J. Spectr. Theory 1 (2011), 443–460 DOI 10.4171/JST/19

A family of anisotropic integral operators and behavior of its maximal eigenvalue

Boris S. Mityagin and Alexander V. Sobolev

Abstract. We study the family of compact integral operators \mathbf{K}_{β} in $L^{2}(\mathbb{R})$ with the kernel

$$K_{\beta}(x, y) = \frac{1}{\pi} \frac{1}{1 + (x - y)^2 + \beta^2 \Theta(x, y)},$$

depending on the parameter $\beta > 0$, where $\Theta(x, y)$ is a symmetric non-negative homogeneous function of degree $\gamma \ge 1$. The main result is the following asymptotic formula for the maximal eigenvalue M_{β} of \mathbf{K}_{β} :

$$M_{\beta} = 1 - \lambda_1 \beta^{\frac{2}{\nu+1}} + o(\beta^{\frac{2}{\nu+1}}), \quad \beta \to 0,$$

where λ_1 is the lowest eigenvalue of the operator $\mathbf{A} = |d/dx| + \Theta(x, x)/2$. A central role in the proof is played by the fact that $\mathbf{K}_{\beta}, \beta > 0$, is positivity improving. The case $\Theta(x, y) = (x^2 + y^2)^2$ has been studied earlier in the literature as a simplified model of high-temperature superconductivity.

Mathematics Subject Classification (2010). Primary 45C05; Secondary 47A75.

Keywords. Eigenvalues, asymptotics, positivity improving integral operators, pseudo-differential operators, superconductivity.

1. Introduction and the main result

1.1. Introduction. The object of the study is the following family of integral operators on $L^2(\mathbb{R})$:

$$\mathbf{K}_{\beta}u(x) = \int K_{\beta}(x, y)u(y)dy, \qquad (1)$$

(here and below we omit the domain of integration if it is the entire real line \mathbb{R}) with the kernel

$$K_{\beta}(x,y) = \frac{1}{\pi} \frac{1}{1 + (x-y)^2 + \beta^2 \Theta(x,y)},$$
(2)

where $\beta > 0$ is a small parameter, and the function $\Theta = \Theta(x, y)$ is a homogeneous non-negative function of x and y such that

$$\Theta(tx, ty) = t^{\gamma} \Theta(x, y), \quad \gamma > 0, \tag{3}$$

for all $x, y \in \mathbb{R}$ and t > 0, and the following conditions are satisfied:

$$\begin{cases} c \le \Theta(x, y) \le C, & |x|^2 + |y|^2 = 1, \\ \Theta(x, y) = \Theta(y, x), & x, y \in \mathbb{R}. \end{cases}$$
(4)

By *C* or *c* (with or without indices) we denote various positive constants whose value is of no importance. The conditions (3) and (4) guarantee that the operator \mathbf{K}_{β} is self-adjoint and compact.

Such an operator, with $\Theta(x, y) = (x^2 + y^2)^2$ was suggested by P. Krotkov and A. Chubukov in [6] and [7] as a simplified model of high-temperature superconductivity. The analysis in [6] and [7] reduces to the asymptotics of the top eigenvalue M_β of the operator \mathbf{K}_β as $\beta \to 0$. Heuristics in [6] and [7] suggest that M_β should behave as $1-w\beta^{\frac{2}{5}}+o(\beta^{\frac{2}{5}})$ with some positive constant w. A mathematically rigorous argument given by B. S. Mityagin in [9] produced a two-sided bound supporting this formula. The aim of the present paper is to find and justify an appropriate two-term asymptotic formula for M_β as $\beta \to 0$ for a homogeneous function Θ satisfying (3), (4), and some additional smoothness conditions (see (8)).

As $\beta \to 0$, the operator \mathbf{K}_{β} converges strongly to the positive-definite operator \mathbf{K}_{0} , which is no longer compact. The norm of \mathbf{K}_{0} is easily found using the Fourier transform

$$\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int e^{-i\xi x} f(x) dx,$$

which is unitary on $L^2(\mathbb{R})$. Then one checks directly that

the Fourier transform of
$$m_t(x) = \frac{t}{\pi} \frac{1}{t^2 + x^2}, \quad t > 0,$$

equals $\hat{m}_t(\xi) = \frac{1}{\sqrt{2\pi}} e^{-t|\xi|},$ (5)

and hence the operator \mathbf{K}_0 is unitarily equivalent to the multiplication by the function $e^{-|\xi|}$, which means that $\|\mathbf{K}_0\| = 1$.

1.2. The main result. For the maximal eigenvalue M_{β} of the operator \mathbf{K}_{β} denote by Ψ_{β} a corresponding normalized eigenfunction. Note that the operator \mathbf{K}_{β} is positivity improving, i.e for any non-negative non-zero function u the function $\mathbf{K}_{\beta}u$ is positive a.a. $x \in \mathbb{R}$ (see [12], Chapter XIII.12). Thus, by [12], Theorem XIII.43 (or by [3], Theorem 13.3.6), the eigenvalue M_{β} is non-degenerate and the eigenfunction Ψ_{β} can be assumed to be positive a.a. $x \in \mathbb{R}$. From now on we always choose Ψ_{β} in this

way. Note in passing that due to the continuity of the kernel $K_{\beta}(x, y)$ in the variable x the function Ψ_{β} is in fact continuous and strictly positive for all $x \in \mathbb{R}$.

The behavior of M_{β} as $\beta \rightarrow 0$, is governed by the model operator

$$(Au)(x) = |D_x|u(x) + 2^{-1}\theta(x)u(x),$$
(6)

where

$$\theta(x) = \Theta(x, x) = \begin{cases} |x|^{\gamma} \Theta(1, 1), & x \ge 0; \\ |x|^{\gamma} \Theta(-1, -1), & x < 0. \end{cases}$$

This operator is understood as the pseudo-differential operator Op(a) with the symbol

$$a(x,\xi) = |\xi| + 2^{-1}\theta(x).$$
(7)

For the sake of completeness recall that P = Op(p) is a pseudo-differential operator with the symbol $p = p(x, \xi)$ if

$$(Pu)(x) = \frac{1}{2\pi} \iint e^{i(x-y)\xi} p(x,\xi)u(y)dyd\xi$$

for any Schwartz class function u. The operator **A** is essentially self-adjoint on $C_0^{\infty}(\mathbb{R})$, and has a purely discrete spectrum (see e.g. [14], Theorems 26.2, 26.3). Using the von Neumann Theorem (see e.g. [11], Theorem X.25), one can see that **A** is self-adjoint on $D(\mathbf{A}) = D(|D_x|) \cap D(|x|^{\gamma})$, i.e $D(\mathbf{A}) = H^1(\mathbb{R}) \cap L^2(\mathbb{R}, |x|^{2\gamma})$. Denote by $\lambda_l > 0$, l = 1, 2, ... the eigenvalues of **A** arranged in ascending order, and by φ_l the corresponding normalized eigenfunctions. As shown in Lemma 2, the lowest eigenvalue λ_1 is non-degenerate and its eigenfunction φ_1 can be chosen to be non-negative a.a. $x \in \mathbb{R}$. From now on we always choose φ_1 in this way.

