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Eigenvalue estimates
for singular left-definite Sturm–Liouville operators
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Abstract. The spectral properties of a singular left-definite Sturm–Liouville operator JA are
investigated and described via the properties of the corresponding right-definite selfadjoint
counterpart A which is obtained by substituting the indefinite weight function by its absolute
value. The spectrum of the J -selfadjoint operator JA is real and it follows that an interval
.a; b/ � RC is a gap in the essential spectrum of A if and only if both intervals .�b; �a/ and
.a; b/ are gaps in the essential spectrum of the J -selfadjoint operator JA. As one of the main
results it is shown that the number of eigenvalues of JA in .�b; �a/ [ .a; b/ differs at most
by three from the number of eigenvalues of A in the gap .a; b/; as a byproduct results on the
accumulation of eigenvalues of singular left-definite Sturm–Liouville operators are obtained.
Furthermore, left-definite problems with symmetric and periodic coefficients are treated, and
several examples are included to illustrate the general results.
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1. Introduction

We investigate spectral properties of a Sturm–Liouville differential operator associ-
ated with the differential expression
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�
; r; p�1; q 2 L1

loc .R/ real; p > 0 a.e. (1.1)

In contrast to standard Sturm–Liouville theory we do not assume that the weight
function r is positive. Instead we consider indefinite Sturm–Liouville operators and
differential expressions; here it will be assumed that there exists some c 2 R such
that the weight function r is positive on .c; 1/ and negative on .�1; c/. Suppose

1The authors thank Gerald Teschl for fruitful remarks.
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that the corresponding definite differential expression
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(1.2)

is in the limit point case at both singular endpoints �1 and 1, or, equivalently, that
the maximal differential operator A associated with ` in the weighted Hilbert space
L2

jrj.R/ is selfadjoint. If J denotes the multiplication by sgn r , then formally the
indefinite and definite differential expressions � and ` are related via � D J `, and
hence JA is the maximal operator associated with � in L2

jrj.R/. Observe that the
indefinite Sturm–Liouville operator JA is neither symmetric nor selfadjoint in the
Hilbert space L2

jrj.R/ but JA is selfadjoint with respect to an indefinite inner product
(which has J as its Gramian); we shall say that JA is a J -selfadjoint operator in
L2

jrj.R/.
A modern topic in Sturm–Liouville theory is the study of qualitative and quanti-

tative spectral properties of indefinite Sturm–Liouville differential operators. One of
the standard approaches is to describe the spectrum �.JA/ of the indefinite operator
JA via the selfadjoint operator A and its spectral properties. In the left-definite case,
i.e. min �.A/ > 0, it follows that the spectrum of JA is real with a gap around 0 and
accumulates to C1 and �1, see, e.g., [8], [21], [30], and [1], [7] for corresponding
abstract results. If A is semibounded from below and the essential spectrum satis-
fies min �ess.A/ > 0, then the nonreal spectrum of JA consists of at most finitely
many eigenvalues, the essential spectrum �ess.JA/ is real with a gap around 0, and
�.JA/ \ R accumulates to C1 and �1, see, e.g., [8], [25], and [20]. The spectral
analysis of JA in the case min �ess.A/ � 0 is more difficult; we refer to [2], [4], and
[17] for more details and to [3], [5], [9], [10], [15], and [16] for related questions and
further references.

The main objective of the present paper is to prove a local estimate on the number
of eigenvalues of JA in terms of the number of eigenvalues of A in gaps of the essential
spectrum in the left-definite case, i.e. min �.A/ > 0. In this situation it is not difficult
to see that for 0 � a < b we have

.a; b/ \ �ess.A/ D ; if and only if ..�b; �a/ [ .a; b// \ �ess.JA/ D ;:

Our main result Theorem 4.1 reads as follows: if .a; b/ \ �ess.A/ D ;, then the
number of eigenvalues nA.a; b/ of A in .a; b/ differs at most by three from the
number nJA.�b; �a/ C nJA.a; b/ of eigenvalues of JA in .�b; �a/ [ .a; b/,

jnA.a; b/ � .nJA.�b; �a/ C nJA.a; b//j � 3:

Under the assumption that the coefficients p, q, and r are symmetric with respect
to 0 the estimate on the number of eigenvalues is improved in Theorem 4.4 for
intervals .a; b/ with the property 0 � a < min �.A/ < b � min �ess.A/. The
above estimates also yield results on accumulation properties of eigenvalues of JA.
More precisely, if, e.g., b 2 �ess.A/ and the eigenvalues of A in .a; b/ accumulate
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to b, then the eigenvalues of JA in the gaps .�b; �a/ and .a; b/ of the essential
spectrum accumulate to �b or b. This allows to transfer results on the accumulation
(or non-accumulation) of eigenvalues to the boundary of the essential spectrum of
definite Sturm–Liouville operators (as, e.g., the classical Kneser criterion from [19]
or recent extensions of it in [12], [13], [23], and [24]) into the left-definite setting;
see Section 5.1 for more details.

The paper is organized as follows. In Section 2 the operators A, JA, and the
Dirichlet operators associated with the restrictions `C and `� of the definite differen-
tial expression ` onto .c; 1/ and .�1; c/ are introduced and some simple properties
of their spectra and essential spectra are collected. Section 3 establishes the connec-
tion of the poles and zeros of the Titchmarsh–Weyl coefficients mC, m� associated
with `C and `�, respectively, with the poles and zeros of the Titchmarsh–Weyl co-
efficient M associated with � . This connection is then used to describe the isolated
eigenvalues of A and JA in terms of the poles and zeros of the functions mC, m�
and M . The representation of the function M in terms of a Nevanlinna function in
Proposition 3.4 and the corresponding monotonicity properties are the crucial ingre-
dients in the proofs of our main results Theorem 4.1 and Theorem 4.4 in Section 4.
In Section 5 Kneser’s criterion is applied in the left-definite setting and the general
results are illustrated in this situation. Furthermore, a class of periodic problems
is considered (see also [22], [26] and [30], � 12.8, for a slightly different indefinite
periodic situation), and a simple solvable problem is briefly discussed.

