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Resolvent conditions for the control of unitary groups
and their approximations

Luc Miller1

Abstract. A self-adjoint operator A and an operator C bounded from the domain D.A/

with the graph norm to another Hilbert space are considered. The admissibility or the exact
observability in finite time of the unitary group generated by iA with respect to the observation
operator C are characterized by some spectral inequalities on A and C . E.g. both properties hold
if and only ifx 7! k.A��/xkCkCxk is a norm on D.A/ equivalent tox 7! k.A��/xkCkxk
uniformly with respect to � 2 R.

This paper generalizes and simplifies some results on the control of unitary groups obtained
using these so-called resolvent conditions, also known as Hautus tests. It proves new theorems
on the equivalence (with respect to admissibility and observability) between first and second
order equations, between groups generated by iA and if .A/ for positive A and convex f ,
and between a group and its Galerkin approximations. E.g. they apply to the control of linear
Schrödinger, wave and plates equations and to the uniform control of their finite element
semi-discretization.
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1. Introduction

1.1. Resolvent conditions. The notion of resolvent condition considered in this
paper was introduced in control theory by David Russell and George Weiss in [40] as
an infinite-dimensional version, for exponentially stable semigroups, of the Hautus
test for controllability. Although this paper is self-contained, we refer to the mono-
graph [42] for an introduction to and a full account of the control theory of semigroups,
e.g. admissibility, exact controllability and the Hautus test, with applications to PDEs.
This paper deals with the controllability of unitary groups rather than exponentially
stable semigroups. We refer to [22] for the history of this latter issue since [40] and
the extension of the results on unitary groups in [30] to more general groups. We refer
to [8] for the investigation of resolvent conditions for parabolic semigroups, using
§3.2 of the present paper.

Readers more familiar with the spectral theory of semigroups may consider these
resolvent conditions as analogous to the better known resolvent condition for expo-
nential stability [9], Theorem V.1.11, due to Jan Prüss [34], Fa Lun Huang [20] and
Günther Greiner (after a key result on contraction semigroup by Larry Gearhart [15]
generalized to any semigroup in [17] and [19]). Indeed the growth abscissa of a
semigroup .etG /t>0 satisfies [34], Proposition 2:

!0.G / WD inf
t>0

ln
ketG k
t

D inf
˚
! 2 R j sup

<�>!

k.� � G /�1k < 1�
:

The Greiner–Huang–Prüss test [34], Corollary 4, for exponential stability follows:

!0.G / < 0 () 9M > 0; 8� 2 C such that <� > 0; k.� � G /�1k 6 M: (1)

The analogous result for exact controllability of unitary group, or equivalently
exact observability, is stated precisely in Theorem 2.4. A self-adjoint operator A on
a Hilbert spaceX and an operator C bounded from the domain D.A/with the graph
norm to another Hilbert space are considered. The resolvent condition involved for
the exact observability in finite time of the unitary group generated by iA with respect
to the observation operator C is

9M > 0;m > 0; 8x 2 D.A/; � 2 R; kxk2 6 Mk.A � �/xk2 CmkCxk2:

(2)

1.2. Outline. Starting from the basic resolvent conditions characterizing admissi-
bility in Theorem 2.3 and exact controllability in Theorem 2.4, this paper investigates
various other forms of resolvent conditions, with variable coefficients, with restricted
spectral parameter, with fractional powers of the generator. A quasimode approach to
disproving exact controllability is introduced in §2.7. In §3 and §4, resolvent condi-
tions are applied to unitary groups .eitA/t2R with various positive A build on the same
positive self-adjoint operator denoted A in order to characterize and compare their
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admissibility and controllability properties. This improves on earlier results in [26],
[30], and [38] linking first and second order equations, and in [11], [12], and [13] link-
ing infinite-dimensional equations and their finite-dimensional semi-discretization.

The first main application is the following rough statement concerning the ob-
servability in time T by the same general operator C (bounded from D.A/):

Wave Rw C Aw D 0 for some T () Wave Group i Pv C p
Av D 0 for some T

+ (for any s > 1)

Rz C Asz D 0, any T if �ess.A/ D ; () i P C .
p
A/s D 0, any T if �ess.A/ D ;

Plates if s D 2 Schrödinger if s D 2

If for example the resolvent of A is compact then the condition �ess.A/ D ; holds
(i.e. the spectrum ofA is formed of isolated eigenvalues with finite multiplicity). For
s D 2, the implication from waves to plates and the bottom equivalence between
plates and Schrödinger are proved in [26], Theorem 5.2, for C bounded on X using
the Greiner–Huang–Prüss test (1) hence without explicit constants, therefore without
information on the time T . Still for s D 2, the implication from Schrödinger to plates
with the same control time T is proved in [42], Theorem 6.8.2, for unbounded C ,
but under an extra eigenvalue condition. The proof by a simple isomorphism with
explicit constants of the top equivalence between the wave equation and the wave
group in Theorem 3.8 seems to be new. The analysis of the constants in the downward
implication from

p
A to its fractional powers in Theorem 3.5 also seems to be new.

Putting these two new facts together proves the downward implication from the wave
equation for some T to the plate equation with any s > 0 and, if �ess.A/ D ;, for
any T . Moreover, it yields this full scale of equivalent resolvent conditions for the
observability of the wave equation:

9s > 1;Ms > 0 and ms > 0;

kxk2
1 6 Ms

�2.1�1=s/
k.As=2 � �/xk2

1 CmskCxk2; x 2 H1Cs; � > 0;

where Hs D D.As=2/ with norm kuks D kAs=2uk, with Sobolev-type index s 2 R.
Corollary 3.9 proves this result and Remark 3.16 provides more background.

The second main application is to obtain filtering scales for the uniform exact
observability of the semi-discretization of exactly observable equations. As surveyed
in [44], exact controllability may be lost under numerical discretization as the mesh
size h tends to zero due to the existence of high-frequency spurious solutions for
which the group velocity vanishes.

One of the remedies, called filtering, is to restrict the semi-discretized equation to
modes with eigenvalues lower than �=h� for some positive � and � . It is proved in
[21] and [27] that � D 2 is optimal for the boundary observation of one-dimensional
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wave and plates equations with constant coefficients discretized on a uniform mesh.
Resolvent conditions where first used in this context by Sylvain Ervedoza to tackle any
dimension and non-uniform meshes (cf. [14] for time discretization). In a framework
which applies to the finite-element discretization on quasi-uniform shape-regular
meshes (cf. Remark 4.1), he obtained in [11] a filtering scale � for the uniform exact
observability of approximations of unitary groups with mildly unbounded observa-
tion (excluding boundary observation), basically � D 2=5 for interior observation.
This was improved by the author into � D 2=3 and published in [12] and [13],
cf. Remark 4.15.

Section 4 provides a more general framework in which Theorems 4.11 and 4.18
yield respectively � D 1 and � D 2=3 for the semi-discretization of interior and
boundary observability on shape-regular meshes in the sense of finite elements (for
the observation of the Schrödinger equation this improves respectively into � D 4=3

and � D 1 under the geometric condition of [1], which is always satisfied in one space
dimension). Conversely, Theorem 4.12 is a kind of Trotter–Kato theorem deducing
admissibility and exact observability of a group from resolvent conditions for its
filtered approximations. In this framework, Theorems 4.14 and 4.19 deduce from the
uniform exact observability of the filtered approximations that the minimal control
provided by the Hilbert Uniqueness Method is the limit of the minimal controls for
the filtered approximations. For second order systems, Theorems 4.24 and 4.23
yield respectively � D 4=3 and � D 2=3 for the semi-discretization of interior
and boundary observability, improving [12], cf. Remark 4.26. A forthcoming paper
compares the approximate observation operator (95) introduced in Theorem 4.23
where � D 2=3 to those in [21], Theorems 3.2 and 3.3, which concern only the
simplest system but reach the optimal value � D 2.

We refer to [6] for a new approximation method for interior control of second
order systems with error estimates.

The bottom-line of this paper is to deal with resolvent conditions in the abstract
unitary group framework and keep track of the coefficients in the most explicit manner.
Some applications to PDEs are briefly given. Many more details and examples are
given in [42]. Examples 3.12 and 3.18 seem to be new.

