.A1/ D fu 2 H 1
0;g.�/ W there is f 2 L2g.�/ such that

a1Œu; v	 D .f; v/g for v 2 H 1
0;g.�/g;

(19)

that is, for u 2 D.A1/ we have, for all v 2 H 1
0;g.�/,Z

�n†
�1rbu � rbv dx C

Z
�n†

qg1=2u Nv dx D
Z
�n†

g1=2f Nv dx (20)

with A1u D f 2 L2g.�/. By Lemma 2.1, the spectrum of A1 consists of discrete
eigenvalues with finite dimensional eigenspaces.
Observe that, formally integrating by parts in (20), we come to (10) with h D

0. To better understand the nature of the operator A1, we give also an alternative
definition in the case when b 2 C.�I R3/. In this case, we use the fact that the
map Dj

� W ' 7! �
jk
1 .@k' C ibk'/, defined initially for ' 2 C1

0 .�/, has a bounded
extension

Dj
� W H 1

0;g.�/ ! M.�I R3/;

where M.�I R/ denotes the space of Borel measures on �, cf. Lemma 3.2 in [24].
For b 2 C.�I R3/, an equivalent definition of the operator A1 is then

A1.u/ D � g�1=2.@j C ibj /D
j
�uC qu;

D.A1/ D fu 2 H 1
0;g.�/ W .@j C ibj /D

j
�u 2 L2.�; g�1=2dx/g:

(21)

2.2. Approximate cloaking by truncation. For any 1 < R < 2, consider the
nonsingular truncations of (10),

� rb � �
R

rbuC qg1=2u � 
g1=2u D 0 in �; uj
@�

D h; (22)

where �
R
are measurable anisotropic conductivities in� satisfying

�
Rj
�nB.0;5=2/ D �0; �

Rj
B.0;1/

D 2�0;

lim
R&1

�
R
.x/ D �.x/; c1.R � 1/�0 � �

R
.x/ � c2�0; for x 2 �; (23)

�
R2
.x/ � �

R1
.x/; for R2 � R1;

for some c1 � 1=2; c2 � 2. For instance, we can choose

�
R
.x/ D

´
F��0; x 2 � n xB.R/;
2�0; x 2 B.R/: (24)
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We note that, by smoothing the conductivities (24), it is possible to construct con-
ductivities �

R
2 C 2.x�I R2/ , which we use in Section 5, satisfying (23).

Wedenote the solution of (22) byu D uhR. Note that, forb D 0 andq D 0, eq. (22)
is an acoustic equation with the mass density ��1

R and the bulk modulus g�1=2 with
k D p


; in the quantum mechanical setting, �
R
corresponds to the inverse matrix of

effective mass and .q�
/g1=2 to the potential. By abuse of notation, even for b ¤ 0

and q 6D 0, we will refer to �
R
as the inverse of the mass density.

Observe that, for each R > 1, the inverse of the mass density �
R
is nonsingular,

i.e. is bounded from above and below with, however, the lower bound going to 0 as
R & 1. Moreover, for any x 2 R3, the symmetricmatrix valued functionR 7! �

R
.x/

is increasing6 as a function of R, and therefore decreases as R & 1. Nonsingular
regularizations or truncations of singular ideal cloaks have previously been considered
in [66], [26], and [42].
To motivate the treatment here, consider for R > 1 the Dirichlet-to-Neumann

(DN) map ƒ�R W H 1=2.@�/ ! H�1=2.@�/ that maps

ƒ�R W uj
@�

7! .@�uC i� � bu/j
@�
; (25)

whereu solves (22). TheDNmap corresponds to theDirichlet-to-Neumann quadratic
form, which by abuse of notation is denoted also by ƒ�R,

ƒ�RŒh	 D
Z
@�

.ƒ�Rh/.x/ h.x/ dS.x/; (26)

where we denote h D uj
@�

2 H 1=2.@�/; for 
 � 0, the Dirichlet-to-Neumann form
may be also represented as

ƒ�RŒh	 D inf
�
a
R
Œu; u	� 
kuk2g

�
; (27)

where infimum is taken over all u 2 H 1.�/ with uj
@�

D h. However, to treat
general 
, and the general class of eq. (22), we will use the definition (31) below.
Returning to eq. (22), note that for 
 < 0 and R > 1 the solution can be ob-

tained from the minimization problem for the quadratic functional associated to the
sesquilinear functional

aRŒu; v	 D
Z
�

�
R
.x/rbu.x/� rbv.x/ dx

C
Z
�

q.x/g1=2.x/u.x/v.x/ dx:

(28)

Moreover, we have

uhR D argmin.a
R
Œu; u	� 
kuk2g/;

6Note that, due to the behavior of the eigenvalues of �1, this simple but important monotonicity property
fails in the 2D case, which we thus do not deal with. However, approximate cloaking for the Helmholtz
equation in 2D has now been treated in [41] by other methods.
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where minimization is taken over u 2 H 1.�/ such that uj
@�

D h. Observe that the
DN form (27) is related to a

R
defined by (28).

Thus, the solution uhR of the acoustic equation (22) with the Dirichlet boundary
value h is the minimizer of a

R
Œu; u	� 
kuk2g .

Now consider the quadratic form a
R
Œu; u	with domain u 2 H 1

0 .�/, and we prove
that it is a closed unbounded form on L2g.�/ in sense of Section VI.1.3 of [39].

Lemma 2.2. Let R > 1 and consider the sesquilinear form given by (28), .u; v/ 7!
a
R
Œu; v	 with u; v 2 H 1

0 .�/, as an unbounded form on L2g.�/ with the domain
D.a

R
/ D H 1

0 .�/. Then aR W L2g.�/ � L2g.�/ ! C is closed and positive definite
unbounded sesquilinear form.

Proof. Clearly a
R
is non-negative. The fact that a

R
is closed on DR D H 1

0 .�/

follows from the same considerations as those in Lemma 2.1. Next we show that
rbu D 0 iff u D 0 which, due to the compactness of the embeddingH 1

0 .�/ ,! L2g ,
implies the positive-definiteness of a

R
. Assume, on the contrary, that there is a non-

zero  2 H 1
0 .�/ such that rb D 0 in �. Continue b and  by 0 to R3 n�. and

also extend �
R
to R3 n� as �0 D 1 in R3 n B.3/. Then  2 H 1.R3/ and rb D 0

in R3, and hence rb � rb D 0 in R3 n fOg. Using unique continuation for elliptic
equations with non-smooth first order terms, see [5] and [40], we deduce that  D 0

in R3 n fOg.
As �

R
is bounded from below, Lemma 2.2 implies that there is c

R
> 0 such thatZ

�

�
R

rbu � rbudx � c
R

kuk2
L2.�/

; u 2 H 1
0 .�/. (29)

Similarly to (19), (20), the sesquilinear form a
R
defines a self-adjoint operator

AR in L2g and, analogously to (21), we have

AR.u/ D � g�1=2rb � .�
R

rbu/C qu;

D.AR/ D fu 2 H 1
0 .�/ W rb � .�

R
rbu/ 2 L2.�; g�1=2dx/g:

(30)

Using the operatorAR, R > 1 we see that, for 
 … spec.AR/,

ƒ�Rh D .@� C i� � b/.u0 C v�R/
ˇ̌
@�
;

v�R D RR.
/.rb � .�
R

rbu0/ � qu0 C 
u0/:

(31)

Here u0 2 H 1.�/ with supp.u0/ � � n B.O; 2/ satisfies u0j@� D h, while RR.
/

is the resolvent

RR.
/ D .AR � 
I /�1 W H�1.�/ ! L2.�/: (32)
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We will use the notation (32) for R D 1 as well as R > 1, in which case we
have R1.
/ W H�1

g .�/ ! L2g.�/: Note that the right-hand side in (31) should be
understood in the sense of the pairingH�1=2.@�/ �H�1=2.@�/,Z

@�

..@� C i� � b/.u0 C v�R//
x dS D a

R
Œu0 C v�R;  	 � 
.u0 C v�R;  /L2

g
;

for all  2 H 1.�/; and we again consider a
R
on the whole ofH 1.�/.

Next, consider the DN map in the ideal case R D 1. Following [24], we say that
u is a finite energy solution of the boundary value problem (10) with h 2 H 1=2.@�/

and f 2 H�1
g .�/, if u 2 H 1

g .�/ and

a1Œu � u0; '	 D �
Z
�

.�1rbu0 � rb' C .qg1=2u0 � 
/g1=2u � f /x' dx; (33)

for every ' 2 H 1
0;g.�/. HereH

�1
g .�/ is the dual space toH 1

0;g.�/.
On the other hand,

�.r C iˇ1/ � .r C iˇ1/v1 C �1v1 � 
v1 D Qf1 inM1;

v1j@M1
D h;

(34)

and

�1
4
.r C iˇ2/ � .r C iˇ2/v2 C �2v2 � 
v2 D Qf2 inM2;

.@� C i��ˇ2/v2j@M2
D 0;

(35)

are satisfied in the weak sense if

˛Œv � v0;  	 D �
2X

jD1

Z
Mj

.cjrˇv0 � rˇ C .�ju0 � 
v � Qfj / x / dx; (36)

for all  2 H 1
0 .M1/˚H 1.M2/, where c1 D 1; c2 D 1=4. Here v0 2 H 1.M1/˚

H 1.M2/ is supported inM1 n B.2/ and satisfies v0j@M1
D h.

Lemma 2.3. Let h 2 H 1=2.@�/ and f 2 H�1
g .�/. A function u 2 H 1

g .�/ is a
finite energy solution in the sense (33) of the boundary value problem (10) if and only
if v D .v1; v2/ 2 H 1.M1/ ˚ H 1.M2/, u D F�v satisfies eq. (34) and (35) in the
weak sense (36) with f D F�. Qf1; Qf2/.

In particular, for any 
 2 R the Cauchy data, on @�, of solutions to (22) satisfy

f.uj
@�
; .@� C i�� b/uj@�/ W � rb � �1rbuC qg1=2u D g1=2
u in �g

D f.v1j@�; .@� C i��ˇ1/v1j@�/ W � rˇ1 � rˇ1v1 C �1v1 D 
v1 in �g
� H 1=2.@�/ �H�1=2.@�/

(37)
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Proof. By Lemma 2.1 and formulae (13) and (14) we see that u 2 D.a1/ if and only
if u D F�v; v D .v1; v2/ 2 D.˛/, and

a1Œ Q ; Q'	 D ˛Œ ; '	 (38)

for ';  2 D.˛/, Q' D F�', Q D F� .
Let v0 2 H 1.M1/˚H 1.M2/ be supported inM1 nB.2/ and satisfy v0j@M1

D h,
and u0 2 H 1.�/ be such that u0 D F�v0. Using formula (38) with Q D u � u0
and  D v � v0, we see that u 2 H 1

g .�/ is a finite energy solution if and only if
v D .v1; v2/ 2 H 1.M1/ ˚ H 1.M2/, and setting u D F�v, satisfies (36) for all
' 2 H 1

0 .M1/˚H 1.M2/, that is, v satisfies eq. (34) and (35) in the weak sense.

