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Eigenvalue bounds
for two-dimensional magnetic Schrödinger operators

Hynek Kovařík1

Abstract. We prove that the number of negative eigenvalues of two-dimensional magnetic
Schrödinger operators is bounded from above by the strength of the corresponding electric
potential. Such estimates fail in the absence of a magnetic field. We also show how the
corresponding upper bounds depend on the properties of the magnetic field and discuss their
connection with Hardy-type inequalities.
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1. Introduction

The Hamiltonian of a charged quantum particle in R2 interacting with a magnetic
field B D curl A is given formally by the differential operator

HB D .ir C A/2 in L2.R2/: (1.1)

We will deal with spectral estimates for Schrödinger operators HB �V , where V is an
additional electric potential. The well known Cwikel–Lieb–Rozenblum inequality,
see [7], [18], and [20], says that in dimension d � 3 the number N.H0 � V; 0/ of
negative eigenvalues of H0 � V can be estimates as follows:

N.H0 � V; 0/ D N.�� � V; 0/ � Cd

Z
Rd

VC.x/d=2 dx; d � 3; (1.2)

where VC denotes the positive part of V and Cd is a constant independent of V .
Moreover, in [2] it is shown that inequality (1.2) holds, under certain generic as-
sumptions, with the same constant Cd also in the presence of a magnetic field, i.e.
with �� replaced by HB .

1The research was partially supported by the MIUR-PRIN2008 grant for the project “Trasporto ottimo
di massa, disuguaglianze geometriche e funzionali e applicazioni”.
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On the other hand, it is also known that (1.2) fails if d D 2. This is clear
already from the fact that the operator �� � V in dimension two has weakly coupled
eigenvalues, in other words if

R
R2 V � 0 and v ¤ 0, then N.�� � �V; 0/ � 1 for

any � > 0. There are also other, less obvious, reasons behind the failure of (1.2) for
d D 2, see Section 4 for more details.

When an additional magnetic field is introduced, then it is natural to expect that
the situation described above might improve (in certain sense) due to diamagnetic
effects. Indeed, it is known that magnetic Schrödinger operators typically do not
have weakly coupled eigenvalues [28]. Therefore we address the question whether
it is possible to establish an analogue of the CLR-inequality (1.2) in dimension two
for the counting function N.HB � V; 0/. This problem was solved in [3] in the case
of the Aharonov–Bohm magnetic field represented by a Dirac delta function, see
Remark 3.10 below.

However, it is easily seen that as soon as a (radial) magnetic field is not of the
Aharonov–Bohm type, in other words when it is more regular, then the estimate
proved in [3], namely inequality (3.13) below, must fail, see Proposition 4.1. Our
aim is thus to establish a suitable upper bound on N.HB � V; 0/ for a reasonably
large class of magnetic fields and in particular to find out how such an upper bound
depends on the properties of B .

In the first part of the paper we prove a weighted version of (1.2) for general
magnetic fields, see Theorems 3.1 and 3.4. The proofs of these theorems are based
on a modification of the method of Lieb, [18], [2], and [21], and on certain Hardy type
inequalities for the operator HB obtained in [17] and [28]. The advantage of such
approach is that is can be applied to a very large class of magnetic fields. Moreover,
it also enables us to prove a family of weighted Sobolev inequalities for the operator
HB , see Corollary 3.5, which might be of independent interest. On the other hand,
the upper bounds obtained by this method do not have the correct behavior in the
strong coupling regime, cf Remark 3.6.

Therefore, in the second part of the paper, we show that for radial magnetic fields
with finite total flux one can establish sharper estimates on N.HB � V; 0/ with the
expected strong coupling behavior, see Theorems 3.8 and 3.9. It is interesting to
notice that the integral weights involved in these bounds change according to the
value of the total flux of the magnetic field. It turns out that this phenomenon is
directly related to the decay rate of the weight functions of the respective Hardy-type
inequalities for the operator HB , see Section 8 for further details.

2. Preliminaries and notation

Given a self-adjoint operator T on a Hilbert space H , we denote by N.T; s/H the
number of its discrete eigenvalues (counted with multiplicities) below s 2 R. If
H D L2.R2/, then we omit the subscript and write N.T; s/. For two functions f1,
f2 on a set � we will use the notation f1.x/ ' f2.x/ if and only if there is a c > 0
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such that, for all x 2 �,

c�1f1.x/ � f2.x/ � cf1.x/: (2.1)

An important characteristics of the magnetic field is its flux ˆ.r/ through the disc of
radius r centered in the origin:

ˆ.r/ D 1

2�

Z
fx W jxj�rg

B.x/ dx: (2.2)

We will denote the total flux of B by

ˆ D lim
r!1 ˆ.r/

whenever the above limit exists and is finite. Finally, we will use the notation .� ; �/H

for the scalar product in a Hilbert space H , and .� ; �/ in the case H D L2.R2/.

3. Main results

Since we are interested only in upper bounds on N.HB � V; 0/, we may suppose
without loss of generality that V is non-negative. Moreover, we will always assume
that A 2 L2

loc.R
2/ and V 2 L1

loc.R
2/. Under the symbol HB � V we will understand

the Friedrichs extension of the operator generated by the quadratic formZ
R2

.j.i r C A/ uj2 � V juj2/ dx; u 2 C 1
0 .R2/; (3.1)

provided this form is bounded from below.

3.1. Eigenvalue bounds for general magnetic fields

Theorem 3.1. Assume that A 2 L2
loc.R

2/ generates a non-zero magnetic field B . Let
0 � V 2 L1

loc.R
2/ be such that the right hand side of (3.2) is finite for some a > 0.

Then the quadratic form (3.1) is closable and there exists a constant C D C.B; a/,
independent of V , such that

N.HB � V; 0/ � C
� Z

R2

V.x/ .1 C j log jxjj/1Ca dx

C
Z

R2

V.x/ log.1 C V.x// dx
�
:

(3.2)

For the next result we will need more hypotheses on the magnetic field. The following
condition is taken from [17].
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Assumption 3.2. Assume that there exist " 2 .0; 1=2/; A D A."/ and a finite or
infinite number M of open intervals Ij D . j̨ ; ǰ /, such that

˚
r > 0 W min

k2Z
jk � ˆ.r/j < "

� �
M[

j D1

Ij ;

ǰ �1 < j̨ < ǰ ; j D 1; : : : ; M;

jIj j � A min f1 C j̨ ; j̨ � ǰ �1; j̨ C1 � ǰ g; 1 � j � M:

Remark 3.3. Assumption 3.2 requires that the flux ˆ.r/ does not stabilize on integers
in long intervals. It is satisfied, for example, if the total flux of the magnetic field is
finite and non-integer.

