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Ballistic behavior for random Schrödinger operators
on the Bethe strip

Abel Klein1and Christian Sadel

Abstract. The Bethe strip of width m is the Cartesian product B � f1; : : : ;mg, where B is
the Bethe lattice (Cayley tree). We consider Anderson-like Hamiltonians H� D 1

2
�˝ 1C

1˝ AC�V on a Bethe strip with connectivityK � 2, whereA is anm�m symmetric matrix,
V is a random matrix potential, and � is the disorder parameter. Under certain conditions on
A andK, for which we previously proved the existence of absolutely continuous spectrum for
small �, we now obtain ballistic behavior for the spreading of wave packets evolving under
H� for small �.
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1. Introduction

The Bethe lattice (or Cayley tree) B is an infinite connected graph with no closed
loops where each vertex hasKC 1 neighbors. K 2 N is called the connectivity of B.
The Bethe strip of width m is the Cartesian product B � � , where � D f1; : : : ; mg.
The distance between two sites x and y of B, denoted by d.x; y/, is equal to the
length of the shortest path connecting x and y in B. The `2 space of functions on the

1Abel Klein was supported in part by the NSF under grant DMS-1001509.
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Bethe strip, `2.B�� /, can be identified with the tensor product `2.B/˝Cm, with the
direct sum

L
x2B Cm, and with `2.B;Cm/ D fu W B 7! Cm W P

x2B ku.x/k2 < 1g,
the space of Cm-valued `2 functions on B, i.e.

`2.B � � / Š `2.B/˝ Cm Š
M
x2B

Cm Š `2.B;Cm/ :

As in [28] we consider the family of random Hamiltonians on `2.B � � / given by

H� D 1
2
�˝ 1 C 1˝ A C �V : (1.1)

Here � denotes the centered Laplacian on `2.B/, which has spectrum �.�/ D
Œ�2pK; 2pK� (see, e.g., [1]). We use 1

2
� in the definition of H� to simplify some

formulas. A 2 Sym.m/ denotes the “free vertical operator” on the Bethe strip, where
Sym.m/ Š R

1
2

m.mC1/ is the set of real symmetric m�m matrices. V is the random
matrix-potential given by V D L

x2B V.x/ on
L

x2B Cm, where fV.x/gx2B are
independent identically distributed Sym.m/-valued random variables with common
probability distribution �. The coefficient � is a real parameter called the disorder.
In particular, for u 2 `2.B;Cm/ we have

.H�u/.x/ D 1
2

X
y2B

d.x;y/D1

u.y/C Au.x/C �V.x/u.x/ for all x 2 B : (1.2)

An important special case of this model is theAnderson model on the product graph
B � G, where G is a finite graph with m labeled vertices. If AG is the adjacency
matrix of the graph G, i.e. .AG/k;` denotes the number of edges between k 2 G and
` 2 G, then�˝ 1 C 1˝AG is the adjacency operator on the product graph B � G.
If in (1.1) we take A D 1

2
AG and � supported by the diagonal matrices, with the

diagonal entries being independent identically distributed, then H� is the Anderson
model on the product graph B � G. Another special case is the Wegner m-orbital
model on the Bethe lattice, obtained by settingA D 0 and letting � be the probability
distribution of the Gaussian Orthogonal Ensemble (GOE). This model was introduced
by Wegner [36] on the lattice Zd , where he studied the limit m ! 1.

There is a widely accepted picture for the Anderson model on the lattice Zd , for
d D 1 and d D 2 and any � ¤ 0, and for d � 3 and large �, there is only exponential
localization, i.e. pure point spectrum with exponentially decaying eigenfunctions. For
d � 3 and small � ¤ 0, in addition to exponential localization at the spectral edges,
the existence of extended states, i.e. absolutely continuous spectrum, is expected but
not yet proven. By now, localization in dimension d D 1, [17], [31], and [8], in
quasi-one dimensional models (the strip), [32] and [27], and in any dimension at the
spectral edges or at high disorder (i.e. large �), [16], [15], [9], [34], [8], [10], [21],
[3], [2], [35], and [30], is very well understood. Localization in dimension d D 2 at
low disorder as well as absolutely continuous spectrum in dimensions d � 3 at small
disorder remain open problems.
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Localization and delocalization can also be observed by examining the quantum
mechanical dynamical behavior, as seen in the spreading of wave packets under the
time evolution. Localization corresponds to effective non-spreading of wave packets
(dynamical localization). If d � 3, diffusive behavior for the spreading of wave
packets is expected for small �. This is analogous to the random walk in dimension
d � 3, which is diffusive.

So far, the existence of absolutely continuous spectrum has only been proven for
theAnderson model on the Bethe lattice, the Bethe strip and similar tree like structures.
The first rigorous proof of absolutely continuous spectrum for the Anderson model in
the Bethe lattice was obtained by Klein, [22], [25], and [23], using a supersymmetric
transfer matrix method. These methods were extended to the Bethe strip in our
previous work [28], where we proved the existence of absolutely continuous spectrum
in the Bethe strip.

In addition, Klein showed that the supersymmetric method also yielded ballistic
behavior in the Bethe lattice [24]. (Note that the random walk on the Bethe lattice is
ballistic.) In this paper we extend these methods to the Bethe strip, proving ballistic
behavior for the Anderson model in the Bethe strip.

Different techniques to obtain absolutely continuous spectrum for the Anderson
model on the Bethe lattice and similar tree like structures have been developed in [4],
[13], [12], [18], [19], [14], and [5]. The hyperbolic geometry methods of [13] and
[18] were extended to the Anderson model on a Bethe strip of connectivity K D 2

and width m D 2 in [12]. However, up to now the results of [24] remained the only
proof of dynamical delocalization for the Anderson model.

Our proof of absolutely continuous spectrum for theAnderson model on the Bethe
strip [28] used the approach of [25] combined with the supersymmetric formalism
for the strip developed in [29]. But although the present paper uses the approach
of [24], which relied on the methods and results of [25], it does not suffice for
us to rely on the methods of [28]. The approach is based on a supersymmetric
transfer matrix formalism for the Green’s function. In [24] this lead to the study of
certain operators on an L2-space. On the Bethe strip this is much more complicated,
and requires an augmentation of the supersymmetric formalism, with the derivation
of new supersymmetric identities and the introduction of new Hilbert and Banach
spaces of supersymmetric functions. This is done in Section 3; the key results being
Theorem 3.3 and Corollary 3.4. For the Bethe lattice, i.e. m D 1, the Grassmann
variables can be integrated out explicitly, and the Hilbert space H (see (3.18)) reduces
to a subspace of L2.R4/. In this case, the matrix operator T (see (3.7)), a unitary
operator on H made out of differential operators and the Fourier transform, reduces
to the Fourier transform. (The differential operators do not appear when m D 1; this
can been seen from the definition (3.7) and the relation (2.26), where there are no
derivatives on the right hand side when m D n D 1.)

In this article, as in [28], we always make the following assumptions.
Assumptions

(I) K � 2, so B is not the line R.
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(II) The common probability distribution � of the Sym.m/-valued random variables
fV.x/gx2B has finite (mixed) moments of all orders. In particular, the charac-
teristic function of �,

h.M/ WD
Z

Sym.m/

e�i Tr.M V /d�.V / for M 2 Sym.m/;

is a C1 function on Sym.m/ with bounded derivatives.

(III) Let amin WD a1 � a2 � : : : � am DW amax be the eigenvalues of the “free
vertical operator” A, and set

IA;K D
n\

iD1

.�p
K C ai ;

p
K C ai / D .�p

K C amax;
p
K C amin/: (1.3)

The interval IA;K is not empty, i.e.

amax � amin < 2
p
K: (1.4)

For a fixed free vertical operator A one can always obtain (1.4) by taking K
large enough. To understand the meaning of condition (III), note that A can be
diagonalized by a unitary transformation and the unperturbed operator H0 can be
rewritten as a direct sum of shifted Laplacians on the Bethe lattice (see [28]). It
follows that the spectrum ofH0 is the union of the spectra of these shifted Laplacians,
i.e. �.H0/ D Sn

iD1Œ�
p
K C ai ;

p
K C ai �. The interval IA;K is simply the interior

of the intersection of the spectra of these shifted Laplacians, and condition (III) says
that they all overlap.

Let us denote the standard basis elements of `2.B;Cm/ by j x; ki for x 2 B and
k 2 f1; : : : ; mg, i.e. u Dj x; ki 2 `2.B;Cm/ is the function u.y/ D ıx;yek where ek

is the k-th standard basis vector of Cm. A measure for the spread of a wave packet
localized at .x; j / 2 B � � is given by the square mean displacement

r2
�;x;j .t / WD

X
y2B

mX
kD1

Œd..x; j /; .y; k//�2jhy; k j e�itH� j x; j ij2;

where d..x; j /; .y; k// denotes the distance between the sites .x; j / and .y; k/. For
anAnderson model on a product graph B�G this distance would bed..x; j /; .y; k// D
d.x; y/C d.j; k/ where d.j; k/ is the distance between the vertices j and k on the
graph G. For a Wegner orbital model one would choose d..x; j /; .y; k// D d.x; y/.
In any case, we will use d.x; y/ as a lower bound. Ballistic motion means r2

�;x;j
.t / �

C t2, whereas diffusive behavior means r2
�;x;j

.t / � C t for large t . One always has
ballistic motion as an upper bound,

r2
�;x;j .t / � C t2;
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for some constant C not depending on x and j .
In order to show ballistic motion at least for some j x; j i we will consider the

sum over j at some arbitrary site of B which we will call the origin and denote by 0.
Furthermore we set jxj D d.0; x/ (which is not a norm) for x 2 B and define

r2
�.t / WD

X
x2B

mX
j;kD1

jxj2jhx; k j e�itH� j 0; j ij2 :

Note that
mX

j D1

r2
�;0;j .t / � r2

�.t / : (1.5)

Theorem 1.1. For sufficiently small � we have

lim inf
t!1

1

t3

Z t

0

E.r2
�.s// ds > 0 : (1.6)

In particular, this implies

lim sup
t!1

E
� r2

�
.t /

t2

�
> 0 and P

�
lim sup

t!1
r2

�
.t /

t2
> 0

�
> 0; (1.7)

and hence it follows from ergodicity that

P
�

lim sup
t!1

r2
�;x;j

.t /

t2
> 0 for some .x; j / 2 B � �

�
D 1 : (1.8)

We only need to prove (1.6), since (1.7) and (1.8) are consequences of (1.6) and
(1.5) as shown in [24]. To prove (1.6), we start by reformulating the problem in terms
of the matrix valued Green’s function.

