J. Spectr. Theory 1 (2011), 327[–347](#page-20-0) DOI 10.4171/JST/14

Eigenvalue estimates for singular left-definite Sturm–Liouville operators

Jussi Behrndt, Roland Möws, and Carsten Trunk¹

Abstract. The spectral properties of a singular left-definite Sturm–Liouville operator JA are investigated and described via the properties of the corresponding right-definite selfadjoint counterpart A which is obtained by substituting the indefinite weight function by its absolute value. The spectrum of the J -selfadjoint operator JA is real and it follows that an interval $(a, b) \subset \mathbb{R}^+$ is a gap in the essential spectrum of A if and only if both intervals $(-b, -a)$ and (a, b) are gaps in the essential spectrum of the L-selfadioint operator IA. As one of the main (a, b) are gaps in the essential spectrum of the J-selfadjoint operator JA. As one of the main results it is shown that the number of eigenvalues of JA in $(-b, -a) \cup (a, b)$ differs at most by three from the number of eigenvalues of A in the gap (a, b) ; as a byproduct results on the accumulation of eigenvalues of singular left-definite Sturm–Liouville operators are obtained. Furthermore, left-definite problems with symmetric and periodic coefficients are treated, and several examples are included to illustrate the general results.

Mathematics Subject Classification (2010). Primary 34B24, 34L15; Secondary 47A10, 47E05.

Keywords. Sturm–Liouville operator, left-definite, eigenvalue estimate, spectral gap, essential spectrum, Titchmarsh–Weyl function.

1. Introduction

We investigate spectral properties of a Sturm–Liouville differential operator associated with the differential expression

$$
\tau = \frac{1}{r} \Big(-\frac{d}{dx} p \frac{d}{dx} + q \Big), \quad r, \ p^{-1}, \ q \in L^1_{loc}(\mathbb{R}) \text{ real, } p > 0 \text{ a.e.}
$$
 (1.1)

In contrast to standard Sturm–Liouville theory we do not assume that the weight function r is positive. Instead we consider *indefinite* Sturm–Liouville operators and differential expressions; here it will be assumed that there exists some $c \in \mathbb{R}$ such that the weight function r is positive on (c, ∞) and negative on $(-\infty, c)$. Suppose

¹The authors thank Gerald Teschl for fruitful remarks.

that the corresponding *definite* differential expression

$$
\ell = \frac{1}{|r|} \left(-\frac{d}{dx} p \frac{d}{dx} + q \right) \tag{1.2}
$$

is in the limit point case at both singular endpoints $-\infty$ and ∞ , or, equivalently, that the maximal differential operator A associated with ℓ in the weighted Hilbert space $L^2_{|r|}(\mathbb{R})$ is selfadjoint. If J denotes the multiplication by sgn r, then formally the $\mathbb{E}_{|r|}$ is senaryom: In such that are manippedicion by sgirl, then formally the indefinite and definite differential expressions τ and ℓ are related via $\tau = J\ell$, and hence *IA* is the maximal operator associat hence JA is the maximal operator associated with τ in $L^2_{|r|}(\mathbb{R})$. Observe that the indefinite Sturm–Liouville operator JA is neither symmetric nor selfadjoint in the Hilbert space $L^2_{|r|}(\mathbb{R})$ but JA is selfadjoint with respect to an indefinite inner product (which has J as its Gramian); we shall say that JA is a J *-selfadjoint* operator in $L^2_{|r|}(\mathbb{R})$.

A modern topic in Sturm–Liouville theory is the study of qualitative and quantitative spectral properties of indefinite Sturm–Liouville differential operators. One of the standard approaches is to describe the spectrum $\sigma(JA)$ of the indefinite operator JA via the selfadjoint operator A and its spectral properties. In the left-definite case, i.e. min $\sigma(A) > 0$, it follows that the spectrum of JA is real with a gap around 0 and accumulates to $+\infty$ and $-\infty$, see, e.g., [\[8\]](#page-18-0), [\[21\]](#page-19-0), [\[30\]](#page-20-1), and [\[1\]](#page-18-1), [\[7\]](#page-18-2) for corresponding abstract results. If A is semibounded from below and the essential spectrum satisfies min $\sigma_{\rm ess}(A) > 0$, then the nonreal spectrum of JA consists of at most finitely many eigenvalues, the essential spectrum $\sigma_{\text{ess}}(JA)$ is real with a gap around 0, and $\sigma(JA) \cap \mathbb{R}$ accumulates to $+\infty$ and $-\infty$, see, e.g., [\[8\]](#page-18-0), [\[25\]](#page-19-1), and [\[20\]](#page-19-2). The spectral analysis of JA in the case min $\sigma_{\rm ess}(A) \leq 0$ is more difficult; we refer to [\[2\]](#page-18-3), [\[4\]](#page-18-4), and [\[17\]](#page-19-3) for more details and to [\[3\]](#page-18-5), [\[5\]](#page-18-6), [\[9\]](#page-18-7), [\[10\]](#page-18-8), [\[15\]](#page-19-4), and [\[16\]](#page-19-5) for related questions and further references.

The main objective of the present paper is to prove a local estimate on the number of eigenvalues of JA in terms of the number of eigenvalues of A in gaps of the essential spectrum in the left-definite case, i.e. $\min \sigma(A) > 0$. In this situation it is not difficult to see that for $0 \le a < b$ we have

$$
(a, b) \cap \sigma_{\text{ess}}(A) = \emptyset
$$
 if and only if $((-b, -a) \cup (a, b)) \cap \sigma_{\text{ess}}(JA) = \emptyset$.

Our main result Theorem [4.1](#page-12-0) reads as follows: if $(a, b) \cap \sigma_{\text{ess}}(A) = \emptyset$, then the number of eigenvalues $n_A(a, b)$ of A in (a, b) differs at most by three from the number $n_{JA}(-b, -a) + n_{JA}(a, b)$ of eigenvalues of JA in $(-b, -a) \cup (a, b)$,

$$
|n_A(a,b) - (n_{JA}(-b, -a) + n_{JA}(a,b))| \le 3.
$$

Under the assumption that the coefficients p, q , and r are symmetric with respect to 0 the estimate on the number of eigenvalues is improved in Theorem [4.4](#page-14-0) for intervals (a, b) with the property $0 \le a < \min \sigma(A) < b \le \min \sigma_{\text{ess}}(A)$. The above estimates also yield results on accumulation properties of eigenvalues of JA. More precisely, if, e.g., $b \in \sigma_{\text{ess}}(A)$ and the eigenvalues of A in (a, b) accumulate to b, then the eigenvalues of JA in the gaps $(-b, -a)$ and (a, b) of the essential spectrum accumulate to $-b$ or b. This allows to transfer results on the accumulation (or non-accumulation) of eigenvalues to the boundary of the essential spectrum of definite Sturm–Liouville operators (as, e.g., the classical Kneser criterion from [\[19\]](#page-19-6) or recent extensions of it in $[12]$, $[13]$, $[23]$, and $[24]$) into the left-definite setting; see Section [5.1](#page-16-0) for more details.

The paper is organized as follows. In Section [2](#page-2-0) the operators A, JA, and the Dirichlet operators associated with the restrictions ℓ_+ and ℓ_- of the definite differential expression ℓ onto (c, ∞) and $(-\infty, c)$ are introduced and some simple properties of their spectra and essential spectra are collected. Section [3](#page-6-0) establishes the connection of the poles and zeros of the Titchmarsh–Weyl coefficients m_+ , m_- associated with ℓ_+ and ℓ_- , respectively, with the poles and zeros of the Titchmarsh–Weyl coefficient M associated with τ . This connection is then used to describe the isolated eigenvalues of A and JA in terms of the poles and zeros of the functions m_+ , $m_$ and M . The representation of the function M in terms of a Nevanlinna function in Proposition [3.4](#page-9-0) and the corresponding monotonicity properties are the crucial ingredients in the proofs of our main results Theorem [4.1](#page-12-0) and Theorem [4.4](#page-14-0) in Section [4.](#page-12-1) In Section [5](#page-15-0) Kneser's criterion is applied in the left-definite setting and the general results are illustrated in this situation. Furthermore, a class of periodic problems is considered (see also [\[22\]](#page-19-11), [\[26\]](#page-19-12) and [\[30\]](#page-20-1), \S 12.8, for a slightly different indefinite periodic situation), and a simple solvable problem is briefly discussed.

2. Preliminaries on definite and indefinite Sturm–Liouville operators

Let r, p^{-1} , $q \in L^1_{loc}(\mathbb{R})$ be real valued functions with $p > 0$ and $r \neq 0$ almost everywhere. We consider the differential expressions everywhere. We consider the differential expressions

$$
\tau = \frac{1}{r} \left(-\frac{d}{dx} p \frac{d}{dx} + q \right) \quad \text{and} \quad \ell = \frac{1}{|r|} \left(-\frac{d}{dx} p \frac{d}{dx} + q \right)
$$

from (1.1) and (1.2) . In this section we collect some simple properties on the spectra of the associated maximal operators. It is assumed that the following condition [\(I\)](#page-2-1) holds for the weight function r :

(I) There exists $c \in \mathbb{R}$ such that the restriction $r_+ = r \upharpoonright_{(c,\infty)}$ is positive almost everywhere everywhere and the restriction $r_{-} = r \uparrow_{(-\infty,c)}$ is negative almost everywhere.

The restrictions of the functions p and q onto the intervals (c, ∞) and $(-\infty, c)$ will be denoted by p_+, q_+ and p_-, q_+ , respectively.

The space of all (equivalence classes of) complex valued measurable functions f such that $|f|^2|r| \in L^1(\mathbb{R})$ is denoted by $L^2_{|r|}(\mathbb{R})$. Equipped with the scalar product

$$
(f,g) = \int_{\mathbb{R}} f(x) \, \overline{g(x)} \, |r(x)| \, dx, \quad f, g \in L^2_{|r|}(\mathbb{R}), \tag{2.1}
$$

this space is a Hilbert space. The maximal operator $Af = \ell f$ associated with the definite Sturm–Liouville expression ℓ in $L^2_{|r|}(\mathbb{R})$ is defined on the dense subspace

$$
\mathfrak{D} = \{ f \in L^2_{|r|}(\mathbb{R}) : f, pf' \text{ locally absolutely continuous, } \ell f \in L^2_{|r|}(\mathbb{R}) \}.
$$

We denote by \mathfrak{D}_+ and \mathfrak{D}_- the spaces of functions on (c, ∞) and $(-\infty, c)$ which are restrictions of functions from Ω onto (c, ∞) and $(-\infty, c)$ respectively. Throughout restrictions of functions from $\mathfrak D$ onto (c, ∞) and $(-\infty, c)$, respectively. Throughout this paper it will be assumed that A satisfies the following condition (II) :

(II) The maximal operator $Af = \ell f$ defined on dom $A = \mathfrak{D}$ is selfadjoint in $L^2_{|r|}(\mathbb{R})$ and $\min \sigma(A) > 0$ holds.

Recall that A is selfadioint if and only if the definite Sturm–Liouville expression ℓ is in the limit point case at both singular endpoints $+\infty$ and $-\infty$.