Theorem 3.4. Assume that A 2 L2
loc.R

2/ generates a magnetic field B which satisfies
Assumption 3.2. Let 0 � V 2 L1

loc.R
2/ \ L1Ca.R2; .1 C jxj/2a dx/ for some

a > 0. Then the quadratic form (3.1) is closable and there exists a constant C.B; a/,
independent of V , such that

N.HB � V; 0/ � C.B; a/

Z
R2

V.x/1Ca .1 C jxj/2a dx: (3.3)

As a consequence of Theorem 3.4 we obtain the following result.

Corollary 3.5. Assume that A 2 L2
loc.R

2/ generates a magnetic field B which satisfies
Assumption 3.2. Then for any q 2 Œ2; 1/ there exists a constant S D S.B; q/ > 0

such that Z
R2

j.ir C A/ uj2 dx � S
� Z

R2

ju.x/jq .1 C jxj/�2 dx
� 2

q
(3.4)

holds for all u 2 C 1
0 .R2/. In particular, if jAj 2 L1.R2/, then (3.4) holds for all

u 2 H 1.R2/.

Inequality (3.4) fails, for any q, if the magnetic field is absent, cf Remark 8.2.
Remark 3.6 (semiclassical behavior). Since a magnetic field does not affect the clas-
sical phase space volume, under certain generic decay conditions on V the counting
function N.HB � � V; 0/ will obey the Weyl asymptotical formula

lim
�!1

��1N.HB � � V; 0/ D 1

4�

Z
R2

V.x/ dx; (3.5)

see e.g. [24]. On the other hand, introducing a coupling constant � in front of V

we easily see that when � ! 1; then the right hand sides of (3.2) and (3.3) are
proportional to � log � and �1Ca respectively. In other words, they grow too fast
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with �. This common defect of the bounds (3.2) and (3.3) cannot be avoided within
the approach used in their proofs.

However, in the next section we will show that it can be removed, applying a
different method, under the condition that the magnetic field is radial.

3.2. Eigenvalue bounds for radial magnetic fields. For radial magnetic fields have
stronger versions of Theorems 3.1 and 3.4. To state them we need some notation. We
say that a potential function V belongs to the class L1.RC; L1.S1// if

kV k
L1.RC;L1.S1//

D
Z 1

0

zV .r/r dr < 1 ; (3.6)

where
zV .r/ D ess sup

0���2�

jV.r; �/j: (3.7)

Moreover, given s > 0 we denote Bs D fx 2 R2 W jxj < sg.

Assumption 3.7. Let B 2 L1.RC; .1 C r/ dr/ be real-valued function and assume
that B.x/ D B.jxj/.

Theorem 3.8. Let B satisfy Assumption 3.7. Assume that ˆ … Z. Suppose moreover
that V 2 L1

loc.R
2; j log jxjj dx/ and that V 2 L1.RC; L1.S1//. Then the quadratic

form (3.1) is closable and there exists a constant C1 D C1.B/ , independent of V ,
such that

N.HB � V; 0/ � C1.kV log jxjk
L1.B1/

C kV k
L1.RC;L1.S1//

/: (3.8)

In particular, if V.x/ D V.jxj/, then

N.HB � V; 0/ � C1. kV log jxjk
L1.B1/

C kV k
L1.R2/

/: (3.9)

If the total flux is an integer, then we have to replace the first term on the right
hand side of (3.8) by a corresponding L1-norm of V.x/ log.x/ on the whole of R2.

Theorem 3.9. Let B satisfy Assumption 3.7. Assume that ˆ 2 Z. Suppose moreover
that V 2 L1.R2; j log jxjj dx/ and that V 2 L1.RC; L1.S1//. Then the quadratic
form (3.1) is closable and there exists a constant C2 D C2.B/, independent of V ,
such that

N.HB � V; 0/ � C2

�kV log jxjk
L1.R2/

C kV k
L1.RC;L1.S1//

/: (3.10)

In particular, if V.x/ D V.jxj/, then

N.HB � V; 0/ � C2

�kV log jxjk
L1.R2/

C kV k
L1.R2/

/: (3.11)
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We note that, contrary to Theorems 3.1 and 3.4, the upper bounds given in Theo-
rems 3.8 and 3.9 do respect the linear growth of N.HB C � V; 0/ in � predicted by
the Weyl formula (3.5). Notice also that while in (3.8) the logarithmic weight is only
local, in (3.10) it is included globally on the whole R2, which restricts the class of
admissible potentials V . In the next section we will show that this restriction cannot
be relaxed.

Different eigenvalue bounds with the correct semiclassical behavior were obtained
in the related paper [22].

Remark 3.10 (Aharonov–Bohm field). The vector potential

A.x/ D ˆ
�

� x2

jxj2 ;
x1

jxj2
�

on R2 n f0g; (3.12)

generates the so-called Aharonov–Bohm magnetic field which corresponds to a Dirac
delta placed in the origin. This field is fully characterized by its constant flux ˆ D
ˆ.r/. The associated magnetic Hamiltonian, which we denote by Hˆ, then satisfies

N.Hˆ � V; 0/ � CˆkV k
L1.RC;L1.S1//

; (3.13)

where the constant Cˆ is finite if and only if ˆ … Z. Estimate (3.13) was obtained in
[3]. For the class of radial potentials V a sharp value of the constant Cˆ was recently
found by Laptev [16].