The main result of this paper is contained in the next theorem.

Theorem 1. Let \mathbf{K}_{β} be an integral operator defined by (1) with $\gamma \geq 1$. Suppose that the function Θ satisfies conditions (3), (4), and the following Lipshitz conditions:

$$\begin{cases} |\Theta(t,1) - \Theta(1,1)| \le C|t-1|, & t \in (1-\varepsilon, 1+\varepsilon), \\ |\Theta(t,-1) - \Theta(-1,-1)| \le C|t+1|, & t \in (-1-\varepsilon, -1+\varepsilon), \end{cases}$$
(8)

with some $\varepsilon > 0$. Let M_{β} be the largest eigenvalue of the operator \mathbf{K}_{β} and let Ψ_{β} be the corresponding eigenfunction. Then

$$\lim_{\beta \to 0} \beta^{-\frac{2}{\nu+1}} (1 - M_{\beta}) = \lambda_1.$$

Moreover, the rescaled eigenfunctions $\alpha^{-\frac{1}{2}}\Psi_{\beta}(\alpha^{-1}\cdot)$, $\alpha = \beta^{\frac{2}{\nu+1}}$, converge in norm to φ_1 as $\beta \to 0$.

The eigenvalue M_{β} was studied by B. Mityagin in [9] for $\Theta(x, y) = (x^2 + y^2)^{\sigma}$, $\sigma > 0$. It was conjectured that $\lim_{\beta \to 0} \beta^{-\frac{2}{2\sigma+1}} (1 - M_{\beta}) = L$ with some L > 0, but only the two-sided bound

$$c\beta^{\frac{2}{2\sigma+1}} \leq 1 - M_{\beta} \leq C\beta^{\frac{2}{2\sigma+1}},$$

with some constants $0 < c \leq C$ was proved. It was also conjectured that in the case $\sigma = 2$ the constant *L* should coincide with the lowest eigenvalue of the operator $|D_x|+4x^4$. Note that for this case the corresponding operator (6) is in fact $|D_x|+2x^4$. J. Adduci found an approximate numerical value $\lambda_1 = 0.978 \dots$ in this case, see [1].

Similar eigenvalue asymptotics were investigated by H. Widom in [15] for integral operators with difference kernels. Some ideas of [15] are used in the proof of Theorem 1.

Let us now establish the non-degeneracy of the eigenvalue λ_1 .

Lemma 2. Let A be as defined in (6). Then

- (1) the semigroup $e^{-t\mathbf{A}}$ is positivity improving for all t > 0,
- (2) the lowest eigenvalue λ_1 is non-degenerate, and the corresponding eigenfunction φ_1 can be chosen to be positive a.a. $x \in \mathbb{R}$.

Proof. The non-degeneracy of λ_1 and positivity of the eigenfunction φ_1 would follow from the fact that $e^{-t\mathbf{A}}$ is positivity improving for all t > 0, see [12], Theorem XIII.44. The proof of this fact is done by comparing the semigroups for the operators \mathbf{A} and $\mathbf{A}_0 = |D_x|$. Using (5) it is straightforward to find the integral kernel of $e^{-t\mathbf{A}_0}$:

$$m_t(x-y) = \frac{1}{\pi} \frac{t}{t^2 + (x-y)^2}, \quad t > 0,$$

which shows that $e^{-t\mathbf{A}_0}$ is positivity improving. To extend the same conclusion to $e^{-t\mathbf{A}}$ let

$$V_n(x) = \begin{cases} 2^{-1}\theta(x), & |x| \le n, \\ 2^{-1}\theta(\pm n), & \pm x > n, \end{cases} \quad n = 1, 2, \dots$$

Since $(\mathbf{A}_0 + V_n) f \to \mathbf{A} f$ and $(\mathbf{A} - V_n) f \to \mathbf{A}_0 f$ as $n \to \infty$ for any $f \in C_0^{\infty}(\mathbb{R})$, by [10], Theorem VIII.25a, the operators $\mathbf{A}_0 + V_n$ and $\mathbf{A} - V_n$ converge to \mathbf{A} and \mathbf{A}_0 resp. in the strong resolvent sense as $n \to \infty$. Thus by [12], Theorem XIII.45, the semigroup $e^{-t\mathbf{A}}$ is also positivity improving for all t > 0, as required.

1.3. Rescaling. As a rule, instead of \mathbf{K}_{β} it is more convenient to work with the operator obtained by rescaling $x \to \alpha^{-1}x$ with $\alpha > 0$. Precisely, let U_{α} be the unitary operator on $L^2(\mathbb{R})$ defined as $(U_{\alpha}f)(x) = \alpha^{-\frac{1}{2}}f(\alpha^{-1}x)$. Then $U_{\alpha}\mathbf{K}_{\beta}U_{\alpha}^*$ is the integral operator with the kernel

$$\frac{\alpha}{\pi} \frac{1}{\alpha^2 + (x - y)^2 + \beta^2 \alpha^{-\gamma + 2} \Theta(x, y)}$$

Under the assumption $\beta^2 = \alpha^{\gamma+1}$, this kernel becomes

$$B_{\alpha}(x,y) = \frac{\alpha}{\pi} \frac{1}{\alpha^2 + (x-y)^2 + \alpha^3 \Theta(x,y)}.$$
(9)

Thus, denoting the corresponding integral operator by \mathbf{B}_{α} , we get

$$\mathbf{K}_{\beta} = U_{\alpha}^{*} \mathbf{B}_{\alpha} U_{\alpha}, \quad \alpha = \beta^{\frac{2}{\gamma+1}}.$$
 (10)

Henceforth the value of α is always chosen as in this formula.

Denote by μ_{α} the maximal eigenvalue of the operator \mathbf{B}_{α} , and by ψ_{α} – the corresponding normalized eigenfunction. By the same token as for the operator \mathbf{K}_{β} , the eigenvalue μ_{α} is non-degenerate and the choice of the corresponding eigenfunction ψ_{α} is determined uniquely by the requirement that $\psi_{\alpha} > 0$. Moreover,

$$\mu_{\alpha} = M_{\beta}, \quad \psi_{\alpha}(x) = (U_{\alpha}\Psi_{\beta})(x) = \alpha^{-\frac{1}{2}}\Psi_{\beta}(\alpha^{-1}x), \quad \alpha = \beta^{\frac{2}{\gamma+1}}.$$
 (11)

This rescaling allows one to rewrite Theorem 1 in a somewhat more compact form.

Theorem 3. Let $\gamma \ge 1$ and suppose that the function Θ satisfies conditions (3), (4), and (8). Then

$$\lim_{\alpha \to 0} \alpha^{-1} (1 - \mu_{\alpha}) = \lambda_1.$$

Moreover, the eigenfunctions ψ_{α} , converge in norm to φ_1 as $\alpha \to 0$.

The rest of the paper is devoted to the proof of Theorem 3, which immediately implies Theorem 1.