Assume next that 
 62 spec.A1/. Then the solution to eq. (10), in the sense of
definition (36), may be found in terms of the resolventR1.
/ ofA1, cf. (32). Indeed,
comparing (19), (20) with eq. (33), we see that its solution u has the form

u D u0 C R1.
/.f C rb � �1rbu0 � qu0 C 
u0/;

u0j@� D h; supp.u0/ � � n B.2/; (39)

at least when f 2 L2g.�/ and h 2 H 3=2.@�/ so that u0 2 H 2.�/. SinceD.a1/ D
D.A

1=2
1 / D H 1

0;g.�/, we see that H
�1
g .�/ D D.A

�1=2
1 /. Therefore, the operator

R1.
/ can be extended by continuity to a bounded operator from H�1
g .�/ onto

H 1
0;g.�/. This makes it possible to generalize (39) for all u0 2 H 1

g .�/, i.e. h 2
H 1=2.@�/, and f 2 H�1

g .�/. Observe that the right-hand side in (37) is related to
the unbounded selfadjoint operator Aout in L2.�/, D.Aout/ � H 1

0 .�/, associated
with the form ˛1, see (14) where we use � D M1. More precisely, this operator is
the unbounded selfadjoint operator in L2.�/ given by

Aout D �rˇ1 � rˇ1 C �1;

D.Aout/ D fv1 2 H 1.�/ W rˇ1 � rˇ1v1 2 L2.�/; v1j@� D 0gI
(40)

Moreover, when b 2 C 1.x�I R3/, the selfajdoint operator associated to the form ˛2
on B.1/ D M2 is the operator

Ain D �1
4

rˇ2 � rˇ2 C �2;

D.Ain/ D fv2 2 H 2.B.1// W @�vj
@B.1/

D 0g:
(41)

When 
 … spec.Aout/, the set (37) coincides with the graph of the DN-map
ƒ�out W v1j@� 7! .@� C i��ˇ1/v1j@�; (42)

where v1 solves eq. (34) with Qf1 D 0.
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Note that if b D 0; q D 0, then 
 D 0 is an eigenvalue of A1 with the corre-
sponding eigenfunctions of the form (cf. [35] and [24])

u.x/ D
´
0 for x 2 � n xB.1/;
c0 for x 2 B.1/; c0 ¤ 0: (43)

However, as follows from Lemma 2.3 even, in this case the Cauchy data on @� of
solutions of the eq. (10) with 
 D 0 coincide with the Cauchy data of the solutions
of �v1 D 0 on @M1 D @�.

2.3. � -convergence and spectral convergence. In this section we establish �-con-
vergence and spectral convergence results for aR as R & 1. To that end, following
the comment in the previous section, observe that, since �R1

� �R2
for R1 � R2,

one thus has

aR1
Œv; v	 � aR2

Œv; v	; v 2 H 1.�/; if R1 � R2: (44)

This implies that R 7! aRŒv; v	 is decreasing as R & 1. For R > 1, consider
non-linear (quadratic) functionals aR W L2g.�/ 7! RC D R [ fC1g,

a
R
.v/ D

´
a
R
Œv; v	 when v 2 H 1

0 .�/;

1 otherwise:
(45)

For the ideal cloak, i.e. R D 1, define

a1.v/ D
´
a1Œv; v	 when v 2 H 1

0;g.�/;

1 otherwise:
(46)

We will make extensive use of De Giorgi’s �-convergence, see, e.g., [4] and [18].

Definition 2.4. Let fJR W 1 � R � 2g be a family of functionals on a Hilbert space
H. We say that the JR �-converge to J1, or J1 D ��limR&1JR on H, if

(i) for every v 2 H , and all sequences v
R
converging to v in H as R & 1,

J1.v/ � lim infR&1 JR.vR/ and

(ii) for every w 2 H there exists a sequence w
R
converging to w in H such that

J1.w/ � lim supR&1 JR.wR/.

Lemma 2.5. The functionals aR �-converge to a1 as R & 1,

��lim
R&1

a
R

D a1 on L2g.�/: (47)
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Proof. By Lemma 2.1, H 1
0;g.�/ is a Hilbert space when endowed with the norm

.kuk2
L2

g

C a1.u//
1=2. Since the functionals a�

R
are pointwise decreasing as R & 1,

it follows from Proposition 5.7 in [18] that the functionals a
R
�-converge on L2g to

Qa1 D sc�G; (48)

that is the lower semicontinuous envelope of G (see Definition 3.1 in [18]), where
G W L2g ! RC D R [ fC1g is defined by

G.v/ D
8<
:

Z
�

.�1rbu� rbudx C qg1=2juj2/ dx for u 2 H 1
0 .�/;

1 otherwise.
(49)

By Proposition 11.10 in [18], the function Qa1 W L2g.�/ ! R [ f1g is a quadratic
form. Moreover, by Proposition 12.16 in [18], its domain

D. Qa1/ D fu 2 L2g.�/ W Qa1.u/ < 1g;

endowed with the norm .kuk2g C Qa1.u//1=2, is a Hilbert space.
Now H 1

0 .�/ is contained in both D. Qa1/ and D.a1/ D H 1
0;g.�/, and the norms

of these Hilbert spaces coincide on H 1
0 .�/. Moreover, by the proof of Lemma 3.3

in [24],H 1
0 .�/ is dense inD.a1/. ThusD.a1/ � D. Qa1/.

On the other hand, as G.v/ � a1.v/ for all v 2 L2g.�/ and a1 is lower semi-
continuous (see Proposition 2.16 in [18]), it follows that the lower semicontinuous
envelope Qa1 of G also satisfies Qa1.v/ � a1.v/. Hence D. Qa1/ � D.a1/. Thus,
D. Qa1/ D D.a1/.

Let us next consider the resolvent RR.
/ for 
 < 0.

Lemma 2.6. For any 
 < 0; the resolvents RR.
/, R > 1; strongly converge on
L2g.�/ to R1.
/, i.e., for any f 2 L2g.�/,

lim
R&1

RR.
/f D R1.
/f (50)

strongly in L2g.�/ and weakly inH
1
0;g.�/.

Proof. The quadratic forms a
R
.u/ � 
kuk2g , R � 1 in the Hilbert space L2g.�/

are associated to the unbounded selfadjoint operators AR � 
I . Thus we can use
Theorem 13.6 in [18] to show that the resolvents .AR�
I /�1 satisfy (50) inL2g.�/.
Indeed, to show the strong convergence (50) in L2g.�/ it is sufficient to prove the
following three properties:

a
R

W L2g.�/ ! R [ f1g are lower semicontinuous; (51)
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��lim
R&1

a
R

D a1 on L2g.�/I (52)

a1.u/ � 
kuk2g � lim inf
R&1

.a
R
.u
R
/ � 
ku

R
k2g/ as u

R
* u in L2g.�/, (53)

where* denotes weak convergence in L2g.�/.
Clearly, the quadratic forms a

R
.u/�
kuk2g are lower semicontinuous onL2g.�/,

see proof of Lemma 2.5. By Lemma 2.5, the quadratic forms a
R
�-converge to a1.

Thus (51) and (52) are valid. To see (53), it suffices to consider the case when u
R
* u

in L2g and

lim inf
R&1

.a
R
.u
R
/ � 
ku

R
k2g/ < 1:

Next we consider a sequence Rk & 1 such that

lim inf
R&1

.a
R
.u
R
/ � 
ku

R
k2g/ D lim

k!1
.ak.uk/ � 
kukk2g/;

where ak D aRk and uk D uRk 2 H 1
0 .�/. Since u

k converges weakly in L2g , the
norms kukkg are uniformly bounded. Since also

a1.u
k/ � ak.uk/; (54)

we see that the sequence uk is uniformly bounded in H 1
g .�/. Let us now choose a

subsequence of uk (still denoted by uk) which converges weakly to u inH 1
0;g.�/. As

the embedding H 1
g ,! L2g is compact, this sequence converges strongly in L

2
g.�/.

Using the weak convergence inH 1
0;g.�/, we see that

a1.u/ � 
kuk2g D lim
k!1

Z
�

.�1rbuk � rbuC g1=2quk Nu � 
g1=2uk Nu/ dx: (55)

By the Cauchy–Schwarz inequality,

ˇ̌̌ Z
�

.�1rbuk � rbuC g1=2quk Nu � 
g1=2uk Nu/ dx
ˇ̌̌

�
� Z

�

.�1rbuk � rbuk C g1=2qjukj2 � 
g1=2jukj2/ dx
� 1

2

�
� Z

�

.�1rbu� rbuC g1=2qjuj2 � 
g1=2juj2/ dx
� 1

2
:

Using (54) and (55), this implies that

a1.u/ � 
kuk2g � lim inf
k!1

.a1.u
k/ � 
kukk2g/1=2 � .a1.u/ � 
kuk2g/1=2

� lim inf
k!1

.ak.u
k/ � 
kukk2g/1=2 � .a1.u/ � 
kuk2g/1=2:
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The desired inequality (53) follows immediately, proving (50) in L2g.�/.
Finally, to prove that (50) holds weakly inH 1

0;g.�/, observe that, since �R � �1,Z
�

.�
R

rbv � rbv C g1=2qjvj2/ dx �
Z
�

.�1rbv � rbv C g1=2qjvj2/ dx (56)

for v 2 H 1
0 .�/: On the other hand, denoting uR D RR.
/f and using 
 � 0, we

have Z
�

.�
R

rbu
R

� rbu
R

C g1=2qju
R

j2/ dx � kf kg ku
R

kg :

The above two inequalities, togetherwith the strong convergence (50) inL2g.�/, show
that the ku

R
kH1

g
are uniformly bounded. Thus, if weak convergence (50) inH 1

0;g.�/

is not valid, there is a v 6D u and a subsequence Rn & 1 such that uRn
* v inH 1

g .
Then uRn

! v inL2g.�/, which is in contradiction with the strong convergence (50)
in L2g.�/. Thus (50) holds weakly inH

1
0;g.�/.

In some applications, e.g. dealing with scattering of plane waves ei<k;x>, k 2 R3,
by the cloaking device, the main interest concerns not values 
 < 0, but rather

 D jkj2 > 0. To analyze this case, let us first consider the behavior of the spectra
spec.AR/ as R & 1.

Lemma 2.7. LetK be a compact set withK\spec.A1/ D ;. Then, forR sufficiently
close to 1, K \ spec.AR/ D ;.

Proof. It suffices to considerK D Œa; b	 � R. Assume, to the contrary, the existence
of a sequence Rn & 1; �n 2 Œa; b	, and functions un 2 H 1

0 � H 1
0;g ; kunkg D 1,

such that

ARn
un D �nun: (57)

Then,Z
�

.�Rn
rbun � rbun C g1=2qjunj2/ dx D �n

Z
�

g1=2junj2 dx D �n � b:

Therefore, as �
R

� �1 and q � 0, this implies kunk2
H1

g

� b C 1. Thus there exists a

subsequence of un and �n, which we relabel as the original sequence, u 2 H 1
0;g and

� 2 Œa; b	, such that
un * u weakly inH 1

g ; un ! u strongly in L2g ; and �n ! �

as n ! 1. Thus, in particular, kukg D 1.
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Taking e.g. 
 D �1 in Lemma 2.6, we know thatRR.�1/ ! R1.�1/ asR & 1

in the strong operator topology on L2g . ConsiderR1.�1/u; then

R1.�1/u D lim
n!1 RRn

.�1/u D lim
n!1 RRn

.�1/un in L2g.�/

where, in the last step we have used fact that A are non-negative operators yielding
the estimate kRRn

.�1/kL2
g!L2

g
� 1.

However, taking into account (57),

RRn
.�1/un D 1

1C �n
un ! 1

1C �
u in L2g.�/ as n ! 1:

Thus, R1.�1/u D .1C �/�1u with kukL2
g

D 1, implying that � 2 spec .A1/ with
u being an associated eigenfunction. This contradiction proves the statement.

Lemma 2.8. LetK � C be compact subset such thatK \ spec.A1/ D ;. Then, for
any f 2 L2g.�/ and 
 2 K,

lim
R&1

RR.
/f D R.
/f (58)

strongly inH 1
0;g.�/, and the convergence is uniform for 
 2 K.

Proof. Let ı > 0 satisfies

Kı \ spec.A1/ D ;; Kı D fz 2 C W dist.z;K/ � ıg:
It then follows fromLemma 2.7 that, forR sufficiently close to 1,Kı=2\spec.AR/ D
;. As all AR; R � 1 are self-adjoint in L2g.�/, we see that, for R sufficiently close
to 1,

kRR.
/kL2
g!L2

g
� 2

ı
; when 
 2 K:

This implies that C n spec.A1/ D �b , where �b denotes the region of boundedness
for the family of operators AR; R � 1, i.e. the set of those 
 2 C for which the
norms k.AR � 
/�1kL2

g!L2
g
are bounded by some constant C� > 0 for all R > 1,

see Section VIII.1.1 in [39]. As spec.A1/ is countable, �b is connected. On the
other hand, by Lemma 2.6, R� � �s , where �s is the region of strong convergence
for the above family, i.e. the set of 
 2 C such that for f 2 L2g.�/

lim
R!1

RR.
/f D R1.
/f in L2g.�/; (59)

Therefore, by Theorem VIII.1.2 in [39],

�s D �b D C n spec.A1/: (60)



Approximate quantum and acoustic cloaking 45

By Lemma 3 in [24], H 1
0 .�/ is dense in H

1
0;g.�/ D D.a1/. Thus H 1

0 .�/

is a core of the quadratic form a1Œ� ; � 	. Now H 1
0 .�/ D D.a

R
/; for R > 1 and

a
R
are monotonically increasing with R � 1 on H 1

0 .�/. Thus it follows from
Theorem VIII.3.6 in [39], that

lim
R&1

a1.RR.
/f � R1.
/f / D 0; (61)

uniformly for 
 2 K whereK is an arbitrary compact subset of�s . By Lemma 2.1,
the desired convergence (58) now follows from (59)–(61).

