
J. Spectr. Theory 1 (2011), 389–408
DOI 10.4171/JST/17

Journal of Spectral Theory
© European Mathematical Society

How opening a hole affects the sound of a flute
A one-dimensional mathematical model

for a tube with a small hole pierced on its side

Romain Joly

Abstract. In this paper, we consider an open tube of diameter " > 0, on the side of which
a small hole of size "2 is pierced. The resonances of this tube correspond to the eigenvalues
of the Laplacian operator with homogeneous Neumann condition on the inner surface of the
tube and Dirichlet one on the open parts of the tube. We show that this spectrum converges
when " goes to 0 to the spectrum of an explicit one-dimensional operator. At a first order of
approximation, the limit spectrum describes the note produced by a flute, for which one of its
holes is open.
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1. Introduction and main result

In this paper, we obtain a one-dimensional model for the resonances of a tube with
a small hole pierced on its side. Our arguments are based on recent thin domain
techniques of [18]. We show that this kind of techniques applies to the mathematical
modelling of music instruments.

1.1. Basic facts on wind instruments. The acoustic of flutes is a large subject of
research for acousticians. Basically, a flute is the combination of an exciter which cre-
ates a periodic motion (a fipple, a reed etc.) and a tube, whose first mode of resonance
selects the note produced. Studying the acoustic of a flute combines a lot of problems
as the influence of the shape of the tube, the study of the creation of oscillations by
blowing in the fipple… See [22], [11], [9], [25], and [5] for nice introductions. In
this paper, we will not consider the creation of the periodic excitation. We rather
want to study mathematically the resonances of the tube of the flute and how an open
hole affects it. Therefore, we simplify the problem by making the following usual
assumptions:
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� the pressure of the air in the tube follows the wave equation and therefore the
resonances of the tube are the square roots of the eigenvalues of the corresponding
Laplacian operator;

� on the inner surface of the tube, the pressure satisfies homogeneous Neumann
boundary condition;

� where the tube is open to the exterior, we assume that the pressure is equal to the
exterior pressure which may be assumed to be zero without loss of generality.

We can roughly classify the tube of the wind instruments in three different cate-
gories, depending on which end of the tube is open. See Table 1. It is known since
a long time that the resonances of the tubes of Table 1 can be approximated by the
spectrum of the one-dimensional Laplacian operator on .0; L/ with either Dirichlet
or Neumann boundary conditions, depending on whether the corresponding end is
open or not (see for example [8]). Notice that this rough approximation can explain
simple facts: a tube with a closed end sounds an octave lower than an open tube of
the same length (enabling for example to make shorter organ pipes for low notes)
and moreover it produces only the odd harmonics (explaining the particular sounds
of reed instruments).

In this article, we study how the one-dimensional limit is affected by opening one
of the holes of the flute, say a hole at position a 2 .0; L/. At first sight, one may
think that it is equivalent to cutting the tube at the place of the open hole. In other
words, the note is the same as the one produced by a tube of length a. This is roughly
true for flutes with large holes as the modern transverse flute, except that one must
add a small correction and the length Qa of the equivalent tube is slightly larger than
a. This length Qa is called the effective length. This kind of approximation seems
to be the most used one by acousticians. It states that the resonances of the tube
with an open hole are: a fundamental frequency1 �= Qa and harmonics k�= Qa, k � 2.
However, the approximation of the resonances by the ones of a tube of length Qa is too
rough for flutes with small holes as the baroque flute or the recorder. In particular,
the approximation by effective length fails to explain the following observations, for
which we refer e.g. to [4] and [26].

� The effective length depends on the frequency of the waves in the tube. In other
words, the harmonics are not exact multiples of the fundamental frequency.

� Closing or opening one of the holes placed after the first open hole of the tube
changes the note of the flute. This enables to obtain some notes by fork fingering,
as it is common in baroque flute or recorder. We also enhance that some effects
of the baroque flute or of the recorder are produced by half-holing, that is that by
half opening a hole (some flutes have even holes consisting in two small close
holes to make half-holing easier). In these cases, the effective length Qa is not

1We use in this article the mathematical habit to identify the frequencies to the eigenvalues of the wave
operator. To obtain the real frequencies corresponding to the sound of the flute, one has to divide them by
2� .
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only related to the position a of the first open hole, which makes the method of
approximation by effective length less relevant.

The purpose of this article is to obtain an explicit one-dimensional mathematical
model for the flute with a open hole, which could be more relevant in the case of
small holes than the approximation by effective length. The models used by the
acousticians are based on the notion of impedance. The model introduced here rather
uses the framework of differential operators.