2. "De-symmetrization" of K_{β} and B_{α}

First we de-symmetrize the operator \mathbf{K}_{β} . Denote

$$\mathbf{K}_{\beta}^{(l)}u(x) = \int K_{\beta}^{(l)}(x, y)u(y)dy,$$

with the kernel

$$K_{\beta}^{(l)}(x,y) = \frac{1}{\pi} \frac{1}{1 + (x-y)^2 + \beta^2 \theta(x)}.$$

Lemma 4. Let $\beta \le 1$ and $\gamma \ge 1$. Suppose that the conditions (3), (4), and (8) are satisfied. Then

$$\|\mathbf{K}_{\beta}^{(l)} - \mathbf{K}_{\beta}\| \le C_{\gamma} \beta^{\frac{2}{\gamma}}.$$
(12)

Proof. Due to (3) and (4),

$$c(|t|+1)^{\gamma} \le \Theta(t,\pm 1) \le C(|t|+1)^{\gamma}, \quad t \in \mathbb{R}.$$
 (13)

Also,

$$\begin{cases} |\Theta(t,1) - \Theta(1,1)| \le C(|t|+1)^{\gamma-1}|t-1|, \\ |\Theta(t,-1) - \Theta(-1,-1)| \le C(|t|+1)^{\gamma-1}|t+1|, \end{cases}$$
(14)

for all $t \in \mathbb{R}$. Indeed, (8) leads to the first inequality (14) for $|t - 1| < \varepsilon$. For $|t - 1| \ge \varepsilon$ it follows from (13) that

$$|\Theta(t,1) - \Theta(1,1)| \le C(|t|+1)^{\gamma} \le C' \varepsilon^{-1} (|t|+1)^{\gamma-1} |t-1|.$$

The second bound in (14) is checked similarly.

Now we can estimate the difference of the kernels

$$K_{\beta}(x, y) - K_{\beta}^{(l)}(x, y) = \frac{1}{\pi} \frac{\beta^2(\Theta(x, x) - \Theta(x, y))}{(1 + (x - y)^2 + \beta^2 \Theta(x, y))(1 + (x - y)^2 + \beta^2 \Theta(x, x))}.$$
(15)

It follows from (14) with $t = y|x|^{-1}$ that

$$|\Theta(x,x) - \Theta(y,x)| \le C(|x| + |y|)^{\gamma-1}|x-y|.$$

Substituting into (15), we get

$$|K_{\beta}(x,y) - K_{\beta}^{(l)}(x,y)| \le C \frac{|x-y|}{(1+(x-y)^2)^{2-\delta}} \frac{\beta^2 (|x|+|y|)^{\gamma-1}}{(1+\beta^2 (|x|+|y|)^{\gamma})^{\delta}},$$

for any $\delta \in (0, 1)$. The second factor on the right-hand side does not exceed

$$\beta^{\frac{2}{\nu}} \max_{t \ge 0} \frac{t^{\nu - 1}}{(1 + t^{\nu})^{\delta}} = C\beta^{\frac{2}{\nu}},$$

under the assumption that $\delta \ge 1 - \gamma^{-1}$. Therefore

$$|K_{\beta}(x, y) - K_{\beta}^{(l)}(x, y)| \le C\beta^{\frac{2}{\nu}} \frac{|x - y|}{(1 + (x - y)^2)^{2-\delta}}.$$

For any $\delta \in (0, 1)$ the right hand side is integrable in *x* (or *y*). Now, estimating the norm using the standard Schur Test, see Proposition 15, we conclude that

$$\|\mathbf{K}_{\beta} - \mathbf{K}_{\beta}^{(l)}\| \le C\beta^{\frac{2}{\gamma}} \int \frac{|t|}{(1+t^2)^{2-\delta}} dt \le C'\beta^{\frac{2}{\gamma}},$$

which is the required bound.

448

Similarly to the operator \mathbf{K}_{β} , it is readily checked by scaling that the operator $\mathbf{K}_{\beta}^{(l)}$ is unitarily equivalent to the operator $\mathbf{B}_{\alpha}^{(l)}$ with the kernel

$$B_{\alpha}^{(l)}(x,y) = \frac{1}{\pi} \frac{\alpha}{\alpha^2 + (x-y)^2 + \alpha^3 \theta(x)}.$$
 (16)

Thus the bound (12) ensures that

$$\|\mathbf{B}_{\alpha} - \mathbf{B}_{\alpha}^{(l)}\| = \|\mathbf{K}_{\beta} - \mathbf{K}_{\beta}^{(l)}\| \le C\alpha^{1+\frac{1}{\gamma}}, \quad \alpha \le 1,$$
(17)

see (10) for the definition of α .

3. Approximation for $B_{\alpha}^{(l)}$

3.1. Symbol of \mathbf{B}_{\alpha}^{(l)}. Now our aim is to show that the operator $I - \alpha \mathbf{A}$ is an approximation of the operator $\mathbf{B}_{\alpha}^{(l)}$, defined above. To this end we need to represent $\mathbf{B}_{\alpha}^{(l)}$ as a pseudo-differential operator. Rewriting the kernel (16) as

$$B_{\alpha}^{(l)}(x, y) = t^{-1}m_{\alpha t}(x - y), \quad t = g_{\alpha}(x),$$

with

$$g_{\alpha}(x) = \sqrt{1 + \alpha \theta(x)}, \qquad (18)$$

and using (5), we can write for any Schwartz class function u:

$$(\mathbf{B}_{\alpha}^{(l)}u)(x) = \frac{1}{2\pi} \iint e^{i(x-y)\xi} b_{\alpha}^{(l)}(x,\xi)u(y)dyd\xi,$$

where

$$b_{\alpha}^{(l)}(x,\xi) = \frac{1}{g_{\alpha}(x)} e^{-\alpha|\xi|g_{\alpha}(x)}.$$

Thus $\mathbf{B}_{\alpha}^{(l)} = \operatorname{Op}(b_{\alpha}^{(l)}).$

3.2. Approximation for B_{\alpha}^{(l)}. Let the operator A and the symbol $a(x, \xi)$ be as defined in (6) and (7). Our first objective is to check that the error

$$r_{\alpha}(x,\xi) = b_{\alpha}^{(l)}(x,\xi) - (1 - \alpha a(x,\xi))$$

is small in a certain sense. The condition $\gamma \ge 1$ will allow us to use standard norm estimates for pseudo-differential operators. Using the formula

$$e^{-\alpha y} = 1 - \alpha y + \alpha \int_0^y (1 - e^{-\alpha t}) dt, \quad y > 0,$$

we can split the error as follows:

$$r_{\alpha}(x,\xi) = r_{\alpha}^{(1)}(x) + r_{\alpha}^{(2)}(x,\xi),$$

$$r_{\alpha}^{(1)}(x) = \frac{1}{g(x)} + \alpha 2^{-1}\theta(x) - 1,$$

$$r_{\alpha}^{(2)}(x,\xi) = \frac{\alpha}{g(x)} \int_{0}^{|\xi|g(x)} (1 - e^{-\alpha t}) dt,$$

where we have used the notation $g(x) = g_{\alpha}(x)$ with g_{α} defined in (18). Since $\gamma \ge 1$, we have

$$|g'(x)| \le Cg(x), \quad C = C(\gamma), \quad x \ne 0,$$
(19)

for all $\alpha \leq 1$. Introduce also the function $\zeta \in C^{\infty}(\mathbb{R}_+)$ such that

$$\zeta'(x) \ge 0, \ \zeta(x) = \begin{cases} x, & 0 \le x \le 1; \\ 2, & x \ge 2. \end{cases}$$