4. Discussion

Inequalities (3.2), (3.3) and (3.8), (3.10) fail in the absence of magnetic field, since
N.H0 C � V; 0/ � 1 for all � > 0 provided V is non-positive in the integral mean.
In order to discuss the sharpness of the respective integral weights, we consider the
following model potentials:

V� .x/ D
´

r�2j ln r j�2j ln j ln r jj�1=� if r < e�2;

0 if r � e�2;
r D jxj; (4.1)

and

W�.x/ D
´

r�2j ln r j�2j ln ln r j�1=� if r > e2;

0 if r � e2;
r D jxj; (4.2)

taken from [5]. Accordingly, we introduce the potential classes

W� D f0 < V 2 L1.R2/ W V.x/ D V.jxj/; W� .x/ D O.V .x//; jxj ! 1g; (4.3)

V� D f0 < V 2 L1.R2/ W V.x/ D V.jxj/; V� .x/ D O.V .x//; jxj ! 0g; (4.4)

which represent potentials with a slow decay at infinity and with a strong singularity
in the origin, respectively.
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One of the reasons for the failure of the Cwikel–Lieb–Rozenblum inequality in
dimension two is the fact that for � > 1 the counting functions N.�� � � V� ; 0/ and
N.�� � � W� ; 0/ have a super-linear growth in the coupling constant �:

N.�� � � V� ; 0/ � N.�� � � W� ; 0/ � �� as � ! 1; (4.5)

see [5], Section 6, for details. Below we show that this phenomenon occurs also for
certain magnetic Schrödinger operators.

Proposition 4.1. Let B.x/ D B.jxj/ be compactly supported and such that B 2
Lq.R2/ for some q > 1. Then

lim inf
�!1

���N.HB � � V; 0/ > 0 for all V 2 V� ; � > 1: (4.6)

If moreover ˆ 2 Z, then in addition to (4.6) we also have

lim inf
�!1

���N.HB � � V; 0/ > 0 for all V 2 W� ; � > 1: (4.7)

Equation (4.6) shows that estimate (3.13) must fail if the magnetic field satisfies
conditions of Proposition 4.1.

Remark 4.2. Proposition 4.1, namely equation (4.6), shows that inequality (3.3) fails
if a D 0. Moreover, equation (4.7) implies that Assumption 3.2 cannot be left out
from Theorem 3.4. Indeed, since W� 2 L1

loc.R
2/ \ L1Ca.R2; .1 C jxj/2a dx/ for

any a > 0, for radial and compactly supported magnetic field with ˆ 2 Z equation
(4.7) would be in contradiction with inequality (3.3). As explained in Remark 3.3,
such magnetic fields are excluded by Assumption 3.2.

Remark 4.3. Equation (4.7) also tells us that the weight .1Cj log jxjj/1Ca in the first
term on the right hand side of (3.2) cannot be removed. Indeed, for a magnetic field
with integer flux and V D � W� inequality (3.2) without the factor .1Cj log jxjj/1Ca

would contradict equation (4.7).

Remark 4.4. The arguments of the previous remarks apply of course also to Theo-
rems 3.8 and 3.9. Namely, equation (4.6) shows that the logarithmic weight in the
first term on the right hand side of (3.8) cannot be omitted, while equation (4.7) says
that the condition ˆ 62 Z in Theorem 3.8 is necessary. In view of (4.7), the same
reasoning implies that the term kV log jxjk

L1.R2/
on the right hand side of (3.10)

cannot be replaced by kV log jxjk
L1.B1/

.

5. Proofs of the main results: general fields

We first prove the corresponding upper bounds on N.HB �V; 0/. This will imply the
closedness of the form (3.1). We start with an auxiliary Lemma on heat kernels of
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certain Schrödinger operators with positive electric potential. Let 0 � � � 1; � ¤ 0

be a radial function from C 1.R2/ with support in B1. Introduce a family of potential
functions Uˇ given as follows:

Uˇ .x/ D Uˇ .jxj/ D
´

ˇ2 if jxj � 1;

ˇ2jxj�2 if jxj > 1;
(5.1)

where ˇ > 0 and U0.x/ D U0.jxj/ D �.jxj/. Next we define Schrödinger operators

Aˇ D �� C Uˇ in L2.R2/:

In view of the standard Beurling–Deny criteria, the operators Aˇ generate contrac-
tion semigroups e�tAˇ on L2.R2/ with almost everywhere positive integral kernels
kˇ .t; x; y/ D e�tAˇ.x; y/.

Lemma 5.1. For almost every x 2 R2 and all t > 0 we have

kˇ .t; x; x/ D e�tAˇ .x; x/ � C minft�1; .1 C jxj/2ˇ t�1�ˇ g ˇ > 0; (5.2)

and

k0.t; x; x/ D e�tA0.x; x/

� C

´
t�1 if t � e;

min¹t�1; .1 C j log jxjj/2t�1.log t /�2º if t > e;

(5.3)

for some constant C .

Proof. The spectrum of Aˇ coincides, for all ˇ � 0, with the positive half-line
Œ0; 1/. Hence by the Allegretto–Piepenbrink theorem, see e.g. [19], there exists a
positive solution uˇ to the equation Aˇ uˇ D 0. Since the potential Uˇ is Hölder
continuous, the elliptic regularity ensures that uˇ 2 C 2.R2/. The radial function hˇ

given by

hˇ .jxj/ D
Z 2�

0

uˇ .jxj; �/ d�;

then also satisfies Aˇ hˇ D 0. Thus the weighted Laplace operator

� �ˇ D h�1
ˇ Aˇ hˇ in L2.R2; h2

ˇ dx/; (5.4)

generated by the quadratic formZ
R2

jruj2 h2
ˇ .x/ dx; u 2 H 1.R2; h2

ˇ dx/;

is unitarily equivalent to Aˇ and its heat kernel satisfies

e�tAˇ.x; y/ D hˇ .x/hˇ .y/et�ˇ .x; y/; x; y 2 R2: (5.5)
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Now denote r D jxj and observe that

.rh0
ˇ .r//0 D hˇ .r/rUˇ .r/;

which implies that hˇ is increasing and that for r > 1 it holds

hˇ .r/ D a1rˇ C b1r�ˇ ; ˇ > 0 (5.6)

h0.r/ D a2 C b2 j log r j; ˇ D 0: (5.7)

Since hˇ is positive and increasing it follows that a1 > 0; b2 > 0. Thus for any
ˇ � 0 there exists a constant Mˇ such that

hˇ .2r/ � Mˇ hˇ .r/; for all r 2 RC: (5.8)