Besides the definite inner product (\cdot, \cdot) in [\(2.1\)](#page-2-2) the space $L^2_{|r|}(\mathbb{R})$ will also be inned with the indefinite inner product $[\cdot, \cdot]$ defined by equipped with the indefinite inner product $[\cdot, \cdot]$ defined by

$$
[f,g] = \int_{\mathbb{R}} f(x) \overline{g(x)} r(x) dx, \quad f, g \in L^2_{|r|}(\mathbb{R}).
$$

The space $L_r^2(\mathbb{R}) = (L_{|r|}^2(\mathbb{R}), [\cdot, \cdot])$ is a Krein space, the inner products (\cdot, \cdot) and $[\cdot, \cdot]$
are connected via the fundamental symmetry $(Lf)(x) = \text{sgn}(r(x)) f(x)$, $x \in \mathbb{R}$ are connected via the fundamental symmetry $(Jf)(x) = \text{sgn}(r(x)) f(x), x \in \mathbb{R}$,
that is the relations that is, the relations

$$
(Jf, g) = [f, g]
$$
 and $[f, g] = (Jf, g), f, g \in L^2_{|r|}(\mathbb{R}),$

hold, see, e.g., [\[1\]](#page-18-1) and [\[7\]](#page-18-2). Note that formally we have $\tau = J\ell$. The maximal operator associated with τ coincides with $J4$. This operator is selfadioint with respect to the associated with τ coincides with JA. This operator is selfadjoint with respect to the indefinite inner product $[\cdot, \cdot]$; we shall say that JA is J -selfadjoint in the Hilbert space $L^2_{\{r\}}(\mathbb{R})$. As a consequence of condition [\(II\)](#page-3-0) and well-known properties of J -nonnegative operators (see, e.g., [\[7\]](#page-18-2)) we obtain the next proposition.

Proposition 2.1. *Assume that conditions*[\(I\)](#page-2-1) *and* [\(II\)](#page-3-0) *hold. Then the indefinite Sturm– Liouville operator*

$$
JAf = \tau f = \frac{1}{r}(-(pf')' + qf), \quad f \in \text{dom } JA = \mathfrak{D},
$$

is a J-selfadjoint operator in $L^2_{|r|}(\mathbb{R})$ with

$$
\sigma(JA) \subset \mathbb{R} \quad \text{and} \quad 0 \in \rho(JA).
$$

Each eigenvalue λ *of JA is simple, i.e.,* dim ker $(JA - \lambda) = 1$ *and there is no Jordan chain of length greater than one.*

For a more detailed analysis of the spectrum of JA it is useful to consider the (definite) differential expressions

$$
\ell_{+} = \frac{1}{r_{+}} \Big(-\frac{d}{dx} p_{+} \frac{d}{dx} + q_{+} \Big) \quad \text{and} \quad \ell_{-} = -\frac{1}{r_{-}} \Big(-\frac{d}{dx} p_{-} \frac{d}{dx} + q_{-} \Big) \quad (2.2)
$$

and the associated differential operators in the subspaces $L_{r+}^2(c, \infty)$ and $L_{-r-}^2(-\infty, c)$
which consist of matricians of functions from $L^2(\mathbb{R})$ anto the integrals (e.g.) and which consist of restrictions of functions from $L_{|r|}^2(\mathbb{R})$ onto the intervals (c, ∞) and (c, ∞) are and intervals the intervals (c, ∞) and L^2 $(-\infty, c)$, respectively. It follows from condition [\(I\)](#page-2-1) that $L^2_{r_+}(c, \infty)$ and $L^2_{-r_-}(-\infty, c)$ equinned with equipped with

$$
(h_1, h_2)_+ = \int_c^\infty h_1(x) \overline{h_2(x)} r_+(x) dx, \quad h_1, h_2 \in L^2_{r_+}(c, \infty),
$$

$$
(k_1, k_2)_- = \int_{-\infty}^c k_1(x) \overline{k_2(x)} (-r_-(x)) dx, \quad k_1, k_2 \in L^2_{-r_-}(-\infty, c),
$$

are Hilbert spaces. Since ℓ is in the limit point case at $+\infty$ and $-\infty$ it follows that the (restricted) differential expressions ℓ_+ and ℓ_- are in the limit point case at $+\infty$
and $-\infty$ respectively and regular at c. In Section 3 below we will make use of the and $-\infty$, respectively, and regular at c. In Section [3](#page-6-0) below we will make use of the Lagrange identities

$$
(\ell_{+}h_{1}, h_{2})_{+} - (h_{1}, \ell_{+}h_{2})_{+} = (p_{+}h'_{1})(c)\overline{h_{2}(c)} - h_{1}(c)\overline{(p_{+}h'_{2})(c)},
$$

$$
(\ell_{-}k_{1}, k_{2})_{-} - (k_{1}, \ell_{-}k_{2})_{-} = -(p_{-}k'_{1})(c)\overline{k_{2}(c)} + k_{1}(c)\overline{(p_{-}k'_{2})(c)},
$$
 (2.3)

which hold for all $h_1, h_2 \in \mathfrak{D}_+$ and $k_1, k_2 \in \mathfrak{D}_-$. The Dirichlet operators

$$
B_{+}h = \ell_{+}h, \quad \text{dom } B_{+} = \{h \in \mathfrak{D}_{+} : h(c) = 0\},
$$

\n
$$
B_{-}k = \ell_{-}k, \quad \text{dom } B_{-} = \{k \in \mathfrak{D}_{-} : k(c) = 0\},
$$
\n(2.4)

associated with ℓ_+ and ℓ_- in [\(2.2\)](#page-4-0) are selfadjoint in the Hilbert spaces $L^2_{r_+}(c,\infty)$ and $L^2_{-r}(-\infty, c)$, respectively. Then the orthogonal sums $B = B_+ \oplus B_-$ and $I^B = B_+ \oplus B_-$ and $I^B = B_+ \oplus B_-$ and $JB = B_+ \oplus (-B_-)$ are selfadjoint operators in $L_{|r|}^2(\mathbb{R})$. The next lemma on the selfadjoint operators $A \cdot B$ and B_+ will be spectrum and essential spectrum of the selfadjoint operators A, B, and B_{+} will be useful later on. For a closed operator T in a Hilbert space the *essential spectrum* $\sigma_{\rm ess}(T)$ consists of all $\lambda \in \mathbb{C}$ such that $T - \lambda$ is not a Fredholm operator. Note that for a selfadjoint operator or a J-nonnegative operator T with $\rho(T) \neq \emptyset$ the set $\sigma_{\text{ess}}(T)$ coincides with those spectral points which are no isolated eigenvalues of finite multiplicity.

Lemma 2.2. *Assume that conditions* [\(I\)](#page-2-1) *and* [\(II\)](#page-3-0) *are satisfied. For the spectra of the operators* A, B and B_{\pm} the following relations hold:

- (i) $\min \sigma(A) \leq \min \sigma(B)$ *and* $\min \sigma(A) \leq \min \sigma(B_{+})$ *;*
- (ii) $\sigma_{\rm ess}(A) = \sigma_{\rm ess}(B_+) \cup \sigma_{\rm ess}(B_-) = \sigma_{\rm ess}(B)$ and $\sigma_{\rm ess}(B_\pm) \subset \sigma_{\rm ess}(A)$;
- (iii) min $\sigma_{\rm ess}(A) = \min \{\min \sigma_{\rm ess}(B_+), \min \sigma_{\rm ess}(B_-)\} = \min \sigma_{\rm ess}(B).$
- (iv) *Denote by* E^A *and* E^B *the spectral functions of* A *and* B*, respectively. For an open interval* Δ *with* $\Delta \cap \sigma_{\text{ess}}(A) = \emptyset$ *the estimate*

$$
|\dim \operatorname{ran} E_A(\Delta) - \dim \operatorname{ran} E_B(\Delta)| \le 1
$$

holds if the corresponding quantities are finite. Otherwise dim ran $E_A(\Delta) = \infty$ *if and only if dim ran* $E_B(\Delta) = \infty$.

Observe that the case dim ran $E_A(\Delta) = \dim \operatorname{ran} E_B(\Delta) = \infty$ can only occur if one or both of the endpoints of Δ belong to the essential spectrum of A.

Proof. (i) Define the closed symmetric operators S_+ and S_- in the Hilbert spaces $L^2_{r+}(c, \infty)$ and $L^2_{-r-}(-\infty, c)$ by

$$
S_{+}h = \ell_{+}h
$$
, dom $S_{+} = \{h \in \mathfrak{D}_{+} : h(c) = (p_{+}h')(c) = 0\}$

and

$$
S_{-}k = \ell_{-}k, \quad \text{dom } S_{-} = \{k \in \mathfrak{D}_{-} : k(c) = (p_{-}k')(c) = 0\}.
$$

As the orthogonal sum $S_+ \oplus S_-$ is a restriction of A it follows that $S_+ \oplus S_-$ is a symmetric operator with a lower bound larger or equal to min $\sigma(A)$ which is positive symmetric operator with a lower bound larger or equal to min $\sigma(A)$ which is positive by condition [\(II\)](#page-3-0). Clearly, also S_+ and S_- are symmetric operators with lower bounds larger or equal to min $\sigma(A)$. As B_+ and B_- are the Friedrichs extensions of S_+ and S- (see [\[27\]](#page-19-13), Theorem 3 and Corollary 2) also their lower bounds are larger or equal to min $\sigma(A)$. This shows the second statement in (i); the first assertion in (i) is an immediate consequence.

The assertions in (ii) and (iii) follow from

dim ran
$$
((B - \lambda)^{-1} - (A - \lambda)^{-1}) = 1, \quad \lambda \in \rho(A) \cap \rho(B),
$$
 (2.5)

whereas (2.5) itself is a consequence of the fact that A and B are selfadjoint extensions of the symmetric operator $Rf = \ell f$, dom $R = \{f \in \mathcal{D} : f(c) = 0\}$, which has defect numbers (1, 1). This together with [6], 89.3, Theorem 3, implies (iv). defect numbers $(1, 1)$. This together with $[6]$, §9.3, Theorem 3, implies (iv).

The following proposition on the essential spectrum of the indefinite Sturm– Liouville operator JA complements the statements in Proposition [2.1.](#page-3-1) It is a simple consequence of Lemma [2.2](#page-4-1) and dim ran $((JA - \lambda)^{-1} - (JB - \lambda)^{-1}) = 1$ for all $\lambda \in \mathcal{Q}(A) \cap \mathcal{Q}(IR)$. Note that $\mathcal{Q}(A) \cap \mathcal{Q}(IR) \neq \emptyset$ by Proposition 2.1 $\lambda \in \rho(JA) \cap \rho(JB)$. Note that $\rho(JA) \cap \rho(JB) \neq \emptyset$ by Proposition [2.1.](#page-3-1)

Proposition 2.3. *Assume that conditions* [\(I\)](#page-2-1) *and* [\(II\)](#page-3-0) *hold. Then the essential spectrum of the indefinite Sturm–Liouville operator* JA *is given by*

$$
\sigma_{\rm ess}(JA) = \sigma_{\rm ess}(JB) = (\sigma_{\rm ess}(B_+) \cup \sigma_{\rm ess}(-B_-)) \subset (\sigma_{\rm ess}(A) \cup \sigma_{\rm ess}(-A)).
$$

3. The function M

In this section we define a function M with the help of Titchmarsh–Weyl coefficients m_+ and m_- associated with the differential expressions ℓ_+ and ℓ_- in [\(2.2\)](#page-4-0). Since it turns out that the zeros of M coincide with the isolated eigenvalues of the indefinite Sturm–Liouville operator JA we shall study the monotonicity properties of M, which then lead to eigenvalue estimates in the next section. As a byproduct we also obtain a result on the size of the spectral gap of JA around zero in Proposition [3.3](#page-8-0) below.