2. Preliminaries on definite and indefinite Sturm–Liouville operators

Let r; p�1; q 2 L1
loc .R/ be real valued functions with p > 0 and r 6D 0 almost

everywhere. We consider the differential expressions
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and ` D 1

jr j
�
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�

from (1.1) and (1.2). In this section we collect some simple properties on the spectra
of the associated maximal operators. It is assumed that the following condition (I)
holds for the weight function r :

(I) There exists c 2 R such that the restriction rC D r�.c;1/ is positive almost
everywhere and the restriction r� D r�.�1;c/ is negative almost everywhere.

The restrictions of the functions p and q onto the intervals .c; 1/ and .�1; c/ will
be denoted by pC, qC and p�, q�, respectively.

The space of all (equivalence classes of) complex valued measurable functions f

such that jf j2jr j 2 L1.R/ is denoted by L2
jrj.R/. Equipped with the scalar product

.f; g/ D
Z

R
f .x/ g.x/ jr.x/j dx; f; g 2 L2

jrj.R/; (2.1)
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this space is a Hilbert space. The maximal operator Af D f̀ associated with the
definite Sturm–Liouville expression ` in L2

jrj.R/ is defined on the dense subspace

D D ˚
f 2 L2

jrj.R/ W f; pf 0 locally absolutely continuous; f̀ 2 L2
jrj.R/

�
:

We denote by DC and D� the spaces of functions on .c; 1/ and .�1; c/ which are
restrictions of functions from D onto .c; 1/ and .�1; c/, respectively. Throughout
this paper it will be assumed that A satisfies the following condition (II):

(II) The maximal operator Af D f̀ defined on dom A D D is selfadjoint in L2
jrj.R/

and min �.A/ > 0 holds.

Recall that A is selfadjoint if and only if the definite Sturm–Liouville expression ` is
in the limit point case at both singular endpoints C1 and �1.

Besides the definite inner product .�; �/ in (2.1) the space L2
jrj.R/ will also be

equipped with the indefinite inner product Œ�; �� defined by

Œf; g� D
Z

R
f .x/ g.x/ r.x/ dx; f; g 2 L2

jrj.R/:

The space L2
r .R/ D .L2

jrj.R/; Œ�; ��/ is a Krein space, the inner products .�; �/ and Œ�; ��
are connected via the fundamental symmetry .Jf /.x/ D sgn .r.x//f .x/, x 2 R,
that is, the relations

.Jf; g/ D Œf; g� and Œf; g� D .Jf; g/; f; g 2 L2
jrj.R/;

hold, see, e.g., [1] and [7]. Note that formally we have � D J `. The maximal operator
associated with � coincides with JA. This operator is selfadjoint with respect to the
indefinite inner product Œ�; ��; we shall say that JA is J -selfadjoint in the Hilbert
space L2

jrj.R/. As a consequence of condition (II) and well-known properties of
J -nonnegative operators (see, e.g., [7]) we obtain the next proposition.

Proposition 2.1. Assume that conditions (I) and (II) hold. Then the indefinite Sturm–
Liouville operator

JAf D �f D 1

r
.�.pf 0/0 C qf /; f 2 dom JA D D;

is a J -selfadjoint operator in L2
jrj.R/ with

�.JA/ � R and 0 2 �.JA/:

Each eigenvalue � of JA is simple, i.e., dim ker.JA � �/ D 1 and there is no Jordan
chain of length greater than one.
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For a more detailed analysis of the spectrum of JA it is useful to consider the
(definite) differential expressions

`C D 1

rC

�
� d

dx
pC

d

dx
C qC

�
and `� D � 1

r�

�
� d

dx
p�

d

dx
C q�

�
(2.2)

and the associated differential operators in the subspaces L2
rC

.c; 1/ and L2�r�
.�1; c/

which consist of restrictions of functions from L2
jrj.R/ onto the intervals .c; 1/ and

.�1; c/, respectively. It follows from condition (I) that L2
rC

.c; 1/ and L2�r�
.�1; c/

equipped with

.h1; h2/C D
Z 1

c

h1.x/ h2.x/ rC.x/ dx; h1; h2 2 L2
rC

.c; 1/;

.k1; k2/� D
Z c

�1
k1.x/ k2.x/ .�r�.x// dx; k1; k2 2 L2�r�

.�1; c/;

are Hilbert spaces. Since ` is in the limit point case at C1 and �1 it follows that
the (restricted) differential expressions `C and `� are in the limit point case at C1
and �1, respectively, and regular at c. In Section 3 below we will make use of the
Lagrange identities

.`Ch1; h2/C � .h1; `Ch2/C D .pCh0
1/.c/h2.c/ � h1.c/.pCh0

2/.c/;

.`�k1; k2/� � .k1; `�k2/� D �.p�k0
1/.c/k2.c/ C k1.c/.p�k0

2/.c/;
(2.3)

which hold for all h1; h2 2 DC and k1; k2 2 D�. The Dirichlet operators

BCh D `Ch; dom BC D ˚
h 2 DC W h.c/ D 0

�
;

B�k D `�k; dom B� D ˚
k 2 D� W k.c/ D 0

�
;

(2.4)

associated with `C and `� in (2.2) are selfadjoint in the Hilbert spaces L2
rC

.c; 1/

and L2�r�
.�1; c/, respectively. Then the orthogonal sums B D BC ˚ B� and

JB D BC ˚ .�B�/ are selfadjoint operators in L2
jrj.R/. The next lemma on the

spectrum and essential spectrum of the selfadjoint operators A, B , and B˙ will be
useful later on. For a closed operator T in a Hilbert space the essential spectrum
�ess.T / consists of all � 2 C such that T � � is not a Fredholm operator. Note
that for a selfadjoint operator or a J -nonnegative operator T with �.T / 6D ; the
set �ess.T / coincides with those spectral points which are no isolated eigenvalues of
finite multiplicity.

Lemma 2.2. Assume that conditions (I) and (II) are satisfied. For the spectra of the
operators A, B and B˙ the following relations hold:

(i) min �.A/ � min �.B/ and min �.A/ � min �.B˙/;

(ii) �ess.A/ D �ess.BC/ [ �ess.B�/ D �ess.B/ and �ess.B˙/ � �ess.A/;
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(iii) min �ess.A/ D min fmin �ess.BC/; min �ess.B�/g D min �ess.B/.