Given x; y 2 B, z D E C i� with E 2 R and � > 0, the matrix valued Green’s
function G�.x; yI z/ is the m �m matrix with entries

ŒG�.x; yI z/�j;k WD hx; j j .H� � z/�1 j y; ki :
Using the spectral theorem and Plancherel’s theorem, as in [24], Lemma A.2, we
obtain Z 1

0

e��tE.r2
�.t // dt

D 1

2�

Z 1

�1

n X
x2B

jxj2E.Tr.jG�.0; xIE C i �
2
/j2//

o
dE:

(1.9)

Similarly to [24], eq. (2.3), we also have
Z 1

�1

n X
x2B

jxj2E.Tr.jG�.0; xIE C i �
2
/j2//

o
dE � 4�m2

�3
k1

2
�k2: (1.10)



414 A. Klein and Ch. Sadel

In view of (1.9) and (1.10), Theorem 1.1 is a consequence of the following theorem
using the Tauberian Theorem given in [33], Theorem 10.3. (Note that the proof is
also valid for lim inf.)

Theorem 1.2. For sufficiently small � we have

lim inf
�#0

�3

Z 1

�1

n X
x2B

jxj2E.Tr.jG� .0; xIE C i�/j2//
o
dE > 0: (1.11)

More precisely, there exists�0 > 0 , such that for any�with j�j < �0 we can find ener-
gies E˙

�
2 IA;K D .�p

K C amax;
p
K C amin/, with lim�!0E

�
�

D �p
K C amax

and lim�!0E
C
�

D Cp
K C amin, such that H� has purely absolutely continuous

spectrum in the interval I� D .E�
�
; EC

�
/, and

lim inf
�#0

�3
X
x2B

jxj2E.jG�.0; xIE C i�/j2/ > 0 for all E 2 I�:

Eq. (1.11) follows immediately from (1.2) by Fatou’s lemma. The fact that we
find purely absolutely continuous spectrum for small � was proved in [28], so we
only have to prove (1.2).

The paper is organized as follows. In Section 2 we introduce the basic supersym-
metric formalism, reviewing the definitions and notation we used in [28]. Section 3
contains the new supersymmetric identities required for this work; see Theorem 3.3
and Corollary 3.4. In Section 4 we use these identities to rewrite the trace of the av-
eraged matrix valued Green’s function, E.Tr.jG�.0; xI z/j2//, in a convenient form;
see Proposition 4.3. We then finish the proof of Theorem 1.2 in Section 5.

2. Supersymmetric methods

The supersymmetric formalism described in this section can be found in more detail
in [6], [11], [20], [29], [26], and [28]. We review the definitions and notation (we
mostly use the same notation as in [28]) for the reader’s convenience.

2.1. Basic definitions. By f k;`; N k;`I k D 1; : : : ; m; ` D 1; : : : ; ng, wherem; n 2
N, we denote 2mn independent Grassmann variables. They all anti-commute and
are the generators of a Grassmann algebra isomorphic to ƒ2mn.R/, given by the
free algebra over R generated by these symbols modulo the ideal generated by the
anti-commutators

 i;j k;` C  k;` i;j ; N i;j
N k;` C N k;`

N i;j ; N i;j k;` C  k;`
N i;j ;

where i; k D 1; : : : ; m and j; ` D 1; : : : ; n. This finite dimensional algebra will
be denoted by ƒ.‰/, where ‰ D . N k;`;  k;`/k;`. The subset of one forms (lin-
ear combinations of the generators) is ƒ1.‰/. The complexification of ƒ.‰/ is
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ƒC.‰/ D C ˝R ƒ.‰/. Sometimes we will also add and multiply expressions from
different Grassmann algebras ƒ.‰/ and ƒ.‰ 0/; these are to be understood as sums
and products in the Grassmann algebra ƒ.‰ ;‰ 0/, generated by the entries of ‰ and
‰ 0 as independent Grassmann variables.

A supervariable is an element of R2 �ƒ1.‰/ �ƒ1.‰/. We introduce variables
'k;` 2 R2 and consider the supervariables 'k;` D .'k;`; N k;`;  k;`/. The collection
ˆ D .'k;`/k;` will be called an m � n supermatrix. More generally, an m � n

matrix Q̂ D . Q'k;`;
NQ k;`; Q k;`/k;` 2 ŒR2 � ƒ1.‰/ � ƒ1.‰/�m�n will be called a

supermatrix if all the appearing one forms Q k;`;
Q k;`, k D 1; 2 : : : ; m and ` D

1; 2 : : : ; n, are linearly independent. Supermatrices .ˆi /i are said to be independent
if ˆi 2 Lm;n.‰i / for all i , and all the entries of the different ‰i are independent
Grassmann variables.

The collection of all supermatrices is a dense open subset of the vector space
ŒR2 �ƒ1.‰/ �ƒ1.‰/�m�n and will be denoted by Lm;n.‰/, or just Lm;n. Linear
maps defined on Lm;n.‰/ have to be understood as restrictions of linear maps defined
on ŒR2 �ƒ1.‰/ �ƒ1.‰/�m�n.

We also consider matrices ' D .'k;`/k;` with entries in R2. Writing each entry
'k;` as a row vector, ' may be considered asm�2nmatrix with real entries. Similarly,
one may consider ‰ asm�2nmatrix with entries inƒ1.‰/. With all these notations
one may write ˆ D .';‰/, splitting a supermatrix into its real and Grassmann-
variables parts.

For supervariables '1 D .'1; N 1;  1/ and '2 D .'2; N 2;  2/ we define

'1 � '2 WD '1 � '2 C 1
2
. N 1 2 C N 2 1/ : (2.1)

For a supermatrix ˆ, ˆk D .'k;`/`D1 :::;n denotes its k-th row vector. Given two
supermatrices ˆ and ˆ0, we set

ˆ0
j �ˆk WD

nX
`D1

'0
j;` � 'k;` for j; k D 1; 2; : : : ; m; (2.2)

ˆ0 � ˆ WD
mX

kD1

ˆ0
k �ˆk D

mX
kD1

nX
`D1

'0
k;` � 'k;` : (2.3)

Given a supermatrix ˆ D .';‰/, where ' 2 Rm�2n and ‰ 2 ƒ1.‰/m�2n, we
introduce the m �m matrix ˆˇ2 with entries in ƒ.‰/ by

.ˆˇ2/j;k WD ĵ �ˆk D
nX

`D1

˚
'j;` � 'k;` C 1

2
. N j;` k;` C N k;` j;`/

�

D
nX

`D1

�
'j;` � 'k;` C Œ N j;`  j;`�

�
0 1=2

�1=2 0

� � N k;`

 k;`

��
:

(2.4)

It follows that

ˆˇ2 D 'ˇ2 C ‰ˇ2 ; with 'ˇ2 WD ''> and ‰ˇ2 WD ‰J‰>; (2.5)
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where J is the 2n� 2nmatrix consisting of n blocks
h

0 1=2
�1=2 0

i
along the diagonal.

Note that ‡> will always denote the transpose of the matrix ‡ , whose entries may
be elements of a Grassmann algebra.

Given a complex m � m matrix B , supermatrices ˆ; ˆ0, and matrices '0;' 2
Rm�2n, we define

ˆ0 � Bˆ WD
mX

j;kD1

nX
`D1

Bj;k'
0
j;` � 'k;` D

mX
j;kD1

Bj;kˆ
0
j �ˆk 2 ƒC.‰/; (2.6)

'0 � B' WD
nX

j;kD1

nX
`D1

Bj;k'
0
j;` � 'k;` D Tr..'0/>B'/ 2 C: (2.7)

Note that ˆ � Bˆ D Tr.Bˆˇ2/.
These definitions may be memorized as follows: If n D 1, ˆ is a column vector

indexed by k, Bˆ is the matrix vector product, and ˆ0 � Bˆ is the dot product of
vectors of supervariables. For general n the supermatrix ˆ has columns indexed by
` D 1; 2; : : : ; n, “the n replicas”, and in all definitions of dot products there is an
additional sum over this index.

A complex superfunction with respect toƒ.‰/ is a functionF W Rm�2n ! ƒC.‰/.
Let ˇi 2 ƒ.‰/ for i 2 f1; : : : ; 22mng be a basis forƒ.‰/ over R. Each ˇi is a poly-
nomial in the entries of ‰ (we required the entries of ‰ to be independent) and F is
of the form

F.'/ D
22mnX
iD1

Fi .'/ ˇi ; where Fi W Rm�2n ! C: (2.8)

We interpret this as a function F.ˆ/ where ˆ D .';‰/. In this sense the map
ˆ 7! Tr.Bˆˇ2/, where B is a complex m � m matrix, is a superfunction. Sim-
ilarly, we can define superfunctions F.ˆ1; : : : ;ˆk/ of k independent supermatri-
ces using the Grassmann algebra ƒ..‰j /j 2f1;:::;kg/. We write F 2 �.Lm;n/, or
F 2 C1.Lm;n/, if for all i we have Fi 2 �.Rm�2n/, the Schwartz space, or
Fi 2 C1.Rm�2n/, respectively.

We define the integral over the Grassmann variables in the following way. For
a fixed pair k; ` we write F D F.ˆ/ as F D F

k;`
0 C F

k;`
1

N k;` C F
k;`
2  k;` C

F
k;`
3

N k;` k;` where the F k;`
i are superfunctions not depending on N k;` and  k;`.

Then Z
F d N k;` d k;` WD �F k;`

3 :

If all functionsFi in the expansion (2.8) are inL1.Rm�2n/, we say thatF 2 L1.Lm;n/

and define the supersymmetric integral by
Z
F.ˆ/ Dˆ D 1

�mn

Z
F.ˆ/

mY
kD1

nY
`D1

d2'k;` d N k;` d k;` : (2.9)
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2.2. Differential operators and supersymmetric functions. We now recall the no-
tion of smooth supersymmetric functions and introduce certain differential operators;
we refer to [28] for details. We will use the notation of [28] except for some small
sign deviations that will be explicitly pointed out.