Assume throughout this section that conditions [\(I\)](#page-2-1) and [\(II\)](#page-3-0) hold and let B_+ and B_{-} be the selfadjoint Dirichlet operators in the Hilbert spaces $L^2_{r+}(c,\infty)$ and $L^2_{r+}(c,\infty)$ from (2.4) and let c_{-} $(0,0)$ and $v \in c(B_{-})$. As ℓ_{-} and ℓ_{-} are in $L_{-r-}^2(-\infty, c)$ from [\(2.4\)](#page-4-2), and let $\lambda \in \rho(B_+)$ and $\mu \in \rho(B_-)$. As ℓ_+ and ℓ_- are in the limit point case at $+\infty$ and at $-\infty$ respectively there are unique (up to a constant the limit point case at $+\infty$ and at $-\infty$, respectively, there are unique (up to a constant
multiple) solutions $h_1 \in \mathcal{D}_+$ and $k_2 \in \mathcal{D}_-$ of the differential equations multiple) solutions $h_{\lambda} \in \mathfrak{D}_+$ and $k_{\mu} \in \mathfrak{D}_-$ of the differential equations

$$
\ell_+ h = \lambda h \quad \text{and} \quad \ell_- k = \mu k.
$$

The functions m_{\pm} : $\rho(B_{\pm}) \rightarrow \mathbb{C}$ are defined by

$$
m_{+}(\lambda) = \frac{(p_{+}h_{\lambda}')(c)}{h_{\lambda}(c)} \quad \text{and} \quad m_{-}(\mu) = \frac{(p_{-}k_{\mu}')(c)}{k_{\mu}(c)}.
$$

It is obvious that the poles of $m₊$ coincide with the isolated eigenvalues of $B₊$ and that the poles of the function $\lambda \mapsto m_-(-\lambda)$ coincide with the isolated eigenvalues
of $-R$. The functions m_+ are bolomorphic on $\rho(R_+)$ they do not admit analytic of $-B_-$. The functions m_{\pm} are holomorphic on $\rho(B_{\pm})$, they do not admit analytic extensions to points of $\sigma(B_{\pm})$ and they are symmetric with respect to the real axis extensions to points of $\sigma(B_{+})$, and they are symmetric with respect to the real axis, i.e.

$$
m_+(\bar{\lambda}) = m_+(\lambda)
$$
 and $m_-(\bar{\mu}) = m_-(\mu)$.

If we fix solutions h_{λ} and k_{μ} with $h_{\lambda}(c) = 1$ and $k_{\mu}(c) = 1$ it follows from [\(2.3\)](#page-4-3) that the relations that the relations

$$
(\lambda - \lambda)(h_{\lambda}, h_{\lambda})_{+} = (\ell_{+} h_{\lambda}, h_{\lambda})_{+} - (h_{\lambda}, \ell_{+} h_{\lambda})_{+} = m_{+}(\lambda) - m_{+}(\lambda),
$$

$$
(\bar{\mu} - \mu)(k_{\mu}, k_{\mu})_{-} = (k_{\mu}, \ell_{-} k_{\mu})_{-} - (\ell_{-} k_{\mu}, k_{\mu})_{-} = m_{-}(\mu) - \overline{m_{-}(\mu)},
$$

hold. Therefore, $\pm m_{\pm}$ are so-called Nevanlinna functions. Recall that a complexvalued function N is said to be a Nevanlinna function if N is holomorphic on $\mathbb{C}\backslash\mathbb{R}$ and the properties

$$
N(\bar{\lambda}) = \overline{N(\lambda)} \quad \text{and} \quad \frac{\operatorname{Im} N(\lambda)}{\operatorname{Im} \lambda} \ge 0
$$

hold for all $\lambda \in \mathbb{C} \backslash \mathbb{R}$. For later purposes it is important to note that a Nevanlinna function N is monotone increasing on real intervals which belong to its domain of holomorphy and that N is equal to a constant on such an interval if and only if N is a constant function on \mathbb{C} , see, e.g., [\[18\]](#page-19-14).

In the following we will relate the zeros and poles of the function

$$
M(\lambda) = m_{+}(\lambda) - m_{-}(-\lambda), \quad \lambda \in \rho(B_{+}) \cap \rho(-B_{-}), \tag{3.1}
$$

with the eigenvalues of the operators JA and JB . Clearly, the domain of holomorphy of M contains the interval $(-\min \sigma(B_-), \min \sigma(B_+))$, the poles of M in $\lim \sigma(B_+) \infty$ and $(-\infty, -\min \sigma(B_+)$ coincide with the poles of $\lambda \mapsto m_+(\lambda)$ $[\min \sigma(B_+), \infty)$ and $(-\infty, -\min \sigma(B_-)]$ coincide with the poles of $\lambda \mapsto m_+(\lambda)$
and $\lambda \mapsto m_-(\lambda)$ respectively. Hence each pole of M in $[\min \sigma(B_+) \infty)$ is an and $\lambda \mapsto m_-(-\lambda)$, respectively. Hence each pole of M in $[\min \sigma(B_+), \infty)$ is an isolated eigenvalue of R₁, and each pole of M in $(-\infty, -\min \sigma(R_+))$ is an isolated isolated eigenvalue of B_+ and each pole of M in $(-\infty, -\min \sigma(B_-)]$ is an isolated
eigenvalue of $-B$. Therefore, each pole of M is an isolated eigenvalue of the opereigenvalue of $-B_$. Therefore, each pole of M is an isolated eigenvalue of the oper-
ator $IR = R_+ \oplus (-R_-)$ and vice versa, every isolated eigenvalue of IR is a pole ator $JB = B_+ \oplus (-B_-)$ and, vice versa, every isolated eigenvalue of JB is a pole
of M. This shows assertion (ii) in the next proposition of M . This shows assertion (ii) in the next proposition.

Proposition 3.1. *For* $\lambda \notin \sigma_{\text{ess}}(JA)$ *the following assertions hold:*

- (i) $\lambda \in \sigma_p(JA)$ *if and only if* λ *is a zero of M;*
- (ii) $\lambda \in \sigma_p(JB)$ *if and only if* λ *is a pole of* M.

Proof. It remains to show assertion (i). For this observe first that $\lambda \notin \sigma_{\text{ess}}(JA)$ = $\sigma_{\text{ess}}(B_+) \cup \sigma_{\text{ess}}(-B_-)$ is an eigenvalue of JA with corresponding eigenfunction f_{λ}
 Ω if and only if $f_1 = h_1 \oplus k_1$, where $h_1 \in \Omega_+$ and $k_1 \in \Omega_-$ are the (nontrivi- \overline{D} if and only if $f_{\lambda} = h_{\lambda} \oplus k_{-\lambda}$, where $h_{\lambda} \in \mathfrak{D}_+$ and $k_{-\lambda} \in \mathfrak{D}_-$ are the (nontrivial)
restrictions of f_1 onto (c, ∞) and $(-\infty, c)$ respectively which satisfy the differential restrictions of f_{λ} onto (c, ∞) and $(-\infty, c)$, respectively, which satisfy the differential equations equations

$$
\ell_{+}h_{\lambda} = \lambda h_{\lambda}, \quad \ell_{-}k_{-\lambda} = -\lambda k_{-\lambda}, \tag{3.2}
$$

and the conditions

$$
h_{\lambda}(c) = k_{-\lambda}(c), \quad (p_{+}h'_{\lambda})(c) = (p_{-}k'_{-\lambda})(c).
$$
 (3.3)

As a simple consequence we conclude

$$
\sigma_p(JA) \cap \sigma_p(B_+) \cap \rho(-B_-) = \emptyset
$$
 and $\sigma_p(JA) \cap \sigma_p(-B_-) \cap \rho(B_+) = \emptyset$.

Furthermore, $\sigma_p(B_+) \cap \sigma_p(-B_-) = \emptyset$ by Lemma [2.2\(](#page-4-1)i) and condition [\(II\)](#page-3-0) and,
hence it is sufficient to prove the equivalence in (i) for $\lambda \in \rho(B_+) \cap \rho(-B_+)$ hence, it is sufficient to prove the equivalence in (i) for $\lambda \in \rho(B_+) \cap \rho(-B_-)$.
Assume first that $\lambda \in \sigma_+(A) \cap \rho(B_+) \cap \rho(-B_-)$, so that (3.2) and (3.3) ho

Assume first that $\lambda \in \sigma_p(JA) \cap \rho(B_+) \cap \rho(-B_-)$, so that [\(3.2\)](#page-7-0) and [\(3.3\)](#page-7-1) hold for some corresponding eigenfunction $f_{\lambda} = h_{\lambda} \oplus k_{-\lambda}$ of JA and $h_{\lambda}(c) = k_{-\lambda}(c) \neq 0$.
This vields This yields

$$
m_{+}(\lambda) = \frac{(p_{+}h_{\lambda}')(c)}{h_{\lambda}(c)} = \frac{(p_{-}k'_{-\lambda})(c)}{k_{-\lambda}(c)} = m_{-}(-\lambda)
$$
 (3.4)

and hence $M(\lambda) = 0$. Conversely, let $\lambda \in \rho(B_+) \cap \rho(-B_-)$ be a zero of M and let $h_1 \in \mathcal{D}$, and $k_1 \in \mathcal{D}$ be the (nontrivial) solutions of (3.2) which satisfy let $h_{\lambda} \in \mathcal{D}_+$ and $k_{-\lambda} \in \mathcal{D}_-$ be the (nontrivial) solutions of [\(3.2\)](#page-7-0) which satisfy $h_2(c) = k_{-\lambda}(c) \neq 0$. From $M(\lambda) = 0$ we obtain $m_{\lambda}(\lambda) = m_{-\lambda}(\lambda)$ and it follows $h_{\lambda}(c) = k_{-\lambda}(c) \neq 0$. From $M(\lambda) = 0$ we obtain $m_{+}(\lambda) = m_{-}(-\lambda)$ and it follows from (3.4) that also the second condition in (3.3) is satisfied by h_{λ} and $k_{-\lambda}$. Therefore from [\(3.4\)](#page-7-2) that also the second condition in [\(3.3\)](#page-7-1) is satisfied by h_{λ} and $k_{-\lambda}$. Therefore $f_{\lambda} = h_{\lambda} \oplus k_{-\lambda}$ belongs to $\mathfrak D$ and is an eigenfunction of JA corresponding to λ .

In a similar way as in Proposition [3.1](#page-7-3) the eigenvalues of A and of $B = B_+ \oplus B_-$
related to the poles and zeros of the functions m_A , and m_B . Since the isolated are related to the poles and zeros of the functions m_+ and m_- . Since the isolated eigenvalues of B_+ and B_- coincide with the poles of m_+ and m_- it is clear that λ is

an eigenvalue of B if and only if λ is a pole of m_+ or m_- ; this shows item (ii) in the next proposition. For the convenience of the reader also the first item will be shown in detail.

