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A family of anisotropic integral operators
and behavior of its maximal eigenvalue

Boris S. Mityagin and Alexander V. Sobolev

Abstract. We study the family of compact integral operators Kˇ in L2.R/ with the kernel

Kˇ.x; y/ D 1

�

1

1C .x � y/2 C ˇ2‚.x; y/
;

depending on the parameter ˇ > 0, where‚.x; y/ is a symmetric non-negative homogeneous
function of degree � � 1. The main result is the following asymptotic formula for the maximal
eigenvalueMˇ of Kˇ:

Mˇ D 1 � �1ˇ
2

�C1 C o.ˇ
2

�C1 /; ˇ ! 0;

where �1 is the lowest eigenvalue of the operator A D jd=dxj C ‚.x; x/=2. A central
role in the proof is played by the fact that Kˇ; ˇ > 0; is positivity improving. The case
‚.x; y/ D .x2 C y2/2 has been studied earlier in the literature as a simplified model of
high-temperature superconductivity.
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1. Introduction and the main result

1.1. Introduction. The object of the study is the following family of integral oper-
ators on L2.R/:

Kˇu.x/ D
Z
Kˇ .x; y/u.y/dy; (1)

(here and below we omit the domain of integration if it is the entire real line R) with
the kernel

Kˇ .x; y/ D 1

�

1

1C .x � y/2 C ˇ2‚.x; y/
; (2)
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where ˇ > 0 is a small parameter, and the function ‚ D ‚.x; y/ is a homogeneous
non-negative function of x and y such that

‚.tx; ty/ D t�‚.x; y/; � > 0; (3)

for all x; y 2 R and t > 0, and the following conditions are satisfied:´
c � ‚.x; y/ � C; jxj2 C jyj2 D 1;

‚.x; y/ D ‚.y; x/; x; y 2 R:
(4)

ByC or c (with or without indices) we denote various positive constants whose value
is of no importance. The conditions (3) and (4) guarantee that the operator Kˇ is
self-adjoint and compact.

Such an operator, with ‚.x; y/ D .x2 C y2/2 was suggested by P. Krotkov and
A. Chubukov in [6] and [7] as a simplified model of high-temperature superconductiv-
ity. The analysis in [6] and [7] reduces to the asymptotics of the top eigenvalueMˇ of
the operator Kˇ asˇ ! 0. Heuristics in [6] and [7] suggest thatMˇ should behave as

1�wˇ 2
5 Co.ˇ 2

5 /with some positive constantw. A mathematically rigorous argument
given by B. S. Mityagin in [9] produced a two-sided bound supporting this formula.
The aim of the present paper is to find and justify an appropriate two-term asymptotic
formula for Mˇ as ˇ ! 0 for a homogeneous function ‚ satisfying (3), (4), and
some additional smoothness conditions (see (8)).

As ˇ ! 0, the operator Kˇ converges strongly to the positive-definite operator
K0, which is no longer compact. The norm of K0 is easily found using the Fourier
transform

Of .�/ D 1p
2�

Z
e�i�xf .x/dx;

which is unitary on L2.R/. Then one checks directly that

the Fourier transform of mt .x/ D t

�

1

t2 C x2
; t > 0;

equals Omt .�/ D 1p
2�
e�t j�j;

(5)

and hence the operator K0 is unitarily equivalent to the multiplication by the function
e�j�j, which means that kK0k D 1.

1.2. Themain result. For the maximal eigenvalueMˇ of the operator Kˇ denote by
‰ˇ a corresponding normalized eigenfunction. Note that the operator Kˇ is positivity
improving, i.e for any non-negative non-zero function u the function Kˇu is positive
a.a. x 2 R (see [12], Chapter XIII.12). Thus, by [12], Theorem XIII.43 (or by [3],
Theorem 13.3.6), the eigenvalueMˇ is non-degenerate and the eigenfunction‰ˇ can
be assumed to be positive a.a. x 2 R. From now on we always choose ‰ˇ in this
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way. Note in passing that due to the continuity of the kernelKˇ .x; y/ in the variable
x the function ‰ˇ is in fact continuous and strictly positive for all x 2 R.

