J. Spectr. Theory 1 (2011), 443[–460](#page-17-0) DOI 10.4171/JST/19

A family of anisotropic integral operators and behavior of its maximal eigenvalue

Boris S. Mityagin and Alexander V. Sobolev

Abstract. We study the family of compact integral operators \mathbf{K}_{β} in $L^2(\mathbb{R})$ with the kernel

$$
K_{\beta}(x, y) = \frac{1}{\pi} \frac{1}{1 + (x - y)^2 + \beta^2 \Theta(x, y)},
$$

depending on the parameter $\beta > 0$, where $\Theta(x, y)$ is a symmetric non-negative homogeneous function of degree $\gamma > 1$. The main result is the following asymptotic formula for the maximal eigenvalue M_{β} of \mathbf{K}_{β} :

$$
M_{\beta} = 1 - \lambda_1 \beta^{\frac{2}{\gamma+1}} + o(\beta^{\frac{2}{\gamma+1}}), \quad \beta \to 0,
$$

where λ_1 is the lowest eigenvalue of the operator $A = |d/dx| + \Theta(x, x)/2$. A central role in the proof is played by the fact that $K_{\beta}, \beta > 0$, is positivity improving. The case $\Theta(x, y) = (x^2 + y^2)^2$ has been studied earlier in the literature as a simplified model of high-temperature superconductivity.

Mathematics Subject Classification (2010). Primary 45C05; Secondary 47A75.

Keywords. Eigenvalues, asymptotics, positivity improving integral operators, pseudo-differential operators, superconductivity.

1. Introduction and the main result

1.1. Introduction. The object of the study is the following family of integral operators on $L^2(\mathbb{R})$:

$$
\mathbf{K}_{\beta}u(x) = \int K_{\beta}(x, y)u(y)dy, \tag{1}
$$

(here and below we omit the domain of integration if it is the entire real line \mathbb{R}) with the kernel

$$
K_{\beta}(x, y) = \frac{1}{\pi} \frac{1}{1 + (x - y)^2 + \beta^2 \Theta(x, y)},
$$
\n(2)

where $\beta > 0$ is a small parameter, and the function $\Theta = \Theta(x, y)$ is a homogeneous non-negative function of x and y such that

$$
\Theta(tx, ty) = t^{\gamma} \Theta(x, y), \quad \gamma > 0,
$$
\n(3)

for all $x, y \in \mathbb{R}$ and $t > 0$, and the following conditions are satisfied:

$$
\begin{cases} c \leq \Theta(x, y) \leq C, & |x|^2 + |y|^2 = 1, \\ \Theta(x, y) = \Theta(y, x), & x, y \in \mathbb{R}. \end{cases} \tag{4}
$$

By C or c (with or without indices) we denote various positive constants whose value is of no importance. The conditions [\(3\)](#page-1-0) and [\(4\)](#page-1-1) guarantee that the operator \mathbf{K}_{β} is self-adjoint and compact.

Such an operator, with $\Theta(x, y) = (x^2 + y^2)^2$ was suggested by P. Krotkov and A. Chubukov in [\[6\]](#page-16-0) and [\[7\]](#page-16-1) as a simplified model of high-temperature superconductiv-ity. The analysis in [\[6\]](#page-16-0) and [\[7\]](#page-16-1) reduces to the asymptotics of the top eigenvalue M_{β} of the operator \mathbf{K}_{β} as $\beta \to 0$. Heuristics in [\[6\]](#page-16-0) and [\[7\]](#page-16-1) suggest that M_{β} should behave as $1-w\beta^{\frac{2}{5}}+o(\beta^{\frac{2}{5}})$ with some positive constant w. A mathematically rigorous argument
given by B. S. Mityagin in [9] produced a two-sided bound supporting this formula given by B. S. Mityagin in [\[9\]](#page-16-2) produced a two-sided bound supporting this formula. The aim of the present paper is to find and justify an appropriate two-term asymptotic formula for M_β as $\beta \to 0$ for a homogeneous function Θ satisfying [\(3\)](#page-1-0), [\(4\)](#page-1-1), and some additional smoothness conditions (see [\(8\)](#page-2-0)).

As $\beta \to 0$, the operator \mathbf{K}_{β} converges strongly to the positive-definite operator K_0 , which is no longer compact. The norm of K_0 is easily found using the Fourier transform

$$
\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int e^{-i\xi x} f(x) dx,
$$

which is unitary on $L^2(\mathbb{R})$. Then one checks directly that

the Fourier transform of
$$
m_t(x) = \frac{t}{\pi} \frac{1}{t^2 + x^2}
$$
, $t > 0$,
equals $\hat{m}_t(\xi) = \frac{1}{\sqrt{2\pi}} e^{-t|\xi|}$, (5)

and hence the operator K_0 is unitarily equivalent to the multiplication by the function $e^{-|\xi|}$, which means that $\|\mathbf{K}_0\| = 1$.

1.2. The main result. For the maximal eigenvalue M_β of the operator \mathbf{K}_β denote by Ψ_{β} a corresponding normalized eigenfunction. Note that the operator \mathbf{K}_{β} is positivity improving, i.e for any non-negative non-zero function u the function $\mathbf{K}_{\beta}u$ is positive a.a. $x \in \mathbb{R}$ (see [\[12\]](#page-17-1), Chapter XIII.12). Thus, by [12], Theorem XIII.43 (or by [\[3\]](#page-16-3), Theorem 13.3.6), the eigenvalue M_{β} is non-degenerate and the eigenfunction Ψ_{β} can be assumed to be positive a.a. $x \in \mathbb{R}$. From now on we always choose Ψ_{β} in this

way. Note in passing that due to the continuity of the kernel $K_\beta(x, y)$ in the variable x the function Ψ_β is in fact continuous and strictly positive for all $x \in \mathbb{R}$.

The behavior of M_β as $\beta \to 0$, is governed by the model operator

$$
(Au)(x) = |D_x|u(x) + 2^{-1}\theta(x)u(x),
$$
\n(6)

where

$$
\theta(x) = \Theta(x, x) = \begin{cases} |x|^{\gamma} \Theta(1, 1), & x \ge 0; \\ |x|^{\gamma} \Theta(-1, -1), & x < 0. \end{cases}
$$

This operator is understood as the pseudo-differential operator $Op(a)$ with the symbol

$$
a(x,\xi) = |\xi| + 2^{-1}\theta(x). \tag{7}
$$

For the sake of completeness recall that $P = \text{Op}(p)$ is a pseudo-differential operator with the symbol $p = p(x, \xi)$ if

$$
(Pu)(x) = \frac{1}{2\pi} \iint e^{i(x-y)\xi} p(x,\xi)u(y)dyd\xi
$$

for any Schwartz class function u . The operator A is essentially self-adjoint on $C_0^{\infty}(\mathbb{R})$, and has a purely discrete spectrum (see e.g. [\[14\]](#page-17-2), Theorems 26.2, 26.3). Using the von Neumann Theorem (see e.g. $[11]$, Theorem X.25), one can see that A is self-adjoint on $D(A) = D(|D_x|) \cap D(|x|^{\gamma})$, i.e $D(A) = H^1(\mathbb{R}) \cap L^2(\mathbb{R}, |x|^{2\gamma})$.
Denote by $\lambda_i > 0, l = 1, 2$, the eigenvalues of A arranged in ascending order Denote by $\lambda_l > 0, l = 1, 2, \dots$ the eigenvalues of A arranged in ascending order, and by φ_l the corresponding normalized eigenfunctions. As shown in Lemma [2,](#page-3-0) the lowest eigenvalue λ_1 is non-degenerate and its eigenfunction φ_1 can be chosen to be non-negative a.a. $x \in \mathbb{R}$. From now on we always choose φ_1 in this way.

The main result of this paper is contained in the next theorem.