Let � 62 spec.A1/. It follows from Lemma 2.7 that � 62 spec.AR/ for R > 1

sufficiently close to 1. For � 62 spec.AR/, we denote by NR.�/ the subspace of
L2g.�/ spanned by the eigenfunctions of AR with eigenvalues 
j < �. We also
denote by P�R the orthoprojectors in L2g.�/ onto NR.�/. By Theorem III.6.17
in [39], these (Riesz) projectors PR have the representation

P
�
Ru D 1

2i

Z
�

.AR � z/�1udz; (62)

where the contour � � C surrounds all the eigenvalues 
j ofAR satisfying 
j < �
and only those.

Lemma 2.9. Let � 62 spec.A1/. For R sufficiently close to 1

dim.NR.�// D dim.N1.�//: (63)

Moreover,

lim
R&1

kP�R � P�1 kL2
g!L2

g
D 0: (64)

Proof. Recall thatD.a
R
/ D H 1

0 .�/ are independent ofR > 1,H
1
0 .�/ � D.a1/ D

H 1
0;g.�/, and aRŒu; u	 are decreasing, as R & 1, for all u 2 D.a

R
/. Thus the

identity (63) follows directly by Theorem VIII.3.15 in [39].
Using representation (62) and Lemma 2.8, we see that

lim
R&1

P
�
R D P

�
1 strongly in L2g.�/:

As P�R and P�1 are orthoprojectors, this and (63) yields (64) by [39] (see Lemmas
VIII.1.23 and VIII.1.24).

We remark that in the course of this paper we need a number of results concerning
convergence of orthoprojectors that appear similar to (64), e.g., (78), (114) and (133),
but these are for different operators or with respect to different operator norms and
require separate proofs.
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2.4. Approximating the singular bulk modulus g�1=2 by nonsingular densities.
Above, in the operator AR D �g�1=2rb � �

R
rb C q; there appears the determinant

g of the metric (also denoted g!), which vanishes at the cloaking surface†. We now
consider how to approximate the scalar function g by functions gm that are bounded
from below with positive constants. To this end, we introduce the functions

gm.x/ D max .g.x/; 1=m/ ; m 2 ZC: (65)

Then L2.�; g1=2m dx/ � L2g.�/ and

kf kg � kf kL2.�;g1=2
m

dx/; for f 2 L2.�; g1=2
m

dx/: (66)

The multiplication map f 7! g1=2f is unitary from L2g D L2.�; g1=2dx/ onto
L2.�; g�1=2 dx/. Note that L2.�; g�1=2 dx/ � L2.�/ � L2g.�/. Next we will
consider operators g1=2ARu. For f 2 L2g.�/, we have

.AR � 
/u D f; (67)

where both sides are in L2g.�/, if and only if u is a solution to the acoustic equation
with mass density tensor ��1

R , bulk modulus g
�1=2, and potential qg1=2),

.g1=2AR � 
g1=2/u D F; (68)

where F D g1=2f 2 L2.�; g� 1
2dx/. By the above considerations, we have for

f 2 L2g.�/

.AR � 
/�1f D .g1=2AR � 
g1=2/�1.g1=2f /: (69)

Later in this section we keepR > 1 fixed. Define an unbounded selfadjoint oper-
ator BR in L2.�/, having the same differential expression as the operator g1=2AR,
but with different domain

BRu D � rb � .�
R

rbu/C g1=2qu;

D.BR/ D fu 2 H 1
0 .�/ W rb � .�

R
rbu/ 2 L2.�/g:

(70)

SinceD.AR/ � H 1
0 .�/, see (30),BR is an extension of g

1=2AR and, in particular,
rb � .�

R
rbu/ 2 L2.�; g�1=2dx/ for u 2 D.AR/; however,rb � .�

R
rbu/ 2 L2.�/

for u 2 D.BR/. Note that, by (69),

.AR � 
/�1f D .BR � 
g1=2/�1.g1=2f / for f 2 L2g.�/; (71)

where 
 62 spec.AR/. We will use this formula extensively later for f 2 L2.�/ �
L2g.�/.
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Lemma 2.10. The operator BR � 
g1=2 has a bounded inverse if and only if 
 62
spec.AR/.

Proof. For 
 < 0 the operator BR � 
g1=2 is strictly positive and, since D.BR/ �
H 1
0 .�/, has a compact resolvent. Therefore, the operator .BR � 
g1=2/�1 exists for


 < 0 and is bounded in L2.�/. Since the multiplication, u 7! g1=2u, is bounded
in L2.�/, by the analytic Fredholm theory [64] the operator-valued function


 7! .BR � 
g1=2/�1 D ŒI � .
C 1/.BR C g1=2/�1g1=2	�1.BR C g1=2/�1

is a meromorphic operator-valued function of 
 2 C. Therefore, if the inverse
.BR � 
g1=2/�1 does not exist for a given 
 � 0, then there is v 2 H 1

0 .�/ such that

.BR � 
g1=2/v D 0:

In this case BRv D 
g1=2v 2 L2.�; g�1=2dx/ and we see that v 2 D.AR/, i.e.

 2 spec.AR/. On the other hand, if 
 2 spec.AR/, i.e.

�g�1=2rb � .�
R

rbu/C qu D 
u;

thenrb �.�
R

rbu/ D qg1=2u�
g1=2u 2 L2.�/, i.e. u 2 D.BR/, so thatBR�
g1=2
does not have a bounded inverse.

Next we consider the uniform convergence of resolvents. To this endwe introduce
operators BR;m; m 2 ZC, in L2.�/, of the form

BR;mu D � rb � .�
R

rbu/C qg1=2m u;

D.BR;m/ D fu 2 H 1
0 .�/ W rb � .�

R
rbu/ 2 L2.�/g D D.BR/:

(72)

The operator BR;m is associated with the operator AR;m in the same way that
AR is associated with BR, where the operator AR;m is the self-adjoint operator
in L2.�; g1=2m dx/ defined by

AR;mu D � g�1=2
m rb � .�

R
rbu/C qu;

D.AR;m/ D fu 2 H 1
0 .�/ W rb � .�

R
rbu/ 2 L2.�/g:

(73)

Note thatD.AR;m/ D D.BR;m/.

Lemma 2.11. LetR > 1 andK � C be compact and such thatK \ spec.AR/ D ;.
Then there is an m

R
2 ZC such that K \ spec.AR;m/ D ; for m > m

R
, and

lim
m!1 k �

AR;m � 
��1 � .AR � 
/�1 kL2.�/!H1
0
.�/ D 0; (74)

uniformly for 
 2 K.
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Proof. By the assumptions onK, the inverse .BR�
g1=2/�1 exists and is a continuous
function of 
 2 K with respect to the L2.�/-operator norm topology. Let

d D max
�2K

k.BR � 
g1=2/�1k
L2.�/!L2.�/

< 1:

Denote VR;m.
/ D .
 � q/.g1=2m � g1=2/ 2 L1.�/, so that

lim
m!1 kVR;m.
/kL1.�/

D 0 (75)

uniformly for 
 2 K. Thus there ism.K/ > 0 such that kVR;m.
/kL1 � .2d/�1 for
m > m.K/, 
 2 K. Therefore, .BR;m � 
g1=2m /�1 exists for 
 2 K and is given by

.BR;m � 
g1=2m /�1 D .BR � 
g1=2/�1ŒI C VR;m.
/.BR � 
g1=2/�1	�1 (76)

where the right hand side can be written as a Neumann series. This also shows that
there is an m

R
such that K \ spec.AR;m/ D ; for m > m

R
.

For any 
0 2 K, .BR � 
0g1=2/�1 is a bounded operator from L2.�/ toH 1
0 .�/,

and if j
 � �j < .2d/�1 we have
.BR � 
g1=2/�1 D .BR � 
0g1=2/�1ŒI C .
0 � 
/g1=2.BR � 
0g1=2/�1	�1:

Using this we see that the norm of .BR �
g1=2/�1 W L2.�/ ! H 1
0 .�/ is uniformly

bounded in 
 2 K. Using formulae (75) and (76), we see that
lim
m!1 k.BR;m � 
g1=2m /�1 � .BR � 
g1=2/�1k

L2.�/!H1
0
.�/

D 0 (77)

uniformly for 
 2 K, and that the norms of operators .BR;m � 
g1=2m /�1 W L2.�/ !
H 1
0 .�/ are uniformly bounded for 
 2 K. This proves

lim
m!1 k.BR;m � 
g1=2m /�1 � .BR � 
g1=2/�1k

L2.�/!H1
0
.�/

D 0:

Additionally, the multiplication operators g1=2m ; g1=2 are bounded onL2.�/, uni-
formly in m, and

kg1=2m � g1=2k
L2!L2 � m�1=2 ! 0; as m ! 1:

Together with eq. (77) and the boundedness of .BR;m � 
g1=2m /�1 as operators from
L2.�/ toH 1

0 .�/, this implies that

lim
m!1 k.BR;m � 
g1=2m /�1g1=2m � .BR � 
g1=2/�1g1=2k

L2.�/!H1
0
.�/

D 0:

This in turn implies eq. (74), due to formula (71) and the relations betweenBR;m; BR

and AR;m; AR, which follow from their definitions (30), (70)–(72), and (73).
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LetR > 1,� 62 spec.AR/. It follows from Lemma 2.11 that� 62 spec.AR;m/ for
m sufficiently large. Denote by NR;m.�/ the subspace of L2.�; g

1=2
m dx/ spanned

by the eigenfunctions of AR:m with eigenvalues in .�1; �/, cf. the definition of
NR.�/. Also denote by P�R;m the orthogonal eigenprojectors onto NR;m.�/ in

L2.�; g
1=2
m dx/.

Clearly, since, for m 2 ZC, L2.�; g1=2m dx/ D L2.�/ as sets, we can consider
P
�
R;m as projectors, although not orthogonal, on L

2.�/. Recall that P�R is an or-
thoprojector in L2g.�/ onto NR.�/ � H 1

0 .�/. Restricting it to L
2.�/, we obtain a

projector, which we still call P�R , on L
2.�/. Again, P�R is not an orthoprojector on

L2.�/. However, we can compare these projectors, as well as spaces NR;m.�/ and
NR.�/.

Corollary 2.12. Let R > 1 and � 62 spec.AR/. The Riesz projectors P
�
R;m corre-

sponding to the operators AR;m satisfy

lim
m!1 kP�R;m � P�R k

L2.�/!H1
0
.�/

D 0: (78)

Moreover, for m sufficiently large,

dim.NR;m.�// D dim.NR.�//: (79)

Proof. Let � � C be a contour surrounding only 
0 from spec.AR/. When m is
large enough, the Riesz projectors P�R;m have a representation analogous to (62),
obtained by replacing AR byAR;m and using the contour �. Thus

lim
m!1 kP�R;m � P�R k

L2.�/!H1
0
.�/

� lim
m!1

1

2

Z
�

k.AR;m � z/�1 � .AR � z/�1k
L2.�/!H1

0
.�/

dl.z/;

where dl is the arclength measure on �. Taking into account (74), this formula
implies (78).
Using eq. (78), we see that there exists an m0 such that for m � m0 we have

kP�R;m�P�R kL2.�/!L2.�/ < 1:Using, e.g., Corollary IV.2.6 in [39], we see that this
proves (79).