The semiclassical approach to proving these resolvent conditions can be found in
[3] and [32]. E.g. Theorem 8 in [3] gives a much simpler proof (based on stationary
semiclassical measures) of the boundary control of Schrödinger equation under the
sharp geometric condition for the wave equation than the original microlocal proof
of [24] (or the proof in [29] based the space-time semiclassical measures). The proof
of Theorem 8 in [3] combined with the above resolvent condition for s D 2 yields
the famous results of [1] on the boundary control of the wave equation in a simpler
way but without estimate on the control time. Indeed, combining the result of [1] for
the wave equation and a control transmutation method similar to [33], Theorem 10.2
in [30] yields more information on the Schrödinger equation (more precisely on the
cost of fast controls) than the current resolvent condition approach.
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1.3. Background. The first condition of type (2) was introduced by Kangsheng Liu
in Theorem 3.4 in [26] for second-order equations like the wave equation (hence M
was replaced by M=� in (2)) under the name frequency domain condition. It was
adapted to first-order equations in [46]. Liu used the Greiner–Huang–Prüss test (1)
with G D iA � C�C (hence C was replaced by C�C in (2)) taking advantage of
the equivalence between exact controllability and exponential stabilizability. This
strategy was limited to observations operator C which are bounded on X and did not
give information on the controllability time.

Conditions of type (2) were independently introduced by Nicolas Burq and Maciej
Zworski in [3], Theorems 4 and 7, as sufficient to deduce results in the Control Theory
of distributed parameter systems from the Spectral Theory of differential operators
(one of these theorems is both semiclassical and spectrally localized, both theorems
make intricate compatibility assumptions in addition to the resolvent condition). Their
direct strategy overcomes both limitations: it allows boundary observation operators
and it links the controllability time to the behavior of M for high frequency modes.

The final form of the theorem states that the resolvent condition (2) is both neces-
sary and sufficient for controllability in some time T , with explicit relations between
the constants M andm in (2) on the one hand, the time T , the admissibility constant
and the control cost on the other hand (it does not assume the boundedness of C on
X or the compactness of the resolvent of A). This theorem and its proof are repeated
here as Theorem 2.4 (and e.g. in [42], Theorem 6.6.1) from [30], Theorem 5.1. The
proof that the resolvent condition is necessary is close to the proof in [40] of the
stronger resolvent condition implied by the stronger assumption of exact observabil-
ity on Œ0;1/. The proof of sufficiency using the Fourier transform is close and was
inspired by the proof of Theorem 7 in [3], where the resolvent is assumed compact.
This proof shortcuts the use of the Greiner–Huang–Prüss test in [26] and [46].

The analogous result for admissibility is Theorem 2.3 first proved under the ad-
ditional assumption that the resolvent of A is compact in [13], Theorem 2.2. The
new proof of this Theorem 2.3 shortcuts the use of packets of eigenvectors in [13]
and unifies it with the simple proof of Theorem 2.4. From reading [13], Marius
Tucsnak proved independently Theorem 2.3, explicit constants excepted, as a direct
consequence of older results of George Weiss, cf. Remark 2.8.

We emphasize that, as in the proof of the Greiner–Huang–Prüss test, the key
point in the proof that the resolvent condition is sufficient (for both admissibility
and exact controllability) is the unitarity of the Fourier transform in Hilbert spaces
(Plancherel theorem) used in Lemma 2.7. The two alternative proofs for admissibility
in Remark 2.8 both use the Paley–Wiener theorem on the unitarity of the Laplace
transform which is also a consequence of the Plancherel theorem.

Alternatively, the Hautus rank condition for finite-dimensional state space may
be stated as the following eigenvectors condition discussed in §2.6: for all eigen-
vector x of A, Cx ¤ 0. An infinite-dimensional version was introduced in [5] for
the exponential stabilizability of unitary groups by a bounded damping perturbation
(which is equivalent to the exact observability with bounded observation). It assumes
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that the resolvent of A is compact and considers clusters of eigenvectors of A rather
than single ones. This version was called wavepackets conditions in [38], where the
assumption that C is bounded has been dropped using the resolvent condition in [30],
Theorem 5.1. They are discussed in the more general framework in §2.5. Sylvain
Ervedoza in [13] and [12] introduced another equivalent version of the resolvent con-
dition obtained by optimizing �. This paper does not deal with this condition which
he called interpolation inequalities.

2. Resolvent conditions for admissibility and observability

Most of this paper is about resolvent conditions for the observation of unitary groups.
The dual notions of control are recalled in parallel in §2.1, but they are not used in
any statement or proof of §2 and §3. Therefore all considerations of duality could be
skipped (i.e. all statements mentioning X 0, Y 0, A0, B, �, A0, B , ', �).

2.1. Framework for the control of unitary groups. In this section, we review
the general setting for control systems conserving some “energy”: admissibility,
observability and controllability notions and their duality (cf. [7], [43], and [42]).

Let X and Y be Hilbert spaces. Let A W D.A/ ! X be a self-adjoint operator.
Equivalently, iA generates a strongly continuous group .eitA/t2R of unitary operators
on X . In particular the norm is conserved: keitAxk D kxk, x 2 X , t 2 R. Let X1

denote D.A/with the norm kxk1 D k.A�ˇ/xk for some ˇ … �.A/ (�.A/ denotes
the spectrum of A, this norm is equivalent to the graph norm and X1 is densely and
continuously embedded inX) and letX�1 be the completion ofX with respect to the
norm kxk�1 D k.A � ˇ/�1xk.

Let X 0 be a Hilbert space and J W X 0 ! L.X;C/ be a conjugate linear Hilbert
space isomorphism defined by some pairing h�; �i on X � X 0 which is linear on X
and conjugate-linear on X 0, i.e. .J �/x D hx; �i where h�; �i is a non-degenerate
sesquilinear form such that jhx; �ij 6 kxkk�k and J is onto, J.˛�/ D N̨J �. From
now on, the dual space L.X;C/ of X is identified with X 0 by this pairing. E.g. if
this pairing is the inner product of X as in (29), then X D X 0 and this is the Riesz
identification; if this pairing is the inner product of a Hilbert space X0 in which X is
continuously embedded as in (51), then X 0 is the dual of X with respect to the pivot
space X0, cf. [42], §2.9; similarly, if X 0 is continuously embedded in X0, then X is
the dual of X 0 with respect to X0; in (49) this pairing is not an inner product.

The dual of A is a self-adjoint operator A0 on X 0 (if JR W X ! L.X;C/ denotes
the Riesz isomorphism as in [42], §1.1, then the Hilbert space adjoint of A is A� D
J�1

R JA0J�1JR). The dual of X1 is the space X 0�1 which is the completion of X 0
with respect to the norm k�k�1 D k.A0 � Ň/�1�k and the dual of X�1 is the space
X 0

1 which is D.A0/ with the norm k�k1 D k.A0 � Ň/�k, cf. [42], §2.10.
Let C 2 L.X1; Y / and let B 2 L.Y 0; X 0�1/ denote its dual.
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We consider the dual observation and control systems with output function y and
input function u:

Px.t/� iAx.t/ D 0; x.0/ D x0 2 X; y.t/ D Cx.t/; (3)

P�.t/� iA0�.t/ D Bu.t/; �.0/ D �0 2 X 0; u 2 L2
loc.RI Y 0/: (4)

The following dual admissibility notions for the observation operator C and the
control operator B are equivalent.

Definition 2.1. The system (3) is admissible if for some time T > 0 (an thus for any
times by the group property) there is an admissibility cost KT such that

Z T

0

kCeitAx0k2dt 6 KT kx0k2; x0 2 D.A/: (5)

The system (4) is admissible if for some time T > 0 (an thus for any times) there is
an admissibility cost KT such that

����
Z T

0

eitA0

Bu.t/dt

����
2

6 KT

Z T

0

ku.t/k2dt; u 2 L2.RI Y 0/: (6)

The admissibility constant in time T is the smallest constant in (5), or equivalently
in (6), still denoted KT .