We start by introducing convenient notation for Grassmann monomials. Recall
� D f1; : : : ; mg; we will denote the set of subsets of � by P.� /. Given . Na; a/ 2
.P.� //2 D P.� / � P.� / and Na D f Nk1; : : : ; Nkcg; a D fk1; : : : ; kdg, both ordered
(i.e. Nki < Nkj and ki < kj if i < j ), we set

‰ Na;a;` WD
� j NajY

j D1

N Nkj ;`

�� jajY
j D1

 kj ;`

�
; (2.10)

using the conventions
Qc

j D1  j D  1 2 � � �  c for non-commutative products andQ0
j D1  j D 1. In particular, ‰;;;;` D 1.
An important subset of .P.� //2 is P , the set of pairs . Na; a/ of subsets of � with

the same cardinality, i.e.

P D f. Na; a/ W Na; a � � ; j Naj D jajg:
More generally, for each k 2 Œ�m;m�\ Z we define

Pk WD f. Na; a/ W Na; a � � ; j Naj D jaj C kg;
so, in particular, P D P0. (A note of caution: we used Pm for P D P0 in [28].)

For . Na; a/ 2 P we set

‰
.`/
Na;a WD

jajY
j D1

. N Nkj ;`
 kj ;`/; with the convention ‰.`/

;;; WD 1: (2.11)

Note that these Grassmann monomials are slightly different from the ones we defined
in (2.10). In fact, counting transpositions we get

‰ Na;a;` D .�1/ jaj.jaj�1/
2 ‰

.`/
Na;a for . Na; a/ 2 P : (2.12)

Given a pair of n-tuples of subsets of � , . Na; a/ 2 .P.� //n � .P.� //n with Na D
. Na1; : : : ; Nan/ and a D .a1; : : : ; an/, we set

‰ Na;a WD
nY

`D1

‰ Na`;a`;` : (2.13)

An important subset of .P.� //n � .P.� //n is given by the set

P n WD f. Na; a/ 2 .P.� //n � .P.� //n W . Na`; a`/ 2 P for ` D 1; : : : ; ng:
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This set is canonically isomorphic to the Cartesian product .P /�n, justifying the
notation. However, we will use n as an upper index to indicate that we deal with
n-tuples of sets, and, given k 2 Œ�m;m�\ Z, set

P n
k WD f. Na; a/ 2 .P.� //n � .P.� //n W

. Na1; a1/ 2 Pk; . Na`; a`/ 2 P for ` D 2; : : : ; ng:

If . Na; a/ 2 P n
k

the sets Na` and a` have the same cardinality except for possibly ` D 1,
where j Na1j D ja1j C k. Note that P n

0 D P n. In view of (2.12), for a 2 .P.� //n we
define

sgn.a/ D
nY

`D1

.�1/ ja`j.ja`j�1/

2 ;

getting
nY

`D1

‰
.`/
Na`;a`

D sgn.a/‰ Na;a for . Na; a/ 2 P n: (2.14)

(Note: the left hand side of (2.14) corresponds to the definition of ‰ Na;a for . Na; a/ 2
P n in [28], eq. (2.25).)

The counterpart to these Grassmann monomials are differential operators acting
on functions defined on SymC.m/, the space of non-negative, real, symmetricm�m
matrices. From now on we assume n � m

2
, so that the map ' 2 Rm�2n 7! 'ˇ2 D

''t 2 SymC.m/ is surjective.
LetC1.SymC.m// denote the set of continuous functions f on SymC.m/which

are C1 on the interior of SymC.m/. We let @j;k denote the partial derivative with
respect to the j; k-entry of the symmetric matrix, i.e. @j;kf .M/ D @

@Mk;j
f .M/ for

f 2 C1.SymC.m//. Note that @j;k D @k;j . We also set Q@j;k D 1
2
@j;k for j ¤ k

and Q@j;j D @j;j .
Given . Na; a/ 2 P with a 6D ;, Na D f Nk1; : : : ; Nkcg and a D fk1; : : : ; kcg, both

ordered, we define the matrix-differential operator

@ Na;a WD

0
B@

Q@ Nk1;k1
� � � Q@ Nk1;kc

:::
: : :

:::
Q@ Nkc ;k1

� � � Q@ Nkc ;kc

1
CA :

Furthermore we set D;;; to be the identity operator and

D Na;a WD det.@ Na;a/ if a 6D ;:

Note that @ Na;a D @>
a; Na, and henceD Na;a D Da; Na. In the special case when Na D a D � ,

we set
@ WD @�;� and ı WD det.@/ D D�;� :
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Furthermore, for . Na; a/ 2 P we set . Nac; ac/ WD .� n Na ; � n a/ 2 P . Note that the
.j; k/-entry of @ is @fj g;fkg D Dfj g;fkg. The cofactor is given by .�1/j CkDfj gc;fkgc .
The transpose of the cofactor matrix of @ will be denoted by =@, i.e.

=@ WD ..�1/j CkDfkgc;fj gc/j;k2�

D

0
BBB@

Df1gc;f1gc �Df2gc;f1gc : : : .�1/mC1Dfmgc;f1gc

�Df1gc;f2gc Df2gc;f2gc : : : .�1/mDfmgc;f2gc

:::
:::

: : :
:::

.�1/mC1Df1gc;fmgc .�1/mDf2gc;fmgc : : : Dfmgc;fmgc

1
CCCA :

With these definitions we have

@ =@ D =@ @ D det.@/1 D ı WD

0
B@
ı 0

: : :

0 ı

1
CA ; (2.15)

where 1 D 1m denotes the unit m�m matrix and ı is a diagonalm�mmatrix with
ı on all diagonal entries. Furthermore, for . Na; a/ 2 P n we set

D Na;a WD
nY

`D1

D Na`;a`
: (2.16)

We haveD Na;a D Da; Na. For f 2 C1.SymC.m// and det.'ˇ2/ ¤ 0, a formal Taylor
expansion yields (cf [28], eq. (2.26))

f .ˆˇ2/ D
X

. Na;a/ 2 P n

D Na;af .'
ˇ2/ sgn.a/‰ Na;a : (2.17)

Let C1
n .SymC.m// denote the set of all functions f 2 C1.SymC.m// where

' 7! D Na;af .'
ˇ2/, defined on the dense open set where det.'ˇ2/ ¤ 0, extends

(uniquely) to a C1 function on Rm�2n for all . Na; a/ 2 P n.

Definition 2.1. Let n � m
2

.

(i) The set SC1.Lm;n/ of smooth supersymmetric functions is defined as the set
of all smooth superfunctions F.ˆ/ such that F.ˆ/ D f .ˆˇ2/ for some f 2
C1

n .SymC.m//.
(ii) The set S�.Lm;n/ WD �.Lm;n/ \ SC1.Lm;n/ denotes the supersymmetric

Schwartz functions.

This definition is justified by [28], Proposition 2.3, which is based on [29], Corol-
lary 2.9. SC1.Lm;n/ can be identified with C1

n .SymC.m//. Furthermore, if
we define the subset �n.SymC.m// of all functions f 2 C1

n .SymC.m// where
' 7! D Na;af .'

ˇ2/ is a Schwartz function, then S�.Lm;n/ can be identified with
�n.SymC.m//.
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Finally let us define some algebraic operations on .P.� //n which will give some
Leibniz type formulas and will be useful later. Let a; b 2 .P.� //n. If a` \b` D ; for
each ` D 1; : : : ; n, then we say a and b are addable and define c D aCb 2 .P.� //n
by c` D a` [ b`. Similarly, if b` � a` for all `, then we define c D a � b by
c` D a` n b`. If a and b are addable, then .a C b/ � b D a. Furthermore we
denote by � the n-tuple where each entry is the full set � , � D .� ; � ; : : : ; � /.
Moreover, we define ac D � � a. We say that . Na; a/ and . Nb; b/ 2 P.� /n � P.� /n

are addable if Na C Nb and a C b are defined by the notion above. In this case we define
sgn. Na; a; Nb; b/ 2 f�1; 1g by

‰ Na;a‰ Nb;b D sgn. Na; a; Nb; b/ ‰ NaC Nb;aCb : (2.18)

(Note of caution: this definition of sgn. Na; a; Nb; b/ differs from [28], eq. (2.27), since
our definition of‰ Na;a in (2.13) is different from [28], eq. (2.25).) If . Na; a/ 2 P n

j and

. Nb; b/ 2 P n
k

are addable, then . Na C a; Nb C b/ 2 P n
j Ck

and . Nac ; ac/; .a; Na/ 2 P n�j .
Since the product of two supersymmetric functions is supersymmetric, for all

f; g 2 C1
n .SymC.m// and all . Na; a/ 2 P n we have

D Na;a.fg/ D
X

. Nb;b/;. Nb0;b0/2P n

NbC Nb0D Na;bCb0Da

sgn.b/sgn.b0/sgn.a/

sgn. Nb; b; Nb0; b0/
D Nb;bgD Nb0;b0f: (2.19)

2.3. The supersymmetric Fourier transform. We recall the definition of the su-
persymmetric Fourier transform. Given f 2 S�n.SymC.m// we define Tf 2
S�n.SymC.m// by

.Tf /..ˆ0/ˇ2/ D
Z
e{ˆ0�ˆf .ˆˇ2/Dˆ; (2.20)

where we use the fact that the right hand side defines a supersymmetric function [29].
It follows that [28], eq. (2.37)

D Na;a.Tf / D 2mn

4jaj sgn.a; Na/F .Dac; Nac f / for all . Na; a/ 2 P n : (2.21)

Here F denotes the Fourier transform on Rm�2n; we abuse the notation by letting Ff

denote the function in �n.SymC.m// such that .F f /.'ˇ2/ is the Fourier transform
of the function F.'/ D f .'ˇ2/. In addition,

sgn. Na; a/ WD
Z

sgn.a/‰ Na;asgn.ac/‰ Nac ;ac D‰

D .�1/mn sgn.a/sgn.ac/sgn.� /

sgn. Na; a; Nac; ac/

(2.22)

for . Na; a/ 2 P n, where D‰ D Q
k;` d

N k;` d k;` . By (2.14) this is the same
definition as [28], eq. (2.32); the second equality follows from (2.18) andZ

‰� ;�D‰ D .�1/mnsgn.� / : (2.23)
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Moreover we have, as in [28], eq. (2.39),

