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A family of anisotropic integral operators
and behavior of its maximal eigenvalue

Boris S. Mityagin and Alexander V. Sobolev

Abstract. We study the family of compact integral operators K g in L2(RR) with the kernel

i 1
Koty = o G+ oty

depending on the parameter 8 > 0, where ©(x, y) is a symmetric non-negative homogeneous
function of degree y > 1. The main result is the following asymptotic formula for the maximal
eigenvalue Mg of Kg:

Mg = 1= B7T +0(B751), B —0,

where A; is the lowest eigenvalue of the operator A = |d/dx| + ©(x,x)/2. A central
role in the proof is played by the fact that Kg, 8 > 0, is positivity improving. The case
O(x,y) = (x2 + y?)? has been studied earlier in the literature as a simplified model of
high-temperature superconductivity.
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1. Introduction and the main result

1.1. Introduction. The object of the study is the following family of integral oper-
ators on L2(R):

Kpu(x) = /KB (x, Y)u(y)dy, (1)

(here and below we omit the domain of integration if it is the entire real line R) with
the kernel

1 1
Kg(x,y) =

714 (x— )%+ p20(x, y)’ @
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where § > 0 is a small parameter, and the function ® = ®(x, y) is a homogeneous
non-negative function of x and y such that

O(tx,ty) =t"0(x,y), y >0, 3)

forall x,y € Rand ¢ > 0, and the following conditions are satisfied:

c<Ox,y)<C, |[xP+yP=1,
{ 4)

O(x,y) =0(y,x), x,y€R.

By C or ¢ (with or without indices) we denote various positive constants whose value
is of no importance. The conditions (3) and (4) guarantee that the operator Kg is
self-adjoint and compact.

Such an operator, with ©(x, y) = (x% + y2)? was suggested by P. Krotkov and
A. Chubukov in [6] and [7] as a simplified model of high-temperature superconductiv-
ity. The analysis in [6] and [7] reduces to the asymptotics of the top eigenvalue Mg of
the operator K g as B — 0. Heuristics in [6] and [7] suggest that Mg should behave as

1—wp $40 B %) with some positive constant w. A mathematically rigorous argument
given by B. S. Mityagin in [9] produced a two-sided bound supporting this formula.
The aim of the present paper is to find and justify an appropriate two-term asymptotic
formula for Mg as B — 0 for a homogeneous function ® satisfying (3), (4), and
some additional smoothness conditions (see (8)).

As B — 0, the operator Kg converges strongly to the positive-definite operator
Ky, which is no longer compact. The norm of Ky is easily found using the Fourier
transform

¢ _; —iEx
f© == /e F(x)dx,

which is unitary on L2(R). Then one checks directly that

t 1
the Fourier transform of m;(x) = - 1> 0,
1 Tte+x (5)
equals 71 = e_”Sl,
q t(€) T

and hence the operator Ky is unitarily equivalent to the multiplication by the function
e8| which means that |Ko|| = 1.

1.2. The main result. For the maximal eigenvalue Mg of the operator K g denote by
Wy a corresponding normalized eigenfunction. Note that the operator K g is positivity
improving, i.e for any non-negative non-zero function u the function K gu is positive
a.a. x € R (see [12], Chapter XIII.12). Thus, by [12], Theorem XIII.43 (or by [3],
Theorem 13.3.6), the eigenvalue Mg is non-degenerate and the eigenfunction Wg can
be assumed to be positive a.a. x € R. From now on we always choose Wg in this
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way. Note in passing that due to the continuity of the kernel Kg(x, y) in the variable
x the function Wy is in fact continuous and strictly positive for all x € R.
The behavior of Mg as B — 0, is governed by the model operator

(Au)(x) = | Dyfu(x) + 2710 (x)u(x). (6)
where
[x]YO(1,1), x > 0;

0(x) = O(x, x) =
(x) = O x) {|x|y®(—1,—1), x <0.