Proposition 3.2. *For* $\lambda \notin \sigma_{\text{ess}}(A)$ *the following assertions hold:*

- (i) $\lambda \in \sigma_p(A)$ *if and only if* λ *is a either a zero of* $m_+ m_-$ *or a pole of both* m_+ *and* m *: and* m-*;*
- (ii) $\lambda \in \sigma_p(B)$ *if and only if* λ *is a pole of* m_+ *or of* m_- *.*

Proof. It remains to show assertion (i). For this observe first that $\lambda \notin \sigma_{\text{ess}}(A)$ $\sigma_{\text{ess}}(B_+) \cup \sigma_{\text{ess}}(B_-)$ is an eigenvalue of A with corresponding eigenfunction $f_{\lambda} \in \mathfrak{D}$
if and only if $f_1 = h_1 \oplus k_1$, where $h_1 \in \mathfrak{D}$, and $k_1 \in \mathfrak{D}$, are the (nontrivial) if and only if $f_{\lambda} = h_{\lambda} \oplus k_{\lambda}$, where $h_{\lambda} \in \mathcal{D}_{+}$ and $k_{\lambda} \in \mathcal{D}_{-}$ are the (nontrivial)
restrictions of f_1 onto (c, ∞) and $(-\infty, c)$ respectively which satisfy the differential restrictions of f_{λ} onto (c, ∞) and $(-\infty, c)$, respectively, which satisfy the differential equations equations

$$
\ell_{+}h_{\lambda} = \lambda h_{\lambda}, \quad \ell_{-}k_{\lambda} = \lambda k_{\lambda}, \tag{3.5}
$$

and the conditions

$$
h_{\lambda}(c) = k_{\lambda}(c), \quad (p_{+}h'_{\lambda})(c) = (p_{-}k'_{\lambda})(c).
$$
 (3.6)

Hence

 $\sigma_p(A) \cap \sigma_p(B_+) \cap \rho(B_-) = \emptyset$ and $\sigma_p(A) \cap \sigma_p(B_-) \cap \rho(B_+) = \emptyset$.

Assume first that λ is an eigenvalue of A. Then either $\lambda \in \rho(B_+) \cap \rho(B_-)$ or $\sigma_{\alpha}(B_+) \cap \sigma_{\alpha}(B_-)$. In the first case (3.6) implies $m_{\alpha}(\lambda) = m_{\alpha}(\lambda)$ and hence λ is $\lambda \in \sigma_p(B_+) \cap \sigma_p(B_-)$. In the first case [\(3.6\)](#page-8-1) implies $m_+(\lambda) = m_-(\lambda)$ and hence λ is a zero of $m_+ - m_-$. In the second case λ is a note of both m_+ and m_- . Conversely, let a zero of $m_+ - m_-$. In the second case λ is a pole of both m_+ and m_- . Conversely, let $h_1 \in \mathcal{D}$, and $k_1 \in \mathcal{D}$ be nontrivial solutions of (3.5) which satisfy $h_1(c) = k_1(c)$ $h_{\lambda} \in \mathfrak{D}_+$ and $k_{\lambda} \in \mathfrak{D}_-$ be nontrivial solutions of [\(3.5\)](#page-8-2) which satisfy $h_{\lambda}(c) = k_{\lambda}(c)$.
If λ is a zero of $m_{\lambda} = m$ then $\lambda \in \mathfrak{a}(R_{\lambda}) \cap \mathfrak{a}(R_{\lambda})$ and $h_{\lambda}(c) = k_{\lambda}(c) \neq 0$ so that If λ is a zero of $m_+ - m_-$ then $\lambda \in \rho(B_+) \cap \rho(B_-)$ and $h_\lambda(c) = k_\lambda(c) \neq 0$, so that the assumption $m_\lambda(\lambda) - m_\lambda(\lambda) = 0$ implies the second condition in (3.6). Therefore the assumption $m_{+}(\lambda) - m_{-}(\lambda) = 0$ implies the second condition in [\(3.6\)](#page-8-1). Therefore $f_{\lambda} = h_{\lambda} \oplus k_{\lambda}$ belongs to Ω and is an eigenfunction of A corresponding to λ . If λ is a node of m_{λ} and of m_{λ} then $\lambda \in \sigma$ $(R_{\lambda}) \cap \sigma$ (R_{λ}) and hence the nontrivial solutions pole of m_+ and of m_- , then $\lambda \in \sigma_p(B_+) \cap \sigma_p(B_-)$ and hence the nontrivial solutions
 $h_1 \in \mathfrak{D}$, and $k_1 \in \mathfrak{D}$ of (3.5) satisfy $h_1(c) = k_1(c) = 0$ and $(n_1, h_1)(c) \neq 0$ and $h_{\lambda} \in \mathfrak{D}_+$ and $k_{\lambda} \in \mathfrak{D}_-$ of [\(3.5\)](#page-8-2) satisfy $h_{\lambda}(c) = k_{\lambda}(c) = 0$ and $(p_{+}h'_{\lambda})(c) \neq 0$ and $(p_{+}h'_{\lambda})(c) \neq 0$. $(p=k'_{\lambda})(c) \neq 0$. Since h_{λ} and k_{λ} are unique up to a constant multiple, it follows that the function the function

$$
f_{\lambda} = (\nu h_{\lambda}) \oplus k_{\lambda}
$$
, where $\nu = \frac{(p_{-k'_{\lambda}})(c)}{(p_{+}h'_{\lambda})(c)}$,

belongs to $\mathfrak D$ and is an eigenfunction of A corresponding to λ .

As a consequence of the above propositions we obtain a statement on the size of the spectral gap of JA around 0; cf. Proposition [2.1.](#page-3-1) We mention that item (ii) in the next proposition can also be deduced from [\[28\]](#page-19-15), Behauptung 3, applied to the inverses of A and JA.

 \Box

Proposition 3.3. *Assume that conditions* [\(I\)](#page-2-1) *and* [\(II\)](#page-3-0) *are satisfied. Then the following statements hold:*

- (i) If $\min \sigma(A) < \min \sigma_{ess}(A)$, then $[-\min \sigma(A), \min \sigma(A)] \subset \rho(JA)$;
(i) If $\min \tau(A) = \min \tau(A)$, then $(-\min \tau(A)) \subset \rho(JA)$;
- (ii) If $\min \sigma(A) = \min \sigma_{\text{ess}}(A)$ *, then* $(-\min \sigma(A), \min \sigma(A)) \subset \rho(JA)$ *.*

Proof. Let $0 < \lambda_1 = \min \sigma(A)$. We show first that the inclusion

$$
(-\min \sigma(A), \min \sigma(A)) \subset \rho(JA) \tag{3.7}
$$

holds under any of the assumptions in (i) and (ii), i.e. min $\sigma(A) \leq \min \sigma_{\text{ess}}(A)$. In fact, by Lemma [2.2](#page-4-1) and Proposition [3.2\(](#page-8-3)i) we have that $m_+ - m_-$ is holomorphic
and does not vanish on $(-\lambda, \lambda)$. Since m, and $-m_-$ are Nevanlinua functions it and does not vanish on $(-\lambda_1, \lambda_1)$. Since m_+ and $-m_-$ are Nevanlinna functions, it follows that m_+ is increasing and m_- is decreasing on $(-\lambda, \lambda_1)$. Thus, the images follows that m_+ is increasing and m_- is decreasing on $(-\lambda_1, \lambda_1)$. Thus, the images of m_+ and m_- of $(-\lambda_1, \lambda_1)$ are intervals which do not intersect. Consequently, the of m_+ and m_- of $(-\lambda_1, \lambda_1)$ are intervals which do not intersect. Consequently, the images of m_+ and $m_-(-)$ of $(-\lambda_1, \lambda_1)$ are also intervals which do not intersect. images of m_+ and $m_-(-)$ of $(-\lambda_1, \lambda_1)$ are also intervals which do not intersect,
so that M does not vanish on $(-\lambda_1, \lambda_1)$. This, together with Proposition 3.1(i) so that M does not vanish on $(-\lambda_1, \lambda_1)$. This, together with Proposition [3.1\(](#page-7-3)i) implies that there are no eigenvalues of JA in $(-\lambda_1, \lambda_1)$, which yields [\(3.7\)](#page-9-1) and hence assertion (ii) has been shown.

In order to prove assertion (i) it remains to verify that λ_1 and $-\lambda_1$ are not eigenvalues of JA if min $\sigma(A) < \min \sigma_{\text{ess}}(A)$ holds. We provide the argument for λ_1 ; a similar reasoning applies to $-\lambda_1$. By Proposition [3.2\(](#page-8-3)i) either $m_+(\lambda_1) = m_-(\lambda_1)$ or
both functions m_+ and m_- have a pole at λ_1 . In the first case we have both functions m_+ and m_- have a pole at λ_1 . In the first case we have

$$
M(\lambda_1) = m_+(\lambda_1) - m_-(-\lambda_1) < m_+(\lambda_1) - m_-(\lambda_1) = 0
$$

since $-m_{-}$ is a nonconstant Nevanlinna function which is holomorphic on $(-\infty, \lambda_1]$
(*m*) is not constant as otherwise $\sigma(R_{-}) - \emptyset$). In particular, $M(\lambda_1) \neq 0$ and hence (m_{-}) is not constant as otherwise $\sigma(B_{-}) = \emptyset$. In particular, $M(\lambda_{1}) \neq 0$ and hence λ_{-} is not an eigenvalue of IA by Proposition 3.1(i) If m_{+} and m_{-} both have a λ_1 is not an eigenvalue of JA by Proposition [3.1\(](#page-7-3)i). If m_+ and m_- both have a pole at λ_1 then it follows from the holomorphy of m_- on $(-\infty, \lambda_1)$ that the function $\lambda \mapsto m_-(-\lambda)$ is holomorphic in λ_1 and hence $M(.) = m_+(\lambda) = m_-(\lambda)$ has a pole $\lambda \mapsto m_-(-\lambda)$ is holomorphic in λ_1 and, hence, $M(\cdot) = m_+(\cdot) - m_-(-\cdot)$ has a pole
at λ_1 . Again Proposition 3.1(i) implies $\lambda_2 \in \mathcal{Q}(I_1)$ at λ_1 . Again Proposition [3.1\(](#page-7-3)i) implies $\lambda_1 \in \rho(JA)$.

Note that under the assumptions in Proposition [3.3](#page-8-0) an upper estimate for the spectral gap of JA can be given: If min $\sigma(A) < \min \sigma_{\text{ess}}(A)$ and the smallest eigenvalue $\lambda_1 = \min \sigma(A)$ of A is a zero of $m_+ - m_-$, then it can be shown that the largest
negative eigenvalue $\lambda_1 = (IA)$ and the smallest positive eigenvalue $\lambda_2 = (IA)$ (i.e. the negative eigenvalue $\lambda_{1,-}(JA)$ and the smallest positive eigenvalue $\lambda_{1,+}(JA)$ (i.e. the endpoints of the spectral gap) of JA satisfy

$$
\min \sigma(-B_-) < \lambda_{1,-}(JA) \quad \text{and} \quad \lambda_{1,+}(JA) < \min \sigma(B_+).
$$

In the case that λ_1 is a pole of m_+ and m_- the above estimates hold with min $\sigma(-B_-)$
and min $\sigma(B_+)$ replaced by the second largest eigenvalue of $-B_-$ and the secand $\min \sigma(B_+)$ replaced by the second largest eigenvalue of $-B_-$ and the second smallest eigenvalue of B_+ if these eigenvalues exist and by $\min \sigma$ (B_+) and ond smallest eigenvalue of B_+ if these eigenvalues exist, and by min $\sigma_{\text{ess}}(B_+)$ and max $\sigma_{\rm ess}(-B_-)$ otherwise.
The next proposition as

The next proposition and corollary will play an important role in the proof of our main result in the next section.