T 2f D T Tf D f for all f 2 �n.SymC.m//: (2.24)

In the special cases when . Na; a/ D .� ;� / and . Na; a/ D .� c ;� c/, (2.21) yields

ınTf D .�2/�mnF f and Tf D .�2/mnF ınf : (2.25)

In particular, we have
F D 4mnınF ın:

An important special case of (2.21) is the following. For k 2 � let

ŒŒk�� WD .fkg; ;; : : : ; ;/ 2 P.� /n ;

then ‰ŒŒj ��;ŒŒk�� D N j;1 k;1, DŒŒj ��;ŒŒk�� D Dfj g;fkg and DŒŒj ��c ;ŒŒk��c D Dfkgc;fj gcın�1.
Using the notation of (2.11) we get

N j;1 k;1‰
.1/

fj gc;fkgc D .�1/j Ck‰
.1/

�;�

since one needs j �1 transpositions to bring the N ’s to order and k�1 transpositions
to bring the  ’s to order. In view of (2.14) this implies

sgn.ŒŒj ��/‰ŒŒj ��;ŒŒk�� sgn.ŒŒj ��c/‰ŒŒj ��c ;ŒŒk��c D .�1/j Cksgn.� /‰� ;� ;

which by (2.22) and (2.23) yields

sgn.ŒŒj ��; ŒŒk��/ D
Z
.�1/j Ck sgn.� /‰� ;�D‰ D .�1/mn.�1/j Ck :

Thus, using Na D ŒŒj �� and a D ŒŒk�� in (2.21) gives

Dfj g;fkg.Tf / D 2mn�2.�1/mn.�1/j CkF .ın�1Dfkgc;fj gcf /:

In particular, given f D .f1; : : : ; fm/
> 2 Œ�n.SymC.m//�m�1, a column vector of

elements of �n.SymC.m//, setting

Tf D .Tf1; : : : ; Tfm/
> and F f D .F f1; : : : ;F fm/

>;

we have
@.Tf / D .�2/mn�2 F .ın�1 =@f / : (2.26)

As in [28], following Campanino and Klein, [7], [20], and [29], we introduce
norms jjj � jjjp on C1

n .SymC.m//, with p 2 Œ1;1�, by

jjjf jjj2p WD
X

. Na;a/2P n

k 2jaj D Na;a f .'
ˇ2/k2

Lp.Rm�2n;d2mn'/
: (2.27)
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We define the Hilbert space H as completion of �n.SymC.m// with respect to the
norm jjj � jjj2. The Banach spaces Hp , p 2 Œ1;1�, are defined by

Hp WD ff 2 H W kf kHp
WD jjjf jjj2 C jjjf jjjp < 1g: (2.28)

We also define the Banach space zH1 as the completion of

zH .0/1 WD ff 2 C1
n .SymC.m// W jjjf jjj1 < 1g

with respect to the norm jjj � jjj1. In view of (2.21) and (2.27), as mentioned in [28],
the supersymmetric Fourier transform T extends to H as a unitary operator.

We also want to consider tensor products. For g.'ˇ2
C ;'ˇ2� / 2 C1

n .SymC.m//˝
C1

n .SymC.m// we define the tensor norms

jjjjgjjjj2p D
X

. Na;a/2P n

. Nb;b/2P n

k2jajCjbjD.C/
Na;a D

.�/
Nb;b
g.'ˇ2

C ;'ˇ2� / k2
Lp.'C;'�/;

where k � kLp.'C;'�/ denotes the p-norm of the Lp space on .Rm�2n2
in the vari-

ables 'C;'� with respect to the Lebesgue measure d2mn'C d2mn'�. D.C/
Na;a , D.�/

Na;a

denote the differential operator D Na;a with respect to 'ˇ2
C and 'ˇ2� respectively. The

Hilbert space tensor product K WD H ˝ H is the completion of �n.SymC.m// ˝
�n.SymC.m// with respect to the norm jjjj � jjjj2. The unitary operator T induces the
unitary transformation

yT WD T ˝ T on K: (2.29)

As in [28] we also define the Banach spaces

Kp D fg 2 K W kgkKp
D jjjjgjjjj2 C jjjjgjjjjp < 1g for 1 � p � 1:

As before, we also define the Banach space zK1 as the completion of

zK.0/1 WD fg 2 C1
n .SymC.m//˝ C1

n .SymC.m// W jjjgjjj1 < 1g
with respect to the norm jjj � jjj1.

Remark 2.2. The spaces H , Hp , zH1, K , Kp , zK1, the supersymmetric Fourier
transform T , etc. all depend on our choice of n � m

2
for a givenm. This dependence

on n (and m) will be generally omitted.

3. More supersymmetric identities

In this section we derive new supersymmetric identities that are crucial for the ex-
tension of the results of [24] to the Bethe strip, going beyond the supersymmetric
formalism used in [28]
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Using the first replica, we define the following Grassmann column vectors

Æx‰ WD . N 1;1; N 2;1; : : : ; N m;1/
>; Å‰ WD . 1;1;  2;1; : : : ;  m;1/

> (3.1)

which correspond to the first and second column vector of ‰ . Even though we only
use the first replica (the second index is always one) for these vectors we do not

add an index 1 to Æx‰ or Å‰. We want to avoid having too many indices later, when
we use a corresponding notation for an indexed family of supermatrices. Given
f D .f1; : : : ; fm/

> 2 Œƒ.‰/�m�1, a column vector of elements of the Grassmann
algebra, we set

Æx‰ � f WD Æx‰
>

f D
mX

kD1

N k;1fk and Å‰ � f WD Å‰>f D
mX

kD1

 k;1fk :

For an m �m matrix F D .Fj;k/j;k2� 2 Œƒ.‰/�m�m the expressions F Æx‰ and F Å‰
will be understood as matrix multiplication.

Remark 3.1. Vectors of elements of the Grassmann algebra ƒ.‰/ and vectors of
functions will always be considered as column vectors in matrix products. In partic-
ular, the sets ƒ.‰/m and Œ�n.SymC.m//�m will be identified with Œƒ.‰/�m�1 and
Œ�n.SymC.m//�m�1, respectively.

Given a D .a1; : : : ; an/ 2 .P.� //n and k � ja1j we let a1k denote the k-th
smallest element of a1. Similarly, Na1k will denote the k-th smallest element of Na1

for Na D . Na1; : : : ; Nan/ 2 .P.� //n. If . Na; a/ 2 P n
1 and k D 1; 2; : : : ; j Na1j, we

have . Na � ŒŒ Na1k��; a/ 2 P n, and for . Na; a/ 2 P n�1 and k D 1; 2; : : : ; ja1j we have
. Na; a � ŒŒa1k��/ 2 P n. Given f D .f1; : : : ; fm/

> 2 Œ�n.SymC.m//�m, we have

Æx‰ � f .ˆˇ2/ D
mX

kD1

N k;1fk.ˆ
ˇ2/

D
mX

kD1

X
. Nb;b/2P n

D Nb;bfk.'
ˇ2/sgn.b/ N k;1‰ Nb;b

D
X

. Na;a/2P n
1

j Na1jX
kD1

D Na�ŒŒ Na1k��;a f Na1k
.'ˇ2/ sgn.a/.�1/k�1‰ Na;a :

(3.2)

The change in the sum is done by the relations a D b; Na � ŒŒ Na1k�� D Nb. Note that
for k 2 Nb1 we have N k;1‰ Nb;b D 0. Similarly, we obtain

Å‰�f .ˆˇ2/ D
X

. Na;a/2P n
�1

ja1jX
kD1

D Na;a�ŒŒa1k�� fa1k
.'ˇ2/sgn. Na/.�1/k�1Cj Na1j‰ Na;a : (3.3)

In order to obtain the super Fourier transform of these expression we will expand
eiˆ�ˆ0

in the Grassmann variables.
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Lemma 3.2. We have

eiˆ�ˆ0 D ei'�'0
X

Na;a2P.�/n

˚
. i

2
/j. Na;a/j sgn.a/

sgn. Na/
.�1/jajs. Na; a/‰0Na;a‰a; Na

�
; (3.4)

where

jaj WD
nX

`D1

ja`j for a 2 P.� /n; j. Na; a/j WD j Naj C jaj for Na; a 2 P.� /n;

and

s. Na; a/ WD
Y

1�`<`0�n

.�1/.j Na`jCja`j/�.j Na`0 jCja`0 j/:

Proof. Recalling that for non-commutative products we always use the convention
that the indices are ordered, increasing from left to right, we have

eiˆ�ˆ0 D ei'�'0
mY

kD1

nY
`D1

Œ.1C i
2

N k;` 
0
k;`/.1C i

2
N 0

k;` k;`/�

D ei'�'0
X

Na;a2P.�/n

n
. i

2
/j. Na;a/j

nY
`D1

h Y
k2 Na`

N 0
k;` k;`

Y
j 2a`

N j;` 
0
j;`

io

D ei'�'0
X

Na;a2P.�/n

n
. i

2
/j. Na;a/j sgn.a/

sgn. Na/

nY
`D1

h Y
k2 Na`

N 0
k;`

Y
k2 Na`

 k;`

Y
j 2a`

N j;`

Y
j 2a`

 0
j;`

io

D ei'�'0
X

Na;a2P.�/n

n
. i

2
/j. Na;a/j sgn.a/

sgn. Na/
.�1/jaj

�
nY

`D1

h Y
k2 Na`

N 0
k;`

Y
j 2a`

 0
j;`

Y
j 2a`

N j;`

Y
k2 Na`

 k;`

io

D ei'�'0
X

Na;a2P.�/n

˚
. i

2
/j. Na;a/j sgn.a/

sgn. Na/
.�1/jajs. Na; a/‰0Na;a‰a; Na

�
:

Note that for . Na; a/ 2 P n
k

and ` � 2 we have j Na`j D ja`j, therefore

s. Na; a/ D 1 for all . Na; a/ 2 P n
k and all k 2 Œ�m;m� \ Z:

Now if we combine (3.2) and (3.4), using Œ i
2
�j. Na;a/j D 2i .�1/jaj

4j Naj for . Na; a/ 2 P n
1
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as well as (2.18), (2.23), and (2.21) for the integral over D‰ , then we obtain

