
J. Spectr. Theory 1 (2011), 349–362
DOI 10.4171/JST/15

Journal of Spectral Theory
© European Mathematical Society

Some connections between almost periodic and periodic
discrete Schrödinger operators with analytic potentials

Mira Shamis1

Abstract. We study discrete Schrödinger operators with analytic potentials. In particular,
we are interested in the connection between the absolutely continuous spectrum in the almost
periodic case and the spectra in the periodic case. We prove a weak form of a precise conjecture
relating the two.

We also bound the measure of the spectrum in the periodic case in terms of the Lyapunov
exponent in the almost periodic case.

In the proofs, we use a partial generalization of Chambers’ formula. As an additional
application of this generalization, we provide a new proof of Herman’s lower bound for the
Lyapunov exponent.
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1. Introduction

In this paper we consider discrete Schrödinger operators of the form

ŒH˛;� �.n/ D  .nC 1/C  .n � 1/C V˛;� .n/ .n/ ;  2 `2.N/ ;

where we formally set  .0/ D 0. The potential

V˛;� .n/ D f .2�˛nC �/; ˛ 2 R; 0 � � < 2�;

is constructed from a function f which is periodic of period 2� , and analytic in a strip
fz 2 C j jImzj � �g. We also assume that f is real on R; in this case the operator is
self-adjoint.

As a primary example, one may think of the special case when f is a trigonometric
polynomial

P.�/ D
dX

kD�d

ak exp.ik�/ ; (1.1)

1Supported by NSF under agreement DMS-0635607.
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where we assume that a�k D Nak for �d � k � d .
If ˛ 2 Q, the potential is periodic, and the spectrum �.p=q; �/ ofH˛;� is a union

of q closed intervals.1 Denote

S�
�p
q

�
D

\
0��<2�

�
�p
q
; �

�
:

If ˛ … Q, the operator is almost periodic. In this case the spectrum does not
depend on � (by Pastur’s theorem, see, e.g., [5], Theorem 9.2). We shall mainly be
interested in the set

A.˛/ D fE j N�.E; ˛/ D 0g
where the Lyapunov exponent N� (see Section 2.1 for the definition) vanishes. Ac-
cording to the Ishii–Kotani–Pastur Theorem 9.13 in [5], A.˛/ is an essential support
of the absolutely continuous spectrum ofH˛;� for any 0 � � < 2� , that is, a minimal
(up to Lebesgue measure zero) set which supports the absolutely continuous part of
the spectral measure.

We are interested in the connection between the set A.˛/ for irrational ˛ and the
spectra �.p=q; �/ of the periodic operators corresponding to p=q that are close to ˛.
Apart from the intrinsic interest, this connection is often used to study almost periodic
operators via their periodic approximations.

This paper is motivated by the following conjecture, which we learned from
Y. Last.

Conjecture. For any ˛ … Q, A.˛/ D limp=q!˛ S�.p=q/, that is

lim sup
p
q

!˛

S�
�p
q

�
D

\
ı>0

[
j p

q �˛j<ı

S�
�p
q

�

and
lim inf

p
q !˛

S�
�p
q

�
D

[
ı>0

\
j p

q
�˛j<ı

S�
�p
q

�

coincide (at least, up to Lebesgue measure zero) with one another and with A.˛/.

We remark that equality modulo sets of measure zero would be sufficient for most
of the applications.

The intuition is roughly as follows. If ˛ … Q is very close to p=q, then, for
any �1 and �2, one can find long pieces of V˛;�1

that are close to long repetitions
of the period of Vp=q;�2

. Therefore, if E … �.p=q; �2/, the potential V˛;�1
contains

1Formally, the spectrum of a periodic operator on the half-line also includes q � 1 simple eigenvalues.
We abuse the notation and denote by �.p=q; �/ the spectrum without these eigenvalues, which is actually
the essential spectrum of the operator.
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“barriers” which prohibit conductivity at energy E, namely, E is outside the abso-
lutely continuous spectrum of H˛;�1

. Vice versa, if E 2 �.p=q; �/ for all � and all
p=q sufficiently close to ˛, the Lyapunov exponent N�.E; ˛/ should be zero (since
N�.E; p=q; �/ D 0 for every �).

