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On the scattering problem in Ryckman’s class of Jacobi matrices

Leonid Golinskii, Alexander Kheifets1and Petro Yuditskii2

Abstract. We define and characterize the scattering data for a class of Jacobi matrices that was
recently introduced by E. Ryckman. We prove the uniqueness and give a complete solution to
the inverse scattering problem in this class.
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1. Introduction

In mid 70s Guseinov [8], [9] developed a scattering theory for infinite Jacobi matrices

J D J.fang; fbng/ D

2
6664

b1 a1 0 : : :

a1 b2 a2 : : :

0 a2 b3 : : :
:::

:::
:::

: : :

3
7775 ; (1)

an > 0, bn D Nbn, which can be viewed as a discrete version of the scattering theory
for one-dimensional Schrödinger operator on the half-line by Marchenko–Faddeev.
The basic assumption on J is the finiteness of the first moment

1X
nD1

n.jan � 1j C jbnj/ < 1: (2)

We say that a Jacobi matrix J D J.fang; fbng/ belongs to Guseinov’s class G if
its entries satisfy (2). Later Geronimo [4], [5] (see also [6]) solved the spectral
problem for Jacobi matrices in more general “weighted” Guseinov’s classes by using
the inverse scattering technique. The main feature of his results is that the decay of the
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Jacobi parameters fan�1g, fbng manifests itself in the decay of the Fourier coefficients
of the absolutely continuous part of the measure (after suitable modifications).

In the modern scattering theory of Jacobi operators (see, e.g., [3]) the various
analogues of (2) (for much more complex backgrounds) appeared, and they seemed
to be indispensable.

In 2007 Ryckman [13], [14], [15] came up with a new class of Jacobi matrices, for
which he obtained a complete spectral description. To state his result we introduce
some notations and definitions. Let us write

ˇ D fˇng 2 `2
s ; s > 0 if kˇk2

`2
s

D
X

n

jnjsjˇnj2 < 1:

Definition 1.1. A Jacobi matrix J D J.fang; fbng/ belongs to Ryckman’s class R, or
its spectral measure �.J / 2 R, if the series

P
n.an �1/ and

P
n bn are conditionally

summable, and � D f�ng 2 `2
1, � D f�ng 2 `2

1 with

�n D �
1X

kDnC1

bk; �n D �
1X

kDnC1

.ak � 1/:

Definition 1.2. A function g on the unit circle T is said to be in the Besov class B
1=2
2

if the sequence of its Fourier coefficients is in `2
1.Z/

g.t/ D
X
n2Z

gntn;
X
n2Z

jnjjgnj2 < 1: (3)

Let f be a function on the interval Œ�2; 2�. By Of we will mean a unique function
on T such that

Of .t/ D f

�
t C 1

t

�
: (4)

Note that Of is a symmetric function, Of .Nt / D Of .t/, and conversely, every symmetric
function on T is of the form Of . If

h.t/ D
X
n2Z

hntn;

then the symmetry of h implies that h�n D hn. If h is in addition a real function,
then h�n D hn D hn.

Definition 1.3. A function f on the interval Œ�2; 2� is said to be in B
1=2
2 if the function

Of , defined as in (4), is in B
1=2
2 .

Theorem 1.4 (Ryckman). J 2 R if and only if the spectral measure �.J / of J has
the following structure.



On the scattering problem in Ryckman’s class of Jacobi matrices 113

� The absolutely continuous part is supported by Œ�2; 2� and

�ac.dx/ D f .x; J /dx D �.x; J /

2�

p
4 � x2 dx;

�.x; J / D �0.x; J /

.2 � x/�1.J /.2 C x/�2.J /
;

(5)

with �1.J /; �2.J / equal 0 or 1, and log �0 2 B
1=2
2 .

� The singular part is

�s.dx/ D
NX

kD1

�kı.	k/; (6)

with N D N.J / < 1, �k.J / > 0, and 	k.J / 2 R n Œ�2; 2�.

We single out the factor
p

4 � x2 to have simpler expressions in (18), (19) below.
Note that G � R, and the inclusion is proper. Indeed,

1X
nD1

nj�nj2 D
1X

nD1

n

� 1X
kDnC1

bk

�2

�
1X

nD1

1X
kDn

1X
lDn

njbkjjbl j

�
1X

nD1

1X
kDn

1X
lDn

l jbkjjbl j �
1X

nD1

1X
kDn

1X
lD1

l jbkjjbl j

D
1X

kD1

kX
nD1

1X
lD1

l jbkjjbl j D
1X

kD1

k

1X
lD1

l jbkjjbl j D
� 1X

kD1

kjbkj
�2

:

Similarly,
1X

nD1

nj�nj2 �
� 1X

kD1

kjak � 1j
�2

:

The inclusion G � R is proper, since

an D 1 C .�1/n

n log.n C 1/
; bn D .�1/n

n log.n C 1/
(7)

belongs to R, but (2) fails (J is not even a trace class perturbation of the free Jacobi
matrix J0 D J.f1g; f0g/).