Z
eiˆ�ˆ0 Æx‰ � f .ˆˇ2/Dˆ

D
X

. Na;a/2P n
1

n sgn.a/sgn. Nac/sgn.� /

sgn. Na/sgn.a; Na; ac; Nac/
.�1/mn‰0Na;a

� 2i 2
mn

4j Naj

jac
1

jX
kD1

.�1/k�1.FDac�ŒŒac
1k

��; Nacfac
1k
/.'0ˇ2/

o

D 2i
X

. Na;a/2P n
1

n jac
1jX

kD1

.�1/ac
1k

�kC1D Na;aCŒŒac
1k

�� Tfac
1k
.'0ˇ2/

o
sgn.a/‰0Na;a :

(3.5)

Note that ac
1k

D .ac
1/k denotes the k-th smallest element of the set ac

1 D � n a1. To
get the sign in the last equation we used

sgn. Na/sgn. Nac/sgn.� /

sgn.a; Na; ac; Nac/
.�1/mnsgn.a C ŒŒac

1k��; Na/.�1/k�1

D sgn.a C ŒŒac
1k

��; Na; ac � ŒŒac
1k

��; Nac/

sgn.a; Na; ac; Nac/
.�1/k�1;

and the fact that for .a; Na/ 2 P n�1 we have

‰a; Na‰ac ; Nac D .�1/k�1‰a; Na N ac
1k

;1‰ac �ŒŒac
1k

��; Nac D .�1/k N ac
1k

;1‰a; Na‰ac �ŒŒac
1k

��; Nac

D .�1/k.�1/ac
1k

�k‰aCŒŒac
1k

��; Na‰ac �ŒŒac
1k

��; Nac ;

implying

sgn.a C ŒŒac
1k

��; Na; ac � ŒŒac
1k

��; Nac/

sgn.a; Na; ac; Nac/
D .�1/ac

1k :

Since for . Na; a/ 2 P n�1 we have

� i
2

�j. Na;a/j D �2i .�1/
jaj

4jaj

and

sgn.a; Na C ŒŒ Nac
1k

��; ac; Nac � ŒŒ Nac
1k

��/

sgn.a; Na; ac; Nac/
D .�1/mCac

1k ;
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similar calculations lead toZ
eiˆ�ˆ0 Å‰ � f .ˆˇ2/Dˆ

D �2i
X

. Na;a/2P n
�1

n j Nac
1jX

kD1

.�1/mC Nac
1k

Ck�1Cjac
1jD NaCŒŒ Nac

1k
��;a

� Tf Nac
1k
.'0ˇ2/

o
sgn. Na/‰0Na;a

D �2i
X

. Na;a/2P n
�1

n j Nac
1

jX
kD1

.�1/ Nac
1k

�kCj Na1jD NaCŒŒ Nac
1k

��;aTf Nac
1k
.'0ˇ2/

o
sgn. Na/‰0Na;a:

(3.6)

We are now ready to derive the main identities we will need to prove Theorem 1.2.
The integrals (3.5) and (3.6) can be expressed using the matrix operator T defined by

Tf WD 2@ Tf for f D .f1; : : : ; fm/
> 2 Œ�n.SymC.m//�m: (3.7)

Combining (2.26), (2.15), (2.25) and (2.24) we see that T is an involution,

T 2f D 4@T @Tf D 4.�2/mn�2F ın�1 =@@Tf D .�2/mnF ınTf D T 2f D f:

The following result is crucial for this article. It is the key observation that allows
the extension of the results in [24] to the Bethe strip.

Theorem 3.3. Let f D .f1; f2 : : : ; fm/
> 2 ŒSn.SymC.m//�m. Then

Æx‰0 � Tf .ˆ0ˇ2/ D i

Z
eiˆ�ˆ0 Æx‰ � f .ˆˇ2/Dˆ

D �i
Z
e�iˆ�ˆ0 Æx‰ � f .ˆˇ2/Dˆ;

(3.8)

and

Å‰0 � Tf .ˆ0ˇ2/ D i

Z
eiˆ�ˆ0 Å‰ � f .ˆˇ2/Dˆ

D �i
Z
e�iˆ�ˆ0 Å‰ � f .ˆˇ2/Dˆ:

(3.9)

Proof. The second equalities in (3.8) and (3.9) follow from a simple change of vari-
ables. Using (3.2) we get

Æx‰0 � @Tf .ˆ0ˇ2/ D
X

. Na;a/2P n
1

n j Na1jX
kD1

mX
k0D1

.�1/k�1D Na�ŒŒ Na1k ��;aDfa1kg;fk0g

� Tfk0.'0ˇ2/
o
sgn.a/‰0Na;a :

(3.10)

First consider the case k0 D ac
1j . There are ac

1j � 1 numbers smaller than ac
1j in � ,

j �1 of them are in the set ac
1 and hence ac

1j �j of them are in the set a1. Therefore,



Ballistic behavior on the Bethe strip 427

ac
1j is the .ac

1j �jC1/-th smallest element of the set a1 [fac
1j g. A column expansion

of D Na1;a1[fac
1j

g, the determinant of @ Na1;a1[fac
1j

g, leads to

D Na1;a1[fac
1j

g D
j Na1jX
kD1

.�1/kCac
1j

�j C1
D Na1nf Na1k g;a1

Df Na1kg;fac
1j

g ;

implying

j Na1jX
kD1

.�1/k�1D Na�ŒŒ Na1k ��;aDfa1kg;fac
1j

g D .�1/ac
1j

�j
D Na;aCŒŒac

1j
��: (3.11)

Similarly, for k0 2 a1 we can also interpret the sum over k as the expansion of a
determinant. However, in this case the corresponding matrix has two identical rows,
therefore

j Na1jX
kD1

.�1/k�1D Na�ŒŒ Na1k ��;aDfa1kg;fk0gTfk0.'0ˇ2/ D 0 for k0 2 a1 : (3.12)

Now equations (3.10), (3.11) and (3.12) lead to

Æx‰0 � @Tf .ˆ0ˇ2/ D
X

. Na;a/2P n
1

n jac
1jX

j D1

.�1/ac
1j

�j
D Na;aCŒŒac

1j
��

� Tfac
1j
.'0ˇ2/

o
sgn.a/‰0Na;a ;

(3.13)

which combined with (3.5) proves (3.8).
For the second equation one starts from (3.3); similar calculations lead to

Å‰0 � @Tf .ˆ0ˇ2/ D
X

. Na;a/2P n
�1

n jac
1

jX
j D1

.�1/ac
1j

�j Cj Na1j
D NaCŒŒ Nac

1j
��;a

� Tf Nac
1j
.'0ˇ2/

o
sgn.a/‰0Na;a :

Combining this with (3.6) yields (3.9).

Next we introduce a Hilbert space on which T is a unitary operator. In view
of (3.2), we define differential operators on ŒC1

n .SymC.m//�m by

D Na;af WD sgn.a/
j Na1jX
kD1

.�1/k�1D Na�ŒŒ Na1k ��;af Na1k
for . Na; a/ 2 P n

1 ; (3.14)

where f D .f1; : : : ; fm/
> 2 ŒC1

n .SymC.m//�m. D Na;a may be considered as a row-
vector of differential operators. Equations (3.2) and (3.3) can be written as

Æx‰ � f .ˆˇ2/ D
X

. Na;a/2P n
1

D Na;af .'ˇ2/‰ Na;a (3.15)



428 A. Klein and Ch. Sadel

and
Å‰ � f .ˆˇ2/ D

X
. Na;a/2P n

�1

.�1/j Na1jDa; Naf .'ˇ2/‰ Na;a : (3.16)

Combining Theorem 3.3 with (3.5) and (3.15), we obtain

D Na;a.Tf / D 2mnC1

4j Naj
sgn.a/sgn.� /.�1/mn

sgn. Na/sgn.a; Na; ac; Nac/
F .Dac ; Nac f / for . Na; a/ 2 P n

1 :

(3.17)
This leads us to define the norm

kf k2
H WD

X
. Na;a/2P n

1

k2jajD Na;af .'ˇ2/k2
L2.Rm�2nId2mn'/

; (3.18)

and let H be the Hilbert space completion of Œ�n.SymC.m//�m with respect to the
norm k � kH. By (3.17), T extends to a unitary operator on H. Moreover, the

expressions Æx‰ � f and Å‰ � f can be extended to f 2 H and the equations (3.8)
and (3.9) remain valid.

We also introduce the Hilbert space tensor product K WD H˝H. For f ;g 2 H the
tensor product f .'ˇ2

C /˝ g.'ˇ2� / can be identified with the matrix valued function
given by the matrix product f .'ˇ2

C / Œg.'ˇ2� /�>. With this identification, the norm
for an m �m matrix valued function F .'ˇ2

C ;'ˇ2� / 2 K is given by

kF k2
K

WD
X

. Na;a/2P n
1

. Nb;b/2P n
1

k2jajCjbjD.�/
Nb;b
ŒD.C/

Na;a F .'ˇ2
C ;'ˇ2� /�>k2

L2.Rm�4nId4mn.'C;'�//
; (3.19)

where D.˙/
Na;a denotes the operator D Na;a acting with respect to 'ˇ2

˙ . To obtain (3.19),

note thatD.˙/
Na;a are1�m row-vectors of differential operators and hence D.C/

Na ;a f .'ˇ2
C / D

ŒD.C/
Na;a f .'ˇ2

C /�>, since it is a 1 � 1 matrix, which leads to

ŒD.C/
Na;a f .'ˇ2

C /�ŒD.�/
Nb;b

g.'ˇ2� /� D D.�/
Nb;b
ŒD.C/

Na;a f .'ˇ2
C /g>.'ˇ2� //�> :

Together with (3.15) and (3.16) this calculation also implies

Æx‰C � F .ˆˇ2
C ;ˆˇ2� /Æx‰� D

X
. Na;a/2P n

1

. Nb;b/2P n
1

D.�/
Nb;b
ŒD.C/

Na;a F .'ˇ2
C ;'ˇ2� /�>‰C; Na;a‰�; Nb;b (3.20)

and

Å‰C � F .ˆˇ2
C ;ˆˇ2� /Å‰�

D
X

. Na;a/2P n
�1

. Nb;b/2P n
�1

.�1/j Na1jCj Nb1jD.�/

b; NbŒD
.C/
a; Na F .'ˇ2

C ;'ˇ2� /�>‰C; Na;a‰�; Nb;b ; (3.21)
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where‰C; Na;a and‰�; Nb;b are defined analogously to‰ Na;a using the Grassmann entries
of ˆC and ˆ�, respectively. An important operator on K is the tensor operator
yT WD T ˝ T . Theorem 3.3 implies the following.