(iv) Denote by EA and EB the spectral functions of A and B , respectively. For an
open interval � with � \ �ess.A/ D ; the estimate

j dim ran EA.�/ � dim ran EB.�/ j � 1

holds if the corresponding quantities are finite. Otherwise dim ran EA.�/ D 1
if and only if dim ran EB.�/ D 1.

Observe that the case dim ran EA.�/ D dim ran EB.�/ D 1 can only occur if
one or both of the endpoints of � belong to the essential spectrum of A.

Proof. (i) Define the closed symmetric operators SC and S� in the Hilbert spaces
L2

rC
.c; 1/ and L2�r�

.�1; c/ by

SCh D `Ch; dom SC D ˚
h 2 DC W h.c/ D .pCh0/.c/ D 0

�
and

S�k D `�k; dom S� D ˚
k 2 D� W k.c/ D .p�k0/.c/ D 0

�
:

As the orthogonal sum SC ˚ S� is a restriction of A it follows that SC ˚ S� is a
symmetric operator with a lower bound larger or equal to min �.A/ which is positive
by condition (II). Clearly, also SC and S� are symmetric operators with lower bounds
larger or equal to min �.A/. As BC and B� are the Friedrichs extensions of SC and
S� (see [27], Theorem 3 and Corollary 2) also their lower bounds are larger or equal
to min �.A/. This shows the second statement in (i); the first assertion in (i) is an
immediate consequence.

The assertions in (ii) and (iii) follow from

dim ran..B � �/�1 � .A � �/�1/ D 1; � 2 �.A/ \ �.B/; (2.5)

whereas (2.5) itself is a consequence of the fact that A and B are selfadjoint extensions
of the symmetric operator Rf D f̀ , dom R D ff 2 D W f .c/ D 0g, which has
defect numbers .1; 1/. This together with [6], � 9.3, Theorem 3, implies (iv).

The following proposition on the essential spectrum of the indefinite Sturm–
Liouville operator JA complements the statements in Proposition 2.1. It is a simple
consequence of Lemma 2.2 and dim ran..JA � �/�1 � .JB � �/�1/ D 1 for all
� 2 �.JA/ \ �.JB/. Note that �.JA/ \ �.JB/ 6D ; by Proposition 2.1.

Proposition 2.3. Assume that conditions (I) and (II) hold. Then the essential spec-
trum of the indefinite Sturm–Liouville operator JA is given by

�ess.JA/ D �ess.JB/ D .�ess.BC/ [ �ess.�B�// � .�ess.A/ [ �ess.�A//:
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3. The functionM

In this section we define a function M with the help of Titchmarsh–Weyl coefficients
mC and m� associated with the differential expressions `C and `� in (2.2). Since it
turns out that the zeros of M coincide with the isolated eigenvalues of the indefinite
Sturm–Liouville operator JA we shall study the monotonicity properties of M , which
then lead to eigenvalue estimates in the next section. As a byproduct we also obtain
a result on the size of the spectral gap of JA around zero in Proposition 3.3 below.

Assume throughout this section that conditions (I) and (II) hold and let BC
and B� be the selfadjoint Dirichlet operators in the Hilbert spaces L2

rC
.c; 1/ and

L2�r�
.�1; c/ from (2.4), and let � 2 �.BC/ and 	 2 �.B�/. As `C and `� are in

the limit point case at C1 and at �1, respectively, there are unique (up to a constant
multiple) solutions h� 2 DC and k� 2 D� of the differential equations

`Ch D �h and `�k D 	k:

The functions m˙ W �.B˙/ ! C are defined by

mC.�/ D .pCh0
�
/.c/

h�.c/
and m�.	/ D .p�k0

�/.c/

k�.c/
:

It is obvious that the poles of m˙ coincide with the isolated eigenvalues of B˙ and
that the poles of the function � 7! m�.��/ coincide with the isolated eigenvalues
of �B�. The functions m˙ are holomorphic on �.B˙/, they do not admit analytic
extensions to points of �.B˙/, and they are symmetric with respect to the real axis,
i.e.

mC. N�/ D mC.�/ and m�. N	/ D m�.	/:

If we fix solutions h� and k� with h�.c/ D 1 and k�.c/ D 1 it follows from (2.3)
that the relations

.� � N�/.h�; h�/C D .`Ch�; h�/C � .h�; `Ch�/C D mC.�/ � mC.�/;

. N	 � 	/.k�; k�/� D .k�; `�k�/� � .`�k�; k�/� D m�.	/ � m�.	/;

hold. Therefore, ˙m˙ are so-called Nevanlinna functions. Recall that a complex-
valued function N is said to be a Nevanlinna function if N is holomorphic on CnR
and the properties

N. N�/ D N.�/ and
Im N.�/

Im �
� 0

hold for all � 2 CnR. For later purposes it is important to note that a Nevanlinna
function N is monotone increasing on real intervals which belong to its domain of
holomorphy and that N is equal to a constant on such an interval if and only if N is
a constant function on C, see, e.g., [18].

In the following we will relate the zeros and poles of the function

M.�/ D mC.�/ � m�.��/; � 2 �.BC/ \ �.�B�/; (3.1)
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with the eigenvalues of the operators JA and JB . Clearly, the domain of holo-
morphy of M contains the interval .�min �.B�/; min �.BC//, the poles of M in
Œmin �.BC/; 1/ and .�1; �min �.B�/� coincide with the poles of � 7! mC.�/

and � 7! m�.��/, respectively. Hence each pole of M in Œmin �.BC/; 1/ is an
isolated eigenvalue of BC and each pole of M in .�1; �min �.B�/� is an isolated
eigenvalue of �B�. Therefore, each pole of M is an isolated eigenvalue of the oper-
ator JB D BC ˚ .�B�/ and, vice versa, every isolated eigenvalue of JB is a pole
of M . This shows assertion (ii) in the next proposition.

Proposition 3.1. For � 62 �ess.JA/ the following assertions hold:

(i) � 2 �p.JA/ if and only if � is a zero of M;

(ii) � 2 �p.JB/ if and only if � is a pole of M .