This operator is understood as the pseudo-differential operator Op(a) with the symbol

a(x,§) = [E] +2716(x). (7

For the sake of completeness recall that P = Op(p) is a pseudo-differential operator
with the symbol p = p(x, §) if

1 .
(P)e) = 5= [0 pix.putrdyas

for any Schwartz class function u. The operator A is essentially self-adjoint on
Cs°(R), and has a purely discrete spectrum (see e.g. [14], Theorems 26.2, 26.3).
Using the von Neumann Theorem (see e.g. [11], Theorem X.25), one can see that A
is self-adjoint on D(A) = D(|Dx|) N D(|x|?),i.e D(A) = H'(R) N L%(R, |x|?").
Denote by A; > 0,/ = 1,2, ... the eigenvalues of A arranged in ascending order,
and by ¢; the corresponding normalized eigenfunctions. As shown in Lemma 2, the
lowest eigenvalue A is non-degenerate and its eigenfunction ¢; can be chosen to be
non-negative a.a. x € R. From now on we always choose ¢; in this way.
The main result of this paper is contained in the next theorem.

Theorem 1. Let Kg be an integral operator defined by (1) with 'y > 1. Suppose that
the function © satisfies conditions (3), (4), and the following Lipshitz conditions:

{|®(z,1)—®(1,1)|5€|z—1|, re(l—e1+e), )

10, —1) = O(=1,—)| < Clt + 1], te(=1—e—1+e),

with some ¢ > 0. Let Mg be the largest eigenvalue of the operator Kg and let Vg
be the corresponding eigenfunction. Then

lim BTV (1 — Mg) = A,.
—0

. . 1 — _2 .
Moreover, the rescaled eigenfunctions o~ 2 Wg (« L), a = B¥FT, converge in norm
to ¢y as B — 0.
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The eigenvalue Mg was studied by B. Mityagin in [9] for ©(x, y) = (x4 y?)°,

o > 0. It was conjectured that limg_, ,8_202+1 (1—=Mg) = L withsome L > 0, but
only the two-sided bound

BT < 1— Mg < CpTFT,

with some constants 0 < ¢ < C was proved. It was also conjectured that in the
case 0 = 2 the constant L should coincide with the lowest eigenvalue of the operator
| D |+4x*. Note that for this case the corresponding operator (6)isinfact| D [+2x*.
J. Adduci found an approximate numerical value A; = 0.978 ... in this case, see [1].

Similar eigenvalue asymptotics were investigated by H. Widom in [15] for inte-
gral operators with difference kernels. Some ideas of [15] are used in the proof of
Theorem 1.

Let us now establish the non-degeneracy of the eigenvalue A;.

Lemma 2. Let A be as defined in (6). Then

A s positivity improving for all t > 0,

(1) the semigroup e~
(2) the lowest eigenvalue A1 is non-degenerate, and the corresponding eigenfunction

@1 can be chosen to be positive a.a. x € R.

Proof. The non-degeneracy of A; and positivity of the eigenfunction ¢; would follow
from the fact that e ~*A is positivity improving forall # > 0, see [12], Theorem XII1.44.
The proof of this fact is done by comparing the semigroups for the operators A and

Ao = |Dy/|. Using (5) it is straightforward to find the integral kernel of e ~*Ao:
1 t
mix—y)=————— >0,
(=) Tt2+ (x —y)?

which shows that e ~#A0 is positivity improving. To extend the same conclusion to
e~IA Jet
2710(x), |x| < n,
Va(x) = n=12,....

{2_19(j:n), +x > n,
Since (Ao + V) f — Afand (A—V,)f — Ao f asn — ooforany f € C5°(R),
by [10], Theorem VIII.25a, the operators Ay + V;, and A — V;, converge to A and A
resp. in the strong resolvent sense as n — oo. Thus by [12], Theorem XIIL.45, the
semigroup e A is also positivity improving for all # > 0, as required. O
1.3. Rescaling. As a rule, instead of Kpg it is more convenient to work with the
operator obtained by rescaling x — o 'x with o > 0. Precisely, let U, be the
unitary operator on L2(R) defined as (Uy f)(x) = a_%f(a_lx). Then U, KgUy; is
the integral operator with the kernel

o 1
Ta?+ (x — )2 + fRar20(x, y)
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Under the assumption 82 = !, this kernel becomes

Ba(x.y) = = 1 ©)
X,y)=— .
V= ey (x —y)2+a30(x,y)
Thus, denoting the corresponding integral operator by B, we get
Kg = U'BuUy, o= pril. (10)

Henceforth the value of « is always chosen as in this formula.

