
J. Spectr. Theory 1 (2011), 155–177
DOI 10.4171/JST/7

Journal of Spectral Theory
© European Mathematical Society

Spectral asymptotics for Robin problems
with a discontinuous coefficient
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Dedicated to the memory of M. Sh. Birman (1928–2009)

Abstract. The spectral behavior of the difference between the resolvents of two realizations
zA1 and zA2 of a second-order strongly elliptic symmetric differential operator A, defined by

different Robin conditions �u D b1�0u and �u D b2�0u, can, in the case where all coefficients
are C1, be determined by use of a general result on singular Green operators found by the
author in 1984. Here we treat the problem for nonsmooth bi . Using a Kreı̆n resolvent formula,
we show that, if b1 and b2 are in L1, then the s-numbers sj of . zA1 � �/�1 � . zA2 � �/�1

satisfy sj j 3=.n�1/ � C for all j ; this improves a recent result for A D �� by Behrndt et al.,
that

P
j s

p

j
< 1 for p > .n � 1/=3. A sharper estimate is obtained when b1 and b2 are in

C " for some " > 0, with jumps at a smooth hypersurface, namely that sj j 3=.n�1/ ! c for
j ! 1, with a constant c defined from the principal symbol of A and b2 � b1.

As an auxiliary result we show that the usual principal spectral asymptotic estimate for
pseudodifferential operators of negative order on a closed manifold extends to products of
pseudodifferential operators interspersed with piecewise continuous functions.
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1. Introduction

Consider a second-order strongly elliptic symmetric operator

A D �
nX

j;kD1

@j .ajk@ku/C a0u (1.1)

on a bounded smooth domain� � Rn, and denote byA� ,A� , resp. zA, the realizations
inL2.�/defined by the Dirichlet condition �0u D 0, the Neumann condition �u D 0,
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resp. a Robin condition �u � b�0u D 0 with b real. Here �0u D uj@�
, and

�u D
nX

j;kD1

nj�0.ajk@ku/; (1.2)

the conormal derivative, with En D .n1; : : : ; nn/ denoting the interior normal to @�. It
is a classical result of Birman [5], shown also for exterior domains, that the difference
between the resolvents of the Robin realization and the Dirichlet realization is compact
and has the spectral behavior, for large negative �,

sj .. zA � �/�1 � .A� � �/�1/j 2=.n�1/ � C for all j ; (1.3)

here sj .T / denotes the j -th eigenvalue of .T �T /1=2 (the j -th s-number or singular
value of T ), counted with multiplicities. This was shown assuming merely that
b 2 L1.@�/.

For the situation where all coefficients are C1, the estimate was later improved
to an asymptotic estimate

sj .. zA � �/�1 � .A� � �/�1/j 2=.n�1/ ! c for j ! 1; (1.4)

this follows from Grubb [18], Sect. 8 (with generalizations to higher-order operators),
and Birman and Solomyak [7] (including exterior domains).

The paper [19] gave tools to extend (1.4) to nonselfadjoint situations (also for
exterior domains by a cutoff technique), by showing that for any singular Green
operator G on � of order �t < 0 and class 0,

sj .G/j
t=.n�1/ ! c.g0/ for j ! 1; (1.5)

here G belongs to the calculus of pseudodifferential boundary operators, introduced
by Boutet de Monvel [8] and further developed in [19], [20]; c.g0/ is a constant
derived from the principal symbol g0. In fact, the resolvent difference in (1.4) is a
singular Green operator of order �2 and class 0, when all coefficients are C1.

Considering another resolvent difference, J. Behrndt, M. Langer, I. Lobanov,
V. Lotoreichik, and I. Popov showed in a recent paper [4], on the basis of a theory
of quasi-boundary triples by J. Behrndt and M. Langer [2], that, when A D ��
(hence �u D �1u D P

j nj �0@ju) and b is a real function inL1.@�/, the difference

between the resolvent of zA and the resolvent of the Neumann realizationA� satisfies an
estimate with 2 replaced by 3, for � in the intersection of resolvent sets %. zA/\%.A�/:

. zA � �/�1 � .A� � �/�1 2 Cp for p > 3=.n � 1/; (1.6)

here Cp denotes the space of compact operators T with singular value sequences
.sj .T //j 2N 2 p̀; the Schatten class of order p. (Besides real b, also functions with
a fixed sign on Im b were treated.)
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In the case where b 2 C1.@�/, this follows from (1.5), since . zA � �/�1 �
.A� � �/�1 is a singular Green operator of order �3, leading to the stronger estimate:

sj .. zA � �/�1 � .A� � �/�1/j 3=.n�1/ ! c for j ! 1; (1.7)

this was noted also in [24], Corollary 8.4 and Example 8.5.
The result of [4] is more general by treating nonsmooth b. Their main result

Theorem 3.5 is proved in a formulation where the boundary condition is �0u D ‚�1u

for an operator ‚, but it is explained in their Remark 3.7 how this can be made to
include general conditions �1u D b�0u by use of the relations point of view of [2];
more on this in [3].

The main purpose of the present paper is to show spectral asymptotics estimates
as in (1.7) for nonsmooth b. First we show (in Theorem 3.2) that an upper bound

sj .. zA � �/�1 � .A� � �/�1/j 3=.n�1/ � C for all j (1.8)

holds for any complex b 2 L1.@�/; this implies (1.6), for general A as in (1.1). As
a corollary, a similar estimate holds for . zA1 � �/�1 � . zA2 � �/�1, when the zAi are
defined by boundary conditions �u D bi�0u with bi 2 L1.@�/.

Next, we show (in Theorems 3.5 and 4.4) that asymptotic estimates hold when
the bi are piecewise slightly better that continuous. Since asymptotic estimates are
not additive, we must aim directly for . zA1 � �/�1 � . zA2 � �/�1.

Theorem 1.1. Assume that b1, b2 and b2 � b1 are piecewise C " on @� for some
" > 0, having jumps at C1 hypersurfaces. Then

sj
�
. zA1 � �/�1 � . zA2 � �/�1/

�
j 3=.n�1/ ! c for j ! 1, (1.9)

where c is defined from the principal symbol of A and b2 � b1.

It suffices in fact that b1, b2 and b2 �b1 are piecewise inH r
p .@�/ for some r > 0

and p > .n � 1/=r , see the details below.
For the proof of (1.8) the method is, as in [4], an application of functional analysis,

building on a general theory of extensions (here Grubb [16]) together with known facts
on elliptic boundary value problems. The proof of (1.9) in the nonsmooth situations
draws on methods and results for pseudodifferential boundary operators in [19] and
a result on restricted kernels of pseudodifferential operators by Laptev [27, 28].