Theorem 1. Let \mathbf{K}_{β} be an integral operator defined by [\(1\)](#page-0-0) with $\gamma \geq 1$. Suppose that *the function* Θ *satisfies conditions* [\(3\)](#page-1-0), [\(4\)](#page-1-1), and the following Lipshitz conditions:

$$
\begin{cases} |\Theta(t,1) - \Theta(1,1)| \le C |t-1|, & t \in (1-\varepsilon, 1+\varepsilon), \\ |\Theta(t,-1) - \Theta(-1,-1)| \le C |t+1|, & t \in (-1-\varepsilon, -1+\varepsilon), \end{cases}
$$
(8)

with some $\varepsilon > 0$. Let M_β be the largest eigenvalue of the operator \mathbf{K}_β and let Ψ_β *be the corresponding eigenfunction. Then*

$$
\lim_{\beta \to 0} \beta^{-\frac{2}{\gamma+1}} (1 - M_{\beta}) = \lambda_1.
$$

Moreover, the rescaled eigenfunctions $\alpha^{-\frac{1}{2}}\Psi_{\beta}(\alpha^{-1}\cdot),\ \alpha=\beta^{\frac{2}{\gamma+1}}$, converge in norm *to* φ_1 *as* $\beta \to 0$ *.*

The eigenvalue M_β was studied by B. Mityagin in [\[9\]](#page-16-2) for $\Theta(x, y) = (x^2 + y^2)^\sigma$, $\sigma > 0$. It was conjectured that $\lim_{\beta \to 0} \beta^{-\frac{2}{2\sigma+1}} (1 - M_{\beta}) = L$ with some $L > 0$, but only the two-sided bound only the two-sided bound

$$
c\beta^{\frac{2}{2\sigma+1}} \leq 1 - M_{\beta} \leq C\beta^{\frac{2}{2\sigma+1}},
$$

with some constants $0 < c < C$ was proved. It was also conjectured that in the case $\sigma = 2$ the constant L should coincide with the lowest eigenvalue of the operator $|D_x|+4x^4$. Note that for this case the corresponding operator [\(6\)](#page-2-1) is in fact $|D_x|+2x^4$. J. Adduci found an approximate numerical value $\lambda_1 = 0.978...$ in this case, see [\[1\]](#page-16-5).

Similar eigenvalue asymptotics were investigated by H. Widom in [\[15\]](#page-17-3) for integral operators with difference kernels. Some ideas of [\[15\]](#page-17-3) are used in the proof of Theorem [1.](#page-2-2)

Let us now establish the non-degeneracy of the eigenvalue λ_1 .

Lemma 2. *Let* A *be as defined in* [\(6\)](#page-2-1)*. Then*

- (1) *the semigroup* e^{-tA} *is positivity improving for all* $t > 0$ *,*
- (2) *the lowest eigenvalue* λ_1 *is non-degenerate, and the corresponding eigenfunction* φ_1 *can be chosen to be positive a.a.* $x \in \mathbb{R}$ *.*

Proof. The non-degeneracy of λ_1 and positivity of the eigenfunction φ_1 would follow from the fact that e^{-tA} is positivity improving for all $t > 0$, see [\[12\]](#page-17-1), Theorem XIII.44. The proof of this fact is done by comparing the semigroups for the operators A and $\mathbf{A}_0 = |D_x|$. Using [\(5\)](#page-1-2) it is straightforward to find the integral kernel of $e^{-t\mathbf{A}_0}$:

$$
m_t(x - y) = \frac{1}{\pi} \frac{t}{t^2 + (x - y)^2}, \quad t > 0,
$$

which shows that e^{-tA_0} is positivity improving. To extend the same conclusion to $e^{-t\mathbf{A}}$ let

$$
V_n(x) = \begin{cases} 2^{-1}\theta(x), & |x| \le n, \\ 2^{-1}\theta(\pm n), & \pm x > n, \end{cases} \quad n = 1, 2, \dots.
$$

Since $(\mathbf{A}_0 + V_n)f \to \mathbf{A}f$ and $(\mathbf{A} - V_n)f \to \mathbf{A}_0f$ as $n \to \infty$ for any $f \in C_0^{\infty}(\mathbb{R})$,
by [10] Theorem VIII 25a, the operators $\mathbf{A}_0 + V_n$ and $\mathbf{A} - V_n$ converge to \mathbf{A} and \mathbf{A}_0 by [\[10\]](#page-16-6), Theorem VIII.25a, the operators $\mathbf{A}_0 + V_n$ and $\mathbf{A} - V_n$ converge to \mathbf{A} and \mathbf{A}_0
resp. in the strong resolvent sense as $n \to \infty$. Thus by [12]. Theorem XIII.45, the resp. in the strong resolvent sense as $n \to \infty$. Thus by [\[12\]](#page-17-1), Theorem XIII.45, the semigroup e^{-tA} is also positivity improving for all $t > 0$, as required. semigroup e^{-tA} is also positivity improving for all $t>0$, as required.

1.3. Rescaling. As a rule, instead of K_β it is more convenient to work with the operator obtained by rescaling $x \to \alpha^{-1}x$ with $\alpha > 0$. Precisely, let U_{α} be the unitary aperator on $L^2(\mathbb{R})$ defined as $(U, f)(x) = \alpha^{-\frac{1}{2}} f(\alpha^{-1}x)$. Then U, K, U^* is unitary operator on $L^2(\mathbb{R})$ defined as $(U_\alpha f)(x) = \alpha^{-\frac{1}{2}} f(\alpha^{-1}x)$. Then $U_\alpha \mathbf{K}_\beta U_\alpha^*$ is the integral operator with the kernel the integral operator with the kernel

$$
\frac{\alpha}{\pi} \frac{1}{\alpha^2 + (x - y)^2 + \beta^2 \alpha^{-\gamma + 2} \Theta(x, y)}.
$$

Under the assumption $\beta^2 = \alpha^{\gamma+1}$, this kernel becomes

$$
B_{\alpha}(x, y) = \frac{\alpha}{\pi} \frac{1}{\alpha^2 + (x - y)^2 + \alpha^3 \Theta(x, y)}.
$$
\n(9)

Thus, denoting the corresponding integral operator by \mathbf{B}_{α} , we get

$$
\mathbf{K}_{\beta} = U_{\alpha}^* \mathbf{B}_{\alpha} U_{\alpha}, \quad \alpha = \beta^{\frac{2}{\gamma+1}}.
$$
 (10)

Henceforth the value of α is always chosen as in this formula.

Denote by μ_{α} the maximal eigenvalue of the operator \mathbf{B}_{α} , and by ψ_{α} – the corresponding normalized eigenfunction. By the same token as for the operator \mathbf{K}_{β} , the eigenvalue μ_{α} is non-degenerate and the choice of the corresponding eigenfunction ψ_{α} is determined uniquely by the requirement that $\psi_{\alpha} > 0$. Moreover,

$$
\mu_{\alpha} = M_{\beta}, \quad \psi_{\alpha}(x) = (U_{\alpha} \Psi_{\beta})(x) = \alpha^{-\frac{1}{2}} \Psi_{\beta}(\alpha^{-1} x), \quad \alpha = \beta^{\frac{2}{\gamma + 1}}. \tag{11}
$$

This rescaling allows one to rewrite Theorem [1](#page-2-2) in a somewhat more compact form.