Denote by 11, the maximal eigenvalue of the operator B, and by v/, — the corre-
sponding normalized eigenfunction. By the same token as for the operator Kg, the
eigenvalue [, is non-degenerate and the choice of the corresponding eigenfunction
Y4 is determined uniquely by the requirement that ¥, > 0. Moreover,

fa = Mg, Yax) = Ua¥p)(x) = e 2 W@ x), =71 (1)

This rescaling allows one to rewrite Theorem 1 in a somewhat more compact form.

Theorem 3. Let y > 1 and suppose that the function © satisfies conditions (3), (4),
and (8). Then

lim o 1(1 — pg) = A1
a—0
Moreover; the eigenfunctions V,, converge in norm to @1 as o — 0.

The rest of the paper is devoted to the proof of Theorem 3, which immediately
implies Theorem 1.

2. “De-symmetrization” of Kg and B,

First we de-symmetrize the operator Kg. Denote

Kueo = [k nudy.

with the kernel
1 1

71+ (x —y)2+ B20(x)

l
K (x.y) =

Lemma 4. Let 8 < 1 and y > 1. Suppose that the conditions (3), (4), and (8) are
satisfied. Then

2
Ky —Kgl < CyB7. (12)
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Proof. Due to (3) and (4),

c(t]+ 1D <0, £1) <C(t] + 1), teR. (13)
Also,

Ot 1) — 01, )] < C(jt| + 1~ — 1],
{l €. ) -0, D= C(+ D e -1 (14)

101, —1) = O(=1,—1)| < C(|jt| + 1) r + 1],

for all # € R. Indeed, (8) leads to the first inequality (14) for |t — 1| < e. For
|t — 1] > ¢ it follows from (13) that

1©(t,1) — (1, 1)| < C(jt| + DY < C'e7 (je] + DY M —1].

The second bound in (14) is checked similarly.
Now we can estimate the difference of the kernels

Kp(x.y) — Kg'(x, y)
_1 BA(O(x.x) — O(x. y)) (15)
(4 (x— )2+ B2O(x. y) (1 + (x — y)2 4 f20(x. X))’

It follows from (14) with = y|x|~! that
©(x, x) = Oy, x)| = C(lx| + [y x = yl.
Substituting into (15), we get

|x -yl B>(Ix] + Iy !
(1+ (=)0 (1+B2(Ix][ + [y)7)

for any 6 € (0, 1). The second factor on the right-hand side does not exceed

)
|Kp(x.y) — Ky (x. )| < C

171

2
TS )

XN

=Cp7.

under the assumption that § > 1 — y~!. Therefore

lx — y|
(1+ (x —y)?)2 8

For any § € (0, 1) the right hand side is integrable in x (or y). Now, estimating the
norm using the standard Schur Test, see Proposition 15, we conclude that

2
|Kp(x.y) — Ky (x.y)| < Cp

|7 2
Ky ~K) < B3 [ Dy < B3,

which is the required bound. O
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Similarly to the operator Kg, it is readily checked by scaling that the operator
Kg) is unitarily equivalent to the operator B((xl ) with the kernel

1 o
BD(x,y) = — ) 16
a (¥.) Ta?+ (x—y)?+a36(x) (16)
Thus the bound (12) ensures that
] 1
IBo —BY|| = [Kg — K| < Ca'*7. =<1, (17)

see (10) for the definition of «.

3. Approximation for Bg)

3.1. Symbol of Bg) . Now our aim is to show that the operator / — A is an approx-

imation of the operator Bg), defined above. To this end we need to represent Bg) as
a pseudo-differential operator. Rewriting the kernel (16) as

BP(x,y) =t ma(x —y), 1 = galx),

with
gu(x) = V1 +ab(x), (18)

and using (5), we can write for any Schwartz class function u:

Bu)(x) = % / / ! CTED (x, Hu(v)dyds,

where
1

e YlElga(x)
ga(X)

b (x.8) =
Thus B’ = op(v{).