As an auxiliary result of independent interest we show (Theorem 4.3) that a prod-
uct of classical pseudodifferential operators of negative order on a closed manifold,
interspersed with piecewise continuous functions having jumps at a smooth hypersur-
face, has a principal spectral asymptotics estimate as in the smooth case. Moreover,
we extend (1.4) to b 2 L1.@�/ (Theorem 3.4).

Some spectral estimates for resolvent differences in interior and exterior domains
have been described recently by Malamud in [30], and spectral asymptotics have been
shown in [23]; both papers treat higher-order operators but do not aim for the special
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bounds obtained here. Let us also mention that we do not here address the question
of nonsmooth domains, as e.g. in Gesztesy and Mitrea [12], [13], [14] and Abels,
Grubb, and Wood [1], [21], and their references.

To keep the paper short, some introductory material found in other sources will
not be repeated here.

The main details of the extension theory [16]–[18] have been recalled and ex-
plained in several recent papers [9], [21], [24]; resulting Kreı̆n-type resolvent formu-
las are shown in [9].

Sobolev spaces are recalled in numerous places. The basic facts we shall need
on these and other function spaces such as Besov and Bessel-potential spaces, are
recalled e.g. in [1], Sect. 2.

The calculus of pseudodifferential boundary operators is explained in Boutet de
Monvel [8] and in [19], [20], [22].

2. The Robin realization

Let � be a bounded smooth subset of Rn with boundary @� D †, and let

a.u; v/ D
nX

j;kD1

.ajk@ku; @jv/C .a0u; v/; (2.1)

be a sesquilinear form with coefficients in C1.x�/ such that the associated second-
order operator (1.1) is formally selfadjoint and strongly elliptic. We assume moreover
that a.u; u/ is real for u 2 H 1.�/ and (with c > 0, k � 0)

a.u; u/ � ckuk2
1 � kkuk2

0 for u 2 H 1.�/. (2.2)

This holds if the matrix .ajk.x//
n
j;kD1

is real, symmetric, and positive definite and

a0.x/ is real, at each x 2 x�.
Let b 2 L1.†/, and define the sesquilinear form ab by

ab.u; v/ D a.u; v/C .b�0u; �0v/L2.†/: (2.3)

Since k�0uk2
L2.†/

� c0kuk2
3=4

� "kuk2
1 C C."/kuk2

0 for any ", we infer from (2.2)
that

Re ab.u; u/ � c1kuk2
1 � k1kuk2

0 for u 2 H 1.�/; (2.4)

where c1 < c is close to c and k1 � k is a large constant.
The sesquilinear formab onV D H 1.�/ inH D L2.�/defines a realization zAof

A by Lions’version of the Lax–Milgram lemma (as recalled e.g. in [22], Chapter 12),
with domain

D. zA/ D fu 2 H 1.�/ \D.Amax/ j .Au; v/ D ab.u; v/ for all v 2 H 1.�/g: (2.5)
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The operator zA is closed, densely defined with spectrum in a sectorial region in
fRe� � �k1g, and its adjoint zA� is the analogous operator defined from

a�
b.u; v/ D a.v; u/C . Nb�0u; �0v/L2.†/

: (2.6)

In particular, when b is real, zA is selfadjoint.
It will be useful to observe:

Lemma 2.1. For any small � > 0 there is an ˛ � 0 such that the spectrum of zA is
contained in the region

M
�;˛;k1

D fz 2 C j jIm zj � �.Re z C ˛/; Re z � �k1g: (2.7)

Proof. Let K D kIm bk
L1.†/

. From the inequalities for a
b
.u; u/ we see that for

u 2 H 1.�/,

jIm a
b
.u; u/j D jIm .b�0u; �0u/j � K."kuk2

1 C C."/kuk2
0/

� K"c�1
1 .Re a

b
.u; u/C k1kuk2

0/CKC."/kuk2
0

D K"c�1
1 Re a

b
.u; u/C .K"c�1

1 k1 CKC."//kuk2
0:

This, together with (2.4), shows that for u ¤ 0, ab.u; u/=kuk2
0 has its values in

M
�;˛;k1

, where � D K"c�1
1 can be taken arbitrarily small, ˛ D K"c�1

1 k1 CKC."/.

The numerical ranges of zA and zA� are contained in this set, which then also contains
the spectra. (More details for this kind of argument can be found in [22], Section 12.4.)

The Neumann-type boundary operator (1.2) enters in the “halfways Green’s for-
mula”

.Au; v/ � a.u; v/ D .�u; �0v/L2.†/
; (2.8)

for smooth u and v. It is known e.g. from [29] that �1 and � extend to continuous
mappings fromH 1.�/\D.Amax/ toH�1=2.†/, such that foru 2 H 1.�/\D.Amax/,
v 2 H 1.�/, formula (2.8) holds with the scalar product over † replaced by the
sesquilinear duality between H�1=2.†/ and H 1=2.†/. Then

.Au; v/ � ab.u; v/ D .�u; �0v/H �1=2.†/;H 1=2.†/
� .b�0u; �0u/L2.†/

; (2.9)

and hence

D. zA/ D fu 2 H 1.�/ \D.Amax/ j �u D b�0u in H�1=2.†/g;
representing the Robin condition �u � b�0u D 0.

For b D 0, the condition is �u D 0, defining what we call the Neumann realization
A� ; it is selfadjoint with D.A�/ � H 2.�/. It is well-known that when b is smooth,
then D. zA/ � H 2.†/.
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Lemma 2.2. When b 2 L1.†/, the domain of zA satisfies

D. zA/ � H 3=2.�/ \D.Amax/:

Proof. When u 2 D. zA/, then u 2 H 1.�/ implies �0u 2 H 1=2.†/ � L2.†/.
Multiplication by b is continuous on L2.†/, so b�0u 2 L2.†/. Then also �u D
b�0u is in L2.†/. By the ellipticity of the Neumann problem, Au 2 L2.�/ with
�u 2 L2.†/ imply u 2 H 3=2.�/.

When b has some smoothness or piecewise smoothness, we can get more regular-
ity. It is known that when b is in the Bessel potential spaceH r

p .†/with r > .n�1/=p,
p � 2, then multiplication by b is continuous in H s.†/ for jsj � r (cf e.g. Johnsen
[26]). In relation to Hölder spaces C r and Besov spaces Br

p:q there are inclusions

C rC2ı.†/ ,! BrCı
1;2 .†/ ,! BrCı

p;2 .†/ ,! H r
p .†/ for any ı > 0; (2.10)

so also functions in these spaces preserve H s.†/ for jsj � r . (A summary of the
relevant facts on function spaces is given e.g. in [1], Section 2.) Note that any " > 0
can be included as an r C 2ı by taking r 2 �0; "Œ , ı D ."� r/=2 and p > .n� 1/=r .