Proof. It remains to show assertion (i). For this observe first that � 62 �ess.JA/ D
�ess.BC/[�ess.�B�/ is an eigenvalue of JA with corresponding eigenfunction f� 2
D if and only if f� D h� ˚ k��, where h� 2 DC and k�� 2 D� are the (nontrivial)
restrictions of f� onto .c; 1/ and .�1; c/, respectively, which satisfy the differential
equations

`Ch� D �h�; `�k�� D ��k��; (3.2)

and the conditions

h�.c/ D k��.c/; .pCh0
�/.c/ D .p�k0

��/.c/: (3.3)

As a simple consequence we conclude

�p.JA/ \ �p.BC/ \ �.�B�/ D ; and �p.JA/ \ �p.�B�/ \ �.BC/ D ;:

Furthermore, �p.BC/ \ �p.�B�/ D ; by Lemma 2.2(i) and condition (II) and,
hence, it is sufficient to prove the equivalence in (i) for � 2 �.BC/ \ �.�B�/.

Assume first that � 2 �p.JA/ \ �.BC/ \ �.�B�/, so that (3.2) and (3.3) hold for
some corresponding eigenfunction f� D h� ˚ k�� of JA and h�.c/ D k��.c/ 6D 0.
This yields

mC.�/ D .pCh0
�
/.c/

h�.c/
D .p�k0

��
/.c/

k��.c/
D m�.��/ (3.4)

and hence M.�/ D 0. Conversely, let � 2 �.BC/ \ �.�B�/ be a zero of M and
let h� 2 DC and k�� 2 D� be the (nontrivial) solutions of (3.2) which satisfy
h�.c/ D k��.c/ 6D 0. From M.�/ D 0 we obtain mC.�/ D m�.��/ and it follows
from (3.4) that also the second condition in (3.3) is satisfied by h� and k��. Therefore
f� D h� ˚ k�� belongs to D and is an eigenfunction of JA corresponding to �.

In a similar way as in Proposition 3.1 the eigenvalues of A and of B D BC ˚ B�
are related to the poles and zeros of the functions mC and m�. Since the isolated
eigenvalues of BC and B� coincide with the poles of mC and m� it is clear that � is
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an eigenvalue of B if and only if � is a pole of mC or m�; this shows item (ii) in the
next proposition. For the convenience of the reader also the first item will be shown
in detail.

Proposition 3.2. For � 62 �ess.A/ the following assertions hold:

(i) � 2 �p.A/ if and only if � is a either a zero of mC � m� or a pole of both mC
and m�;

(ii) � 2 �p.B/ if and only if � is a pole of mC or of m�.

Proof. It remains to show assertion (i). For this observe first that � 62 �ess.A/ D
�ess.BC/ [ �ess.B�/ is an eigenvalue of A with corresponding eigenfunction f� 2 D
if and only if f� D h� ˚ k�, where h� 2 DC and k� 2 D� are the (nontrivial)
restrictions of f� onto .c; 1/ and .�1; c/, respectively, which satisfy the differential
equations

`Ch� D �h�; `�k� D �k�; (3.5)

and the conditions

h�.c/ D k�.c/; .pCh0
�/.c/ D .p�k0

�/.c/: (3.6)

Hence

�p.A/ \ �p.BC/ \ �.B�/ D ; and �p.A/ \ �p.B�/ \ �.BC/ D ;:

Assume first that � is an eigenvalue of A. Then either � 2 �.BC/ \ �.B�/ or
� 2 �p.BC/\�p.B�/. In the first case (3.6) implies mC.�/ D m�.�/ and hence � is
a zero of mC �m�. In the second case � is a pole of both mC and m�. Conversely, let
h� 2 DC and k� 2 D� be nontrivial solutions of (3.5) which satisfy h�.c/ D k�.c/.
If � is a zero of mC � m� then � 2 �.BC/ \ �.B�/ and h�.c/ D k�.c/ 6D 0, so that
the assumption mC.�/�m�.�/ D 0 implies the second condition in (3.6). Therefore
f� D h� ˚k� belongs to D and is an eigenfunction of A corresponding to �. If � is a
pole of mC and of m�, then � 2 �p.BC/\�p.B�/ and hence the nontrivial solutions
h� 2 DC and k� 2 D� of (3.5) satisfy h�.c/ D k�.c/ D 0 and .pCh0

�
/.c/ 6D 0 and

.p�k0
�
/.c/ 6D 0. Since h� and k� are unique up to a constant multiple, it follows that

the function

f� D .
h�/ ˚ k�; where 
 D .p�k0
�
/.c/

.pCh0
�
/.c/

;

belongs to D and is an eigenfunction of A corresponding to �.

As a consequence of the above propositions we obtain a statement on the size of
the spectral gap of JA around 0; cf. Proposition 2.1. We mention that item (ii) in
the next proposition can also be deduced from [28], Behauptung 3, applied to the
inverses of A and JA.
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Proposition 3.3. Assume that conditions (I) and (II) are satisfied. Then the following
statements hold:

(i) If min �.A/ < min �ess.A/, then Œ�min �.A/; min �.A/� � �.JA/;

(ii) If min �.A/ D min �ess.A/, then .�min �.A/; min �.A// � �.JA/.

Proof. Let 0 < �1 D min �.A/. We show first that the inclusion

.�min �.A/; min �.A// � �.JA/ (3.7)

holds under any of the assumptions in (i) and (ii), i.e. min �.A/ � min �ess.A/. In
fact, by Lemma 2.2 and Proposition 3.2(i) we have that mC � m� is holomorphic
and does not vanish on .��1; �1/. Since mC and �m� are Nevanlinna functions, it
follows that mC is increasing and m� is decreasing on .��1; �1/. Thus, the images
of mC and m� of .��1; �1/ are intervals which do not intersect. Consequently, the
images of mC and m�.��/ of .��1; �1/ are also intervals which do not intersect,
so that M does not vanish on .��1; �1/. This, together with Proposition 3.1(i)
implies that there are no eigenvalues of JA in .��1; �1/, which yields (3.7) and
hence assertion (ii) has been shown.