3.2. Approximation for Bg). Let the operator A and the symbol a(x, &) be as
defined in (6) and (7). Our first objective is to check that the error

ro(x, &) = b (x,£) — (1 — aa(x, £))

is small in a certain sense. The condition y > 1 will allow us to use standard norm
estimates for pseudo-differential operators. Using the formula

y
e_"‘yzl—ozy+oz/ (1 —e"Ndt, y >0,
0
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we can split the error as follows:

ra(x, &) =V (x) + rP(x,6),

riV(x) = Ly @2710(x) — 1,
g(x)

1Elg (x)
®) _ _—at
Ty (x,E)——g(x)/O (1 —e %)dt,

where we have used the notation g(x) = g4 (x) with g, defined in (18). Since y > 1,
we have

lg'(0)] = Cglx), C=C(y), x#0, (19)
for all @ < 1. Introduce also the function ¢ € C°°(R4) such that
x, 0<x<1;
2, x>2.

§'(x) =0, £(x) = {

Note that
C(x1x2) <28(x1)x2, x1 >0, x2 > 1. (20)

We study the above components V), r separately and introduce the function

eM(x) = riP(x), Q1)

1
(x)7 ¢ (a(x)Y)
and the symbol

eP(x,£) = ga(x) T ((@(EN)* (EN P (x,6). (22)

where x € (0, 1]is a fixed number. To avoid cumbersome notation the dependence of
eéz) on x is not reflected in the notation. We denote the operators Op(r,) and Op(ey)
by R, and E,, respectively (with or without superscripts).

Lemma 5. Let y > 1. Then for all o« > 0,
lelll oo < Ca.

Proof. Estimate the function ro(,l):

Ca?|x|?, af(x) <1/2,
| < | SR et =

Calx|?, af(x) > 1/2,
with a constant C independent of x. The second estimate is immediate, and the first
one follows from the Taylor’s formula

1 t 1
=1—=—4+0(?%, 0<t<-.
N TR 2
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Thus
rV(x)| < Calx|” ¢ (alx]).

This leads to the proclaimed estimate for e(gl). O
Lemma 6. Let y > 1. Then for all @ > 0 and any » € (0, 1],

IEQ| < Cra.

Proof. To estimate the norm of Op(eéz))) we use Proposition 16. It is clear that the

distributional derivatives 0, g, dxd¢ of the symbol e,g,z) (x, &) exist and are given by

©) o £le —at o / —alElg
yr (x,s)=—;g/0 (1= e+ Zielg'(1 - 7),

asro(tz)(xv %—) = Sign g(l — e_“|$|g)’
0x0gr? (x,§) = a2gg e I8,

forall x # 0,& # 0. For any x € (0, 1] the elementary bounds hold:

1&g
/0 (1—e™*)dr < |§|gt(«l€]g)) < 21EIg" ¥ E((l€)).
11— e 8] < £ ((alElg)™) < 287 L((@|ED™).
alElge 8 < r((alE]9)) < 287 C((a[E)).
Here we have used (20). Thus, in view of (19),

PP (2, )] + 1052 (x. 6)] + 105 (x. §)| < Ca(E)g*C((@lE)™).
Also,

1006 (x. £)] < a%mage—“'ﬂg) < Calgl*t((@lE)).

Now estimate the derivatives of the weights:
0x8 | =g g’ < Cg™, x#0,

1
(E)2C((e(E))

Thus the symbol eéz) (x, &) as well as its derivatives 0, dg, dx ¢ are bounded by Car
for all « > O uniformly in x,&. Now the required estimate follows from Proposi-
tion 16. O

0 ((E)S (&)~ = C £eR.

We make a useful observation.
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Corollary 7. Let y > 1 and x € (0, 1]. Then for any function f € D(A),
MRV f| =0, a—0, (23)
a E@ (D) ((@(Dx)*) f| = 0, a— 0. (24)

Proof. Rewrite:
IR £ = IEL (x)7 ¢@fx)) [ < [EP | 1) @) fIl. @295)

By Lemma 5 the norm of E((,,l) on the right-hand side is bounded by C«. The function
(x)Y¢(a(x)?) f tends to zero as @ — 0 a.a. x € R, and it is uniformly bounded by
the function (x)?|f|, which belongs to L2, since f € D(A). Thus the second
factor in (25) tends to zero as @ — 0 by the Dominated Convergence Theorem. This
proves (23).

Proof of (24). Estimate:

IE@ (D) (@(D)*) £ 1 < IE@| (@ (EN*) fII.

By Lemma 6 the norm of the first factor on the right-hand side is bounded by C«. The
second factor tends to zero as @ — 0 for the same reason as in the proof of (23). [

4. Norm-convergence of the extremal eigenfunction

Recall that the maximal positive eigenvalue j,, of the operator B, is non-degenerate,
and the corresponding (normalized) eigenfunction v is positive a.a. x € R.