Note that

$$\zeta(x_1 x_2) \le 2\zeta(x_1) x_2, \quad x_1 \ge 0, \ x_2 \ge 1.$$
(20)

We study the above components $r^{(1)}$, $r^{(2)}$ separately and introduce the function

$$e_{\alpha}^{(1)}(x) = \frac{1}{\langle x \rangle^{\gamma} \zeta(\alpha \langle x \rangle^{\gamma})} r_{\alpha}^{(1)}(x), \qquad (21)$$

and the symbol

$$e_{\alpha}^{(2)}(x,\xi) = g_{\alpha}(x)^{-\varkappa} (\zeta((\alpha\langle\xi\rangle))^{\varkappa}\langle\xi\rangle)^{-1} r_{\alpha}^{(2)}(x,\xi),$$
(22)

where $\varkappa \in (0, 1]$ is a fixed number. To avoid cumbersome notation the dependence of $e_{\alpha}^{(2)}$ on \varkappa is not reflected in the notation. We denote the operators $Op(r_{\alpha})$ and $Op(e_{\alpha})$ by \mathbf{R}_{α} and \mathbf{E}_{α} respectively (with or without superscripts).

Lemma 5. Let $\gamma \ge 1$. Then for all $\alpha > 0$,

$$\|e_{\alpha}^{(1)}\|_{L^{\infty}} \leq C\alpha.$$

Proof. Estimate the function $r_{\alpha}^{(1)}$:

$$|r_{\alpha}^{(1)}(x)| \leq \begin{cases} C\alpha^2 |x|^{2\gamma}, & \alpha\theta(x) \leq 1/2, \\ C\alpha |x|^{\gamma}, & \alpha\theta(x) > 1/2, \end{cases}$$

with a constant C independent of x. The second estimate is immediate, and the first one follows from the Taylor's formula

$$\frac{1}{\sqrt{1+t}} = 1 - \frac{t}{2} + O(t^2), \quad 0 \le t \le \frac{1}{2}.$$

Thus

$$|r_{\alpha}^{(1)}(x)| \le C\alpha |x|^{\gamma} \zeta(\alpha |x|^{\gamma})$$

This leads to the proclaimed estimate for $e_{\alpha}^{(1)}$.

Lemma 6. Let $\gamma \ge 1$. Then for all $\alpha > 0$ and any $\varkappa \in (0, 1]$,

 $\|\mathbf{E}_{\alpha}^{(2)}\| \leq C_{\varkappa}\alpha.$

Proof. To estimate the norm of $Op(e_{\alpha}^{(2)})$ we use Proposition 16. It is clear that the distributional derivatives ∂_x , ∂_{ξ} , $\partial_x \partial_{\xi}$ of the symbol $e_{\alpha}^{(2)}(x, \xi)$ exist and are given by

$$\begin{aligned} \partial_x r_{\alpha}^{(2)}(x,\xi) &= -\frac{\alpha}{g^2} g' \int_0^{|\xi|g} (1 - e^{-\alpha t}) dt + \frac{\alpha}{g} |\xi| g' (1 - e^{-\alpha |\xi|g}), \\ \partial_\xi r_{\alpha}^{(2)}(x,\xi) &= \alpha \, \text{sign} \, \xi (1 - e^{-\alpha |\xi|g}), \\ \partial_x \partial_\xi r_{\alpha}^{(2)}(x,\xi) &= \alpha^2 \xi g' e^{-\alpha |\xi|g}, \end{aligned}$$

for all $x \neq 0, \xi \neq 0$. For any $\varkappa \in (0, 1]$ the elementary bounds hold:

$$\begin{split} \int_0^{|\xi|g} (1-e^{-\alpha t})dt &\leq |\xi|g\zeta((\alpha|\xi|g)^{\varkappa}) \leq 2|\xi|g^{1+\varkappa}\zeta((\alpha|\xi|)^{\varkappa}),\\ &|1-e^{-\alpha|\xi|g}| \leq \zeta((\alpha|\xi|g)^{\varkappa}) \leq 2g^{\varkappa}\,\zeta((\alpha|\xi|)^{\varkappa}),\\ &\alpha|\xi|ge^{-\alpha|\xi|g} \leq \zeta((\alpha|\xi|g)^{\varkappa}) \leq 2g^{\varkappa}\zeta((\alpha|\xi|)^{\varkappa}). \end{split}$$

Here we have used (20). Thus, in view of (19),

$$|r_{\alpha}^{(2)}(x,\xi)| + |\partial_{\xi}r_{\alpha}^{(2)}(x,\xi)| + |\partial_{x}r_{\alpha}^{(2)}(x,\xi)| \le C\alpha\langle\xi\rangle g^{\varkappa}\zeta((\alpha|\xi|)^{\varkappa}).$$

Also,

$$|\partial_x \partial_{\xi} r_{\alpha}^{(2)}(x,\xi)| \le \alpha \frac{|g'|}{g} (\alpha |\xi| g e^{-\alpha |\xi|g}) \le C \alpha |g|^{\varkappa} \zeta((\alpha |\xi|)^{\varkappa}).$$

Now estimate the derivatives of the weights:

$$\begin{aligned} |\partial_x g^{-\varkappa}| &= \varkappa g^{-\varkappa - 1} g' \le C g^{-\varkappa}, \quad x \neq 0, \\ |\partial_{\xi} (\langle \xi \rangle \zeta ((\alpha \langle \xi \rangle)^{\varkappa}))^{-1}| &\le C \frac{1}{\langle \xi \rangle^2 \zeta ((\alpha \langle \xi \rangle)^{\varkappa})}, \quad \xi \in \mathbb{R}. \end{aligned}$$

Thus the symbol $e_{\alpha}^{(2)}(x,\xi)$ as well as its derivatives ∂_x , ∂_{ξ} , $\partial_x \partial_{\xi}$ are bounded by $C\alpha$ for all $\alpha > 0$ uniformly in x, ξ . Now the required estimate follows from Proposition 16.

We make a useful observation.

Corollary 7. Let $\gamma \ge 1$ and $\varkappa \in (0, 1]$. Then for any function $f \in D(\mathbf{A})$,

$$\alpha^{-1} \| \mathbf{R}_{\alpha}^{(1)} f \| \to 0, \quad \alpha \to 0, \tag{23}$$

$$\alpha^{-1} \| \mathbf{E}_{\alpha}^{(2)} \langle D_x \rangle \zeta ((\alpha \langle D_x \rangle)^{\varkappa}) f \| \to 0, \quad \alpha \to 0.$$
⁽²⁴⁾

Proof. Rewrite:

$$\|\mathbf{R}_{\alpha}^{(1)}f\| = \|\mathbf{E}_{\alpha}^{(1)}\langle x\rangle^{\gamma}\zeta(\alpha\langle x\rangle^{\gamma})f\| \le \|\mathbf{E}_{\alpha}^{(1)}\| \|\langle x\rangle^{\gamma}\zeta(\alpha\langle x\rangle^{\gamma})f\|.$$
(25)

By Lemma 5 the norm of $\mathbf{E}_{\alpha}^{(1)}$ on the right-hand side is bounded by $C\alpha$. The function $\langle x \rangle^{\gamma} \zeta(\alpha \langle x \rangle^{\gamma}) f$ tends to zero as $\alpha \to 0$ a.a. $x \in \mathbb{R}$, and it is uniformly bounded by the function $\langle x \rangle^{\gamma} |f|$, which belongs to L^2 , since $f \in D(\mathbf{A})$. Thus the second factor in (25) tends to zero as $\alpha \to 0$ by the Dominated Convergence Theorem. This proves (23).