The behavior of Mˇ as ˇ ! 0, is governed by the model operator

.Au/.x/ D jDxju.x/C 2�1�.x/u.x/; (6)

where

�.x/ D ‚.x; x/ D
´jxj�‚.1; 1/; x � 0I

jxj�‚.�1;�1/; x < 0:

This operator is understood as the pseudo-differential operator Op.a/with the symbol

a.x; �/ D j�j C 2�1�.x/: (7)

For the sake of completeness recall that P D Op.p/ is a pseudo-differential operator
with the symbol p D p.x; �/ if

.Pu/.x/ D 1

2�

ZZ
ei.x�y/�p.x; �/u.y/dyd�

for any Schwartz class function u. The operator A is essentially self-adjoint on
C1

0 .R/, and has a purely discrete spectrum (see e.g. [14], Theorems 26.2, 26.3).
Using the von Neumann Theorem (see e.g. [11], Theorem X.25), one can see that A
is self-adjoint on D.A/ D D.jDxj/ \D.jxj� /, i.e D.A/ D H 1.R/ \ L2.R; jxj2� /.
Denote by �l > 0, l D 1; 2; : : : the eigenvalues of A arranged in ascending order,
and by 'l the corresponding normalized eigenfunctions. As shown in Lemma 2, the
lowest eigenvalue �1 is non-degenerate and its eigenfunction '1 can be chosen to be
non-negative a.a. x 2 R. From now on we always choose '1 in this way.

The main result of this paper is contained in the next theorem.

Theorem 1. Let Kˇ be an integral operator defined by (1) with � � 1. Suppose that
the function ‚ satisfies conditions (3), (4), and the following Lipshitz conditions:´j‚.t; 1/�‚.1; 1/j � C jt � 1j; t 2 .1� "; 1C "/;

j‚.t;�1/�‚.�1;�1/j � C jt C 1j; t 2 .�1� ";�1C "/;
(8)

with some " > 0. Let Mˇ be the largest eigenvalue of the operator Kˇ and let ‰ˇ

be the corresponding eigenfunction. Then

lim
ˇ!0

ˇ� 2
�C1 .1�Mˇ / D �1:

Moreover, the rescaled eigenfunctions ˛� 1
2‰ˇ .˛

�1 � /; ˛ D ˇ
2

�C1 , converge in norm
to '1 as ˇ ! 0.
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The eigenvalueMˇ was studied by B. Mityagin in [9] for‚.x; y/ D .x2 Cy2/� ,

� > 0. It was conjectured that limˇ!0 ˇ
� 2

2�C1 .1�Mˇ / D Lwith some L > 0, but
only the two-sided bound

cˇ
2

2�C1 � 1�Mˇ � Cˇ
2

2�C1 ;

with some constants 0 < c � C was proved. It was also conjectured that in the
case � D 2 the constant L should coincide with the lowest eigenvalue of the operator
jDxjC4x4. Note that for this case the corresponding operator (6) is in fact jDx jC2x4.
J. Adduci found an approximate numerical value �1 D 0:978 : : : in this case, see [1].

Similar eigenvalue asymptotics were investigated by H. Widom in [15] for inte-
gral operators with difference kernels. Some ideas of [15] are used in the proof of
Theorem 1.

Let us now establish the non-degeneracy of the eigenvalue �1.

Lemma 2. Let A be as defined in (6). Then

(1) the semigroup e�tA is positivity improving for all t > 0,

(2) the lowest eigenvalue�1 is non-degenerate, and the corresponding eigenfunction
'1 can be chosen to be positive a.a. x 2 R.

Proof. The non-degeneracy of �1 and positivity of the eigenfunction '1 would follow
from the fact that e�tA is positivity improving for all t > 0, see [12], Theorem XIII.44.
The proof of this fact is done by comparing the semigroups for the operators A and
A0 D jDx j. Using (5) it is straightforward to find the integral kernel of e�tA0 :

mt .x � y/ D 1

�

t

t2 C .x � y/2
; t > 0;

which shows that e�tA0 is positivity improving. To extend the same conclusion to
e�tA let

Vn.x/ D
´
2�1�.x/; jxj � n;

2�1�.˙n/; ˙x > n; n D 1; 2; : : : :

Since .A0 CVn/f ! Af and .A �Vn/f ! A0f as n ! 1 for any f 2 C1
0 .R/,

by [10], Theorem VIII.25a, the operators A0 CVn and A �Vn converge to A and A0

resp. in the strong resolvent sense as n ! 1. Thus by [12], Theorem XIII.45, the
semigroup e�tA is also positivity improving for all t > 0, as required.