Corollary 3.4. Let F .ˆˇ2
C ;ˆˇ2� / 2 K. Then

Æx‰0C � yTF .ˆ0ˇ2
C ;ˆ0ˇ2� /Æx‰0�

D
Z
e˙i.ˆC�ˆ0

C
�ˆ��ˆ0

�/Æx‰C � F .ˆˇ2
C ;ˆˇ2� /Æx‰�DˆCDˆ�

and

Å‰0C � yTF .ˆ0ˇ2
C ;ˆ0ˇ2� /Å‰0�

D
Z
e˙i.ˆC�ˆ0

C
�ˆ��ˆ0

�/ Å‰C � F .ˆˇ2
C ;ˆˇ2� /Å‰�DˆCDˆ� :

We recall that H m D Lm
kD1 H and Km�m Š Km2

are Hilbert spaces with the
norms

kf k2
Hm D

mX
kD1

jjjfk jjj22 for f D .f1; : : : ; fm/ 2 H m;

kF k2
Km�m D

mX
j;kD1

jjjjFjk jjjj22 for F D .Fjk/ 2 Km�m:

We let yT act on Km�m by acting on all entries. The relations between H m and H
and between Km�m and K will play a crucial role.

Proposition 3.5. (i) H m is a subset of H and the canonical injection H m 7! H
is continuous with respect to the norms of H m and H.

(ii) Km�m is a subset of K and the canonical injection Km�m ! K is continuous
with respect to the norms of Km�m and K.

(iii) The matrix differential operator @ acting on Œ�n.SymC.m//�m extends to a
continuous operator from H m to H, and we have

2@ f D T T f for all f 2 H m: (3.22)

(iv) The operators @ ˝ 1, 1 ˝ @ and @ ˝ @ are continuous from Km�m to K. They
are given by

.@ ˝ 1/F .ˆˇ2
C ;ˆˇ2� / D @CF .ˆˇ2

C ;ˆˇ2� /; (3.23)

.1 ˝ @/F .ˆˇ2
C ;ˆˇ2� / D Œ@�F >.ˆˇ2

C ;ˆˇ2� /�>; (3.24)

.@ ˝ @/F .ˆˇ2
C ;ˆˇ2� / D f@�Œ@CF .ˆˇ2

C ;ˆˇ2� /�>g>; (3.25)
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where @˙ is the matrix of differential operators @ with respect to ˆ˙. (The products
are matrix products.)

(v) We have
yTF D 4Œ@�.@C yTF />�> for all F 2 K:

(v) Given g.'ˇ2/ 2 zH .0/1 , the multiplication operator M.g/, defined by

M.g/f .'ˇ2/ D g.'ˇ2/f .'ˇ2/ for f 2 Œ�n.SymC.m//�m;

extends to a bounded operator on H. The map g 2 H
.0/1 7! M.g/ 2 B.H/ is

continuous, and hence extends to H1. Moreover, for . Na; a/ 2 P n
1 we have

D Na;a.gf / D
X

. Nb;b/2P n;. Nb0;b0/2P n
1

. Nb;b/C. Nb0;b0/D. Na;a/

sgn.b/sgn. Nb; b; Nb0; b0/D Nb;b g D Nb0;b0f : (3.26)

(vi) Given G.'ˇ2
C ;'ˇ2� / 2 K

.0/1 , the multiplication operator M.G/, defined by

M.G/F .'ˇ2
C ;'ˇ2� / D G.'ˇ2

C ;'�/F .'ˇ2
C ;'ˇ2� /;

for F 2 Œ�n.SymC.m//�m ˝ Œ�n.SymC.m//�m, extends to a bounded operator on
K. The map G 2 K

.0/1 7! M.G/ 2 B.K/ is continuous, and hence extends to K1.

Proof. (i) is a simple consequence of the definitions of the norm. (ii) follows from (i)
since H m ˝ H m Š Km�m.

To get (iii) note that for f 2 Œ�n.SymC.m//�m (3.22) follows from (2.24) and
(3.7). Since T is unitary on H m, H m is continuously embedded in H by (i), and
T is unitary on H, we conclude that the operator 1

2
TT defines a continuous linear

map from H m to H which extends the map f 2 Œ�n.SymC.m//�m 7! @f 2
Œ�n.SymC.m//�m.

The continuity in (iv) follows from (iii). For the second and third equation note
that @ D @> and hence

.1 ˝ @/.f .'ˇ2
C /˝ g.'ˇ2� // D f .'ˇ2

C /Œ@�g.'ˇ2� /�>

D Œ@�g.'ˇ2� /f >.'ˇ2
C /�>

D Œ@�Œf .'ˇ2
C /g>.'ˇ2� /�>�>:

(v) follows from (iv) and (3.7). To prove (vi) note that Æx‰ � M.g/f .ˆˇ2/ D
g.ˆˇ2/Æx‰ � f .ˆˇ2/. By (3.15) this implies (3.26) which leads to kM.g/f kH �
C jjjgjjj1kF kH for a constant C only depending onm and n which are fixed. (vii) is

proved similarly to (vi) considering Æx‰C �M.G/F .ˆˇ2
C ;ˆˇ2� /Æx‰�.
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4. Averages of the matrix Green’s function

We have all the main supersymmetric identities by now. So let us consider the random
Hamiltonian H� introduced in (1.1) and (1.2). Recall that we fixed some arbitrary
site in B which we called the origin and denoted by 0. Given two nearest neighbors
sites x; y 2 B, we will denote by B.xjy/ the lattice obtained by removing from B the
branch emanating from x that passes through y; if we do not specify which branch
was removed we will simply write B.x/. Each vertex in B.x/ has degreeK C 1, with
the single exception of x which has degree K. Given ƒ � B, we will use H�;ƒ to
denote the operator H� restricted to `2.ƒ;Cm/ with Dirichlet boundary conditions.
The matrix Green’s function corresponding to H�;ƒ will be denoted by

G�;ƒ .x; yI z/ D Œhx; j j .H�;ƒ � z/�1 j y; ki�j;k2f1;:::;mg

for x; y 2 ƒ, and z D E C i� with E 2 R, � > 0.
Important choices ofƒ � B will be the sets B`, denoting all sites y 2 B with dis-

tance jyj D d.0; y/ � `, and B.xjy/

`
denoting all sites x0 2 B.xjy/ with d.x; x0/ � `.

We will use the Green’s matrix at the origin very often, therefore let us define

G�.z/ WD G�.0; 0I z/:
For special choices of ƒ let us also introduce the following notation:

H�;` WD H�;B`
; G�;`.z/ WD G�;B`

.0; 0I z/;
H

.xjy/

�
WD H�;B.xjy/; G

.xjy/

�
.z/ WD G�;B.xjy/.x; xI z/;

H
.xjy/

�;`
WD H

�;B.xjy/
`

; G
.xjy/

�;`
.z/ WD G

�;B.xjy/
`

.x; xI z/;

H
.x/

�
WD H�;B.x/ ; G

.x/

�
.z/ WD G�;B.x/.x; xI z/:

Similarly to [1], Proposition 1.2, we have

8<
:

lim
`!1

G�;B`
.x; yI z/ D G�.x; yI z/;

lim
`!1

G�;Bx;`
.x; yI z/ D G�.x; yI z/: (4.1)

To each site x 2 B we assign supermatrices ˆx , ˆx;C, and ˆx;�, which are all
independent, i.e. all different Grassmann variables are independent. We will also use
the independent supermatrices ˆ;ˆ0;ˆC;ˆ�;ˆ0C and ˆ0�. Furthermore we may
use notations like ˆx D .'x ;‰x/ where 'x is a variable varying in Rm�2n and

‰x D .. N x/k;`; . x/k;`/k;`. Also Æx‰x ;
Æx‰x;˙ and so on shall be defined analogously

to (3.1).
For each finite subsetƒ � B we setDƒˆ D Q

x2ƒDˆx , whereDˆx is defined
as in (2.9). Let B be an operator on `2.B;Cm/ and Bƒ its restriction to `2.ƒ;Cm/
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for a finite set ƒ � B. For x; y 2 ƒ we define hx j Bƒ j yi to be the m �m matrix
with entries .hx; j j Bƒ j y; ki/j;k . Furthermore we define

hˆ j Bƒ j ˆi D
X

x;y2ƒ

ˆx � hx j Bƒ j y i ˆy :

Now let Im z > 0, ƒ � B finite, and x; y 2 ƒ. By the supersymmetric replica trick,
for any replica s 2 f1; : : : ; ng we have, as in [6], [11], and [20],

ŒG�;ƒ.x; yI z/�j;k D i

Z
. x/j;s. N y/k;se

�ihˆjH�;ƒ�zjˆiDƒˆ : (4.2)

For some fixed x 2 B we will denote by x0 D 0; x1; : : : ; xjxj D x the shortest
path from 0 to x, i.e. d.xi ; xi�1/ D 1 and xi ¤ xj for i ¤ j . We denote by Bx;` all
sites in B whose distance from the path x0; : : : ; xjxj is at most `C 1. If we let N.xi /

be the set of neighbors of xi which are not on the path x0; : : : ; xjxj, then, as a set,

Bx;` D fx0; x1 : : : ; xjxjg [
h jxj[

iD0

[
y2N.xi /

B.yjx/

`

i
; (4.3)

where the union is disjoint. Note that for jxj � 1 we have jN.xi /j D K � 1 for
i D 1; : : : ; jxj � 1 and jN.0/j D jN.x/j D K. If jxj D 0, i.e. x D 0, then
N.0/ D K C 1.