In order to prove assertion (i) it remains to verify that �1 and ��1 are not eigen-
values of JA if min �.A/ < min �ess.A/ holds. We provide the argument for �1; a
similar reasoning applies to ��1. By Proposition 3.2(i) either mC.�1/ D m�.�1/ or
both functions mC and m� have a pole at �1. In the first case we have

M.�1/ D mC.�1/ � m�.��1/ < mC.�1/ � m�.�1/ D 0

since �m� is a nonconstant Nevanlinna function which is holomorphic on .�1; �1�

(m� is not constant as otherwise �.B�/ D ;). In particular, M.�1/ 6D 0 and hence
�1 is not an eigenvalue of JA by Proposition 3.1(i). If mC and m� both have a
pole at �1 then it follows from the holomorphy of m� on .�1; �1/ that the function
� 7! m�.��/ is holomorphic in �1 and, hence, M.�/ D mC.�/ � m�.��/ has a pole
at �1. Again Proposition 3.1(i) implies �1 2 �.JA/.

Note that under the assumptions in Proposition 3.3 an upper estimate for the spec-
tral gap of JA can be given: If min �.A/ < min �ess.A/ and the smallest eigenvalue
�1 D min �.A/ of A is a zero of mC � m�, then it can be shown that the largest
negative eigenvalue �1;�.JA/ and the smallest positive eigenvalue �1;C.JA/ (i.e. the
endpoints of the spectral gap) of JA satisfy

min �.�B�/ < �1;�.JA/ and �1;C.JA/ < min �.BC/:

In the case that �1 is a pole of mC and m� the above estimates hold with min �.�B�/

and min �.BC/ replaced by the second largest eigenvalue of �B� and the sec-
ond smallest eigenvalue of BC if these eigenvalues exist, and by min �ess.BC/ and
max �ess.�B�/ otherwise.

The next proposition and corollary will play an important role in the proof of our
main result in the next section.
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Proposition 3.4. The function M admits the representation

M.�/ D �1

˛ C �N.�/
; (3.8)

where N is a Nevanlinna function which is not identically zero on C and ˛ is a real
constant. In particular, M is monotonously increasing (monotonously decreasing)
on subintervals of RC (R�, respectively) which belong to its domain of holomorphy.

Proof. Let � 2 �.JA/ \ �.BC/ \ �.�B�/ and let h�; h0 2 DC, k��; k0 2 D� be
the unique functions that satisfy

`Ch� D �h�; `Ch0 D 0; `�k�� D ��k��; `�k0 D 0; (3.9)

and the conditions

h�.c/ D k��.c/; .p�k0
��/.c/ � .pCh0

�/.c/ D 1;

h0.c/ D k0.c/; .p�k0
0/.c/ � .pCh0

0/.c/ D 1:
(3.10)

We claim that the functions f� D h� ˚ k�� and f0 D h0 ˚ k0 are related via

f� D f0 C �.JA � �/�1f0: (3.11)

For this observe that �.JA � �/�1f0 2 D and, hence, g D f0 C �.JA � �/�1f0

satisfies the same conditions as f0 D h0 ˚ k0 in (3.10). Hence, if we write g in the
form g D h ˚ k with h 2 DC and k 2 D�, then we have

h.c/ D k.c/ and .p�k0/.c/ � .pCh0/.c/ D 1:

As .���/�.JA��/�1f0 D �f0 we conclude that ˙`˙�� applied to the restriction of
�.JA��/�1f0 onto .c; 1/ and .�1; c/ equals �h0 and �k0, respectively. Therefore

.`C � �/h D .`C � �/h0 C �h0 D 0;

.`� C �/k D .`� C �/k0 � �k0 D 0;

and it follows that h and k satisfy the equations `Ch D �h and `�k D ��k. Since
the function f� D h� ˚ k�� in (3.9) and (3.10) is unique we obtain (3.11).

From

M.�/ D .pCh0
�
/.c/ � .p�k0

��
/.c/

f�.c/
D � 1

f�.c/
;

M.0/ D .pCh0
0/.c/ � .p�k0

0/.c/

f0.c/
D � 1

f0.c/
2 R;
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we conclude M.�/ ¤ 0 for � 2 �.JA/\�.BC/\�.�B�/ and M.0/ ¤ 0. With (2.3)
we have

�Œf�; f0� D �.h�; h0/C � �.k��; k0/�
D .`Ch�; h0/C � .h�; `Ch0/C C .`�k��; k0/� � .k��; `�k0/�
D .pCh0

�/.c/h0.c/ � h�.c/.pCh0
0/.c/ � .p�k0

��/.c/k0.c/

C k��.c/.p�k0
0/.c/

D f�.c/ � f0.c/:

Thus �M �1 admits the representation

�M �1.�/ D �M �1.0/ C �Œf�; f0�

and with (3.11) and N.�/ D Œ.1 C �.JA � �/�1/f0; f0� we obtain

� M �1.�/ D �M �1.0/ C �N.�/: (3.12)

A simple calculation shows

Im N.�/ D Im �
�
A.JA � �/�1f0; .JA � �/�1f0

�
and since A is nonnegative by condition (II) it follows that N is a Nevanlinna function,
i.e. M admits a representation of the from (3.8) with ˛ D �M.0/�1.

Note that N is not equal to zero on real intervals which belong to its domain of
holomorphy, as otherwise N � 0 and (3.12) imply that M in (3.1) is equal to a
constant, so that the Titchmarsh–Weyl coefficients � 7! mC.�/ and � 7! m�.��/ of
BC and �B� differ by a real constant; a contradiction to �.BC/\�.�B�/ D ;. Now
the remaining statements of Proposition 3.4 follow from the fact that the Nevanlinna
function N is monotonously increasing on real intervals which belong to its domain
of holomorphy.

Corollary 3.5. In between two consecutive positive (resp. negative) poles 
; 
0 of
M such that the interval .
; 
0/ belongs to the domain of holomorphy of M there is
a unique zero of M . Similarly, in between two consecutive positive (resp. negative)
zeros �; �0 of M such that M is meromorphic in an open neighbourhood of the interval
.�; �0/ there is a unique pole of M in .�; �0/.