Given �.J / 2 R, we define (recall that the notation O was introduced in (4))

D0.z/ D D0.z; J / D exp

�
1

2

Z
T

t C z

t � z
log O�0.t; J /m.dt/

�
; (8)

jD0.t/j2 D O�0.t; J / almost everywhere on T . Since

O�0.t; J / D O�0.t ; J /; (9)
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we have that
D0.z/ D D0.z/: (10)

We can write D0 as

D0.z/ D exp
nu0.z/ C iv0.z/

2

o
; (11)

where u0 and v0 are real valued harmonic functions. Again, due to (9), u0 is symmet-
ric, and v0 is antisymmetric: u0.Nz/ D u0.z/, v0.Nz/ D �v0.z/. v0 is the harmonic
conjugate to u0,

u0.t/ D log O�0.t; J / D
X
k2Z

u0;ktk ; v0.t/ D Qu0.z/ D 1

i

X
k2Z

.sgn k/u0;ktk :

We will need the following known proposition (cf., e.g., [16, Proposition 6.1.5])

Proposition 1.5. Let D0 be defined as in (8) with log O�0 2 B
1=2
2 . Then, for all

p < 1, . O�0/˙1 2 Lp.T /, so

D˙1
0 2 H p; 8p < 1 :

We put next

D.z/ D D.z; J / D exp

�
1

2

Z
T

t C z

t � z
log O�.t; J /m.dt/

�

D D0.z; J /

.1 � z/�1.1 C z/�2
;

(12)

the last equality in (12) follows from the second equality in (5) with x D t C 1=t and
the identities

2 � t � 1

t
D j1 � t j2; 2 C t C 1

t
D j1 C t j2; jt j D 1 :

Both D0 and D are related to the absolutely continuous part of the spectral mea-
sure. The discrete part is completely determined by the set of eigenvalues f	kg, or
equivalently, by the set

Z.J / D
n
zk.J / W 	k D zk.J / C 1

zk.J /
; k D 1; 2; : : : ; N

o
; (13)

zk.J / 2 .�1; 1/nf0g, and by the set of masses f�k.J /gN
kD1

in (6).

Definition 1.6. Given J 2 R, under the scattering data for J we mean the following
collection f�1.J /; �2.J /I Z.J /I 
1.J /; : : : ; 
N .J /I s.t; J /g:

(1) a pair .�1.J /; �2.J // from (5);
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(2) the set Z.J / from (13), or equivalently, a finite Blaschke product

B.z; J / D
NY

kD1

zk.J /

jzk.J /j
z � zk.J /

1 � zk.J /z
;

B.Nt ; J / D B.t; J / D 1

B.t; J /
; t 2 T I

(14)

(3) N D N.J / positive numbers


k.J / D �k.J /ˇ̌
1 � z�2

k
.J /

ˇ̌2

ˇ̌̌
ˇB 0.zk; J /

D.zk; J /

ˇ̌̌
ˇ
2

> 0; k D 1; 2; : : : ; N I (15)

(4) the scattering function

s.t; J / D '0.t; J /

'0.Nt ; J /
; (16)

where '0 is the Jost function for J (see Section 2).

Compared to [4] and [5], we move backward, from spectral to scattering. The
goal of the present note is to obtain a complete characterization of the scattering
data in Ryckman’s class, and so demonstrate that the scattering theory goes beyond
Guseinov’s class (2). We analyze the scattering data and prove the uniqueness theorem
in Section 2. We solve the inverse scattering problem in Section 3.

2. Scattering data

The basic three-term recurrence relation for a Jacobi matrix J.fang; fbng/
an�1yn�1 C bnyn C anynC1 D .z C z�1/yn; n D 1; 2; : : : ; a0 D 1;

has two “distinguished” solutions. The first one, known as the sine-type solution, is

yn D sn.z/ D pn�1

�
z C 1

z

�
; s0 D 0; s1 D 1; (17)

pk are orthonormal polynomials with respect to the spectral measure �.J /. A funda-
mental result by Szegő concerns an asymptotic behavior of orthonormal polynomials
with respect to “nice” measures with supp � � Œ�2; 2�. It was extended substantially
in [7], [10], and [11], where a finite (respectively, infinite) number of mass points
outside Œ�2; 2� is allowed. In our notation the Szegő asymptotics states that for J 2 R