As additional evidence for the conjecture, we remark that (modulo Lebesgue
measure zero) it holds for the almost Mathieu operator, which corresponds to f .�/ D
� cos � for � ¤ 0 (that is, d D 1 in (1.1)). This follows from the known results
about the measure and the structure of the spectrum for the almost Mathieu operator,
see, e.g., the review of Last [13].

It appears that one direction of the conjecture can be derived directly from the
result of Bourgain and Jitomirskaya [3]. Namely, the following holds.

Theorem 1.1. For any ˛ … Q,

A.˛/ � lim sup
p
q

!˛

S�
�p
q

�

Remark. A related result was proved by Last in [12] for a certain set of ˛-s of full
Lebesgue measure.

In the other direction, we have only been able to prove a weaker result.

Theorem 1.2. For " > 0, denote

S�
�p
q
; "

�
D

\
�

n
E j dist

�
E; �

�p
q
; �

��
< "

o
;

where
dist.E;K/ D inf

E 02K
jE �E 0j:

Then for any ˛ … Q

A.˛/ �
\
">0

lim inf
p
q

!˛
S�

�p
q
; "

�
:

We also prove an estimate for the average measure of �.p=q; �/ in terms of the
Lyapunov exponent.

Theorem 1.3. There exists a number d D d.f / such that the following holds. Fix
˛ … Q. For any " > 0 there exists ı > 0 such that for jp=q � ˛j < ı and for any E
for which N�.E; ˛/ > "

ˇ̌̌n
� j E 2 �

�p
q
; �

�oˇ̌̌
� C exp

h
� q

2d
. N�.E; ˛/ � "/

i
:
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In particular, for any compact I � R,
Z ˇ̌̌

�
�p
q
; �

�
\ I

ˇ̌̌
d� � C

Z
I

exp
h

� q

2d
. N�.E; ˛/ � "/C

i
dE

� C jI j exp
h

� q

2d
.min
E2I

N�.E; ˛/ � "/C
i
:

(1.2)

Remark. In the case of trigonometric potential (1.1) one may take d to be the degree
of P .

Here and in the sequel C > 0 stands for a universal constant the value of which
may change from line to line.

Note that, for “most” values of � the inequality (1.2) gives an upper bound for the
measure of the spectrum �.p=q; �/ which is exponentially small in q in the region
of positive Lyapunov exponent. We do not know whether such a bound is true for all
values of � .

The paper is built as follows. In Section 2, we collect the preliminaries we need in
the sequel. In particular, in Section 2.2 we use Avila’s argument to effectively reduce
the problem to the case of trigonometric polynomials, and in Section 2.3 we state two
Remez–Turán type inequalities for trigonometric polynomials (due to Erdélyi and
Nazarov) which are an important ingredient in the proof of the results. In Section 2.4
we prove a convenient formula for the Lyapunov exponent, and cite a corollary of the
Combes–Thomas estimate.

Section 3 contains several facts which can be seen as partial generalizations of
Chambers’ formula [4], which was originally proved for the almost Mathieu operator.
These form the main component in the proofs of Theorems 1–3, which appear in
Section 4. These facts are probably known to specialists; we include the proofs for
the convenience of the reader.

Finally, in Section 5 we show how Herman’s lower bound [9] on the Lyapunov
exponent

N�.E; ˛/ � lnC jad j (1.3)

for trigonometric potentials (1.1) can be easily recovered using the mechanism of
this paper. The argument also shows that S�.p=q/ is empty for sufficiently large q
if jad j > 1. Note that if the conjecture were true, this would follow immediately
from (1.3). For now, we prove this separately, to provide additional support for the
conjecture.

