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Ballistic behavior for random Schrodinger operators
on the Bethe strip
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Abstract. The Bethe strip of width m is the Cartesian product B x {1,...,m}, where B is
the Bethe lattice (Cayley tree). We consider Anderson-like Hamiltonians H, = %A Q1+
1 ® A+ AV on a Bethe strip with connectivity K > 2, where A is an m X m symmetric matrix,
V is a random matrix potential, and A is the disorder parameter. Under certain conditions on
A and K, for which we previously proved the existence of absolutely continuous spectrum for
small A, we now obtain ballistic behavior for the spreading of wave packets evolving under
H) for small A.
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1. Introduction

The Bethe lattice (or Cayley tree) B is an infinite connected graph with no closed
loops where each vertex has K + 1 neighbors. K € N is called the connectivity of B.
The Bethe strip of width m is the Cartesian product B x I, where I = {l1,...,m}.
The distance between two sites x and y of B, denoted by d(x, y), is equal to the
length of the shortest path connecting x and y in B. The £2 space of functions on the
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Bethe strip, £2(B x I), can be identified with the tensor product £2(B) ® C™, with the
direct sum @,z C™, and with £2(B,C™) = {u: B> C™: Y g llu(x)|* < oo},
the space of C™-valued {2 functions on B, i.e.

CBxI) = 2B)RC" =~ HC™ = (*(B.C™).

xeB
As in [28] we consider the family of random Hamiltonians on £2(B x I) given by
Hy =3A®1+ 104+ AV. (1.1)

Here A denotes the centered Laplacian on £?(B), which has spectrum o(A) =
[-2vK,2VK] (see, e.g., [1]). We use %A in the definition of H to simplify some
formulas. A € Sym(m) denotes the “free vertical operator” on the Bethe strip, where
Sym(m) = R2™0m+1) ig the set of real symmetric m X m matrices. V is the random
matrix-potential given by V = @, .5 V(x) on @,z C”, where {V(x)}xep are
independent identically distributed Sym (2)-valued random variables with common
probability distribution p. The coefficient A is a real parameter called the disorder.
In particular, for u € £2(B, C™) we have

(Hpu)(x) = % Z u(y) + Au(x) + AV(x)u(x) forallx € B. (1.2)

yeB
d(x,y)=1

Animportant special case of this model is the Anderson model on the product graph
B x G, where G is a finite graph with m labeled vertices. If Ag is the adjacency
matrix of the graph G, i.e. (Ag)x ¢ denotes the number of edges between k € G and
L e G,then A®1 + 1 ® Ag is the adjacency operator on the product graph B x G.
Ifin (1.1) we take A = %A@ and p supported by the diagonal matrices, with the
diagonal entries being independent identically distributed, then H is the Anderson
model on the product graph B x G. Another special case is the Wegner m-orbital
model on the Bethe lattice, obtained by setting A = 0 and letting ;« be the probability
distribution of the Gaussian Orthogonal Ensemble (GOE). This model was introduced
by Wegner [36] on the lattice 74, where he studied the limit m — co.

There is a widely accepted picture for the Anderson model on the lattice Z¢, for
d = landd = 2andany A # 0, and for d > 3 and large A, there is only exponential
localization, i.e. pure point spectrum with exponentially decaying eigenfunctions. For
d > 3 and small A # 0, in addition to exponential localization at the spectral edges,
the existence of extended states, i.e. absolutely continuous spectrum, is expected but
not yet proven. By now, localization in dimension d = 1, [17], [31], and [8], in
quasi-one dimensional models (the strip), [32] and [27], and in any dimension at the
spectral edges or at high disorder (i.e. large 1), [16], [15], [9], [34], [8], [10], [21],
[31, [2], [35], and [30], is very well understood. Localization in dimension d = 2 at
low disorder as well as absolutely continuous spectrum in dimensions d > 3 at small
disorder remain open problems.
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Localization and delocalization can also be observed by examining the quantum
mechanical dynamical behavior, as seen in the spreading of wave packets under the
time evolution. Localization corresponds to effective non-spreading of wave packets
(dynamical localization). If d > 3, diffusive behavior for the spreading of wave
packets is expected for small A. This is analogous to the random walk in dimension
d > 3, which is diffusive.

So far, the existence of absolutely continuous spectrum has only been proven for
the Anderson model on the Bethe lattice, the Bethe strip and similar tree like structures.
The first rigorous proof of absolutely continuous spectrum for the Anderson model in
the Bethe lattice was obtained by Klein, [22], [25], and [23], using a supersymmetric
transfer matrix method. These methods were extended to the Bethe strip in our
previous work [28], where we proved the existence of absolutely continuous spectrum
in the Bethe strip.

In addition, Klein showed that the supersymmetric method also yielded ballistic
behavior in the Bethe lattice [24]. (Note that the random walk on the Bethe lattice is
ballistic.) In this paper we extend these methods to the Bethe strip, proving ballistic
behavior for the Anderson model in the Bethe strip.

Different techniques to obtain absolutely continuous spectrum for the Anderson
model on the Bethe lattice and similar tree like structures have been developed in [4],
[13], [12], [18], [19], [14], and [5]. The hyperbolic geometry methods of [13] and
[18] were extended to the Anderson model on a Bethe strip of connectivity K = 2
and width m = 2 in [12]. However, up to now the results of [24] remained the only
proof of dynamical delocalization for the Anderson model.

Our proof of absolutely continuous spectrum for the Anderson model on the Bethe
strip [28] used the approach of [25] combined with the supersymmetric formalism
for the strip developed in [29]. But although the present paper uses the approach
of [24], which relied on the methods and results of [25], it does not suffice for
us to rely on the methods of [28]. The approach is based on a supersymmetric
transfer matrix formalism for the Green’s function. In [24] this lead to the study of
certain operators on an L2-space. On the Bethe strip this is much more complicated,
and requires an augmentation of the supersymmetric formalism, with the derivation
of new supersymmetric identities and the introduction of new Hilbert and Banach
spaces of supersymmetric functions. This is done in Section 3; the key results being
Theorem 3.3 and Corollary 3.4. For the Bethe lattice, i.e. m = 1, the Grassmann
variables can be integrated out explicitly, and the Hilbert space H (see (3.18)) reduces
to a subspace of LZ(R*). In this case, the matrix operator T (see (3.7)), a unitary
operator on H made out of differential operators and the Fourier transform, reduces
to the Fourier transform. (The differential operators do not appear when m = 1; this
can been seen from the definition (3.7) and the relation (2.26), where there are no
derivatives on the right hand side whenm =n = 1.)

In this article, as in [28], we always make the following assumptions.
Assumptions

(I) K > 2, so0 B is not the line R.
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(II) The common probability distribution p of the Sym(m)-valued random variables
{V(x)}xep has finite (mixed) moments of all orders. In particular, the charac-
teristic function of u,

h(M) = / e T M) g (V) for M € Sym(m),
Sym(m)

is a C*° function on Sym(m) with bounded derivatives.

() Let amin := a1 < ap < ... < ay,m =: ama be the eigenvalues of the “free
vertical operator” A, and set

Ik = (V(—VK +ai, VK +a;) = (—VK + amo, VK + amin). (1.3)

i=1

The interval /4, g is not empty, i.e.

Amax — Amin < 2V K. (1.4)

For a fixed free vertical operator A one can always obtain (1.4) by taking K
large enough. To understand the meaning of condition (III), note that A can be
diagonalized by a unitary transformation and the unperturbed operator Hy can be
rewritten as a direct sum of shifted Laplacians on the Bethe lattice (see [28]). It
follows that the spectrum of Hy is the union of the spectra of these shifted Laplacians,
ie.0(Hy) = Ulr-lzl [—«/f +a;, VK + a;i]. The interval 14 g is simply the interior
of the intersection of the spectra of these shifted Laplacians, and condition (III) says
that they all overlap.