Theorem 3. Let $\gamma \geq 1$ and suppose that the function Θ satisfies conditions [\(3\)](#page-1-0), [\(4\)](#page-1-1), *and* [\(8\)](#page-2-0)*. Then*

$$
\lim_{\alpha \to 0} \alpha^{-1} (1 - \mu_{\alpha}) = \lambda_1.
$$

Moreover, the eigenfunctions ψ_{α} *, converge in norm to* φ_1 *as* $\alpha \to 0$ *.*

The rest of the paper is devoted to the proof of Theorem [3,](#page-4-0) which immediately implies Theorem [1.](#page-2-2)

2. "De-symmetrization" of K_β and B_α

First we de-symmetrize the operator \mathbf{K}_{β} . Denote

$$
\mathbf{K}_{\beta}^{(l)}u(x) = \int K_{\beta}^{(l)}(x, y)u(y)dy,
$$

with the kernel

$$
K_{\beta}^{(l)}(x, y) = \frac{1}{\pi} \frac{1}{1 + (x - y)^2 + \beta^2 \theta(x)}.
$$

Lemma 4. Let $\beta \leq 1$ and $\gamma \geq 1$. Suppose that the conditions [\(3\)](#page-1-0), [\(4\)](#page-1-1)*, and* (8*)* are *satisfied. Then*

$$
\|\mathbf{K}_{\beta}^{(l)} - \mathbf{K}_{\beta}\| \le C_{\gamma} \beta^{\frac{2}{\gamma}}.
$$
 (12)

Proof. Due to [\(3\)](#page-1-0) and [\(4\)](#page-1-1),

$$
c(|t| + 1)^{\gamma} \le \Theta(t, \pm 1) \le C(|t| + 1)^{\gamma}, \quad t \in \mathbb{R}.
$$
 (13)

Also,

$$
\begin{cases} |\Theta(t,1) - \Theta(1,1)| \le C(|t|+1)^{\gamma-1}|t-1|, \\ |\Theta(t,-1) - \Theta(-1,-1)| \le C(|t|+1)^{\gamma-1}|t+1|, \end{cases}
$$
(14)

for all $t \in \mathbb{R}$. Indeed, [\(8\)](#page-2-0) leads to the first inequality [\(14\)](#page-5-0) for $|t - 1| < \varepsilon$. For $|t - 1| > \varepsilon$ it follows from (13) that $|t-1| \geq \varepsilon$ it follows from [\(13\)](#page-5-1) that

$$
|\Theta(t,1)-\Theta(1,1)| \le C(|t|+1)^{\gamma} \le C' \varepsilon^{-1}(|t|+1)^{\gamma-1}|t-1|.
$$

The second bound in [\(14\)](#page-5-0) is checked similarly.

Now we can estimate the difference of the kernels

$$
K_{\beta}(x, y) - K_{\beta}^{(l)}(x, y)
$$

=
$$
\frac{1}{\pi} \frac{\beta^2(\Theta(x, x) - \Theta(x, y))}{(1 + (x - y)^2 + \beta^2 \Theta(x, y))(1 + (x - y)^2 + \beta^2 \Theta(x, x))}.
$$
 (15)

It follows from [\(14\)](#page-5-0) with $t = y|x|^{-1}$ that

$$
|\Theta(x, x) - \Theta(y, x)| \le C(|x| + |y|)^{\gamma - 1}|x - y|.
$$

Substituting into [\(15\)](#page-5-2), we get

$$
|K_{\beta}(x, y) - K_{\beta}^{(l)}(x, y)| \le C \frac{|x - y|}{(1 + (x - y)^2)^{2-\delta}} \frac{\beta^2 (|x| + |y|)^{\gamma - 1}}{(1 + \beta^2 (|x| + |y|)^{\gamma})^{\delta}},
$$

for any $\delta \in (0, 1)$. The second factor on the right-hand side does not exceed

$$
\beta^{\frac{2}{\gamma}} \max_{t \ge 0} \frac{t^{\gamma - 1}}{(1 + t^{\gamma})^{\delta}} = C\beta^{\frac{2}{\gamma}},
$$

under the assumption that $\delta \geq 1 - \gamma^{-1}$. Therefore

$$
|K_{\beta}(x, y) - K_{\beta}^{(l)}(x, y)| \le C\beta^{\frac{2}{\gamma}} \frac{|x - y|}{(1 + (x - y)^2)^{2 - \delta}}.
$$

For any $\delta \in (0, 1)$ the right hand side is integrable in x (or y). Now, estimating the norm using the standard Schur Test, see Proposition [15,](#page-15-0) we conclude that

$$
\|\mathbf{K}_{\beta} - \mathbf{K}_{\beta}^{(l)}\| \le C\beta^{\frac{2}{\gamma}} \int \frac{|t|}{(1+t^2)^{2-\delta}} dt \le C'\beta^{\frac{2}{\gamma}},
$$

 \Box

which is the required bound.

Similarly to the operator \mathbf{K}_{β} , it is readily checked by scaling that the operator $\mathbf{K}_{\beta}^{(l)}$ is unitarily equivalent to the operator $\mathbf{B}_{\alpha}^{(l)}$ with the kernel

$$
B_{\alpha}^{(l)}(x, y) = \frac{1}{\pi} \frac{\alpha}{\alpha^2 + (x - y)^2 + \alpha^3 \theta(x)}.
$$
 (16)

Thus the bound [\(12\)](#page-4-1) ensures that

$$
\|\mathbf{B}_{\alpha} - \mathbf{B}_{\alpha}^{(l)}\| = \|\mathbf{K}_{\beta} - \mathbf{K}_{\beta}^{(l)}\| \le C\alpha^{1 + \frac{1}{\gamma}}, \quad \alpha \le 1,
$$
 (17)

see [\(10\)](#page-4-2) for the definition of α .

3. Approximation for $B_{\alpha}^{(l)}$

3.1. Symbol of $B_{\alpha}^{(l)}$ **.** Now our aim is to show that the operator $I - \alpha A$ is an approx-
imation of the operator $P^{(l)}$ defined shows. To this and we need to represent $P^{(l)}$ as imation of the operator $\mathbf{B}_{\alpha}^{(l)}$, defined above. To this end we need to represent $\mathbf{B}_{\alpha}^{(l)}$ as a pseudo-differential operator. Rewriting the kernel [\(16\)](#page-6-0) as

$$
B_{\alpha}^{(l)}(x, y) = t^{-1} m_{\alpha t}(x - y), \quad t = g_{\alpha}(x),
$$

with

$$
g_{\alpha}(x) = \sqrt{1 + \alpha \theta(x)},
$$
\n(18)

and using (5) , we can write for any Schwartz class function u :

$$
(\mathbf{B}_{\alpha}^{(l)}u)(x) = \frac{1}{2\pi} \iint e^{i(x-y)\xi} b_{\alpha}^{(l)}(x,\xi)u(y)dyd\xi,
$$

where

$$
b_{\alpha}^{(l)}(x,\xi) = \frac{1}{g_{\alpha}(x)}e^{-\alpha|\xi|g_{\alpha}(x)}.
$$

Thus $\mathbf{B}_{\alpha}^{(l)} = \text{Op}(b_{\alpha}^{(l)})$.

3.2. Approximation for $B_{\alpha}^{(l)}$ **.** Let the operator A and the symbol $a(x, \xi)$ be as defined in [\(6\)](#page-2-1) and [\(7\)](#page-2-3). Our first objective is to check that the error

$$
r_{\alpha}(x,\xi) = b_{\alpha}^{(l)}(x,\xi) - (1 - \alpha a(x,\xi))
$$

is small in a certain sense. The condition $\gamma \geq 1$ will allow us to use standard norm estimates for pseudo-differential operators. Using the formula

$$
e^{-\alpha y} = 1 - \alpha y + \alpha \int_0^y (1 - e^{-\alpha t}) dt, \quad y > 0,
$$

we can split the error as follows:

$$
r_{\alpha}(x,\xi) = r_{\alpha}^{(1)}(x) + r_{\alpha}^{(2)}(x,\xi),
$$

$$
r_{\alpha}^{(1)}(x) = \frac{1}{g(x)} + \alpha 2^{-1}\theta(x) - 1,
$$

$$
r_{\alpha}^{(2)}(x,\xi) = \frac{\alpha}{g(x)} \int_0^{|\xi|g(x)} (1 - e^{-\alpha t}) dt,
$$

where we have used the notation $g(x) = g_\alpha(x)$ with g_α defined in [\(18\)](#page-6-1). Since $\gamma \ge 1$, we have

$$
|g'(x)| \leq Cg(x), \quad C = C(\gamma), \quad x \neq 0,
$$
\n(19)

for all $\alpha \le 1$. Introduce also the function $\zeta \in C^{\infty}(\mathbb{R}_{+})$ such that

$$
\zeta'(x) \ge 0, \ \zeta(x) = \begin{cases} x, & 0 \le x \le 1; \\ 2, & x \ge 2. \end{cases}
$$