When X.†/ is a function space over †, we say that b is piecewise in X , when
the .n � 1/-dimensional manifold † is a union †1 [ � � � [ †J of smooth subsets
†j with disjoint interiors (such that the interfaces are smooth .n � 2/-dimensional
manifolds), and there are functions bj 2 X.†/, such that b equals bj on the interior
†B

j , for j D 1; : : : ; J .
It is well known that multiplication by 1†j

is continuous on H s.†/ for all jsj <
1=2.

Proposition 2.3. (i) Let b 2 H r
p .†/ with r > .n � 1/=p, p � 2 (it holds if b is in

one of the spaces in (2.10)). ThenD. zA/ � H 3=2Cr .�/ if r < 1=2,D. zA/ � H 2.�/

if r � 1=2.
(ii) Let b be piecewise in H r

p .†/ with r > .n � 1/=p, p � 2. Then D. zA/ �
H 3=2Cr .�/ if r < 1=2, D. zA/ � H 2�".�/ for any " > 0 if r � 1=2.

Proof. As already noted, u 2 H 1.�/ implies �0u 2 H 1=2.†/. In the case (i), mul-
tiplication by b preserves H s.†/ for jsj � r , so b�0u 2 Hminfr;1=2g.†/. Then also
�u D b�0u is in Hminfr;1=2g.†/, and now Au 2 L2.�/ with �u 2 Hminfr;1=2g.†/
imply u 2 H 3=2Cr .�/ if r < 1=2, u 2 H 2.�/ if r � 1=2, by the ellipticity of the
Neumann problem.

In the case (ii), since b D PJ
j D1 bj 1†j

, multiplication by b maps H r.†/ into

itself if r < 1=2, and into H 1=2�", any " > 0, if r � 1=2. Completing the proof as
under (i), we find that u 2 H 3=2Cr .�/ if r < 1=2, u 2 H 2�".�/ if r � 1=2.

Let us regard zA from the point of view of the general extension theory of [16], as
recalled in [9], [21], [24].
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We take the Dirichlet realization A� as the reference operator, assumed to have
a positive lower bound. (Seen from the point of view of [16], [2] uses instead the
Neumann realization A� as the reference operator.) The operator zA corresponds, by
the general theory of [16], to a closed densely defined operator T W V ! W , where V
andW are closed subsets ofZ D kerAmax, andD.T / is dense in V ; and this in turn is
carried over by use of the homeomorphism�0 W Z ��!� H�1=2.†/, to a closed operator
L W X ! Y �, with domain D.L/ dense in X , where X and Y are closed subspaces
of H�1=2.†/. Here X D �0V , Y D �0W , and D.L/ D �0D.T / D �0D. zA/.

Proposition 2.4. The operator L W X ! Y corresponding to zA by [16] has X D
Y D H�1=2.†/, and acts like b �P 0

�;� with a domain contained inH 1.†/. When b

is real, L is selfadjoint as an unbounded operator from H�1=2.†/ to H 1=2.†/.

Proof. Besides the description referred to above, we shall use the observations on
operators defined by sesquilinear forms worked out in [17] (and partly recalled in
[22], Chapter 13.2, see in particular Theorem 13.19). Since the domain of a

b
.u; v/

equalsH 1.�/, T is defined from a sesquilinear form t.z; w/with domainH 1.�/\Z
dense in Z, and hence V D W D Z. It follows that X D Y D H�1=2.†/, and L is
densely defined and closed as an operator from H�1=2.†/ to H 1=2.†/. The adjoint
L� is of the same type and corresponds to zA�. When b is real, zA is selfadjoint as
noted above; then L is selfadjoint.

In the interpretation of the extension theory, zA represents the boundary condition

�0u 2 D.L/; 	u D L�0u;

where 	u D �u � P 0
�;��0u, so L�0u D �u � P 0

�;��0u when u 2 D. zA/. (P �
�;�

is the operator mapping Dirichlet boundary values to Neumann boundary values for
solutions of .A � �/u D 0; more on this below.) Since the functions in D. zA/ also
satisfy �u D b�0u, we see that L acts like

L' D .b � P 0
�;�/':

By Lemma 2.2, D. zA/ � H 3=2.�/, so D.L/ D �0D. zA/ � H 1.†/.

When we replace A by A � �, where � is in the resolvent set %.A� / of A� , we
get for the corresponding operator L�:

L� acts like b � P �
�;� ; with D.L�/ D D.L/ � H 1.†/:

For � 2 %.A� / \ %. zA/, there holds a Kreı̆n resolvent formula (shown in [9],
Theorem 3.4):

. zA � �/�1 D .A� � �/�1 CK�
� .L

�/�1.K
N�
� /

�: (2.11)
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Here K�
� is the Poisson operator for the Dirichlet problem, i.e. the solution operator

K�
� W ' 7! u for the problem

.A � �/u D 0 on �; �0u D ' on †I
it maps H s�1=2.†/ ! H s.�/ continuously for all s, and the adjoint .K�

� /
� maps

e.g. L2.�/ to H 1=2.†/.
We can use this to show a spectral estimate for . zA��/�1 � .A� ��/�1, going via

differences with the Dirichlet resolvent. The argumentation is not the same as that
of [4], which uses a Kreı̆n formula based on the Poisson operator for the Neumann
problem.

The spectrum of A� is contained in a positive halfline Œc0;1Œ , and the spectrum
of A� is contained in a larger halfline �� k;1Œ , cf (2.2). For � 2 Cn �� k;1Œ , the
Dirichlet-to-Neumann operator P �

�;� D �K�
� is a homeomorphism from H s.†/ to

H s�1.†/ for all s 2 R, with inverse P �
�;� , the Neumann-to-Dirichlet operator. Then

we can write

L�' D .b � P �
�;�/' D .bP �

�;� � 1/P �
�;�'; for ' 2 D.L/: (2.12)

Since P �
�;� is of order �1, it is compact in L2.†/. Then bP �

�;� � 1 is a Fredholm
operator in L2.†/, as noted also in [4]. If � is such that: (1) L� is invertible (from
D.L/ toH 1=2.†/), (2) bP �

�;� � 1 is invertible in L2.†/, then the inverse of L� must
coincide with the inverse of .bP �

�;� � 1/P �
�;� on H 1=2.†/.