Let us denote the standard basis elements of £2(B, C™) by | x, k) for x € B and
ke{l,...,m},ie.u =|x,k) € L?(@B,C™)is the function u(y) = 8x,,ex where e
is the k-th standard basis vector of C™. A measure for the spread of a wave packet
localized at (x, j) € B x I is given by the square mean displacement

2 (0= d((x, ). )Py k[ e R | x, )2

yeBk=1

where d((x, j), (v, k)) denotes the distance between the sites (x, j) and (y, k). For
an Anderson model on a product graph Bx G this distance wouldbe d ((x, j), (y,k)) =
d(x,y) + d(j, k) where d(j, k) is the distance between the vertices j and k on the
graph G. For a Wegner orbital model one would choose d((x, j), (v,k)) = d(x, y).
In any case, we will use d(x, y) as alower bound. Ballistic motion means rl%, Ny (t) ~

Ct2, whereas diffusive behavior means r/% y (t) ~ Ct for large . One always has
ballistic motion as an upper bound,

i, (1) < Ct2,
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for some constant C not depending on x and ;.

In order to show ballistic motion at least for some | x, j) we will consider the
sum over j at some arbitrary site of B which we will call the origin and denote by 0.
Furthermore we set |x| = d(0, x) (which is not a norm) for x € B and define

m
PR =Y > xPlxk [ e P10, /)7
x€B jk=1

Note that "
> ke ) =130 (1.5)
j=1

Theorem 1.1. For sufficiently small A we have

NS B L
htrggf [—3/0 E(ry(s))ds > 0. (1.6)

In particular, this implies

r2(t r2(t
*t(z)) >0 and P(limsup O 0) >0, (1.7)

1—>00 tz

lim sup [E(

t—>00

and hence it follows from ergodicity that

i
[P(limsupl’j’izj>0 f0rsome(x,j)€[BxI)=1. (1.8)

t—>00

We only need to prove (1.6), since (1.7) and (1.8) are consequences of (1.6) and
(1.5) as shown in [24]. To prove (1.6), we start by reformulating the problem in terms
of the matrix valued Green’s function.

Givenx,y € B,z = E +inwith E € R and n > 0, the matrix valued Green’s
function G (x, y; z) is the m x m matrix with entries

(Ga(x, y:2))jk == (x.j | (Hy—2)"" | y.k) .

Using the spectral theorem and Plancherel’s theorem, as in [24], Lemma A.2, we
obtain

/oo e ME(ri (1)) dt
© e . o (1.9)
_ Z/_w{gm E(Tr(1G(0. x: E + i D))} dE.

Similarly to [24], eq. (2.3), we also have

00 4 2
[ A WPEaG,0.x E + i hP)) aE < ZTERIRAIR (10)

% xeB
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Inview of (1.9)and (1.10), Theorem 1.1 is a consequence of the following theorem
using the Tauberian Theorem given in [33], Theorem 10.3. (Note that the proof is
also valid for lim inf.)

Theorem 1.2. For sufficiently small A we have

lim inf 73 /oo {3 IXPET(Ga (0.x: E + in)P)} dE > 0. (1.11)

0 —
ni 0 LB

More precisely, there exists g > 0, suchthat for any A with |A| < Ag we can find ener-
gies Eit € Iyxk = (—«/E + dmax, VK + Amin), With limy_q E; = —VK + tmax
and limy ¢ E; = + K + amin, such that Hy has purely absolutely continuous
spectrum in the interval I = (E, EI), and

liminf > Y " |x[PE(|GA(0. x: E + in)[*) > 0 forall E € I,
740

xeB

Eq. (1.11) follows immediately from (1.2) by Fatou’s lemma. The fact that we
find purely absolutely continuous spectrum for small A was proved in [28], so we
only have to prove (1.2).

The paper is organized as follows. In Section 2 we introduce the basic supersym-
metric formalism, reviewing the definitions and notation we used in [28]. Section 3
contains the new supersymmetric identities required for this work; see Theorem 3.3
and Corollary 3.4. In Section 4 we use these identities to rewrite the trace of the av-
eraged matrix valued Green’s function, E(Tr(|G (0, x; z)|?)), in a convenient form;
see Proposition 4.3. We then finish the proof of Theorem 1.2 in Section 5.

2. Supersymmetric methods

The supersymmetric formalism described in this section can be found in more detail
in [6], [11], [20], [29], [26], and [28]. We review the definitions and notation (we
mostly use the same notation as in [28]) for the reader’s convenience.

2.1. Basicdefinitions. By {yx ¢, Vxe; k =1,...,m, £ =1,...,n},wherem,n €
N, we denote 2mn independent Grassmann variables. They all anti-commute and
are the generators of a Grassmann algebra isomorphic to A2™"(R), given by the
free algebra over R generated by these symbols modulo the ideal generated by the
anti-commutators

Vi jWie + VWi VijVee + VWi, YijVee + VWi

where i,k = 1,...,m and j,{ = 11. ..,n. This finite dimensional algebra will
be denoted by A(W), where ¥ = (Vi ¢, Vi ¢)k¢. The subset of one forms (lin-
ear combinations of the generators) is A'(¥). The complexification of A(W¥) is
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Ac(¥) = C ®gr A(W). Sometimes we will also add and multiply expressions from
different Grassmann algebras A(¥) and A(W’); these are to be understood as sums
and products in the Grassmann algebra A (W, '), generated by the entries of ¥ and
W’ as independent Grassmann variables.

A supervariable is an element of R? x A (W) x A!(W¥). We introduce variables
Ykt € R? and consider the supervariables ke = (Pre, 1/_/”, Yi.¢). The collection
® = (¢r.)ke Will be called an m x n supermatrix. More generally, an m x n

matrix ® = (G, Vio Vk.oke € [RZ x AY(W) x AL(W)]™ " will be called a

supermatrix if all the appearing one forms 1/7,(’4, &k,g, k=12...,mand £ =
1,2...,n,are linearly independent. Supermatrices (®;); are said to be independent
if ®;, € £,,,(W;) for all i, and all the entries of the different ¥; are independent
Grassmann variables.

The collection of all supermatrices is a dense open subset of the vector space
[R2 x AL(W) x AL(W)]™" and will be denoted by £, , (¥), or just &£, . Linear
maps defined on &£, , (¥) have to be understood as restrictions of linear maps defined
on [R? x AN(W) x AL(W)]™<",

We also consider matrices ¢ = (¢ ¢)k.¢ with entries in R?. Writing each entry
@k as aTow vector, ¢ may be considered as m x 2n matrix with real entries. Similarly,
one may consider W as m x 2n matrix with entries in A'(¥). With all these notations
one may write ® = (¢, ¥), splitting a supermatrix into its real and Grassmann-
variables parts.

For supervariables ¢; = (1, Y1, ¥1) and @2 = (@2, V2, ¥2) we define

Q192 = @192+ 512 + Vav) (2.1)

For a supermatrix ®, ®; = (¢k ¢)¢=1..» denotes its k-th row vector. Given two
supermatrices ® and ®’, we set

n
O D= ¢ e forjk=1.2....m, (2.2)
=1
m m n
QD= D D= G Pht- (2.3)
k=1 k=14{=1

Given a supermatrix ® = (¢, ¥), where ¢ € R"™*2" and ¥ € A1 (W¥)"*?" we
introduce the m x m matrix ®©? with entries in A(¥) by

n

(@) 1= D) - O = Z {0j0 ok + 2(WjeVe + VeV
=1

n _ 0 2 v
= Z{wj,z P+ Wi Vi [_1/2 1(/) ] [ziﬁ]}

{=1

(2.4)

It follows that
D°2 = 9®% 4 ¥O? with 9% := @' and ¥O2 .= W JU T, (2.5)
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0 1/2
—1/2 0

Note that YT will always denote the transpose of the matrix Y, whose entries may
be elements of a Grassmann algebra.

Given a complex m X m matrix B, supermatrices ®, ®’, and matrices ¢’, ¢ €
R™X2% e define

where J is the 2n x 2n matrix consisting of n blocks [ ] along the diagonal.

m n m
B := > > B¢ ke = Y Bix® -0 € Ac(¥). (26

Jk=1£=1 Jk=1
n n
¢ -Bo:= > Y Bix¢i, ek =Tr((9) By) € C. 2.7)
Jk=14=1

Note that ® - B® = Tr(B®©?).