Under the admissibility assumption, the output map x0 7! y from D.A/ to
L2

loc.RI Y / has a continuous extension to X . The equations (3) and (4) have unique
solutions x 2 C.R; X/ and � 2 C.R; X 0/ defined by

x.t/ D eitAx0; �.t / D eitA0

�.0/C
Z t

0

ei.t�s/ABu.s/ds: (7)

The following dual notions of observability and controllability are equivalent.

Definition 2.2. The system (3) is exactly observable in time T at cost �T if the
following observation inequality holds:

kx0k2 6 �T

Z T

0

ky.t/k2dt; x0 2 D.A/: (8)

The system (4) is exactly controllable in time T at cost �T if for all �0 in X 0, there is
a u in L2.RI Y 0/ such that u.t/ D 0 for t … Œ0; T �, �.T / D 0 and

Z T

0

ku.t/k2dt 6 �T k�0k2: (9)

The controllability cost in time T is the smallest constant in (9), or in (8) and it is
still denoted �T .
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If the system is exactly controllable then, using the group property, for all �0 and
�T in X 0, there is a u in L2.RI Y 0/ such that

R T

0
ku.t/k2dt 6 �T keiT A0

�0 � �T k2,
u.t/ D 0 for t … Œ0; T �, and the solution of the system (4) satisfies �.T / D �T .

The assumption C 2 L.X1; Y / covers most applications to PDEs but is not really
necessary to apply this theory since [43], Remark 3.7, proves that any operator C

with a dense domain D.C/ invariant by .eitA/t>0 satisfying (5) with D.A/ replaced
by D.C/ is in some sense equivalent to an operator in L.X1; Y /.

2.2. Basic resolvent conditions. In the general framework of §2.1, we consider the
following conditions on C and A which are reminiscent of relative boundedness of
C with respect to A (e.g. [9], Definition 2.1) and resolvent estimates for A:

9L > 0; l > 0;8x 2 D.A/; � 2 R; kCxk2 6 Lk.A � �/xk2 C lkxk2; (10)

9M > 0;m > 0;8x 2 D.A/; � 2 R; kxk2 6 Mk.A��/xk2 CmkCxk2: (11)

The following theorems say that these conditions are necessary and sufficient for
admissibility and exact controllability respectively.

Theorem 2.3. The system (3) is admissible if and only if the resolvent condition (10)
holds. More precisely, (5) implies (10) with L D TKT and l D 2KT =T . Con-
versely (10) implies (5) with KT D lT C p

Ll .

Theorem 2.4. Assume that the system (3) is admissible. It is exactly observable if
and only if the resolvent condition (11) holds. More precisely, (8) implies (11) with
M D T 2�TKT and m D 2T �T . Conversely (11) implies (8) for all T > 	

p
M

with �T D 2mT=.T 2 �M	2/.

Corollary 2.5. The system (4) is admissible and exactly controllable if and only if
x 7! k.A��/xkCkCxk is a norm on D.A/ equivalent to x 7! k.A��/xkCkxk
uniformly with respect to � 2 R.

The proof uses lemmata which do not rely on the assumption that A is self-adjoint.

Lemma 2.6. For all T > 0, x0 2 D.A/, � 2 R

T kCx0k2 6 2

Z T

0

kCeitAx0k2dt C T 2

Z T

0

kCeitA.A � �/x0k2dt;

Z T

0

kCeitAx0k2dt 6 2T kCx0k2 C T 2

Z T

0

kCeitA.A � �/x0k2dt:

Proof. Set x.t/ D eitAx0, z.t/ D x.t/�eit�x0 and f D i.A��/x0. Since Px.t/ D
iAx.t/ D eitA.i�x0 C f / D i�x.t/ C eitAf , we have Pz.t/ D i�z.t/C eitAf

and therefore z.t/ D R t

0 e
i.t�s/�eisAf ds.
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We plug it in eit�x0 D x.t/ � z.t/ and x.t/ D eit�x0 C z.t/ to estimate
Z T

0

jeit�j2dtkCx0k2 62
Z T

0

kCx.t/k2dt

C 2

Z T

0

t

Z t

0

jei.t�s/�j2kCeisAf k2 ds dt;

Z T

0

kCx.t/k2dt 62
Z T

0

jeit�j2dtkCx0k2

C 2

Z T

0

t

Z t

0

jei.t�s/�j2kCeisAf k2 ds dt:

Since � 2 R, we have jeit�j D jei.t�s/�j D 1. Now the inequality
Z T

0

t

Z t

0

F.s/ ds dt 6
Z T

0

t

Z T

0

F.s/ ds dt D .T 2=2/

Z T

0

F.s/ ds

with F.s/ D kCeisAf k2 completes the proof of the lemma.

Lemma 2.7. For all Lipschitz function 
 with compact support in R, x0 2 D.A/,

(10) )
Z

kCeitAx0k2
2.t /dt 6
Z

keitAx0k2.L P
2.t /C l
2.t //dt;

(11) )
Z

keitAx0k2
�

2.t / �M P
2.t /

�
dt 6 m

Z
kCeitAx0k2
2.t /dt;

Proof. Let x0 2 D.A/, x.t/ D eitAx0, z D 
x and f D Pz � iAz. Since
Px D iAx, we have f D P
x. The Fourier transform of f is Of .�/ D �i.A � �/ Oz.�/.
Applying (10) and (11) with x D Oz.�/ and � D � and integrating with respect to �
yields Z

kC Ozk2d� 6 L

Z
k Of k2d� C l

Z
kOzk2d�;

Z
kOzk2d� 6 m

Z
kC Ozk2d� CM

Z
k Of k2d�:

The proof of the lemma is completed by making the following substitutionsZ
kOzk2d� D

Z
kxk2
2dt;

Z
k Of k2d� D

Z
kxk2 P
2dt;

Z
kC Ozk2d� D

Z
kCxk2
2dt;
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resulting from the unitarity of the Fourier transform, i.e. Plancherel theorem.

Proof of Theorems 2.3 and 2.4. The implications result from Lemma 2.6. The con-
verse results from Lemma 2.7 with the following choices of 
.

To prove the converse in Theorem 2.3, we take 
.t/ D 1 on Œ0; T �. We have

Z T

0

kCeitAx0k2dt 6
Z

kCeitAx0k2
2.t /dt (12)

and, since .eitA/t>0 is a unitary group, the resolvent condition (10) and Lemma 2.7
imply the admissibility inequality (5) with KT D R �

L P
2.t /C l
2.t /
�
dt . Taking

the support of 
 equal to Œ��; T C �� and


.T C t / D 
.�t / D sinh.!.� � t //
sinh.!�/

; t 2 Œ0; � �;

with ! D p
l=L, yields

KT D T l C
p
Ll

sinh.2!�/

sinh2.!�/
�! T l C

p
Ll

as � ! C1.
To prove the converse in Theorem 2.4, we take 
.t/ D '.t=T / with the support

of ' equal to Œ0; 1� and '.t/ D sin.	t/ for t 2 Œ0; 1�. We have

Z
kCeitAx0k2
2.t /dt 6 k'k2

L1

Z T

0

kCeitAx0k2dt D
Z T

0

kCeitAx0k2dt;

and, since .eitA/t>0 is a unitary group,
Z

keitAx0k2.
2.t /�M P
2.t //dt D kx0k2IT

with

IT D
Z �

'2
� t
T

�
� M

T 2
P'2

� t
T

��
dt

D
R
'2.t /dt

T

�
T 2 �M

R P'2.t /dtR
'2.t /dt

�

D T 2 �M	2

2T
:

Thus, for all T >
p
M	 , (11) and Lemma 2.7 imply (8) with �T D m=IT .