Acknowledgment. I thank Sasha Sodin for very pleasant and insightful discussions,
and, in particular, for referring me to the inequalities of Erdélyi and Nazarov. I thank
Tom Spencer for suggesting to use the Combes–Thomas estimate instead of the bound
which appeared in an early draft of this paper. I thank Svetlana Jitomirskaya for
helpful comments on an early version of this paper, and for suggesting to apply
Avila’s argument [1] to extend the results to general analytic potentials.
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2. Preliminaries

2.1. Transfermatrices. LetH be a discrete Schrödinger operator with real bounded
potential V ,

ŒH � .n/ D  .nC 1/C  .n � 1/C V.n/ .n/:

The one-step transfer matrices Tn.E/ are defined as

Tn.E/ D
�
E � V.n/ �1

1 0

�
;

and the n-step transfer matrix ˆn.E/ is defined as

ˆn.E/ D Tn.E/ � � �T2.E/ T1.E/:

Set	n.E/ D trˆn.E/ (where tr stands for the trace); this is a real monic polynomial
of degree n. If the operator is periodic of period q, the polynomial	 D 	q is called
the discriminant of H .

For our operator H˛;� , we denote the n-step transfer matrix by ˆn.E; ˛; �/, and
	n by Dn.E; ˛; �/. For any n � 1, Dn is an analytic function of � . In the special
case (1.1), it is a trigonometric polynomial in � of degree nd .

The Lyapunov exponent �.E; ˛; �/ is defined by

�.E; ˛; �/ D lim
n!1

1

n
ln kˆn.E; ˛; �/k:

According to the Furstenberg–Kesten theorem [7], the limit exists for almost every � .
If ˛ … Q, the Lyapunov exponent does not depend on � . In general, it is convenient
to define

N�.˛;E/ D lim
n!1

1

2�n

Z 2�

0

ln kˆn.E; ˛; �/kd�:
For irrational ˛, N�.E; ˛/ D �.E; ˛; �/.

2.2. Approximation of the discriminant by a trigonometric polynomial. In the
general case, Dn.E; ˛; �/ is an analytic function of � . In this section, we reproduce
an argument of Avila [1] that shows that Dn can be well approximated by a trigono-
metric polynomial of degree � const � n. This will allow to apply the estimates for
trigonometric polynomials which we cite in the next section.

Let us represent Dn.E; ˛; �/ by its Fourier series

Dn.E; ˛; �/ D
1X

kD�1
Ck;n.E; ˛/e

ik� ;

and let

Dn;m.E; ˛; �/ D
mX

kD�m

Ck;n.E; ˛/e
ik�

denote a finite piece of the Fourier series.
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Lemma 2.1. For any R > 0, there exists d D d.f;R/ such that

jDn.E; ˛; �/ �Dn;dn.E; ˛; �/j � e�n

for any 0 � � < 2� , ˛ 2 R, �R � E � R.

Proof. First we observe

Ck;n.E; ˛/ D 1

2�

Z 2�

0

Dn.E; ˛; �/e
�ik�d�:

For k > 0, we shift the contour of integration by �i�; this yields:

jCk;n.E; ˛/j D
ˇ̌̌
ˇ 12�

Z 2�

0

Dn.E; ˛; � � i�/e�ik.��i�/d�

ˇ̌̌
ˇ

� e�k� max
�

jDn.E; ˛; � � i�/j :

Now,

max
�

jDn.E; ˛; � � i�/j � 2max
�

����
�
E � f .� � i�/ �1

1 0

�����
n

� 2.2C jEj C max
�

jf .� � i�/j/n � .C.f /C jEj/n;

where C.f / is a positive constant depending only on f . Therefore

jCk;n.E; ˛/j � e�k�.C.f /C jEj/n

and

ˇ̌
ˇ

1X
kDdn

Ck;n.E; ˛/e
ik�

ˇ̌
ˇ � .C.f /C jEj/n e�dn�

1 � e��
� .C1.f /C jEj/ne�dn�:

Choosing d sufficiently large, one can make this expression smaller than e�n=2 for
�R � E � R. A similar argument works for k < 0.

2.3. Estimates on trigonometric polynomials. We shall use two Remez–Turán-
type inequalities.

Theorem (Erdélyi [6]). Let Q.�/ D Pr
kD�r ck exp.ik�/ be a trigonometric poly-

nomial of degree r , and let X � Œ0; 2�/ be a measurable set, jX j � 3�=2. Then

max
�2Œ0;2�/

jQ.�/j � eC r.2��jX j/ sup
�2X

jQ.�/j: (2.1)
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Theorem (Nazarov [14]). Let Q.�/ D Pr
kD1 ck exp.imk�/ be a trigonometric

polynomial with r terms, and let X � Œ0; 2�/ be a measurable set. Then

max
�2Œ0;2�/

jQ.�/j �
� C

jX j
�r�1

sup
�2X

jQ.�/j: (2.2)

Remarks. (1) The constant C > 0 in both inequalities is universal, independent of
the polynomial Q under consideration.