These definitions may be memorized as follows: If n = 1, @ is a column vector
indexed by k, B® is the matrix vector product, and ®' - B® is the dot product of
vectors of supervariables. For general n the supermatrix ® has columns indexed by
£ =1,2,...,n, “the n replicas”, and in all definitions of dot products there is an
additional sum over this index.

A complex superfunction withrespectto A (W) isafunction F : R"™*2" — Ac ().
Let B; € A(W) fori € {1,...,22™"} be a basis for A(¥) over R. Each ; is a poly-
nomial in the entries of ¥ (we required the entries of ¥ to be independent) and F is
of the form

p2mn

F(p) = Y Fi(p)Bi. where F;: R™?" — C. (2.8)
i=1
We interpret this as a function F(®) where ® = (¢, ¥). In this sense the map
® > Tr(B®©?), where B is a complex m x m matrix, is a superfunction. Sim-
ilarly, we can define superfunctions F(®q,..., ®;) of k independent supermatri-
ces using the Grassmann algebra A((¥;);eq1,... k). We write F' € §(&,,,n), or
F € C®(&Lmp), if for all i we have F; € S§(R™*2"), the Schwartz space, or
F; € C®(R™*2"), respectively.
We define the integral over the Grassmann variables in the following way. For
a fixed pair k,{ we write F = F(®) as F = Fok’Z + Flk’zlﬁk,é + sz’zl/fk,e +
F3k 4 &k,gl/fk,g where the Fik’é are superfunctions not depending on 1/_/” and ¥y 4.
Then

/F dlpk’g dlﬂk,[ = —F3k’é.

If all functions F; in the expansion (2.8) arein L' (R™*2"), we say that F € LY(L »)
and define the supersymmetric integral by

1 . i
[r@ pe = o [r@ ][] Pocdinedvne. @9

k=1{=1
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2.2. Differential operators and supersymmetric functions. We now recall the no-
tion of smooth supersymmetric functions and introduce certain differential operators;
we refer to [28] for details. We will use the notation of [28] except for some small
sign deviations that will be explicitly pointed out.

We start by introducing convenient notation for Grassmann monomials. Recall
I = {l1,...,m}; we will denote the set of subsets of I by B(I). Given (a,a) €
(B(D)? = P(I) x P(I) and @ = {ki,....kc}, a = {ki,... kq}, both ordered
(i.e. k; <kjandk; < k;ifi < j), we set

lal lal

Waae = ([T (TT¥%.0)- (2.10)
j=1

Jj=1

using the conventions []5_; ¥; = Y192+ ¥, for non-commutative products and
]_[;)=1 Y; = 1. In particular, Wg g o = 1.

An important subset of ((I))? is &, the set of pairs (a, a) of subsets of I with
the same cardinality, i.e.

P ={(a,a):a,a C I,|a|l=lal}.
More generally, for each k € [—m, m] N Z we define
Pr:={(a,a): a,a C I,la|l = |a|+ k},

S0, in particular, = $y. (A note of caution: we used &, for £ = Py in [28].)
For (a,a) € P we set

lal

quzl = H(lﬁ]gj ¢Vk;.0),  with the convention ‘llé% = 1. (2.11)
j=1

Note that these Grassmann monomials are slightly different from the ones we defined
in (2.10). In fact, counting transpositions we get

Vg = (D “E0Y  for @,a) e P 2.12)
Given a pair of n-tuples of subsets of I, (a,a) € (B(I))" x (P(I))" witha =
(ai,...,an)and a = (ay,...,a), we set
n
Vaa =[] Yaaee- (2.13)
{=1

An important subset of (J3(Z))" x (P(I))”" is given by the set

P = {(a,a) e (PI)" x (B))": (ag,a¢) € P forl =1,...,n}.
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This set is canonically isomorphic to the Cartesian product (#)*”, justifying the
notation. However, we will use n as an upper index to indicate that we deal with
n-tuples of sets, and, given k € [—m,m] N Z, set

P ={(@.a) e (B(I)" x (P(I))":

(ay,ay) € Pr,(ag,ag) € P ford =2,...,n}.

If (a,a) € P the sets a; and ay have the same cardinality except for possibly £ = 1,
where |d1| = |a1| + k. Note that P§ = £". In view of (2.12), fora € (P(I))" we
define

n
lagl(agl—1)
sen(a) = [J- 2,
=1

getting

n

l_[ - sgn(a)W;z, for(a,a) e P". (2.14)

ag,ag
{=1
(Note: the left hand side of (2.14) corresponds to the definition of V; , for (a,a) €
P in [28], eq. (2.25).)
The counterpart to these Grassmann monomials are differential operators acting

on functions defined on Sym™ (1), the space of non-negative, real, symmetric m x m
matrices. From now on we assume n > 2, so that the map ¢ € R"™*?" 1 @©2 =
@@’ € Sym™ (m) is surjective.

Let C*(Sym™ (m)) denote the set of continuous functions f on Sym™ (1) which
are C™ on the interior of Sym™ (m). We let 9,4 denote the partial derivative with
respect to the j, k-entry of the symmetric matrix, i.e. d;x f(M) = % f(M) for
f € C®(Sym™(m)). Note that 3, = 0k ;. We also set 5j,k = %aj,k for j # k
and éj’j = Bj,j.

Given (a,a) € P witha # @,a = {151, .. .,IEC} and a = {ky,...,k.}, both
ordered, we define the matrix-differential operator

alelskl 8151,kc

0a,q =

algc ,kl o a]gcakc
Furthermore we set Dy g to be the identity operator and

Daa = det(daq) ifa # 0.

T

a,a’

Note thatdz , =
we set

and hence D; 4, = D, 5. Inthe special casewhena = a = T,

0:=4d77 andd:=det(d) = Dy 1.
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Furthermore, for (a,a) € P we set (a®,a%) := (I \a,I \ a) € . Note that the
(j, k)-entry of 8 is 8¢ 1.ty = Dy,y.1k)- The cofactor is given by (—1)/ % Dy e xye.
The transpose of the cofactor matrix of @ will be denoted by 4, i.e.

§:= (1) Dyye gj3)jker

D{l}c,{l}c _D{Z}C,{l}c PN (—1)m+1D{m}c,{1}c
_ _D{I}C,{Z}C D{Z}C,{Z}C PN (—1)mD{m}c,{2}c
(_1)m+1D{1}C,{m}c (—1)mD{2}C,{m}C e D{m}c,{m}c

With these definitions we have

0d =00 =det(0)1 =8 := , (2.15)
0 5

where 1 = 1,,, denotes the unit 7 x m matrix and § is a diagonal m x m matrix with
8 on all diagonal entries. Furthermore, for (a,a) € " we set

n
Daa =[] Daga, - (2.16)
{=1

We have Dz 4 = Dg.g. For f € C®(Sym™ (m)) and det(¢©2) # 0, a formal Taylor
expansion yields (cf [28], eq. (2.26))

f(@%) = > Daaf(@°) sgn(@)Va. (2.17)

(a,a) e Pn

Let C°(Sym™ (m)) denote the set of all functions f € C*(Sym™(m)) where

© — Dgqf(9®?), defined on the dense open set where det(¢®©?) # 0, extends

(uniquely) to a C* function on R™*2" for all (a,a) € P".

Definition 2.1. Letn > %

(i) The set SC*°(L,.») of smooth supersymmetric functions is defined as the set
of all smooth superfunctions F(®) such that F(®) = f(®°?) for some f €
C°(Sym™ (m)).

(ii) The set SS(Lm.n) = S(Lmn) N SC®(Ly,,) denotes the supersymmetric
Schwartz functions.