Let Vˇ .x; s/ denote the volume of the ball of radius s centered in x in the measure
h2

ˇ
dx. In view of (5.6) and (5.7) it easily follows that the manifold .R2; h2

ˇ
dx/

satisfies the volume doubling property; i.e. there exists a constant c such tat for any
s it holds

Vˇ .x; 2s/ � cVˇ .x; s/:

Eq. (5.8) and Theorems 5.7 and 2.7 in [11] thus imply that the manifold .R2; h2
ˇ

dx/

satisfies the Li–Yau estimate for its heat kernel:

et�ˇ .x; y/ ' Ce�c jx�yj2

tq
Vˇ .x;

p
t/

q
Vˇ .x;

p
t/

; (5.9)

where c and C are positive constants. However, by (5.6) and (5.7) we have

Vˇ .x;
p

t/ ' th2
ˇ .jxj C p

t/:

Hence

e�tAˇ.x; y/ ' C
hˇ .jxj/hˇ .jyj/

thˇ .jxj C p
t/hˇ .jyj C p

t /
e�c jx�yj2

t : (5.10)

Since hˇ is increasing, this together with (5.5) and the estimate

e�tAˇ.x; y/ � et�.x; y/ D 1

4�t
e� jx�yj2

4t a.e. x; y 2 R2;

which follows by the Trotter product formula, imply equations (5.2) and (5.3).

5.1. Proof of Theorem 3.1. Let 	1 be the characteristic function of B1. From [28]
we know that the Hardy type inequality

HB � 
	1 (5.11)

holds, for some constant 
 > 0, in the sense of quadratic forms on C 1
0 .R2/.
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Proof of Theorem 3.1. Let a > 0. Inequality (5.11) and the variational principle
imply that for any " 2 .0; 1/ we have

N.HB � V; 0/ � N.HB � V; 0/

� N."HB C .1 � "/c	1 � V; 0/

� N
�
HB C c1.1 � "/

"
	1 � "�1V; 0

�
;

(5.12)

where we have used the fact that multiplying an operator by a positive constant does
not change the number of its negative eigenvalues. Next we chose " such that

c1.1 � "/

"
	1 � U0;

which is possible due to the hypotheses on U0, so that

N.HB � V; 0/ � N.HB C U0 � "�1V; 0/:

For each ˇ � 0 the operator HB CUˇ generates a contractive semigroup e�s.HB CUˇ/

in L2.R2/. Let

Kˇ .s; x; y/ D e�s.HBCUˇ/.x; y/ x; y 2 R2

be its integral kernel. By the diamagnetic inequality, see e.g. [23] and [13], we have

jKˇ .s; x; y/j � kˇ .s; x; y/; ˇ � 0; a.e. x; y 2 R2; s > 0: (5.13)

This allows us to use a generalisation of the Lieb’s inequality [18], see [21], Theo-
rem 2.5, or [2], or [10], and therefore to obtain the upper bound

N.HB C U0 � "�1V; 0/ � C"

Z 1

0

1

t

Z
R2

k0.t; x; x/.t V .x/ � 1/C dx dt:

� C"

Z
R2

Z 1

1=V.x/

k0.t; x; x/V .x/ dt dx:

(5.14)

Next we set t0.x/ D e C 1
V.x/

and perform the integration w.r.t. t using the estimates

k0.t; x; x/ � c

t
; 0 < t < t0.x/;

k0.t; x; x/ � c .1 C j log jxjj/1Ca

t .log t /1Ca
; t0.x/ � t;

which follow easily from (5.3). This gives inequality (3.2). Moreover, the operator
HB �V has only finitely many eigenvalues which shows that the quadratic form (3.1)
is bounded from below and therefore closable.
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5.2. Proof of Theorem 3.4. The arguments follow closely the proof of Theorem 3.1.
In view of Assumption 3.2 and [17] we have

HB � cBU1 (5.15)

in the sense of quadratic forms on C 1
0 .R2/, where cB is a positive constant, see

also [4].

Proof of Theorem 3.4. Fix a > 0 and chose " > 0 such that

a2 D .1 � "/cB

"
:

Mimicking the argument used in (5.12) and taking into account inequality (5.15) we
get

N.HB � V; 0/ � N.HB C Ua � "�1 V; 0/: (5.16)

In the same way as in the proof of Theorem 3.1 we arrive at

N.HB C Ua � "�1 V; 0/ � Ca

Z
R2

Z 1

1=V.x/

ka.t; x; x/ V .x/ dt dx:

Inequality (3.3) then follows from estimate (5.2).

5.3. Proof of Corollary 3.5. If jAj is bounded, then the closure of C 1
0 .R2/ with

respect to the norm k.ir CA/uk2
2 Ckuk2

2 coincides with the Sobolev space H 1.R2/.
Hence it suffices to prove (3.4) for u 2 C 1

0 .R2/. To this end we follow the approach
of [10].

Proof of Corollary 3.5. Let u 2 C 1
0 .R2/ and assume that 2 < q < 1. Let

V.x/ D�
�
C.B; 2=.q � 2//

Z
R2

ju.x/jq.1 C jxj/�2 dx
� 2�q

q

ju.x/jq�2.1 C jxj/�2;

(5.17)

where 0 < � < 1 and C
�
B; 2=.q � 2// is the constant in inequality (3.3). It follows

from (3.3) that N.HB � V; 0/ D 0. HenceZ
R2

j.ir C A/ uj2 dx �
Z

R2

V.x/ju.x/j2 dx;

which implies (3.4). If q D 2, then the statement is equivalent to the Hardy inequal-
ity (5.15).
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6. Hardy inequalities

In this section we prove some Hardy type inequalities for the operator HB . These
inequalities will be used in the proofs of Theorems 3.8 and 3.9.

Lemma 6.1. Assume that A 2 L2
loc.R

2/ generates a non-zero magnetic field. Then
there exists a constant C.A/ > 0 such thatZ

R2

j.r C iA/ u.x/j2 dx � C.A/

Z
R2

ju.x/j2
1 C jxj2 log2 jxj dx; (6.1)

for all u 2 C 1
0 .R2/.