(2) We do not use the full strength of Nazarov’s theorem, even in the special
case which we stated above. Indeed, the polynomials we consider are of the form
Q.�/ D zQ.q�/, in which case (2.2) can be derived from a version of (2.1) which
covers the case jX j � 3�=2. A proof of the latter can be found for example in the
work of Ganzburg [8].

(3) Similar inequalities have been previously applied to study Schrödinger oper-
ators with quasiperiodic potentials; see for example Jitomirskaya [10], Theorem 8.

2.4. A formula for the Lyapunov exponent. Set

Mn.E; ˛/ D max
�

jDn.E; ˛; �/j:

Proposition 2.2. For any ˛ … Q,

N�.E; ˛/ D lim sup
n!1

1

n
lnMn.E; ˛/:

Proof. First, let us show that

N�.E; ˛/ � lim sup
n!1

1

n
lnMn.E; ˛/ :

We can assume that N�.E; ˛/ > 0. Avila and Bochi [2], Theorem 15, have shown (in
the general setting of ergodic SL2 sequences) that, for almost every � ,

N�.E; ˛/ D lim sup
n!1

1

n
ln 
.ˆn.E; ˛; �//

(where 
 stands for the spectral radius.) Recalling that


.ˆ/ � jtrˆ j
for ˆ 2 SL2.R/ such that 
.ˆ/ > 1 (which happens if and only if jtrˆj > 2), we
obtain

N�.E; ˛/ � lim sup
n!1

1

n
ln jDn.E; ˛; �/j � lim sup

n!1
1

n
lnMn.E; ˛/:
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Let us prove the complementary inequality. Fix " > 0. By Egoroff’s theorem,
there exists X � Œ0; 2�/ such that jX j � 2� � " and

1

n
ln kˆn.E; ˛; �/k �!

n!1 N�.E; ˛/

uniformly on X . Therefore

lim sup
n!1

sup
�2X

1

n
ln jDn.E; ˛; �/j � N�.E; ˛/:

Now, Erdélyi’s inequality (2.1) implies

max
�

jDn;dn.E; ˛; �/j � exp.Cdn"/ sup
�2X

jDn;dn.E; ˛; �/j;

hence by Lemma 2.1

Mn.E; ˛/ � exp.Cdn"/.sup
�2X

jDn.E; ˛; �/j C e�n/C e�n;

and therefore

lim sup
n!1

1

n
lnMn.E; ˛/ � N�.E; ˛/C Cd":

Taking " ! C0, we conclude the proof.

Now we cite several facts pertaining to (general) periodic Schrödinger operators.
LetH be a periodic Schrödinger operator of period q. The Lyapunov exponent ofH
satisfies

�.E/ D lim
n!1

1

n
ln kˆn.E/k D 1

q
ln 
.ˆq.E//;

where 
 stands for the spectral radius.
LetE0 be an energy outside the spectrum �.H/. Then the discriminant	 is equal

to
	.E0/ D exp.q�.E0//C exp.�q�.E0//:

From the Combes–Thomas estimate (see for example [11], Theorem 11.2),

�.E0/ � cminfdist.E0; �.H//; 1g;
where c > 0 is a universal constant. Thus we obtain the following result.

Lemma 2.3. LetH be a periodic Schrödinger operator of period q and letE0 be an
energy outside the spectrum �.H/. Then

j	.E0/j � expŒcqminfdist
�
E; �.H/

�
; 1g�;

where c > 0 is a universal constant.
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3. Variations on Chambers’ formula

As before, we consider the Fourier expansion

Dn.E; ˛; �/ D
1X

kD�1
Ck;n.E; ˛/ exp.ik�/ (3.1)

for Dn.
In the periodic case, most of the coefficients are zero.