For bP �
�;� � 1, we get invertibility as follows, We have as a simple application of

the principles in [20] (cf Theorem 2.5.6, (A.25–26)) that

kP �
�;�'k

H s;�.†/
' k'k

H sC1;�.†/
; k'k

H s�1;�.†/
' kP �

�;�'k
H s;�.†/

;

uniformly in 
 D j�j1=2 for � ! 1 on rays in C n RC; this holds since P �
�;� is

parameter-elliptic of order 1 and regularity C1 on the rays in C n RC. In particular,
one has on such a ray f� D 
2ei�g with � 2 �0; 2�Œ , for s 2 Œ0; 1� and 
 � 1,

kP �
�;�'k

H s.†/
C h
iskP �

�;�'k
L2.†/

� C minfk'k
H s�1.†/

; h
is�1k'k
L2.†/

g;
so the norm of P �

�;� in L2.†/ is O.h
i�1/ on the ray. Take 
0 so large that
kbP �

�;�k
L.L2.†//

� ı < 1 for 
 � 
0, then bP �
�;� � 1 is invertible as an opera-

tor in L2.†/ for 
 � 
0, with a bounded inverse .bP �
�;� � 1/�1:

.bP �
�;� � 1/�1 D �1 �

1X
kD1

.bP �
�;� /

k; converging in L.L2.†//: (2.13)

Then b � P �
�;� has an inverse

.b � P �
�;�/

�1 D P �
�;� .bP

�
�;� � 1/�1: (2.14)
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For L� we know from the extension theory that L� is bijective from D.L/ to
H 1=2.†/ if and only if � 2 %. zA/. It follows from Lemma 1.1 by a simple geometric
consideration that for each ray f� D 
2ei�g with � 2 �0; 2�Œ , there is a 
1 such that
such that � 2 %. zA/ for 
 � 
1.

For 
 � maxf
0; 
1g, both (1) and (2) are satisfied, so then

.L�/�1 D .b � P �
�;�/

�1 D P �
�;� .bP

�
�;� � 1/�1 on H 1=2.†/: (2.15)

We note in particular that

D.L�/ D f' 2 H 1.†/ j .b � P �
�;�/' 2 H 1=2.†/g; (2.16)

for such �. Now D.L/ D D.L�/, and P 0
�;� � P �

�;� is bounded from H�1=2.†/ to
H 1=2.†/ (cf [9], Remark 3.2), so we conclude that

D.L/ D f' 2 H 1.†/ j .b � P 0
�;�/' 2 H 1=2.†/g: (2.17)

It follows moreover that (2.16) holds for all � 2 %.A� /.
This shows the main part of:

Theorem 2.5. The domain of L satisfies (2.17), and it is also described by (2.16) for
any � 2 %.A� /.

On each ray in C n RC, � is in %. zA/ and (2.15) holds for j�j sufficiently large.
For such �,

. zA � �/�1 � .A� � �/�1 D K�
�P

�
�;� .bP

�
�;� � 1/�1.K

N�
� /

�: (2.18)

Proof. The statements before formula (2.18) were accounted for above, and the for-
mula follows by insertion of (2.15) in (2.11).

3. Spectral estimates

Spectral estimates for resolvent differences will now be studied. A classical reference
for the basic concepts is the book of Gohberg and Kreı̆n [15]; some particularly
relevant facts were collected in [19], supplied with additional results. We shall include
a short summary here:

For p > 0, the space Cp is the Schatten class of compact linear operators T
(in a Hilbert space H ) with singular value sequences .sj .T //j 2N 2 p̀, and Sp

denotes the quasi-normed space of compact operators T with sj .T / D O.j�1=p/;
here Sp � CpC" for all " > 0.

The rules shown by Ky Fan [11]

sj Ck�1.T C T 0/ � sj .T /C sk.T
0/; sj Ck�1.T T

0/ � sj .T /sk.T
0/; (3.1)
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imply that Cp and Sp are vector spaces, and that a product rule holds:

Sp � Sq � S1=.p�1Cq�1/; Cp � Cq � C1=.p�1Cq�1/: (3.2)

Moreover, the rule

sj .ATB/ � kAksj .T /kBk (3.3)

implies that Sp and Cp are preserved under compositions with bounded operators.
We mention two perturbation results:

Lemma 3.1. (i) If sj .T /j 1=p ! C0 and sj .T 0/j 1=p ! 0 for j ! 1, then
sj .T C T 0/j 1=p ! C0 for j ! 1.

(ii) If T D TM C T 0
M for each M 2 N, where sj .TM /j

1=p ! CM for j ! 1
and sj .T 0

M /j
1=p � "M for j 2 N, with CM ! C0 and "M ! 0 for M ! 1, then

sj .T /j
1=p ! C0 for j ! 1.

The statement in (i) is the Weyl–Ky Fan theorem (cf e.g. [15] Theorem II 2.3),
and (ii) is a refinement shown in [19], Lemma 4.2.2B.

We also recall that when„ is a compactn0-dimensional smooth manifold (possibly
with boundary) and T is a bounded linear operator from L2.„/ to H t .„/ for some
t > 0, then T 2 Sn0=t as an operator in L2.„/, with

sj .T /j
t=n0 � CkT k

L.L2;H t /
; (3.4)

C depending only on „ and t . See [19], Lemma 4.4ff. for references.

The Poisson operatorK�
� is continuous fromH s�1=2.†/ toH s.�/ for all s 2 R,

and its adjointK�
�

�
is a trace operator of class 0 and order �1 in the pseudodifferential

boundary operator calculus, hence is continuous from H s.�/ to H sC1=2.†/ for
s > �1=2. Then the composition K�

�

�
K�

� is continuous from L2.†/ to H 1.†/, so

in view of (3.4), K�
�

�
K�

� 2 Sn�1 and hence K�
� 2 S.n�1/=.1=2/, as operators in

L2.†/. The singular numbers ofK�
�

�
have the same behavior. Moreover, since P �

�;�

is a pseudodifferential operator of order �1 on†, it lies in Sn�1 when considered as
an operator in L2.†/.

Theorem 3.2. Let b 2 L1.†/. For any � 2 %. zA/ \ %.A�/,

. zA � �/�1 � .A� � �/�1 2 S.n�1/=3: (3.5)

Proof. First assume that � lies so far out on a ray in C n RC that the statements in
Theorem 2.5 are valid.
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Applying (2.18) to our zA and also to the case b D 0 (the Neumann realization),
we find by subtraction:

. zA � �/�1 � .A� � �/�1 D . zA � �/�1 � .A� � �/�1

� ..A� � �/�1 � .A� � �/�1/

D K�
�P

�
�;� Œ.bP

�
�;� � 1/�1 C 1�K

N�
�

�

D K�
�P

�
�;� .bP

�
�;� � 1/�1bP �

�;�K
N�
�

�
:

(3.6)

The last expression is composed of the operator K�
� in S.n�1/=.1=2/, the adjoint of

K
N�
� with the same property, two factors P �

�;� in Sn�1 and the bounded operators
.bP �

�;� � 1/�1 and b, so it belongs to S.n�1/=3, by (3.2).