Remark 2.8. Concerning the first statement of the admissibility Theorem 2.3 (i.e.
without the explicit relation between the constants in (5) and (10)) Marius Tucsnak
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pointed out that the necessity of the resolvent condition (10) results directly from
[42], Theorem 4.3.7, and the sufficient from [42], Corollary 5.2.4, with ˛ D 1. For
completeness, we recall Corollary 5.2.4 in [42]: if G generates a right-invertible
semigroup, C 2 L.D.G /; Y /, ˛ > !0.G / and kC.˛ C i� � G /�1k is bounded for
� 2 R then the system .G ;C/ is admissible. Taking G D iA, since A is self-adjoint,
k..1C i�/� G /xk2 D k.�� A/xk2 C kxk2. We also recall that Corollary 5.2.4 in
[42] follows from a result of [43], was first explicitly stated in [16], and was given an
alternative shorter proof in [45], Theorem 2.2: as pointed out in the introduction, both
proofs use the unitarity of the Laplace transform between L2.0;1/ and the Hardy
space H 2 on the right half-plane.

2.3. Resolvent conditions with variable coefficients and restricted spectral in-
terval. In this subsection, we consider resolvent conditions more general than (10)
and (11) in two ways.

Firstly we allow the coefficients to vary (e.g. this is necessary to obtain the char-
acterization for second order systems in §3.2):

kCxk2 6 L.�/k.A � �/xk2 C l.�/kxk2; x 2 D.A/; � 2 R; (13)

kxk2 6 M.�/k.A � �/xk2 Cm.�/kCxk2; x 2 D.A/; � 2 R; (14)

where l , L, m and M are locally bounded positive functions on R.
Both (13) and (14) can be easily extended to � 2 C since A is self-adjoint:

k.A � � � i�/xk2 D k.A � �/xk2 C �2kxk2 > k.A � �/xk2 for real � and �.
Secondly we restrict the interval for the spectral parameter � (many proofs of

§3 rely on this). Recall that �.A/ denotes the spectrum of A. Let inf A, sup A

and Œ��.A/ denote its infimum, supremum and convex hull (i.e. the smallest interval
containing it). E.g. if inf A > �1 and sup A D C1 then Œ��.A/ D Œinf A;C1/.
We always assume inf A ¤ sup A. The following proposition says that there is no
loss in restricting (13) and (14) to � 2 Œ��.A/:

kCxk2 6 L� .�/k.A � �/xk2 C l� .�/kxk2; x 2 D.A/; � 2 Œ��.A/; (15)

kxk2 6 M� .�/k.A � �/xk2 Cm� .�/kCxk2; x 2 D.A/; � 2 Œ��.A/; (16)

where l� , L� , m� and M� are locally bounded positive functions on Œ��.A/. This
proposition discusses how to extend the functions l� ,L� ,m� andM� in (15) and (16)
into l , L, m and M for which (13) and (14) hold (the converse being obvious).

Proposition 2.9. The restricted resolvent condition (16) implies (14) with functions
.M;m/ which are the following extensions of .M� ; m� /.

(i) If the spectrum of A is bounded from below but not from above then for each
� < inf A define .M;m/.�/ D .M� ; m�/.2 inf A � �/. If inf A > 0, sup A D
C1, M� and m� are nonincreasing then one may define more simply, for � 2 R,
.M;m/.�/ D .M� ; m�/.maxfinf A; j�jg/.
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(ii) If the spectrum of A is bounded then for each � … Œ��.A/ defineM and m as
the supremum of M� and the supremum of m� respectively.

(iii) In particular, ifM� andm� are constants then .M;m/ D .M� ; m� / is always
suitable.

With the same extensions of .L� ; l� / into .L; l/, (15) implies (13).

Proof. The spectral theorem yields for any non-negative self-adjoint operators B:

k.B � �/xk 6 k.B C �/xk; x 2 D.B/; � > 0: (17)

This results from writing B �� D .B C�/f .B=�/, where f .t/ D .t � 1/=.t C 1/

remains in Œ�1; 1� for t 2 Œ0;1/. Applying (17) with � D inf A � � yields

k.A � .2 inf A � �//xk 6 k.A � �/xk; � 6 inf A: (18)

The choice in (i) results from (18). The last sentence in (i) results from 2 inf A�� >
maxfinf A;��g for � 6 inf A.

To prove (ii) we assume that both inf A and sup A are finite, (16) holds and
we define M and m as the supremum of M� and m� respectively. Thanks to (18),
(14) holds for � 2 Œ2 inf A � sup A; sup A�. Applying (17) recursively with B D
A � .inf A � n.sup A � inf A// and � D inf A � n.sup A � inf A/� � for n 2 N
yields that it still holds for � 2 Œinf A� .nC1/.sup A� inf A/; sup A� for all n 2 N,
i.e. for all � 6 sup A. It still holds for all � > sup A by a similar recurrence with
B D sup A Cn.sup A � inf A/� A and � D �� .sup A Cn.sup A � inf A//.

The following proposition says that there is only a loss of a factor 4 in the main
coefficient in restricting (13) and (14) to the sheer spectrum of A:

kCxk2 6 L� .�/k.A � �/xk2 C l� .�/kxk2; x 2 D.A/; � 2 �.A/; (19)

kxk2 6 M� .�/k.A � �/xk2 Cm� .�/kCxk2; x 2 D.A/; � 2 �.A/; (20)

where l� , L� , m� and M� are locally bounded positive functions on �.A/.

Proposition 2.10. The system (3) is admissible (resp. exactly observable) if and only
if the resolvent condition (19) (resp. (20)) holds for some constant l� and L� (resp.
for some constant m� and M� ).

More precisely, (20) implies (14) with functions .M;m/.�/ D .4M� ; m� /.	.�//

where 	.�/ denotes the spectral value closest to �. When the distance of � to the
spectrum of A is large enough this improves into .M;m/.�/ D .j� � 	.�/j�2; 0/.
With the same definition of .L� ; l� / from .L; l/, (19) implies (13).

Proof. If � … �.A/, then the spectral theorem yields k.A � �/�1k 6 j	.�/� �j�1.
Hence k.A � 	.�//xk 6 k.A � �/xk C k.� � 	.�//xk 6 2k.A � �/xk.

The characterization of observability in Proposition 2.10 was proved by contra-
diction in [46] (for bounded C ) without explicit constants.
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2.4. Resolvent conditions with variable coefficients and the controllability time.
From Theorem 2.4 and Proposition 2.9(iii), if the resolvent condition (16) holds with
constantM� andm� then exact controllability holds in time T > 	

p
M� . Hence, if

the resolvent condition (16) holds with a smaller coefficient M� on some part of the
spectrum then the corresponding part of the system is controllable in a shorter time.

The following proposition ensures that the full system is actually controllable in
this shorter time provided the spectral subspace of the complementary part of the
spectrum is finite dimensional. Although its statement is slightly different from [42],
Proposition 6.4.4, (which does not assume that A is self-adjoint), its proof is so
close to that of Tucsnak and Weiss that it is omitted here. It is based on their earlier
simultaneous controllability result in [41], cf. Theorem 6.4.2 in [42].

Proposition 2.11. Assume that the system (3) is admissible and that there is a finite
set S of eigenvalues � of A such that V� D ker.A � �/ is finite dimensional and all
the eigenvectors x� 2 V� satisfy Cx� ¤ 0.

If exact observability in time T0 > 0 holds for the restricted system

Px.t/� iA0x.t/ D 0; x.0/ D x0 2 X0; y.t/ D Cx.t/;

where A0 D 1A…S A is the restriction of A to the orthogonal space X0 D X?
S of

XS D 1A2S X D L
�2S V� in X , then it also holds for the full system (3).

The following propositions improve the basic time estimate in Theorem 2.4. They
says roughly that, when computing the control time from M� , any compact part of
the discrete spectrum can be discarded: in other words, only the essential spectrum
matters including ˙1 when they are limit points of the spectrum.

Proposition 2.12. Assume that the system (3) is admissible and that the resolvent
condition (16) holds with a constant coefficient m� . From the other coefficient M� ,
define the essential coefficient

Mess D inf
KbRn�ess.A/

sup
�2Œ�.A/nK�

M� .�/;

where K b R n �ess.A/ means that K is a compact subset of R which does not
intersect the essential spectrum of A.

Then the system (3) is exactly observable for all time T > 	
p
Mess.

If �.A/ is bounded from below and �ess.A/ D ; then Mess D lim sup
�!C1

M� .�/.