1.3. Rescaling. As a rule, instead of Kˇ it is more convenient to work with the
operator obtained by rescaling x ! ˛�1x with ˛ > 0. Precisely, let U˛ be the
unitary operator on L2.R/ defined as .U˛f /.x/ D ˛� 1

2f .˛�1x/. Then U˛KˇU
�̨ is

the integral operator with the kernel

˛

�

1

˛2 C .x � y/2 C ˇ2˛��C2‚.x; y/
:
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Under the assumption ˇ2 D ˛�C1, this kernel becomes

B˛.x; y/ D ˛

�

1

˛2 C .x � y/2 C ˛3‚.x; y/
: (9)

Thus, denoting the corresponding integral operator by B˛, we get

Kˇ D U �̨B˛U˛; ˛ D ˇ
2

�C1 : (10)

Henceforth the value of ˛ is always chosen as in this formula.
Denote by �˛ the maximal eigenvalue of the operator B˛, and by  ˛ – the corre-

sponding normalized eigenfunction. By the same token as for the operator Kˇ , the
eigenvalue �˛ is non-degenerate and the choice of the corresponding eigenfunction
 ˛ is determined uniquely by the requirement that  ˛ > 0. Moreover,

�˛ D Mˇ ;  ˛.x/ D .U˛‰ˇ /.x/ D ˛� 1
2‰ˇ .˛

�1x/; ˛ D ˇ
2

�C1 : (11)

This rescaling allows one to rewrite Theorem 1 in a somewhat more compact form.

Theorem 3. Let � � 1 and suppose that the function ‚ satisfies conditions (3), (4),
and (8). Then

lim
˛!0

˛�1.1 � �˛/ D �1:

Moreover, the eigenfunctions  ˛, converge in norm to '1 as ˛ ! 0.

The rest of the paper is devoted to the proof of Theorem 3, which immediately
implies Theorem 1.

2. “De-symmetrization” of Kˇ and B˛

First we de-symmetrize the operator Kˇ . Denote

K
.l/

ˇ
u.x/ D

Z
K

.l/

ˇ
.x; y/u.y/dy;

with the kernel

K
.l/

ˇ
.x; y/ D 1

�

1

1C .x � y/2 C ˇ2�.x/
:

Lemma 4. Let ˇ � 1 and � � 1. Suppose that the conditions (3), (4), and (8) are
satisfied. Then

kK
.l/

ˇ
� Kˇ k � C�ˇ

2
� : (12)
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Proof. Due to (3) and (4),

c.jt j C 1/� � ‚.t;˙1/ � C.jt j C 1/� ; t 2 R: (13)

Also, ´j‚.t; 1/�‚.1; 1/j � C.jt j C 1/��1jt � 1j;
j‚.t;�1/�‚.�1;�1/j � C.jt j C 1/��1jt C 1j; (14)

for all t 2 R. Indeed, (8) leads to the first inequality (14) for jt � 1j < ". For
jt � 1j � " it follows from (13) that

j‚.t; 1/�‚.1; 1/j � C.jt j C 1/� � C 0"�1.jt j C 1/��1jt � 1j:
The second bound in (14) is checked similarly.

Now we can estimate the difference of the kernels

Kˇ .x; y/ �K.l/

ˇ
.x; y/

D 1

�

ˇ2.‚.x; x/ �‚.x; y//
.1C .x � y/2 C ˇ2‚.x; y//.1C .x � y/2 C ˇ2‚.x; x//

:
(15)

It follows from (14) with t D yjxj�1 that

j‚.x; x/ �‚.y; x/j � C.jxj C jyj/��1jx � yj:
Substituting into (15), we get

jKˇ .x; y/ �K.l/

ˇ
.x; y/j � C

jx � yj
.1C .x � y/2/2�ı

ˇ2.jxj C jyj/��1

.1C ˇ2.jxj C jyj/� /ı ;

for any ı 2 .0; 1/. The second factor on the right-hand side does not exceed

ˇ
2
� max

t�0

t��1

.1C t� /ı
D Cˇ

2
� ;

under the assumption that ı � 1 � ��1. Therefore

jKˇ .x; y/ �K.l/

ˇ
.x; y/j � Cˇ

2
�

jx � yj
.1C .x � y/2/2�ı

:

For any ı 2 .0; 1/ the right hand side is integrable in x (or y). Now, estimating the
norm using the standard Schur Test, see Proposition 15, we conclude that

kKˇ � K
.l/

ˇ
k � Cˇ

2
�

Z jt j
.1C t2/2�ı

dt � C 0ˇ
2
� ;

which is the required bound.
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Similarly to the operator Kˇ , it is readily checked by scaling that the operator

K
.l/

ˇ
is unitarily equivalent to the operator B

.l/
˛ with the kernel

B.l/
˛ .x; y/ D 1

�

˛

˛2 C .x � y/2 C ˛3�.x/
: (16)

Thus the bound (12) ensures that

kB˛ � B.l/
˛ k D kKˇ � K

.l/

ˇ
k � C˛1C 1

� ; ˛ � 1; (17)

see (10) for the definition of ˛.