The principal goal of this section is to prove that any infinite subset of the family
Y, ¢ < 1 contains a norm-convergent sequence. We begin with an upper bound for
1 — pq which will be crucial for our argument.

Lemma 8. Ify > 1, then
limsupa ™' (1 — f1g) < A1 (26)

a—0
Proof. Denote ¢ = ¢;. By a straightforward variational argument it follows that
ta = (Bag.¢) = (B¢, ¢)| — |Bo — BY|
= (I —aA)g.¢) — [(Rag. 9)| + o()
=1 —adi — [Rap. 9)| + 0(a),
where we have also used (17). By definitions (21) and (22),
(Rawp, 9)| < IRl + IEZ (D)L ( (D))l gzl

where x € (0, 1]. It is clear that g¥¢ € L? and its norm is bounded uniformly in
a < 1. The remaining terms on the right-hand side are o(«) due to Corollary 7. This
leads to (26). Ol
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The established upper bound leads to the following property.

Lemma 9. For any x € (0, 1),

lgavall = C

uniformly ina < 1.
Proof. By definition of v,

iV = 1y gXBaVa.

In view of (4), by definition (18) we have ®(x, y) > C|x|¥ > c6(x), so that the
kernel B, (x, y) is bounded from above by

o C

w(x = y)? + a?ge(x)?

Ba (xa y) S
and thus the kernel By (x,y) = ga(x)*By(x, y) satisfies the estimate

~ C 1
By(x,y) = — 1-%°
7o (140 2(x — )?)'

Since % < 1, by Proposition 15 this kernel defines a bounded operator with the norm
uniformly bounded in & > 0. Thus

lgXVall < Cugt el < Cuy'.

It remains to observe that by Lemma 8 the eigenvalue 4 is separated from zero
uniformly ino < 1. O

Now we obtain more delicate estimates for ¥,. For a number # > 0 introduce

the function
o 1

T +12+h
and denote by Sy (/) the integral operator with the kernel S, (x — y; #). Along with
S« (h) we also consider the operator

To(h) = Sa(0) — Sq/(h).

Sa(t:h) = teR, 27)

Due to (5) the Fourier transform of Sy (z; &) is

~ (07 _ /2
Se(é:h) = —————¢ I§| Ve +h, e R, 28
& V2r e+ h ¢ 29
so that
1Sa(M) | = . [ Ta(h)] = 1 — ———. (29)
Va2 4+ h Va2 4+ h

Denote by Xr the characteristic function of the interval (—R, R).
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Lemma 10. For sufficiently small o« > 0 and aR < 1,

A 41
Iaxgl? = 1= . (30)

Proof. Since By(x,y) < Sq(x — y;0) (see (9) and (27)) and ¥, > 0, we can write,
using (28):

_ o _ —alé]|.j 2
ua—(Bawa,waR/R/[RSa(x : 0) Yo (X) Yo (y)dxdy /[Re Ve (§)?dE

< Aa 2d + —aR AO( 2d

/mst (¢)Pdé+e /|$|>le (6)]2d¢

— =) [ [a@ds + R
lE|<R
Due to (26), ity > 1 — 2aA; for sufficiently small o, so
1—e™ R —2ad; < (1— e ) |[ Va1,

which implies that

~ 20(/\1
||‘/’aXR||2 >1- T _ <R
Since e < (1 +s) ! foralls >0, weget (1 —e5)™ 1 <257 'for0<s <1,
which entails (30) for aR < 1. O

Lemma 11. For sufficiently small « > 0 and any R > 0,
5 C
Vgl = 14k = . (31)
with some constant C > 0 independent of o and R.
Proof. Tt follows from (4) that ©(x, y) > c|x|Y, so that the kernel By (x, y) satisfies

the bound
Bo(x,y) < Sq(x — y;ca®RY), for|x| >R > 0.