3. Approximating anisotropic by isotropic mass densities

We now show, using techniques from homogenization theory, cf. [1], [15], and [18],
that we can approximate arbitrarily closely, on the level of the operators, the nonsin-
gular anisotropic approximate mass densities ��1

R , for any fixed R > 1, by a family
of nonsingular isotropic mass densities ��1

R;"; " > 0, which will thus also function as
approximate cloaks. This can be considered as the reverse of the traditional homog-
enization theory.
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3.1. Inverse homogenization with magnetic potential. Observe that, as all the
approximate cloaks �

R
; R > 1, are rotationally invariant, it is natural to use spherical

coordinates. Namely, we will use either the Euclidian coordinates x D .x1; x2; x3/;

or the spherical coordinates s D s.x/ D .r.x/; �.x/; '.x//. Note that we use the
same notation x for a point inside� and its Euclidian coordinates, x D .x1; x2; x3/.
Which meaning is intended will be always clear from the context. We denote by
X W .x1; x2; x3/ 7! .r; �; '/ the corresponding coordinate transformation. To exploit
the rotational invariance, we will employ in the homogenization process, cf. [1] and
[15], cells which are cubes in these spherical coordinates.
To approximate the anisotropic mass densities in spherical coordinates in the ball

� D B.0; 3/, let us consider isotropic mass densities which inverse is of the form

�".x/ D �.x; r.x/="/; �.x; r 0/ D h.x; r 0/I 2 R3�3: (80)

Here h.x; r 0/ is a scalar valued function, to be chosen later, that is periodic in r 0 with
period 1 and is bounded from above and below, i.e.

h.x; r 0 C 1/ D h.x; r 0/; 0 < c1 � h.x; r 0/ � c2: (81)

We will consider densities for which h.x; r 0/ is independent of r 0 for x with r.x/ < 1
and 5=2 < r.x/ < 3, that is,

h.x; r 0/ D h.x/ if jxj < 1 or 5=2 < jxj < 3: (82)

We make this assumption since later we will use the isotropic mass densities to
approximate the non-singular anisotropic mass densities ��1

R ,R > 1 that are isotropic
for r.x/ < 1 and 5=2 < r.x/ < 3.
Let .r; �; '/ and .r 0; � 0; '0/be spherical coordinates corresponding to twodifferent

scales. Then, in these coordinates,

.X�.�"//.s/ D ��.s; s="/;

where

��.s; r 0/ D h.s; r 0/det.DX.x//�1DX.x/DX t .x/j
X.x/Ds

D h.s; r 0/

0
@ r2 sin � 0 0

0 sin � 0

0 0 1=sin �

1
A:

Here and later we denote by �, sometimes with various indices, the inverse of the
various mass tensors (or matrices) in the Euclidian coordinates, while �� always
stands for their representation in the spherical coordinates.
In the following, the material on homogenization is a quite straightforward gen-

eralization of known results [1] and [15]. However, as we need to introduce changes
due both to the presence of a magnetic potential and the use of spherical coordinates,
for completeness we give details of the arguments.



Approximate quantum and acoustic cloaking 51

In the small-scale coordinates t D .r 0; '0; � 0/, we denote by e1 D .1; 0; 0/,
e2 D .0; 1; 0/, and e3 D .0; 0; 1/ the vectors corresponding to the differential forms
dr 0, d� 0, and d'0, respectively. LetW j .s; t/; j D 1; 2; 3; be the solutions of

rt � ��.s; t/.rtW j .s; t/C ej / D 0; t D .r 0; � 0; '0/ 2 R3; (83)

that are 1-periodic functions in r 0, � 0, and '0 variables (noting that the periodicity in r 0,
� 0, and '0 has no relation to periodicity in the “large-scale” spherical coordinates �,
'), and satisfy

R
Œ0;1�3W

j .s; t/dt D 0 for all s, where dt D dr 0 d� 0 d'0. Since �� is
independent of � 0, '0, the above conditions imply that W j D 0 for j D 2; 3. As for
W 1, it satisfies

@

@r 0
�
h.s; r 0/

@W 1

@r 0
�

D �@h.s; r
0/

@r 0 ;

withW 1 being1-periodicwith respect to .� 0; '0/. These imply thatW 1 is independent
of .� 0; '0/ with

@W 1

@r 0 D �1C C0

h.s; r 0/
:

To find the constant C0 we use the periodicity of W 1, now with respect to r 0, to get
that C0 is given by the harmonic means hharm of h,

C0 D hharm.s/ D
�Z 1

0

dr 0

h.s; r 0/

��1
: (84)

Define the corrector matrices [1] as

P kj .s; t/ D @

@tj
W k.s; t/C ıkj : (85)

Then the inverse of the homogenized mass density in the spherical coordinates, ��
hom,

is given by

.��
hom/

jk.s/ D
3X

pD1

Z
Œ0;1�3

.��/jp.s; t/P kp .s; t/ dt: (86)

We note that, applying integration by parts and using definition (85) and eq. (83),
eq. (86) can be written also in a more symmetric form

.��
hom/

jk.s/ D
3X

p;qD1

Z
Œ0;1�3

.��/pq.s; t/P jp .s; t/P kq .s; t/ dt:

Using the above formulae for theW i, it follows from (86) that

��
hom.s/ D

0
@ hharm.s/r2 sin.�/ 0 0

0 ha.s/ sin.�/ 0

0 0 ha.s/ sin�1.�/

1
A :
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Here ha.s/ denotes the arithmetic means of h in the second variable,

ha.s/ D
Z
Œ0;1�

h.s; r 0/ dr 0:

Returning to the Euclidian coordinates, one sees that the conductivity, �hom.x/ D
X���

hom.x/; has the form

�hom.x/ D !1.x/….x/C !2.x/.I �….x//; (87)

with

!1.x/ D hharm.x/; !2.x/ D ha.x/ (88)

and….x/ W R3 ! R3 being the projection to the radial direction,

….x/ v D
�
v � xjxj

�
x

jxj ;

represented by the matrix .jxj�2xjxk/3
j;kD1.

Next, we analyze the Dirichlet problems for elliptic equations

� rb � �"rbu" CQu" D f; u"j@� D h: (89)

Here, b.x/ D .b1.x/; b2.x/; b3.x// is the magnetic potential and Q.x/ is a scalar
function, withQ; bj 2 L1.�I R/, and��1

" are isotropicmass densities bounded from
above and below by positive constants independent of ". Moreover, f 2 H�1.�/,
and h 2 H 1=2.@�/. Our goal is to show that the solutions u" convergence to the
solution of the equation

� rb � �homrbuCQu D f; uj
@�

D h: (90)

By adapting the technique of Allaire [1], we can prove the following result.

Proposition 3.1. Let �", " > 0 be the inverse matrices of the mass densities in
� satisfying (80), (81), and (82), �hom be the inverse of the mass density defined
by (87), Q 2 L1.�/, Q.x/ � 0, and b D .b1.x/; b2.x/; b3.x// be a vector field,
b 2 L1.�I R3/. Then the solutions u" of (89) and solution u of (90) satisfy

lim
"!0

u" D u weakly inH 1.�/: (91)

Proof. Let Eh 2 H 1.�/; supp.Eh/ � f5=2 � jxj � 3g be an extension of h, i.e.
Ehj@� D h. Writing u" D Eh C v" and u D Eh C v; we see that the functions v"
and v satisfy

�rb � �"rbv" CQv" D Qf on �; v"j@� D 0; (92)
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�rb � �homrbv CQv D Qf on �; vj
@�

D 0: (93)

Here
Qf D f � rb � �"rbEh CQEh 2 H�1.�/; (94)

is independent of ". For proving (91) it is enough to show that v" converges to v
weakly inH 1

0 .�/.
Let us recall that by, Lemma 2.2, a

R
is (strictly) positive definite. SinceQ.x/ � 0,

we see that there exists a c0 > 0 such thatZ
�

.jrbu.x/j2 CQ.x/ju.x/j2/ dx � c0kuk2
H1

0
.�/

for u 2 H 1
0 .�/:

As the mass densities ��1
" are uniformly bounded from above and below by positive

constants, it follows from the proof of Lemma 2.2 that there is also c1 > 0 such thatZ
�

.rbu� �"rbuCQ.x/juj2/ dx � c1kuk2
H1

0
.�/

for u 2 H 1
0 .�/:

Thus, using the Lax–Milgram lemma, we see that the solutions v".x/ of (92) satisfy

kv"kH1
0
.�/ � ck Qf kH�1.�/; (95)

where c > 0 is independent of " > 0. Therefore, the solutions v".x/ are uniformly
bounded in H 1

0 .�/. Thus, for an arbitrary sequence "n ! 0, the corresponding v"n

have a subsequence that converges weakly to some function w.x/ inH 1
0 .�/. Let us

show that w coincides with the solution v of (93).
To this endwe consider convergence in afiner, two-scale, sense on local coordinate

neighborhoods. Let U � S2 be an open set on which we can define, in a regular
manner, spherical coordinates. For example, by choosing two antipodal points as
the South and North poles and connecting those by a meridian �, we can take U so
that xU � S2 n � and define polar coordinates on U. Let �0 D fr! W ! 2 U; r 2
.r1; r2/g � � with some r2 > r1 > 0. Clearly, X W �0 ! R3 defines the spherical
coordinates, x 7! .r; �; '/, with domain W D X.�0/ D .r1; r2/ � U.
Rewrite now eq. (92) and (93) on W in these spherical coordinates and multiply

the equations so obtained by det.DX.X�1.s///. The resulting equations are

�.rs C ib�.s// � ��.s;
s

"
/.rs C ib�.s//v".s/CQ�.s/v".s/ D yf .s/; (96)

�.rs C ib�.s// � ��
hom.s/.rs C ib�.s//v.s/CQ�.s/v.s/ D yf .s/; (97)

where s 2 W. Here
Q�.s/ D det.DX.X�1.s///Q.X�1.s// 2 L1.W /;
b�
j .s/ D @jX

k.X�1.s//bk.X�1.s// 2 L1.W I R3/;
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correspond to the electric potential Q and magnetic potential b in the spherical co-
ordinates and yf .s/ D det.DX.X�1.s/// Qf .X�1.s// 2 H�1.W /. To simplify no-
tations, we continue to denote the functions v and v" in the spherical coordinates
by v.s/ D ..X�1/�v/.s/, v".s/ D ..X�1/�v"/.s/. Finally, rs is the vector field
.@r ; @	 ; @'/.
In the following, even though in the forthcoming applications the mass densities

.��
" .x; r.x/="//

�1 will depend only on the small-scale variable r 0 D r.x/=", we con-
sider the general case when the mass densities depend on all small-scale coordinates
t D .r 0; � 0; '0/. Let T D Œ0; 1	3 and Cm# .T / denote those C

m.T / functions that can
be continued as Z3-periodic functions in R3 which are in Cm.R3/. By definition,
a family v".s/, v" 2 L2.W / is said to two-scale converge, as " ! 0, to a function
v0.s; t/ 2 L2.W � T / if, for all test functions  .s; t/ in C1

0 .W IC1
# .T //, we have

lim
"!0

Z
W

v".s/ 
�
s;
s

"

�
ds D

Z
W

Z
T

v0.s; t/ .s; t/ ds dt: (98)

By [1], the two-scale convergence of v" implies the weak convergence of v".s/ in
L2.W / to the function w.s/ D R

T
v0.s; t/ dt, so that the two-scale convergence

gives finer information on the convergence than the weak convergence. For example,
functions of the form u.s; s="/ two-scale converge to u.s; t/.
By [1], every bounded family v".s/ 2 L2.W / contains a two-scale converging

sequence. Moreover, if v".s/ is a bounded family inH 1.W / that converges inL2.W /
to w.s/ as " ! 0, then v".s/ also two-scale converges tow.s/ and there is a function
w1.s; t/ 2 L2.W �T /, so that rsv".s/ two-scale converge to rsw.s/C rtw1.s; t/.
For example, if functions v".s/ have the form v".s/ D u0.s/ C "u1.s; s="/, then
rsv".s/ two-scale converge to u.s; t/ D ru0.s/C rtu1.s; t/.
As noted above, the solutions v".x/ of eq. (92) are uniformly bounded inH 1