3. Approximation for B
.l/
˛

3.1. Symbol of B
.l/
˛ . Now our aim is to show that the operator I �˛A is an approx-

imation of the operator B
.l/
˛ , defined above. To this end we need to represent B

.l/
˛ as

a pseudo-differential operator. Rewriting the kernel (16) as

B.l/
˛ .x; y/ D t�1m˛t .x � y/; t D g˛.x/;

with
g˛.x/ D

p
1C ˛�.x/; (18)

and using (5), we can write for any Schwartz class function u:

.B.l/
˛ u/.x/ D 1

2�

ZZ
ei.x�y/�b.l/

˛ .x; �/u.y/dyd�;

where

b.l/
˛ .x; �/ D 1

g˛.x/
e�˛j�jg˛.x/:

Thus B
.l/
˛ D Op.b.l/

˛ /.

3.2. Approximation for B
.l/
˛ . Let the operator A and the symbol a.x; �/ be as

defined in (6) and (7). Our first objective is to check that the error

r˛.x; �/ D b.l/
˛ .x; �/ � .1� ˛a.x; �//

is small in a certain sense. The condition � � 1 will allow us to use standard norm
estimates for pseudo-differential operators. Using the formula

e�˛y D 1 � ˛y C ˛

Z y

0

.1 � e�˛t/dt; y > 0;
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we can split the error as follows:

r˛.x; �/ D r .1/
˛ .x/C r .2/

˛ .x; �/;

r .1/
˛ .x/ D 1

g.x/
C ˛2�1�.x/ � 1;

r .2/
˛ .x; �/ D ˛

g.x/

Z j�jg.x/

0

.1 � e�˛t/dt;

where we have used the notation g.x/ D g˛.x/with g˛ defined in (18). Since � � 1,
we have

jg0.x/j � Cg.x/; C D C.�/; x 6D 0; (19)

for all ˛ � 1. Introduce also the function 	 2 C1.RC/ such that

	0.x/ � 0; 	.x/ D
´
x; 0 � x � 1I
2; x � 2:

Note that
	.x1x2/ � 2	.x1/x2; x1 � 0; x2 � 1: (20)

We study the above components r .1/, r .2/ separately and introduce the function

e.1/
˛ .x/ D 1

hxi� 	.˛hxi� /
r .1/

˛ .x/; (21)

and the symbol

e.2/
˛ .x; �/ D g˛.x/

�~.	..˛h�i//~ h�i/�1r .2/
˛ .x; �/; (22)

where ~ 2 .0; 1
 is a fixed number. To avoid cumbersome notation the dependence of
e

.2/
˛ on ~ is not reflected in the notation. We denote the operators Op.r˛/ and Op.e˛/

by R˛ and E˛ respectively (with or without superscripts).

Lemma 5. Let � � 1. Then for all ˛ > 0,

ke.1/
˛ k

L1 � C˛:

Proof. Estimate the function r .1/
˛ :

jr .1/
˛ .x/j �

´
C˛2jxj2� ; ˛�.x/ � 1=2;

C˛jxj� ; ˛�.x/ > 1=2;

with a constant C independent of x. The second estimate is immediate, and the first
one follows from the Taylor’s formula

1p
1C t

D 1 � t

2
CO.t2/; 0 � t � 1

2
:
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Thus
jr .1/

˛ .x/j � C˛jxj� 	.˛jxj� /:
This leads to the proclaimed estimate for e.1/

˛ .

Lemma 6. Let � � 1. Then for all ˛ > 0 and any ~ 2 .0; 1
,
kE.2/

˛ k � C~˛:

Proof. To estimate the norm of Op.e.2/
˛ // we use Proposition 16. It is clear that the

distributional derivatives @x ; @� ; @x@� of the symbol e.2/
˛ .x; �/ exist and are given by

@xr
.2/
˛ .x; �/ D � ˛

g2
g0

Z j�jg

0

.1� e�˛t /dt C ˛

g
j�jg0.1 � e�˛j�jg/;

@�r
.2/
˛ .x; �/ D ˛ sign �.1 � e�˛j�jg/;