The poles of M in Œmin �.BC/; 1/ (resp. .�1; �min �.B�/�) coincide with the
poles of � 7! mC.�/ (resp. � 7! m�.��/), and hence with the isolated eigenvalues
of BC (resp. �B�). From this we obtain with Corollary 3.5 and Proposition 3.1(i)
interlacing results of the positive eigenvalues of JA with respect to the eigenvalues
of BC and of the negative eigenvalues of JA with respect to the eigenvalues of �B�.
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Corollary 3.6. In between any two consecutive isolated eigenvalues of BC (resp.
�B�) in a gap of �ess.BC/ (resp. �ess.�B�/) there is exactly one isolated eigenvalue
of JA. Conversely, in between any two consecutive isolated positive (resp. negative)
eigenvalues of JA in a gap of �ess.JA/ there is exactly one isolated eigenvalue of BC
(resp. �B�).

4. Eigenvalue estimates in gaps of the essential spectrum

In this section we prove estimates on the number of eigenvalues of JA in a gap of
the essential spectrum. Recall that all eigenvalues of the operators A, JA, BC, �B�
and, hence, JB are simple. For a selfadjoint or J -selfadjoint operator T and a real
interval .a; b/ such that .a; b/\�ess.T / D ; the number of eigenvalues of T in .a; b/

will be denoted by nT .a; b/, i.e.

nT .a; b/ D ]f� 2 �p.T / W � 2 .a; b/g:
The following theorem is the main result of this note. It provides a local estimate

on the number of eigenvalues of JA in terms of the number of eigenvalues of A in
a gap of the essential spectrum. Recall that by Lemma 2.2 and Proposition 2.3 we
have for 0 � a < b

.a; b/ \ �ess.A/ D ; if and only if ..�b; �a/ [ .a; b// \ �ess.JA/ D ;:

Theorem 4.1. Assume that conditions (I) and (II) hold for the Sturm–Liouville opera-
tor A and let JA be the corresponding indefinite Sturm–Liouville differential operator.
For 0 � a < b such that .a; b/ \ �ess.A/ D ; the estimateˇ̌

nA.a; b/ � �
nJA.�b; �a/ C nJA.a; b/

�ˇ̌� 3 (4.1)

is valid if the corresponding quantities are finite; otherwise

nA.a; b/ D 1 if and only if nJA.�b; �a/ C nJA.a; b/ D 1:

Observe that the case nA.a; b/ D 1 (and, hence, nJA.�b; �a/CnJA.a; b/ D 1)
can only occur if one or both of the endpoints a and b belong to the essential spectrum
of A which implies the following corollary.

Corollary 4.2. Let A, JA and .a; b/ be as in Theorem 4.1 and assume, in addition,
that b 2 �ess.A/, or, equivalently, that b 2 �ess.JA/ or �b 2 �ess.JA/. Then the
eigenvalues of A in .a; b/ accumulate to b if and only if the eigenvalues of JA in
.�b; �a/ [ .a; b/ accumulate to b or �b.

Proof of Theorem 4.1. Let .a; b/ be as in the theorem and suppose that the number
nA.a; b/ of eigenvalues of A in .a; b/ is finite. Since the eigenvalues of A are all sim-
ple, nA.a; b/ coincides with dim ran EA.a; b/ and we conclude from Lemma 2.2(iv)
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that dim ran EB.a; b/ differs at most by one from nA.a; b/. Hence the number of
eigenvalues nBC

.a; b/ C n�B�
.�b; �a/ of JB D BC ˚ �B� differs at most by one

from nA.a; b/ and by Proposition 3.1(ii) the same holds true for the number of poles
of the function M in .�b; �a/ [ .a; b/. It follows from Corollary 3.5 that M has at
least nA.a; b/ � 3 zeros in .�b; �a/ [ .a; b/, so that

nJA.�b; �a/ C nJA.a; b/ � nA.a; b/ � 3

by Proposition 3.1(i). In order to show (4.1) suppose that

nJA.�b; �a/ C nJA.a; b/ > nA.a; b/ C 3:

In this case Proposition 3.1(i) yields that there are more than nA.a; b/ C 3 zeros of
M in .�b; �a/ [ .a; b/ and hence there are more than nA.a; b/ C 1 poles of M in
.�b; �a/ [ .a; b/ by Corollary 3.5. On the other hand, by the above reasoning the
number of poles of M in .�b; �a/ [ .a; b/ differs at most by one from nA.a; b/, a
contradiction and (4.1) is shown.

From (4.1) it follows that for a (or b) in the essential spectrum of A the quantity
nA.a; b/ is finite if and only if the quantity nJA.�b; �a/ C nJA.a; b/ is finite.

Let us now consider the case where the coefficients p; q and r satisfy some
symmetry properties with respect to c. For simplicity we assume c D 0 and for
the following we suppose:

(III) The functions p and q are even and r is odd, i.e.

p.x/ D p.�x/; q.x/ D q.�x/ and r.x/ D �r.�x/ for a.e. x 2 R:

Obviously, (III) implies for the operators BC and B� from (2.4)

�.BC/ D �.B�/ and �ess.BC/ D �ess.B�/:

Together with Proposition 2.3 we conclude

�ess.JA/ D �ess.A/ [ �ess.�A/:

Furthermore, if h� 2 DC and k� 2 D� are related via h�.x/ D k�.�x/, x 2 RC,
then we have

`Ch� D �h�; if and only if `�k� D �k�:

Together with .pCh0
�
/.0/ D �.p�k0

�
/.0/ this implies mC.�/ D �m�.�/ and it

follows that the function M in (3.1) is given by

M.�/ D mC.�/ C mC.��/: (4.2)

Observe that by Proposition 3.1(i) the eigenvalues of JA are symmetric with respect
to zero. In particular nJA.a; b/ D nJA.�b; �a/ in Theorem 4.1. This implies the fol-
lowing statement which is a slight improvement of the estimate (4.1) in Theorem 4.1
if condition (III) holds and nA.a; b/ is even.
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Corollary 4.3. Let the assumptions be as in Theorem 4.1 and assume, in addition,
that condition (III) is satisfied. If nA.a; b/ is even, then the estimatesˇ̌

1
2
nA.a; b/ � nJA.a; b/

ˇ̌ D ˇ̌
1
2
nA.a; b/ � nJA.�b; �a/

ˇ̌ � 1

are valid.