1.2. The thin domains techniques. The fact that the behaviour of thin three dimen-
sional objects as a rope or a plate can be approximated by one- or two-dimensional
equations has been known since a long time, see [12] and [8] for example. In general,
a thin domain problem consists in a partial differential equation .E"/ defined in a
domain �" of dimension n, which has k dimensions of negligible size with respect
to the other n � k dimensions. The aim is then to obtain an approximation of the
problem by an equation .E/ defined in a domain � of dimension n � k. It seems
that the first modern rigorous studies of such approximations mostly date back to the
late 80’s: [15], [1], [2], [13], [23], … There exists an enormous quantity of papers
dealing with thin domain problems of many different types. We refer to [20] for a
presentation of the subject and some references.

In this paper, the domain �" is the thin tube of the flute and we hope to model the
behaviour of the internal air pressure by a one-dimensional equation. It is well known
that the wave equation in a simple tube can be approximated by the one-dimensional
wave equation. Even the case of a far more complicated domain squeezed along some
dimension is well understood, see [19] and the references therein. We will assume
that the open parts of the tube yield a Dirichlet boundary condition for the pressure in
the tube. In fact, we could study the whole system of a thin tube connected to a large
room and show that, at a first order of approximation, the effect of the connection
with a large domain is the same as a the one of a Dirichlet boundary condition, see
[3], [2], [14], and the other works related to the “dumbbell shape” model. The main
difficulty of our problem comes from the different scales: the open hole on the side
of the tube is of size "2, whereas the diameter of the tube is of size ". Thin domains
involving different order of thickness have been studied in [6], [18], [16], [17], and
the related works. The methods used in this paper are mainly based on these last
articles of J. Casado-Díaz, M. Luna-Laynez, and F. Murat.

1.3. Notations and main result. For " > 0, we consider the domain

�" D .0; 1/ � .�"; 0/� .�"=2; "=2/ :

We split any x 2 �" as x D .x1; x2; x3/ D .x1; Qx/. Let a 2 .0; 1/ and ı > 0. We
denote by�" the positive Laplacian operator with the following boundary conditions:



How opening a hole affects the sound of a flute 393

´
Dirichlet B. C. u D 0 on B;

Neumann B. C. @�u D 0 elsewhere,

where

B D .0; "/� f0g � .�"=2; "=2/
[ f1g � .�"; 0/� .�"=2; "=2/
[ .a � ı"2=2; aC ı"2=2/ � f0g � .�ı"2=2; ı"2=2/:

We denote byH 1
0 .�"/ the Sobolev space corresponding to the above Dirichlet bound-

ary conditions. The domain �" is represented in Figure 1.

x1 D 0 x1 D 1

.a; 0; 0/
ı"2

"

"

"

Figure 1. The domain �". The grey parts correspond to Dirichlet boundary conditions, the
other ones to Neumann boundary conditions.

In this paper, we show that, when " goes to 0, the spectrum of the operator �"

converges to the one of the one-dimensional operator A, defined by

A W D.A/ �! L2.0; 1/;

u 7�! �u0;

where D.A/ D fu 2 H 2..0; a/[ .a; 1//\H 1
0 .0; 1/ j u0.aC/ � u0.a�/ D ˛ıu.a/g

and where ˛ is the positive constant given by

˛ D
Z

K

jr�j2; (1.1)

with � being the auxiliary function introduced in Proposition 3.2 below.
Notice that both�" and A are positive definite self-adjoint operators and that for

all u; v 2 D.�"/

h�"u j viL2.�"/ D
Z

�"

ru.x/rv.x/ dx; (1.2)

while for all u; v 2 D.A/

hAu j viL2.0;1/ D
Z 1

0

u0.x/v0.x/ dx C ˛ıu.a/v.a/: (1.3)
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Let 0 < �1
" < �2

" � �3
" � : : : be the eigenvalues of �" and let 0 < �1 < �2 � �3

� : : : be the ones of A. The purpose of this paper is to prove the following result.

Theorem 1.1. When " goes to 0, the spectrum of�" converges to the one of A in the
sense that

�k
" ���!

"!0
�k for all k 2 N�:

Theorem 1.1 yields a new model for the flute, which is discussed in Section 2.
The proof of Theorem 1.1 consists in showing lower- and upper-semicontinuity of the
spectrum, which is done is Sections 4 and 5 respectively. We use scaling techniques
consisting in focusing to the hole at the place .a; 0; 0/. These techniques follow the
ideas of [18] (see also [16] and [17]). The corresponding technical background is
introduced in Section 3.