Proposition 3.4. *The function* M *admits the representation*

$$
M(\lambda) = \frac{-1}{\alpha + \lambda N(\lambda)},
$$
\n(3.8)

where N *is a Nevanlinna function which is not identically zero on* C *and* ˛ *is a real constant. In particular,* M *is monotonously increasing* (*monotonously decreasing*) *on subintervals of* \mathbb{R}^+ (\mathbb{R}^- , *respectively*) *which belong to its domain of holomorphy.*

Proof. Let $\lambda \in \rho(JA) \cap \rho(B_+) \cap \rho(-B_-)$ and let $h_\lambda, h_0 \in \mathfrak{D}_+, k_{-\lambda}, k_0 \in \mathfrak{D}_-$ be the unique functions that satisfy the unique functions that satisfy

$$
\ell_+ h_\lambda = \lambda h_\lambda, \quad \ell_+ h_0 = 0, \quad \ell_- k_{-\lambda} = -\lambda k_{-\lambda}, \quad \ell_- k_0 = 0,\tag{3.9}
$$

and the conditions

$$
h_{\lambda}(c) = k_{-\lambda}(c), \quad (p_{-\lambda}k'_{-\lambda})(c) - (p_{+\lambda}k'_{\lambda})(c) = 1, h_0(c) = k_0(c), \quad (p_{-\lambda}k'_{0})(c) - (p_{+\lambda}k'_{0})(c) = 1.
$$
 (3.10)

We claim that the functions $f_{\lambda} = h_{\lambda} \oplus k_{-\lambda}$ and $f_0 = h_0 \oplus k_0$ are related via

$$
f_{\lambda} = f_0 + \lambda (JA - \lambda)^{-1} f_0. \tag{3.11}
$$

For this observe that $\lambda (JA - \lambda)^{-1} f_0 \in \mathfrak{D}$ and, hence, $g = f_0 + \lambda (JA - \lambda)^{-1} f_0$ satisfies the same conditions as $f_0 = h_0 \oplus k_0$ in (3.10). Hence, if we write g in the satisfies the same conditions as $f_0 = h_0 \oplus k_0$ in [\(3.10\)](#page-10-0). Hence, if we write g in the form $g = h \oplus k$ with $h \in \mathfrak{D}_+$ and $k \in \mathfrak{D}_-$, then we have

$$
h(c) = k(c)
$$
 and $(p_k c') - (p_k b')(c) = 1$.

As $(\tau - \lambda)\lambda (JA - \lambda)^{-1}f_0 = \lambda f_0$ we conclude that $\pm \ell_{\pm} - \lambda$ applied to the restriction of $\lambda (JA - \lambda)^{-1}f_0$ onto (c, ∞) and $(-\infty, c)$ equals λh_0 and λk_0 respectively. Therefore $(-\lambda)\lambda (JA-\lambda)^{-1}$
- λ)⁻¹ f_0 onto ($\lambda (JA - \lambda)^{-1} f_0$ onto (c, ∞) and $(-\infty, c)$ equals λh_0 and λk_0 , respectively. Therefore

$$
(\ell_{+} - \lambda)h = (\ell_{+} - \lambda)h_0 + \lambda h_0 = 0,
$$

$$
(\ell_{-} + \lambda)k = (\ell_{-} + \lambda)k_0 - \lambda k_0 = 0,
$$

and it follows that h and k satisfy the equations $\ell_+ h = \lambda h$ and $\ell_- k = -\lambda k$. Since the function $f_2 = h_2 \oplus k$, in (3.9) and (3.10) is unique we obtain (3.11) the function $f_{\lambda} = h_{\lambda} \oplus k_{-\lambda}$ in [\(3.9\)](#page-10-1) and [\(3.10\)](#page-10-0) is unique we obtain [\(3.11\)](#page-10-2).
From

From

$$
M(\lambda) = \frac{(p + h'_\lambda)(c) - (p - k'_\lambda)(c)}{f_\lambda(c)} = -\frac{1}{f_\lambda(c)},
$$

$$
M(0) = \frac{(p + h'_0)(c) - (p - k'_0)(c)}{f_0(c)} = -\frac{1}{f_0(c)} \in \mathbb{R},
$$

we conclude $M(\lambda) \neq 0$ for $\lambda \in \rho(JA) \cap \rho(B_+) \cap \rho(-B_-)$ and $M(0) \neq 0$. With [\(2.3\)](#page-4-3)
we have we have

$$
\lambda[f_{\lambda}, f_0] = \lambda(h_{\lambda}, h_0)_{+} - \lambda(k_{-\lambda}, k_0)_{-}
$$

= $(\ell_{+} h_{\lambda}, h_0)_{+} - (h_{\lambda}, \ell_{+} h_0)_{+} + (\ell_{-} k_{-\lambda}, k_0)_{-} - (k_{-\lambda}, \ell_{-} k_0)_{-}$
= $(p_{+} h'_{\lambda})(c) \overline{h_0(c)} - h_{\lambda}(c) \overline{(p_{+} h'_{0})(c)} - (p_{-} k'_{-\lambda})(c) \overline{k_0(c)}$
+ $k_{-\lambda}(c) \overline{(p_{-} k'_{0})(c)}$
= $f_{\lambda}(c) - \overline{f_0(c)}$.

Thus $-M^{-1}$ admits the representation

$$
-M^{-1}(\lambda) = -M^{-1}(0) + \lambda[f_{\lambda}, f_0]
$$

and with [\(3.11\)](#page-10-2) and $N(\lambda) = [(1 + \lambda (JA - \lambda)^{-1})f_0, f_0]$ we obtain

$$
-M^{-1}(\lambda) = -M^{-1}(0) + \lambda N(\lambda).
$$
 (3.12)

A simple calculation shows

Im
$$
N(\lambda)
$$
 = Im $\lambda (A(JA - \lambda)^{-1} f_0, (JA - \lambda)^{-1} f_0)$

and since A is nonnegative by condition (II) it follows that N is a Nevanlinna function, i.e. M admits a representation of the from [\(3.8\)](#page-10-3) with $\alpha = -M(0)^{-1}$.
Note that N is not equal to zero on real intervals which belong to

Note that N is not equal to zero on real intervals which belong to its domain of holomorphy, as otherwise $N \equiv 0$ and [\(3.12\)](#page-11-0) imply that M in [\(3.1\)](#page-6-1) is equal to a constant, so that the Titchmarsh–Weyl coefficients $\lambda \mapsto m_+(\lambda)$ and $\lambda \mapsto m_-(-\lambda)$ of R_+ and $-R_-$ differ by a real constant; a contradiction to $\sigma(R_+) \cap \sigma(-R_-) = \emptyset$. Now B_+ and $-B_-$ differ by a real constant; a contradiction to $\sigma(B_+) \cap \sigma(-B_-) = \emptyset$. Now the remaining statements of Proposition 3.4 follow from the fact that the Nevanlinna the remaining statements of Proposition [3.4](#page-9-0) follow from the fact that the Nevanlinna function N is monotonously increasing on real intervals which belong to its domain of holomorphy. \Box

Corollary 3.5. In between two consecutive positive (resp. negative) poles v, v' of M such that the interval (v, v') belongs to the domain of holomorphy of M there is *a unique zero of* M*. Similarly, in between two consecutive positive* (*resp. negative*) zeros η , η' of M such that M is meromorphic in an open neighbourhood of the interval (η, η') there is a unique pole of M in (η, η') .

The poles of M in $[\min \sigma(B_+), \infty)$ (resp. $(-\infty, -\min \sigma(B_-)]$) coincide with the solar $\lambda \mapsto m(\lambda)$ (resp. $\lambda \mapsto m(-\lambda)$) and hence with the isolated eigenvalues poles of $\lambda \mapsto m_+(\lambda)$ (resp. $\lambda \mapsto m_-(-\lambda)$), and hence with the isolated eigenvalues
of B_+ (resp. $-B$). From this we obtain with Corollary 3.5 and Proposition 3.1(i) of B_+ (resp. $-B_-$). From this we obtain with Corollary [3.5](#page-11-1) and Proposition [3.1\(](#page-7-3)i) interlacing results of the positive eigenvalues of I_4 with respect to the eigenvalues interlacing results of the positive eigenvalues of JA with respect to the eigenvalues of B_+ and of the negative eigenvalues of JA with respect to the eigenvalues of $-B_-$.

Corollary 3.6. *In between any two consecutive isolated eigenvalues of* B_+ (*resp.* (B_{+}) in a gap of $\sigma_{\rm ess}(B_{+})$ (resp. $\sigma_{\rm ess}(-B_{-})$) there is exactly one isolated eigenvalue
of 14. Conversely, in hetween any two consecutive isolated positive (resp. negative) *of* JA*. Conversely, in between any two consecutive isolated positive* (*resp. negative*) *eigenvalues of JA in a gap of* $\sigma_{\rm esc}(JA)$ *there is exactly one isolated eigenvalue of* B_{+} $(resp. -B_{-})$.

4. Eigenvalue estimates in gaps of the essential spectrum

In this section we prove estimates on the number of eigenvalues of JA in a gap of the essential spectrum. Recall that all eigenvalues of the operators A, JA , B_+ , $-B_$ and, hence, JB are simple. For a selfadjoint or J -selfadjoint operator T and a real interval (a, b) such that $(a, b) \cap \sigma_{\text{ess}}(T) = \emptyset$ the number of eigenvalues of T in (a, b) will be denoted by $n_{\mathcal{T}}(a, b)$, i.e.

$$
n_T(a,b) = \sharp\{\lambda \in \sigma_p(T) : \lambda \in (a,b)\}.
$$

The following theorem is the main result of this note. It provides a local estimate on the number of eigenvalues of JA in terms of the number of eigenvalues of A in a gap of the essential spectrum. Recall that by Lemma [2.2](#page-4-1) and Proposition [2.3](#page-5-1) we have for $0 \le a < b$

$$
(a, b) \cap \sigma_{\text{ess}}(A) = \emptyset
$$
 if and only if $((-b, -a) \cup (a, b)) \cap \sigma_{\text{ess}}(JA) = \emptyset$.

Theorem 4.1. *Assume that conditions*[\(I\)](#page-2-1) *and* [\(II\)](#page-3-0) *hold for the Sturm–Liouville operator* A *and let* JA *be the corresponding indefinite Sturm–Liouville differential operator. For* $0 \le a < b$ *such that* $(a, b) \cap \sigma_{\text{ess}}(A) = \emptyset$ *the estimate*

$$
|n_A(a,b) - (n_{JA}(-b,-a) + n_{JA}(a,b))| \le 3
$$
 (4.1)

is valid if the corresponding quantities are finite; otherwise

$$
n_A(a,b) = \infty \quad \text{if and only if} \quad n_{JA}(-b, -a) + n_{JA}(a,b) = \infty.
$$

Observe that the case $n_A(a, b) = \infty$ (and, hence, $n_{JA}(-b, -a) + n_{JA}(a, b) = \infty$) can only occur if one or both of the endpoints a and b belong to the essential spectrum of A which implies the following corollary.