This definition is justified by [28], Proposition 2.3, which is based on [29], Corol-
lary 2.9. SC%(&L;,.,) can be identified with C>°(Sym™ (m)). Furthermore, if
we define the subset S,(Sym™ (m)) of all functions f € C®°(Sym™(m)) where
© — Dgaf(9®?) is a Schwartz function, then SS(£y.,) can be identified with
Sn(Sym™ (m)).
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Finally let us define some algebraic operations on (J3(.1))” which will give some
Leibniz type formulas and will be useful later. Leta, b € (P(1))". Ifag,Nby = @ for
each{ = 1,...,n, then we say a and b are addable and definec = a+b € (B(1))"
by ¢, = ag U by. Similarly, if by C ag for all £, then we define ¢ = a — b by
ce = ag \ bg. If a and b are addable, then (a + b) — b = a. Furthermore we
denote by I the n-tuple where each entry is the full set 7, I = (I,71,...,1).
Moreover, we define a¢ = I — a. We say that (@, a) and (b, b) € PB(I)" x P(I)"
are addable if @ + b and a + b are defined by the notion above. In this case we define
sgn(a,a,b,b) € {—1,1} by

Waa Vs, =sgn(@a.b.b) YV ;... (2.18)
(Note of caution: this definition of sgn(a, a, b, b) differs from [28], eq. (2.27), since
our definition of Wz 4 in (2.13) is different from [28], eq. (2.25).) If (@, a) € P} and
(5,b) € P are addable, then (a + a,b+ b) ?J.”Jrk and (a‘,a®), (a,a) € J)fj.

Since the product of two supersymmetric functions is supersymmetric, for all
f.g € C>®(Sym™ (m)) and all (@, @) € P" we have

Z sgn(b)sgn(b’)sgn(a)

D&,a(fg) = Sgn(b_,b,g/, b/)

(b.b),(b' b")eP"
b+b'=a,b+b'=a

2.3. The supersymmetric Fourier transform. We recall the definition of the su-
persymmetric Fourier transform. Given f € S§§,(Sym*(m)) we define Tf €
S8, (Sym™ (m)) by

(TF)(®9?) = / 2189 Do, (2.20)

where we use the fact that the right hand side defines a supersymmetric function [29].
It follows that [28], eq. (2.37)

Daa(Tf) = 2grsgn(a.a)F (Dge ae ) forall (a.a) € P" . (2.21)

Here ¥ denotes the Fourier transform on R”*2"; we abuse the notation by letting  f
denote the function in S, (Sym™ (m)) such that (¥ f)(¢©?) is the Fourier transform
of the function F(¢) = f(¢®?). In addition,

sgn(a,a) := /sgn(a)\llajasgn(a‘)lllﬁc’ac Dw

sgn(a)sgn(a®)sgn(I) (2.22)

sgn(a,a,ac,ac)

for (a,a) € P", where DV = nk,e dl/_fk,g dyrke. By (2.14) this is the same
definition as [28], eq. (2.32); the second equality follows from (2.18) and

= ("

/\IJI,ID\I: = (=1)""sgn(I) . (2.23)
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Moreover we have, as in [28], eq. (2.39),
T2f =TTf = f forall f € §,(Sym™(m)). (2.24)
In the special cases when (a@,a) = (I, I) and (a,a) = (€, I¢), (2.21) yields
S'"Tf =(=2)™"™"F f and Tf =(-2)""Fs"f . (2.25)

In particular, we have
F =4m"s"F 5",

An important special case of (2.21) is the following. For k € I let
4] := ({k}. 9, ...,0) € PI)",

then Wyjgpen = V.11, Dy = Dijyoer and Dpjge pge = Diege.38"
Using the notation of (2.11) we get

7 (D +k g, (1)
1pj,lWk,l"l"{j}c,{k}c = (_1)]+ ‘I"LI

since one needs j — 1 transpositions to bring the 1/’s to order and k — 1 transpositions
to bring the ¥’s to order. In view of (2.14) this implies

sen (I T Wi pmen sen(L 1) g jpe g = (D7 Fsgn(D) Wz 7,

which by (2.22) and (2.23) yields

sen(/1 KD = [ (-1 sgn(D)¥r. 1% = (1) (1)
Thus, using @ = [[/]] and @ = [[k]] in (2.21) gives

Dy (TF) = 2m 2 (=)™ (1) TR F (8" Digege (3 f)-

In particular, given f = (f1...., fm)" € [$,(Sym™ (m))]"*!, a column vector of
elements of S, (Sym™ (m)), setting

Tf={Tf,...Tf)" and Ff =(F fi.....F fm)",

we have

T f)= (2" 2F@ " '9f). (2.26)

As in [28], following Campanino and Klein, [7], [20], and [29], we introduce
norms || - |, on Cg°(Sym* (m)). with p € [1. o], by

"lfl"; = Z || 2|a| D&,a f ((p®2)||ip(|]3mx2n5d2mn¢)' (227)

(a,a)eP"
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We define the Hilbert space # as completion of S, (Sym™ (m)) with respect to the
norm || - ||2. The Banach spaces #,, p € [1, oc], are defined by

Hp =S €H: |\ fllw, = 1Sll2+17ll, < o0 (2.28)
We also define the Banach space Hoo as the completion of
KL = 1f € CSym™ (m): [ flloo < 00}

with respect to the norm || - ||oo. In view of (2.21) and (2.27), as mentioned in [28],
the supersymmetric Fourier transform 7" extends to J¢ as a unitary operator.

We also want to consider tensor products. For g(q)?2 ,092) € CX(Sym™ (m)) ®
C®(Sym™ (m)) we define the tensor norms

+
lgll; = Y- 12PIDE) D) g0, 99 17 nps oy
(a,a)eP”
(b.b)eP™
where || - |27 (¢, ,o_) denotes the p-norm of the L? space on ([Rmxz”2 in the vari-

(+) D( )

a,a’
denote the differential operator D , with respect to @& g 2 and ¢©? respectively. The
Hilbert space tensor product X := # ® J is the completion of S,(Sym™ (m)) ®
8, (Sym™ (m)) with respect to the norm ||| - |||,. The unitary operator 7 induces the
unitary transformation

ables ¢4, ¢_ with respect to the Lebesgue measure d 2”‘”(0 d 2”‘”(0 D>

T:=T®T onkX. (2.29)

As in [28] we also define the Banach spaces
Kp ={g € K:llglx, = lgllz + ligll, < oo} forl=p =<oo.
As before, we also define the Banach space Koo as the completion of
KQ =g € G (Sym* (m) ® C2(Sym* (m): lIglloo < o0}
with respect to the norm || - || oo-

Remark 2.2. The spaces #, Jp, J?oo, K, Kp, J{~oo, the supersymmetric Fourier
transform 7', etc. all depend on our choice of n > & for a given m. This dependence
on n (and m) will be generally omitted.

3. More supersymmetric identities

In this section we derive new supersymmetric identities that are crucial for the ex-
tension of the results of [24] to the Bethe strip, going beyond the supersymmetric
formalism used in [28]
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Using the first replica, we define the following Grassmann column vectors

= Wi V21s e VUma) | U= W11, ¥21s s Uma) | (3.1

which correspond to the first and second column vector of ¥. Even though we only
use the first replica (the second index is always one) for these vectors we do not

add an index 1 to ¥ or W. We want to avoid having too many indices later, when
we use a corresponding notation for an indexed family of supermatrices. Given
f = (fi..... fm)" € [A(¥)]™, a column vector of elements of the Grassmann
algebra, we set

Gor=0 s Z ifie and U f =0T F = v fi

k=1

For an m x m matrix F = (Fjx)jker € [A(W)]™*™ the expressions FUand FU
will be understood as matrix multiplication.

Remark 3.1. Vectors of elements of the Grassmann algebra A(W¥) and vectors of
functions will always be considered as column vectors in matrix products. In partic-
ular, the sets A(W)™ and [S, (Sym™ (m))]™ will be identified with [A(¥)]”*! and
[S, (Sym™ (m))]™1, respectively.