Proof. Let T0 > 	
p
Mess so that M0 WD 	�2T 2

0 > Mess. By the definition of Mess,
there is a K b R n �ess.A/ such that sup�2Œ�.A/nK� M� .�/ < M0.

Since the restriction A0 D 1A…K A satisfies D.A0/ D D.A/\X0 and �.A0/ D
�.A/ nK, the resolvent condition (16) and the definition of K imply

kxk2 6 M0k.A0 � �/xk2 Cm� kCxk2; x 2 D.A0/; � 2 Œ��.A0/:
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By Proposition 2.9(iii), this implies that the restricted system in Proposition 2.11 is
controllable in time T0.

By the definition of �ess.A/, K \ �.A/ is composed of isolated eigenvalues with
finite multiplicities. Since K is compact, the cardinal of K \ �.A/ is finite. Since
m� > 0, the resolvent condition (16) implies Cx ¤ 0 for any eigenvector x of A.

Applying Proposition 2.11 with S D K completes the proof.

The estimate of the controllability cost in Theorem 2.4 is lost in Proposition 2.12
due to the contradiction argument in the proof of Proposition 2.11. This was the main
reason for replacing it with the control transmutation method in [30], §9.

The following version of Proposition 2.12 is better e.g. when A is neither bounded
from below nor from above. The proof is the same except it uses Proposition 2.10 in-
stead of Proposition 2.9. A simpler formula forMess is also given when the coefficient
M in the resolvent condition (11) is continuous. (Note that �ess.A/ is closed.)

Proposition 2.13. Proposition 2.12 still holds if the resolvent condition (16) is re-
placed by (20) and the definition of the essential coefficient is replaced by

Mess D 4 inf
KbRn�ess.A/

sup
�2�.A/nK

M� .�/:

If �ess.A/ D ; then Mess D 4 lim supM� .�/ as j�j ! C1 in �.A/.
Proposition 2.12 still holds if the resolvent condition (16) is replaced by (11) with

continuous M and the definition of the essential coefficient is replaced by

Mess D max
˚

sup
�2�ess.A/

M.�/; lim sup
�!�1

M.�/; lim sup
�!C1

M.�/
�
:

Corollary 2.14. If �ess.A/ D ; (e.g. if the resolvent of A is compact), the system (3)
is admissible and the resolvent condition (20) holds with m� constant and

M� .�/ �! 0 as j�j �! C1; � 2 �.A/;
then the system (3) is exactly observable for all times T > 0.

This corollary is inspired from [3], Theorem 7, which makes more involved as-
sumptions on .A;C/ but allows the coefficient m to vary.

Remark 2.15. Under the additional assumption that A is bounded from below, Corol-
lary 2.14 says that M.�/ ! 0 as � ! C1 implies observability for all T > 0. But
observability for all T > 0 does not imply M.�/ ! 0 as � ! C1 (Schrödinger
equation in a rectangle observed from a strip is a counter-example). What follows
says, in a very vague sense: M.�/ ! 0 means fast observability of high modes at
low cost �T � 1

T
. We refer to [29], Theorem 3.2, for a similar but rigorous statement

about fast observability of high modes at low cost.
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Recall the link of M and m to the time T , admissibility KT and cost �T :

T > 	
p
M; �T D 2mT=.T 2 �M	2/; and M D T 2�TKT ; m D 2T �T :

If the resolvent condition holds with M.�/ ! 0 as � ! C1, then the restriction of
A to 1jAj>�X is observable in time T .�/ D 	

p
2M.�/ at cost �T .�/ D 4m=T .�/.

This should be considered as “low cost” since �T � 1
T

whenever C is the identity,
i.e. full observation is available.

Conversely, if the restriction of A to 1jAj>�X is observable in time T .�/ with
T .�/ ! 0 and  D lim supT .�/�T .�/ < 1 as � ! C1, then the resolvent
condition holds with M.�/ < K1T .�/ for large �. In particular, this implies
observability of A for all T > 0.

2.5. Wavepackets condition. The wavepackets condition introduced in (H6’) in
[5] and (1.6) in [38] corresponds to (21) with constant d and D. The following
proposition generalizes [38], Theorem 1.3: the resolvent of A is not assumed to be
compact, the functions in (21) and (14) are not assumed to be constants and their
relation is explicit because the proof is direct (does not go through (2.2) in [38]).

Proposition 2.16. The observability resolvent condition (14) implies the wavepackets
condition, for any function d > m and associated function D D 1�m=d

M
,

kxk² 6 d.�/kCxk²; x 2 1jA��j26D.�/X; � 2 R: (21)

The wavepackets condition (21) and the admissibility resolvent estimate (13) imply the
observability resolvent estimate (14) for any functionm > d and associated function

M.�/ D ıLC 1Cıl
D

, where ı D �
1
d

� 1
m

��1
. Note that ı > d and m D �

1
d

� 1
ı

��1
.

Proof. Let x 2 1jA��j26D.�/X . By the spectral theorem k.A��/xk² 6 D.�/kxk2.
Plugging this in (14) yields (21) with d.�/ D m

1�DM
since 1 �DM D m

d
> 0.

To prove the converse, we introduce the projection x� D 1jA��j26D.�/ x of
x 2 D.A/, and x?

�
D x�x�. Using kCx�k2 6 .1C"2/kCxk2C.1C"�2/kCx?

�
k2,

".�/ > 0, and applying (13) to estimate this last term, then plugging this in (21) yields

kxk2 6d.1C "2/kCxk2 C d.1C "�2/Lk.A � �/x?
� k2

C .1C dl.1C "�2//kx?
� k2:

But the spectral theorem implies kx?
�

k2 6 1
D

k.A � �/x?
�

k2, so that (14) holds with

m D d.1C "2/ and M D .1C "�2/dLC 1Cdl.1C"�2/
D

.

Combining this Proposition 2.16 with Theorem 2.3, yields this restatement of
Theorem 2.4 in terms of wavepackets.
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Corollary 2.17. Assume that the system (3) is admissible. It is exactly observable if
and only if the following wavepackets condition holds:

9D > 0; d > 0; kxk 6
p
dkCxk; x 2 1jA��j6p

D X; � 2 R; (22)

More precisely, (8) implies (11) implies (22) with D D 1=.2M/ D 1=.2T 2�TKT /

and d D 2m D 4T �T . Conversely (22) implies exact controllability (8) for all T
such thatT 2 > 	2. 1

D
CdKT .TC 2

DT
//, in particular for allT > �p

D
C	2dK�=

p
D .

Moreover, (22) implies (8) with the simpler cost formula �T D 4dT
"

for all T such
that " WD T 2 � 	2. 1

D
C 2dKT .T C 2

DT
// > 0.

Proof. We only make the lengthiest computation: assuming T > �p
D

C 	2dK,

where K WD K
�=

p
D

, we deduce .T=	/2 > 1
D

C dKT .T C 2
DT
/. Since T 7! KT

is increasing, T > �p
D

implies KT > K and 2

�
p

D
> 2

DT
. Hence it suffices to

prove that x WD T=	 satisfies x2 > 1
D

C dK.T C 2

�
p

D
/ DW ˛ C 2ˇx, where

˛ D 2dK

�
p

D
C 1

D
and ˇ D �dK

2
. This is equivalent to x > ˇ C p

ˇ2 C ˛. Since

	 > 2=	 , this is implied by the assumption which translates into x > 1p
D

C	dK D
ˇ C

q
ˇ2 C �dKp

D
C 1

D
.

Corollary 2.18. Assume that the system (3) is admissible, that �ess.A/ D ; (e.g. that
the resolvent of A is compact) and that there is a spectral gap  > 0 in the following
sense: j� � �j >  for all distinct eigenvalues � and �.

The system (3) is exactly observable if and only if the following eigenvectors
condition holds:

9ı > 0; for all eigenvector x of A; kxk 6 ıkCxk: (23)

More precisely (23) is equivalent to (22) with d D ı2 and any D < 2=4.