0 .�/.
Consider the restrictions of these functions on �0 and rewrite them in the spher-
ical coordinates on W. Then any sequence of v".s/ has a subsequence v"j .s/,
j 2 ZC; "j ! 0 as j ! 1, that weakly converges, in H 1.W /, to some function
w.s/. By [1], v"j .s/ also two-scale converge tow.s/, as " ! 0, and there is a function
w1.s; t/ 2 L2.W � T / so that rv"j .s/ two-scale converge to rsw.s/C rtw1.s; t/.
Let us now multiply both sides of eq. (96) by a test function '.s/C "'1.s; s="/,

where '.s/ 2 C1
0 .W / and '1.s; t/ 2 C1

0 .W IC1
# .T //, and integrate overW. Using

integration by parts, we obtainZ
W

���
s;
s

"

�
Œ.rs C ib�.s//v".s/	 �

�
�1

�
s;
s

"

� C " �2
�
s;
s

"

��
ds

C
Z
W

Q�.s/v".s/
�
'.s/C " '1

�
s;
s

"

�	
ds

D
Z
�0

yf .s/�'.s/C " '1
�
s;
s

"

�	
ds;

(99)
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where

�1.s; t/ D rs'.s/C ib�.s/'.s/C rt'1.s; t/;
�2.s; t/ D rs'1.s; t/C ib�.s/'1.s; t/:

Substitute " D "j in (99) and let j ! 1. First, we observe that, since both �2.s; s="/
and " 2 .0; 1/ are uniformly bounded inL2.W /, the terms in (99), involving �2, tend
to zero. Second, as v".s/ converge in strong topology of L2.W / to w, the first
integral in (99) tends to

R
W
Q�.s/w.s/'.s/ ds. Third, the inner product of yf .s/

and "'1 in the last integral in (99) goes to zero. Fourth, the functions  ".s/ D
��.s; s="/�1.s; s="/ two-scale converge to the function  .s; t/ D ��.s; t/�1.s; t/.
Since  .x; y/ 2 L2.�IC 0# .T //, we have by Lemma 1.3 in [1] that

lim
"!0

k "kL2.W /
D k k

L2.W�T /: (100)

Furthermore, as rv"j .s/ two-scale converges to rsw.s/ C rtw1.s; t/ it follows
from (100) and Theorem 1.8 in [1], thatZ

W

���
s;
s

"j

�
Œ.rs C ib�.s//v"j .s/	 � �1

�
s;
s

"j

�
ds

!
Z
W

Z
T

��.s; t/Œrsw.s/C rtw1.s; t/	 � �1.s; t/ ds dt;

as j ! 1. Summarizing, we see thatZ
W

Z
T

��.s; t/Œrsw.s/C rtw1.s; t/C ib�.s/w.s/	

� Œrs'.s/C ib�.s/'.x/C .rt'1/.s; t/	 ds dt
C

Z
W

Z
T

Q�.s/w.s/'.s/ ds dt

D
Z
W

yf .s/'.s/ ds:

(101)

Taking '.s/ D 0 in (101) and varying '1.s; t/ over all test functions, integration
by parts with respect to t shows that

rt � ��.s; t/Œrsw.s/C rtw1.s; t/C ib�.s/w.s/	 D 0 a.e. in W � T: (102)

Since rsw.s/ C ib�.s/w.s/ depends only on s and thus can be considered as a
constant vector in the t variable, we see that

w1.s; t/ D
3X

jD1

� @w
@sj

.s/C ib�
j .s/w.s/

�
W j .s; t/ a.e. inW � T; (103)
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where W j are solutions of the cell eq. (83).
On the other hand, taking '1.s; t/ D 0 in (101) and varying '.s/ over all test

functions, we see, using integration by parts with respect to s, that

�.rs C ib�.s// �
� Z

T

��.s; t/Œrsw.s/C rtw1.s; t/C ib�.s/w.s/	dt
�

CQ�.s/w.s/

D yf .s/ a.e. in W:

(104)

Comparing the above integral with eq. (86) for �hom, we see that (103) and (104)
imply that

�.rs C ib�.s// � ��
hom.s/.rs C ib�.s//w.s/CQ�.s/w.s/ D yf .s/ in W;

or equivalently, in the Cartesian coordinates

� .r C ib/ � �hom.r C ib/w CQw D Qf in �0: (105)

Since � n fOg can be covered with coordinate neighborhoods �0 used above,
eq. (105) is valid in the domain� n fOg. Moreover, since all the inverse matrices of
the mass densities �hom and �" are the same near the origin, we see that all functions
v"j .x/ satisfy eq. (105) near the origin. As v"j .x/ converge weakly in H

1
0 .�/ to

w.x/, eq. (105) is valid in �. This means that w.x/, as well as v.x/, is the solution
of the eq. (93). By the Lax–Milgram Theorem, eq. (93) has a unique solution, and
thus w D v.
Summarizing, we have now shown that an arbitrary sequence of the original family

v".x/ has a subsequence that weakly converges, in H 1
0 .�/, to the solution v.x/ of

eq. (93). This shows that the whole family v".x/ of the solutions of the eq. (92)
converge weakly to v.x/ inH 1

0 .�/.

3.2. Approximation of �
R
. Next we apply the above results to approximate the

inverse matrices of the mass densities �
R
for a fixed R > 1. In the forthcoming

analysis, we will choose the function h to be

h.s; r 0/ D a.s/

1C b.s/p.r 0/
; (106)

where p.r 0/ is a fixed positive, smooth 1-periodic function of r 0 and both a.s/ and
b.s/ are positive. For any x 2 � and a given function p.r 0/, the pair .!1.x/; !2.x//
in (87) and (88) depends only on the values of functions .a.s.x//; b.s.x///. By
choosing .a.s/; b.s// appropriately, it is possible to achieve any value

.!1.x/; !2.x// 2 R2C; with !1.x/ � !2.x/:
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We can choose a.x/ D a
R
.x/ and b.x/ D b

R
.x/ so that �hom.x/ corresponds to

the inverse of the approximate cloaking mass density, that is

�hom.x/ D �
R
.x/; x 2 �: (107)

In the sequel, we will denote by �
R
.x; r 0/�1 D h

R
.x; r 0/�1I the isotropic mass

densities for which the homogenized mass densities ��1
hom satisfy (107). Observe that,

for R > 1, we can choose h
R
.s; r 0/ so that

0 < c1.R/ � h
R
.s; r 0/ � c2; c1.R/ ! 0 as R & 1: (108)

Let 
 < 0 and BR;m;" be the operators

BR;m;"u D �rb � �
R;"

rbuC g1=2m qu;

D.BR;m;"/ D fu 2 H 1
0 .�/ W � rb � �

R;"
rbu 2 L2.�/g:

Lemma 3.2. For any 
 < 0 and f 2 L2.�/,
lim
"!0

.BR;m;" � 
g1=2m /�1f D .BR;m � 
g1=2m /�1f;

where BR;m is as in (72), and the limit holds both in the sense of the strong topology
in L2.�/ and weak topology inH 1.�/.

Proof. This follows immediately fromProposition 3.1 by takingQ D .q�
/g1=2m .

As in the previous section, one can analyze the convergence of the resolvents in
more detail. To this end, introduce operatorsAR;m;" D g

�1=2
m BR;m;" that is,

AR;m;e D �g�1=2
m rb � �R;"rbuC qu;

D.AR;m;"/ D D.BR;m;"/ D fu 2 H 1
0 .�/ W � rb � �

R;"
rbu 2 L2.�/g: (109)

Clearly, the operators AR;m;e are self-adjoint in L2.�; g
1=2
m dx/ and

.AR;m;" � 
/�1f D .BR;m;" � 
g1=2m /�1.g1=2m f / (110)

for 
 62 spec.AR;m;"/ and f 2 L2.�/, cf. eq. (72) and (73).

Lemma 3.3. Let R > 1, m 2 ZC and K � C be compact and such that

dist.K; spec.AR;m// � ı0 > 0:

(i) There is an "0 D "0.K;R;m/ such that such that, for 0 < " < "0,

k.AR;m;" � 
/�1kL2.�;g1=2
m

dx/!L2.�;g1=2
m

dx/ � 2

ı0
; 
 2 K:
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(ii) For any f 2 L2.�/,
lim
"!0

.AR;m;" � 
/�1f D .AR;m � 
/�1f (111)

in the strong topology of L2.�/ and weak topology of H 1
0 .�/, with convergence

being uniform for 
 2 K.
Proof. (i) Since theAR;m;" are self–adjoint operators onL2.�; g1=2m dx/, it is enough
to show that there is "0 > 0 such that the operators AR;m;" � � are invertible for
j
 � �j � ı0=2 if " < "0.
Assume that there are "n & 0; �n ! �; j
 � �j � ı0=2, and un , with

kunk
L2.�;g

1=2
m dx/

D 1, such that

AR;m;"n
un � �nun D 0:

Rewrite this as

� r� �R;"n
run D fn D � g1=2m qun C �ng

1=2
m un; unj

@�
D 0: (112)

Taking into account the uniform boundedness of the right hand side of (112) inL2.�/,
it follows from (92) and (95), with Q D 0, that kunkH1

0
.�/ � C, for some C > 0

independent "n.
Thus, up to a subsequence, there exists u 2 H 1

0 .�/ such that un ! u as n ! 1
in the weak topology of H 1.�/ and strong topology of L2.�/. This shows, in
particular, that kukL2.�;g1=2

m
dx/ D 1.

Let us show that u is an eigenfunction of AR;m, see (73), corresponding to the
eigenvalue �; as j
��j � ı0=2 with 
 2 K and dist.K; spec.AR;m// > ı > 0, this
would yield a contradiction. We compare un with vn, the solution to

� rb � �
R;"n

rbvn D Qfn D � g1=2m quC �g1=2m u; vnj
@�

D 0: (113)

Letting �n ! �, eq. (113) and the weak convergence un ! u inH 1.�/ imply that

lim
n!1 kfn � Qfnk

L2.�/
D 0:

Appealing again to (108), with R > 1 fixed, we see that un � vn ! 0 in the strong
topology ofH 1

0 .�/.
Using Proposition 3.1 withQ D 0, we see that vn * v inH 1.�/, where

�rb � �Rrbv D �g1=2
m
quC �g1=2

m
u; vj

@�
D 0:

Summarizing, we have that u D v, showing that u is an eigenfunction of AR corre-
sponding to the eigenvalue 
. This proves claim (i).
(ii) Compare the solutions of

�rb � �
R;"

rbum;" D fm;" D f � g1=2
m
qum;" C 
g1=2

m
um;"; um;"j@� D 0:
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with those of

�rb � �Rrbu D fm D f � g1=2
m
quC 
g1=2

m
u; uj

@�
D 0:

It follows, from claim (i) together with (95), that the um;" are uniformly bounded in
H 1
0 .�/. Choosing a weakly converging subsequence, we show, by similar reasoning

to the above, that the limit is um. This proves

lim
"!0

.BR;m;" � 
g1=2
m
/�1f D .BR;m � 
g1=2

m
/�1f:

This, eq. (110), and the boundedness of the multiplication operator f 7! g
1=2
m f in

L2.�/ yields (111).

For � 62 spec.AR;m;"/ we denote by NR;m;".�/ the subspace of L2.�/ spanned
by the eigenfunctions of AR;m;" corresponding to the eigenvalues in .�1; �/, and
by P�R;m;" the orthoprojectors in L

2.�; g
1=2
m dx/ onto NR;m;".�/.

Lemma 3.4. Let R > 1, m 2 ZC, and � 62 spec.AR;m/. (i) There is an "R;m > 0

such that � 62 spec.AR;m;"/ for 0 < " < "R;m.

(ii) For f 2 L2.�/ we have
lim
"!0

P
�
R;m;"f D P

�
R;mf; (114)

in the strong topology of L2.�/ and weak topology ofH 1
0 .�/. Moreover,

lim
"!0

dim.NR;m;".�// D dim.NR;m.�//: (115)

Remark 3.5. Wenote that the strong convergence of the resolvents does not generally
imply the stability of the resolvent set, cf. Section VIII.1.2 in [39].