Given a = (ay,...,an) € (P(I))" and k < |a1| we let ayx denote the k-th
smallest element of a;. Similarly, @ will denote the k-th smallest element of a;
fora = (ay,....ap) € (PI))". If (a,a) € P and k = 1,2,...,|a,|, we
have (@ — [[a1x]l.a) € ", and for (@,a) € P", and k = 1,2,...,|a;| we have
(@,a—[laix]) € P". Given f = (f1...., fm)| € [$,(Sym™(m))]", we have

3

. f(<I>®2)=Z k1 Je(@9%)

Z Dj 4 fe(@©*)sgn(b) Vi1 ¥, (3.2)
k=1 (5.5

epn

|a;

Z a-larelha fane (022) sen(@)(=1)F "Wz 4
(@a,a)eP] k=1

The change in the sum is done by the relations a = b, a — [[ak]] = b. Note that
for k € by we have Wk 1V 5 = 0. Similarly, we obtain

lay]

U-f(@°%) = Y > Daafared Sy (9°2)sgn(@) (— DG , . (33)

(&,a)e:?ﬁ{c=1

In order to obtain the super Fourier transform of these expression we will expand
i /. .
¢'®®" in the Grassmann variables.
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Lemma 3.2. We have

(P = lee N (D@0 (1) ls(@, a) W}  Yaa)  (B4)
a.aeP(Dy"

where

n

lal ;=Y lag| fora e P, |@.a)|:=la|+|a| fora.aePI)"

(=1

and

s(a,a) = 1_[ (_1)(|ﬁe|+|az|)~(|ﬁy|+|ae/I)'

1<l<{'<n

Proof. Recalling that for non-commutative products we always use the convention
that the indices are ordered, increasing from left to right, we have

o _ Lige 1_[ l_[[(l + %&k’gw}d)(l + %&Azlpk,ﬁ)]

k=1{=1
n
=" 3 AG @ T TT Vhevne [T Vrev)e])
a,acP(I)” =1 keay Jj€ay
n
_ oo /@) sen(a) g 7
=o' 3 A& G TTL T vie TT vwe [T de [T vi]y
a,acP(I)” (=1 keay keay Jj€ay j€ay
i3 {(%)'(ﬁ’“)'iiﬁgg(—l)'“'
a,acP(I)” n ~ B
x H[ [T Ve TTvie IT e T Wk,e]}
=1 keay j€ay Jj€ay keay
=e0? Y (D)@Y (1)ls(@, a) W] ,Waa). O
a,acP(Dn)”
Note that for (a,a) € & and £ > 2 we have |a¢| = |ay|, therefore

s(@,a)=1 forall (a,a)e P andallk € [-m,m|NZ.

Now if we combine (3.2) and (3.4), using [£]/ @) = 2; (—41)II“I for (a,a) € P}

la
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as well as (2.18), (2.23), and (2.21) for the integral over DWW, then we obtain

/ei‘l"‘l”i . f(®°%)D®

sgn(a)sgn(a®)sgn(XI)
Z { sgn(a)sgn(a, a,a,ac)
lag|

(_l)mnqjé,a

@.a)e P!
mn

| L 3.5
X 2i 3 (~DFNF Dae—gas, pae far ) (@) G-
k=1

lail

=2 Z { Z(—l)aik_kHDﬁ,aHIaﬁk]] Tfaclk(go/@z)}sgn(a)\llé’a :

@a)eP! k=1

Note that a§, = (a})x denotes the k-th smallest element of the set a] = I \ a;. To
get the sign in the last equation we used

sgr;(a)sgn_(d?s%g” ) (C1y"sgn(a + [aS, 1.@)(—1)F!
en(a,a,ac,ac)

sgn(a + [[aj, 1. a,a — [[a5. 1. a©)
N sgn(a,a,a‘,ac)

(=DF 1,

and the fact that for (a,a) € »", we have

Wo Ve ae = (=1 " Woatus 1 Wae s, pac = (=1 Vae 1 WaaYae a2
= (=D D W s, 6 Vae —as D -

implying
sgn(a + flaf. 1. @, a® — [laj 1. a®) (1)
sgn(a,a,a,ac) '
Since for (a,a) € $", we have
i\l@a)l (=1l
(5) = 2]
and
sgn(a,a + [[[lik]]’ a,af — [[C_lik]]) _ (—1)m+aﬁk,

sgn(a,a,a,ac)
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similar calculations lead to
/ eiQ-@’@ . f((b@z)D(I)

las|
— 1 3 {3 Dy

@a)eP", k=1 ) (3.6)
x Tfa (9% |sen(@) ¥} ,

lagl

= 20 3 A )FEHA D e T (070)fsgn(@) W) -

@a)eP", k=1

We are now ready to derive the main identities we will need to prove Theorem 1.2.
The integrals (3.5) and (3.6) can be expressed using the matrix operator T defined by

Tf:=20Tf forf = (fi.....[m) €[Sn(Sym™(m))]™. (3.7)
Combining (2.26), (2.15), (2.25) and (2.24) we see that T is an involution,
T2f =49TdT f = 4(=2)™"2F§" 1JoT f = (-2)"™F§"T f =T>*f = f.

The following result is crucial for this article. It is the key observation that allows
the extension of the results in [24] to the Bethe strip.

Theorem 3.3. Let f = (f1, fo.... fm)' € [Sp(Sym™ (m))]™. Then

V.Tf(@°) = i/ei‘l"“”i . £(@°)Do
- (3-8)
= —i/e‘”"q’/\fl - f(@°*)D®,

and

v 'I]'f(<1>/@2) _ i/eid%‘b’\i, . f(q,Oz)Dq>
B (3.9)
— —i/e—“‘”‘l”w - f(@®°?)D®.

Proof. The second equalities in (3.8) and (3.9) follow from a simple change of vari-
ables. Using (3.2) we get
- lail m
3,/ 02y _ k—1p_ __
v an(q) ) - _ Z { Z Z (_1) Da_IIalk]]aaD{alk}a{k/} (310)
(a,a)e:?ln k=1k'=1 o2 )
X Tfi (9% sgn(@) ¥} .

First consider the case kK’ = ag T There are a i 1 numbers smaller than af f in I,
J — 1 of them are in the set ¢ and hence a}; — j of them are in the set a;. Therefore,
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ay; isthe (aj; — j +1)-th smallest element of the set @ U{a{; }. A column expansion
of Dg, 4, Uas, ) the determinant of 93, 4, US> leads to

lay]

k+a,—j+1
Dayayutasy = (D U Da G a0 Diangoas, )

k=1
implying
lai] ¢
Z(—l)k_lDa—nalk]],aD{alk},{agj} = (=DU™ Daa+fas,1- (3.11)
k=1

Similarly, for k¥’ € a; we can also interpret the sum over k as the expansion of a
determinant. However, in this case the corresponding matrix has two identical rows,
therefore

|ai]
Z(_l)k_lD&—I[ﬁlk]],aD{alk},{k’}Tfk’((0/62) =0 fork' €ay. (3.12)
k=1

Now equations (3.10), (3.11) and (3.12) lead to
_ @
. 3Tf((I>/O2) = Z {Z(_l)alj—/ D&,a-ﬁ-l[aclj]] (3.13)
@a)ep] j=1 o /
X Tfas (@) }sgn(@) W , .

which combined with (3.5) proves (3.8).
For the second equation one starts from (3.3); similar calculations lead to

la§ |
‘IJ/_ an(q)/@Z) — Z {Z(_l)alj—]‘l‘lal|Dﬁ+[[a§j]]’a
@a)ep”, j=1 o2 )
X Tfas (9/®%)}sgn(@) ¥, .
Combining this with (3.6) yields (3.9). 1

Next we introduce a Hilbert space on which T is a unitary operator. In view
of (3.2), we define differential operators on [C°(Sym™ (m))]™ by

@]

Diaf =sgn(@) Y (—D*"'Dajaypafa, for@a)e?y — (3.14)
k=1
where £ = (fi,..., fm)| € [C°(Sym™ (m))]™. Dz, may be considered as a row-

vector of differential operators. Equations (3.2) and (3.3) can be written as

T f(@°%) = 3 Daof (99 Vs (3.15)

@.a)eP]
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and
U f(@9) = > (=) Dygf () Wz (3.16)

@a)eP",
Combining Theorem 3.3 with (3.5) and (3.15), we obtain
2mn+l gson(a)sgn(I)(—1)™"

Dza(Tf) = = F (Dge ze for (a,a) € PI.
a,a( ) 4lal sgn(@)sgn(a, a, a’, ac) (Da N f) for(a,a) 1
(3.17)
This leads us to define the norm
£ 15 =D 12Daaf @) gmongomng) - (3.18)

@.a)eP]

and let M be the Hilbert space completion of [S, (Sym™ (m))]™ with respect to the
norm || - ||g. By (3.17), T extends to a unitary operator on H. Moreover, the
expressions W - f and U - f can be extended to f € H and the equations (3.8)
and (3.9) remain valid.