Proof of (24). Estimate:

$$\|\mathbf{E}_{\alpha}^{(2)}\langle D_{x}\rangle\zeta((\alpha\langle D_{x}\rangle)^{\varkappa})f\| \leq \|\mathbf{E}_{\alpha}^{(2)}\| \|\langle\xi\rangle\zeta((\alpha\langle\xi\rangle)^{\varkappa})f\|$$

By Lemma 6 the norm of the first factor on the right-hand side is bounded by $C\alpha$. The second factor tends to zero as $\alpha \to 0$ for the same reason as in the proof of (23).

4. Norm-convergence of the extremal eigenfunction

Recall that the maximal positive eigenvalue μ_{α} of the operator \mathbf{B}_{α} is non-degenerate, and the corresponding (normalized) eigenfunction ψ_{α} is positive a.a. $x \in \mathbb{R}$.

The principal goal of this section is to prove that any infinite subset of the family $\psi_{\alpha}, \alpha \leq 1$ contains a norm-convergent sequence. We begin with an upper bound for $1 - \mu_{\alpha}$ which will be crucial for our argument.

Lemma 8. If $\gamma \ge 1$, then

$$\limsup_{\alpha \to 0} \alpha^{-1} (1 - \mu_{\alpha}) \le \lambda_1.$$
(26)

Proof. Denote $\varphi = \varphi_1$. By a straightforward variational argument it follows that

$$\mu_{\alpha} \ge (\mathbf{B}_{\alpha}\varphi,\varphi) \ge |(\mathbf{B}_{\alpha}^{(l)}\varphi,\varphi)| - ||\mathbf{B}_{\alpha} - \mathbf{B}_{\alpha}^{(l)}|$$
$$\ge ((I - \alpha \mathbf{A})\varphi,\varphi) - |(\mathbf{R}_{\alpha}\varphi,\varphi)| + o(\alpha)$$
$$= 1 - \alpha\lambda_{1} - |(\mathbf{R}_{\alpha}\varphi,\varphi)| + o(\alpha),$$

where we have also used (17). By definitions (21) and (22),

$$|(\mathbf{R}_{\alpha}\varphi,\varphi)| \leq \|\mathbf{R}_{\alpha}^{(1)}\varphi\| + \|\mathbf{E}_{\alpha}^{(2)}\langle D_{x}\rangle\zeta((\alpha\langle D_{x}\rangle)^{\varkappa})\varphi\| \|g_{\alpha}^{\varkappa}\varphi\|,$$

where $\varkappa \in (0, 1]$. It is clear that $g^{\varkappa}_{\alpha} \varphi \in L^2$ and its norm is bounded uniformly in $\alpha \leq 1$. The remaining terms on the right-hand side are $o(\alpha)$ due to Corollary 7. This leads to (26).

The established upper bound leads to the following property.

Lemma 9. For any $\varkappa \in (0, 1)$,

$$\|g_{\alpha}^{\varkappa}\psi_{\alpha}\|\leq C$$

uniformly in $\alpha \leq 1$.

Proof. By definition of ψ_{α} ,

$$g_{\alpha}^{\varkappa}\psi_{\alpha}=\mu_{\alpha}^{-1}g_{\alpha}^{\varkappa}\mathbf{B}_{\alpha}\psi_{\alpha}.$$

In view of (4), by definition (18) we have $\Theta(x, y) \ge C |x|^{\gamma} \ge c\theta(x)$, so that the kernel $B_{\alpha}(x, y)$ is bounded from above by

$$B_{\alpha}(x, y) \leq \frac{\alpha}{\pi} \frac{C}{(x-y)^2 + \alpha^2 g_{\alpha}(x)^2},$$

and thus the kernel $\widetilde{B}_{\alpha}(x, y) = g_{\alpha}(x)^{\varkappa} B_{\alpha}(x, y)$ satisfies the estimate

$$\widetilde{B}_{\alpha}(x,y) \leq \frac{C}{\pi\alpha} \frac{1}{(1+\alpha^{-2}(x-y)^2)^{1-\frac{\varkappa}{2}}}.$$

Since $\varkappa < 1$, by Proposition 15 this kernel defines a bounded operator with the norm uniformly bounded in $\alpha > 0$. Thus

$$\|g_{\alpha}^{\varkappa}\psi_{\alpha}\| \leq C\mu_{\alpha}^{-1}\|\psi_{\alpha}\| \leq C\mu_{\alpha}^{-1}.$$

It remains to observe that by Lemma 8 the eigenvalue μ_{α} is separated from zero uniformly in $\alpha \leq 1$.

Now we obtain more delicate estimates for ψ_{α} . For a number $h \ge 0$ introduce the function

$$S_{\alpha}(t;h) = \frac{\alpha}{\pi} \frac{1}{\alpha^2 + t^2 + h}, \quad t \in \mathbb{R},$$
(27)

and denote by $S_{\alpha}(h)$ the integral operator with the kernel $S_{\alpha}(x - y; h)$. Along with $S_{\alpha}(h)$ we also consider the operator

$$\mathbf{T}_{\alpha}(h) = \mathbf{S}_{\alpha}(0) - \mathbf{S}_{\alpha}(h).$$

Due to (5) the Fourier transform of $S_{\alpha}(t;h)$ is

$$\widehat{S}_{\alpha}(\xi;h) = \frac{\alpha}{\sqrt{2\pi}\sqrt{\alpha^2 + h}} e^{-|\xi|\sqrt{\alpha^2 + h}}, \quad \xi \in \mathbb{R},$$
(28)

so that

$$\|\mathbf{S}_{\alpha}(h)\| = \frac{\alpha}{\sqrt{\alpha^2 + h}}, \quad \|\mathbf{T}_{\alpha}(h)\| = 1 - \frac{\alpha}{\sqrt{\alpha^2 + h}}.$$
 (29)

Denote by χ_R the characteristic function of the interval (-R, R).