@x@�r
.2/
˛ .x; �/ D ˛2�g0e�˛j�jg;

for all x 6D 0; � 6D 0. For any ~ 2 .0; 1
 the elementary bounds hold:Z j�jg

0

.1 � e�˛t/dt � j�jg	..˛j�jg/~/ � 2j�jg1C~	..˛j�j/~/;
j1� e�˛j�jgj � 	..˛j�jg/~/ � 2g~ 	..˛j�j/~/;
˛j�jge�˛j�jg � 	..˛j�jg/~/ � 2g~	..˛j�j/~/:

Here we have used (20). Thus, in view of (19),

jr .2/
˛ .x; �/j C j@�r

.2/
˛ .x; �/j C j@xr

.2/
˛ .x; �/j � C˛h�ig~	..˛j�j/~/:

Also,

j@x@�r
.2/
˛ .x; �/j � ˛

jg0j
g
.˛j�jge�˛j�jg/ � C˛jgj~	..˛j�j/~/:

Now estimate the derivatives of the weights:

j@xg
�~ j D ~g�~�1g0 � Cg�~ ; x 6D 0;

j@�.h�i	..˛h�i/~//�1j � C
1

h�i2	..˛h�i/~/ ; � 2 R:

Thus the symbol e.2/
˛ .x; �/ as well as its derivatives @x ; @� ; @x@� are bounded by C˛

for all ˛ > 0 uniformly in x; �. Now the required estimate follows from Proposi-
tion 16.

We make a useful observation.
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Corollary 7. Let � � 1 and ~ 2 .0; 1
. Then for any function f 2 D.A/,
˛�1kR.1/

˛ f k ! 0; ˛ ! 0; (23)

˛�1kE.2/
˛ hDxi	..˛hDxi/~/f k ! 0; ˛ ! 0: (24)

Proof. Rewrite:

kR.1/
˛ f k D kE.1/

˛ hxi� 	.˛hxi� /f k � kE.1/
˛ k khxi�	.˛hxi� /f k: (25)

By Lemma 5 the norm of E
.1/
˛ on the right-hand side is bounded byC˛. The function

hxi�	.˛hxi� /f tends to zero as ˛ ! 0 a.a. x 2 R, and it is uniformly bounded by
the function hxi� jf j, which belongs to L2, since f 2 D.A/. Thus the second
factor in (25) tends to zero as ˛ ! 0 by the Dominated Convergence Theorem. This
proves (23).

Proof of (24). Estimate:

kE.2/
˛ hDxi	..˛hDxi/~/f k � kE.2/

˛ k kh�i	..˛h�i/~/ Of k:
By Lemma 6 the norm of the first factor on the right-hand side is bounded byC˛. The
second factor tends to zero as ˛ ! 0 for the same reason as in the proof of (23).

4. Norm-convergence of the extremal eigenfunction

Recall that the maximal positive eigenvalue �˛ of the operator B˛ is non-degenerate,
and the corresponding (normalized) eigenfunction  ˛ is positive a.a. x 2 R.

The principal goal of this section is to prove that any infinite subset of the family
 ˛, ˛ � 1 contains a norm-convergent sequence. We begin with an upper bound for
1� �˛ which will be crucial for our argument.

Lemma 8. If � � 1, then

lim sup
˛!0

˛�1.1 � �˛/ � �1: (26)

Proof. Denote ' D '1. By a straightforward variational argument it follows that

�˛ � .B˛'; '/ � j.B.l/
˛ '; '/j � kB˛ � B.l/

˛ k
� ..I � ˛A/'; '/ � j.R˛'; '/j C o.˛/

D 1� ˛�1 � j.R˛'; '/j C o.˛/;

where we have also used (17). By definitions (21) and (22),

j.R˛'; '/j � kR.1/
˛ 'k C kE.2/

˛ hDxi	..˛hDxi/~/'k kg~
˛'k;

where ~ 2 .0; 1
. It is clear that g~
˛' 2 L2 and its norm is bounded uniformly in

˛ � 1. The remaining terms on the right-hand side are o.˛/ due to Corollary 7. This
leads to (26).
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The established upper bound leads to the following property.

Lemma 9. For any ~ 2 .0; 1/,
kg~

˛ ˛k � C

uniformly in ˛ � 1.