We also introduce the Hilbert space tensor product K := H®MH. For f, g € Hthe
tensor product f ((p?z) ® g(9®©?) can be identified with the matrix valued function
given by the matrix product f (goi)z) [g(@®?)]T. With this identification, the norm
for an m x m matrix valued function F (q)?z, 0%?) € K s given by

IF I
- lal+15| () () o2 _o2\T
T Z ||2a DEjb[IDﬁ,aF((o-F 9 )] ||L2([Rm><4n d4mn(¢+¢ )’ (3 19)
(@,a)eP!
(b.b)eP}

where ID(i) denotes the operator Dz , acting with respect to ¢®2. To obtain (3.19),

(i)

note that D, are 1 xm row-vectors of differential operators and hence ID(+) S (o 2) =

Dz (+) S ((p?z)]T since it is a 1 x 1 matrix, which leads to

(D5 £ (99D )8 (@27)] = Dy D) £ (9978 T (2]
Together with (3.15) and (3.16) this calculation also implies
Uy F(@92, 090 = nagj;[mfifa)p(gagz, 0O Wy aaV_j, (3.20)

(@.a)eP}
(b.b)eP]

and
U, - F (022, 092)w_
Y DEFPIDIIDER F (092 09 W g Vo, (32D)

@a)e!,
n
(b.b)eP",
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where Wy 5 o and W_ ; , are defined analogously to Wz 4 using the Grassmann entries
of @ and ®_, respectively. An important operator on K is the tensor operator
T :=T @ T. Theorem 3.3 implies the following.

Corollary 3.4. Let F(®%%, ®°2) € K. Then
T, - TF@°% 0°)T_
:/eil(¢+¢;—¢_¢/_)\i+ . F(Q?Z’ ¢92)®_D¢+Dq’_
and
v, - TF (@82 00
=/eii(¢+'¢i}—_¢_'¢/_)\i+ . F(<I>_®|_2, @92)@_D(I)+Dq>_ )

We recall that #™ = @)'_; # and K™ =~ K m? are Hilbert spaces with the
norms

LF WGem = Y WAMZ for f = (fis..os fm) € H™,

k=1

m
LF [Gemsm = Y WEll3 for F = (Fj) € K™,
J.k=1

We let T act on K™*m by acting on all entries. The relations between F™ and H
and between K™ and K will play a crucial role.

Proposition 3.5. (i) #™ is a subset of H and the canonical injection H™ — H
is continuous with respect to the norms of H™ and H.

(1) K™*™ is a subset of K and the canonical injection K™ ™ — K is continuous
with respect to the norms of ™™ and K.

(iii) The matrix differential operator d acting on [S,(Sym™ (m))]™ extends to a
continuous operator from K™ to H, and we have

20f =TT f forall f e H™. (3.22)

(iv) The operators d ® 1, 1 ® 3 and @ ® 9 are continuous from K"™*™ to K. They
are given by

@@ DF(®2% 0°%) =9, F(99%, 0°?), (3.23)
(1®3)F (2% @°%) = [3_F T (®#2% @77, (3.24)
(A ®F(®D?, ®°?) = {3_[0,F (2% 02"} T, (3.25)
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where 1 is the matrix of differential operators d with respect to ® .. (The products
are matrix products.)

(v) We have R R
TF =4[0_(3.TF)"" forall F € K.

(v) Given g(9®?) € J?ég), the multiplication operator M(g), defined by
M(g) f (99?) = g(@?) f (99?) for f € [Sa(Sym™ (m))]™,

extends to a bounded operator on H. The map g € %52) — M(g) € B(H) is
continuous, and hence extends to Hoo. Moreover, for (a,a) € P|' we have

Daa(gf) = Z sgn(b)sgn(b, b, b’, b/)D,;,b gDppf. (3.26)
(b,6)eP™ (b’ b))l
(b,b)+(b',b")=(a,a)

(vi) Given G((p?z, 0®?) € ch,g), the multiplication operator M(G), defined by

M(G)F (992, 9%%) = G99, o) F (937, 9°?).

for F € [8,(Sym™ (m))]"™ & [S,(Sym™ (m))]™, extends to a bounded operator on
K. The map G € J(ég) — M(G) € B(K) is continuous, and hence extends to Ko.

Proof. (i) is a simple consequence of the definitions of the norm. (ii) follows from (i)
since H™ @ H™ = JM,

To get (iii) note that for f € [$,(Sym™ (m))]™ (3.22) follows from (2.24) and
(3.7). Since T is unitary on #™, ™ is continuously embedded in H by (i), and
T is unitary on H, we conclude that the operator %"I]'T defines a continuous linear
map from #™ to H which extends the map f € [S,(Sym*(m))]" — df €
[$n(Sym™ (m))]™.

The continuity in (iv) follows from (iii). For the second and third equation note
that d = 8 ' and hence

1®3)(f (@2 ® g(®°%) = f(@H)[a-g@°)]"
=[0_g (@) f T(p2H]"
=[0-[f @2 (@)]]".

(v) follows from (iv) and (3.7). To prove (vi) note that 6 -M(g)f (®92) =
g(®O)W . £(®©2). By (3.15) this implies (3.26) which leads to |M(g) f|ln <

Cliglloo |l F || for a constant C only depending on m and n which are fixed. (vii) is
proved similarly to (vi) considering ;. - M(G)F (> <I>®2)‘IJ O
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4. Averages of the matrix Green’s function

We have all the main supersymmetric identities by now. So let us consider the random
Hamiltonian H) introduced in (1.1) and (1.2). Recall that we fixed some arbitrary
site in B which we called the origin and denoted by 0. Given two nearest neighbors
sites x, y € B, we will denote by B*Y) the lattice obtained by removing from B the
branch emanating from x that passes through y; if we do not specify which branch
was removed we will simply write B™). Each vertex in B®) has degree K + 1, with
the single exception of x which has degree K. Given A C B, we will use Hj 4 to
denote the operator H), restricted to £2(A, C™) with Dirichlet boundary conditions.
The matrix Green’s function corresponding to H;_ a will be denoted by

Gaa (xyiz) =[x, j | (Haa =27 [ 3o K)jkett, oy

forx,ye A,andz = E +inwith E € R, n> 0.

Important choices of A C B will be the sets By, denoting all sites y € B with dis-
tance |y| = d(0, y) < ¢, and [Béxly) denoting all sites x’ € B*1?) with d(x, x) < ¢.
We will use the Green’s matrix at the origin very often, therefore let us define

GA(Z) = GA(O, 0; Z).
For special choices of A let us also introduce the following notation:
Hj = H) p,. Ga,e(z) == Gy, (0,0; 2),

H/{XLV) = H/L[B(x|y), Gixw)(Z) = Gk’lB(xly)(x,x;Z),

Hffély) = H/L[Bley), G)(ﬂy)(z) = G“Béﬂy)(x,x;z),
H)(Lx) = H) g, Gl(lx)(z) =G, g (x, x;2).

Similarly to [1], Proposition 1.2, we have

lim Gy, (x,y;2z) = G(x,y;2),
éf)oo 4.1
Jim Gjp,,(x.y:2) = Galx, yi2).

To each site x € B we assign supermatrices ®,, ®, , and ®, _, which are all
independent, i.e. all different Grassmann variables are independent. We will also use
the independent supermatrices ®, ®', &, d_, (I>q_ and ®’ . Furthermore we may
use notations like ®, = (@, ¥,) where @, is a variable varying in R™*2?" and

W, = ((Va)kts (Wx)k.0)k.e- Also W,, W, 4+ and so on shall be defined analogously
to (3.1).