Lemma 10. For sufficiently small $\alpha > 0$ and $\alpha R \leq 1$,

$$\|\hat{\psi}_{\alpha}\chi_{R}\|^{2} \ge 1 - \frac{4\lambda_{1}}{R}.$$
(30)

Proof. Since $B_{\alpha}(x, y) < S_{\alpha}(x - y; 0)$ (see (9) and (27)) and $\psi_{\alpha} \ge 0$, we can write, using (28):

$$\begin{aligned} \mu_{\alpha} &= (\mathbf{B}_{\alpha}\psi_{\alpha},\psi_{\alpha}) < \int_{\mathbb{R}} \int_{\mathbb{R}} S_{\alpha}(x-y;0)\psi_{\alpha}(x)\psi_{\alpha}(y)dxdy = \int_{\mathbb{R}} e^{-\alpha|\xi|}|\hat{\psi}_{\alpha}(\xi)|^{2}d\xi \\ &\leq \int_{|\xi|\leq R} |\hat{\psi}_{\alpha}(\xi)|^{2}d\xi + e^{-\alpha R} \int_{|\xi|> R} |\hat{\psi}_{\alpha}(\xi)|^{2}d\xi \\ &= (1-e^{-\alpha R}) \int_{|\xi|\leq R} |\hat{\psi}_{\alpha}(\xi)|^{2}d\xi + e^{-\alpha R}. \end{aligned}$$

Due to (26), $\mu_{\alpha} \ge 1 - 2\alpha\lambda_1$ for sufficiently small α , so

$$1 - e^{-\alpha R} - 2\alpha \lambda_1 \le (1 - e^{-\alpha R}) \|\hat{\psi}_{\alpha} \chi_R\|^2,$$

which implies that

$$\|\hat{\psi}_{\alpha}\chi_{R}\|^{2} \geq 1 - \frac{2\alpha\lambda_{1}}{1 - e^{-\alpha R}}$$

Since $e^{-s} \le (1+s)^{-1}$ for all $s \ge 0$, we get $(1-e^{-s})^{-1} \le 2s^{-1}$ for $0 < s \le 1$, which entails (30) for $\alpha R \le 1$.

Lemma 11. For sufficiently small $\alpha > 0$ and any R > 0,

$$\|\psi_{\alpha}\chi_{R}\| \ge 1 - 4\alpha\lambda_{1} - \frac{C}{R^{\gamma}},\tag{31}$$

with some constant C > 0 independent of α and R.

Proof. It follows from (4) that $\Theta(x, y) \ge c |x|^{\gamma}$, so that the kernel $B_{\alpha}(x, y)$ satisfies the bound

$$B_{\alpha}(x, y) \leq S_{\alpha}(x - y; c\alpha^3 R^{\gamma}), \quad \text{for } |x| \geq R > 0.$$

Since $\psi_{\alpha} \geq 0$,

$$\mu_{\alpha} = (\mathbf{B}_{\alpha}\psi_{\alpha}, \psi_{\alpha}) \le (\mathbf{S}_{\alpha}(0)\psi_{\alpha}, \psi_{\alpha}\chi_{R}) + (\mathbf{S}_{\alpha}(c\alpha^{3}R^{\gamma})\psi_{\alpha}, \psi_{\alpha}(1-\chi_{R}))$$
$$= (\mathbf{T}_{\alpha}(c\alpha^{3}R^{\gamma})\psi_{\alpha}, \psi_{\alpha}\chi_{R}) + (\mathbf{S}_{\alpha}(c\alpha^{3}R^{\gamma})\psi_{\alpha}, \psi_{\alpha}).$$

In view of (29),

$$\mu_{\alpha} \leq \|\mathbf{T}_{\alpha}(c\alpha^{3}R^{\gamma})\| \|\psi_{\alpha}\chi_{R}\| + \|\mathbf{S}_{\alpha}(c\alpha^{3}R^{\gamma})\|$$
$$= \left(1 - \frac{1}{\sqrt{1 + c\alpha R^{\gamma}}}\right)\|\psi_{\alpha}\chi_{R}\| + \frac{1}{\sqrt{1 + c\alpha R^{\gamma}}}.$$

Using, as in the proof of the previous lemma, the bound (26), we obtain that

$$1 - \frac{1}{\sqrt{1 + c\alpha R^{\gamma}}} - 2\alpha\lambda_1 \le \left(1 - \frac{1}{\sqrt{1 + c\alpha R^{\gamma}}}\right) \|\psi_{\alpha}\chi_R\|,$$

so

$$1 - \frac{4\lambda_1(1 + c\alpha R^{\gamma})}{cR^{\gamma}} \le \|\psi_{\alpha}\chi_R\|$$

This entails (31).

Now we show that any sequence from the family ψ_{α} contains a norm-convergent subsequence. The proof is inspired by [15], Lemma 7. We precede it with the following elementary result.

Lemma 12. Let $f_j \in L^2(\mathbb{R})$ be a sequence such that $||f_j|| \leq C$ uniformly in $j = 1, 2, ..., and f_j(x) = 0$ for all $|x| \geq \rho > 0$ and all j = 1, 2, ... Suppose that f_j converges weakly to $f \in L^2(\mathbb{R})$ as $j \to \infty$, and that for some constant A > 0, and all $R \geq R_0 > 0$,

$$\|\hat{f}_j\chi_R\| \ge A - CR^{-\delta}, \quad \delta > 0, \tag{32}$$

uniformly in j. Then $||f|| \ge A$.

Proof. Since f_j are uniformly compactly supported, the Fourier transforms $\hat{f}_j(\xi)$ converge to $\hat{f}(\xi)$ a.a. $\xi \in \mathbb{R}^d$ as $j \to \infty$. Moreover, the sequence $\hat{f}_j(\xi)$ is uniformly bounded, so $\hat{f}_j \chi_R \to \hat{f} \chi_R$, $j \to \infty$ in $L^2(\mathbb{R})$ for any R > 0. Therefore (32) implies that

$$\|\hat{f}\chi_R\| \ge A - CR^{-\delta}$$

Since R is arbitrary, we have $||f|| = ||\hat{f}|| \ge A$, as claimed.

Lemma 13. For any sequence $\alpha_n \to 0$, $n \to \infty$, there exists a subsequence $\alpha_{n_k} \to 0$, $k \to \infty$, such that the eigenfunctions $\psi_{\alpha_{n_k}}$ converge in norm as $k \to \infty$.

Proof. Since the functions $\psi_{\alpha}, \alpha \ge 0$ are normalized, there is a subsequence $\psi_{\alpha n_k}$ which converges weakly. Denote the limit by ψ . From now on we write ψ_k instead of $\psi_{\alpha n_k}$ to avoid cumbersome notation. In view of the relations

$$\|\psi_k - \psi\|^2 = 1 + \|\psi\|^2 - 2\operatorname{Re}(\psi_k, \psi) \to 1 - \|\psi\|^2, \quad k \to \infty,$$

it suffices to show that $\|\psi\| = 1$.

Fix a number $\rho > 0$, and split ψ_k in the following way:

$$\psi_k(x) = \psi_{k,\rho}^{(1)}(x) + \psi_{k,\rho}^{(2)}(x), \quad \psi_{k,\rho}^{(1)}(x) = \psi_k(x)\chi_\rho(x).$$

Clearly, $\psi_{k,\rho}^{(1)}$ converges weakly to $w_{\rho} = \psi \chi_{\rho}$ as $k \to \infty$. Assume that $\alpha_{n_k} \leq \rho^{-\gamma}$, so that by (31),

$$\|\psi_{k,\rho}^{(1)}\|^2 \ge 1 - \frac{C}{\rho^{\gamma}}, \quad \|\psi_{k,\rho}^{(2)}\|^2 \le \frac{C}{\rho^{\gamma}}.$$

Therefore, for any R > 0,

$$\|\psi_{k,\rho}^{(1)}\chi_R\| \ge \|\hat{\psi}_k\chi_R\| - \|\psi_{k,\rho}^{(2)}\| \ge 1 - 4\lambda_1 R^{-1} - C\rho^{-\frac{\gamma}{2}}$$

where we have used (30). By Lemma 12,

$$||w_{\rho}|| \ge 1 - C\rho^{-\frac{\gamma}{2}}.$$

Since ρ is arbitrary, $\|\psi\| \ge 1$, and hence $\|\psi\| = 1$. As a result, the sequence ψ_k converges in norm, as claimed.