Now let �0 be an arbitrary number in %. zA/\%.A�/. We use the following refined
resolvent identity as in [4]:

.S � �0/�1 � .T � �0/�1 D .1C .�0 � �/.T � �0/�1/

..S � �/�1 � .T � �/�1/

.1C .�0 � �/.S � �0/�1/;

(3.7)

valid for �; �0 2 %.T / \ %.S/. Applying it to S D zA and T D A� for � as above
and �0 2 %. zA/ \ %.A�/, we find that . zA � �0/�1 � .A� � �0/�1 is a composition of
an operator in S.n�1/=3 with two bounded operators, hence lies in S.n�1/=3, as was
to be shown.

There is an obvious corollary:

Corollary 3.3. Let b1; b2 2 L1.†/, and denote the corresponding realizations
of Robin conditions �u D b1�0u resp. �u D b2�0u by zA1 resp. zA2. For any
� 2 %. zA1/ \ %. zA2/,

. zA1 � �/�1 � . zA2 � �/�1 2 S.n�1/=3: (3.8)

Proof. Write . zA1 � �/�1 � . zA2 � �/�1 as the difference between . zA1 � �/�1 �
.A� � �/�1 and . zA2 ��/�1 � .A� ��/�1, then the result follows from Theorem 3.2,
and (3.7), since Sp is a vector space.

Formula (2.18) also allows us to show a spectral asymptotics estimate for . zA��/�1

�.A� � �/�1 that was obtained in the smooth case for selfadjoint realizations and
negative � in Grubb [18], Section 8, and Birman and Solomyak [7]. In the former
paper it is shown, also for 2m-order problems, that the operator is, on the orthogonal
complement of its nullspace, isometric to an elliptic pseudodifferential operator on
† of order �2m (which has the asserted spectral asymptotics); in the latter paper
exterior domains are included.
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Theorem 3.4. Let b 2 L1.†/. For any � 2 %. zA/ \ %.A� /,

sj .. zA � �/�1 � .A� � �/�1/j 2=.n�1/ ! C
2=.n�1/
0 for j ! 1; (3.9)

where C0 is the same constant as in the case b D 0 (where zA D A�), namely

C0 D 1

.n � 1/.2�/n�1

Z
†

Z
j�0jD1

.k Qk0kL2.RC/jp0j1=2/n�1d!.
 0/ dx0I (3.10)

here Qk0.x0; xn; 

0/ is the principal symbol-kernel ofK�

� andp0.x0; 
 0/ is the principal

symbol of P �
�;� .

Proof. Since the details are perhaps not very well known, we first give a proof
of (3.9)–(3.10) in the case b D 0. We have as an easy special case of (2.18) that

.A� � �/�1 � .A� � �/�1 D �K�
�P

�
�;�K

N�
�

� � G� : (3.11)

This is a singular Green operator with principal boundary symbol operator

g0
�.x

0; 
 0;Dn/ D �k0.x0; 
 0;Dn/p
0.x0; 
 0/k0.x0; 
 0;Dn/

�

in local coordinates, where k0 and p0 are the (�-independent) principal symbols
of K�

� and P �
�;� . At each .x0; 
 0/, k0.x0; 
 0;Dn/ W C ! L2.RC/ maps v 2 C to

Qk0.x0; xn; 

0/v, where Qk0.x0; xn; 


0/ 2 �. xRC/ is the symbol-kernel. In the case
A D �� it equals e�j�0jxn , and it has a similar structure for generalA (cf e.g. [25], Sec-
tion 2.d). The operator k0.x0; 
 0;Dn/

� W L2.RC/ ! C maps u.xn/ to .u; Qk0/L2.RC/.

Thus k0.x0; 
 0;Dn/
�k0.x0; 
 0;Dn/ is the multiplication by k Qk0k2

L2.RC/
, and thus

k0.x0; 
 0;Dn/k
0.x0; 
 0;Dn/

� is the rank 1 operator mapping u to .u; Qk0/ Qk0. The
latter operator has the sole eigenvector Qk0

1 D Qk0=k Qk0k with a positive eigenvalue
k Qk0k2 (besides eigenvectors in the nullspace), so its trace equals the eigenvalue. The
middle factor p0 is just multiplication by a scalar; for A D ��, it equals �j
 0j�1.

By [19], Theorem 4.10, since G� is a singular Green operator of order �2 and
class 0,

sj .G�/j
2=.n�1/ ! C.g0

� /
2=.n�1/ for j ! 1; (3.12)

where

C.g0
� / D 1

.n � 1/.2�/n�1

Z
†

Z
j�0jD1

trŒ.g0
� .x

0; 
 0;Dn/
�

g0
�.x

0; 
 0;Dn//
.n�1/=4� d!.
 0/ dx0:

(3.13)

Here

g0
� .x

0; 
 0;Dn/
�g0

� .x
0; 
 0;Dn/ D k0.x0; 
 0;Dn/ Np0.x0; 
 0/k0.x0; 
 0;Dn/

�

k0.x0; 
 0;Dn/p
0.x0; 
 0/k0.x0; 
 0;Dn/

�
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D k Qk0.x0; xn; 

0/k2

L2.RC/
jp0.x0; 
 0/j2

k0.x0; 
 0;Dn/k
0.x0; 
 0;Dn/

�:

This is a rank 1 operator with eigenvalue k Qk0k4

L2
jp0j2, so

trŒ.g0
� .x

0; 
 0;Dn/
�g0

� .x
0; 
 0;Dn//

.n�1/=4� D .k Qk0k
L2

jp0j1=2/n�1;

and (3.10) follows.
Now the case of general b. For large � on rays in C n RC as in Theorem 2.5 we

write formula (2.13) as

.bP �
�;� � 1/�1 D �1 � bP �

�;�S; where S D
1X

kD0

.bP �
�;� /

k 2 L.L2.†//: (3.14)

Then we have from (2.18):

. zA � �/�1 � .A� � �/�1 D K�
�P

�
�;� .�1 � bP �

�;�S/K
N�
�

�

D �K�
�P

�
�;�K

N�
�

� �K�
�P

�
�;�bP

�
�;�SK

N�
�

�
:

(3.15)

The first term equals .A� ��/�1 � .A� ��/�1 and satisfies the spectral asymptotics
estimate (3.9) with (3.10). The second term is in S.n�1/=3, in view of the mapping
properties of its factors, as in the proof of Theorem 3.2. By Lemma 3.1 (i), it follows
that the sum of the two terms has the asymptotic behavior (3.9).

General � 2 %. zA/ \ %.A� / are included by use of the resolvent identity (3.7),
which gives the operator as a sum of a term with the behavior (3.9) and terms in
S.n�1/=.2Ct/ with t > 0, using that .A� � �/�1 2 Sn=2 and . zA � �/�1 2 Sn=.3=2/.
Then Lemma 3.1 (i) applies to show (3.9) for the sum.