Note that

$$
\zeta(x_1 x_2) \le 2\zeta(x_1)x_2, \quad x_1 \ge 0, \ x_2 \ge 1. \tag{20}
$$

We study the above components $r^{(1)}$, $r^{(2)}$ separately and introduce the function

$$
e_{\alpha}^{(1)}(x) = \frac{1}{\langle x \rangle^{\gamma} \zeta(\alpha \langle x \rangle^{\gamma})} r_{\alpha}^{(1)}(x), \tag{21}
$$

and the symbol

$$
e_{\alpha}^{(2)}(x,\xi) = g_{\alpha}(x)^{-\kappa} (\zeta((\alpha\langle \xi \rangle))^{\kappa} \langle \xi \rangle)^{-1} r_{\alpha}^{(2)}(x,\xi), \tag{22}
$$

where $x \in (0, 1]$ is a fixed number. To avoid cumbersome notation the dependence of $e^{(2)}$ on y is not reflected in the notation. We denote the operators $Op(x)$ and $Op(x)$ $e_{\alpha}^{(2)}$ on α is not reflected in the notation. We denote the operators $Op(r_{\alpha})$ and $Op(e_{\alpha})$ by \mathbf{R}_{α} and \mathbf{E}_{α} respectively (with or without superscripts).

Lemma 5. *Let* $\gamma \geq 1$ *. Then for all* $\alpha > 0$ *,*

$$
\|e_{\alpha}^{(1)}\|_{L^{\infty}} \leq C\alpha.
$$

Proof. Estimate the function $r_\alpha^{(1)}$:

$$
|r_{\alpha}^{(1)}(x)| \le \begin{cases} C\alpha^2 |x|^{2\gamma}, & \alpha\theta(x) \le 1/2, \\ C\alpha |x|^{\gamma}, & \alpha\theta(x) > 1/2, \end{cases}
$$

with a constant C independent of x . The second estimate is immediate, and the first one follows from the Taylor's formula

$$
\frac{1}{\sqrt{1+t}} = 1 - \frac{t}{2} + O(t^2), \quad 0 \le t \le \frac{1}{2}.
$$

Thus

$$
|r_{\alpha}^{(1)}(x)| \leq C\alpha |x|^{\gamma} \zeta(\alpha |x|^{\gamma}).
$$

This leads to the proclaimed estimate for $e_{\alpha}^{(1)}$.

Lemma 6. Let $\gamma \geq 1$. Then for all $\alpha > 0$ and any $\alpha \in (0, 1]$,

 $\|\mathbf{E}_{\alpha}^{(2)}\| \leq C_{\varkappa}\alpha.$

Proof. To estimate the norm of $Op(e_{\alpha}^{(2)})$ we use Proposition [16.](#page-15-1) It is clear that the distributional derivatives ∂_x , ∂_{ξ} , $\partial_x \partial_{\xi}$ of the symbol $e_{\alpha}^{(2)}(x, \xi)$ exist and are given by

$$
\partial_x r_\alpha^{(2)}(x,\xi) = -\frac{\alpha}{g^2} g' \int_0^{|\xi|g} (1 - e^{-\alpha t}) dt + \frac{\alpha}{g} |\xi| g' (1 - e^{-\alpha |\xi|g}),
$$

$$
\partial_\xi r_\alpha^{(2)}(x,\xi) = \alpha \operatorname{sign} \xi (1 - e^{-\alpha |\xi|g}),
$$

$$
\partial_x \partial_\xi r_\alpha^{(2)}(x,\xi) = \alpha^2 \xi g' e^{-\alpha |\xi|g},
$$

for all $x \neq 0, \xi \neq 0$. For any $x \in (0, 1]$ the elementary bounds hold:

$$
\int_0^{|\xi|g} (1 - e^{-\alpha t}) dt \leq |\xi| g \zeta((\alpha|\xi|g)^x) \leq 2|\xi| g^{1+x} \zeta((\alpha|\xi|)^x),
$$

\n
$$
|1 - e^{-\alpha|\xi|g}| \leq \zeta((\alpha|\xi|g)^x) \leq 2g^x \zeta((\alpha|\xi|)^x),
$$

\n
$$
\alpha|\xi|g e^{-\alpha|\xi|g} \leq \zeta((\alpha|\xi|g)^x) \leq 2g^x \zeta((\alpha|\xi|)^x).
$$

Here we have used (20) . Thus, in view of (19) ,

$$
|r_{\alpha}^{(2)}(x,\xi)| + |\partial_{\xi} r_{\alpha}^{(2)}(x,\xi)| + |\partial_{x} r_{\alpha}^{(2)}(x,\xi)| \leq C\alpha \langle \xi \rangle g^{\alpha} \zeta((\alpha|\xi|)^{\alpha}).
$$

Also,

$$
|\partial_x \partial_{\xi} r_{\alpha}^{(2)}(x,\xi)| \leq \alpha \frac{|g'|}{g} (\alpha |\xi| g e^{-\alpha |\xi| g}) \leq C \alpha |g|^{\alpha} \zeta((\alpha |\xi|)^{\alpha}).
$$

Now estimate the derivatives of the weights:

$$
|\partial_x g^{-x}| = \varkappa g^{-x-1} g' \le C g^{-x}, \quad x \ne 0,
$$

$$
|\partial_{\xi}(\langle \xi \rangle \zeta((\alpha \langle \xi \rangle)^x))^{-1}| \le C \frac{1}{\langle \xi \rangle^2 \zeta((\alpha \langle \xi \rangle)^x)}, \quad \xi \in \mathbb{R}.
$$

Thus the symbol $e_{\alpha}^{(2)}(x,\xi)$ as well as its derivatives ∂_x , ∂_{ξ} , $\partial_x \partial_{\xi}$ are bounded by $C\alpha$ for all $\alpha > 0$ uniformly in x, ξ . Now the required estimate follows from Proposition [16.](#page-15-1) 口

We make a useful observation.

 \Box

Corollary 7. Let $\gamma \geq 1$ and $\kappa \in (0, 1]$. Then for any function $f \in D(A)$ *,*

$$
\alpha^{-1} \|\mathbf{R}_{\alpha}^{(1)} f\| \to 0, \quad \alpha \to 0,
$$
\n(23)

$$
\alpha^{-1} \|\mathbf{E}_{\alpha}^{(2)} \langle D_x \rangle \zeta((\alpha \langle D_x \rangle)^{\alpha}) f\| \to 0, \quad \alpha \to 0. \tag{24}
$$

Proof. Rewrite:

$$
\|\mathbf{R}_{\alpha}^{(1)}f\| = \|\mathbf{E}_{\alpha}^{(1)}\langle x\rangle^{\gamma}\zeta(\alpha\langle x\rangle^{\gamma})f\| \le \|\mathbf{E}_{\alpha}^{(1)}\| \|\langle x\rangle^{\gamma}\zeta(\alpha\langle x\rangle^{\gamma})f\|.
$$
 (25)

By Lemma [5](#page-7-2) the norm of $\mathbf{E}_{\alpha}^{(1)}$ on the right-hand side is bounded by $C\alpha$. The function $\langle x \rangle^{\gamma} \zeta(\alpha \langle x \rangle^{\gamma})$
the function $\mathcal{V}(f)$ tends to zero as $\alpha \to 0$ a.a. $x \in \mathbb{R}$, and it is uniformly bounded by $(x)\mathcal{V}(f)$ which belongs to I^2 since $f \in D(\Lambda)$. Thus the second the function $\langle x \rangle^{\gamma} |f|$, which belongs to L^2 , since $f \in D(A)$. Thus the second factor in (25) tends to zero as $\alpha \to 0$ by the Dominated Convergence Theorem. This factor in [\(25\)](#page-9-0) tends to zero as $\alpha \to 0$ by the Dominated Convergence Theorem. This proves (23) .