1.4. Acknowledgements. The interest of the author for the mathematical models
of flutes started with a question of Brigitte Bidégaray and he discovered the work
of J. Casado-Díaz, M. Luna-Laynez and F. Murat following a discussion with Eric
Dumas. The author also thanks the referee for having reviewed this paper so carefully
and so quickly.

2. Discussion

First, let us compute the frequencies of the flute with an open hole, following the model
yielded by Theorem 1.1. Theorem 1.1 deals with the spectrum of �", whereas the
resonances of the pressure in a flute follow the wave equation @2

ttu D ��"u (remind
that�" denotes the positive Laplacian operator). Therefore, the relevant eigenvalues
are in fact the ones of the operator

�
0 Id��" 0

�
which are ˙ip�k

" . Theorem 1.1 shows

that the frequencies
p
�k

" are asymptotically equal to the frequencies � > 0 such
that �2 is an eigenvalue of A. A straightforward computation shows that �2 is an
eigenvalue of A, with corresponding eigenfunction u, if and only if

u.x/ D

8̂<
:̂
C sin.�x/ x 2 .0; a/;
C

sin.�a/

sin.�.1� a// sin.�.1� x// x 2 .a; 1/;

with some C ¤ 0 and with � > 0 solving

˛ı D �� sin�

sin.�a/ sin.�.1� a//
DW fa.�/ ; (2.1)

see Figure 2.



How opening a hole affects the sound of a flute 395

Figure 2. Top: the first eigenfunction ofA, i.e. the fundamental mode of resonance of the flute
with an open hole. Bottom: the graphic of the function fa and the intersections with the line
y D ˛ı giving the frequencies of the flute. The references values are a D 0:7 and ˛ı D 5.
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Using the above computations, we can do several remarks about the resonances of
the flute with a small open hole, as predicted by our model.

� The eigenfunctions of A corresponds to the expected profile of the pressure in
the flute with an open hole, see Figure 2 and the ones of [5], [7], and [26].

� The note of the flute corresponds to the fundamental frequency � D p
�1. To

obtain a given note, one can adjust both ı (the size of the hole) and a (the place of
the hole). This enables to place smartly the different holes to obtain some notes
by combining the opening of several holes (fork fingering). We can also compute
the change of frequency produced by only half opening the hole (half-holing).
Notice that changing the shape of the hole affects the coefficient ˛.

� The overtones of the flute correspond to the other frequencies � D
p
�k with

k � 2. We can see in Figure 2 that they are not exactly harmonic, i.e. they
are not multiples of the fundamental frequency. This explains why the sound of
flutes, which have only a small hole opened, is uneven and not as pure as the
sound produced by a simple tube. In other words, our model directly explains the
observation that the effective length approximation depends on the considered
frequency. Moreover, when � increases, the slope of fa becomes steeper due
to the factor � in (2.1) and the solutions of (2.1) are closer to � D k� . This
is consistent with the observation that high frequencies are less affected by the
presence of the hole than low frequencies, see [26] or [25]. However, notice
that this is only roughly true since for example one can see on Figure 2 that the
second overtone is almost equal to 3� , whereas the fourth one is less close to 5� .
This comes from the fact that a D 0:7 is almost a node of the mode sin.3�x/.

� Of course, when ı D 0, we recover the equation sin� D 0 corresponding to
the eigenvalue of the open tube without hole. When ı ! C1, i.e. when the
hole is very large, we recover the equations sin.�a/ D 0 or sin.�.1� a// D 0,
which correspond to two separated tubes of lengths a and 1� a (in fact the part
.a; 1/ is not important because this is not the part of the tube which is excited
by the fipple). When the hole is of intermediate size, the fundamental frequency
corresponds to a tube of intermediate length Qa 2 .a; 1/, but the overtones are not
the same as the ones of the tube of length Qa.

� The thin domain techniques used here are general and do not depend on the fact
that the section of the tube �" is a square and not a disk. If the surface g.x/
of the section of the tube is not constant (think at the end of a clarinet), then
the operator @2

xx in the definition of A must be replaced by 1
g.x/

@x.g.x/@x :/,
see [13]. Of course, if there are several open holes, then other terms of the type
˛ıu.a/v.a/ appear in (1.3).

To conclude, we obtain in this article a mathematical model for the flute with a small
open hole, which consists in a one-dimensional operator different from a simple
Laplacian operator. It yields simple explanation of some observations as the fact that
the overtones are not harmonic.
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3. Focusing on the hole: the rescaled problem

When " goes to zero, if one rescales the domain �" with a ratio 1=.ı"2/ to focus on
the hole, then one sees the rescaling domain �" converging to the half-space x2 < 0

(see Figure 3). The purpose of this section is to introduce the technical background
to be able study our problem in this rescaled frame. For the reader interested in more
details about the Poisson problem in unbounded domain, we refer to [24].