Remark 2.19. Corollary 2.18 slightly generalizes [42], Proposition 8.1.3, in partic-
ular eigenvalues of A need not be simple. It could also be proved by the classical
theorem of Ingham on non-harmonic Fourier series, cf. e.g. [42], Theorem 8.1.1,
which would give the better time estimate T > 2	= . The time estimate in Corol-
lary 2.17 matches Ingham’s T > 	=

p
D in both asymptotics D ! 0 or d ! 0,

whereas the less general Theorem 2.5 in [12] does not, since its time estimate trans-
lates into: T > 2ep

D
.�

4
lnLC 3�

4
/1C1= ln L, with L D 2�

3
K1=

p
Dd

p
D.

Example 2.20. Corollary 2.18 applies to the interior observability of the Schrödinger
(with A D ��c) and wave equations (with A D p��c, cf. Theorems 3.8 and 3.13)
where �c D @x.c.x/@x/ is the Laplacian with Dirichlet boundary conditions on a
segment and c is a positive smooth function.
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Remark 2.21. Consider the Schrödinger equation on a rectangle Œ0; a� � Œ0; 1�,
a2 … Q, observed from a smaller rectangle !x � !y, !x � Œ0; a�, !y � Œ0; 1�.
Although the natural orthonormal basis of eigenfunctions satisfies (23) and although
exact controllability does hold (this result due to Jaffard has been extended to any
dimension by Komornik, and to partially rectangular billiards in [3], and [4]), Corol-
lary 2.18 (with A D ��) does not apply if a2 … Q, since the gap condition does not
hold. It does apply in principle when a2 2 Q (the gap condition holds) but it is not
trivial to check (23) since there are eigenspaces with arbitrary large dimension (it is
easy in the case of observation from a strip, i.e. !y D Œ0; 1�, cf. [5], Example 3.a).

2.6. Eigenvectors condition. Although slightly off the topic of this paper, we com-
ment on the following version of the Hautus test in finite dimension already mentioned
in §1:

for all eigenvector x of A; Cx ¤ 0: (24)

When the resolvent of A is compact, Proposition 6.9.1 in [42] proves that it is equiv-
alent to the following observability notion.

Definition 2.22. The system (3) is approximately observable in infinite time if x D 0

is the only x 2 D.A/ such that y.t/ D 0 for all t > 0.

Using the homeomorphism .i � A/�1 W X ! D.A/, this is equivalent to
\
t2R

ker.CeitA.i � A/�1/ D f0g : (25)

When C is admissible, this is equivalent to: x D 0 is the only x 2 X such that y D 0

in L2
loc.0;1/. This results from considering x as a the limit inX of its usual smooth

approximation x" 2 D.A/ as " ! 0C:

x" WD 1

"

Z "

0

eitAxdt;

y".T / WD CeiT Ax"

D 1

"

Z "

0

Cei.T Ct/Axdt

D
Z T C"

T

y.t/dt:

Proposition 2.23. Let B denote the � -algebra of Borel sets of R. Consider a set
B� � B of bounded sets such that, for any � 2 B, � \ �.A/ is a countable
disjoint union of elements of B� (e.g. if B� is the set of bounded Borel subset with
diameter smaller than " > 0, then any � 2 B can be written � D F

k2Z�k with
�k D �\ Œk"; .k C 1/"Œ2 B� ).
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The system (3) is approximately observable in infinite time if and only if
\

�2B�

ker.C 1A2�/ D f0g :

In particular, assuming �ess.A/ D ; and defining B� as the set of singletons f�g
for all eigenvalues � of A, we obtain that (3) is approximately observable in infinite
time if and only if the eigenvector test (24) holds.

Proof. The second of the following equalities results from the spectral theorem:
\
t2R

ker.CeitA.i � A/�1/ D
\

f 2L1.R/

ker.Cf .A/.i � A/�1/

D
\

�2B

ker.C 1A2�.i � A/�1/

D
\

�2B�

ker.C 1A2�.i � A/�1/:

(26)

The first equality (26) results from the Fourier transform in the following way.
Consider x 2 D.A/, such that CeitAx D 0, t > 0. For any f 2 C1.R/ with
compact support, f is the Fourier transform of an Lf 2 L1.R/, hence

Cf .A/x D C

Z
Lf .t/e�itAxdt D

Z
Lf .t/Ce�itAxdt D 0:

The property Cf .A/x D 0 extends to the set of continuous function f with compact
support since C1.R/ functions with compact support are dense in this set for the
L1.R/ norm (e.g. by convolution). To extend this property to an f 2 L1.R/, first
consider a sequence of continuous functions with compact support .fn/n2N bounded
in L1.R/ and converging pointwise to f (e.g. by Lusin theorem). Since fn.A/

converges to f .A/ pointwise in X , fn.A/x converges to f .A/x in D.A/. Hence
we still have Cf .A/x D 0 for any f 2 L1.R/.

If � 2 B can be written as the disjoint union � D F
n2N�n with �n 2 B�

then 1A2� x D P
n2N 1A2�n

x converges in X . Since C 2 L.X1; Y /, this implies
the convergence in Y of C 1A2�.i � A/�1x D P

n2N C 1A2�n
.i � A/�1x. Since

�n 2 B� is bounded, ker.C 1A2�n
/ D ker.C 1A2�n

.i � A/�1/. This completes
the proof of the last equality in (26).

Proposition 2.23 results from (26) and the equivalent definition (25).

It is not clear that approximate observability in infinite time is an interesting notion
for controllability unless the semigroup is analytic. When the semigroup t 7! etA

is analytic, the output t 7! CetAx is analytic so that approximate observability in
infinite time is equivalent to approximate observability in any time T > 0, which is
equivalent to approximate controllability in any time T > 0. Nonetheless we mention
the following easy implication in our context of unitary group.
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Lemma 2.24. Consider� � R compact and the restriction A� of A to the spectral
subspace X� D 1A2�X . If the system (3) is approximately observable in infinite
time then the system (4) obtained by replacing A onX by A� onX� is approximately
observable in any time T > 0.

Proof. The set� is compact, hence A� is bounded, hence the semigroup t 7! eitA�

is analytic, hence y W t 7! CeitA�x is analytic. By unique continuation, .A�;C/ is
approximately observable in infinite time if and only if it is approximately observable
in any time T > 0, i.e. x D 0 is the only x 2 X� such that y.t/ D 0 for all
t 2 Œ0; T �.

2.7. Quasimode condition for the lack of exact controllability. The necessity
of resolvent conditions has been widely overlooked as a means to disprove exact
observability. There are two more common means. Firstly, to produce an eigenvector
which is not observable in the sense that it violates the eigenvector test (24). Secondly,
to produce an approximate solution of the system (3) which is close enough to an exact
solution and little enough observable so that it violates (11), e.g. the exact observability
of the wave equation is disproved in [37] by a space-time Gaussian beams construction
(microlocal measures extend this result from hyperbolic to diffractive and gliding
geometric rays, cf. [2], and [28]). Here we point out this intermediate means: to
produce an almost not observable approximate eigenvector (approximate eigenvectors
are also known as quasimode).

In addition to the first order system (3) we shall consider a second order system,
anticipating on (48) in section 3.2. For this purpose we use the notations at the
beginning of section 3 and consider the second order observation system associated
to a self-adjoint, positive and boundedly invertible operator A on a Hilbert space H0

with domain D.A/, where H1 is D.
p
A/ with the norm kxk1 D kp

Axk0:

Rz.t/C Az.t/ D 0; z.0/ D z0 2 H1; Pz.0/ D z1 2 H0; y.t/ D Cz.t/: (27)

Definition 2.25. A quasimode for the system (3) at � 2 NR is a sequence .xn/n2N in
D.A/ such that there is a real sequence .�n/n2N satisfying

kxnk ! 1; kCxnk ! 0; k.A � �n/xnk ! 0; and �n ! �

as n ! 1. A quasimode for the second order system (27) is a .xn/n2N in D.A3=2/

such that

kxnk1 ! 1; kCxnk D o.1/; k.A � �n/x�k1 D o.
p
�n/; and �n ! C1

as n ! 1.