Q.z/ D lim
n!1 znpn

�
z C 1

z

�
D B.z; J /

.1 � z2/D.z; J /
(18)



116 L. Golinskii, A. Kheifets and P. Yuditskii

uniformly on the compact subsets of the unit disk D.
The second solution is the Jost solution yn D 'n, defined by a specific asymptotic

behavior at infinity:
lim

n!1 z�n'n.z; J / D 1

uniformly on the compact subsets of the unit disk D. The Jost solution exists under
certain additional assumptions (cf. [17], formulae (13.9.2)–(13.9.4)), which are met
for J 2 R. '0 is called the Jost function. For an exhaustive treatment of the Szegő
and the Jost asymptotics see [1] and Section 13.9 in [17].

The relation between the Szegő asymptotics and the Jost function is given by (see,
e.g., [2] and Theorem 13.9.2 in [17])

'0.z/ D .1 � z2/Q.z/ D B.z; J /

D.z; J /
D .1 � z/�1.J /.1 C z/�2.J / B.z; J /

D0.z; J /
: (19)

We define the scattering function s as in (16). By (19), we get

s.t; J / D .1 � t/�1.J /.1 C t/�2.J /

.1 � Nt /�1.J /.1 C Nt /�2.J /

D0.Nt ; J /

D0.t; J /
B2.t; J /

D.�1/�1.J / t�1.J /C�2.J / D0.Nt ; J /

D0.t; J /
B2.t; J /:

(20)

Clearly, s.Nt/ D s.t/ D s�1.t/.

Theorem 2.1. The scattering function s, defined as in (20), of a Jacobi matrix J 2 R,
belongs to B

1=2
2 and admits a unique representation

s.t; J / D .�1/�1.J / tM e�iv.t/; M D 2N C �1.J / C �2.J / 2 ZC; (21)

v satisfies

v.t/ D v.t/ D �v.Nt /; v 2 B
1=2
2 : (22)

Proof. By (10) and (11), we get that

D0.Nt ; J /

D0.t; J /
D D0.t; J /

D0.t; J /
D e�iv0.t/:

Since u0 D log O�0 2 B
1=2
2 , and the Hilbert transform is bounded (isometric) in B

1=2
2 ,

then v0 2 B
1=2
2 . Since u0 is symmetric, v0 is antisymmetric.

Next,

B2.t; J / D t2N
� NY

kD1

1 � zk.J / Nt
1 � zk.J / t

�2D t2N e�iv1.t/; (23)
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and since zk.J / 2 D, then v1 2 B
1=2
2 and it is antisymmetric. We put v D v0 C v1 2

B
1=2
2 . Since v is a real function, we get (see, e.g., Proposition 6.1.11 in [16]) that

e�iv 2 B
1=2
2 . Therefore, s 2 B

1=2
2 .

The uniqueness follows from a slight refinement of Peller’s theorem (Corol-
lary 7.8.2 in [12]), which states that an arbitrary function

h 2 B
1=2
2 ; h.Nt / D h.t/ D h�1.t/

a.e. on T, admits a unique representation

h.t/ D .�1/� tj e�iw.t/;

where � D 0 or 1, j 2 Z an integer number, w satisfies (22). A pair .�; j / can be
viewed as an index of h.

Let us turn to numbers 
k.J / (15). In his version of the scattering theory for
Jacobi matrices (2) Guseinov suggested the normalizing constants

mk.J / D
1X

nD1

j'n.zk.J /; J /j2; k D 1; 2; : : : ; N; (24)

as a part of the scattering data. We show that these values agree with the numbers

k.J /.

Proposition 2.2. Let J 2 R. Then 
k.J / D mk.J /, k D 1; 2; : : : ; N.

Proof. Let sn be defined as in (17). It is known from the general theory of Jacobi
matrices and orthogonal polynomials, that the vectors

…k D fsn.zk.J //gn�1 D fpn.	k/gn�0 2 `2;

so …k are eigenvectors of J with the corresponding eigenvalues 	k . Furthermore,

1

�k.J /
D

1X
nD1

jsn.zk.J //j2 D
1X

nD0

jpn.	k/j2: (25)

On the other hand, '0.zk.J // D 0, and so ˆk D f'n.zk.J /; J /gn�1 are also eigen-
vectors of J for the same eigenvalues. Hence, ˆk D ck…k , and we find the con-
stants ck from the initial data s1 D 1, so that ck D '1.zk.J /; J /. By (24) and (25)
mk.J / D j'1.zk.J /; J /j2��1

k
.J /.