Proof. By definition of  ˛,

g~
˛ ˛ D ��1

˛ g~
˛B˛ ˛:

In view of (4), by definition (18) we have ‚.x; y/ � C jxj� � c�.x/, so that the
kernel B˛.x; y/ is bounded from above by

B˛.x; y/ � ˛

�

C

.x � y/2 C ˛2g˛.x/2
;

and thus the kernel zB˛.x; y/ D g˛.x/
~B˛.x; y/ satisfies the estimate

zB˛.x; y/ � C

�˛

1

.1C ˛�2.x � y/2/1� ~
2

:

Since ~ < 1, by Proposition 15 this kernel defines a bounded operator with the norm
uniformly bounded in ˛ > 0. Thus

kg~
˛ ˛k � C��1

˛ k ˛k � C��1
˛ :

It remains to observe that by Lemma 8 the eigenvalue �˛ is separated from zero
uniformly in ˛ � 1.

Now we obtain more delicate estimates for  ˛ . For a number h � 0 introduce
the function

S˛.t I h/ D ˛

�

1

˛2 C t2 C h
; t 2 R; (27)

and denote by S˛.h/ the integral operator with the kernel S˛.x � yI h/. Along with
S˛.h/ we also consider the operator

T˛.h/ D S˛.0/ � S˛.h/:

Due to (5) the Fourier transform of S˛.t I h/ is

yS˛.�I h/ D ˛p
2�

p
˛2 C h

e�j�jp˛2Ch; � 2 R; (28)

so that
kS˛.h/k D ˛p

˛2 C h
; kT˛.h/k D 1� ˛p

˛2 C h
: (29)

Denote by �
R

the characteristic function of the interval .�R;R/.
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Lemma 10. For sufficiently small ˛ > 0 and ˛R � 1,

k O ˛�R
k2 � 1 � 4�1

R
: (30)

Proof. Since B˛.x; y/ < S˛.x � yI 0/ (see (9) and (27)) and  ˛ � 0, we can write,
using (28):

�˛ D .B˛ ˛;  ˛/ <

Z
R

Z
R
S˛.x � yI 0/ ˛.x/ ˛.y/dxdy D

Z
R
e�˛j�jj O ˛.�/j2d�

�
Z

j�j�R

j O ˛.�/j2d� C e�˛R

Z
j�j>R

j O ˛.�/j2d�

D .1� e�˛R/

Z
j�j�R

j O ˛.�/j2d� C e�˛R:

Due to (26), �˛ � 1 � 2˛�1 for sufficiently small ˛, so

1 � e�˛R � 2˛�1 � .1� e�˛R/k O ˛�R
k2;

which implies that

k O ˛�R
k2 � 1� 2˛�1

1 � e�˛R
:

Since e�s � .1 C s/�1 for all s � 0, we get .1 � e�s/�1 � 2s�1 for 0 < s � 1,
which entails (30) for ˛R � 1.

Lemma 11. For sufficiently small ˛ > 0 and any R > 0,

k ˛�R
k � 1 � 4˛�1 � C

R�
; (31)

with some constant C > 0 independent of ˛ and R.

Proof. It follows from (4) that‚.x; y/ � cjxj� , so that the kernel B˛.x; y/ satisfies
the bound

B˛.x; y/ � S˛.x � yI c˛3R�/; for jxj � R > 0:

Since  ˛ � 0,

�˛ D .B˛ ˛;  ˛/ � .S˛.0/ ˛;  ˛�R
/C .S˛.c˛

3R� / ˛;  ˛.1 � �
R
//

D .T˛.c˛
3R� / ˛;  ˛�R

/C .S˛.c˛
3R� / ˛;  ˛/:

In view of (29),

�˛ � kT˛.c˛
3R� /k k ˛�R

k C kS˛.c˛
3R� /k

D
�
1 � 1p

1C c˛R�

�
k ˛�R

k C 1p
1C c˛R�

:
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Using, as in the proof of the previous lemma, the bound (26), we obtain that

1 � 1p
1C c˛R�

� 2˛�1 �
�
1 � 1p

1C c˛R�

�
k ˛�R

k;

so

1 � 4�1.1C c˛R� /

cR�
� k ˛�R

k:
This entails (31).

Now we show that any sequence from the family  ˛ contains a norm-convergent
subsequence. The proof is inspired by [15], Lemma 7. We precede it with the
following elementary result.

Lemma 12. Let fj 2 L2.R/ be a sequence such that kfj k � C uniformly in
j D 1; 2; : : : , and fj .x/ D 0 for all jxj � � > 0 and all j D 1; 2; : : : . Suppose that
fj converges weakly to f 2 L2.R/ as j ! 1, and that for some constant A > 0,
and all R � R0 > 0,

k Ofj�R
k � A � CR�ı ; ı > 0; (32)

uniformly in j . Then kf k � A.