Corollary 4.2. Let A, JA and (a, b) be as in Theorem [4.1](#page-12-0) and assume, in addition, *that* $b \in \sigma_{\text{ess}}(A)$ *, or, equivalently, that* $b \in \sigma_{\text{ess}}(JA)$ *or* $-b \in \sigma_{\text{ess}}(JA)$ *. Then the eigenvalues of* A *in* (a, b) *accumulate to* b *if and only if the eigenvalues of* JA *in* $(-b, -a) \cup (a, b)$ *accumulate to b or* $-b$ *.*

Proof of Theorem [4.1](#page-12-0). Let (a, b) be as in the theorem and suppose that the number $n_A(a, b)$ of eigenvalues of A in (a, b) is finite. Since the eigenvalues of A are all simple, $n_A(a, b)$ coincides with dim ran $E_A(a, b)$ and we conclude from Lemma [2.2\(](#page-4-1)iv)

that dim ran $E_B(a, b)$ differs at most by one from $n_A(a, b)$. Hence the number of eigenvalues $n_{B_+}(a, b) + n_{-B_-}(-b, -a)$ of $JB = B_+ \oplus -B_-$ differs at most by one
from $n_A(a, b)$ and by Proposition 3.1(ii) the same holds true for the number of poles from $n_A(a, b)$ and by Proposition [3.1\(](#page-7-3)ii) the same holds true for the number of poles of the function M in $(-b, -a) \cup (a, b)$. It follows from Corollary [3.5](#page-11-1) that M has at least $n_A(a, b) - 3$ zeros in $(-b, -a) \cup (a, b)$, so that

$$
n_{JA}(-b, -a) + n_{JA}(a, b) \ge n_A(a, b) - 3
$$

by Proposition $3.1(i)$ $3.1(i)$. In order to show (4.1) suppose that

$$
n_{JA}(-b, -a) + n_{JA}(a, b) > n_A(a, b) + 3.
$$

In this case Proposition [3.1\(](#page-7-3)i) yields that there are more than $n_A(a, b) + 3$ zeros of M in $(-b, -a) \cup (a, b)$ and hence there are more than $n_A(a, b) + 1$ poles of M in $(-b, -a) \cup (a, b)$ by Corollary [3.5.](#page-11-1) On the other hand, by the above reasoning the number of poles of M in $(-b, -a) \cup (a, b)$ differs at most by one from $n_A(a, b)$, a contradiction and [\(4.1\)](#page-12-2) is shown.

From (4.1) it follows that for a (or b) in the essential spectrum of A the quantity $n_A(a, b)$ is finite if and only if the quantity $n_{JA}(-b, -a) + n_{JA}(a, b)$ is finite. □

Let us now consider the case where the coefficients p, q and r satisfy some symmetry properties with respect to c. For simplicity we assume $c = 0$ and for the following we suppose:

(III) The functions p and q are even and r is odd, i.e.

$$
p(x) = p(-x), q(x) = q(-x)
$$
 and $r(x) = -r(-x)$ for a.e. $x \in \mathbb{R}$.

Obviously, [\(III\)](#page-13-0) implies for the operators B_+ and B_- from [\(2.4\)](#page-4-2)

$$
\sigma(B_+) = \sigma(B_-)
$$
 and $\sigma_{\text{ess}}(B_+) = \sigma_{\text{ess}}(B_-).$

Together with Proposition [2.3](#page-5-1) we conclude

$$
\sigma_{\rm ess}(JA)=\sigma_{\rm ess}(A)\cup\sigma_{\rm ess}(-A).
$$

Furthermore, if $h_{\lambda} \in \mathfrak{D}_+$ and $k_{\lambda} \in \mathfrak{D}_-$ are related via $h_{\lambda}(x) = k_{\lambda}(-x), x \in \mathbb{R}^+$, then we have then we have

 $\ell_+ h_\lambda = \lambda h_\lambda$, if and only if $\ell_- k_\lambda = \lambda k_\lambda$.

Together with $(p+h'_\lambda)(0) = -(p-k'_\lambda)(0)$ this implies $m_+(\lambda) = -m_-(\lambda)$ and it follows that the function M in (3.1) is given by follows that the function M in (3.1) is given by

$$
M(\lambda) = m_+(\lambda) + m_+(-\lambda). \tag{4.2}
$$

Observe that by Proposition $3.1(i)$ $3.1(i)$ the eigenvalues of JA are symmetric with respect to zero. In particular $n_{JA}(a, b) = n_{JA}(-b, -a)$ in Theorem [4.1.](#page-12-0) This implies the following statement which is a slight improvement of the estimate [\(4.1\)](#page-12-2) in Theorem [4.1](#page-12-0) if condition [\(III\)](#page-13-0) holds and $n_A(a, b)$ is even.

Corollary 4.3. *Let the assumptions be as in Theorem* [4.1](#page-12-0) *and assume, in addition, that condition* [\(III\)](#page-13-0) *is satisfied. If* $n_A(a, b)$ *is even, then the estimates*

$$
\left|\frac{1}{2}n_A(a,b) - n_{JA}(a,b)\right| = \left|\frac{1}{2}n_A(a,b) - n_{JA}(-b,-a)\right| \le 1
$$

are valid.

The estimates in Theorem [4.1](#page-12-0) and Corollary [4.3](#page-13-1) will be further improved in Theorem [4.4](#page-14-0) below for the case that condition [\(III\)](#page-13-0) holds and instead of a gap in the essential spectrum we consider the special situation of an interval (α, β) with $0 \le \alpha < \min \sigma(A) < \beta \le \min \sigma_{\text{ess}}(A)$. It is worth mentioning that the following result for the comparison of the quantities $n_{JA}(\alpha, \beta)$ and $n_A(\alpha, \beta)$ is optimal.

Theorem 4.4. *Assume that conditions* [\(I\)](#page-2-1)*,* [\(II\)](#page-3-0)*, and* [\(III\)](#page-13-0) *hold for the Sturm–Liouville operator* A, that $\min \sigma(A) < \min \sigma_{\text{ess}}(A)$ and let JA be the corresponding indefinite *Sturm–Liouville differential operator. For* $0 \le \alpha < \min \sigma(A) < \beta \le \min \sigma_{\text{ess}}(A)$ *the following holds:*

$$
n_{JA}(\alpha, \beta) = n_{JA}(-\beta, -\alpha) = \begin{cases} \frac{1}{2}n_A(\alpha, \beta) & \text{if } n_A(\alpha, \beta) \text{ is even,} \\ \frac{1}{2}(n_A(\alpha, \beta) \pm 1) & \text{if } n_A(\alpha, \beta) \text{ is odd,} \end{cases}
$$
(4.3)

where one of the quantities $n_A(\alpha, \beta)$, $n_{JA}(\alpha, \beta)$, $n_{JA}(-\beta, -\alpha)$ is infinite if and only *if all the quantities* $n_A(\alpha, \beta)$, $n_{JA}(\alpha, \beta)$, $n_{JA}(-\beta, -\alpha)$ are infinite.

In particular, the eigenvalues of A below min $\sigma_{\text{ess}}(A)$ *accumulate to* min $\sigma_{\text{ess}}(A)$ *if and only if the eigenvalues of JA in the interval* $(-\min \sigma_{\text{ess}}(A), \min \sigma_{\text{ess}}(A))$ *accumulate to* $-\min \sigma_{\text{ess}}(A)$ *and to* $\min \sigma_{\text{ess}}(A)$ *.*

Observe that the case $n_A(\alpha, \beta) = \infty$ (and, hence, $n_{JA}(\alpha, \beta) = n_{JA}(-\beta, -\alpha) =$ ∞) can only occur if the endpoint β belongs to the essential spectrum of A.

Proof. Let $\lambda_1 = \min \sigma(A)$ be the smallest eigenvalue of A. By Proposition [3.2\(](#page-8-3)i) and (4.2) the isolated eigenvalues of the Sturm–Liouville operator A coincide with the poles and zeros of the function m_+ . Hence λ_1 is either a pole or a zero of m_+ . Since m_+ is a Nevanlinna function the poles and zeros of m_+ in (α, β) alternate. Therefore one of the following four cases occurs if $n = n_A(\alpha, \beta) < \infty$.

- (i) *n* is even and λ_1 is a pole of m_{+} ;
- (ii) *n* is even and λ_1 is a zero of m_+ ;
- (iii) *n* is odd and λ_1 is a pole of m_+ ;
- (iv) *n* is odd and λ_1 is a zero of m_+ .

In case (i) the function m_+ has $\frac{n}{2}$ poles and $\frac{n}{2}$ zeros in (α, β) . Moreover, the largest eigenvalue λ_n of A in (α, β) is a zero of m_+ and hence m_+ is positive on $(-\infty, \lambda_1)$ \cup (λ_n, β) . The function M has $\frac{n}{2}$ poles in $[\lambda_1, \lambda_{n-1}]$ and it follows from Corollary [3.5](#page-11-1)

that there are $\frac{n}{2} - 1$ zeros of M in $(\lambda_1, \lambda_{n-1})$. Since m_+ is positive on $(-\infty, \lambda_1)$
and $m_+(\lambda_+) = 0$ it follows that M has also one zero in (λ_+, λ_+) and is positive and $m_+(\lambda_n) = 0$ it follows that M has also one zero in $(\lambda_{n-1}, \lambda_n)$, and is positive
on (α, λ_1) and $[\lambda_n, \beta]$. Now Proposition 3.1(i) implies $n_+(\alpha, \beta) = \frac{n}{2} = \frac{1}{2}n_+(\alpha, \beta)$. on (α, λ_1) and $[\lambda_n, \beta)$. Now Proposition [3.1\(](#page-7-3)i) implies $n_{JA}(\alpha, \beta) = \frac{n}{2} = \frac{1}{2}n_A(\alpha, \beta)$ and by symmetry also $n_{JA}(-\beta, -\alpha) = \frac{n}{2} = \frac{1}{2}n_A(\alpha, \beta)$. The simple modifications of this aroument for case (ii) are left to the reader of this argument for case (ii) are left to the reader.

In case (iii) the function m_+ has $\frac{1}{2}(n + 1)$ poles and $\frac{1}{2}(n - 1)$ zeros in (α, β) .
request m_+ is positive on $(-\infty, \lambda_+)$ and since the largest eigenvalue λ_+ of A in Moreover, m_+ is positive on $(-\infty, \lambda_1)$ and since the largest eigenvalue λ_n of A in (α, β) is a pole m_+ is negative on (λ_n, β) . The function M has $\frac{1}{2}(n+1)$ poles in $[\lambda_1, \lambda_n]$ and it follows from Corollary [3.5](#page-11-1) that there are $\frac{1}{2}(n-1)$ zeros of M in (λ_1, λ_n) .
Furthermore, since m_{λ} is nositive on $(-\infty, \lambda_1)$ and negative on (λ_n, β) there may Furthermore, since m_+ is positive on $(-\infty, \lambda_1)$ and negative on (λ_n, β) there may be one more zero of M in (λ_n, β) . Now Proposition [3.1\(](#page-7-3)i) implies $n_{JA}(\alpha, \beta)$ = $\frac{1}{2}(n \pm 1) = \frac{1}{2}(n_A(\alpha, \beta) \pm 1)$ and by symmetry also $n_{JA}(-\beta, -\alpha) = \frac{1}{2}(n \pm 1) = \frac{1}{2}(n_A(\alpha, \beta) \pm 1)$. The simple modifications of this argument for case (iv) are left to $\frac{1}{2}(n_A(\alpha,\beta) \pm 1)$. The simple modifications of this argument for case (iv) are left to the reader. Relation [\(4.3\)](#page-14-1) is proved.