Settingƒ D Bx;` in (4.2), noting that ŒÅ‰0
Æx‰>

x �j;k D . 0/j;1. N x/k;1 and using the
decomposition (4.3) we obtain

G�;Bx;`
.0; xI z/ D i

Z
Å‰0

Æx‰
>
x

jxj�1Y
j D0

e
�iˆxj

�ˆxj C1

jxjY
j D0

‚j DBx;`
ˆ (4.4)

where

‚j D e
iˆxj

�.z�A��V.xj //ˆxj e
�i

P
y2N.xj /Œˆxj

�ˆyChˆjH .yjxj /

�;`
jˆi�

: (4.5)

In order to simplify this equation note that one obtains as in [28], eq. (3.11),
Z
e

�iˆxj
�ˆy�ihˆjH .yjxj /

�;`�1
�zjˆi

D
B

.yjxj /

`

ˆ D e
.i=4/ ˆxj

�G.yjxj /

�;`
.z/ˆxj : (4.6)

Plugging (4.6) into (4.4), using (4.1), and letting ` ! 1, we get

G�.0; xI z/ D i

Z
Å‰0

Æx‰
>
x

jxj�1Y
j D0

e
�iˆxj

�ˆxj C1

jxjY
j D0

‡
x;j

�;z
.ˆˇ2

xj
/

jxjY
j D0

Dˆxj
; (4.7)

where

‡
x;j

�;z
.'ˇ2/ D e

i Tr.Œz��V.xj /�AC 1
4

P
y2N.xj / G

.yjxj /

�
.z/�'ˇ2/

: (4.8)
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The dependence on x results from the fact that x determines the path

x0 D 0; x1; : : : ; xjxj D x:

Now we want to consider jG�.0; xI z/j2. To improve the appearance of the following
equations, we introduce the following notation:

ŷ WD .ˆC;ˆ�/; ŷ ˇ2 WD .ˆˇ2
C ;ˆˇ2� /; D ŷ WD DˆCDˆ�;

y' WD .'C;'�/; y'ˇ2 WD .'ˇ2
C ;'ˇ2� /;

ŷ
x WD .ˆx;C;ˆx;�/; ŷ ˇ2

x WD .ˆˇ2
x;C;ˆ

ˇ2
x;�/; D ŷ

x WD Dˆx;CDˆx;�;

ŷ
x � ŷ

y WD ˆx;C � ˆy;C � ˆx;� � ˆy;�:

From (4.7) we obtain

jG�.0; xI z/j2 D G�
�.0; xI z/G�.0; xI z/

D �
Z

Æx‰x;C Å‰>
0;C	

x;r

�;z
. ŷ ˇ2

x /

�
jxj�1Y
j D0

Œe
i ŷ

xj
� ŷ

xj C1	
x;j

�;z
. ŷ ˇ2

xj
/�Å‰0;�Æx‰>

x;�
jxjY

j D0

D ŷ
xj
;

(4.9)

where

	
x;j

�;z
.y'ˇ2/ D x‡x;j

�;z
.'ˇ2

C /‡
x;j

�;z
.'ˇ2� /; (4.10)

with the bar denoting complex conjugation. The minus sign in (4.9) comes from

ŒÅ‰0;CÆx‰
>
x;C�> D �Æx‰x;C Å‰>

0;C;

a consequence of the anti-commutation relations for Grassmann variables.
As in [28], for � 2 R, E 2 R and � > 0 let us introduce 
�;z 2 K1 by


�;z.y'ˇ2/ D E
	

exp
˚

i
4

Tr.G.0/

�
.z/'ˇ2

C � ŒG
.0/

�
.z/�� 'ˇ2� /

�

;

and the operator B�;z by

B�;z D M.ei Tr..z�A/'
ˇ2
C

� . Nz�A/'ˇ2
� /h.�.'ˇ2

C � 'ˇ2� ///;

where M.g.y'ˇ2// denotes multiplication by the function g.y'ˇ2/. The fact that

�;z 2 K1 is a continuous family of elements is shown in [28]. B�;z and M.g/
act on matrix valued functions by acting on each entry. Very important will be [28],
eq. (4.12) and Theorem 5.6, stating the following.
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Theorem 4.1. For E 2 IA;K there exists �E > 0 and "E > 0, such that the
continuous map

.�; E 0; �/ 2 .��E ; �E / � .E � "E ; E C "E / � .0;1/ 7! 
�;E 0Ci� 2 K1
has a continuous extension to .��E ; �E/ � .E � "E ; E C "E / � Œ0;1/ satisfying
the fix point equation


�;z D yTB�;z

K
�;z (4.11)

in K1.

We set

„ D
n [

E2IA;K

.��E ; �E / � .E � "E ; E C "E / � Œ0;1/
o

[ fR � R � .0;1/g;

where �E > 0 and "E > 0 are as in the theorem, so we can extend 
�;ECi� to a
continuous function on all of „, defining 
�;E for .�; E; 0/ 2 „.

We further define ��;ECi� on „ to be the diagonal m � m matrix with 
�;ECi�

on all diagonal entries, i.e.

��;ECi� WD 
�;ECi� 1:

Note that the map .�; E; �/ 7! ��;ECi� 2 Km�m � K is also continuous on „.

Proposition 4.2. We have

EjG�.0; xI z/j2 D �
Z

Æx‰C Å‰>CfB�;zM.

K
�;z/

� Œ yTB�;zM.

K�1
�;z /�jxj��;z/g. ŷ ˇ2/Å‰�Æx‰

>
� D ŷ :

(4.12)

Proof. Let x ¤ 0. f	x;j

�;z
. ŷ ˇ2/gj D0;1;:::;jxj are independent Grassmann algebra-

valued random variables, with

E.	x;j

�;z
. ŷ ˇ2// D

8<
:

B�;z

K
�;z
. ŷ ˇ2/ if j D 0 or j D jxj;

B�;z

K�1
�;z

. ŷ ˇ2/ if 0 < j < jxj:
Thus, taking expectation in (4.9) and using the matrix equality


�;z. ŷ ˇ2
0 /Å‰0;�Æx‰>

x;� D 
�;z. ŷ ˇ2
0 /1Å‰0;�Æx‰>

x;� D ��;z. ŷ ˇ2
0 /Å‰0;�Æx‰>

x;� ;

we get

EjG�.0; xI z/j2

D �
Z

Æx‰x;C Å‰>
0;CB�;z


K
�;z.

ŷ ˇ2
x /

n r�1Y
j D0

Œe
i ŷ

xj C1
� ŷ

xj B�;z

K�1
�;z . ŷ ˇ2

xj
/�

o

� ��;z. ŷ ˇ2
0 /Å‰0;�Æx‰>

x;�
rY

j D0

D ŷ
xj
:

(4.13)
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Using Corollary 3.4, integration overD ŷ
0 D D ŷ

x0
gives

EjG�.0; xI z/j2

D �
Z

Æx‰x;C Å‰>
x1;CB�;z


K
�;z.

ŷ ˇ2
x /

n r�1Y
j D1

Œe
i ŷ

xj C1
� ŷ

xj B�;z

K�1
�;z . ŷ ˇ2

xj
/�

o

� Œ yTB�;zM.

K�1
�;z /��;z�. ŷ ˇ2

x1
/Å‰x1;�Æx‰>

x;�
rY

j D0

D ŷ
xj
:

Repeated similar integrations overD ŷ
xj

for j D 1; 2; : : : ; r � 1, yields (4.12) after

renaming ŷ
x D ŷ

xjxj
as ŷ .

For the case x D 0 note that E.	0;0
�;z
. ŷ ˇ2// D B�;z


KC1
�;z

. ŷ ˇ2/, which gives
(4.12) also for x D 0.

To write the trace of jG�.0; xI z/j2 in a more compact way, let us introduce the
following notations. First let us define the operator

V�;z WD yT B�;zM.

K�1
�;z /: (4.14)

Note that V�;z is a bounded linear operator on K in view of Proposition 3.5 (vii). For
F ;F 0 2 K we define the bilinear forms

hhF j F 0ii WD � Tr
n Z

F >. ŷ ˇ2/Æx‰C Å‰>CF 0. ŷ ˇ2/Å‰�Æx‰
>
�D ŷ o

D �
Z
ŒÆx‰C � F . ŷ ˇ2/Æx‰��ŒÅ‰C � F 0. ŷ ˇ2/Å‰�� D ŷ ;

(4.15)

and

hhF j F 0ii�;z WD hhB�;zM.

K�1
�;z /F j F 0ii D hhF j B�;zM.


K�1
�;z /F 0ii: (4.16)

For the second equation in (4.15), note that for matrices F ;F 0 whose entries are even
elements of the Grassmann algebra ƒ.‰C;‰�/, we have

TrfF >Æx‰C Å‰>CF 0. ŷ ˇ2/Å‰�Æx‰
>
�g D �ŒÆx‰� � F >Æx‰C�ŒÅ‰C � F 0 Å‰��

D ŒÆx‰C � F Æx‰��ŒÅ‰C � F 0 Å‰��:

The sign changes are caused by the anti-commutation relations of the Grassmann
variables.

Proposition 4.3. The following identities hold.

hhF j yT F 0ii D hh yTF j F 0ii; (4.17)

hhF j V�;zF 0ii�;z D hhV�;zF j F 0ii�;z; (4.18)

E.Tr.jG�.0; xI z/j2// D hh��;z j V
jxj
�;z

��;zii�;z : (4.19)
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Proof. Using Corollary 3.4 and (4.15) we get

hhF j yTF 0ii D �
Z
ŒÆx‰C � F . ŷ ˇ2/Æx‰�� ei ŷ � ŷ 0

ŒÅ‰0C � F 0. ŷ 0ˇ2/Å‰0��D ŷ 0D ŷ

D �
Z
ŒÆx‰0C � yT F . ŷ 0ˇ2/Æx‰0��ŒÅ‰0C � F 0. ŷ 0ˇ2/Å‰0��D ŷ 0

D hh yT F j F 0ii:
Eq. (4.18) is now a consequence of (4.16) and (4.17); eq. (4.19) follows from (4.12),
(4.15) and (4.16).

Similarly to [24], for z D E C i� with � > 0 we define ��;z 2 K by

��;z WD �2.@ ˝ 1 C 1 ˝ @/��;;z D �2.@C C @�/��;z : (4.20)

Using ��;z D �>
�;z

and @���;z D Œ@���;z�
>, the second equation follows

from (3.23) and (3.24). Proposition 3.5 (iv) implies that the map .�; E; �/ 7!
��;ECi� 2 K is continuous on „.