For each finite subset A C Bweset DA® = [[, .o D ®, where D ®, is defined
as in (2.9). Let B be an operator on £2(B, C™) and B, its restriction to £2(A, C™)
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for a finite set A C B. For x, y € A we define (x | B | y) to be the m x m matrix
with entries ({x, j | Ba | y,k)); x. Furthermore we define

(®|BA|®)= > ®:-(x|Ba|y)®
x,yEA

Now letImz > 0, A C B finite, and x, y € A. By the supersymmetric replica trick,
for any replica s € {1,...,n} we have, as in [6], [11], and [20],

[Gaa(x. y:2)]jk / (Wx)js (Ui se (B1HAA=ZI®) Dy @ (4.2)

For some fixed x € B we will denote by xo = 0,x1,...,Xx|x| = x the shortest
path from O to x, i.e. d(x;, x;—1) = 1 and x; # x; fori # j. We denote by By ¢ all
sites in B whose distance from the path xo, . .., x|y is at most £ 4 1. If we let N(x;)
be the set of neighbors of x; which are not on the path xo, ..., x|y|, then, as a set,

[x]

Bee = ooy U U BYP) 4.3)

i=0 yeN(x;)
where the union is disjoint. Note that for |x| > 1 we have |N(x;)] = K — 1 for
i = 1,....]x| =1 and |[N()] = |[N(x)| = K. If |x| = 0, i.e. x = 0, then
NO) =K + 1.
Setting A = By ¢ in (4.2), noting that [\i}o\i;—]j,k = (V0);.1(¥x)k,1 and using the
decomposition (4.3) we obtain

Jx|-1 x|
-T
Ga,,(0,x:2) =i/%w []e v+ [0 Ds, @ (4.4)
j=0 j=0
where
lx;)
©; = ol ®x; GmATAV B, =i Dyeninp [P, @y H®IH, e .5)

In order to simplify this equation note that one obtains as in [28], eq. (3.11),

Wlxj)

. . Wlx;)
/ o Oy Ry H@IH, 2y —21®) pole® = WO T D% (46)

Plugging (4.6) into (4.4), using (4.1), and letting £ — oo, we get

7 X1 x| x|

G (0, x; 2) :i/\TJO\p []e"® ‘I’XJHHT;;(@@Z)]_[D@,CJ 4.7
j=0 j=0 j=0
where o
yix;
137 (992) = o TETAV A s Eyency) O o) 4.8)
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The dependence on x results from the fact that x determines the path
X0 =0,X1,...,X|x = X.

Now we want to consider |G (0, x; z)|?. To improve the appearance of the following
equations, we introduce the following notation:

= (94, @), 0°%:= (2%, 0%°%), D®:=Dd, D_,
= (p1.9-). 992 := (99,07,
Oy = (P Br o). BD%:= (092, 092), DO, :=Dd,, DO, _.
®, b, =0, b, —b,_ P, .
From (4.7) we obtain
|G4(0, x;2)|* = G5(0, x; 2) G4 (0, x; 2)

= 5, T X,r 302
=— [ Wy +\I’0,+FA,Z(‘I’§))

[x]—1 x| (4.9)
x [T 1% ® Ty @915 -9]_ ] D,
J=0 j=0
where
37 @) = T (097 (92, (4.10)

with the bar denoting complex conjugation. The minus sign in (4.9) comes from

- =T
[qJOH—qu,-{-]T _qjx +\IJ0 +

a consequence of the anti-commutation relations for Grassmann variables.
Asin [28], for A € R, E € R and 1 > O let us introduce £, , € Ko by

£1:(9°%) = E(exp {§ Tr(G" (2) 997 =[GV ()" 927)}),
and the operator 8, , by
(A0 @2 — (G—A)pO2
Byo = M TEDOE = EDLE0L () (992 — 9©)),

where M(g(¢©?)) denotes multiplication by the function g(9®©2). The fact that
£,z € Ko 1s a continuous family of elements is shown in [28]. B, , and M(g)
act on matrix valued functions by acting on each entry. Very important will be [28],
eq. (4.12) and Theorem 5.6, stating the following.
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Theorem 4.1. For E € I4 g there exists Ag > 0 and ¢g > 0, such that the
continuous map

(A E'\n) € (Mg AE) X (E —¢g, E + ¢g) X (0,00) = &3 Erin € Koo

has a continuous extension to (—Ag,Ag) X (E — ¢g, E + ¢g) x [0, 00) satisfying
the fix point equation

b2 =T By 6, (4.11)
in Koo.
We set
g={ J (-Ap.Ap)x (E—ep. E +ep) x [0.00)} U {R x R x (0,00)},
Eely k

where Ag > 0 and eg > 0 are as in the theorem, so we can extend &, g4in to a
continuous function on all of &, defining &, g for (A, E,0) € E.

We further define §; g4, on E to be the diagonal m x m matrix with &3 gy
on all diagonal entries, i.e.

E1,E+in = ErE+in L.

Note that the map (A, E, 1) — & g+in € K™ C Kis also continuous on E.

Proposition 4.2. We have

T I .07 K
EIGL 032 =~ [ B, 9718, . MEF) C an

x [T 81 MEHIMEDH@O)U_W_ DO,
Proof. Let x # 0. {Ff; (®92)};_¢.1... x| are independent Grassmann algebra-
valued random variables, with
. B EK (®92)  ifj =0o0rj = |x],
By @) =1 "
B 5 (@9 if0 < j < |x],

Thus, taking expectation in (4.9) and using the matrix equality

£, (B0 Vo W) _ = £, (8O 1T V] _ = &; (9 Vo T, _,

Weget
E|G(0.x:2)]?
r—1
G 5 TN g
=_/‘px=+‘1’0T,+£A,szz(‘I’92){H[el et B @0 )
Jj=0 r

x 62,2 (M) W0 W[ _ ] D&, .
Jj=0
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Using Corollary 3.4, integration over D ®)=D® xo gives
E|G1(0, x;2)|?

r—1 . R
= _/\fo,plf;ﬁiu’l,zéfz((b?z){H[e"l’Xj+1"I’Xj£ EEN(@2 )]}

Jj=1
< [T 8 MET)E @) Ty, U] H Do,
j=0
Repeated similar 1ntegrat10ns over D<I> cforj =1,2,. — 1, yields (4.12) after

renaming <I>x = (I’x| , as d.

For the case x = 0 note that [E(F0 0(<I>®2)) = B, ZE){(+1(<I>®2) which gives
(4.12) also for x = 0. Ol

To write the trace of |G (0, x; z)|? in a more compact way, let us introduce the
following notations. First let us define the operator

Vi =T B MEST). (4.14)

Note that 'V, is a bounded linear operator on K in view of Proposition 3.5 (vii). For
F ., F'’ € K we define the bilinear forms

(F | F'):= —Tr{/FT($®2)E+@IF’($OZ)EJ_$jD&>}
~ ~ (4.15)
—/[\m .F(®°)U_|[T, - F/(®°%)U_| DD
and
(F | F'); 2= (B MESDF | F) = (F | B MESDF). 416)

For the second equation in (4.15), note that for matrices F, F’ whose entries are even
elements of the Grassmann algebra A (¥4, W_), we have

= - ~ - =T = = -
Tr{F "W W] F' (@) W_W_} = —[V_. F U ][V, - F'U_]
= [Uy - FU_][¥,- F'U_].

The sign changes are caused by the anti-commutation relations of the Grassmann
variables.

Proposition 4.3. The following identities hold.
(F|TF')=(TF|F'), (4.17)
(F | VazF '), = (VazF | F'); .. 4.18)
E(Tr(|G(0.x:2)%) = (€22 | Vi'L&a2)a. (4.19)
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Proof. Using Corollary 3.4 and (4.15) we get

(F | TF) = —/ﬁf+ F(®°2)T_) [T . F'(°)T |pé' D
- /[3; TF @)V, - F'(°%)F 1D§’
= (TF | F').

Eq. (4.18) is now a consequence of (4.16) and (4.17); eq. (4.19) follows from (4.12),
(4.15) and (4.16). O

Similarly to [24], for z = E + in with n > 0 we define 8, , € K by
0,;,=-2001+1R9)&, ,=—-2(04+0-)&, ;. (4.20)

Using &), = g{z and 9_&, , = [0_&; .]", the second equation follows
from (3.23) and (3.24). Proposition 3.5 (iv) implies that the map (A, E,n) +—
0,,E+iy € Kis continuous on E.