From [\(4.3\)](#page-14-1) it follows also that for β in the essential spectrum of A the quantity $n_A(\alpha, \beta)$ is finite if and only if the quantities $n_{JA}(\alpha, \beta)$ and $n_{JA}(-\beta, -\alpha)$ are finite.

The next proposition on the interlacing properties of the eigenvalues of JA with respect to the eigenvalues of A can be shown with the same methods as Theorem [4.4.](#page-14-0) If (a, b) is a gap in $\sigma_{\text{ess}}(A)$ we denote by (λ_k) the eigenvalues of A in increasing order, where $k = 1, ..., n_A(a, b)$ if $n_A(a, b)$ is finite, $k \in \mathbb{N}$ ($k \in -\mathbb{N}$) if the eigenvalues accumulate to b (resp. a), and $k \in \mathbb{Z}$ if both endpoints a and b are accumulation points of eigenvalues of A.

Proposition 4.5. *Assume that conditions* [\(I\)](#page-2-1)*,* [\(II\)](#page-3-0)*, and* [\(III\)](#page-13-0) *hold for the Sturm– Liouville operator* A *and let* JA *be the corresponding indefinite Sturm–Liouville differential operator. Let* $(a, b) \cap \sigma_{\text{ess}}(A) = \emptyset$ and denote by (λ_k) the eigenvalues of A in (a, b) in increasing order. Then exactly one of the following statements hold:

- (i) each interval $(\lambda_{2k-1}, \lambda_{2k})$ contains exactly one eigenvalue of JA and each in*terval* $[\lambda_{2k}, \lambda_{2k+1}]$ *belongs to* $\rho(JA)$ *;*
- (ii) each interval $(\lambda_{2k}, \lambda_{2k+1})$ contains exactly one eigenvalue of JA and each *interval* $[\lambda_{2k-1}, \lambda_{2k}]$ *belongs to* $\rho(JA)$ *.*

Furthermore, in the case $a < \lambda_1 = \min \sigma(A) < b \le \min \sigma_{\text{ess}}(A)$ *statement* (*i*) *holds, that is, for the positive eigenvalues* $\lambda_k(JA)$ *of* JA *ordered in an increasing way we have*

$$
\lambda_k(JA) \in (\lambda_{2k-1}, \lambda_{2k}), \quad k = 1, 2, \dots
$$

5. Examples

In this section some applications and examples illustrating the results in the previous section are presented. We start with a variant of Kneser's classical oscillation result in the context of indefinite Sturm–Liouville operators. As a second application a periodic problem is treated and in a third explicit example the number of eigenvalues of the indefinite operator is computed for a particularly simple potential.

5.1. Kneser's result for left-definite Sturm–Liouville operators. In this first example accumulation of the eigenvalues of JA to the essential spectrum is studied with the help of Kneser's classical result from [\[19\]](#page-19-6), see also [\[11\]](#page-18-10), Corollary XIII.7.57, and [\[12\]](#page-19-7), [\[13\]](#page-19-8), [\[23\]](#page-19-9), [\[24\]](#page-19-10), [\[29\]](#page-20-2) for possible generalizations. Here, for simplicity, let $r(x) = sgn(x), p(x) = 1$, and assume that $q > 0$ admits the positive limits

$$
0 < q_{\infty} = \lim_{x \to +\infty} q(x) = \lim_{x \to -\infty} q(x).
$$

Clearly, condition [\(I\)](#page-2-1) holds with $c = 0$ and by well-known results (see, e.g., [\[29\]](#page-20-2), Theorem 6.3) the maximal Sturm–Liouville operator $Af = -f'' + qf$, $f \in \mathfrak{D}$, satisfies condition [\(II\)](#page-3-0). Here we have $\sigma_{\rm ess}(B_{\pm}) = [q_{\infty}, \infty)$ and therefore

$$
\sigma_{\rm ess}(A) = [q_\infty, \infty).
$$

By Propositions [2.1](#page-3-1) and [2.3](#page-5-1) the essential spectrum of the J -selfadjoint indefinite Sturm–Liouville operator $JAf = sgn(-f'' + qf)$, $f \in \mathcal{D}$, is then given by

$$
\sigma_{\rm ess}(JA) = (-\infty, -q_\infty] \cup [q_\infty, \infty).
$$

Let us now make use of Kneser's criterion: If

$$
\limsup_{x \to \infty} x^2 (q(x) - q_{\infty}) < -\frac{1}{4} \quad \text{or} \quad \limsup_{x \to -\infty} x^2 (q(x) - q_{\infty}) < -\frac{1}{4} \tag{5.1}
$$

holds, then there are infinitely many eigenvalues of B_+ or $B_-\,$, respectively, below their essential spectrum and hence also the eigenvalues of A accumulate to min $\sigma_{\rm ess}(A)$. By Theorem [4.1](#page-12-0) there are infinitely many eigenvalues of JA in the corresponding gap $(-q_{\infty}, q_{\infty})$ in $\sigma_{\text{ess}}(JA)$. In the present situation it follows also that the eigenvalues of JA in $(-q_{\infty}, q_{\infty})$ accumulate to $q_{\infty} (-q_{\infty})$ if the first (second, respectively) condition in [\(5.1\)](#page-16-1) holds.

Similarly, if instead of (5.1) we have

$$
\liminf_{x \to \infty} x^2 (q(x) - q_{\infty}) > -\frac{1}{4} \quad \text{and} \quad \liminf_{x \to -\infty} x^2 (q(x) - q_{\infty}) > -\frac{1}{4},
$$

then there are only finitely many eigenvalues of B_+ and B_- below their essential spectrum and hence there are also only finitely many eigenvalues of A below min $\sigma_{\rm ess}(A)$. In this situation Theorem [4.1](#page-12-0) implies that JA has only finitely many eigenvalues in the corresponding gap around zero and their total number in $(-q_{\infty}, q_{\infty})$ differs at most by three of the number of eigenvalues of A below $q_{\infty} = \min \sigma_{ess}(A)$.

5.2. Periodic operators. Suppose that the coefficients $|r|$, p and q of the definite Sturm–Liouville expression ℓ are γ -periodic for some $\gamma > 0$ and assume that essinf $q/|r|$ is positive as well as r satisfies condition [\(I\)](#page-2-1). Then condition [\(II\)](#page-3-0) is satisfied for the corresponding maximal operator A in $L^2_{|r|}(\mathbb{R})$. Furthermore, let $\lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots$ be the eigenvalues of the selfadjoint operator associated with ℓ restricted to functions in $L^2_{|r|}(0, \gamma)$ with the boundary conditions

$$
\begin{pmatrix} f(0) \\ (pf')(0) \end{pmatrix} = \begin{pmatrix} f(\gamma) \\ (pf')(\gamma) \end{pmatrix}
$$

and let $\mu_1 \leq \mu_2 \leq \mu_3 \leq \cdots$ be the eigenvalues of the selfadjoint operator associated with ℓ restricted to functions in $L^2_{|r|}(0, \gamma)$ with the boundary conditions

$$
\begin{pmatrix} f(0) \\ (pf')(0) \end{pmatrix} = - \begin{pmatrix} f(\gamma) \\ (pf')(\gamma) \end{pmatrix}.
$$

Then $0 < \lambda_1 < \mu_1 \leq \mu_2 < \lambda_2 \leq \lambda_3 < \mu_3 \ldots$ and it is well-known that

$$
\sigma(A) = \sigma_{\rm ess}(A) = [\lambda_1, \mu_1] \cup [\mu_2, \lambda_2] \cup [\lambda_3, \mu_3] \dots
$$

holds, see, e.g., [\[29\]](#page-20-2), § 12. Here it follows that also $\sigma_{\text{ess}}(B_+) = \sigma_{\text{ess}}(B_-) = \sigma_{\text{ess}}(A)$
holds, and therefore by Proposition 2.3 the essential spectrum σ (14) of 14 has a holds, and therefore by Proposition [2.3](#page-5-1) the essential spectrum $\sigma_{\text{ess}}(JA)$ of JA has a band structure, is symmetric with respect to 0 and is given by

$$
\ldots [-\mu_3,-\lambda_3] \cup [-\lambda_2,-\mu_2] \cup [-\mu_1,-\lambda_1] \cup [\lambda_1,\mu_1] \cup [\mu_2,\lambda_2] \cup [\lambda_3,\mu_3] \ldots
$$

Since A has no eigenvalues in the (possible) gaps (μ_1, μ_2) , (λ_2, λ_3) , (μ_3, μ_4) , ... of $\sigma_{\text{ess}}(A)$ we conclude from Theorem [4.1](#page-12-0) that each of the sets

$$
(-\mu_2, -\mu_1) \cup (\mu_1, \mu_2), \quad (-\lambda_3, -\lambda_2) \cup (\lambda_2, \lambda_3), \quad (-\mu_4, -\mu_3) \cup (\mu_3, \mu_4), \dots
$$

contains at most 3 eigenvalues of the indefinite Sturm–Liouville operator JA. Note that by Proposition [3.3](#page-8-0) we have $(-\lambda_1, \lambda_1) \subset \rho(JA)$. Furthermore, if the coefficients r , n and q satisfy the symmetry condition (III) then Corollary 4.3 implies that in r, p, and q satisfy the symmetry condition (III) , then Corollary [4.3](#page-13-1) implies that in each of the (possible) gaps

$$
\ldots(-\mu_4,-\mu_3),\;(-\lambda_3,-\lambda_2),\;(-\mu_2,-\mu_1),\;(\mu_1,\mu_2),\;(\lambda_2,\lambda_3),\;(\mu_3,\mu_4),\ldots
$$

of $\sigma_{\rm ess}(JA)$ there is at most one eigenvalue.

5.3. A solvable problem with a hyperbolic cosine potential. As an explicit example consider the situation $r(x) = \text{sgn } x$, $p(x) = 1$ and

$$
q(x) = (\kappa + 1)^2 - \frac{\kappa(\kappa + 1)}{\cosh^2(x)} \quad \text{for some } \kappa \in \mathbb{N}.
$$

Obviously, conditions [\(I\)](#page-2-1) and [\(III\)](#page-13-0) are satisfied. Moreover, $q(x) \ge \kappa + 1$ and $\lim_{|x| \to \infty} q(x) = (\kappa + 1)^2$ imply that for the corresponding maximal operator A we have min $\sigma(A) \ge \kappa + 1$ and $\sigma_{\text{ess}}(A) = [(\kappa + 1)^2, \infty)$. In particular, condition [\(II\)](#page-3-0) is also fulfilled. It is known (see, e.g., [\[14\]](#page-19-16)), that the operator A has precisely κ eigenvalues in the interval $(\kappa + 1, (\kappa + 1)^2)$. Therefore, the essential spectrum of the corresponding indefinite Sturm–Liouville operator JA is given by

$$
\sigma_{\rm ess}(JA) = (-\infty, -(k+1)^2] \cup [(k+1)^2, \infty)
$$

and according to Theorem [4.4](#page-14-0) the operator JA has $\frac{k}{2}$ eigenvalues in the interval $(\kappa + 1, (\kappa + 1)^2)$ if κ is even and $\frac{\kappa \pm 1}{2}$ eigenvalues if κ is odd. The same holds for the interval $(-(\kappa + 1)^2 - (\kappa + 1))$; cf. Theorem 4.4. Note that by Proposition 3.3 the interval $\left(-(\kappa + 1)^2, -(\kappa + 1) \right)$; cf. Theorem [4.4.](#page-14-0) Note that by Proposition [3.3](#page-8-0) $\kappa + 1$ and $-(\kappa + 1)$ are no eigenvalues of JA.