Proof. Let u 2 C 1
0 .R2/. By [28], Theorem 2.1, we haveZ

R2

j.r C iA/ u.x/j2 dx � c0

Z
jxj�3

ju.x/j2 dx;

for some 0 < c0 < 1. By Kato’s inequality

krjujk2 � k.r C iA/ uk2; u 2 C 1
0 .R2/; (6.2)

see [12] and [23]. It thus suffices to show thatZ 1

0

jf 0.r/j2r dr C c0

Z 3

0

jf .r/j2r dr � C

Z 1

3

jf .r/j2
r.log r/2

dr (6.3)

holds for all f 2 C 1
0 .RC/ and some constant C > 0. Define the function ' by

'.r/ D

8̂̂̂
<̂
ˆ̂̂̂:

c0 if 0 < r � 1;

c0.2 � r/ if 1 < r � 2;

c0.r � 2/ if 2 < r � 3;

c0 if 3 < r:

A simple integration by parts then shows thatZ 1

0

j.'f /0.r/j2r dr C c0.1 � c0/

Z 3

0

jf .r/j2r dr

�
Z 1

0

jf 0.r/j2r dr C c0

Z 3

0

jf .r/j2r dr:

On the other hand, since '.2/ D 0, integrating by parts again we obtainZ 1

2

�
.'f /0.r/ � .'f /.r/

2r log r

�2

r dr

D
Z 1

2

j.'f /0.r/j2r dr �
Z 1

2

j.'f /.r/j2
4r.log r/2

dr:

Putting together the last two equations proves (6.3) and hence (6.1).
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Hardy inequality (6.1) will have a crucial role in the proof of Theorem 3.9. Note
that the weight function .1Cjxj2 log2 jxj/�1 on its right hand side belongs to L1 .R2/,
cf Proposition 8.1 in Section 8. On the other hand, Lemma 6.2 below shows that on the
orthogonal complement of the subspace of functions u.x/ D u.jxj/ the logarithmic
factor in (6.1) can be removed if the magnetic field is radial. More general results in
this direction concerning non-magnetic Hardy inequalities were obtained in [26].

Lemma 6.2. Let the magnetic field satisfy conditions of Theorem 3.8. Then there
exists a constant ~ > 0 such that for any u 2 C 1

0 .R2/ we haveZ 2�

0

u.r; �/ d� D 0 for all r > 0

H)
Z

R2

j.r C iA/ u.x/j2 dx � ~

Z
R2

ju.x/j2
jxj2 dx:

(6.4)

Proof. Let u 2 C 1
0 .R2/ satisfy the hypotheses in (6.4). Then we can decompose u

into the Fourier series

u.r; �/ D
X
m¤0

um.r/
eim�

p
2�

; um.r/ D 1p
2�

.u.r; �/; eim�/L2.0;2�/:

For radial magnetic fields we haveZ
R2

j.r C iA/uj2 D
X
m¤0

Z 1

0

�
ju0

m.r/j2 C .ˆ.r/ C m/2

r2
jum.r/j2

�
r dr; (6.5)

see equation (7.4) in Section 7. Since ˆ.r/ is bounded, there exist c > 0 and M0 2 N
such that

.ˆ.r/ C m/2 � c > 0 (6.6)

for all r > 0, and all m such that jmj � M0. On the other hand, in view of the fact
that ˆ.r/ ! 0 as r ! 0 and ˆ 62 Z, for any m ¤ 0 we can find 0 < rm < Rm and
a constant cm > 0 such that

.ˆ.r/ C m/2 � cm on .0; rm/ [ .Rm; 1/:

By “extending” the Hardy weight onto the interval .rm; Rm/ in the same way as it
was done in Lemma 6.1 above, we then find out that for all m ¤ 0, jmj < M0 there
is a Qcm > 0 such thatZ 1

0

�
ju0

m.r/j2 C .ˆ.r/ C m/2

r2
jum.r/j2

�
r dr � Qcm

Z 1

0

jum.r/j2
r

dr:

Hence by (6.5), (6.6), and the Parseval’s identity there exits a ~ > 0 such thatZ
R2

j.r C iA/ uj2 � ~

Z
R2

ju.x/j2
jxj2 dx:
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If the total flux ˆ is an integer, then we have the following result.

Lemma 6.3. Let the magnetic field satisfy the conditions of Theorem 3.9. Then there
exists a constant ~ 0 > 0 such that for any u 2 C 1

0 .R2/ the following holds: If for all
r > 0 Z 2�

0

u.r; �/ d� D
Z 2�

0

e�i� ˆ u.r; �/ d� D 0; (6.7)

then Z
R2

j.r C iA/ u.x/j2 dx � ~ 0
Z

R2

ju.x/j2
jxj2 dx: (6.8)

Proof. This is a straightforward analogue of the proof of Lemma 6.2.

7. Proofs of the main results: radial fields

For radial magnetic fields we introduce the corresponding vector potential A in polar
coordinates .r; �/ as follows:

A.r; �/ D a.r/ .� sin �; cos �/; a.r/ D 1

r

Z r

0

B.t/t dt D 1

r
ˆ.r/:

Then curl A D B . Since A is bounded, in view of Assumption 3.7, the Hamiltonian
HB is associated with the closed quadratic form

Z 1

0

Z 2�

0

.j@ruj2 C r�2ji @�u C ˆ.r/uj2/r dr d�; u 2 H 1.RC � .0; 2�//: (7.1)

By expanding a given function u 2 L2.RC�.0; 2�// into a Fourier series with respect
to the orthonormal basis f.2�/�1=2 eim�gm2Z of L2.0; 2�/, we obtain a direct sum
decomposition

L2.R2/ D
X
m2Z

M
Lm; (7.2)

where Lm D fg 2 L2.R2/ W g.x/ D f .r/eim�a.e.,
R 1

0
jf .r/j2r dr < 1g. Since

the magnetic field B is radial, the operator HB can be decomposed accordingly to
the direct sum

HB D
X
m2Z

M
.hm ˝ id/…m; (7.3)

where hm are operators generated by the closures, in L2.RC; r dr/, of the quadratic
forms Z 1

0

�
jf 0j2 C .ˆ.r/ C m/2

r2
jf j2

�
r dr (7.4)
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defined initially on C 1
0 .RC/, and …m W L2.R2/ ! Lm is the projector acting as