Proposition 3.1. For any p=q 2 Q, Dq is periodic in � of period 2�=q:

Dq

�
E;
p

q
; � C 2�

q

�
D Dq

�
E;
p

q
; �

�
: (3.2)

Consequently,

Dq

�
E;
p

q
; �

�
D

1X
kD�1

Ckq;q

�
E;
p

q

�
exp.ikq�/:

Proof. First we observe

Vp
q

;�C 2�p
q
.n/ D Vp

q
;� .nC 1/;

therefore

Tn

�
E;
p

q
; � C 2�p

q

�
D TnC1

�
E;
p

q
; �

�
:

Also, Tn is a periodic sequence of period q, therefore

Dq

�
E;
p

q
; � C 2�p

q

�

D tr
h
Tq

�
E;
p

q
; � C 2�p

q

�
� � �T2

�
E;
p

q
; � C 2�p

q

�
T1

�
E;
p

q
; � C 2�p

q

�i

D tr
h
T1

�
E;
p

q
; �

�
Tq

�
E;
p

q
; �

�
� � �T2

�
E;
p

q
; �

�i
:

Since the trace is cyclic, we conclude that

Dq

�
E;
p

q
; � C 2�p

q

�
D Dq

�
E;
p

q
; �

�
:

Now, obviously,

Dq

�
E;
p

q
; � C 2�

�
D Dq

�
E;
p

q
; �

�
I

since p and q are relatively prime, the last two equalities imply (3.2).
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The next proposition describes the leading coefficients in the trigonometric case,
see (1.1).

Proposition 3.2. Suppose that the potential is defined by (1.1). For any ˛ 2 R,

C˙dn;n.E; ˛/ D .�a˙d /
n exp Œ˙�i˛dn.nC 1/� :

In particular, for ˛ D p=q 2 Q and n D q,

C˙dq;q

�
E;
p

q

�
D �.�1/.dC1/.qC1/ a

q

˙d
:

Proof. We have:

C˙dn;n D
nY

kD1

f�a˙d expŒ˙2�i˛kd�g D an
˙d expŒ˙�i˛dn.nC 1/�:

4. Proofs of the theorems

Bourgain and Jitomirskaya [3] have proved that the Lyapunov exponent N�.E; ˛/ is
jointly continuous in E and ˛ on R � .R n Q/. Therefore for any ˛ … Q and " > 0

there exists ı > 0 such that for any jp=q � ˛j < ı and any E in any compact set
ˇ̌̌
N�
�
E;
p

q

�
� N�

�
E; ˛

�ˇ̌̌
� ":

Also observe that

N�.E; p
q
/ D lim

n!1
1

2�n

Z 2�

0

ln
���ˆn

�
E;
p

q
; �

���� d�

D 1

2�

Z 2�

0

�
�
E;
p

q
; �

�
d� (dominated convergence)

D 1

2�q

Z 2�

0

ln 

�
ˆq

�
E;
p

q
; �

��
d� (cf. Section 2.4).

Now we are ready to prove the main results.

Proof of Theorem 1.1. We can assume that N�.E; ˛/ > 0. Then, for p=q sufficiently
close to ˛, N�.E; p=q/ > 0. Therefore there exists � for which

1

q
ln 


�
ˆq

�
E;
p

q
; �

��
> 0;

that is, E … �.p=q; �/, hence E … S�.p=q/.
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Proof of Theorem 1.2. Let " > 0. One can find ı > 0 such that for anyp=q for which
jp=q�˛j < ı and for anyE 2 A.˛/ the Lyapunov exponent satisfies N�.E; p=q/ � ".
Therefore

" � N�
�
E;
p

q

�
D 1

2�q

Z 2�

0

ln 

�
ˆq

�
E;
p

q
; �

��
d�;

which implies

ˇ̌̌n
� j

ˇ̌̌
Dq

�
E;
p

q
; �

�ˇ̌̌
� 2e2q"

oˇ̌̌
�

ˇ̌̌n
� j 


�
ˆq

�
E;
p

q
; �

��
� e2q"

oˇ̌̌
� �:

By Lemma 2.1,

ˇ̌̌n
� j

ˇ̌̌
Dq;dq

�
E;
p

q
; �

�ˇ̌̌
� 2e2q" C e�q

oˇ̌̌
� �:

