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On the removal of finite discrete spectrum
by coefficient stripping

Barry Simon1

Abstract. We prove for a large class of operators J, including block Jacobi matrices, that if
�.J / n Œ˛; ˇ� is a finite set, each point of which is an eigenvalue of finite multiplicity, then a
finite coefficient stripped, JN , has �.JN / � Œ˛; ˇ�. We use an abstract Dirichlet decoupling.

Mathematics Subject Classification (2010). 47B26, 34L15, 81Q10.

Keywords. Coefficient stripping, block Jacobi matrices.

1. Introduction

The work in this note is motivated by the following theorem.

Theorem1.1. LetV 2 L1
loc.Œ0;1//be such that� d2

dx2 CV.x/ is limit point at infinity.
Suppose � d2

dx2 C V.x/ with u.0/ D 0 boundary conditions on L2..0;1/I dx/ has
finitely many eigenvalues (and no other spectrum) in .�1; 0/. Then there exists
A > 0 so that for all a > A, � d2

dx2 C V.x/, with u.a/ D 0 boundary conditions on
L2..a;1/I dx/ is a nonnegative operator.

The proof is an immediate consequence of Sturm oscillation theory: by hypoth-
esis, the function with u.0/ D 0, u0.0/ D 1, �u00 C V u D 0 has finitely many
zeros. If A is the last zero, u � Œa;1/ solves �u00 C V u D 0 and has a definite sign
on Œa;1/. Thus, by Sturm comparison and oscillation arguments, the operator on
Œa;1/ is nonnegative.
While it appears that this argument is well known to some experts, I am aware

of only two places that it appears explicitly in print: in Nikishin’s lovely paper [2]
and in my review article on Sturm oscillation theory for the Sturm 200th Birthday
Conference [5].
Going back to Bôcher [1] (and conjectured to be known to Sturm), there are

discrete analogs of Sturm oscillation theorems. One looks at zeros of the linear
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interpolation of the solution of the difference equations. This allows one to prove an
analog of Theorem 1.1 for Jacobi matrices of the form

J D

0
BBB@

b1 a1 0 � � �
a1 b2 a2 � � �
0 a2 b3 � � �
:::

:::
:::

: : :

1
CCCA: (1)

Here and below, an > 0, bn is real, and sup.janj C jbnj/ < 1. (Indeed, it was this
case treated in [2] and [5]; Nikishin doesn’t use the terminology “oscillation theorem”
but he counts sign changes of certain determinants.)

Theorem 1.2. Suppose J given by (1) has finitely many eigenvalues outside Œ˛; ˇ�.
Let Jn be the Jacobi matrix (1) with the top n rows and left n columns removed. Then
for some N and all n > N , �.Jn/ � Œ˛; ˇ�.

Given the discrete Sturm oscillation and comparison theorems (for the linear
interpolation), the proof of Theorem 1.2 is essentially the same as for Theorem 1.1.
The immediate motivation for this work is the question asked me by Rostyslav

Kozhan: Does an analog of Theorem 1.2 hold for block Jacobi matrices, that is,
objects like (1) but where for some `, the bj and aj are ` � ` matrices. Recently,
Schulz-Baldes [3] has developed oscillation theorems for some block Jacobimatrices,
and itmay be possible to use hismachinery to answerKozhan’s query. Butwe decided
to seek out another andmore direct approach. It has the advantage of working in cases
where an and bn are operators on an infinite-dimensional space where it is unlikely
an oscillation theorem exists. Here is our main result:

Theorem 1.3. Let J be a bounded selfadjoint operator on a Hilbert space H . Sup-
pose fPng1

nD1, fQng1
nD1, fRng1

nD1 are families of orthogonal projections that obey

PnQn D QnPn D PnRn D RnPn D QnRn D RnQn D 0; (2)

Pn CQn CRn D 1; (3)

s-lim
n!1Qn D s-lim

n!1Rn D 0; (4)

PnJQn D QnJPn D 0: (5)

Suppose the only spectrum J has in .�1; 0/ is finitely many eigenvalues of finite
multiplicity. Then for some N,QnJQn � 0 for all n � N .

In the block diagonal case, we have the following result.

Corollary 1.4. LetH D `2.f1; 2; : : : g;K/, sequenceswith values in aHilbert space,
K , with

P1
nD1kxnk2 < 1. Let J be a matrix in H of the form (1) with entries

bj ; aj that are bounded operators on K with supj .kaj k C kbj k/ < 1. Suppose the
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only spectrum of J in .�1; 0/ is finitely many points, each an eigenvalue of finite
multiplicity. Then for some N and all n � N , Jn � 0, where Jn is J with the top n
rows and left n columns dropped.

Proof. Let Pn be the projection onto `2.f1; : : : ; n � 1gI K/, Rn the projection onto
`2.fngI K/, and Qn the projection onto `2.fnC 1; nC 2; : : : gI K/. (2) and (3) are
obvious. (4) is simple and (5) is obvious. Thus, Jn D QnJQn � 0 for all large n by
the theorem.