1 x2 D 0

1=ı"

@K.hole/

@K.up/

Box K"Box B"

Figure 3. The cubeK", part of the half-space K D fx 2 R3; x2 < 0g, and the corresponding
boundaries. When " goes to 0, the cubeK" converges toK, whereas the hole @K.hole/ remains
unchanged.

3.1. The space PH 1.K/. LetK be the half-space fx 2 R3; x2 < 0g. For any " > 0,
we introduce the cube

K" D
� �1
2ı"

;
1

2ı"

�
�

��1
ı"
; 0

�
�

� �1
2ı"

;
1

2ı"

�

as shown in Figure 3. We denote by @K".hole/ the part of the boundary .�1=2; 1=2/�
f0g � .�1=2; 1=2/ corresponding to the hole. We denote @K".up/ the remaining part
of the upper face. We also denote by @K.hole/ and @K.up/ the corresponding parts
of the boundary of the half-space K. See Figure 3.

We introduce the space PH 1.K/ defined by

PH 1.K/ D fv 2 H 1
loc.K/ j rv 2 L2.K/ and v D 0 on @K.hole/g (3.1)

and we equip it with the scalar product

h' j  i PH 1.K/ D
Z

K

r':r : (3.2)

We also introduce the space PH 1
0 .K/ which is the completion of

C1
0 . xK/ D f' 2 C1. xK/ j supp.'/ is compact and ' � 0 on @K.hole/g (3.3)

with respect to the PH 1 scalar product defined in (3.2).
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Let � 2 C1. xK/ be such that � � 1 outside a compact set, � � 0 on @K.hole/
and @�� � 0 on @K.up/. Following [24], we get the following results.

Theorem 3.1. The spaces PH 1.K/ and PH 1
0 .K/ equipped with the scalar product (3.2)

are Hilbert spaces and
PH 1.K/ D PH 1

0 .K/˚ R� ; (3.4)

this sum being a direct sum of closed subspaces.
Moreover, a function u 2 PH 1.K/ belongs to PH 1

0 .K/ if and only if it belongs to
L6.K/. As a consequence, the splitting of u 2 PH 1.K/ given by (3.4) is uniquely
determined by u D PuC Nu�, where

Nu D lim
"!0

1

jK"j
Z

K"

u.x/dx

is the average of u, which is well defined.

Proof. The direct sum (3.4) is a particular case of Theorem 2.15 of [24]. The equiv-
alence between u 2 PH 1

0 .K/ and u 2 L6.K/ is given by Theorem 2.8 of [24].
Let u D Pu C c� with Pu 2 PH 1

0 .K/ and c 2 R. Since Pu 2 L6.K/, we haveR
K"

j Puj � C jK"j5=6 and thus the average of Pu is well defined and equal to 0. Since
the average of � is well defined and equal to 1, the average of u is also well defined
and it is equal to c.

3.2. The function �. We now introduce the function �, which is used to define the
coefficient ˛ in (1.1).

Proposition 3.2. There is a unique weak solution � of8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

�� D 0 on K;

� D 0 on @K.hole/;

@�� D 0 on @K.up/;

N� D 1;

(3.5)

in the sense that � 2 PH 1.K/, N� D 1 andZ
K

r�:r' D 0 for all ' 2 C1
0 .K/:

Proof. Theorem 3.1 shows that � D �C P� with P� 2 PH 1
0 .K/. Then, Proposition 3.2

is a direct application of Lax–Milgram Theorem to the variational equationZ
K

r P�r P' D �
Z

K

��: P' for all P' 2 PH 1
0 .K/:

See [24] for a discussion on this kind of variational problems.
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The function � yields a different way to write the scalar product in PH 1.K/.

Proposition 3.3. The function � is the orthogonal projection of � on the orthogonal
space of PH 1

0 .K/ in PH 1.K/.
Thus, for allu and v in PH 1.K/, there exist two unique functions Pu and Pv in PH 1

0 .K/

such that u D PuC Nu� and v D Pv C Nv�. Moreover,

hu j vi PH 1.K/ D
Z

K

r Pu.x/:r Pv.x/ dx C ˛ Nu: Nv ;

where ˛ is defined by (1.1).

3.3. Weak K"-convergence. As one can see in Figure 3, if .u"/ is a sequence of
functions defined in �", then the rescaled functions w" are only defined in the box
K" and not in the whole space K. Hence, we have to introduce a suitable notion of
weak convergence.