.…m u/.r; �/ D 1

2�

Z 2�

0

eim.��� 0/u.r; � 0/ d� 0: (7.5)

Obviously, the operator H0 D �� admits a similar decomposition:

� � D
X
m2Z

M
.Pm ˝ id/…m; (7.6)

where Pm are operators generated by the closures, in L2.RC; r dr/, of the quadratic
forms Z 1

0

�
jf 0j2 C m2

r2
jf j2

�
r dr; f 2 C 1

0 .RC/:

7.1. Proof of Theorem 3.8. We prove the upper bound (3.8) for continuous and
compactly supported V . The general case then follows by approximating V by a
sequence of continuous compactly supported functions and using a standard limiting
argument in inequality (3.8). Let …0 be given by (7.5) and let

Q u D u � …0 u ; u 2 L2.R2/ :

Since …0 and Q commute with HB , the variational principle and the inequality

j.u; .…0VQ C QV …0/u/j � .u; QVQ u/ C .u; …0V …0 u/;

for all u 2 C 1
0 .R2/, imply that the estimate

HB � V � …0.HB � 2 V /…0 C Q.HB � 2 V /Q (7.7)

holds true in the sense of quadratic forms on C 1
0 .R2/. Hence

N.HB � V; 0/ � N.…0.HB � 2 V /…0; 0/ C N.Q.HB � 2V /Q; 0/: (7.8)

Set

yV .r/ D 1

2�

Z 2�

0

V.r; �/ d� : (7.9)

Let us denote by P
a;b
0 the restriction of the operator P0 on L2..a; b/; r dr/ with

Neumann boundary conditions at the end points a and b.

Lemma 7.1. Let 0 � a < b � 1. Assume that W � 0 is continuous and compactly
supported. Then there exists a constant L0, independent of a and b, such that for any
ı > 0 we have

N
�
P

a;b
0 C ı2

r2
� W.r/; 0

�
L2..a;b/;r dr/

� L0

ı

Z b

a

W.r/r dr: (7.10)
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Proof. Consider the mapping U W L2..a; b/; r dr/ 7! L2.a; b/ defined by .Uf /.r/ D
r1=2f .r/. A direct calculation shows that the operator

T
a;b

ı
D U

�
P

a;b
0 C ı2

r2

�
U�1 in L2.a; b/ (7.11)

acts on its domain according to

.T
a;b
ı

u/.r/ D �u00.r/ C ı2 � 1
4

r2
u.r/; u0.a/ D u.a/

2a
; u0.b/ D u.b/

2b
;

for 0 < a < b < 1, where the boundary conditions take the form u.a/ D 0 if a D 0

and u 2 L2.a; 1/ if b D 1. Let G
a;b

ı
.r; r 0; �/ be the integral kernel of the resolvent

of T
a;b

ı
at the point �2, i.e.

G
a;b

ı
.r; r 0; �/ D .T

a;b

ı
C �2/�1.r; r 0/:

From the Sturm–Liouville theory of ordinary differential operators we calculate

G
a;b
ı

.r; r; �/ D r

!ı.a/ C !ı.b/
.Iı.r�/ C !ı.a/Kı.r�//.Iı.r�/ C !ı.b/Kı.r�//;

where Iı and Kı are the modified Bessel functions, and

!ı.r/ D � I 0
ı
.r �/

K 0
ı
.r �/

: (7.12)

From [1], Section 9.6, we then deduce that

lim
�!0

G
a;b
ı

.r; r; �/ D 2r

ı

�
1 C 22�2ı.ab/2ı

.a2ı C b2ı/r2ı

�
� c r

ı
;

with a constant c independent of a; b and r . The Birman–Schwinger principle thus
gives

N.T
a;b
ı

� W.r/; 0/L2.a;b/ � lim
�!0

Z b

a

G
a;b
ı

.r; r; �/W.r/ dr � c

ı

Z b

a

W.r/r dr:

Since U is unitary, this proves the statement.

Lemma 7.2. Let V 2 L1.RC; L1.S1//. Then for any " > 0 there exists a C" such
that

N
�
HB C "

jxj2 � V; 0
�

� C"kV k
L1.RC;L1.S1//

: (7.13)

Proof. By density, it suffices to prove the estimate for continuous and compactly
supported V . By (7.3) we have

N
�
HB C "

jxj2 � V; 0
�

�
X
m2Z

N
�
hm C "

jxj2 � zV; 0
�

L2.RC;r dr/
(7.14)
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We recall the result of Laptev [15]:

N
�

� � C "

jxj2 � zV; 0
�

D
X
m2Z

N
�
P0 C m2 C "

r2
� zV; 0

�
L2.RC;r dr/

� c."/kV k
L1.RC;L1.S1//

:

(7.15)

Since ˆ.r/ is bounded, there exists n0 2 N such that

.m C ˆ.r//2 � m2

2

for all r > 0 and m 2 Z such that jmj > n0. Hence from (7.15) it easily follows that

X
jmj>n0

N
�
hm C "

r2
� zV; 0

�
L2.RC;r dr/

�
X

jmj>n0

N
�
P0 C m2 C "

r2
� 2 zV; 0

�
L2.RC;r dr/

� N
�

� � C "

jxj2 � 2 zV; 0
�

� 2c."/kV k
L1.RC;L1.S1//

:

On the other hand, by Lemma 7.1 we have for any m 2 Z

N
�
hm C "

r2
� zV ; 0

�
L2.RC;r dr/

� N
�
P0 C "

r2
� zV ; 0

�
L2.RC;r dr/

� zC"kV k
L1.RC;L1.S1//

:

In view of (7.14), this completes the proof.