Lemma 4.4. Forn = Imz > 0 we have

(022 | Vi£a 2D = BT (2|60, x:2)1%))

= [E(Tr (‘GA(O,x;z)\/ng/lx)(z)‘z)) >0,

(0.2 | VL0220
= E(Tr(3 ()65 (0, x;2)319(2)61.(0, x: 2))) (4.22)

- [E(Tr(‘\/WGA(Osxﬂ)\/W‘Z)) >0,

where O’ € B is a neighbor of 0 € B and x' € B is a neighbor of x € B, both not
lying on the path from 0 to x.

4.21)

and

Proof. As H) is a real operator, the Green’s matrices G)(Lxly )(Z) are symmetric, im-

plying [G/(lxly D)) = G/(lxly )(z), where the overline denotes complex conjugation.

It follows that the imaginary parts %Elx'y) (z) := % (G/(lxly) (z)— [G)(Lxly) (2)]*) are real,

symmetric matrices. More over, Sf{ ) i positive if n = Im z > 0. Since

9T MO — pp (MO (4.23)
for symmetric m x m matrices M, we obtain

0,.:9°%) = ERV @) exp {L Tr(GV(2)922 — [P (2)]* 922)}).  (4.24)
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In particular, 8 ; is a symmetric matrix. Eq. (4.24) implies

By MEFN0, =EQT V) =EQY V(1)) @25

Multiplying (4.9) by I “(x 1) (z) from the left, taking expectations and combining this
with Corollary 3.4, equatlons (4.15), (4.16), (4.25), and the fact that 0T =0, . gives
the first equation in (4.21). To get the first equation in (4.22) we multlply (4.9) by

\sgx 1) (z) from the left, insert the matrix i | )(Z) between the matrices W, +\IIO n
=T
and \Ilo W, _, and take expectations.

The only th1ng left to prove are the inequalities in (4.21) and (4.22). Since

3 flo 1) (z) and I flx 1) (z) are both invertible, both inequalities will follow if we can
show that the matrix G (0, x; z) is not identically zero for almost all potentials.
Let H"7) = O @ g™ then H; = HO7 4 T where

Bk T2 ]) = 5Grodyibens +bynbiabee).  (426)
Using the resolvent identity,
(Hy =2 = (7 =27 = (7 — )70, - 2)7
and the fact that (0 | (H )(Lofxl) —z)~1 | x) = 0, we obtain the matrix equation
G(0,x;2) = —%Gio'x”(o, 0;2)Gx(x1, x; 2).

Iterating this procedure gives

[x]

G2(0.x:2) = M T 6,7 @) Gar. x:2).

Jj=1

For n = Imz > 0 the imaginary parts of these matrix Green’s functions on the
right hand side are positive. Therefore all these matrices are invertible and hence
G.(0, x; z) is invertible and hence not zero (for all random potentials). Ol

5. The proof of Theorem 1.2

From now on the proof is completely analogous to [24]. By (4.19) we obtain

K+1
Dp(2) =D XPE(Tr(1G (0. x: 2)]) = T+ > r(Eaz | Wi Eaz )

xeB r=1

where W) ; = K'V) ; andImz = n > 0.
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Lemma5.1. Let A € R,z = E +inwith E € R andn > 0.
(1) Forall F, F' € K

(FIWazF' )= {(WazF [ F'); .

(ii) 'W/% , Is a compact operator on K.
(iii) We have
4
W)L,zo/l,z = o)k,z - fnw/l,z's}k,z .

@iv) Foranyr = 0,1,2,...we have

«'EA,Z | Wi,zok,z)>k,z > «'EA,Z | W,{:;lok,z»/\,z >0

and
«ol,z | W}’:,zol,z»k,z > «ol,z | Wijz_lok,z»k,z > 0.

Proof. (i) follows from (4.18). (ii) is a consequence of 8B, , M (E )"/[I\'!BA , be-
ing a compact operator on K for n > 0, which can be shown analogously to [28],
Lemma 5.1(i), using (3.17) as well as the the Leibniz rules (2.19) and (3.26).
To prove (iii), note first that by (2.25), (2.26) and (4.11) we have
0.:=-2001+1®3) 78;.6F,

— (_2)2mn—1(j;'8n—la ® j;'sn + j;'sn ® ?Sn—la) :81,28{2

= (2" N FF Y@ FETIH1® + 3 1By 6K,

= 2T[@+ +93-)81:85.]

(5.1

Using (4.23) leads to
=204 + 9y (¢! TETED0E 0 (92 — 9O2))
= d (e ME NPT (3 (22 — pO2))),
which combined with (5.1) gives
0,.=—2T[d+ + 3—)3A,z§fz] =Wy .05+ ZW .

The second inequalities in (5.1) and (5.1) follow from (4.21) and (4.22). Us-
ing (5.1), we have

(Eaz | Wit 0000, = (Eaz | Wi 0020, — B (Ercz | Wi Ex ),
< «'EA,Z | Wi,zok,z)>x,z’
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since (& | W 1€) 2) ;.. > 0by (4.19). Similarly,

Z
(012 | Wi 00200 = (Oaz | Wi 002)a. — B(0az | Wit Ea2)a,
< «ok,z | Wi,zok,z)>x,z’
since (0 | Wl{:lg“))x,z > 0 by (4.21). Thus (iv) is proven. O

This lemmais just the generalization of Lemma4.1 in [24] to the Bethe strip. Thus,
from this point on we can use the exact same arguments as in [24], Lemmata 4.2—-4.4,
to finally obtain

3K(K + 1)
e Ce e

n K2(K +1) (05,2 1022032 — Z(Erz 1022)5.)7
64773 «EA,Z | 0A,z>>k,z ,

forA e R,z=FE +inwith E € Randn > 0.
In order to do perturbation theory we have to compute some of the expressions

for A = 0 and n = O first. For an energy E € [4 g we obtain from [28], eq. (3.19)
and eq. (4.7), the limit as n |, 0 of & £ 4i, (point wise and in K), given by

. K +1
JA(E +in) > «'EA,Z | ok,z»x,z +

(5.2)

T (A @2~ App©2
gO,E((p$2,(p92) —e 1 Tr( EPYL EQ= )7

where A g is the matrix

Ap = 52 (E—A) —iVK — (E — 4)?).
Here we identify numbers with multiples of the unit 7 xm matrix. Notethat £ € I4 g
is equivalentto —v/K < E— A < +/K in the sense of matrices, and for such energies
we get

/K — —A4)2
B0 = 204 + )0 5 = 25 1(<E A tor

Thus
(&0.2 | E0.£)0.£ = E(Tr(|Go(0,0: E)[?))
_ 2 WE— A2y s MK
=Tr4K[(K + 1)"—4(E — A)°]) > K—12°
and we get
(0.2 | 00.E)0.E (5.3)
=Tr([8vK — (E — A)2][(K + 1)2 — 4(E — A’ > 0, '
and
(60, | 00,E)0,E (5.4)

= Tr([16(K — (E — A)][K(K + 1)* —4(E — 4)*)] ) > 0.
We can finally prove Theorem 1.2.
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Proof of Theorem 1.2. We only need to prove (1.2). Recall that the maps (4, E, ) —
ErE+in € Kooy A, E,n) > &) Evin € Kand (A, E,n) > 0 g1y € K are
continuous on E, which by construction is an open neighborhood of {(0, E,0): E €
14,k } in RxRx[0, 00). Using (3.26) and Dominated Convergence one obtains that the
map (A, E,n) € RxRx[0,00) = B, E+in € B(K) is continuous with respect to the
strong operator topology. By Proposition 3.5 we conclude that the map (A, E, ) €
E — BA,E-FinM(S,{{,E:_i,,)aA,EHn € Kis continuous. Thus, it follows from (4.16),
the definition of {- | -), ,, that the real valued maps (cf Lemma 4.4) (A, E, ) —
(&r,E+in | Or,E+in)a,E4in and (A, E,n) — (Or,E+in | 01,E+in) 2, £4iy have
continuous extensions to E. Moreover, by (5.3) and (5.4) these extensions satisfy

(Er,E+in | 02 E+inda E+in >0 and (03 E+in | Or E+in)a.g4in > 0

for (A, E, n) in some open neighborhood of { (0, £,0) : E € I4,x}in RxRx]0, 00).
Eq. (1.2) now follows from (5.2). O
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