References

- [1] T. Ya. Azizov and I. S. Iokhvidov, *Linear operators in spaces with an indefinite metric.* John Wiley Sons, Chichester, 1989. [MR 1033489](http://www.ams.org/mathscinet-getitem?mr=1033489) [Zbl 0714.47028](http://www.emis.de/MATH-item?0714.47028)
- [2] J. Behrndt, On the spectral theory of singular indefinite Sturm–Liouville operators. *J. Math. Anal. Appl.* **334** (2007), 1439–1449. [MR 2338672](http://www.ams.org/mathscinet-getitem?mr=2338672) [Zbl 1126.34052](http://www.emis.de/MATH-item?1126.34052)
- [3] J. Behrndt, Q. Katatbeh, and C. Trunk, Non-real eigenvalues of singular indefinite Sturm–Liouville operators. *Proc. Amer. Math. Soc.* **137** (2009), 3797–3806. [MR 2529889](http://www.ams.org/mathscinet-getitem?mr=2529889) [Zbl 1182.47036](http://www.emis.de/MATH-item?1182.47036)
- [4] J. Behrndt and F. Philipp, Spectral analysis of singular ordinary differential operators with indefinite weights. *J. Differ. Equations* **248** (2010), 2015–2037. [MR 2595713](http://www.ams.org/mathscinet-getitem?mr=2595713) [Zbl 1197.34167](http://www.emis.de/MATH-item?1197.34167)
- [5] J. Behrndt and C. Trunk, On the negative squares of indefinite Sturm–Liouville operators. *J. Differ. Equations* **238** (2007), 491–519. [MR 2341434](http://www.ams.org/mathscinet-getitem?mr=2341434) [Zbl 1123.47033](http://www.emis.de/MATH-item?1123.47033)
- [6] M. Sh. Birman and M. Z. Solomjak, *Spectral theory of self-adjoint operators in Hilbert space.* Kluwer Academic Publishers, Dordrecht etc., 1987. [Zbl 0744.47017](http://www.emis.de/MATH-item?0744.47017)
- [7] J. Bognar, *Indefinite inner product spaces.* Springer Verlag, New York etc., 1974. [MR 0467261](http://www.ams.org/mathscinet-getitem?mr=0467261) [Zbl 0286.46028](http://www.emis.de/MATH-item?0286.46028)
- [8] B. Curgus and H. Langer, A Krein space approach to symmetric ordinary differential operators with an indefinite weight function. *J. Differ. Equations* **79** (1989), 31–61. [MR 0997608](http://www.ams.org/mathscinet-getitem?mr=0997608) [Zbl 0693.34020](http://www.emis.de/MATH-item?0693.34020)
- [9] B. Ćurgus and B. Najman, The operator sgn $(x) \frac{d^2}{dx^2}$ is similar to a selfadjoint operator in L².R/. *Proc. Amer. Math. Soc.* **123** (1995), 1125–1128. [MR 1223513](http://www.ams.org/mathscinet-getitem?mr=1223513) [Zbl 0835.47021](http://www.emis.de/MATH-item?0835.47021)
- [10] K. Daho and H. Langer, Sturm–Liouville operators with an indefinite weight function. *Proc. R. Soc. Edinb., Sect. A* **78** (1977/78), 161–191. [MR 0492490](http://www.ams.org/mathscinet-getitem?mr=0492490) [Zbl 0372.34018](http://www.emis.de/MATH-item?0372.34018)
- [11] N. Dunford and J. T. Schwartz, *Linear operators. Part* II: *Spectral theory. Self adjoint operators in Hilbert space.* John Wiley & Sons, New York etc., 1963. [MR 0188745](http://www.ams.org/mathscinet-getitem?mr=0188745) [Zbl 0128.34803](http://www.emis.de/MATH-item?0128.34803) [Zbl 0635.47002](http://www.emis.de/MATH-item?0635.47002)
- [12] F. Gesztesy, B. Simon, and G. Teschl, Zeros of theWronskian and renormalized oscillation theory. *Amer. J. Math.* **118** (1996), 571–594. [MR 1393260](http://www.ams.org/mathscinet-getitem?mr=1393260) [Zbl 0858.47027](http://www.emis.de/MATH-item?0858.47027)
- [13] F. Gesztesy and M. Ünal, Perturbative oscillation criteria and Hardy-type inequalities. *Math. Nachr.* **189** (1998), 121–144. [MR 1492926](http://www.ams.org/mathscinet-getitem?mr=1492926) [Zbl 0903.34030](http://www.emis.de/MATH-item?0903.34030)
- [14] R. L. Hall, Square-well representation for potentials in quantum mechanics. *J. Math. Phys.* **33** (1992), 3472–3476. [MR 1182920](http://www.ams.org/mathscinet-getitem?mr=1182920) [Zbl 0762.35094](http://www.emis.de/MATH-item?0762.35094)
- [15] I. M. Karabash, A. S. Kostenko, and M. M. Malamud, The similarity problem for J -nonnegative Sturm–Liouville operators. *J. Differ. Equations* **246** (2009), 964–997. [MR 2474582](http://www.ams.org/mathscinet-getitem?mr=2474582) [Zbl 1165.34012](http://www.emis.de/MATH-item?1165.34012)
- [16] I. M. Karabash and M. M. Malamud, Indefinite Sturm–Liouville operators $(\text{sgn } x)(-\frac{d^2}{dx^2} + q(x))$ with finite-zone potentials. *Oper. Matrices* **1** (2007), 301–368.
[MR 2344680](http://www.ams.org/mathscinet-getitem?mr=2344680) [Zbl 1146.47032](http://www.emis.de/MATH-item?1146.47032)
- [17] I. M. Karabash and C. Trunk, Spectral properties of singular Sturm–Liouville operators with indefinite weight sgn x. *Proc. R. Soc. Edinb., Sect. A* **139** (2009), 483–503. [MR 2506783](http://www.ams.org/mathscinet-getitem?mr=2506783) [Zbl 1189.34159](http://www.emis.de/MATH-item?1189.34159)
- [18] I. S. Kac and M. G. Krein, R-functions – analytic functions mapping the upper halfplane into itself. Appendix I to the russian edition of F. V. Atkinson, *Discrete and continuous boundary problems.* Mir, Moscow, 1968. English transl. of theAppendix: *Am. Math. Soc., Translat.,* II. *Ser.* **103** (1974), 1–18. [Zbl 0291.34016](http://www.emis.de/MATH-item?0291.34016)
- [19] A. Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen. *Math. Ann.* **42** (1893), 409–435. [MR 1510784](http://www.ams.org/mathscinet-getitem?mr=1510784) [JFM 25.0522.01](http://www.emis.de/MATH-item?25.0522.01)
- [20] Q. Kong, M. Möller, H. Wu, and A. Zettl, Indefinite Sturm–Liouville problems. *Proc. R. Soc. Edinb., Sect. A* **133** (2003), 639–652. [MR 1983691](http://www.ams.org/mathscinet-getitem?mr=1983691) [Zbl 1056.34038](http://www.emis.de/MATH-item?1056.34038)
- [21] Q. Kong, H. Wu, and A. Zettl, Singular left-definite Sturm–Liouville problems. *J. Differ. Equations* **206** (2004), 1–29. [MR 2093917](http://www.ams.org/mathscinet-getitem?mr=2093917) [Zbl 1058.34029](http://www.emis.de/MATH-item?1058.34029)
- [22] A. Kostenko, Similarity problem for indefinite Sturm–Liouville operators with periodic coefficients. Preprint 2010. [arXiv:1004.3991](http://arxiv.org/abs/1004.3991)
- [23] H. Krüger and G. Teschl, Effective Prüfer angles and relative oscillation criteria. *J. Differ. Equations* **245** (2008), 3823–3848. [MR 2462706](http://www.ams.org/mathscinet-getitem?mr=2462706) [Zbl 1167.34009](http://www.emis.de/MATH-item?1167.34009)
- [24] H. Krüger and G. Teschl, Relative oscillation theory, weighted zeros of the Wronskian, and the spectral shift function. *Commun. Math. Phys.* **287** (2009), 613–640. [MR 2481752](http://www.ams.org/mathscinet-getitem?mr=2481752) [Zbl 1186.47009](http://www.emis.de/MATH-item?1186.47009)
- [25] H. Langer, Spectral functions of definitizable operators in Krein spaces. In D. Butkovic, D. H. Kraljevic, and S. Kurepa, Svetozar (eds.), *Functional analysis: Proceedings of a Conference Held at Dubrovnik, Yugoslavia, November 2–14, 1981.* Springer Verlag, Berlin etc., 1982, 1–46. [MR 0672791](http://www.ams.org/mathscinet-getitem?mr=0672791) [Zbl 0511.47023](http://www.emis.de/MATH-item?0511.47023)
- [26] M. Marletta and A. Zettl, Floquet theory for left-definite Sturm–Liouville problems. *J. Math. Anal. Appl.* **305** (2005), 477–482. [MR 2130715](http://www.ams.org/mathscinet-getitem?mr=2130715) [Zbl 1074.34030](http://www.emis.de/MATH-item?1074.34030)
- [27] R. Rosenberger, A new characterization of the Friedrichs extension of semibounded Sturm–Liouville operators. *J. Lond. Math. Soc.,* II. *Ser.* **31** (1985), 501–510. [MR 0812779](http://www.ams.org/mathscinet-getitem?mr=0812779) [Zbl 0615.34019](http://www.emis.de/MATH-item?0615.34019)
- [28] B. Textorius, Minimaxprinzipe zur Bestimmung der Eigenwerte J -nichtnegativer Operatoren. *Math. Scand.* 35 (1974), 105–114. [MR 0370259](http://www.ams.org/mathscinet-getitem?mr=0370259) [Zbl 0328.47016](http://www.emis.de/MATH-item?0328.47016)
- [29] J. Weidmann, *Spectral theory of ordinary differential operators.* Springer Verlag, Berlin etc., 1987. [MR 0923320](http://www.ams.org/mathscinet-getitem?mr=0923320) [Zbl 0647.47052](http://www.emis.de/MATH-item?0647.47052)
- [30] A. Zettl, *Sturm–Liouville theory.* Amer. Math. Soc., Providence (RI), 2005. [MR 2170950](http://www.ams.org/mathscinet-getitem?mr=2170950) [Zbl 1103.34001](http://www.emis.de/MATH-item?1103.34001)

Received December 16, 2010; revised March 21, 2011

Jussi Behrndt, Institut für Numerische Mathematik, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria

E-mail: behrndt@tugraz.at

Roland Möws, Institut für Mathematik, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Ilmenau, Postfach 10 05 65, D-98684 Ilmenau, Germany

E-mail: roland.moews@tu-ilmenau.de

Carsten Trunk, Institut für Mathematik,

Fakultät für Mathematik und Naturwissenschaften, Technische Universität Ilmenau, Postfach 10 05 65, D-98684 Ilmenau, Germany

E-mail: carsten.trunk@tu-ilmenau.de