Lemma 7.3. Let B satisfy the hypotheses of Theorem 3.8. Assume that V is contin-
uous and compactly supported. Then there exists a constant c0 such that

N.…0.HB � V /…0; 0/ � c0.kV k
L1.R2/

C kV log jxjk
L1.B1/

/: (7.16)

Proof. In view of the Hardy inequality (5.15) it suffices to prove

N.…0.HB C U1 � V /…0; 0/ � c.kV k
L1.R2/

C kV log jxjk
L1.B1/

/; (7.17)

where U1 is given by (5.1). Note that

N.…0.HB C U1 � V /…0; 0/ D N.h0 C U1 � yV ; 0/
L2.RC;r dr/

: (7.18)
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We impose additional Neumann boundary condition at the point r D 1. By the
variational principle

N.h0 C U1 � yV ; 0/L2.RC;r dr/ � N.P
0;1
0 C 1 � yV ; 0/

L2..0;1/;r dr/

C N
�
P

1;1
0 C 1

r2
� yV ; 0

�
L2..1;1/;r dr/

;

Moreover, Lemma 7.1 implies that for some c it holds

N
�
P

1;1
0 C 1

r2
� yV ; 0

�
L2..r0;1/;r dr/

� c

Z 1

1

yV .r/r dr: (7.19)

As for the operator P
0;1
0 C 1 in L2..0; 1/; r dr/, we note that inf �.P

0;1
0 C 1/ D 1.

Hence

N.P
0;1
0 C 1 � yV ; 0/

L2..0;1/;r dr/
D N.P

0;1
0 � yV ; �1/

L2..0;1/;r dr/

D N.T0 � yV ; �1/
L2.0;1/

;
(7.20)

where T0 D UP
0;1
0 U�1 is the operator in L2.0; 1/ acting on its domain as

.T0 u/.r/ D �u00.r/ � u.r/

4r2

with boundary conditions

u0.1/ D u.1/

2
; u.0/ D 0:

As above we calculate the diagonal element of the integral kernel of .T0 C �2/�1:

.T0 C �2/�1.r; r/ DW G0.r; r; �/ D rI0.r�/.K0.�r/ C !�1
0 .1/ I0.r�//:

Using the properties of functions I0 and K0, see e.g. [1], Section 9.6, it is then easy
to verify that

G0.r; r; 1/ � cr.1 C j log r j/; r 2 .0; 1/:

The Birman–Schwinger principle and equation (7.20) then yield

N.P
0;1
0 C 1 � yV; 0/

L2..0;1/;r dr/
D N.T0 � yV; �1/

L2.0;1/

�
Z 1

0

G0.r; r; 1/ yV .r/ dr

� c

Z 1

0

yV .r/.1 C j log r j/r dr:

(7.21)

This in combination with (7.19) implies (7.17) and therefore the statement of the
Lemma.
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Proof of Theorem 3.8. Lemma 6.2, inequality (7.13) and the variational principle
yield

N.Q.HB � V /Q; 0/ � N
�
Q

�
HB C ~

jxj2 � 2 V
�
Q; 0

�

� N
�
HB C ~

jxj2 � 2 V; 0
�

� ckV k
L1.RC;L1.S1//

:

The proof is completed by using Lemma 7.3.

Remark 7.4. Similar estimates, in terms of logarithmic Lieb–Thirring inequalities,
for the operator �� � V in dimension two were obtained in [14]. Upper bounds on
N.�� � V; 0/ including logarithmic weights were studied in [6], [25], and [27].

7.2. ProofofTheorem3.9. By Lemma 6.1 it suffices to prove the upper bound (3.10)
for the operator

HB C 1

1 C jxj2 log2 jxj � V:

Lemma 7.5. Let B satisfy hypotheses of Theorem 3.9 and suppose that ˆ D 0.
Assume that V is continuous and compactly supported. Then there exists a constant
L1 such that

N
�
h0 C 1

1 C r2 log2 r
� yV; 0

�
L2.RC;r dr/

� L1.kV k
L1.R2/

C kV log jxjk
L1.R2/

/

(7.22)

Proof. We impose addition Neumann boundary condition at r D 2. By Neumann
bracketing we have

N
�
h0 C 1

1 C r2 log2 r
� yV; 0

�
L2.RC;r dr/

� N
�
P

0;2
0 C 1

1 C r2 log2 r
� yV; 0

�
L2..0;2/;r dr/

C N
�
P

2;1
0 C 1

r2 log2 r
� 2 yV; 0

�
L2..2;1/;r dr/

:

A straightforward modification of (7.21) gives

N
�
P

0;2
0 C 1

1 C r2 log2 r
� yV; 0

�
L2..0;2/;r dr/

� c

Z 2

0

yV .r/.1 C 	.0;1/.r/j log r j/r dr:

(7.23)
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On the interval .2; 1/ we impose additional Neumann boundary conditions at fr D
n; n 2 N; n � 3g. Hence

N
�
P

2;1
0 C 1

r2 log2 r
� yV ; 0

�
L2..2;1/;r dr/

�
1X

nD2

N
�
P

n;nC1
0 C 1

r2 log2 r
� yV ; 0

�
L2..n;nC1/;r dr/

:

(7.24)

In the notation of the roof of Lemma 7.1, see equation (7.11), we then obtain

N
�
P

n;nC1
0 C 1

r2 log2 r
� yV ; 0

�
L2..n;nC1/;r dr/

� N.T
n;nC1

ın
� yV ; 0/L2.n;nC1/;

(7.25)

where

ı2
n D 1

log2.n C 1/
:

Hence in view of (7.10) we get

N.T
n;nC1
ın

� yV ; 0/L2.n;nC1/ � L0

Z nC1

n

ı�1
n

yV .r/r dr

� Qc
Z nC1

n

yV .r/.log r/r dr:

This together with (7.23) and (7.24) proves the Lemma.

Lemma 7.6. Let B satisfy the hypotheses of Theorem 3.9 and suppose that ˆ D
�m 2 Z. Assume that V is continuous and compactly supported. Then there exist
constants k1 and k2 such that

N
�
hm C 1

1 C r2 log2 r
� yV ; 0

�
L2.RC;r dr/

� k1.kV k
L1.R2/

C kV log jxjk
L1.R2/

/

(7.26)

and

N.h0 � yV ; 0/L2.RC;r dr/ � k2.kV k
L1.B1/

C kV log jxjk
L1.R2/

/: (7.27)

Proof. Inequalities (7.26) and (7.27) follows from straightforward modifications of
Lemmata 7.5 and 7.3 respectively.
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Proof of Theorem 3.9. Assume that ˆ D �m 2 Z. By inequality (6.1) it follows
that

N.HB � V; 0/ � N
�
HB C 1

1 C jxj2 log2 jxj � 2

~
V; 0

�
: (7.28)