5. Asymptotics of $\mu_{\alpha}, \alpha \rightarrow 0$: proof of Theorem 1

As before, by λ_l , l = 1, 2, ... we denote the eigenvalues of **A** arranged in ascending order, and by φ_l the corresponding normalized eigenfunctions. Recall that the lowest eigenvalue λ_1 of the model operator **A** is non-degenerate and its (normalized) eigenfunction φ_1 is chosen to be positive a.a. $x \in \mathbb{R}$. We begin with proving Theorem 3.

Proof of Theorem 3. The proof essentially follows the plan of [15]. It suffices to show that for any sequence $\alpha_n \to 0, n \to \infty$, one can find a subsequence $\alpha_{n_k} \to 0$, $k \to \infty$ such that

$$\lim_{k\to\infty}\alpha_{n_k}^{-1}(1-\mu_{\alpha_{n_k}})=\lambda_1,$$

and $\psi_{\alpha_{n_k}}$ converges in norm to φ_1 as $k \to \infty$. By Lemma 13 one can pick a subsequence α_{n_k} such that $\psi_{\alpha_{n_k}}$ converges in norm as $k \to \infty$. As in the proof of Lemma 13 denote by ψ the limit, so $\|\psi\| = 1$ and $\psi \ge 0$ a.e. For simplicity we write ψ_{α} instead of $\psi_{\alpha_{n_k}}$. For an arbitrary function $f \in D(\mathbf{A})$ write

$$\mu_{\alpha}(\psi_{\alpha}, f) = (\mathbf{B}_{\alpha}\psi_{\alpha}, f) = (\psi_{\alpha}, \mathbf{B}_{\alpha}^{(l)}f) + (\psi_{\alpha}, (\mathbf{B}_{\alpha} - \mathbf{B}_{\alpha}^{(l)})f)$$
$$= (\psi_{\alpha}, f) - \alpha(\psi_{\alpha}, \mathbf{A}f) + (\psi_{\alpha}, \mathbf{R}_{\alpha}f) + (\psi_{\alpha}, (\mathbf{B}_{\alpha} - \mathbf{B}_{\alpha}^{(l)})f).$$

This implies that

$$\alpha^{-1}(1-\mu_{\alpha})(\psi_{\alpha}, f) = (\psi_{\alpha}, \mathbf{A}f) - \alpha^{-1}(\psi_{\alpha}, \mathbf{R}_{\alpha}f) - \alpha^{-1}(\psi_{\alpha}, (\mathbf{B}_{\alpha} - \mathbf{B}_{\alpha}^{(l)})f).$$
(33)

In view of (17) the last term on the right-hand side tends to zero as $\alpha \to 0$. The first term trivially tends to $(\psi, \mathbf{A} f)$. Consider the second term:

$$\begin{aligned} |(\psi_{\alpha}, \mathbf{R}_{\alpha} f)| &= (\psi_{\alpha}, \mathbf{R}_{\alpha}^{(1)} f) + (g_{\alpha}^{\varkappa} \psi_{\alpha}, \mathbf{E}_{\alpha}^{(2)} \langle D_{x} \rangle \zeta((\alpha \langle D_{x} \rangle)^{\varkappa}) f) \\ &\leq \|\mathbf{R}_{\alpha}^{(1)} f\| + \|g_{\alpha}^{\varkappa} \psi_{\alpha}\| \|\mathbf{E}_{\alpha}^{(2)} \langle D_{x} \rangle \zeta((\alpha \langle D_{x} \rangle)^{\varkappa}) f\|. \end{aligned}$$

Assume now that $\kappa < 1$. By Corollary 7 and Lemma 9, the right-hand side is $o(\alpha)$, and hence, if $(\psi, f) \neq 0$, then passing to the limit in (33) we get

$$\lim_{\alpha \to 0} \alpha^{-1} (1 - \mu_{\alpha}) = \frac{(\psi, \mathbf{A}f)}{(\psi, f)}.$$

Let $f = \varphi_l$ with some l, so that $(\psi, \mathbf{A}f) = \lambda_l(\psi, \varphi_l)$. Suppose that $(\psi, \varphi_l) \neq 0$, so that

$$\lim_{\alpha \to 0} \alpha^{-1} (1 - \mu_{\alpha}) = \lambda_l.$$

By the uniqueness of the above limit, $(\psi, \varphi_j) = 0$ for all *j*'s such that $\lambda_j \neq \lambda_k$. Thus, by completeness of the system $\{\varphi_k\}$, the function ψ is an eigenfunction of **A** with the eigenvalue λ_l . In view of (26), $\lambda_l \leq \lambda_1$. Since the eigenvalues λ_j are labeled in ascending order we conclude that $\lambda_l = \lambda_1$. As this eigenvalue is non-degenerate and the corresponding eigenfunction φ_1 is positive a.e., we observe that $\psi = \varphi_1$.

Proof of Theorem 1. Theorem 1 follows from Theorem 3 due to the relations (11). \Box

6. Miscellaneous

In this short section we collect some open questions related to the spectrum of the operator (1).

6.1. Theorems 1 and 3 give information on the largest eigenvalue M_{β} of the operator \mathbf{K}_{β} defined in (1), (2). Let

$$M_{\beta} \equiv M_{1,\beta} > M_{2,\beta} \ge \dots \tag{34}$$

be the sequence of all positive eigenvalues of \mathbf{K}_{β} arranged in descending order. The following conjecture is a natural extension of Theorem 1.

Conjecture 14. For any $j = 1, 2, \ldots$

$$\lim_{\beta \to 0} \beta^{-\frac{2}{\nu+1}} (1 - M_{j,\beta}) = \lambda_j,$$
(35)

where $\lambda_1 < \lambda_2 \leq \ldots$ are eigenvalues of the operator A defined in (6), arranged in ascending order.

For the case $\Theta(x, y) = (x^2 + y^2)^2$ the formula (35) was conjectured in [9], Section 7.1, but without specifying what the values λ_j are. As in [9], the formula (35) is prompted by the paper [15] where asymptotics of the form (35) were found for an integral operator with a difference kernel.

6.2. Although the operator \mathbf{K}_{β} converges strongly to the positive-definite operator \mathbf{K}_0 as $\beta \to 0$, we can't say whether or not $\mathbf{K}_{\beta}, \beta > 0$, has negative eigenvalues.