This second definition anticipates on the study of second order systems in §3.2
to allow comparison: a quasimode for the wave-like system (27) must only satisfy
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k.A��/x�k1 D o.
p
�/whereas a quasimode for the corresponding Schrödinger-like

system (50) with s D 1 must satisfy the stronger condition k.A � �/x�k1 D o.1/.
The same comparison can be made in the context of interior observation in §3.2.3.

As a direct consequence of definition 2.25, Theorem 2.4 and Corollary 3.10:

Theorem 2.26. Assume that the system (3) (resp. the second-order system (27)) is
admissible. If there is a quasimode for (3) (resp. for (27)) then it is not exactly
observable.

Applying Theorem 2.26 to the very large literature on quasimodes provides rele-
vant specific PDEs systems where exact controllability does not hold. We dwell on
this quasimode approach in a forthcoming paper, e.g. it deduces from a construction
in [35] that the Schrödinger equation is not exactly controllable from the boundary
of a domain where the diffusion constant takes some value outside a bounded strictly
convex smooth subdomain and a lower value inside this subdomain, with transmission
conditions at the boundary of the subdomain.

In keeping with the topic of this paper, we give two rather abstract applications.
Consider two positive self-adjoint operators A1 andA2 on two Hilbert spacesH 1

and H 2. The operator A1 ˝ I C I ˝ A2 defined on the algebraic tensor product
D.A1/˝ D.A2/ is closable and its closure, denoted A D A1 CA2 is a positive self-
adjoint operator on the closure H 1˝H 2 of the algebraic tensor products H 1 ˝H 2.

Theorem 2.27. Assume C1 2 L.D.A1/I Y /, C D C1 ˝ I 2 L.D.A/I Y˝H 2/,
and the second order system (27) with A and C is admissible. If kerC1 ¤ f0g and
A�1

2 is compact then (27) is not exactly observable.

Proof. SinceA2 has compact resolvent, there is a sequenceƒ of eigenvalues tending
to C1 and a corresponding sequence .x2

�
/�2ƒ in D.A

3=2
2 / of normalized eigenvec-

tors, i.e. .A2 ��/x2
�

D 0 and kx2
�
k1 D 1. Since kerC1 ¤ f0g and D.A

3=2
1 / is dense

in D.A1/, there exists x1 2 D.A
3=2
1 / such that C1x

1 D 0 and kx1k0 D 1. Now
x� D x1 ˝ x2

�
defines a quasimode for (27), since Cx� D C1x

1 ˝ x2
�

D 0,

kx�k2
1 D kp

Ax�k2
0 D hAx�; x�i0 D kx1k2

1kx2
�k2

0 C kx1k2
0kx2

�k2
1

D .kx1k2
1=�C kx1k2

0/kx2
�k2

1 D 1C kx1k2
1=� ! 1;

and k.A��/x�k2
1 D kA1x

1˝x2
�
k2

1 D kA1x
1k2

1=�CkA1x
1k2

0 D O.1/ D o.�/.

The same theorem can be stated in the context of interior observation in §3.2.3
and its application to the wave equation was already stated in [26], Theorem 4.5.

In the second application X D L2.Rd /. Assume the self-adjoint operator A on
X is locally compact, i.e. for all compactly supported ' 2 C1.Rd / considered as
a multiplication operator, '.A � z/�1 is compact for some hence all z … �.A/.
Also assume that A is local, i.e. there exists a non-negative compactly supported
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' 2 C1.Rd / such that '.q/ D 1 for jqj 6 1 and 'n.q/ D '.q=n/ satisfies
'nD.A/ � D.A/ and k.A'n � 'nA/.A � i/�1k ! 0. The observation operator
C 2 L.D.A/I Y / is compactly supported if there is a compact K � Rd such that
Cx D 0 for any x 2 D.A/ with support in Rd nK.

Theorem 2.28. Assume A is locally compact and local as above. If �ess.A/ ¤ ;
then, for all compactly supported C , the system (3) is not exactly observable.

Proof. Let � 2 �ess.A/. Equivalently by Theorem 10.6 in [18] there exists a Zhislin
sequence .xn/n2N for A and �, i.e. xn 2 D.A/, kxnk D 1, the support of xn is
outside the ball of radius n and k.A � �/xnk ! 0 as n ! 1. Since C is supported
in some ball of radius n0, Cxn D 0 for n > n0. Hence .xn/n2N is a quasimode for
the system (3) and Theorem 2.26 completes the proof.

3. Links between systems with generator build on a positive A

This section investigates the logical links between the control properties of various
systems of the form (3) with various positive A which are defined using the same
building block: a positive self-adjoint operator denoted A.

The framework for this section is more specific than §2.1. Let H0 and Y be
Hilbert spaces with respective norms k�k0 and k�k. When the context is unambiguous
we shall omit the index 0 in k�k0. Let A be a self-adjoint, positive and boundedly
invertible unbounded operator on H0 with domain D.A/.

We introduce the Sobolev scale of spaces based on A. For any positive s, let
Hs denote the Hilbert space D.As=2/ with the norm kxks D kAs=2xk0 (which is
equivalent to the graph norm kxk0 C kAs=2xk0). We identify H0 and Y with their
duals with respect to their inner product (i.e. we use them as pivot spaces). Let H�s

denote the dual of Hs . Since Hs is densely continuously embedded in H0, the pivot
spaceH0 is densely continuously embedded inH�s , andH�s is the completion ofH0

with respect to the norm kxk�s D kA�s=2xk0. We still denote byA the restriction of
A to Hs with domain HsC2. It is self-adjoint with respect to the Hs scalar product.
We denote by A0 its dual with respect to the duality between Hs and H�s , which is
an extension of A to H�s with domain H2�s .

Let C 2 L.H2I Y / and let B 2 L.Y IH�2/ denote its dual.
The dual observation and control systems for the generator A are

Px.t/� iAx.t/ D 0; x.0/ D x0 2 H0; y.t/ D Cx.t/; (28)

P�.t/� iA0�.t/ D Bu.t/; �.0/ D �0 2 H0; u 2 L2
loc.RI Y /: (29)

We consider the following resolvent conditions (which are restricted to the convex
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hull Œ��.A/ of the spectrum of A with variable coefficients l , L, m and M ):

kCxk2 6 L.�/k.A � �/xk2
0 C l.�/kxk2

0; x 2 D.A/; � 2 Œ��.A/; (30)

kxk2
0 6 M.�/k.A � �/xk2

0 Cm.�/kCxk2; x 2 D.A/; � 2 Œ��.A/; (31)

where l , L, m and M are locally bounded positive functions on Œ��.A/.

Example 3.1. We refer to [42], §7.5, for the typical example of the free linear
Schrödinger equation on a domain with Dirichlet boundary condition observed from
a subset of the domain, or from the Neumann derivative on a subset of the boundary.
Systems of such equations can also be written as (28).

3.1. Systems generated by fractional powers of A and other convex functions
of A. For any function f of the form f .�/ D �h.�/where h W �.A/ ! Œh0;C1/ is
measurable and h0 > 0, the spectral theorem defines a positive self-adjoint operator
f .A/ such that D.f .A// � D.A/ and �.f .A// � f .�.A//. Therefore we may
consider the systems generated by f .A/ fitting the general framework of §2.1 with
X D H0 D X 0, ˇ D 0, C D C and A D f .A/:

Px.t/ � if .A/x.t/ D 0; x.0/ D x0 2 H0; y.t/ D Cx.t/; (32)

P�.t/ � if .A0/�.t/ D Bu.t/; �.0/ D �0 2 H0; u 2 L2
loc.RI Y 0/: (33)

This section investigates the link between the control properties of (29) and (33).
An example of particular interest is f .�/ D �˛ with ˛ > 1 which defines an

operator f .A/ known as the fractional power A˛ of the operator A with domain
D.A˛/ D H2˛ � D.A/ D H2:

Px.t/ � iA˛x.t/ D 0; x.0/ D x0 2 H0; y.t/ D Cx.t/; (34)

P�.t/ � i.A0/˛�.t/ D Bu.t/; �.0/ D �0 2 H0; u 2 L2
loc.RI Y 0/: (35)

In deducing control properties of (33) from (29), convexity is the main property
of f W Œ0;C1/ ! Œ0;C1/ that our argument relies on. E.g. Theorem 3.2 applies to
f .�/ D � ln.1C�/ which has an interesting application (cf. [8]). Although systems
generated by fractional powers of the Laplacian are a well established modeling tool,
we do not know which range of the power-logarithm scale of the Laplacian has ever
been actually considered for modeling purposes. Conversely in deducing control
properties of (29) from (33), we use homogeneity as an additional property of f ,
therefore Theorem 3.5 only concerns fractional powers.