According to Proposition 3.1, Dq;dq is a trigonometric polynomial with 2d C 1

non-zero terms, therefore Nazarov’s inequality (2.2) implies

Mq

�
E;
p

q

�
� .2e2q" C e�q/C d C e�q � e2q" zC d

and so for any � 2 Œ0; 2�/
ˇ̌
ˇDq

�
E;
p

q
; �

�ˇ̌
ˇ � e2q" zC d :

On the other hand, Lemma 2.3 tells us that for energies E at distance Q" > 0 from
�.p=q; �/, ˇ̌̌

Dq

�
E;
p

q
; �

�ˇ̌̌
� exp.cq min.Q"; 1//:

Therefore Q" � C", hence

dist
�
E; �

�p
q
; �

��
� C":

This is true for any � , hence

E 2 S�
�p
q
; C"

�
:

We have shown that
A.˛/ � S�

�p
q
; C"

�
I

taking the intersection over all " > 0, we conclude the proof.

To prove Theorem 1.3, we need a general statement.
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Proposition 4.1. For any p=q 2 Q and E 2 R,

ˇ̌̌n
� 2 Œ0; 2�/ j E 2 �

�p
q
; �

�oˇ̌̌
� CMq

�
E;
p

q

�� 1
2d
;

where d D d.f / depends only on f . In the trigonometric case (1.1), one may take
d to be the degree of P .

Proof. For simplicity, we prove the proposition in the trigonometric case (1.1); the
general case follows as before from the approximation of Lemma 2.1.

Denote
‡

�
E;
p

q

�
D

n
� 2 Œ0; 2�/ j E 2 �

�p
q
; �

�o
:

By Proposition 3.1,Dq.E; p=q; �/ is a trigonometric polynomial with 2d C 1 terms.
Therefore, by Nazarov’s inequality (2.2) and the fact that the (essential) spectrum of
a periodic operator is the inverse image of Œ�2; 2� under the discriminant,

Mq

�
E;
p

q

�
�

h C

j‡.E; p
q
/j

i2d

max
�2‡.E; p

q
/

ˇ̌̌
Dq

�
E;
p

q
; �

�ˇ̌̌
� 2

h C

j‡.E; p
q
/j

i2d

and hence ˇ̌̌
‡

�
E;
p

q

�ˇ̌̌
� CMq

�
E;
p

q

�� 1
2d

(with a different constant C > 0).

Proof of Theorem 1.3. Let " > 0. Choose ı > 0 such that for any energy E and any
p=q such that jp=q � ˛j < ı and

N�
�
E;
p

q

�
� N�.E; ˛/ � ":

If N�.E; ˛/ > ",

N�.E; ˛/ � " � N�
�
E;
p

q

�
D 1

2�q

Z 2�

0

ln 

�
ˆq

�
E;
p

q
; �

��
d�

� max
�

1

q
ln 


�
ˆq

�
E;
p

q
; �

��
� 1

q
lnMq

�
E;
p

q

�
:

Therefore
Mq

�
E;
p

q

�
� expŒq. N�.E; ˛/ � "/�:

Combining this with the previous proposition, we obtain the estimate.
Corollary (1.2) follows from the Fubini theorem.
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5. Herman’s inequality

The results of this section pertain to the trigonometric case (1.1).

Proposition 5.1. For any ˛ … Q and any E 2 R,

N�.E; ˛/ � lnC jad j:
Proof. By Proposition 2.2,

N�.E; ˛/ D lim sup
n!1

1

n
lnMn.E; ˛/ � lim sup

n!1
1

2n
ln

1

2�

Z 2�

0

jDn.E; ˛; �/j2d�:

According to Proposition 3.2 we deduce

N�.E; ˛/ � lim sup
n!1

1

n
ln jCdn;n.E/j D ln jad j:

For the periodic case, one has the following result.

Proposition 5.2. If jad j > 1, S�
�

p
q

� D ¿ for q > 1
2 log2 jad j .

Proof. By Proposition 3.2,

Mq

�
E;
p

q

�
�

h 1
2�

Z 2�

0

ˇ̌̌
Dq

�
E;
p

q
; �

�ˇ̌̌2
d�

i1=2 � p
2jad jq;

which is larger than 2 for q > 1
2 log2 jad j .
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