Since g > 0,
to = BaVa Vo) < (Sa(0)Va. Vaxg) + (Salca® R )Wa. Yol — xz))
= (Ta(ca’ R Vo, Vaxg) + (Sa(ca® RV )Yg, Vo).
In view of (29),
fta < | Ta(ca® RV [Vaxgll + ISa(ca®R)||

1Waipll +

1
(- F=ar) TR
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Using, as in the proof of the previous lemma, the bound (26), we obtain that

1 1
- 20l < (1 - — :
T h = (- g1l
SO
421(1 + caR?)
1= LR gl
This entails (31). O

Now we show that any sequence from the family 1, contains a norm-convergent
subsequence. The proof is inspired by [15], Lemma 7. We precede it with the
following elementary result.

Lemma 12. Let f; € L*(R) be a sequence such that | f;|| < C uniformly in
J=L12,...,and fj(x) = 0forall |x| > p>0andall j = 1,2,.... Suppose that
f; converges weakly to f € L*(R) as j — oo, and that for some constant A > 0,
and all R > Ry > 0,

1 fixpl = A—CR7P, §>0, (32)
uniformly in j. Then || f| > A.
Proof. Since f; are uniformly compactly supported, the Fourier transforms f}(é)
converge to f (£) a.a. £ € R? as j — oo. Moreover, the sequence /(&) is uniformly
bounded, so ffXR — f)(R, j — ocin L2(R) for any R > 0. Therefore (32) implies

that
If xgll = A—CR™.

Since R is arbitrary, we have || /|| = || f | > A, as claimed. O

Lemma 13. Forany sequence o, — 0,n — oo, there exists a subsequence o, — 0,
k — o0, such that the eigenfunctions Va,, converge innorm as k — oo.

Proof. Since the functions ¥, > 0 are normalized, there is a subsequence Wank
which converges weakly. Denote the limit by . From now on we write v instead
of Y, to avoid cumbersome notation. In view of the relations

Ve —¥? =1+ ¥ —2Re(Yk, ¥) = L —[[¥]|>. &k — oo,

it suffices to show that ||| = 1.
Fix a number p > 0, and split ¥ in the following way:

V) =y ) + 2. (@) = ) x, ().
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Clearly, W/Elz converges weakly to w, = ¥x, as k — o0o. Assume that o, < p™7,

so that by (31),

M2 c @2 €
(2] = l—py, (74 = 2

Therefore, for any R > 0,

N A _ _Y
1D 1l = 1kl — 19200 = 1= 44, R™' — Cp™ 3,

where we have used (30). By Lemma 12,
lwoll = 1-Cp~%.

Since p is arbitrary, ||| > 1, and hence ||| = 1. As a result, the sequence ¥
converges in norm, as claimed. Ol

5. Asymptotics of o, — 0: proof of Theorem 1

As before, by A;, 1 = 1,2, ... we denote the eigenvalues of A arranged in ascend-
ing order, and by ¢; the corresponding normalized eigenfunctions. Recall that the
lowest eigenvalue A; of the model operator A is non-degenerate and its (normal-
ized) eigenfunction ¢; is chosen to be positive a.a. x € R. We begin with proving
Theorem 3.

Proof of Theorem 3. The proof essentially follows the plan of [15]. It suffices to
show that for any sequence o, — 0,7 — oo, one can find a subsequence o, — 0,
k — oo such that

. —1 _
klg’goank (1 - I’L(xnk) - A’l5

and Y, converges in norm to ¢ as k — oo. By Lemma 13 one can pick a
subsequence &y, such that v, —converges in norm as k — o0. As in the proof of
Lemma 13 denote by y the limit, so ||| = 1 and ¥ > 0 a.e. For simplicity we
write Y instead of 1, . For an arbitrary function f € D(A) write

o (Vo [) = BaVa. f) = (Wa,B((xl)f) + (Y, (Bg _B((xl))f)

= (Va, f) — 0(Va, AS) + (Vo Ra f) + (Yo, By —BD) £).
This implies that

' (1=pe) War f) = Wa, Af) = (Yo, Ra f)—a (Y, Ba—BL) £). (33)

In view of (17) the last term on the right-hand side tends to zero as @ — 0. The first
term trivially tends to (¥, A f). Consider the second term:

|(Va. Ra )| = (Y. R ) + (€200 EP(D)C (@D )*) f)

< IR £+ lgZvall IEQ (D) (((Dx))*) f1I.
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Assume now that ¥ < 1. By Corollary 7 and Lemma 9, the right-hand side is o(),
and hence, if (¥, f) # 0, then passing to the limit in (33) we get