Proof. (i) TakeK D f�g and ı0 D dist.K; spec.AR;m//. Lemma 3.3(i) implies that,
for sufficiently small ", dist.K; spec.AR;m;"// > ı0=2.
(ii) Relation (114) follows immediately from (111) and the Riesz formula for the

projectors, cf. eq. (62). For the proof of (115), let us consider 
0 2 spec.AR;m/ and
a; b 2 R, a < 
0 < b such that Œa; b	 \ spec.AR;m/ D f
0g. Then by (i) there are
�."/; �."/ ! 0 as " ! 0, such that

spec .AR;m;"/ \ ŒaC �."/; 
0 � �."// D ;;
spec .AR;m;"/ \ .
0 C �."/; b � �."/	 D ;:

Let P " D P
b�	."/
R;m;" � P

aC	."/
R;m;" and P 0 D P bR;m � P aR;m. Then, by (114),

lim"!0 P
"f D P 0f in the strong topology of L2.�/ and weak topology ofH 1

0 .�/.
To establish (115), it is sufficient to show that

lim
"!0

dim.Ran .P "// D dim.Ran .P 0//: (116)
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Indeed, if we show eq. (116) for each eigenvalue of AR;m smaller than �, equal-
ity (115) follows.
To show eq. (116), we note that the ranges of the orthoprojectors P ", P 0 are also

subspaces ofH 1
0 .�/ � L2.�/. We show first that

lim inf
"!0

dim.Ran .P "// � dim.Ran .P 0//: (117)

On the contrary, if this does not hold, there is a sequence ".n/ ! 0 such that

dim.Ran .P ".n/// < dim.Ran .P 0// D k0: (118)

Denote by �k; k D 1; : : : ; k0, an L2.�/-orthonormal basis in Ran .P 0/. (Note that
as Ran .P 0/ � H 1

0 .�/ is finite dimensional all norms are equivalent). Introduce
�n;k D P "�k 2 Ran .P "/; k D 1; : : : ; k0. Consider the Gram–Schmidt matrices,

Gn D ŒGn
kl
	
k0

k;lD1,

Gnkl D
Z
�

�n;k.x/ N�n;l .x/ dx:

By (114) and orthonormality of �k , the matrix Gn is invertible for sufficiently
large n. Thus, �n;k; k D 1; : : : ; k0 are linearly independent. This implies that
dim.Ran .P ".n/// � k0, contradicting (118). This proves (117).
Assume next that

lim sup
"!0

dim.Ran .P "// > dim.Ran .P 0//: (119)

Then there is a sequence ".n/, such that

dim.Ran .P ".n/// > dim..Ran .P 0//:

Thus, there are un such that

un 2 Ran .P ".n//; kunkL2.�;g1=2
m

dx/ D 1; (120)

.un; v/L2.�;g1=2
m

dx/ D 0; for all v 2 Ran .P 0/: (121)

Then

un D
knX
kD1

un;k n;k;

knX
kD1

jun;kj2 D 1; kn D dim.Ran .P ".n///;

where  n;k are L2.�; g
1=2
m dx/-orthonormal eigenfunctions ofAR;m;".n/,

AR;m; ".n/ n;k D 
n;k n;k; j
n;k � 
0j � �.".n//:
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Therefore,

AR;m;".n/un � 
0un D fn D
knX
kD1

un;k.
n;k � 
0/ n;k ! 0 as n ! 1 (122)

in L2.�; g1=2
m

dx/, so thatZ
�

.�
R;".n/

rbun � rbun C g1=2m .q � 
0/junj2/ dx
D .fn; un/L2.�;g

1=2
m dx/

! 0 as n ! 1:

Together with (120) and the fact that q 2 L1.�/, this implies that the formsR
�
�
R;".n/

rbun � rbun dx are uniformly bounded in n. Recalling (95), we see that,
with some c > 0,

kunkH1
0
.�/

< c; for all n 2 ZC:

Restricting to a subsequence of the ".n/, assume there exists u0 2 H 1
0 .�/ such that

lim
n!1un D u0 weakly inH 1

0 .�/ and strongly in L
2.�/, (123)

so that also ku0kL2.�;g
1=2
m dx/

D 1. Let us show thatAR;mu0 D 
0u0, contradicting

the fact that u0 ? Ran .P 0/ in L2.�; g1=2m dx/, which follows from (120). Let vn be
the solutions to

�rb � �
R;".n/

rbvn D g1=2m .
0 � q/u0; vnj
@�

D 0:

From (95), together with (122), (123), we see that un � vn ! 0 as n ! 1 in
L2.�; g

1=2
m dx/: On the other hand, by Proposition 3.1 with Q D 0, vn ! v0 in

L2.�/ as n ! 1, where v0 is the solution to

�rb � �Rrbv0 D g1=2m .
0 � q/u0; vnj
@�

D 0:

Hence, v0 D u0 ¤ 0 is an eigenfunction of AR;m and belongs in Ran .P 0/. This
proves the claim.

4. Approximate acoustic cloaking

In this section, we show that, for 
 … spec.A1/, it is possible to approximate the
solutions to the singular, anisotropic acoustic equation

A1u � 
u D f; f 2 L2.�/;
by solutions to certain non-singular, isotropic acoustic equations. Namely,
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Theorem 4.1. LetK � C be a compact set such thatK\spec.A1/ D ;, and 
 2 K.
Then, for f 2 L2.�/,

lim
R!1

lim
m!1 lim

"!0
.AR;m;" � 
/�1f D .A1 � 
/�1f;

in the strong topology ofL2g.�/ and weak topology ofH
1
g .�/, uniformly with respect

to 
 2 K.
Proof. By Lemma 3.3, see eq. (111), it follows that

lim
"!0

.AR;m;" � 
/�1f D .AR;m � 
/�1f (124)

in the strong topology of L2.�/ and weak topology ofH 1.�/, uniformly in 
 2 K.
Using Lemma 2.11 we obtain

lim
m!1.AR;m � 
/�1f D .AR � 
/�1f (125)

in the strong topology of H 1.�/, uniformly in 
 2 K. Using (8) and (9), the
convergences in (124) and (125) are valid also in L2g.�/ andH

1
g .�/.

As f 2 L2.�/ � L2g.�/ we have by Lemma 2.8

lim
R&1

.AR � 
/�1f D .A1 � 
/�1f;

in the strong topology ofL2g.�/ andweak topology ofH
1
g .�/, uniformlywith respect

to 
 2 K. This equation, together with (124) and (125), proves the claim.
Let us turn our attention to the convergence of the DN maps. For R > 1 and

" > 0, the DN map for the acoustic equation,

� rb � �
R;"

rbuC g1=2qu � 
g1=2m u D 0; uj
@�

D h; (126)

is the operator

ƒ�R;";m W h 7! .@� C i� � b/uhR;";mj
@�
: (127)

Here u�R;";m is the unique solution to (126) assuming 
 … spec.AR;";m/ and @� is the
normal (radial) derivative at @�.
Recall that by Lemma 2.3 the DN map ƒ�out defined in (42) corresponds to the

boundary measurements for eq. (10). In the following we assume, for technical
simplicity, that b 2 C 1.�; R3/.

Corollary 4.2. Assume that the magnetic field b is C 1-smooth on x� and h 2
H 3=2.@�/; Œa; b	\ spec.A1/ D ;. Then, uniformly with respect to 
 2 Œa; b	,

lim
R!1

lim
m!1 lim

"!0
.ƒ�R;m;"h �ƒ�1h/ D 0; (128)

where the convergence is strong in theH 1=2.@�/ topology.
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Proof. Let he 2 H 2.�/; supp.he/ � fx W 7=3 � jxj � 3g be an extension of h, that
is

hej
@�

D h; khekH2.�/ � C; if khek
H3=2.@�) � 1: (129)

Then the solution u�R;m;".h/ to (127) may be represented as

u�R;m;".h/ D he C v�R;m;".h/; u�1.h/ D he C v�1 .h/

where

v�1 D �.A1 � 
/�1F �.h/;
v�R;m;".h/ D �.BR;m;" � 
g1=2m /�1F �.h/ D �.AR;m;" � 
/�1F �.h/; (130)

F �.h/ D �rb � rbhe � 
he 2 L2.�/; supp.F �.h// � x� n B.7=3/:
Here we use the fact that, in the layer x� n B.7=3/, � ijR;" D �

ij
1 D ıij, gm D g D 1.

By Theorem 4.1,

lim
R!1

lim
m!1 lim

"!0
kv�R;m;".h/ � v�1 .h/kL2.f7=3�jxj�3g/ D 0:

It then follows from Theorem 9.13 in [23] that

lim
R!1

lim
m!1 lim

"!0
kv�R;m;".h/ � v�1 .h/kH2.f8=3�jxj�3g/ D 0;

so that, by the trace theorem for Sobolev spaces, we have

lim
R!1

lim
m!1 lim

"!0
.@� C i� � b/.u�R;m;".h/ � u�1.h//j@� D 0; (131)

strongly inH 1=2.@�/.

Our next goal is to show the existence of a sequence of non-singular isotropic
mass densities and non-singular bulk moduli, uniformly bounded (in n) from above
but not from below, with the corresponding acoustic operators approximating the
singular acoustic operator A1 � 
.
Theorem 4.3. There exist sequences R.n/ ! 1, m.n/ ! 1, and ".n/ ! 0 such
that, for any f 2 L2.�/, 
 2 C; � 2 R; 
; � … spec.A1/,

lim
n!1.AR.n/;m.n/".n/ � 
/�1f D .A1 � 
/�1f in L2g.�/; (132)

lim
n!1P

�

R.n/;m.n/;".n/
f D P

�
1 f in L2g.�/; (133)

lim
n!1 dim.NR.n/;m.n/;".n/.�// D dim.N1.�//: (134)

For compact K � C with K \ spec.A/ D ;, for n sufficiently large one has K \
spec.AR.n/;m.n/".n// D ; and the limits are uniform in 
 2 K and � 2 K \ R.
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Proof. Let ffp W p D 1; 2; : : : g be a dense set inL2.�/. LetKn � C; n D 1; 2; : : : ;

be a sequence of compact sets so that

Kn \ spec.A1/ D ;; Kn � K int
nC1;

[1
nD1Kn D C n spec.A1/; dist.spec.A1/;Kn/ � n�1=2:

(135)

As L2.�/ � L2g.�/, it follows from Lemmas 2.8 and 2.9, that, for any n 2 ZC,
there exists a R.n/ > 1 such that

k.AR.n/ � 
/�1fp � .A1 � 
/�1fpk
g
<
1

n
;

dim.NR.n/.�// D dim.N1.�//; dist.spec.AR.n//;Kn/ � n�1=2

2
; (136)

kP�
R.n/

� P�1 k
L2

g!L2
g

� 1

n
; kP�

R.n/
fp � P�1 fpk

L2
g

� 1

n
;

for all p D 1; : : : ; pn; 
 2 Kn; � 2 Kn \ R. Here pn is defined so that

ff 2 L2.�/ W kf k
L2.�/

� ng � N1=n.ffpgpn

pD1/;

where N".S/ denotes the "-neighborhoods of S in L2.�/.
Having chosen R.n/, using (8) and Lemma 2.11 and Corollary 2.12, we choose

m.n/ such that

k.AR.n/;m.n/ � 
/�1fp � .AR.n/ � 
/�1fpk
g
<
1

n
;

dim.NR.n/;m.n/.�// D dim.N1.�//;

dist.spec.AR.n/;m.n//;Kn/ � n�1=2

3
; (137)

kP�
R.n/;m.n/

� P�
R.m/

k
L2!L2

g
� 1

n
;

kP�
R.n/;m.n/

fp � P�
R.n/

fpk
L2

g
� 1

n
;

for all p D 1; : : : ; pn; 
 2 Kn; � 2 Kn \ R. Having chosen R.n/ and m.n/, one
can now use (8) and Lemmas 3.3 and 3.4 to choose ".n/ > 0 so that,

k.AR.n/;m.n/;".n/ � 
/�1fp � .AR.n/;m.n/ � 
/�1fpkg < 1

n
;

dim.NR.n/;m.n/;".n/.�// D dim.NR.n/;m.n/.�//;

dist.spec.AR.n/;m.n/;".n//;Kn/ � n�1=2

4
;

kP�
R.n/;m.n/;".n/

fp�P�
R.n/;m.n/

fpk
L2

g
� 1

n
;

(138)
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for all p D 1; : : : ; pn; 
 2 Kn and � 2 Kn \ R, and,

k.AR;m;" � 
/�1k
L2.�;g

1=2
m dx/!L2.�;g

1=2
m dx/

� 6n1=2; (139)

with 
 2 Kn:
Clearly, eq. (136), (137) and (138) imply that

k.AR.n/;m.n/;".n/ � 
/�1fp � .A1 � 
/�1fpk
g
<
3

n
;

dim.NR.n/;m.n/;".n/.�// D dim.N1.�//; (140)

kP�
R.n/;m.n/;".n/

fp � P�1 fpk
L2

g
� 3

n
;

for all p D 1; : : : ; pn; 
 2 Kn; � 2 Kn \ R.
In particular, (140) implies (134) due to [nKn D C n spec.A1/. It remains

to show that, for f 2 L2.�/ and a compact set K such that K \ spec.A1/ D ;,
one has that .AR.n/;m.n/;".n/ � 
/�1f converge to .A1 � 
/�1f in L2g.�/ and that
convergence is uniform for all 
 2 K. Indeed, this will provide eq. (132). Using the
Riesz formula for P�

R.n/;m.n/;".n/
; P

�
1 , this will also prove equation (133).