6.3. Suppose that the function $\Theta(x, y)$ in (2) is even, i.e $\Theta(-x, -y) = \Theta(x, y)$, $x, y \in \mathbb{R}$. Then the subspaces H° and H° of $L^{2}(\mathbb{R})$ of even and odd functions are invariant for $\mathbf{K} = \mathbf{K}_{\beta}$. Consider restriction operators $\mathbf{K}^{\circ} = \mathbf{K} \upharpoonright H^{\circ}$ and $\mathbf{K}^{\circ} = \mathbf{K} \upharpoonright H^{\circ}$ and their positive eigenvalues λ_{j}° and λ_{j}° , j = 1, 2, ..., arranged in descending order. Remembering that the top eigenvalue of \mathbf{K} is non-degenerate and its eigenfunction is positive a.e., one easily concludes that $\lambda_{1}^{\circ} > \lambda_{1}^{\circ}$. Are there similar inequalities for the pairs λ_{j}° , λ_{j}° with j > 1?

7. Appendix. Boundedness of integral and pseudo-differential operators

In this Appendix, for the reader's convenience we remind (without proofs) simple tests of boundedness for integral and pseudo-differential operators acting on $L^2(\mathbb{R}^d)$, $d \ge 1$. Consider the integral operator

$$(Ku)(\mathbf{x}) = \int_{\mathbb{R}^d} K(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d\mathbf{y},$$
(36)

with the kernel $K(\mathbf{x}, \mathbf{y})$, and the pseudo-differential operator

$$(\operatorname{Op}(a)u)(\mathbf{x}) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i(\mathbf{x}-\mathbf{y})\cdot\boldsymbol{\xi}} a(\mathbf{x},\boldsymbol{\xi})u(\mathbf{y})d\mathbf{y}\boldsymbol{\xi},$$
(37)

with the symbol $a(\mathbf{x}, \boldsymbol{\xi})$.

The following classical result is known as the Schur Test and it can be found, even in a more general form, in [4], Theorem 5.2.

Proposition 15. Suppose that the kernel K satisfies the conditions

$$M_1 = \sup_{\mathbf{x}} \int_{\mathbb{R}^d} |K(\mathbf{x}, \mathbf{y})| d\mathbf{y} < \infty, \quad M_2 = \sup_{\mathbf{y}} \int_{\mathbb{R}^d} |K(\mathbf{x}, \mathbf{y})| d\mathbf{x} < \infty$$

Then the operator (36) is bounded on $L^2(\mathbb{R}^d)$ and $||K|| \leq \sqrt{M_1 M_2}$.

For pseudo-differential operators on $L^2(\mathbb{R}^d)$ we use the test of boundedness found by H. O. Cordes in [2], Theorem B'_1 .

Proposition 16. Let $a(\mathbf{x}, \boldsymbol{\xi}), \mathbf{x}, \boldsymbol{\xi} \in \mathbb{R}^d, d \geq 1$, be a function such that its distributional derivatives of the form $\nabla^n_{\mathbf{x}} \nabla^m_{\boldsymbol{\xi}} a$ are L^{∞} -functions for all $0 \leq n, m \leq r$, where

$$r = \left[\frac{d}{2}\right] + 1.$$

Then the operator (37) is bounded on $L^2(\mathbb{R}^d)$ and

$$\|\operatorname{Op}(a)\| \leq C \max_{0 \leq n, m \leq r} \|\nabla_{\mathbf{x}}^{n} \nabla_{\boldsymbol{\xi}}^{m} a\|_{L^{\infty}},$$

with a constant C depending only on d.

It is important for us that for d = 1 the above test requires the boundedness of derivatives $\partial_x^n \partial_{\xi}^m a$ with $n, m \in \{0, 1\}$ only. This result is extended to arbitrary dimensions by M. Ruzhansky and M. Sugimoto, see [13], Corollary 2.4. Recall that the classical Calderón-Vaillancourt theorem needs more derivatives with respect to each variable, see [2] and [13] for discussion. A short prove of Proposition 16 was given by I. L. Hwang in [5], Theorem 2 (see also [8], Lemma 2.3.2 for a somewhat simplified version).

References

- J. Adduci, *Perturbations of self-adjoint operators with discrete spectrum*. Ohio State University, Columbus (Ohio), 2011, Ph.D. Thesis.
- H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators. *J. Funct. Anal.* 18 (1975), 115–131. MR 0377599 Zbl 0306.47024
- [3] E. B. Davies, *Linear operators and their spectra*. Cambridge University Press, Cambridge (U.K.), 2007. MR 2359869 Zbl 1138.47001
- [4] P. R. Halmos and V. Sh. Sunder, Bounded integral operators on L² spaces. Springer Verlag, Berlin, 1978. MR 0517709 Zbl 0389.47001
- [5] I. L. Hwang, The L₂-boundedness of pseudodifferential operators. *Trans. Am. Math. Soc.* 302 (1987), 55–76. MR 0887496 Zbl 0651.35089
- [6] P. Krotkov and A. Chubukov, Non-Fermi liquid and pairing in electron-doped cuprates. *Phys. Rev. Lett.* 96 (2006), 107002–107005.
- [7] P. Krotkov and A. Chubukov, Theory of non-Fermi liquid and pairing in electron-doped cuprates. *Phys. Rev. B* 74 (2006), 14509–14524.
- [8] N. Lerner, Some facts about the Wick calculus. Pseudo-differential operators. In L. Rodino (ed.) et al., *Pseudo-differential operators. Quantization and signals. Lectures given at the C.I.M.E. summer school, Cetraro, Italy, June 19–24, 2006.* Springer Verlag, Berlin, 2008, 135–174. MR 2477145 Zbl 1180.35596
- B. Mityagin, An anisotropic integral operator in high temperature superconductivity. *Isr. J. Math* 181 (2011), 1–28. MR 2773035 Zbl 1217.47089
- [10] M. Reed and B. Simon, Methods of modern mathematical physics I. Functional analysis and enl. ed. Academic Press, New York etc., 1980. MR 0751959 Zbl 0459.46001
- [11] M. Reed and B. Simon, Methods of modern mathematical physics II. Fourier analysis, self- adjointness. Academic Press, New York etc., 1975. MR 0493420 Zbl 0308.47002

- [12] M. Reed and B. Simon, Methods of modern mathematical physics IV. Analysis of operators. Academic Press, New York etc., 1978. MR 0493421 Zbl 0401.47001
- M. Ruzhansky and M. Sugimoto, Global L²-boundedness theorems for a class of Fourier integral operators. *Commun. Partial Differ. Equations* **31** (2006), 547–569. MR 2233032 Zbl 1106.35158
- [14] M. A. Shubin, Pseudodifferential Operators and Spectral Theory. Springer Verlag, Berlin, 2001. MR 1852334 Zbl 0980.35180
- [15] H. Widom, Extreme eigenvalues of translation kernels. *Trans. Amer. Math. Soc.* 100 (1961), 252–262. MR 0138980 Zbl 0197.10903

Received June 1, 2011; revised July 15, 2011

Boris S. Mityagin, Department of Mathematics, The Ohio State University, 231 West 18th Ave, Columbus, OH 43210, U.S.A.

E-mail: mityagin.1@osu.edu

Alexander V. Sobolev, Department of Mathematics, University College London, Gower Street, London, WC1E 6BT UK E-mail: asobolev@math.ucl.ac.uk