Proof of [\(24\)](#page-9-2). Estimate:

$$
\|\mathbf{E}_{\alpha}^{(2)}\langle D_x\rangle\zeta((\alpha\langle D_x\rangle)^{\alpha})f\| \leq \|\mathbf{E}_{\alpha}^{(2)}\| \|\langle \xi\rangle\zeta((\alpha\langle \xi\rangle)^{\alpha})\hat{f}\|.
$$

By Lemma [6](#page-8-0) the norm of the first factor on the right-hand side is bounded by $C\alpha$. The second factor tends to zero as $\alpha \to 0$ for the same reason as in the proof of [\(23\)](#page-9-1). \Box

4. Norm-convergence of the extremal eigenfunction

Recall that the maximal positive eigenvalue μ_{α} of the operator \mathbf{B}_{α} is non-degenerate, and the corresponding (normalized) eigenfunction ψ_{α} is positive a.a. $x \in \mathbb{R}$.

The principal goal of this section is to prove that any infinite subset of the family ψ_{α} , $\alpha \leq 1$ contains a norm-convergent sequence. We begin with an upper bound for $1 - \mu_{\alpha}$ which will be crucial for our argument.

Lemma 8. *If* $\gamma \geq 1$ *, then*

$$
\limsup_{\alpha \to 0} \alpha^{-1} (1 - \mu_{\alpha}) \le \lambda_1. \tag{26}
$$

Proof. Denote $\varphi = \varphi_1$. By a straightforward variational argument it follows that

$$
\mu_{\alpha} \ge (\mathbf{B}_{\alpha}\varphi, \varphi) \ge |(\mathbf{B}_{\alpha}^{(l)}\varphi, \varphi)| - ||\mathbf{B}_{\alpha} - \mathbf{B}_{\alpha}^{(l)}||
$$

\n
$$
\ge ((I - \alpha \mathbf{A})\varphi, \varphi) - |(\mathbf{R}_{\alpha}\varphi, \varphi)| + o(\alpha)
$$

\n
$$
= 1 - \alpha \lambda_1 - |(\mathbf{R}_{\alpha}\varphi, \varphi)| + o(\alpha),
$$

where we have also used (17) . By definitions (21) and (22) ,

$$
|(\mathbf{R}_{\alpha}\varphi,\varphi)| \leq \|\mathbf{R}_{\alpha}^{(1)}\varphi\| + \|\mathbf{E}_{\alpha}^{(2)}\langle D_x\rangle\zeta((\alpha\langle D_x\rangle)^{\alpha})\varphi\| \|g_{\alpha}^{\alpha}\varphi\|,
$$

where $x \in (0, 1]$. It is clear that $g_{\alpha}^x \varphi \in L^2$ and its norm is bounded uniformly in $\alpha \le 1$. The remaining terms on the right-hand side are $g(\alpha)$ due to Corollary 7. This $\alpha \le 1$. The remaining terms on the right-hand side are $o(\alpha)$ due to Corollary [7.](#page-8-1) This leads to (26). leads to (26) .

The established upper bound leads to the following property.

Lemma 9. *For any* $x \in (0, 1)$ *,*

$$
||g_{\alpha}^{\kappa}\psi_{\alpha}|| \leq C
$$

uniformly in $\alpha \leq 1$ *.*

Proof. By definition of ψ_{α} ,

$$
g_{\alpha}^{\kappa}\psi_{\alpha} = \mu_{\alpha}^{-1}g_{\alpha}^{\kappa}\mathbf{B}_{\alpha}\psi_{\alpha}.
$$

In view of [\(4\)](#page-1-1), by definition [\(18\)](#page-6-1) we have $\Theta(x, y) \ge C |x|^{\gamma} \ge c\theta(x)$, so that the kernel $R_n(x, y)$ is bounded from above by kernel $B_{\alpha}(x, y)$ is bounded from above by

$$
B_{\alpha}(x, y) \leq \frac{\alpha}{\pi} \frac{C}{(x - y)^2 + \alpha^2 g_{\alpha}(x)^2},
$$

and thus the kernel $\widetilde{B}_{\alpha}(x, y) = g_{\alpha}(x)^{\alpha} B_{\alpha}(x, y)$ satisfies the estimate

$$
\widetilde{B}_{\alpha}(x, y) \leq \frac{C}{\pi \alpha} \frac{1}{(1 + \alpha^{-2}(x - y)^2)^{1 - \frac{x}{2}}}.
$$

Since $x < 1$, by Proposition [15](#page-15-0) this kernel defines a bounded operator with the norm uniformly bounded in $\alpha > 0$. Thus

$$
||g_{\alpha}^{\kappa}\psi_{\alpha}|| \leq C\mu_{\alpha}^{-1} ||\psi_{\alpha}|| \leq C\mu_{\alpha}^{-1}.
$$

It remains to observe that by Lemma [8](#page-9-4) the eigenvalue μ_{α} is separated from zero uniformly in $\alpha \leq 1$. \Box

Now we obtain more delicate estimates for ψ_{α} . For a number $h \geq 0$ introduce the function

$$
S_{\alpha}(t; h) = \frac{\alpha}{\pi} \frac{1}{\alpha^2 + t^2 + h}, \quad t \in \mathbb{R},
$$
 (27)

and denote by $S_\alpha(h)$ the integral operator with the kernel $S_\alpha(x - y; h)$. Along with $S_n(h)$ we also consider the operator $S_{\alpha}(h)$ we also consider the operator

$$
\mathbf{T}_{\alpha}(h) = \mathbf{S}_{\alpha}(0) - \mathbf{S}_{\alpha}(h).
$$

Due to [\(5\)](#page-1-2) the Fourier transform of $S_\alpha(t; h)$ is

$$
\widehat{S}_{\alpha}(\xi; h) = \frac{\alpha}{\sqrt{2\pi}\sqrt{\alpha^2 + h}} e^{-|\xi|\sqrt{\alpha^2 + h}}, \quad \xi \in \mathbb{R},
$$
\n(28)

so that

$$
\|\mathbf{S}_{\alpha}(h)\| = \frac{\alpha}{\sqrt{\alpha^2 + h}}, \quad \|\mathbf{T}_{\alpha}(h)\| = 1 - \frac{\alpha}{\sqrt{\alpha^2 + h}}.
$$
 (29)

Denote by χ_R the characteristic function of the interval $(-R, R)$.

Lemma 10. *For sufficiently small* $\alpha > 0$ *and* $\alpha R \leq 1$ *,*

$$
\|\hat{\psi}_{\alpha}\chi_{R}\|^{2} \ge 1 - \frac{4\lambda_{1}}{R}.\tag{30}
$$

Proof. Since $B_\alpha(x, y) < S_\alpha(x - y; 0)$ (see [\(9\)](#page-4-3) and [\(27\)](#page-10-0)) and $\psi_\alpha \ge 0$, we can write, using (28) :

$$
\mu_{\alpha} = (\mathbf{B}_{\alpha}\psi_{\alpha}, \psi_{\alpha}) < \int_{\mathbb{R}} \int_{\mathbb{R}} S_{\alpha}(x - y; 0) \psi_{\alpha}(x) \psi_{\alpha}(y) dxdy = \int_{\mathbb{R}} e^{-\alpha|\xi|} |\hat{\psi}_{\alpha}(\xi)|^{2} d\xi
$$

\n
$$
\leq \int_{|\xi| \leq R} |\hat{\psi}_{\alpha}(\xi)|^{2} d\xi + e^{-\alpha R} \int_{|\xi| > R} |\hat{\psi}_{\alpha}(\xi)|^{2} d\xi
$$

\n
$$
= (1 - e^{-\alpha R}) \int_{|\xi| \leq R} |\hat{\psi}_{\alpha}(\xi)|^{2} d\xi + e^{-\alpha R}.
$$

Due to [\(26\)](#page-9-3), $\mu_{\alpha} \ge 1 - 2\alpha \lambda_1$ for sufficiently small α , so

$$
1 - e^{-\alpha R} - 2\alpha \lambda_1 \le (1 - e^{-\alpha R}) \|\hat{\psi}_{\alpha} \chi_R\|^2,
$$

which implies that

$$
\|\hat{\psi}_{\alpha}\chi_R\|^2 \ge 1 - \frac{2\alpha\lambda_1}{1 - e^{-\alpha R}}.
$$

Since $e^{-s} \le (1 + s)^{-1}$ for all $s \ge 0$, we get $(1 - e^{-s})^{-1} \le 2s^{-1}$ for $0 < s \le 1$, which entails (30) for $\alpha R \le 1$ which entails [\(30\)](#page-11-0) for $\alpha R \leq 1$.