Spectral asymptotics estimates for the resolvent difference (3.5) are harder to get
at, since b here enters in the principal part of the operator. However, with a little
smoothness of b we can obtain the spectral estimate by reduction to a case that allows
an approximation procedure.

We consider the resolvent difference of two general Robin problems from the
start, since the asymptotic property is not in general additive.

Theorem 3.5. Assume that b1; b2 2 H r
p .†/, where r > 0 andp > .n�1/=r , p � 2;

this holds if the bi are in one of the spaces in (2.10). Define zAi as in Corollary 3.3.
Then for � 2 %. zA1/ \ %. zA2/,

sj .. zA1 � �/�1 � . zA2 � �/�1/j 3=.n�1/ ! C.g0/3=.n�1/ for j ! 1; (3.16)

where

C.g0/ D 1

.n � 1/.2�/n�1

Z
†

Z
j�0jD1

.k Qk0k2
L2.RC/jp0j2

jb2 � b1j/.n�1/=3d!.
 0/ dx0:
(3.17)
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Proof. First let � be large on a ray in C n RC such that Theorem 2.5 applies to zA1

and zA2. Using (3.14) in the form

.biP
�
�;� � 1/�1 D �1 � biP

�
�;� � .biP

�
�;� /

2Si

we have that

.b1P
�
�;� � 1/�1 � .b2P

�
�;� � 1/�1 D .b2 � b1/P

�
�;� � .b1P

�
�;� /

2S1 � .b2P
�
�;� /

2S2:

Then we get, using (3.6),

. zA1 � �/�1 � . zA2 � �/�1 D . zA1 � �/�1 � .A� � �/�1

� .. zA2 � �/�1 � .A� � �/�1/

D K�
�P

�
�;� Œ.b1P

�
�;� � 1/�1 C 1�K

N�
�

�

�K�
�P

�
�;� Œ.b2P

�
�;� � 1/�1 C 1�K

N�
�

�

D K�
�P

�
�;� .b2 � b1/P

�
�;�K

N�
�

�

�K�
�P

�
�;� .b1P

�
�;� /

2S1K
N�
�

�

CK�
�P

�
�;� .b2P

�
�;� /

2S2K
N�
�

�

D G C F1 C F2:

(3.18)

In the termsFi we use for one of the factors biP
�
�;� that bi preservesH s.†/ for jsj � r

(see the text before Proposition 2.3), so that biP
�
�;� maps L2.†/ continuously into

H r 0

.†/, r 0 D minfr; 1g. So this factor is in S.n�1/=r 0 , together with the usual two
factors in S.n�1/=.1=2/ and two factors in Sn�1, whereby the full composed operator
Fi is in S.n�1/=.3Cr 0/. It will not influence the spectral asymptotics.

In the term G, let us denote b2 � b1 D b. We write b for each M 2 N as a sum

b D bM C b0
M ; (3.19)

where bM 2 C1.†/ and supx02† jb0
M .x

0/j � 1=M ; this is possible since b is
continuous on the smooth compact manifold †. Accordingly, we write G D GM C
G0

M with

GM D K�
�P

�
�;�bMP

�
�;�K

N�
�

�
; G0

M D K�
�P

�
�;�b

0
MP

�
�;�K

N�
�

�
:

Here G0
M is a composition of fixed operators with the usual Sp-properties and a

factor b0
M whose norm in L.L2.†// is � 1=M ; this implies that

supj sj .G
0
M /j

3=.n�1/ � C=M for all M; (3.20)

for a suitable constant C , in view of (3.3).
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The term GM is treated by application of the tools in [19]. Since bM 2 C1, GM

is a genuine singular Green operator of order �3 and class 0, with polyhomogeneous
symbol. The principal symbol g0

M is the symbol of the boundary symbol operator (in
local coordinates)

g0
M .x

0; 
 0;Dn/ D k0.x0; 
 0;Dn/p
0.x0; 
 0/bM .x

0/
p0.x0; 
 0/k0.x0; 
 0;Dn/

�:
(3.21)

It follows from [19], Theorem 4.10, that

sj .GM /j
3=.n�1/ ! C.g0

M /
3=.n�1/ for j ! 1; (3.22)

where

C.g0
M / D 1

.n � 1/.2�/n�1

Z
†

Z
j�0jD1

trŒ.g0
M .x

0; 
 0;Dn/
�

g0
M .x

0; 
 0;Dn//
.n�1/=6�d!.
 0/ dx0:

(3.23)

As in the analysis of g0
�

�
g0

� in the proof of Theorem 3.4, now with the middle factor
p0 replaced by p0bMp

0, we find that

trŒ.g0
M .x

0; 
 0;Dn/
�g0

M .x
0; 
 0;Dn//

.n�1/=6� D .k Qk0k4

L2
jp0j4jbM j2/.n�1/=6

D .k Qk0k2

L2
jp0j2jbM j/.n�1/=3;

and hence

C.g0
M / D 1

.n � 1/.2�/n�1

Z
†

Z
j�0jD1

.k Qk0k2

L2.RC/

jp0j2jbM j/.n�1/=3d!.
 0/ dx0:
(3.24)

When M ! 1, bM .x
0/ ! b.x0/ uniformly in x0, so

C.g0
M / ! C.g0/; (3.25)

where

C.g0/ D 1

.n � 1/.2�/n�1

Z
†

Z
j�0jD1

.k Qk0k2

L2.RC/
jp0j2jbj/.n�1/=3d!.
 0/ dx0;

with b D b2 � b1.
Now we first apply Lemma 3.1 (ii) to the decompositions G D GM C G0

M ; this
shows thatG has the spectral behavior in (3.16). When F1 and F2 are added toG, we
can use Lemma 3.1 (i) to conclude that also G C F1 C F2 has the spectral behavior
in (3.16).

Finally, general � 2 %. zA/ \ %.A�/ are included by use of the resolvent for-
mula (3.7) as in the preceding proof.

In the case A D ��, where Qk0 and p0 are independent of x0, the formula for
C.g0/ reduces to a constant times

R
†

jb2 � b1j.n�1/=3 dx0.
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4. Coefficients with jumps

It possible to extend the result of Theorem 3.5 to cases where b has jump disconti-
nuities by use of special results for pseudodifferential operators (from here on abbre-
viated to  do’s). In showing this, we also supply the general knowledge on spectral
asymptotics for  do’s multiplied with nonsmooth functions.