Proposition 3.4. Let .w"/">0 be a sequence of functions of H 1.K"/ vanishing on
@K".hole/. Assume that exists a C > 0 such thatZ

K"

jrw"j2 � C for all " > 0.

Then, there exists a subsequence .w"n
/n2N, with "n ! 0, which converges weakly to

a function w0 2 PH 1.K/ in the sense thatZ
K"n

rw"n
r' ����!

"n!0

Z
K

rw0r' for all ' 2 PH 1.K/:

Moreover, the average of w0 is given by

Nw0 D lim
"n!0

1

jK"n
j

Z
K"n

w": (3.6)

Before starting to prove Proposition 3.4, we recall Poincaré–Wirtinger inequality.

Lemma 3.5 (Poincaré–Wirtinger inequality). There exists a constant C > 0 such
that, for any " > 0 and any function ' 2 H 1.K"/,Z

K"

ˇ̌̌
'.x/ � 1

jK"j
Z

K"

'.s/ds
ˇ̌̌6

dx � C
�Z

K"

jr'.x/j2dx
�3

: (3.7)

Proof. First, let us set " D 1. The classical Poincaré inequality (see [10] for example)
states that Z

K1

ˇ̌̌
'.x/ � 1

jK1j
Z

K1

'.s/ds
ˇ̌̌2

dx � C

Z
K1

jr'.x/j2dx:
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Thus, the right-hand side controls the H 1�norm of ' � N'. Then, the Sobolev in-
equalities shows that (3.7) holds for " D 1. Now, the crucial point is to notice that
the constant C in (3.7) is independent of the size of the cube K" since both sides of
the inequality behave similarly with respect to scaling.

Proof of Proposition 3.4. First notice that PH 1
0 .K/ is separable due to the density

of C1
0 -functions. Hence, PH 1.K/ is also separable and by a diagonal extraction

argument, we can extract a subsequence "n ! 0 such that for all ' 2 PH 1.K/,R
K"n

rw"n
r' converges to a limit L.'/ with L.'/ � Ck'k PH 1 . By Riesz represen-

tation theorem, there exists w0 2 PH 1.K/ such that L.'/ D hw0 j 'i.
To prove (3.6), we follow the arguments of [18]. We set Nw" D 1

jK"j
R

K"
w". Let

p 2 N. Lemma 3.5 and the fact that
R

K"
jrw"j2 is bounded, show that there exists a

constant C independent of " such that
R

K"
jw".x/ � Nw"j6dx � C . Thus,Z

1=p

jw".x/ � Nw"j6dx � C for all " <
1

p
: (3.8)

By Sobolev inequality, we know that w" is bounded in L6.K1=p/ (remember that
w" vanishes on @K1=p.hole/). Thus Nw" is bounded and up to extracting another
subsequence, we can assume that Nw"n

converges to some limit ˇ 2 R. By a diag-
onal extraction argument, we can also assume that w"n

converges to w0 weakly in
L6.K1=p/, for any p 2 N. As a consequence, (3.8) implies thatZ

K1=p

jw0.x/ � ˇj6dx � lim sup
"!0

Z
K1=p

jw".x/ � Nw"j6dx � C :

Since the previous estimate is uniform with respect top 2 N and sinceK1=p grows to
K when p goes to C1, we obtain thatw0 �ˇ belongs toL6.K/ and thusw0 �ˇ� 2
L6.K/. Theorem 3.1 shows that w0 � ˇ� belongs to PH 1

0 .K/ i.e. ˇ D Nw0.

4. Lower-semicontinuity of the spectrum

This section is devoted to the following result.

Proposition 4.1. For all k 2 N�,

0 � lim sup
"!0

�k
" � �k:

Proof. Let .uk/be a sequence of eigenfunctions ofA corresponding to the eigenvalues
�k . Since A is symmetric, we may assume that huk j uj iL2.0;1/ D 0 for k ¤ j . The
main idea of the proof of Proposition 4.1 is to construct an embedding

I" W H 1
0 .0; 1/ ! H 1

0 .�"/
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such that the functions I"u
k are almost L2�orthogonal and such thatR

�"
jrI"u

k j2R
�"

jI"uk j2 ���!
"!0

�k : (4.1)

The definition of the embedding I" W H 1
0 .0; 1/ ! H 1

0 .�"/ is as follows.