Let n0 2 ZC be such thatK � Kn for all n � n0. For n � n0, there exists fp.n/
with p.n/ � pn such that

kf � fp.n/kL2.�/
<
1

n
: (141)

Clearly, for 
 2 K,
k.AR.n/;m.n/;".n/ � 
/�1f � .A1 � 
/�1f k

g

� k.AR.n/;m.n/;".n/ � 
/�1fp.n/ � .A1 � 
/�1fp.n/kg
C k.AR.n/;m.n/;".n/ � 
/�1.fp.n/ � f /k

g

C k.A1 � 
/�1.fp.n/ � f /k
g
:

(142)

By (140), the first term in the right-hand side of (142) is bounded by 3=n. To estimate
the second term, we use the estimates (66), (139), and (141), which imply that this
term s bounded by 12.2=n/1=2 for n � n0. Finally, by (8) and (135),

k.A1 � 
/�1k
L2!L2

g
� p

8 k.A1 � 
/�1k
L2

g!L2
g

�
p
8

dist .
; spec .A1//
� p

8n;

for 
 2 K. Thus by (141), the third term on the right-hand side of (142) is bounded
by .8=n/1=2 for n � n0.
Summarizing, we see that the left-hand side of (142) tends to 0, as n ! 1,

uniformly for 
 2 K; thus proving (132).
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In the sequel, we will use abbreviated notations

�.n/ D �
R.n/;".n/

; g.n/ D gm.n/; A.n/ D AR.n/;m.n/;".n/ (143)

for the sequences R.n/;m.n/; ".n/ obtained in Theorem 4.3. For simplicity, denote
by ƒ�

.n/
, rather than ƒ�

R.n/;m.n/;".n/
, the corresponding DN map.

Regarding the convergence of the DN-maps, by the same arguments as in proof
of Corollary 4.2, we obtain

Corollary 4.4. Assume that the magnetic field b is C 1-smooth in x�. Let K � C be
compact and such that K \ spec.A1/ D ;. Then, for any h 2 H 3=2.@�/,

lim
n!1ƒ�.n/h D ƒ�outh; (144)

where the limit is inH 1=2.@�/, uniformly with respect to 
 2 K.

In particular, when b and qj�nB.1/ vanish,ƒ�out corresponds to the measurements
on the boundary of a homogeneous ball. Thus (144) means that the isotropic material
parameters �.n/ and g.n/ approximate an acoustic invisibility cloak as n ! 1.

5. Approximate quantum cloaking

The results of the previous sections can now be used to obtain approximate quantum
cloaking at a fixed energy, for any potentialQ 2 L1.�/ supported inside the cloaked
region B.1/.
In sequel, we assume that the conductivities �

R
satisfy (23) and that also �

R
2

C 2.x�I R2/. This yields that also �
R;"
; �.n/ 2 C 2.x�I R2/.

Let E 2 R be a given energy level and

qE .x/ D 1

4
Q.x/C 3

4
E�1.x/; (145)

where �1 is the indicator function of the ball B.1/. In this section we assume that
E and Q are such that E is not in the spectrum of the operator A1 D AE

1 defined
in (19) using the potential qE. Observe that spec.AE

1 / D spec.Aout/ [ spec.AEin /;
where Aout and AEin are defined by (40) in .41/ using potential q

E. Note that Aout is
independent of E and AEin D 1

4
Sin C 3

4
E, where Sin is the Schrödinger operator

Sin D ��CQ; D.Sin/ D fv2 2 H 2.B.1// W @�vj@B.1/ D 0g:
Observe that

E 62 spec.AE
1 / ” E 62 spec.Sin/ and E 62 spec.Aout/. (146)
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Then, for n large enough, E … spec.A.n//. Next, consider the solutions un of

.�g�1=2
.n/

rb � �.n/rb C qE �E/un D 0 in �; unj@� D h: (147)

This equation can be converted to a Schrödinger equation with magnetic potential
using the gauge transformation,

 n.x/ D �
1=2

.n/
.x/un.x/: (148)

Then
� ��1=2

.n/
rb � �.n/rb.�

�1=2
.n/

 n/ D �rb � rb n CW.n/ n; (149)

where

W.n/ D �
�1=2
.n/

�.�
1=2

.n/
/; supp.W.n// � B.2/ n B.1/: (150)

Thus, using the transformation (148) we see that the acoustic eq. (147) for un is
equivalent to the Schrödinger equation for  n,

�
� rb � rb CW.n/ C g

1=2

.n/

�.n/
.qE �E/

�
 n D 0;  nj

@�
D h; (151)

where for the boundary condition we use  nj@� D unj@� D h, since �.n/ D 1 near
@�.
Next, define the cloaking potential

V En .x/ D W.n/.x/C g
1=2

.n/
.x/

�.n/.x/

�3E
4
�1.x/ �E

�
CE

D W.n/.x/C E.1 � �1.x//
�
1 � g

1=2

.n/
.x/

�.n/.x/

�
;

(152)

where we have used the fact that g1=2
.n/
.x/ D 8; �.n/.x/ D 2 for jxj < 1. Thus

V En D 0 in B.1/. Clearly, V En vanishes also near @�. Then (151) can be written as

.�rb � rb C V En .x/CQ �E/ n D 0;  nj@� D h: (153)

Now we are ready to prove our main result concerning approximate cloaking in
quantum mechanics.

Theorem 5.1. Assume that Q 2 L1.�/ is a function supported in B.1/, b 2
C 1.�;R3/, and E 2 R are such that E … spec.Aout/ [ spec.Sin/. Then for any
h 2 H 3=2.@�/,

lim
n!1ƒE

VE
n CQh D ƒEouth inH 1=2.@�/: (154)
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Here ƒE
VE

n CQ are the DN maps,

ƒE
VE

n CQ W h 7! @� nj
@�
; .�rb � rb C V En CQ �E/ n D 0;  nj@� D h;

while the DN-map ƒEout corresponds to the operator Aout with �1 D 0, see (40)
and (42).

Proof. By the hypotheses of the theorem, it follows that E … spec..AE
1 /, whereA1

defined by (19) with magnetic potential b and the potential qE given by (145). Thus,
the Dirichlet problem (147) is uniquely solvable for large n. As the gauge trans-
formation (148) is the identity map near @�, we see that @� nj@� D @�unj@� and
 nj@� D unj@�. The DN maps for the Schrödinger eqution (153) and for eq. (147)
thus coincide, and the assertion follows from Corollary 4.4.

Note that Theorem 5.1 is of a very different nature than the well-known results
from the classical theory of spectral convergence, since the cloaking potentials V En
do not tend to 0 as n ! 1. On the contrary, as seen from the construction of
�
R;"

in Section 3.2 and definition (150) and (152), supx jV En .x/j ! 1 as n ! 1.

Moreover, V En is of a highly oscillatory nature inB.2/nB.1/with quasiperiod tending
to 0 as n ! 1.
Theorem 5.1 has two important physical consequences; see [29] and [30] for

further discussion and applications. Consider separately the following two cases.
(i) Suppose that b D 0. Since Q is supported in xB.1/, the operator Aout D �� is
the free Schrödinger operator. Then, from a physical point of view, the potentials
V En CQ can be considered as almost transparent potentials at energy E. Also, the
V En , which depend on E but are independent of Q, serve as approximate invisibility
cloaks for two-body scattering in quantum mechanics. As all measurement devices
have limited precision, we can interpret this as saying that, given a specific device,
one can design, for a given energy level E, a potential to cloak an object, i.e. an
arbitrary potential, from any single-particle measurements made at this energy E.
(ii) Now suppose that Q D 0, while b 2 C 1.�;R3/; b ¤ 0 . We now have

Aout D �rˇ1 � rˇ1, and, due to the transformation rules for the magnetic potentials,
ˇ1 is in general no longer bounded near O. Thus, the potentials V En act as devices
which give an external observer the illusion that, as n ! 1, the magnetic field is
unbounded near O. In particular, for b.x/ D B0 � x, B0 2 R3, corresponding to a
homogeneous magnetic field, the illusion ˇ1.x/ has a singularity of the order jxj�1
at O; see [29] for details.

6. DN map near exceptional values of E

Theorem 5.1 shows that the behavior ofƒE
VE

n CQ, whenE is far from spec.AE
in / and n

is large, well approximates the behavior ofƒEout. This situation changes dramatically
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when E is close to an eigenvalue of the cloaked region.
For simplicity, let us consider the case of an E0 2 R which, while being in the

resolvent set of Aout, is also a simple eigenvalue of AE
0

in , that is E
0 2 spec.Sin/,

see (146). This implies that E0 is a simple eigenvalue of AE0

1 . The corresponding
eigenfunction u0 then satisfies supp .u0/ � xB.1/, i.e. u0 is a trapped state supported
in the cloaked region, cf. Lemma 2.3 and (43).
In the following, let d 2 .0; 1/ be such that dist.E0; spec.AE0

1 / nE0/ > d.

Theorem 6.1. Let Q 2 L1.�/ be a function supported in xB.1/, b 2 C 1.�;R3/,
and E0 2 R be an eigenvalue of AE0

1 corresponding to potentials b and qE0 defined
in (145). Assume that E0 has multiplicity one, and let u0 be the corresponding
eigenfunction supported in xB.1/.
(i) There is a sequence E.n/; E.n/ ! E0 as n ! 1, such that E.n/ are simple

Dirichlet eigenvalues of the Schrödinger operators�rb � rbCV E.n/

.n/
CQ. Moreover,

the L2.�/-normalized eigenfunctions '.n/ of these Schrödinger operators for the
eigenvalues E.n/ satisfy, for any � > 2,

lim
n!1 '.n/jx�nB.
/ D 0; in C 1.x� n B.�//: (155)

(ii) Let h 2 H 3=2.@�/ and  .n/.h/ be the solution to (153) for some E with
0 < jE �E.n/j < d=2. Then

.@� C i� � b/ .n/.h/j@� D ˛0
.n/
.h/

E �E.n/ .@� C i� � b/ .n/j@� C pE.n/.h/; (156)

˛0.n/.h/ D
Z
@�

h
@ .n/

@�
dS; (157)

and functionspE
.n/
.h/ are uniformly bounded, as n ! 1, inH 1=2.@�// for khk

H3=2

� 1 and E 2 .E0 � d=4;E0 C d=4/.

Proof. For a given potentialQ, the potential qE defined in (145) depends onE. Thus
we start by analyzing how the eigenvalues and eigenfunctions ofAE

1 andAE
.n/
change

relative to the variation of E. Denote by 
.k;E/; k D 1; 2; : : : ; the eigenvalues of
AE
1 , numbered in increasing order and taking multiplicity into account. The depen-

dence of these eigenvalues on E then follows from (146). Similarly, let 
.n/.k; E/
be the eigenvalues of AE

.n/
, where AE

.n/
is the operator of form (143) with q D qE.