Lemma 11. *For sufficiently small* $\alpha > 0$ *and any* $R > 0$,

$$
\|\psi_{\alpha}\chi_{R}\| \ge 1 - 4\alpha\lambda_1 - \frac{C}{R^{\gamma}},\tag{31}
$$

with some constant $C > 0$ *independent* of α *and* R.

Proof. It follows from [\(4\)](#page-1-1) that $\Theta(x, y) \ge c|x|^{\gamma}$, so that the kernel $B_{\alpha}(x, y)$ satisfies the bound the bound

$$
B_{\alpha}(x, y) \le S_{\alpha}(x - y; c\alpha^3 R^{\gamma}), \quad \text{for } |x| \ge R > 0.
$$

Since $\psi_{\alpha} \geq 0$,

$$
\mu_{\alpha} = (\mathbf{B}_{\alpha} \psi_{\alpha}, \psi_{\alpha}) \le (\mathbf{S}_{\alpha}(0) \psi_{\alpha}, \psi_{\alpha} \chi_{R}) + (\mathbf{S}_{\alpha}(c\alpha^{3} R^{\gamma}) \psi_{\alpha}, \psi_{\alpha}(1 - \chi_{R}))
$$

= $(\mathbf{T}_{\alpha}(c\alpha^{3} R^{\gamma}) \psi_{\alpha}, \psi_{\alpha} \chi_{R}) + (\mathbf{S}_{\alpha}(c\alpha^{3} R^{\gamma}) \psi_{\alpha}, \psi_{\alpha}).$

In view of (29) ,

$$
\mu_{\alpha} \leq \|\mathbf{T}_{\alpha}(c\alpha^{3}R^{\gamma})\| \|\psi_{\alpha}\chi_{R}\| + \|\mathbf{S}_{\alpha}(c\alpha^{3}R^{\gamma})\|
$$

$$
= \Big(1 - \frac{1}{\sqrt{1 + c\alpha R^{\gamma}}}\Big) \|\psi_{\alpha}\chi_{R}\| + \frac{1}{\sqrt{1 + c\alpha R^{\gamma}}}.
$$

Using, as in the proof of the previous lemma, the bound (26) , we obtain that

$$
1 - \frac{1}{\sqrt{1 + c\alpha R^{\gamma}}} - 2\alpha \lambda_1 \le \left(1 - \frac{1}{\sqrt{1 + c\alpha R^{\gamma}}}\right) \|\psi_{\alpha} \chi_R\|,
$$

$$
4\lambda_1 (1 + c\alpha R^{\gamma})
$$

so

$$
1 - \frac{4\lambda_1(1 + c\alpha R^{\gamma})}{cR^{\gamma}} \leq \|\psi_{\alpha}\chi_R\|.
$$

This entails (31) .

Now we show that any sequence from the family ψ_{α} contains a norm-convergent subsequence. The proof is inspired by $[15]$, Lemma 7. We precede it with the following elementary result.

Lemma 12. Let $f_i \in L^2(\mathbb{R})$ be a sequence such that $||f_i|| \leq C$ *uniformly in* $j = 1, 2, ...,$ and $f_j(x) = 0$ for all $|x| \ge \rho > 0$ and all $j = 1, 2, ...$ *. Suppose that* f_i *converges weakly to* $f \in L^2(\mathbb{R})$ *as* $j \to \infty$ *, and that for some constant* $A > 0$ *, and all* $R \geq R_0 > 0$,

$$
\|\hat{f}_j \chi_R\| \ge A - C R^{-\delta}, \quad \delta > 0,
$$
\n(32)

uniformly in j. *Then* $|| f || \ge A$ *.*

Proof. Since f_j are uniformly compactly supported, the Fourier transforms $f_j(\xi)$ converge to $\hat{f}(\xi)$ a.a. $\xi \in \mathbb{R}^d$ as $j \to \infty$. Moreover, the sequence $\hat{f}_j(\xi)$ is uniformly bounded, so $\hat{f}_j \chi_R \to \hat{f} \chi_R$, $j \to \infty$ in $L^2(\mathbb{R})$ for any $R>0$. Therefore [\(32\)](#page-12-0) implies that

$$
\|\hat{f}\chi_R\| \ge A - CR^{-\delta}.
$$

Since R is arbitrary, we have $|| f || = || \hat{f} || \ge A$, as claimed.

Lemma 13. *For any sequence* $\alpha_n \to 0$, $n \to \infty$, there exists a subsequence $\alpha_{n_k} \to 0$, $k \to \infty$, such that the eigenfunctions $\psi_{\alpha_{n_k}}$ converge in norm as $k \to \infty$.

Proof. Since the functions $\psi_{\alpha}, \alpha \geq 0$ are normalized, there is a subsequence $\psi_{\alpha_{n_k}}$ which converges weakly. Denote the limit by ψ . From now on we write ψ_k instead of $\psi_{\alpha_{n_k}}$ to avoid cumbersome notation. In view of the relations

$$
\|\psi_k - \psi\|^2 = 1 + \|\psi\|^2 - 2\operatorname{Re}(\psi_k, \psi) \to 1 - \|\psi\|^2, \quad k \to \infty,
$$

it suffices to show that $\|\psi\| = 1$.

Fix a number $\rho > 0$, and split ψ_k in the following way:

$$
\psi_k(x) = \psi_{k,\rho}^{(1)}(x) + \psi_{k,\rho}^{(2)}(x), \quad \psi_{k,\rho}^{(1)}(x) = \psi_k(x)\chi_{\rho}(x).
$$

 \Box

 \Box

Clearly, $\psi_{k,\rho}^{(1)}$ converges weakly to $w_{\rho} = \psi \chi_{\rho}$ as $k \to \infty$. Assume that $\alpha_{n_k} \leq \rho^{-\gamma}$, so that by (31) so that by $(\frac{3}{3})$,

$$
\|\psi_{k,\rho}^{(1)}\|^2 \ge 1 - \frac{C}{\rho^{\gamma}}, \quad \|\psi_{k,\rho}^{(2)}\|^2 \le \frac{C}{\rho^{\gamma}}.
$$

Therefore, for any $R>0$,

$$
\|\widehat{\psi_{k,\rho}^{(1)}}\chi_R\| \ge \|\widehat{\psi}_k\chi_R\| - \|\psi_{k,\rho}^{(2)}\| \ge 1 - 4\lambda_1 R^{-1} - C\rho^{-\frac{\nu}{2}},
$$

where we have used [\(30\)](#page-11-0). By Lemma [12,](#page-12-1)

$$
||w_{\rho}|| \geq 1 - C\rho^{-\frac{\gamma}{2}}.
$$

Since ρ is arbitrary, $\|\psi\| \geq 1$, and hence $\|\psi\| = 1$. As a result, the sequence ψ_k converges in norm, as claimed. converges in norm, as claimed.