L _W.Af)
(ll_)moa l(l_lia)—W~

Let f = ¢; with some [, so that (¥, A ) = A; (¥, ¢;). Suppose that (v, ¢;) # 0, so
that

lim o 1(1 — fg) = A;.
a—0

By the uniqueness of the above limit, (v, ¢;) = Oforall j’ssuchthat A; # Aj. Thus,
by completeness of the system {¢y }, the function v is an eigenfunction of A with
the eigenvalue A;. In view of (26), A; < ;. Since the eigenvalues A; are labeled in
ascending order we conclude that A\; = A;. As this eigenvalue is non-degenerate and
the corresponding eigenfunction ¢; is positive a.e., we observe that ¥ = ¢;. O

Proof of Theorem 1. Theorem 1 follows from Theorem 3 due to the relations (11).
O

6. Miscellaneous

In this short section we collect some open questions related to the spectrum of the
operator (1).

6.1. Theorems I and 3 give information on the largest eigenvalue Mg of the operator
K defined in (1), (2). Let

Mg=Mipg>Myp>... (34)

be the sequence of all positive eigenvalues of Kg arranged in descending order. The
following conjecture is a natural extension of Theorem 1.

Conjecture 14. Forany j = 1,2, ...

lim BVEI(1— Mjg) = A, (35)
—0

where 1; < A, < ... are eigenvalues of the operator A defined in (6), arranged in
ascending order.

For the case O(x,y) = (x2 4+ y?)? the formula (35) was conjectured in [9],
Section 7.1, but without specifying what the values A; are. Asin [9], the formula (35)
is prompted by the paper [15] where asymptotics of the form (35) were found for an
integral operator with a difference kernel.
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6.2. Although the operator K g converges strongly to the positive-definite operator
Ko as B — 0, we can’t say whether or not Kg, 8 > 0, has negative eigenvalues.

6.3. Suppose that the function ®(x, y) in (2) is even, i.e O(—x,—y) = O(x, y),
x,y € R. Then the subspaces H® and H° of L?(R) of even and odd functions are in-
variant for K = Kg. Consider restriction operators K° = K | H*andK* =K | H°
and their positive eigenvalues )&; and /\J j =1,2,...,arranged in descending order.
Remembering that the top eigenvalue of K is non-degenerate and its eigenfunction
is positive a.e., one easily concludes that A{ > Aj. Are there similar inequalities for
the pairs A%, A5 with j > 17

7. Appendix. Boundedness of integral and pseudo-differential operators

In this Appendix, for the reader’s convenience we remind (without proofs) simple
tests of boundedness for integral and pseudo-differential operators acting on L2(R¢),
d > 1. Consider the integral operator

(K = [ Kexyumdy. (36)
with the kernel K(x,y), and the pseudo-differential operator
1 .
Opam == [ [ SV pumdys. 6D
2m)* Jga Jra

with the symbol a(x, &).
The following classical result is known as the Schur Test and it can be found, even
in a more general form, in [4], Theorem 5.2.

Proposition 15. Suppose that the kernel K satisfies the conditions
M, = sup/ |K(x,y)|dy < oo, My = sup/ |K(x,y)|dx < oo.
x JR4 y JR4

Then the operator (36) is bounded on L*(R?) and |K || < /M, M,.

For pseudo-differential operators on L2(R?) we use the test of boundedness found
by H. O. Cordes in [2], Theorem Bj.

Proposition 16. Ler a(x,£),x,& € R, d > 1, be a Sfunction such that its distri-
butional derivatives of the form V} Vg”a are L*°-functions for all0 < n,m < r,

where
d +1
r=|— .
2
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Then the operator (37) is bounded on L*(R?) and

< n m
[Op(a)| =C oJmax_ Vg Ve'all ;.
with a constant C depending only on d.

It is important for us that for d = 1 the above test requires the boundedness
of derivatives 9% Bg”a with n,m € {0, 1} only. This result is extended to arbitrary
dimensions by M. Ruzhansky and M. Sugimoto, see [13], Corollary 2.4. Recall that
the classical Calderén-Vaillancourt theorem needs more derivatives with respect to
each variable, see [2] and [13] for discussion. A short prove of Proposition 16 was
given by I. L. Hwang in [5], Theorem 2 (see also [8], Lemma 2.3.2 for a somewhat
simplified version).
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