The estimates in Theorem 4.1 and Corollary 4.3 will be further improved in
Theorem 4.4 below for the case that condition (III) holds and instead of a gap in
the essential spectrum we consider the special situation of an interval .˛; ˇ/ with
0 � ˛ < min �.A/ < ˇ � min �ess.A/. It is worth mentioning that the following
result for the comparison of the quantities nJA.˛; ˇ/ and nA.˛; ˇ/ is optimal.

Theorem 4.4. Assume that conditions (I), (II), and (III) hold for the Sturm–Liouville
operator A, that min �.A/ < min �ess.A/ and let JA be the corresponding indefinite
Sturm–Liouville differential operator. For 0 � ˛ < min �.A/ < ˇ � min �ess.A/

the following holds:

nJA.˛; ˇ/ D nJA.�ˇ; �˛/ D
´

1
2
nA.˛; ˇ/ if nA.˛; ˇ/ is even;

1
2
.nA.˛; ˇ/ ˙ 1/ if nA.˛; ˇ/ is odd;

(4.3)

where one of the quantities nA.˛; ˇ/, nJA.˛; ˇ/, nJA.�ˇ; �˛/ is infinite if and only
if all the quantities nA.˛; ˇ/, nJA.˛; ˇ/, nJA.�ˇ; �˛/ are infinite.

In particular, the eigenvalues of A below min �ess.A/ accumulate to min �ess.A/

if and only if the eigenvalues of JA in the interval .�min �ess.A/; min �ess.A// accu-
mulate to �min �ess.A/ and to min �ess.A/.

Observe that the case nA.˛; ˇ/ D 1 (and, hence, nJA.˛; ˇ/ D nJA.�ˇ; �˛/ D
1) can only occur if the endpoint ˇ belongs to the essential spectrum of A.

Proof. Let �1 D min �.A/ be the smallest eigenvalue of A. By Proposition 3.2(i)
and (4.2) the isolated eigenvalues of the Sturm–Liouville operator A coincide with
the poles and zeros of the function mC. Hence �1 is either a pole or a zero of mC.
Since mC is a Nevanlinna function the poles and zeros of mC in .˛; ˇ/ alternate.
Therefore one of the following four cases occurs if n D nA.˛; ˇ/ < 1:

(i) n is even and �1 is a pole of mC;

(ii) n is even and �1 is a zero of mC;

(iii) n is odd and �1 is a pole of mC;

(iv) n is odd and �1 is a zero of mC.

In case (i) the function mC has n
2

poles and n
2

zeros in .˛; ˇ/. Moreover, the largest
eigenvalue �n of A in .˛; ˇ/ is a zero of mC and hence mC is positive on .�1; �1/[
.�n; ˇ/. The function M has n

2
poles in Œ�1; �n�1� and it follows from Corollary 3.5
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that there are n
2

� 1 zeros of M in .�1; �n�1/. Since mC is positive on .�1; �1/

and mC.�n/ D 0 it follows that M has also one zero in .�n�1; �n/, and is positive
on .˛; �1/ and Œ�n; ˇ/. Now Proposition 3.1(i) implies nJA.˛; ˇ/ D n

2
D 1

2
nA.˛; ˇ/

and by symmetry also nJA.�ˇ; �˛/ D n
2

D 1
2
nA.˛; ˇ/. The simple modifications

of this argument for case (ii) are left to the reader.
In case (iii) the function mC has 1

2
.n C 1/ poles and 1

2
.n � 1/ zeros in .˛; ˇ/.

Moreover, mC is positive on .�1; �1/ and since the largest eigenvalue �n of A in
.˛; ˇ/ is a pole mC is negative on .�n; ˇ/. The function M has 1

2
.n C 1/ poles in

Œ�1; �n� and it follows from Corollary 3.5 that there are 1
2
.n�1/ zeros of M in .�1; �n/.

Furthermore, since mC is positive on .�1; �1/ and negative on .�n; ˇ/ there may
be one more zero of M in .�n; ˇ/. Now Proposition 3.1(i) implies nJA.˛; ˇ/ D
1
2
.n ˙ 1/ D 1

2
.nA.˛; ˇ/ ˙ 1/ and by symmetry also nJA.�ˇ; �˛/ D 1

2
.n ˙ 1/ D

1
2
.nA.˛; ˇ/ ˙ 1/. The simple modifications of this argument for case (iv) are left to

the reader. Relation (4.3) is proved.
From (4.3) it follows also that for ˇ in the essential spectrum of A the quantity

nA.˛; ˇ/ is finite if and only if the quantities nJA.˛; ˇ/ and nJA.�ˇ; �˛/ are finite.

The next proposition on the interlacing properties of the eigenvalues of JA with
respect to the eigenvalues of A can be shown with the same methods as Theorem 4.4.
If .a; b/ is a gap in �ess.A/ we denote by .�k/ the eigenvalues of A in increasing order,
where k D 1; : : : ; nA.a; b/ if nA.a; b/ is finite, k 2 N (k 2 �N) if the eigenvalues
accumulate to b (resp. a), and k 2 Z if both endpoints a and b are accumulation
points of eigenvalues of A.

Proposition 4.5. Assume that conditions (I), (II), and (III) hold for the Sturm–
Liouville operator A and let JA be the corresponding indefinite Sturm–Liouville
differential operator. Let .a; b/ \ �ess.A/ D ; and denote by .�k/ the eigenvalues of
A in .a; b/ in increasing order. Then exactly one of the following statements hold:

(i) each interval .�2k�1; �2k/ contains exactly one eigenvalue of JA and each in-
terval Œ�2k; �2kC1� belongs to �.JA/;

(ii) each interval .�2k ; �2kC1/ contains exactly one eigenvalue of JA and each
interval Œ�2k�1; �2k� belongs to �.JA/.

Furthermore, in the case a < �1 D min �.A/ < b � min �ess.A/ statement (i)
holds, that is, for the positive eigenvalues �k.JA/ of JA ordered in an increasing
way we have

�k.JA/ 2 .�2k�1; �2k/ ; k D 1; 2; : : :

5. Examples

In this section some applications and examples illustrating the results in the previous
section are presented. We start with a variant of Kneser’s classical oscillation result
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in the context of indefinite Sturm–Liouville operators. As a second application a
periodic problem is treated and in a third explicit example the number of eigenvalues
of the indefinite operator is computed for a particularly simple potential.