5. Asymptotics of $\mu_{\alpha}, \alpha \rightarrow 0$: proof of Theorem [1](#page-2-2)

As before, by λ_l , $l = 1, 2, \ldots$ we denote the eigenvalues of **A** arranged in ascending order, and by φ_l the corresponding normalized eigenfunctions. Recall that the lowest eigenvalue λ_1 of the model operator **A** is non-degenerate and its (normalized) eigenfunction φ_1 is chosen to be positive a.a. $x \in \mathbb{R}$. We begin with proving Theorem [3.](#page-4-0)

Proof of Theorem [3](#page-4-0)*.* The proof essentially follows the plan of [\[15\]](#page-17-3). It suffices to show that for any sequence $\alpha_n \to 0, n \to \infty$, one can find a subsequence $\alpha_{n_k} \to 0$, $k \to \infty$ such that

$$
\lim_{k \to \infty} \alpha_{n_k}^{-1} (1 - \mu_{\alpha_{n_k}}) = \lambda_1,
$$

and $\psi_{\alpha_{n_k}}$ converges in norm to φ_1 as $k \to \infty$. By Lemma [13](#page-12-2) one can pick a subsequence α_{n_k} such that $\psi_{\alpha_{n_k}}$ converges in norm as $k \to \infty$. As in the proof of Lemma [13](#page-12-2) denote by ψ the limit, so $\|\psi\| = 1$ and $\psi \ge 0$ a.e. For simplicity we write ψ_{α} instead of $\psi_{\alpha_{n_k}}$. For an arbitrary function $f \in D(A)$ write

$$
\mu_{\alpha}(\psi_{\alpha}, f) = (\mathbf{B}_{\alpha}\psi_{\alpha}, f) = (\psi_{\alpha}, \mathbf{B}_{\alpha}^{(l)}f) + (\psi_{\alpha}, (\mathbf{B}_{\alpha} - \mathbf{B}_{\alpha}^{(l)})f)
$$

= $(\psi_{\alpha}, f) - \alpha(\psi_{\alpha}, \mathbf{A}f) + (\psi_{\alpha}, \mathbf{R}_{\alpha}f) + (\psi_{\alpha}, (\mathbf{B}_{\alpha} - \mathbf{B}_{\alpha}^{(l)})f).$

This implies that

$$
\alpha^{-1}(1-\mu_{\alpha})(\psi_{\alpha},f) = (\psi_{\alpha},\mathbf{A}f) - \alpha^{-1}(\psi_{\alpha},\mathbf{R}_{\alpha}f) - \alpha^{-1}(\psi_{\alpha},(\mathbf{B}_{\alpha}-\mathbf{B}_{\alpha}^{(l)})f). \tag{33}
$$

In view of [\(17\)](#page-6-2) the last term on the right-hand side tends to zero as $\alpha \rightarrow 0$. The first term trivially tends to $(\psi, \mathbf{A}f)$. Consider the second term:

$$
\begin{aligned} |(\psi_{\alpha}, \mathbf{R}_{\alpha} f)| &= (\psi_{\alpha}, \mathbf{R}_{\alpha}^{(1)} f) + (g_{\alpha}^{\mathcal{X}} \psi_{\alpha}, \mathbf{E}_{\alpha}^{(2)} \langle D_{\mathcal{X}} \rangle \zeta ((\alpha \langle D_{\mathcal{X}} \rangle)^{\mathcal{X}}) f) \\ &\leq \|\mathbf{R}_{\alpha}^{(1)} f\| + \|g_{\alpha}^{\mathcal{X}} \psi_{\alpha}\| \|\mathbf{E}_{\alpha}^{(2)} \langle D_{\mathcal{X}} \rangle \zeta ((\alpha \langle D_{\mathcal{X}} \rangle)^{\mathcal{X}}) f\|. \end{aligned}
$$

Assume now that $x < 1$. By Corollary [7](#page-8-1) and Lemma [9,](#page-10-3) the right-hand side is $o(\alpha)$, and hence, if $(\psi, f) \neq 0$, then passing to the limit in [\(33\)](#page-13-0) we get

$$
\lim_{\alpha \to 0} \alpha^{-1} (1 - \mu_{\alpha}) = \frac{(\psi, \mathbf{A} f)}{(\psi, f)}.
$$

Let $f = \varphi_l$ with some l, so that $(\psi, \mathbf{A} f) = \lambda_l(\psi, \varphi_l)$. Suppose that $(\psi, \varphi_l) \neq 0$, so that

$$
\lim_{\alpha \to 0} \alpha^{-1} (1 - \mu_{\alpha}) = \lambda_{l}.
$$

By the uniqueness of the above limit, $(\psi, \varphi_i) = 0$ for all j's such that $\lambda_i \neq \lambda_k$. Thus, by completeness of the system $\{\varphi_k\}$, the function ψ is an eigenfunction of A with the eigenvalue λ_l . In view of [\(26\)](#page-9-3), $\lambda_l \leq \lambda_1$. Since the eigenvalues λ_i are labeled in ascending order we conclude that $\lambda_l = \lambda_1$. As this eigenvalue is non-degenerate and the corresponding eigenfunction φ_1 is positive a.e., we observe that $\psi = \varphi_1$. the corresponding eigenfunction φ_1 is positive a.e., we observe that $\psi = \varphi_1$.

Proof of Theorem [1](#page-2-2)*.* Theorem [1](#page-2-2) follows from Theorem [3](#page-4-0) due to the relations [\(11\)](#page-4-4). П

6. Miscellaneous

In this short section we collect some open questions related to the spectrum of the operator [\(1\)](#page-0-0).

6.[1](#page-2-2). Theorems 1 and [3](#page-4-0) give information on the largest eigenvalue M_β of the operator \mathbf{K}_{β} defined in [\(1\)](#page-0-0), [\(2\)](#page-0-1). Let

$$
M_{\beta} \equiv M_{1,\beta} > M_{2,\beta} \ge \dots \tag{34}
$$

be the sequence of all positive eigenvalues of \mathbf{K}_{β} arranged in descending order. The following conjecture is a natural extension of Theorem [1.](#page-2-2)

Conjecture 14. For any $j = 1, 2, \ldots$

$$
\lim_{\beta \to 0} \beta^{-\frac{2}{\gamma + 1}} (1 - M_{j,\beta}) = \lambda_j,
$$
\n(35)

where $\lambda_1 < \lambda_2 \leq \ldots$ are eigenvalues of the operator A defined in [\(6\)](#page-2-1), arranged in ascending order.

For the case $\Theta(x, y) = (x^2 + y^2)^2$ the formula [\(35\)](#page-14-0) was conjectured in [\[9\]](#page-16-2), Section 7.1, but without specifying what the values λ_i are. As in [\[9\]](#page-16-2), the formula [\(35\)](#page-14-0) is prompted by the paper $[15]$ where asymptotics of the form (35) were found for an integral operator with a difference kernel.

6.2. Although the operator \mathbf{K}_{β} converges strongly to the positive-definite operator \mathbf{K}_0 as $\beta \to 0$, we can't say whether or not $\mathbf{K}_{\beta}, \beta > 0$, has negative eigenvalues.

6.3. Suppose that the function $\Theta(x, y)$ in [\(2\)](#page-0-1) is even, i.e $\Theta(-x, -y) = \Theta(x, y)$,
 $x, y \in \mathbb{R}$. Then the subspaces H^c and H^o of $L^2(\mathbb{R})$ of even and odd functions are in $x, y \in \mathbb{R}$. Then the subspaces H° and H° of $L^2(\mathbb{R})$ of even and odd functions are invariant for $\mathbf{K} = \mathbf{K}_{\beta}$. Consider restriction operators $\mathbf{K}^c = \mathbf{K} \restriction H^c$ and $\mathbf{K}^c = \mathbf{K} \restriction H^c$
and their positive eigenvalues λ^c and λ^c i = 1.2 arranged in descending order and their positive eigenvalues λ_j^e and λ_j^o , $j = 1, 2, \ldots$, arranged in descending order.
Remembering that the top eigenvalue of **K** is non-degenerate and its eigenfunction Remembering that the top eigenvalue of K is non-degenerate and its eigenfunction is positive a.e., one easily concludes that $\lambda_1^e > \lambda_1^o$. Are there similar inequalities for the pairs λ_j^e , λ_j^o with $j > 1$?