We prove Theorem 1.3 in Section 2 and a continuum analog in Section 3.
We end this section with three remarks. (i) As noted in [5], theorems of the

form of Theorem 1.3 imply that if �ess.J / D Œ˛; ˇ�, then for any " > 0 and n large,
�.QnJQn/ � Œ˛ � "; ˇ C "�. This result is true under much weaker hypothesis
(essentially, (5) is not needed), but I believe the stronger result that is Theorem 1.3
requires some kind of decoupling.
(ii) InCorollary 1.4, one can takeK D `2.Z��1/ and so treat discrete Schrödinger

operators on Z�C D f.n1; : : : ; n�/ 2 Z� j n� � 1g.
(iii) If one uses Neumann boundary conditions (i.e., restriction of a whole-line

even operator to even functions), then weak coupling negative bn’s and an � 1

produce a bound state (see, e.g., Simon [4]) and so the analog of Corollary 1.4, or
even Theorem 1.2, fails.

I would like to thank Alexander Aptekarev, David Damanik, Rowan Killip, Ros-
tyslav Kozhan, and Sasha Pushnitski for useful correspondence and/or discussions.

2. The discrete case

In this section, we will prove Theorem 1.3. We begin with the following lemma.

Lemma 2.1. Let Pn be a family of orthogonal projections on a Hilbert spaceH with

s-lim
n!1Pn D 1: (6)

Let J be a bounded selfadjoint operator on H so that

dimP.�1;0/.J / D ` < 1; (7)

where P.�1;0/.�/ is a spectral projection. Then, for some N,
n > N H) dimP.�1;0/.PnJPn/ D `: (8)

Proof. By a variational argument,

dimP.�1;0/.PnJPn/ � ` (9)
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(essentially, if it were dimension� `C 1, we could find `C 1 unit vectors in RanPn

so that h'j ; 'mi D ıjm and h'j ; J'mi D aj ıjm with aj < 0/.
For any '1; : : : ; '` in RanPn, let �jk D h'j ; 'ki and Ajk D h'j ; J'ki. If � is

invertible and ��1=2A��1=2 < 0, then (9) holds by the variational principle.
Let  1; : : : ;  ` span RanP.�1;0/.J / and be a set of orthonormal eigenvectors

for J . Let '.n/
j D Pn j and �

.n/

jk
D h'.n/

j ; '
.n/

k
i, A.n/

jk
D h'.n/

j ; J'
.n/

k
i. By (6),

�
.n/

jk
! 1,A.n/

jk
! j̨ ıjk with j̨ < 0. It follows for all large n that�.n/ is invertible

and .�.n//�1=2A.n/.�.n//�1=2 < 0.

Proof of Theorem 1.3. Let Sn D Pn CQn. Then, by a variational argument,

dimP.�1;0/.SnJSn/ � dimP.�1;0/.J / � ` < 1: (10)

By (5), on RanSn D RanPn ˚ RanQn, we have that

SnJSn D PnJPn ˚QnJQn (11)

so

dimP.�1;0/.SnJSn/ D dimP.�1;0/.PnJPn/C dimP.�1;0/.QnJQn/: (12)

By the lemma for some N and n > N,

dimP.�1;0/.PnJPn/ D `: (13)

By (10), (12), and (13) for n > N,

dimP.�1;0/.QnJQn/ D 0

that is,QnJQn � 0.

3. The continuum case

Here we will state and prove the analog of Theorem 1.3 for ODEs. For simplicity of
exposition, we assume the potential is bounded, but it is easy to extend to V ’s with
kV.x/k in L1

loc with some kind of selfadjointness criterion at 1 or to positive V ’s
using quadratic forms.

Theorem 3.1. LetK be a Hilbert space and V.x/, x 2 Œ0;1/, a weakly measurable
function on Œ0;1/with values in the bounded operators onK with supx2Œ0;1/kV.x/k
< 1. Let Ha, a � 0, be the operator on Ha � L2..a;1/;KI dx/ of the form
� d2

dx2 C V.x/ with u.a/ D 0 boundary conditions. Suppose H � HaD0 has only
finitely many eigenvalues in .�1; 0/, each of finite multiplicity and no other spectrum
there. Then for some A 2 Œ0;1/,Ha � 0 for a � A.
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Remark 3.2. By allowing V.x/ to be a selfajdoint operator bounded from below (to
handle the Laplacian in the other directions), this theorem can be extended to treat
��C V.x1; : : : ; x�/ on fx j x� > 0g.

Proof. For each a, by adding a Dirichlet boundary condition at a, we can find zHa on
HaD0 of the form Ka ˚Ha on L2..0; a/;KI dx/˚ L2..a;1/;KI dx/ and

zHa � HaD0: (14)

As in the proof of Lemma 2.1,

dimP.�1;0/.Ka/ D dimP.�1;0/.HaD0/

for all a > A for some A.
For such a, by (14), dimP.�1;0/.Ha/ D 0.
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