Let„ be a compact n0-dimensional C1-manifold without boundary, and assume
that it is divided by a smooth .n0 � 1/-dimensional hypersurface into two subsets„C
and „� (n0-dimensional C1-manifolds with boundary) such that „ D „C [ „�,
„BC \ „B� D ;, @„C D @„�. (Since the sets need not be connected, this covers
the situation of J smooth subsets described before Proposition 2.3.) We denote by
r˙ the restrictions from „ to „˙, and by e˙ the extension-by-zero operators from
functions on „˙ to functions on „:

e˙u D
´
u on „˙
0 on „�

:

Multiplication by the characteristic function 1„C
for „C can also be written eCrC;

similarly 1„�
D e�r�.

It is well-known (as recalled e.g. in [19], Lemma 4.5) that when P is an N �N -
matrix formed classical  do on „ of negative order �t , then it satisfies the spectral
asymptotics formulas for j ! 1:

sj .P /j
t=n0 ! C.p0/t=n0

in general;

˙�j̇ .P /j
t=n0 ! C˙.p0/t=n0

if P is selfadjoint;
(4.1)

where, respectively,

C.p0/ D 1

n0.2	/n0

Z
„

Z
j�jD1

tr
��
p0.x; 
/�p0.x; 
/

�n0=2t�
d!.
/dx;

C˙.p0/ D 1

n0.2	/n0

Z
„

Z
j�jD1

X
ev:?0

� ˙ �j̇ .p
0.x; 
//n

0=t
�
d!.
/dx:

(4.2)

Let us also recall the result of Laptev [27], [28]:

Proposition 4.1. Let P be a classical pseudodifferential operator on „ of negative
order �t . Then 1„C

P1„�
2 S.n0�1/=t .

(Expressed in local coordinates, this means that the operator whose kernel is the
restriction of the kernel of P to the second or fourth quadrant, picks up the boundary
dimension in its spectral behavior. For  do’s having the transmission property at
@„C, this is confirmed by the results of [19].)

The rules in the following are valid also for N � N -matrix formed operators P
and factors b, and would then need a trace indication tr in the integrals; we leave this
aspect out here for simplicity.



Spectral asymptotics for Robin problems with a discontinuous coefficient 171

Theorem 4.2. Let P be a classical pseudodifferential operator of negative order �t ,
such that .Pu; u/ � 0 for u 2 L2.„/. ThenP.C/ D 1„C

P1„C
satisfies the spectral

asymptotics formula

sj .P.C//j
t=n0 ! c.P.C//

t=n0

for j ! 1; (4.3)

where

c.P.C// D 1

n0.2�/n0

Z
„C

Z
j�jD1

.p0.x; 
/�p0.x; 
//n
0=2td!.
/ dx

D 1

n0.2�/n0

Z
„C

Z
j�jD1

p0.x; 
/n
0=td!.
/ dx:

(4.4)

Proof. The principal symbol p0 is � 0; which explains the second identity in (4.4).
Introduce two C1 cutoff functions �1 and �2 taking values in Œ0; 1� such that �1 D 1

on „C and vanishes outside a neighborhood of „C, and �2 D 0 on „� and is 1
outside a neighborhood of „�. We shall then compare P.C/ with the operators (all
are compact in L2.„/)

P1 D �1P�1 and P2 D �2P�2:

When u 2 L2.„/, denote e˙r˙u D u˙. We have for P1, since �1uC D uC:

.P1u; u/ D .P1uC; uC/C .P1uC; u�/C .P1u�; uC/C .P1u�; u�/
D .P.C/u; u/C .Ru; u/C .P �1u�; �1u�/;

where R D 1„�
P1I„C

C 1„C
P1I„�

. Since P1 is a classical  do of order �t on
„, it has the spectral behavior in (4.1)–(4.2) with the limit C.p0

1/
t=n0

; here

C.p0
1/ D 1

n0.2�/n0

Z
supp 
1

Z
j�jD1

.�1p
0.x; 
/�1/

n0=td!.
/ dx:

Moreover, R is of the type considered in Proposition 4.1, hence lies in S.n0�1/=t .
Then by Lemma 3.1 (i), P1 �R likewise has the spectral behavior in (4.1)–(4.2) with
the limit C.p0

1/
t=n0

. Now observe that, since P is nonnegative, .P �1u�; �1u�/ � 0

for all u 2 L2.„/. Thus we have:

.P.C/u; u/ � ..P1 �R/u; u/; for all u 2 L2.„/: (4.5)

Both operators P.C/ and P1 � R are selfadjoint nonnegative, so the s-numbers are
the same as the eigenvalues, and the minimum-maximum principle implies in view
of (4.5) that

sj .P.C// � sj .P1 �R/; for all j: (4.6)

It then follows from the limit property of the sj .P1 �R/ that

lim supj !1sj .P.C//j
t=n0 � C.p0

1/
t=n0

: (4.7)
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For the comparison with P2 we write, using that �2uC D �2u,

.P.C/u; u/ D .�2P�2uC; uC/C ..1 � �2/P.1 � �2/uC; uC/
C ..1 � �2/P �2uC; uC/C .�2P.1 � �2/uC; uC/

� .�2P�2u; u/C ..1 � �2/P �2u; uC/C .�2P.1 � �2/uC; u/
D ..�2P�2 C .1 � �2/P �2 C �2P.1 � �2//u; u/C .R1u; u/;

whereR1 is a sum of terms as in Proposition 4.1. Then since sj .P.C// D �j .P.C// �
�C

j .�2P�2 C .1 � �2/P �2 C �2P.1 � �2/CR1/,

lim infj !1sj .P.C//j
t=n0 � CC.�2p

0�2 C.1��2/p
0�2 C�2p

0.1��2//
t=n0

: (4.8)

Since C.p0
1/ and CC.�2p

0�2 C .1 � �2/p
0�2 C �2p

0.1 � �2// come arbitrarily
close to c.P.C//when the support of �1 shrinks towards„C and the support of 1��2

shrinks towards „�, we conclude that (4.3) with (4.4) holds.