7. Appendix. Boundedness of integral and pseudo-differential operators

In this Appendix, for the reader's convenience we remind (without proofs) simple tests of boundedness for integral and pseudo-differential operators acting on $L^2(\mathbb{R}^d)$, $d > 1$. Consider the integral operator

$$
(Ku)(\mathbf{x}) = \int_{\mathbb{R}^d} K(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d\mathbf{y},\tag{36}
$$

with the kernel $K(\mathbf{x}, \mathbf{y})$, and the pseudo-differential operator

$$
(\text{Op}(a)u)(\mathbf{x}) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i(\mathbf{x} - \mathbf{y}) \cdot \xi} a(\mathbf{x}, \xi) u(\mathbf{y}) d\mathbf{y} \xi, \tag{37}
$$

with the symbol $a(\mathbf{x}, \xi)$.

The following classical result is known as the Schur Test and it can be found, even in a more general form, in [\[4\]](#page-16-7), Theorem 5.2.

Proposition 15. *Suppose that the kernel* K *satisfies the conditions*

$$
M_1=\sup_{\mathbf{x}}\int_{\mathbb{R}^d}|K(\mathbf{x},\mathbf{y})|d\mathbf{y}<\infty, \quad M_2=\sup_{\mathbf{y}}\int_{\mathbb{R}^d}|K(\mathbf{x},\mathbf{y})|d\mathbf{x}<\infty.
$$

Then the operator [\(36\)](#page-15-2) *is bounded on* $L^2(\mathbb{R}^d)$ *and* $||K|| \leq \sqrt{M_1 M_2}$.

For pseudo-differential operators on $L^2(\mathbb{R}^d)$ we use the test of boundedness found by H. O. Cordes in [\[2\]](#page-16-8), Theorem B_1' .

Proposition 16. Let $a(x, \xi), x, \xi \in \mathbb{R}^d, d \ge 1$, be a function such that its distri*butional derivatives of the form* $\nabla_{\bf x}^n \nabla_{\xi}^m a$ are L^{∞} -functions for all $0 \le n, m \le r$, where *where*

$$
r = \left[\frac{d}{2}\right] + 1.
$$

Then the operator [\(37\)](#page-15-3) *is bounded on* $L^2(\mathbb{R}^d)$ *and*

$$
\|\operatorname{Op}(a)\| \le C \max_{0 \le n,m \le r} \|\nabla_{\mathbf{x}}^n \nabla_{\xi}^m a\|_{L^{\infty}},
$$

with a constant C *depending only on* d*.*

It is important for us that for $d = 1$ the above test requires the boundedness of derivatives $\partial_x^n \partial_{\xi}^m a$ with $n, m \in \{0, 1\}$ only. This result is extended to arbitrary
dimensions by M. Buzbansky and M. Sugimoto, see [13] Corollary 2.4. Becall that dimensions by M. Ruzhansky and M. Sugimoto, see [\[13\]](#page-17-4), Corollary 2.4. Recall that the classical Calderón-Vaillancourt theorem needs more derivatives with respect to each variable, see [\[2\]](#page-16-8) and [\[13\]](#page-17-4) for discussion. A short prove of Proposition [16](#page-15-1) was given by I. L. Hwang in [\[5\]](#page-16-9), Theorem 2 (see also [\[8\]](#page-16-10), Lemma 2.3.2 for a somewhat simplified version).

References

- [1] J. Adduci, *Perturbations of self-adjoint operators with discrete spectrum.* Ohio State University, Columbus (Ohio), 2011, Ph.D. Thesis.
- [2] H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators. *J. Funct. Anal.* **18** (1975), 115–131. [MR 0377599](http://www.ams.org/mathscinet-getitem?mr=0377599) [Zbl 0306.47024](http://www.emis.de/MATH-item?0306.47024)
- [3] E. B. Davies, *Linear operators and their spectra.* Cambridge University Press, Cambridge (U.K.), 2007. [MR 2359869](http://www.ams.org/mathscinet-getitem?mr=2359869) [Zbl 1138.47001](http://www.emis.de/MATH-item?1138.47001)
- [4] P. R. Halmos and V. Sh. Sunder, *Bounded integral operators on* L² *spaces.* Springer Verlag, Berlin, 1978. [MR 0517709](http://www.ams.org/mathscinet-getitem?mr=0517709) [Zbl 0389.47001](http://www.emis.de/MATH-item?0389.47001)
- [5] I. L. Hwang, The L2-boundedness of pseudodifferential operators. *Trans. Am. Math. Soc.* **302** (1987), 55–76. [MR 0887496](http://www.ams.org/mathscinet-getitem?mr=0887496) [Zbl 0651.35089](http://www.emis.de/MATH-item?0651.35089)
- [6] P. Krotkov and A. Chubukov, Non-Fermi liquid and pairing in electron-doped cuprates. *Phys. Rev. Lett.* **96** (2006), 107002–107005.
- [7] P. Krotkov and A. Chubukov, Theory of non-Fermi liquid and pairing in electron-doped cuprates. *Phys. Rev.* B **74** (2006), 14509–14524.
- [8] N. Lerner, Some facts about theWick calculus. Pseudo-differential operators. In L. Rodino (ed.) et al., *Pseudo-differential operators. Quantization and signals. Lectures given at the C.I.M.E. summer school, Cetraro, Italy, June 19–24, 2006.* Springer Verlag, Berlin, 2008, 135–174. [MR 2477145](http://www.ams.org/mathscinet-getitem?mr=2477145) [Zbl 1180.35596](http://www.emis.de/MATH-item?1180.35596)
- [9] B. Mityagin, An anisotropic integral operator in high temperature superconductivity. *Isr. J. Math* **181** (2011), 1–28. [MR 2773035](http://www.ams.org/mathscinet-getitem?mr=2773035) [Zbl 1217.47089](http://www.emis.de/MATH-item?1217.47089)
- [10] M. Reed and B. Simon, *Methods of modern mathematical physics* I. *Functional analysis and enl. ed.* Academic Press, New York etc., 1980. [MR 0751959](http://www.ams.org/mathscinet-getitem?mr=0751959) [Zbl 0459.46001](http://www.emis.de/MATH-item?0459.46001)
- [11] M. Reed and B. Simon, *Methods of modern mathematical physics* II. *Fourier analysis, self- adjointness.* Academic Press, New York etc., 1975. [MR 0493420](http://www.ams.org/mathscinet-getitem?mr=0493420) [Zbl 0308.47002](http://www.emis.de/MATH-item?0308.47002)
- [12] M. Reed and B. Simon, *Methods of modern mathematical physics* IV. *Analysis of operators.* Academic Press, New York etc., 1978. [MR 0493421](http://www.ams.org/mathscinet-getitem?mr=0493421) [Zbl 0401.47001](http://www.emis.de/MATH-item?0401.47001)
- [13] M. Ruzhansky and M. Sugimoto, Global L^2 -boundedness theorems for a class of Fourier integral operators. *Commun. Partial Differ. Equations* **31** (2006), 547–569. [MR 2233032](http://www.ams.org/mathscinet-getitem?mr=2233032) [Zbl 1106.35158](http://www.emis.de/MATH-item?1106.35158)
- [14] M.A. Shubin, *Pseudodifferential Operators and Spectral Theory*. Springer Verlag, Berlin, 2001. [MR 1852334](http://www.ams.org/mathscinet-getitem?mr=1852334) [Zbl 0980.35180](http://www.emis.de/MATH-item?0980.35180)
- [15] H. Widom, Extreme eigenvalues of translation kernels. *Trans. Amer. Math. Soc.* **100** (1961), 252–262. [MR 0138980](http://www.ams.org/mathscinet-getitem?mr=0138980) [Zbl 0197.10903](http://www.emis.de/MATH-item?0197.10903)

Received June 1, 2011; revised July 15, 2011

Boris S. Mityagin, Department of Mathematics, The Ohio State University, 231 West 18th Ave, Columbus, OH 43210, U.S.A.

E-mail: mityagin.1@osu.edu

Alexander V. Sobolev, Department of Mathematics, University College London, Gower Street, London, WC1E 6BT UK

E-mail: $asobolev@math$ ust ucl. ac.uk