Far from the hole. We split the functions uk into two parts uk
j.0;a/

and uk
j.a;1/

,

we slightly rescale them so that they are defined in ."; a � "=2/ and .a C "=2; 1/

respectively, and we embed both parts in L2.�"/ by setting

'k
" .x/ D uk

� a

a � 3"=2
.x1 � "/

�
and

 k
" .x/ D uk

�
aC 1 � a

1 � a � "=2.x1 � a � "=2/
�
:

Near the hole. Let � 2 PH 1.K/ be as in Proposition 3.2 and let � D P� C � be the
splitting given by Theorem 3.1 (where we use that N� D 1 by definition). By the
definition of PH 1

0 .K/, there exists a sequence of functions . P�"/ 2 C1
0 .K/ converging

to P� in PH 1
0 .K/. Therefore, there exists a sequence �" D P�" C � 2 C1.K/\ PH 1.K/

such that �" � 1 outside a compact set and .�"/ converges strongly to � when " goes
to zero. Notice that we may assume that �" � 1 outside a compact set of the cubeK"

defined in Section 3. We set Q�".x/ D �"..x � .a; 0; 0//=.ı"2// and I"u
k D uk.a/ Q�"

in the cube B" D .a; 0; 0/C ı"2K".

Summarising. The whole embedding I" is described by Figure 4.

"

"

"uk" D  k
"uk" D 'k"

Box B"

uk" � 0

uk" � uk.a/

uk" D uk.a/ Q�"

Figure 4. The embedding uk
" D I"u

k of uk 2 H1
0
.0; 1/ into H1

0
.�"/ (lateral view).

Calculating the scalar products. By change of variables, we haveZ
B"

j Q�"j2 D ı3"6

Z
K"

j�"j2 � ı3"6
��Z

K"

j P�"j2
�1=2 C

�Z
K"

j�j2
�1=2�2

:
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Since � is a bounded C1 function and since the volume of K" is of order 1="3, we
have

R
K"

j�j2 D O.1="3/. Due to Theorem 3.1, P�" converges to P� inL6.K/ and thusZ
K"

j P�"j2 �
�Z

K"

j P�"j6
�1=3�Z

K"

1
�2=3D O.1="2/:

Therefore, we get that
R

B"
j Q�"j2 D O."3/. Thus, theL2-norm of uk

" D I"u
k is mostly

due to the L2-norms of 'k
" and  k

" and so, for any k and j ,

huk
" j uj

" iL2.�"/ D "2huk j uj iL2.0;1/ C o."2/ : (4.2)

On the other hand, we have
R

B"
jr Q�"j2 D ı"2

R
K"

jr�"j2. Since .�"/ converges to �

in PH 1.K/ and due to the definition (1.1) of ˛,
R

K"
jr�"j2 converges to ˛. Therefore,

for any k and j ,Z
�"

ruk
" ruj

" D
Z

�"

r'k
" r'j

" C
Z

�"

r k
" r j

" C uk.a/uj .a/

Z
B"

jr Q�"j2

D "2
�Z a

0

@xu
k.x/@xu

j .x/dx C
Z 1

a

@xu
k.x/@xu

j .x/ dx

C ıuk.a/uj .a/

Z
K"

jr�"j2
�

C o."2/

D "2
�Z 1

0

@xu
k.x/@xu

j .x/dx C ˛ıuk.a/uj .a/
�

C o."2/

D "2hAuk j uj iL2 C o."2/:

(4.3)

Hence the previous estimates yield the limit (4.1).

Applying the min–max formula. For " small enough, (4.2) implies that the func-
tions uk

" are linearly independent. Due to the min–max Principle (see [21] for exam-
ple), we know that

�k
" � min

p1<p2<:::<pk

max
c2Rk

�

Z
�"

ˇ̌̌ kX
iD1

cirI"u
pi

ˇ̌̌2

Z
�"

ˇ̌̌ kX
iD1

ciI"u
pi

ˇ̌̌2

: (4.4)

The above estimates (4.2) and (4.3) show that, for any c 2 Rk�, we haveZ
�"

ˇ̌̌ kX
iD1

cirI"u
pi

ˇ̌̌2

Z
�"

ˇ̌̌ kX
iD1

ciI"u
pi

ˇ̌̌2

D

D
A

kX
iD1

ciu
pi

ˇ̌̌ kX
iD1

ciu
pi

E
L2

��� kX
iD1

ciu
pi

���2

L2

C o.1/;
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where the remainder o.1/ is uniform with respect to c when " goes to zero. Using
the min–max Principle another time, we get

min
p1<p2<:::<pk

max
c2Rk

�

Z
�"

ˇ̌̌ kX
iD1

cirI"u
pi

ˇ̌̌2

Z
�"

ˇ̌̌ kX
iD1

ciI"u
pi

ˇ̌̌2

D �k C o.1/:

This finishes the proof of Proposition 4.1.