5.1. Kneser’s result for left-definite Sturm–Liouville operators. In this first ex-
ample accumulation of the eigenvalues of JA to the essential spectrum is studied with
the help of Kneser’s classical result from [19], see also [11], Corollary XIII.7.57, and
[12], [13], [23], [24], [29] for possible generalizations. Here, for simplicity, let
r.x/ D sgn .x/, p.x/ D 1, and assume that q > 0 admits the positive limits

0 < q1 D lim
x!C1 q.x/ D lim

x!�1 q.x/:

Clearly, condition (I) holds with c D 0 and by well-known results (see, e.g., [29],
Theorem 6.3) the maximal Sturm–Liouville operator Af D �f 00 C qf , f 2 D,
satisfies condition (II). Here we have �ess.B˙/ D Œq1; 1/ and therefore

�ess.A/ D Œq1; 1/:

By Propositions 2.1 and 2.3 the essential spectrum of the J -selfadjoint indefinite
Sturm–Liouville operator JAf D sgn .�f 00 C qf /, f 2 D, is then given by

�ess.JA/ D .�1; �q1� [ Œq1; 1/:

Let us now make use of Kneser’s criterion: If

lim sup
x!1

x2.q.x/ � q1/ < �1

4
or lim sup

x!�1
x2.q.x/ � q1/ < �1

4
(5.1)

holds, then there are infinitely many eigenvalues of BC or B�, respectively, be-
low their essential spectrum and hence also the eigenvalues of A accumulate to
min �ess.A/. By Theorem 4.1 there are infinitely many eigenvalues of JA in the
corresponding gap .�q1; q1/ in �ess.JA/. In the present situation it follows also
that the eigenvalues of JA in .�q1; q1/ accumulate to q1 (�q1) if the first (second,
respectively) condition in (5.1) holds.

Similarly, if instead of (5.1) we have

lim inf
x!1 x2.q.x/ � q1/ > �1

4
and lim inf

x!�1 x2.q.x/ � q1/ > �1

4
;

then there are only finitely many eigenvalues of BC and B� below their essential spec-
trum and hence there are also only finitely many eigenvalues of A below min �ess.A/.
In this situation Theorem 4.1 implies that JA has only finitely many eigenvalues in
the corresponding gap around zero and their total number in .�q1; q1/ differs at
most by three of the number of eigenvalues of A below q1 D min �ess.A/.
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5.2. Periodic operators. Suppose that the coefficients jr j, p and q of the defi-
nite Sturm–Liouville expression ` are � -periodic for some � > 0 and assume that
essinf q=jr j is positive as well as r satisfies condition (I). Then condition (II) is
satisfied for the corresponding maximal operator A in L2

jrj.R/. Furthermore, let
�1 < �2 � �3 � : : : be the eigenvalues of the selfadjoint operator associated with `

restricted to functions in L2
jrj.0; �/ with the boundary conditions

�
f .0/

.pf 0/.0/

�
D

�
f .�/

.pf 0/.�/

�

and let 	1 � 	2 � 	3 � � � � be the eigenvalues of the selfadjoint operator associated
with ` restricted to functions in L2

jrj.0; �/ with the boundary conditions

�
f .0/

.pf 0/.0/

�
D �

�
f .�/

.pf 0/.�/

�
:

Then 0 < �1 < 	1 � 	2 < �2 � �3 < 	3 : : : and it is well-known that

�.A/ D �ess.A/ D Œ�1; 	1� [ Œ	2; �2� [ Œ�3; 	3� : : :

holds, see, e.g., [29], � 12. Here it follows that also �ess.BC/ D �ess.B�/ D �ess.A/

holds, and therefore by Proposition 2.3 the essential spectrum �ess.JA/ of JA has a
band structure, is symmetric with respect to 0 and is given by

: : : Œ�	3; ��3� [ Œ��2; �	2� [ Œ�	1; ��1� [ Œ�1; 	1� [ Œ	2; �2� [ Œ�3; 	3� : : : :

Since A has no eigenvalues in the (possible) gaps .	1; 	2/, .�2; �3/, .	3; 	4/; : : : ,
of �ess.A/ we conclude from Theorem 4.1 that each of the sets

.�	2; �	1/ [ .	1; 	2/; .��3; ��2/ [ .�2; �3/; .�	4; �	3/ [ .	3; 	4/; : : :

contains at most 3 eigenvalues of the indefinite Sturm–Liouville operator JA. Note
that by Proposition 3.3 we have .��1; �1/ � �.JA/. Furthermore, if the coefficients
r , p, and q satisfy the symmetry condition (III), then Corollary 4.3 implies that in
each of the (possible) gaps

: : : .�	4; �	3/; .��3; ��2/; .�	2; �	1/; .	1; 	2/; .�2; �3/; .	3; 	4/; : : :

of �ess.JA/ there is at most one eigenvalue.

5.3. A solvable problem with a hyperbolic cosine potential. As an explicit exam-
ple consider the situation r.x/ D sgn x, p.x/ D 1 and

q.x/ D .
 C 1/2 � 
.
 C 1/

cosh2.x/
for some 
 2 N:
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Obviously, conditions (I) and (III) are satisfied. Moreover, q.x/ � 
 C 1 and
limjxj!1 q.x/ D .
 C 1/2 imply that for the corresponding maximal operator A

we have min �.A/ � 
 C1 and �ess.A/ D Œ.
 C1/2; 1/. In particular, condition (II)
is also fulfilled. It is known (see, e.g., [14]), that the operator A has precisely 


eigenvalues in the interval .
 C 1; .
 C 1/2/. Therefore, the essential spectrum of the
corresponding indefinite Sturm–Liouville operator JA is given by

�ess.JA/ D .�1; �.
 C 1/2� [ Œ.
 C 1/2; 1/

and according to Theorem 4.4 the operator JA has �
2

eigenvalues in the interval
.
 C 1; .
 C 1/2/ if 
 is even and �˙1

2
eigenvalues if 
 is odd. The same holds for

the interval .�.
 C 1/2; �.
 C 1//; cf. Theorem 4.4. Note that by Proposition 3.3

 C 1 and �.
 C 1/ are no eigenvalues of JA.
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