Proof. Since fj are uniformly compactly supported, the Fourier transforms Ofj .�/

converge to Of .�/ a.a. � 2 Rd as j ! 1. Moreover, the sequence Ofj .�/ is uniformly
bounded, so Ofj�R

! Of �
R

, j ! 1 inL2.R/ for anyR > 0. Therefore (32) implies
that

k Of �
R

k � A � CR�ı :

Since R is arbitrary, we have kf k D k Of k � A, as claimed.

Lemma 13. For any sequence˛n ! 0; n ! 1, there exists a subsequence˛nk
! 0;

k ! 1, such that the eigenfunctions  ˛nk
converge in norm as k ! 1.

Proof. Since the functions  ˛; ˛ � 0 are normalized, there is a subsequence  ˛nk

which converges weakly. Denote the limit by  . From now on we write  k instead
of  ˛nk

to avoid cumbersome notation. In view of the relations

k k �  k2 D 1C k k2 � 2Re. k;  / ! 1 � k k2; k ! 1;

it suffices to show that k k D 1.
Fix a number � > 0, and split  k in the following way:

 k.x/ D  
.1/

k;�
.x/C  

.2/

k;�
.x/;  

.1/

k;�
.x/ D  k.x/��.x/:



456 B. S. Mityagin and A. V. Sobolev

Clearly,  .1/

k;�
converges weakly to w� D  �� as k ! 1. Assume that ˛nk

� ��� ,
so that by (31),

k .1/

k;�
k2 � 1 � C

��
; k .2/

k;�
k2 � C

��
:

Therefore, for any R > 0,

k b .1/

k;�
�

R
k � k O k�R

k � k .2/

k;�
k � 1 � 4�1R

�1 � C�� �
2 ;

where we have used (30). By Lemma 12,

kw�k � 1� C�� �
2 :

Since � is arbitrary, k k � 1, and hence k k D 1. As a result, the sequence  k

converges in norm, as claimed.

5. Asymptotics of �˛; ˛ ! 0: proof of Theorem 1

As before, by �l , l D 1; 2; : : : we denote the eigenvalues of A arranged in ascend-
ing order, and by 'l the corresponding normalized eigenfunctions. Recall that the
lowest eigenvalue �1 of the model operator A is non-degenerate and its (normal-
ized) eigenfunction '1 is chosen to be positive a.a. x 2 R. We begin with proving
Theorem 3.

Proof of Theorem 3. The proof essentially follows the plan of [15]. It suffices to
show that for any sequence ˛n ! 0; n ! 1; one can find a subsequence ˛nk

! 0,
k ! 1 such that

lim
k!1

˛�1
nk
.1� �˛nk

/ D �1;

and  ˛nk
converges in norm to '1 as k ! 1. By Lemma 13 one can pick a

subsequence ˛nk
such that  ˛nk

converges in norm as k ! 1. As in the proof of
Lemma 13 denote by  the limit, so k k D 1 and  � 0 a.e. For simplicity we
write  ˛ instead of  ˛nk

. For an arbitrary function f 2 D.A/ write

�˛. ˛; f / D .B˛ ˛; f / D . ˛;B
.l/
˛ f /C . ˛; .B˛ � B.l/

˛ /f /

D . ˛; f / � ˛. ˛;Af /C . ˛;R˛f /C . ˛; .B˛ � B.l/
˛ /f /:

This implies that

˛�1.1��˛/. ˛; f / D . ˛;Af /�˛�1. ˛;R˛f /�˛�1. ˛; .B˛ �B.l/
˛ /f /: (33)

In view of (17) the last term on the right-hand side tends to zero as ˛ ! 0. The first
term trivially tends to . ;Af /. Consider the second term:

j. ˛;R˛f /j D . ˛;R
.1/
˛ f /C .g~

˛ ˛;E
.2/
˛ hDxi	..˛hDxi/~/f /

� kR.1/
˛ f k C kg~

˛ ˛k kE.2/
˛ hDxi	..˛hDxi/~/f k:
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Assume now that ~ < 1. By Corollary 7 and Lemma 9, the right-hand side is o.˛/,
and hence, if . ; f / 6D 0, then passing to the limit in (33) we get

lim
˛!0

˛�1.1� �˛/ D . ;Af /

. ; f /
:

Let f D 'l with some l , so that . ;Af / D �l. ; 'l /. Suppose that . ; 'l / 6D 0, so
that

lim
˛!0

˛�1.1 � �˛/ D �l :

By the uniqueness of the above limit, . ; 'j / D 0 for all j ’s such that�j 6D �k . Thus,
by completeness of the system f'kg, the function  is an eigenfunction of A with
the eigenvalue �l . In view of (26), �l � �1. Since the eigenvalues �j are labeled in
ascending order we conclude that �l D �1. As this eigenvalue is non-degenerate and
the corresponding eigenfunction '1 is positive a.e., we observe that  D '1.