This leads to a result on compositions of do’s with discontinuous factors, which
seems to have an interest in itself:

Theorem 4.3. Let P be an operator composed of l classical pseudodifferential op-
erators P1; : : : ; Pl of negative orders �t1; : : : ;�tl and l C 1 functions b1; : : : ; blC1

that are piecewise continuous on „ with possible jumps at @„C (so the bk extend to
continuous functions on „C and on „�);

P D b1P1 : : : blPlblC1: (4.9)

Let t D t1 C � � � C tl . Then P has the spectral behavior:

sj .P /j
t=n0 ! c.P /t=n0

for j ! 1; (4.10)

where

c.P / D 1

n0.2�/n0

Z
„

Z
j�jD1

. NblC1.x/p
0
l .x; 
/

� : : : p0
1.x; 
/

� Nb1.x/

b1.x/p
0
1.x; 
/ : : : p

0
l .x; 
/blC1.x//

n0=2td!.
/ dx

D 1

n0.2�/n0

Z
„

Z
j�jD1

jb1 : : : blC1p
0
1 : : : p

0
l jn0=td!.
/ dx:

(4.11)

Proof. We can write

P �P D NblC1P
�
l : : : P

�
1

Nb1b1P1 : : : Plbl

D 1„C
P �P1„C

C 1„�
P �P1„�

CR;

where R D 1„C
NblC1P

�
l
: : : Plbl1„�

C 1„�
NblC1P

�
l
: : : Plbl1„C

. Inserting 1 D
1„C

C 1„�
at each factor bk or Nbk inR and multiplying out, we obtain it as a sum of
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terms of order �t , each containing at least one factor of the type in Proposition 4.1.
Thus R 2 Sn0=.tCı/ with a ı > 0. For the term 1„C

P �P1„C
, we proceed as in

Theorem 3.5. We can assume that bk is extended from „C to a continuous function
bk on „. Each bk is approximated by a uniformly convergent sequence bkM of
C1-functions on „. For each M ,

P �
MPM D NblC1;MP

�
l : : : P

�
1

Nb1Mb1MP1 : : : blMPlblC1;M

is a classical nonnegative  do of order �t , so Theorem 4.2 applies to the operator
with 1„C

before and after, and gives the corresponding spectral asymptotics formula.
Since P �

MPM �P �P can be written as a sum of terms where each has a small factor
bkM � bk or NbkM � Nbk , we have for M ! 1 that

supj sj .1„C
P �

MPM1„C
� 1„C

P �P1„C
/j t=n0 ! 0: (4.12)

Then Lemma 3.1 (ii) implies a spectral asymptotics formula for 1„C
P �P1„C

, with
the constant as in (4.11) but integrated over „C. – There is a similar result for
1„�

P �P1„�
, relative to „�.

Now since L2.„/ identifies with the orthogonal sum of L2.„C/ and L2.„�/,
the spectra are simply superposed when the operators are added together. The state-
ment �j .T /j

t=n0 ! c.T /t=n0

for j ! 1 is equivalent with N 0.aIT /an0=t ! c.T /

for a ! 1, where N 0.aIT / counts the number of eigenvalues in Œ1=a;1Œ ; super-
position of the spectra means addition of the counting functions. (More on count-
ing functions e.g. in [20], Section A.6.) Thus 1„C

P �P1„C
C 1„�

P �P1„�
has

a spectral asymptotics behavior where the constant is obtained by adding the inte-
grals for 1„C

P �P1„C
and 1„�

P �P1„�
, so it is as described in (4.9)–(4.11). By

Lemma 3.1 (i), the behavior keeps this form when we add R to the operator.

A similar theorem holds for matrix formed operatorsPk and factors bk , with c.P /
defined by the first expression in (4.11); here of course it cannot be reduced to the
second expression unless all the factors commute.

A special case of the situation in Theorem 4.3 is the case of bP , where P is
a classical  do and b is a piecewise continuous function. We need a case with
interspersed factors bk in our application below.

We can now show:

Theorem4.4. The conclusion of Theorem 3.5 holds also whenb1 andb2 are piecewise
in H r

p .†/ for some r > 0 as in Theorem 3.5, b1, b2, and b2 � b1 having jumps at a
smooth hypersurface.

Proof. We use again the decomposition in (3.18):

. zA1 � �/�1 � . zA2 � �/�1 D G C F1 C F2;
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with G D K�
�P

�
�;� .b2 � b1/P

�
�;�K

N�
�

�
,

F1 D �K�
�P

�
�;� .b1P

�
�;� /

2S1K
N�
�

�
;

F2 D K�
�P

�
�;� .b2P

�
�;� /

2S2K
N�
�

�
;

andF1 andF2 are handled as after (3.18), using that biP
�
�;� mapsL2.†/ intoH r 0

.†/,
r 0 D minfr; 1=2� "g. Then they are in S.n�1/=.3Cr 0/. We denote again b2 � b1 D b.

ForG we proceed as follows. Let � be large negative, so that Theorem 2.5 holds.
Since � is real, K N�

� D K�
� , and P �

�;� is selfadjoint. The j -th eigenvalue of G�G
satisfies

�j .G
�G/ D �j .K

�
�P

�
�;�

NbP �
�;�K

�
�

�
K�

�P
�
�;�bP

�
�;�K

�
�

�
/:

Here K�
�

�
K�

� equals a selfadjoint  do P1 of order �1; it is nonnegative on L2.†/

and injective, since K�
� is injective:

.P1'; '/L2.†/
D .K�

�

�
K�

� '; '/L2.†/
D kK�

� 'k2

L2.�/
� ck'k2

H �1=2.†/
;

hence elliptic. It follows from Seeley [31] thatP1 has a squarerootP2 D P
1=2
1 which

is a classical elliptic  do of order �1=2. Then we find, applying the general formula

�j .T T
0/ D �j .T

0T /; (4.13)

with T D K�
�P

�
�;�

NbP �
�;�P2, T 0 D P2P

�
�;�bP

�
�;�K

�
�

�
, that

�j .G
�G/ D �j .K

�
�P

�
�;�

NbP �
�;�P2P2P

�
�;�bP

�
�;�K

�
�

�
/

D �j .P2P
�
�;�bP

�
�;�K

�
�

�
K�

�P
�
�;�

NbP �
�;�P2/

D �j .P2P
�
�;�bP

�
�;�P1P

�
�;�

NbP �
�;�P2/:

The operatorQ D P2P
�
�;�bP

�
�;�P1P

�
�;�

NbP �
�;�P2 is an operator to which Theorem 4.3

applies, and it gives a spectral asymptotics formula with the constant defined as
in (4.11), with n0 D n � 1. Since p0

1 D k Qk0k2
L2

, p0
2 D k Qk0kL2

, the formula can be
rewritten in the form (3.17).

The proof is now completed in the same way as in the proof of Theorem 4.5.

The results can be extended to exterior domains by the method of [23].
In a forthcoming paper we shall treat the question of spectral asymptotics for the

mixed problem for ��C a0, where the boundary condition jumps from a Dirichlet
condition to a Neumann condition at a smooth hypersurface of†. Here we moreover
need to draw on the analyses of nonstandard pseudodifferential operators, as in Shamir
[32], Eskin [10], Birman and Solomyak [6], and many later works.
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Added in proof. The paper on the mixed problem has appeared in J. Math. Analysis
Appl. 382 (2011), 339–363 and needs the following corrections.

� Page 351, line 4 from below. Omit “H 1=2.†BC/ �”; replace “H 1.†/” by
“L2.†/”.

� Page 361, line 4. Replace “(Th. 3.3)” by “(Th. 4.3)”.
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