It remains to express '1 in terms of the spectral data. Once the Jost asymptotics
exists for J 2 R, the Jost solution 'n is proportional to the Weyl solution

wn.z/ D ..z C z�1 � J /�1e1; en/; n D 1; 2; : : : ; w0 D 1;
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that is, 'n D '0wn. In particular,

'1.z; J / D '0.z; J /w1.z/ D '0.z; J /M.z; J /;

where M is the Weyl function for J ,

M.z; J / D �
.z C z�1 � J /�1e1; e1

	 D
Z

R

�.d	/

z C z�1 � 	
D �k.J /

z C z�1 � 	k

C zM .z/;

zM is analytic at zk.J /. So

'1.z; J / D M.z; J /
B.z; J /

D.z; J /
:

Since lim
z!zk

.z � zk.J //M.z; J / D �k.J /.1 � z�2
k

.J //�1, we finally have

'1.zk.J /; J / D �k.J /

1 � z�2
k

.J /

B 0.zk.J /; J /

D.zk.J /; J /
;

as needed.

To complete the analysis of scattering data we prove the uniqueness theorem.

Theorem 2.3. Let Jl 2 R, l D 1; 2, have the same scattering data. Then J1 D J2.

Proof. We want to make sure that �.J1/ D �.J2/. It is clear from (20) that

D0.t; J1/

D0.t; J1/
D D0.t; J2/

D0.t; J2/
: (26)

By Proposition 1.5, D˙1
0 2 H 2. In view of this, (26) implies that D0.J2/ D cD0.J1/.

Therefore, D.J2/ D cD.J1/ for some c > 0, and, hence, �ac.J2/ D c2�ac.J1/.
Next, by (15) 
k.J1/ D 
k.J2/ implies �k.J2/ D c2�k.J1/, and the normalizing
condition

Z 2

�2

f .x; J1/ dx C
NX

kD1

�k.J1/ D
Z 2

�2

f .x; J2/ dx C
NX

kD1

�k.J2/ D 1

gives c D 1, as needed.

3. Inverse scattering

Consider the following collection of data f�1; �2I ZI 
1; : : : ; 
N I sg:

(1) a pair of numbers .�1; �2/ from f0; 1g � f0; 1g;
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(2) an arbitrary set of N distinct points Z D fzkgN
kD1

in .�1; 1/nf0g;

(3) an arbitrary set of N positive numbers 
k ;

(4) a function s 2 B
1=2
2 , jsj D 1 a.e. on T, with the index .�1; 2N C �1 C �2/, i.e.,

s.t/ D .�1/�1 t2N C�1C�2 e�i!.t/; !.t/ D !.t/ D �!.Nt/; ! 2 B
1=2
2 :

Theorem 3.1. There exists a unique Jacobi matrix J 2 R, for which the above
collection is the scattering data.

Proof. As in the proof of Theorem 2.1 (see (20) and (23)) we can write

s.t/ D .1 � t/�1.1 C t/�2

.1 � Nt /�1.1 C Nt /�2
B2.t; Z/e�iv0.t/;

v0 is subject to (22). The Fourier series for v0 is

v0.t/ D
X
n2Z

v0;ntn; v0;�n D v0;n D �v0;n;

so v0;0 D 0. Take u0 such that v0 is its harmonic conjugate. Then

u0.Nt / D u0.t/ D u0.t/

and
u0.t/ D

X
n2Z

u0;ntn; u0;�n D u0;n D u0;n:

Note that u0 is defined up to an additive real constant u0;0, which will be chosen later
on from the normalization condition.

Define a function �0 on Œ�2; 2� by O�0 D eu0, and put

�.x/ D �0.x/

.2 � x/�1.2 C x/�2
; f .x/ D 1

2�
�.x/

p
4 � x2;

both functions � and f are defined up to the factor C D eu0;0. Next, write

D0.z/ D exp

�
1

2

Z
T

t C z

t � z
u0.t/m.dt/

�
D exp

�
u0.z/ C iv0.z/

2

�
;

D.z/ D D0.z/

.1 � z/�1.1 C z/�2
;

and put

�k D 
k

ˇ̌̌
ˇ D.zk/

B 0.zk/

ˇ̌̌
ˇ
2 ˇ̌

1 � z�2
k

ˇ̌�2
> 0; k D 1; 2; : : : ; N;
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the latter values are defined up to the same factor C , which is now taken from

Z 2

�2

f .x/ dx C
NX

kD1

�k D 1:

Since v0 2 B
1=2
2 , then so is u0, and by Ryckman’s theorem the measure � D

ff; f�kgg is the spectral measure of some Jacobi matrix J 2 R. By construction,
f�1; �2I ZI 
1; : : : ; 
N I sg is the scattering data for J, and J is unique by Theo-
rem 2.3. The proof is complete.
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