5. Upper-semicontinuity of the spectrum

Let " > 0 and let .uk
" / be a sequence of eigenfunctions of �" corresponding to the

eigenvalues .�k
" /. We can assume that the functions uk

" are orthogonal in L2.�"/

and that kuk
" k

L2 D ". To work on a fixed domain, we set � D .0; 1/3 and we
introduce the functions vk

" D Juk
" where J is the canonical embedding of H 1.�"/

into H 1.�/, that is that

Juk
" .y/ D vk

" .y/ D vk
" .y1; Qy/ D uk

" .y1; " Qy/ :
We have

�
�
@2

y1y1
C 1

"2
@2

Qy Qy
�
vk

" D �k
"v

k
" and kvk

" k
L2 D 1 :

By multiplying the previous equation by vk
" and integrating, we getZ

�

j@y1
vk

" j2 C 1

"2
j@ Qyvk

" j2 D �k
" : (5.1)

Proposition 4.1 shows that .�k
" /">0 is bounded. Therefore, up to extracting a subse-

quence, we may assume that .�k
" / converges to �k

0 D lim inf"!0 �
k
" when " goes to 0

and that .vk
" / converges to a function vk

0 2 H 1.�/, strongly inH 3=4.�/ and weakly
in H 1.�/. Moreover, (5.1) shows that vk

0 depends only on y1. In the following,
we will abusively denote by vk

0 either the function in H 1.�/ or the one-dimensional
function in H 1.0; 1/.

The purpose of this section is to use the methods of [18], see also [16] and [17],
to prove the following result.

Proposition 5.1. For all k 2 N�, the function vk
0 is an eigenfunction of A for the

eigenvalue �k
0 .

Proposition 5.1 finishes the proof of Theorem 1.1 since we immediately get the
upper-semicontinuity of the spectrum.
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Corollary 5.2. For all k 2 N�

lim inf
"!0

�k
" � �k:

Proof. We recall that the functions vk
" are orthonormalised in L2.�/ and converge

strongly in L2.�/ to vk
0 . Thus, the functions vk

0 are also orthonormalised. Since
�k

0 D lim inf"!0 �
k
" , we know that �1

0 � �2
0 � : : : � �k

0 . Then, Proposition 5.1
shows that�1

0, : : :,�k
0 arek eigenvalues ofAwith linearly independent eigenfunctions,

and thus that the largest one �k
0 is larger than �k .

The proof of Proposition 5.1 splits into several lemmas. To simplify the notations,
we will omit the exponent k in the remaining part of this section and we will write
u" for uk

" , v" for vk
" etc.

Lemma 5.3. Let B" � �" be any cube of size " and let 	" be one of its faces. Then,

1

"3

Z
B"

u".x/dx D 1

"2

Z
�"

u". Qx/d Qx C o.1/ : (5.2)

As a consequence, v0 satisfies both Dirichlet boundary conditionsv0 .0/ D v0.1/ D 0.

Proof. We split the cube in slices B" D S
s2Œ0;"� 	".s/ with 	" D 	".0/ and we set

x D .s; Qx/ with Qx 2 	".s/. For each s, we have

ˇ̌̌Z
�".s/

u".s; Qx/ d Qx �
Z

�".0/

u".0; Qx/ d Qx
ˇ̌̌

�
Z

�".�/

Z s

0

jru".
; Qx/j d
 d Qx

� "
p
s

sZ
�".�/

Z s

0

jru".
; Qx/j2 d
 d Qx:

To show (5.2), we integrate the above inequality from s D 0 to s D " and we notice
that kru"kL2 D �"ku"kL2 D �"" D O."/.

The fact that v0.1/ D 0 follows from v".1; Qx/ D 0 and the strong convergence of
v" to v0 inH 3=4.�/. To obtain the other Dirichlet boundary condition, we apply (5.2)
to the cubeB" D Œ0; "��Œ�"; 0��Œ�"=2; "=2�at the left-end of�". Since u" vanishes
on the upper face ofB", the average of u" goes to zero inB". Applying (5.2) again, the
average of u" goes to zero on the left face of B". Thus, the average of v" goes to zero
on the left face 	 D f0g � Œ�1; 0�� Œ�1=2; 1=2� of� and hence

R
� v0.0; Qy/ d Qy D 0

because v" converges to v0 in H 3=4.�/. Since v0 does not depend on Qy, this yields
v0.0/ D 0.