Let Q D 1�…0 �…m be the projection on the orthogonal complement of L0 ˚Lm.
Mimicking the arguments of Section 7.1 we obtain

N
�
HB C 1

1 C jxj2 log2 jxj � V; 0
�

� N.Q.HB � 3V /Q; 0/ C N.…0.HB � 3V /…0; 0/

C N
�
…m.HB C 1

1 C jxj2 log2 jxj � 3V /…m; 0
�

D N.Q.HB � 3V /Q; 0/ C N.h0 � 3 yV ; 0/L2.RC;r dr/

C N
�
hm C 1

1 C r2 log2 r
� 3 yV ; 0

�
L2.RC;r dr/

:

(7.29)

As in the proof of Theorem 3.8 we note that by Lemma 6.3 and inequality (7.13)

N.Q.HB � V /Q; 0/ � N
�
HB C ~ 0

jxj2 � 2V; 0
�

� ckV k
L1.RC;L1.S1//

:

The statement of the Theorem then follows from Lemmata 7.5, 7.6 and inequali-
ties (7.28) and (7.29).

It should be pointed out that the difference between the estimates (3.8) and (3.10),
in other words between the presence of the term kV log jxjk

L1.B1/
and the term

kV log jxjk
L1.R2/

, is a direct consequence of the decay rate of the respective Hardy
weights:

.HBu; u/ � .�u; u/; u 2 C 1
0 .R2/;

�.x/ D c

´
.1 C jxj2 log2 jxj/�1 if ˆ 2 Z;

.1 C jxj2/�1 if ˆ … Z:

Remark 7.7. The logarithmic factor in the case ˆ 2 Z is specific to R2. For example
in a waveguide-type domain R � .0; 1/ the Hardy weight decays at infinity as jxj�2

independently of the total flux, cf [9].
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7.3. Proof of Proposition 4.1

Proof of Proposition 4.1. By [5], Section 6, for � > 1 we have

lim
�!1

��� N.P0 � � W� ; 0/L2.RC;r dr/

D lim
�!1

��� N.P0 � �V� ; 0/L2.RC;r dr/

D 4��1
�
� � 1

2

�
p

�.�/
:

(7.30)

Since V is radial, the operator HB � V admits a decomposition analogous to (7.3).
Hence

N.HB � �V; 0/ D
X
m2Z

N.hm � �V; 0/L2.RC;r dr/

� N.h0 � �V; 0/L2.RC;r dr/:

(7.31)

From the hypotheses on B and the Hölder inequality we obtain

ˆ.r/2

r2
D o.V�.r//; r �! 0:

This and a standard Dirichlet–Neumann bracketing yield

lim
�!1

��� N.h0 � �V� ; 0/L2.RC;r dr/

D lim
�!1

��� N.P0 � �V� ; 0/L2.RC;r dr/:
(7.32)

The variational principle together with (7.30) and (7.32) then imply that

lim inf
�!1

���N.h0 � �V; 0/L2.RC;r dr/

� lim
�!1

��� N.P0 � �cV� ; 0/L2.RC;r dr/ > 0:

where c > 0 is a suitable constant. In view of (7.31) this proves the first statement
of the proposition.

To prove the second statement assume that ˆ.r/ D �k 2 Z for all r large enough.
The same reasoning as above shows that

lim inf
�!1

���N.HB � �V; 0/ � lim inf
�!1

��� N.hk � �cW� ; 0/L2.RC;r dr/

D lim
�!1

��� N.P0 � �cW� ; 0/L2.RC;r dr/ > 0:

Remark 7.8. From the proof of Proposition 4.1 it is clear that the super-linear growth
of N.HB � � V�/ appears as long as the magnetic field does not have a strong
singularity at the origin. More precisely, for (4.6) to fail the term ˆ2.r/=r2 would
have to dominate the singularity of V�.r/ as r ! 0. This is for example the case of
the Aharonov–Bohm field, when ˆ.r/ is constant, see Remark 3.10.



Two-dimensional magnetic Schrödinger operators 385

8. Decay rate of Hardy weights

We have mentioned that the non-linear growth of N.HB � � V / in � for potentials
with a local singularity cannot be removed if the magnetic field is sufficiently regular.
Next we will discuss the behavior of N.HB ��V / for slowly decaying potentials and
in particular the connection between the non-linear growth of N.HB ��V /; V 2 W�

and the decay rate of the weight function � in the Hardy inequality

HB � �.x/ > 0: (8.1)

Proposition 4.1 suggests that in order to suppress the super-linear growth of N.HB �
�V /; V 2 W� , the magnetic field should generate a Hardy inequality with a positive
weight function � dominating all the potentials from W� at infinity. From the defi-
nition of W� it follows that such weight function must satisfy � … L1.R2/. This is
the case of magnetic fields with non-integer flux, when �.x/ ' jxj�2 at infinity, see
inequality (5.15). However, in the case of integer flux we have what follows.

Proposition 8.1. Assume that A 2 L1.R2/ generates a bounded radial magnetic
field with compact support and such that ˆ D k 2 Z. Suppose thatZ

R2

j.r C iA/ u.x/j2 dx �
Z

R2

ju.x/j2�.x/ dx; (8.2)

for all u 2 C 1
0 .R2/, holds for some 0 � � 2 L1.R2/; � 6	 0. Then � 2 L1.R2/.

Proof. Assume that (8.2) holds for some 0 � � … L1.R2/. Then, by density (8.2)
holds for all u 2 H 1.R2/. Consider the family of test functions un 2 H 1.R2/ given
by

un.r; �/ D e�ik� minf.log.rn//C; 1; .log.e n=r//Cg: (8.3)

A straightforward calculation shows that

sup
n2N

Z
R2

j.r C iA/unj2 D 2� sup
n2N

Z 1

0

�
ju0

nj2 C .ˆ.r/ � k/2

r2
junj2

�
r dr < 1;

while
R

R2 junj2� ! 1 as n ! 1 since un converges almost everywhere to 1. This
contradicts (8.2).

Remark 8.2. The arguments of the above proof also show, using the same family
of test functions (8.3), that Sobolev inequality (3.4) fails in the absence of mag-
netic field, or even in the presence of a magnetic field which satisfies conditions of
Proposition 8.1.
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