Lemma 4.4. For � D Im z > 0 we have

hh��;z j V
jxj
�;z

��;zii�;z D E.Tr.=.x0jx/

�
.z/jG�.0; xI z/j2//

D E
�

Tr
�ˇ̌̌
G�.0; xI z/

q
=.x0jx/

�
.z/

ˇ̌̌2��
> 0;

(4.21)

and

hh��;z j V
jxj
�;z

��;zii�;z

D E.Tr.=.x0jx/

�
.z/G�

�.0; xI z/=.00j0/

�
.z/G�.0; xI z///

D E
�

Tr
�ˇ̌̌q

=.x0jx/

�
.z/G�.0; xI z/

q
=.00j0/

�
.z/

ˇ̌̌2��
> 0;

(4.22)

where 00 2 B is a neighbor of 0 2 B and x0 2 B is a neighbor of x 2 B, both not
lying on the path from 0 to x.

Proof. As H� is a real operator, the Green’s matrices G.xjy/

�
.z/ are symmetric, im-

plying ŒG.xjy/

�
.z/�� D G

.xjy/

�
.z/, where the overline denotes complex conjugation.

It follows that the imaginary parts =.xjy/

�
.z/ WD 1

2i
.G

.xjy/

�
.z/�ŒG.xjy/

�
.z/��/ are real,

symmetric matrices. More over, =.xjy/

�
is positive if � D Im z > 0. Since

@eTr.M 'ˇ2/ D MeTr.M 'ˇ2/; (4.23)

for symmetric m �m matrices M , we obtain

��;z.y'ˇ2/ D E
	=.0/

�
.z/ exp

˚
i
4

Tr.G.0/

�
.z/'ˇ2

C � ŒG
.0/

�
.z/�� 'ˇ2� /

�

: (4.24)
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In particular, ��;z is a symmetric matrix. Eq. (4.24) implies

B�;zM.

K�1
�;z /��;z D E.=.x0 jx/

�
.z/	

x;jxj
�;z

/ D E.=.00j0/

�
.z/	

x;0

�;z
/: (4.25)

Multiplying (4.9) by =.x0jx/

�
.z/ from the left, taking expectations and combining this

with Corollary 3.4, equations (4.15), (4.16), (4.25), and the fact that �>
�;z

D ��;z gives
the first equation in (4.21). To get the first equation in (4.22) we multiply (4.9) by

=.x0jx/

�
.z/ from the left, insert the matrix =.00j0/

�
.z/ between the matrices Æx‰x;C Å‰>

0;C
and Å‰0;�Æx‰

>
x;�, and take expectations.

The only thing left to prove are the inequalities in (4.21) and (4.22). Since
=.00j0/

�
.z/ and =.x0jx/

�
.z/ are both invertible, both inequalities will follow if we can

show that the matrix G�.0; xI z/ is not identically zero for almost all potentials.
Let H .06�x1/

�
D H

.0jx1/

�
˚H

.x1j0/

�
, then H� D H

.06�x1/

�
C 	 where

hy; k j 	 j z; j i D 1

2
.ıy;0ıj;kız;x1

C ıy;x1
ıj;kız;0/: (4.26)

Using the resolvent identity,

.H� � z/�1 D .H
.06�x1/

�
� z/�1 � .H .06�x1/

�
� z/�1	.H� � z/�1;

and the fact that h0 j .H .06�x1/

�
� z/�1 j xi D 0, we obtain the matrix equation

G�.0; xI z/ D �1
2
G

.0jx1/

�
.0; 0I z/G�.x1; xI z/:

Iterating this procedure gives

G�.0; xI z/ D .�1
2
/jxjh jxjY

j D1

G
.xj �1jxj /

�
.z/

i
G�.x; xI z/:

For � D Im z > 0 the imaginary parts of these matrix Green’s functions on the
right hand side are positive. Therefore all these matrices are invertible and hence
G�.0; xI z/ is invertible and hence not zero (for all random potentials).

5. The proof of Theorem 1.2

From now on the proof is completely analogous to [24]. By (4.19) we obtain

J�.z/ WD
X
x2B

jxj2E.Tr.jG�.0; xI z/j2// D K C 1

K

1X
rD1

r2hh��;z j W r
�;z��;zii�;z;

where W�;z D KV�;z and Im z D � > 0.



438 A. Klein and Ch. Sadel

Lemma 5.1. Let � 2 R, z D E C i� with E 2 R and � > 0.
(i) For all F ;F 0 2 K

hhF j W�;zF 0ii�;z D hhW�;zF j F 0ii�;z :

(ii) W2
�;z

is a compact operator on K.

(iii) We have
W�;z��;z D ��;z � 4�

K
W�;z��;z :

(iv) For any r D 0; 1; 2; : : : we have

hh��;z j W r
�;z��;zii�;z > hh��;z j W rC1

�;z
��;zii�;z > 0

and
hh��;z j W r

�;z��;zii�;z > hh��;z j W rC1
�;z

��;zii�;z > 0:

Proof. (i) follows from (4.18). (ii) is a consequence of B�;zM.

K�1
�;z

/ yTB�;z be-
ing a compact operator on K for � > 0, which can be shown analogously to [28],
Lemma 5.1(i), using (3.17) as well as the the Leibniz rules (2.19) and (3.26).

To prove (iii), note first that by (2.25), (2.26) and (4.11) we have

��;z D �2.@ ˝ 1 C 1 ˝ @/ yTB�;z�K
�;z

D .�2/2mn�1.F ın�1 =@ ˝ F ın C F ın ˝ F ın�1 =@/B�;z�K
�;z

D .�2/2mn�1.F ın�1 =@ ˝ F ın�1 =@/.1 ˝ @ C @ ˝ 1/B�;z�K
�;z

D �2 yT Œ.@C C @�/B�;z�K
�;z �:

(5.1)

Using (4.23) leads to

� 2.@C C @�/.ei Tr..z�A/'
ˇ2
C

�. Nz�A/'ˇ2
� /h.�.'ˇ2

C � 'ˇ2� ///

D 4�.ei Tr..z�A/'
ˇ2
C

�. Nz�A/'ˇ2
� /h.�.'ˇ2

C � 'ˇ2� ///;

which combined with (5.1) gives

��;z D �2 yT Œ.@C C @�/B�;z�K
�;z � D W�;z��;z C 4�

K
W�;z��;z :

The second inequalities in (5.1) and (5.1) follow from (4.21) and (4.22). Us-
ing (5.1), we have

hh��;z j W rC1
�;z

��;zii�;z D hh��;z j W r
�;z��;zii�;z � 4�

K
hh��;z j W rC1

�;z
��;zii�;z

< hh��;z j W r
�;z��;zii�;z ;
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since hh��;z j W rC1
�;z

��;zii�;z > 0 by (4.19). Similarly,

hh��;z j W rC1
�;z

��;zii�;z D hh��;z j W r
�;z��;zii�;z � 4�

K
hh��;z j W rC1

�;z
��;zii�;z

< hh��;z j W r
�;z��;zii�;z ;

since hh��;z j W rC1
�;z

��;zii�;z > 0 by (4.21). Thus (iv) is proven.

This lemma is just the generalization of Lemma 4.1 in [24] to the Bethe strip. Thus,
from this point on we can use the exact same arguments as in [24], Lemmata 4.2–4.4,
to finally obtain

J�.E C i�/ �K C 1

4�
hh��;z j ��;zii�;z C 3K.K C 1/

16�2
hh��;z j ��;zii�;z

C K2.K C 1/

64�3

.hh��;z j ��;zii�;z � 4�
K

hh��;z j ��;zii�;z/
2

hh��;z j ��;zii�;z

;

(5.2)

for � 2 R; z D E C i� with E 2 R and � > 0.
In order to do perturbation theory we have to compute some of the expressions

for � D 0 and � D 0 first. For an energy E 2 IA;K we obtain from [28], eq. (3.19)
and eq. (4.7), the limit as � # 0 of 
0;ECi� (point wise and in K1), given by


0;E .'
ˇ2
C ;'ˇ2� / D e�i Tr.AE '

ˇ2
C

� NAE'ˇ2
� /;

where AE is the matrix

AE D 1
2K
..E � A/ � i

p
K � .E � A/2/:

Here we identify numbers with multiples of the unitm�mmatrix. Note thatE 2 IA;K

is equivalent to �p
K < E�A < p

K in the sense of matrices, and for such energies
we get

�0;E D �2.@C C @�/�0;E D 2
p

K�.E�A/2

K
�0;E :

Thus

hh�0;E j �0;E ii0;E D E.Tr.jG0.0; 0IE/j2//
D Tr.4KŒ.K C 1/2 � 4.E � A/2��1/ >

4mK

.K � 1/2 ;

and we get

hh�0;E j �0;E ii0;E

D Tr.Œ8
p
K � .E � A/2�Œ.K C 1/2 � 4.E � A/2��1/ > 0;

(5.3)

and

h�0;E j �0;E i0;E

D Tr.Œ16.K � .E � A/2/�ŒK..K C 1/2 � 4.E � A/2/��1/ > 0:
(5.4)

We can finally prove Theorem 1.2.
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Proof of Theorem 1.2. We only need to prove (1.2). Recall that the maps .�; E; �/ !

�;ECi� 2 K1, .�; E; �/ 7! ��;ECi� 2 K and .�; E; �/ 7! ��;ECi� 2 K are
continuous on„, which by construction is an open neighborhood of f.0; E; 0/ W E 2
IA;Kg in R�R�Œ0;1/. Using (3.26) and Dominated Convergence one obtains that the
map .�; E; �/ 2 R�R�Œ0;1/ 7! B�;ECi� 2 B.K/ is continuous with respect to the
strong operator topology. By Proposition 3.5 we conclude that the map .�; E; �/ 2
„ ! B�;ECi�M.


K�1
�;ECi�

/��;ECi� 2 K is continuous. Thus, it follows from (4.16),
the definition of hh� j �ii�;z , that the real valued maps (cf Lemma 4.4) .�; E; �/ !
hh��;ECi� j ��;ECi�ii�;ECi� and .�; E; �/ ! hh��;ECi� j ��;ECi�ii�;ECi� have
continuous extensions to „. Moreover, by (5.3) and (5.4) these extensions satisfy

hh��;ECi� j ��;ECi�ii�;ECi� > 0 and hh��;ECi� j ��;ECi�ii�;ECi� > 0;

for .�; E; �/ in some open neighborhood of f.0; E; 0/ W E 2 IA;Kg in R�R�Œ0;1/.
Eq. (1.2) now follows from (5.2).
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