Observe that

AE
1 D AE0

1 C .qE � qE0

/; AE
.n/ D AE0

.n/ C .qE � qE0

/: (158)

Using Kato–Rellich formula, see Theorem VII.3.6 in [39], and the fact that kq zE �
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qEk
L1 D 3

4
j zE �Ej, see (145), we obtain that

j
.n/.k; zE/ � 
.n/.k; E/j � 3

4
j zE �Ej: (159)

In the future we will consider only the value k D k0 such that 
.k0; E0/ D E0,
writing, e.g., 
.n/.E/ for 
.n/.k0; E/. Next, consider the spectral projectors for
� D E0 � d=2 or � D E0 C d=2. Let P�1 .E/ be the Riesz projectors for the
operatorsAE

1 and P
�

.n/
.E/ be the projectors forAE

.n/
. They are defined analogously

to (62) using a contour � � C that surrounds all of the eigenvalues smaller than �.
We can assume that � is such a contour that, for n large enough, the distance from
� to the eigenvalues of the operators AE0

1 and AE0

.n/
is more than d=4. Then the

norm of .AE0

.n/
� z/�1 in L2.�; g1=2

.n/
dx/ is bounded by 4=d. Thus, assuming that

jE �E0j < d=8, we obtain, using the formula

.AE
.n/�z/�1� .AE0

.n/ �z/�1 D .AE0

.n/ �z/�1..I � .qE �qE0

/.AE0

.n/ �z/�1/�1�I /
in (62), the estimate

kP�
.n/
.E/ � P�

.n/
.E0/k

L2.g
1=2
.n/

dx/!L2.g
1=2
.n/

dx/
� C�jE �E0j; (160)

where C� depends only on the choice of �.

As E0 is the only eigenvalue of AE0

1 in the interval .E0 � d;E0 C d/ and
has the multiplicity one, it follows from Theorem 4.3 that, when n is large enough,
thenAE0

.n/
has only one eigenvalue E0n in the interval .E

0 � 3d=4; E0 C 3d=4/ and

jE0n �E0j < d=4:Moreover, the eigenvalue E0n is simple.
Let us show that there are E.n/; E.n/ ! E0, such that


.n/.E.n// D E.n/: (161)

Observe that, by Theorem 4.3, 
.n/.E0/ ! E0 as n ! 1. Together with (159) this
implies that for any " > 0 there is n."/ such that for n > n."/,


.n/.�/ W ŒE0 � "; E0 C "	 ! ŒE0 � "; E0 C "	:

As 
.n/.�/ is a contraction, see (159), we conclude by the Banach fixed point theorem
that there is a unique E.n/ satisfying (161).
Returning to eq. (160) we see that

lim
n!1 kP�

.n/
.E.n// � P�

.n/
.E0/k

L2.g
1=2
.n/

dx/!.g
1=2
.n/

dx/
D 0; (162)

Combining this with (133) (for q D qE
0
) and embedding (66), we see

lim
n!1P

�

.n/
.E.n//f D P

�
1 .E

0/f in L2g.�/: (163)
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Let � D E C d=2 and � D E � d=2. For large n, the operators P�
.n/
.E.n// �

P �
.n/
.E.n// are the orthoprojectors in L2.�; g

1=2

.n/
dx/ onto the eigenspace of A

E.n/

.n/

corresponding to the eigenvalueE.n/. Using (162) we see that, for n large enough, the
eigenvalueE.n/ hasmultiplicity one. Denote by Qu.n/ the eigenfunction corresponding
to E.n/, normalized in L2g.�/. Now u

0 is supported in B.1/ and thus

ku0kg D ku0k
L2.�;g

1=2
.n/

dx/
D 1; n > 0; ku0kL2.�/ D 1p

8
:

Using (163) we see that

.P
�

.n/
.E.n// � P �.n/.E.n///u0 D an Qu.n/����!

n!1 .P
�
1 .E

0/ � P �1 .E0//u0 D u0;

in L2g.�/, where an D janjei˛n and janj ! 1 as n ! 1:

Denoting u.n/ D ei˛n Qu.n/, we see that
lim
n!1u.n/ D u0 in L2g.�/: (164)

Since u0.x/ D 0; jxj > 1, this implies
lim
n!1 ku.n/j�nB.2/kL2.�nB.2// D 0: (165)

Observe that �.n/ D �0; g.n/ D 1 and V E
.n/

D 0 in � n B.2/. Thus it follows from
(165) that the functions u.n/ satisfy

�rb � rbu.n/ D E.n/u.n/ in � n B.2/; u.n/j@� D 0;

where the right side E.n/u.n/ ! 0 in L2.� n B.2// as n ! 1. Since b 2 C 1.� n
B.2//, standard elliptic regularity results [23] imply that

lim
n!1 ku.n/kC1.�nB.
// D 0; (166)

for any 2 < � < 3. Using the transformation (148) to define 'n.x/ D �
1=2

.n/
.x/un.x/,

we see that

.�rb � rb C V
E.n/
n CQ/'n D E.n/'n; 'nj

@�
D 0:

This proves that 'n is an eigenfunction of the Schrödinger operator �rb � rb C
V
E.n/
n C Q for the eigenvalue E.n/. Moreover, since �.n/ D 2 in B.1/, it follows
from (8) and (164) that

lim inf
n!1 k'nk

L2.�/
� p

2 lim inf
n!1 kunk

L2.B.1//
� p

2ku0kL2.B.1//
D 1

2
:

This inequality and eq. (166) together imply (155). Thus we have proven (i).
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Next, consider (ii). We start with the boundary-value problem for the acoustic
equation

.�g�1=2
.n/

rb � �.n/rb C V En C qE C E/vEn .h/ D 0; vEn .h/j@� D h:

Clearly

vEn .h/ D aEn .h/u.n/ C wEn .h/; with .wEn .h/; u.n//L2.�;g
1=2
.n/

dx/
D 0; (167)

where, using the notations introduced in (129), (130), we have

aEn .h/ D .he; u.n//L2.g
1=2

.n/
dx/

C 1

E � E.n/ .F
E .h/; u.n//L2.g

1=2

.n/
dx/
;

wEn .h/ D he � .he; u.n//L2.g
1=2

.n/
dx/

u.n/ � QwEn .h/; (168)

QwEn .h/ D .A.n/ �E/�1.FE .h/ � .FE .h/; u.n//L2.g
1=2

.n/
dx/

u.n//:

Since FE .h/ � .FE .h/; u.n// u.n/ and u.n/ are orthogonal in L2.�; g
1=2

.n/
dx/, and

dist.E; spec.A.n// n fE.n/g/ > d=2, it follows from (129) that, for n large enough,
k QwEn .h/kL2.�;g

1=2

.n/
dx/

� C;

whereC is independent ofE 2 .E0�d=4;E0Cd=4/ andh satisfyingkhkH3=2.@�/ �
1: Note that in � n B.2/ the function QwEn .h/ satisfies the equation

�rb � rb QwEn .h/ D E QwEn .h/C FE .h/ � .FE .h/; u.n//L2.g
1=2
m dx/

u.n/;

QwEn .h/j@� D 0:

Thus, by boundary elliptic regularity, see Theorem 9.13 in [23],

k QwEn .h/kH2.�nB.
// � C
; 2 < � < 3:

This inequality, (129) and (130) together imply that pE
.n/
.h/ D .@� C i� � b/wEn .h/

satisfies

kpE.n/.h/kH1=2.@�/
� C0; for khk

H3=2.@�/
� 1; (169)

if n is large and jE �E.n/j � d=2. Finally, integration by parts shows that

aEn .h/ D 1

E �E.n/
Z
@�

h
@u.n/

@�
dS D 1

E �E.n/
Z
@�

h
@'.n/

@�
dS:

The desired eq. (156) follows from the above equation together with eq. (167), (169)
and (157), if we take into the account the relation (148) between  E

.n/
.h/ and vEn .h/.
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Remark 6.2. Theorem 6.1 means that, away from the cloaking structure, the eigen-
functions '.n/ converge to zero as n ! 1, i.e. the '.n/ represent almost trapped
modes, effectively vanishing near @�. Physically speaking, we can say that if E0 is
an eigenvalue of the Schrödinger operator with Neumann boundary condition in the
cloaked region B.1/, and we connect the interior and the exterior via the cloaking
potential V En in the layer B.R.n// n B.1/, with R.n/ ! 1 as n ! 1, a particle
under the influence of the combined potential on B.3/ is still largely confined (mod-
ulo standard tunneling) to the interior region, with a slight shift of the energy of the
eigenmode from E0 to E.n/.
Moreover, for energies E close to the values E.n/ the presence of the cloaked

region is very clearly seen in the boundary measurements of the DN map, so that the
invisibility effect is compromised. On the other hand, at energies which are away
from the E.n/, the DN map for the potential V E.n/ CQ well approximates ƒEout, and
thus the potentialQ is approximately cloaked.

7. Numerical results

Next we consider scattering problems for the Helmholtz and Schrödinger equations
in the case when the magnetic potential vanishes, i.e. b D 0.
The scattering problem for Helmholtz equation is

.r� �.n/r C k2.1C˛.x//g1=2
.n/
/utot D 0 in R3;

utot.x; k/ D uin.x; k/C usc.x; k/
(170)

and for the Schrödinger equation

.�r� r C V En CQ �E/ tot D 0 in R3;

 tot.x; E/ D  in.x; E/C  sc.x; E/;
(171)

where E > 0, k D E1=2, the incident fields are uin.x; k/ D  in.x; E/ D eik!�x,
j!j D 1, and the scattered fields satisfy the radiation condition

lim
r!1 r

� @
@r

� ik
�
usc.x; k/ D lim

r!1 r
� @
@r

� iE1=2
�
 sc.x; E/ D 0; r D jxj:

In following we consider ˛.x/ that corresponds to a real bounded potential Q sup-
ported in B.1/, that is, ˛.x/ D �.E�1Q.x/C 3/=4. We assume that Q.x/ is such
that 1C ˛.x/ � c0 > 0.
We consider also the solutions of the boundary value problems in� (note that we

denote these solutions by u and  , without using superscripts),

.r� �.n/r C k2.1C ˛.x//g
1=2

.n/
/u D 0 in �; uj

@�
D h (172)
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and for the Schrödinger equation

.�r� r C V En CQ �E/ D 0 in �; uj
@�

D h: (173)

The solutions of these scattering and boundary value problems are related through a
gauge transformation,

 tot.x/ D �
1=2

.n/
.x/utot.x/;  .x/ D �

1=2

.n/
.x/u.x/: (174)

The computations are made without reference to physical units; for simplicity, we
use E D 2. The cloak corresponds to the parameter R D 1:005 and inside the cloak
we have located a spherically symmetric potential;

Q.x/ D Qin�Œ0;R�.jxj/; that is ˛.x/ D �Qin.4E/
�1�Œ0;R�.jxj/ � 3=4:

To illustrate the approximate cloaking, we used

Qin D 1; (175)

and to obtain an almost trapped state,

Qin D �2:576: (176)

In our numerical solution we have approximated �.n/ by a piecewise constant
function consisting of 30 layers in the region R < r < 2. The values of the con-
ductivity in these layers are chosen as in the above sections. This corresponds to the
case when the cloaking potential V En is a weighted sum of delta functions, and their
derivatives, on spheres.

In the numerical solution of the problem, we represent the solution utot and u in
terms of spherical harmonics Y nm and Bessel functions up to order N D 7 in each
layer where the cloaking conductivity is constant. The transmission condition on the
boundaries of these layers are solved numerically by solving linear equations. After
this we compute the solution  tot and  of the Schrödinger equation using the gauge
transformation (174).
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Figure 1. Solutions of acoustic equations. Left. Solution utot of the scattering problem (170)
restricted to ballB.3/, when a plane wave scatters from an approximate cloak in the case (175),
i.e. when k2 is away from the exceptional values E.n/. Right. Almost trapped eigenfunction
u of the acoustic operator (172), with Dirichlet boundary condition, h D 0, in the case (176),
i.e. when k2 is equal to the exceptional value E.n/.
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Figure 2. Radial profiles of solutions of acoustic and Schrödinger equations. Left. The
solution utot of the scattering problem (170) on the line segmentL D f.x; 0; 0/ W x 2 Œ0; 3	g in
the case of Figure 1 (Left), where k2 is far from the exceptional valuesE.n/, is shown with the
blue curve. Also, the eigenfunction u of acoustic operator (173) on the line segment L in the
case of Figure 1 (Right), where k2 is the exceptional value E.n/, is shown with the red curve.
Right. The solutions  tot and  of the Schrödinger eq. (171) and (173) on the line segment L,
obtained from the solutions on the left via gauge transformations (174).
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