Proof of Theorem 1. Theorem 1 follows from Theorem 3 due to the relations (11).

6. Miscellaneous

In this short section we collect some open questions related to the spectrum of the
operator (1).

6.1. Theorems 1 and 3 give information on the largest eigenvalueMˇ of the operator
Kˇ defined in (1), (2). Let

Mˇ � M1;ˇ > M2;ˇ � : : : (34)

be the sequence of all positive eigenvalues of Kˇ arranged in descending order. The
following conjecture is a natural extension of Theorem 1.

Conjecture 14. For any j D 1; 2; : : :

lim
ˇ!0

ˇ� 2
�C1 .1 �Mj;ˇ / D �j ; (35)

where �1 < �2 � : : : are eigenvalues of the operator A defined in (6), arranged in
ascending order.

For the case ‚.x; y/ D .x2 C y2/2 the formula (35) was conjectured in [9],
Section 7.1, but without specifying what the values �j are. As in [9], the formula (35)
is prompted by the paper [15] where asymptotics of the form (35) were found for an
integral operator with a difference kernel.
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6.2. Although the operator Kˇ converges strongly to the positive-definite operator
K0 as ˇ ! 0, we can’t say whether or not Kˇ ; ˇ > 0; has negative eigenvalues.

6.3. Suppose that the function ‚.x; y/ in (2) is even, i.e ‚.�x;�y/ D ‚.x; y/,
x; y 2 R. Then the subspacesH e andH o of L2.R/ of even and odd functions are in-
variant for K D Kˇ . Consider restriction operators Ke D K � H e and Ko D K � H o

and their positive eigenvalues �e

j and �o

j , j D 1; 2; : : : , arranged in descending order.
Remembering that the top eigenvalue of K is non-degenerate and its eigenfunction
is positive a.e., one easily concludes that �e

1 > �
o
1. Are there similar inequalities for

the pairs �e

j ; �
o

j with j > 1?

7. Appendix. Boundedness of integral and pseudo-differential operators

In this Appendix, for the reader’s convenience we remind (without proofs) simple
tests of boundedness for integral and pseudo-differential operators acting onL2.Rd /,
d � 1. Consider the integral operator

.Ku/.x/ D
Z

Rd

K.x; y/u.y/dy; (36)

with the kernel K.x; y/, and the pseudo-differential operator

.Op.a/u/.x/ D 1

.2�/d

Z
Rd

Z
Rd

ei.x�y/��a.x; �/u.y/dy�; (37)

with the symbol a.x; �/.
The following classical result is known as the Schur Test and it can be found, even

in a more general form, in [4], Theorem 5.2.

Proposition 15. Suppose that the kernel K satisfies the conditions

M1 D sup
x

Z
Rd

jK.x; y/jdy < 1; M2 D sup
y

Z
Rd

jK.x; y/jdx < 1:

Then the operator (36) is bounded on L2.Rd / and kKk � p
M1M2.

For pseudo-differential operators onL2.Rd /we use the test of boundedness found
by H. O. Cordes in [2], Theorem B 0

1.

Proposition 16. Let a.x; �/;x; � 2 Rd ; d � 1, be a function such that its distri-
butional derivatives of the form rn

xrm
�
a are L1-functions for all 0 � n;m � r ,

where

r D
�
d

2

�
C 1:
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Then the operator (37) is bounded on L2.Rd / and

k Op.a/k � C max
0�n;m�r

krn
xrm

� ak
L1 ;

with a constant C depending only on d .

It is important for us that for d D 1 the above test requires the boundedness
of derivatives @n

x@
m
�
a with n;m 2 f0; 1g only. This result is extended to arbitrary

dimensions by M. Ruzhansky and M. Sugimoto, see [13], Corollary 2.4. Recall that
the classical Calderón-Vaillancourt theorem needs more derivatives with respect to
each variable, see [2] and [13] for discussion. A short prove of Proposition 16 was
given by I. L. Hwang in [5], Theorem 2 (see also [8], Lemma 2.3.2 for a somewhat
simplified version).
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