We now focus on what happens close to the hole at .a; 0; 0/. To this end, we use
the notations of Section 3 and we introduce the functions w" 2 H 1.K"/ defined by

w".x/ D u"..a; 0; 0/C ı"2x/ for all x 2 K":
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The functions w" will be useful to study the behaviour of u" in the cube

B" D .a � "=2; aC "=2/ � .�"; 0/� .�"=2; "=2/:
We show that they weakly converges to v0.a/� in PH 1.K/ in the following sense.

Lemma 5.4. For all ' 2 PH 1.K/,Z
K"

rw"r' ���!
"!0

v0.a/

Z
K

r�r':

Proof. We haveZ
K"

jrw"j2 D 1

ı"2

Z
B"

jru"j2 � 1

ı"2

Z
�"

jru"j2 D 1

ı"2
�"

Z
�"

ju"j2 D �"

ı
:

Moreover, the average of w" in K" is equal to the one of u" in B", which converges
to v0.a/ due to Lemma 5.3 and the convergence of v" to v0 in H 3=4.�/. Applying
Proposition 3.4, we obtain the weak convergence of a subsequence of w" to a limit
w0, whose average is Nw0 D v0.a/. To prove Lemma 5.4, it remains to show that
w0 D v0.a/�, which does not depend on the chosen subsequence ."n/.

Let ' 2 C1
0 .K/ and assume that " is small enough such that supp.'/ � K". We

set

Q'".x/ D '
�x � .a; 0; 0/

ı"2

�
; for all x 2 B"

and we extend Q'" by zero in �". Since

ku"kL2 D " and k Q'"kL2.�"/
D ı3=2"3k'k

L2.K/
;

we getZ
K"

rw"r' D 1

ı"2

Z
B"

ru"r Q'" D 1

ı"2

Z
�"

�u" Q'" D �"

ı"2

Z
�"

u" Q'" ���!
"!0

0:

Thus, w0 is orthogonal to C1
0 .K/ and hence to PH 1

0 .K/ and Proposition 3.3 implies
that w0 D Nw0�. Since we already know that Nw0 D v0.a/, Lemma 5.4 is proved.

Proof of Proposition 5.1. We have shown in Lemma 5.3 that v0 satisfies Dirichlet
boundary condition at x1 D 0 and x1 D 1. Let ' 2 H 1

0 .0; 1/ be a test function.
We also denote by ' the canonical embedding of ' into H 1.�/. We embed ' into
�" by setting '" D I"', where I" is the embedding introduced in the proof of
Proposition 4.1. Using the notations of Figure 4, we haveZ

�"

ru"r'" D
Z

x1<a�"=2

ru"r'" C '.a/

Z
B"

ru"r Q�" C
Z

x1>aC"=2

ru"r " (5.3)
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The limits of the different terms are as follows. First, notice thatZ
�"

ru"r'" D �"

Z
�"

u"'" D "2�"

Z
�

v"J'"

where J'" is the canonical embedding of '" in H 1.�/. Obviously, J'" converges
to J' in L2.�/ and we know that v" converges to v0 in L2.�/. Thus,

Z
�"

ru"r'" D "2�0

Z
�

v0' C o."2/ D "2�0

Z 1

0

v0' C o."2/ :

In the parts x1 < a� "=2 and x1 > aC "=2, we know that v" converges to v0 weakly
in H 1.�/ and obviously J'" and J " converge to ' strongly in H 1. Moreover,
notice that J'" and J " only depends on x1. Hence,Z

x1<a�"=2

ru"r'" C
Z

x1>aC"=2

ru"r "

D "2
�Z

x1<a�"=2

@x1
v"@x1

.J'"/C
Z

x1>aC"=2

@x1
v"@x1

.J "/
�

D "2
�Z a

0

@x1
v0@x1

' C
Z 1

a

@x1
v0@x1

'
�

C o."2/ :

D "2

Z 1

0

@x1
v0@x1

' C o."2/:

The term of (5.3) in the box B" is more delicate, but all the work has already been
done in Lemma 5.4. Indeed we haveZ

B"

ru"r Q�" D ı"2

Z
K"

rw"r�":

By definition �" converges to � strongly in PH 1.K/. Thus, Lemma 5.4 implies thatZ
B"

ru"r Q�" D ı"2v0.a/

Z
K

r�r� C o."2/ D ˛ıv0.a/"
2 C o."2/:

In conclusion, when " goes to 0, Equality (5.3) shows that

�0

Z 1

0

v0' D
Z 1

0

@x1
v0@x1

' C ˛ıv0.a/'.a/ :

Since this holds for all ' 2 H 1
0 .0; 1/, going back to the variational form of A given

in (1.3), this shows that v0 is an eigenfunction of A for the eigenvalue �0 (remember
that kv0k

L2 D 1 and so v0 is not zero).
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