Throughout this section the norm k�k0 on the state space H0 is simply denoted
k�k as the norm on the observation space Y without ambiguity.



Resolvent conditions for control 23

Theorem 3.2. If the system (28) for A is admissible (resp. exactly observable) then
the system (32) for f .A/ is admissible (resp. exactly observable) for any convex
function f W Œ0;C1/ ! Œ0;C1/ which vanishes only at 0.

More precisely (31) implies the observability resolvent estimate

kxk2 6 Mf .�/k.f .A/� �/xk2 Cmf .�/kCxk2; x 2 D.f .A//; � 2 f .Œ��.A//;
with mf .�/ D m.f �1.�// and Mf .�/ D .f �1.�/=�/2M.f �1.�//. If moreover
f .�/ D �h.�/ then this simplifies asMf .�/ D M.f �1.�//=h2.f �1.�//. Similarly
(30) implies the admissibility resolvent estimate for f .A/ with coefficients defined
from l and L as mf and Mf were defined from m and M .

Note that f is strictly increasing since 0 < x < y implies f .y/�f .x/
y�x

> f .y/
y

> 0.
Moreover convexity implies continuity. Hence f is bijective.

Sincef is continuous, the spectrum off .A/ is�.f .A// D f .�.A//. Taking con-
vex hulls and using the convexity of f yields Œ��.f .A// D Œf .�.A//� D f .Œ��.A//.

Theorem 3.2 results directly from the following simple convexity inequality.

Lemma 3.3. If f W Œ0;C1/ ! Œ0;C1/ is convex and vanishes only at 0 then

k.A� �/xk 6 �

f .�/
k.f .A/ � f .�//xk; (36)

for x 2 D.f .A// and � > 0.

Proof. The hypothesis implies that f is continuous and t 7! t=f .t/ is positive
nonincreasing on .0;C1/ hence bounded on Œ";C1/ for all " > 0. Therefore f .A/
is well defined and D.f .A// � D.A/.

For all � > 0, the difference quotient g� is the left continuous function at t D �

defined on Œ0;C1/ by g�.t / D f .t/�f .�/
t��

. Since f is convex, g� is increasing.

Hence g�.t / > g�.0/ D f .�/
�

for t > 0. Therefore, setting h� WD 1=g�, the spectral
theorem yields kh�.A/k 6 �

f .�/
. Now (36) results from A � � D h�.A/.f .A/ �

f .�//.

Example 3.4. Theorem 3.2 applies, e.g., when f .t/ D t log˛.1C t / D th.t/, ˛ > 1,
and M is a constant. In this case we check that the coefficient Mf satisfies:

Mf .�/ D M=h2.f �1.�// 6 .1C ˛/2˛M= log2˛.1C �/:

Setting � D f .�/ D � log˛.1C �/, we have 1=h.f �1.�// D 1=log˛.1C �/ and
we want to check 1=log˛.1C �/ 6 .1 C ˛/˛=log˛.1C �/, which is equivalent to
1C� 6 .1C�/1C˛. But this results from 1C�1C˛ 6 .1C�/1C˛ and this estimate
of the logarithm: � D � log˛.1C �/ 6 �1C˛.
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Applying Theorem 3.2 to f .�/ D �˛ with ˛ > 1 yields

Mf .�/ D M.�
1
˛ /=�2�2=˛:

This makes the following notations for the resolvent conditions more convenient when
dealing with the fractional powers in (34):

kCxk2 6 L˛.�/

�2�2=˛
k.A˛ � �/xk2 C l˛.�/kxk2; x 2 D.A˛/; � 2 Œ��.A˛/; (37)

kxk2 6 M˛.�/

�2�2=˛
k.A˛ � �/xk2 Cm˛.�/kCxk2; x 2 D.A˛/; � 2 Œ��.A˛/: (38)

where l˛ , L˛ ,m˛ andM˛ are locally bounded positive functions on R. The first part
of the following theorem is the application of Theorem 3.2 with these notations. The
new feature is the converse in the second part using the homogeneity of f .

Theorem 3.5. If the system (28) for A is admissible (resp. exactly observable) then
the system (34) for A˛ is admissible (resp. exactly observable) for any ˛ > 1. More
precisely (31) implies (38) with m˛.�/ D m.�1=˛/ and M˛.�/ D M.�1=˛/. Simi-
larly (30) implies (37) with l˛.�/ D l.�1=˛/ and L˛.�/ D L.�1=˛/.

The system (28) for A is admissible if and only if the resolvent condition (37)
for A˛ holds for some ˛ > 1 and some constant L˛ and l˛. Assuming that it is
admissible, it is exactly observable if and only if the resolvent condition (38) for A˛

holds for some ˛ > 1 and some constant M˛ and m˛ (if moreover �ess.A/ D ; this
implies that the system (34) for A˛ is exactly observable for any positive time).

More precisely, (37) implies (30) with

L.�/ D 2maxf.2˛ � 1/2L˛.�
˛/; 4kCk2

L.H2IY /g
and l.�/ D 2l˛.�

˛/. Moreover (30) and (38) imply (31) withm.�/ D 2m˛.�
˛/ and

M.�/ D max
˚
.2˛ � 1/2M˛.�

˛/; m.�/L.�/C .1Cm.�/l.�//= inf A2
�
.

Proof. Thanks to Theorem 3.2 and Proposition 2.9 (and Corollary 2.14 for the state-
ment in parenthesis), we only need to prove the last paragraph. We shall prove (30)
and (31) by density, taking x 2 D.A˛/. Let � 2 Œ��.A/ and " > 0. In each case we
use some spectral projection x� of x which depends on " and take advantage of:

kxk2 D kx�k2 C kx � x�k2 (39)

k.A � �/xk2 D k.A � �/x�k2 C k.A � �/.x � x�/k2;

˛k.A � �/x�k2 C ˇk.A � �/.x � x�/k2 6 max f˛; ˇg k.A� �/xk2: (40)

Sincef .�/ D �˛ satisfies the homogeneity equalityf .t�/ D t˛f .�/, the difference
quotient function g� defined in Lemma 3.3 satisfies g�.�t/ D g.t/f .�/=� D
�˛�1g.t/ where g is defined on Œ0;C1/ by g.1/ D ˛ and g.t/ D .1� t˛/=.1� t /.
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We first assume only the admissibility condition (37) for A˛ . We introduce the
projection x� D 1A<.1C"/� x of x on the spectrum ofA below .1C"/�. The spectral
theorem yields

kA.x � x�/k 6 .1C 1="/k.A � �/.x � x�/k; (41)

1

�˛�1
k.A˛ � �˛/x�k 6 g.1C "/k.A� �/x�k: (42)

The former inequality results from writing A D .A � �/h.A=�/ where h.t/ D
1=.1�1=t/ is decreasing. The latter inequality results from writing�1�˛ .A˛��˛/ D
.A � �/g.A=�/ where g is increasing. Using C 2 L.H2I Y / and (41) yields

kC.x � x�/k 6 .1C 1="/kCkk.A� �/.x � x�/k: (43)

Applying (37) to x� and plugging (42) yields

kCx�k2 6 g2.1C "/L˛.�
˛/k.A� �/x�k2 C l˛.�

˛/kx�k2: (44)

Plugging (43) and (44) in 1
2
kCxk2 6 kCx�k2 C kC.x � x�/k2 and simplifying

by (40) yields (30) with

l.�/ D 2l˛.�
˛/ and L.�/ D 2maxfg2.1C "/L˛.�

˛/; .1C 1="/2kCk2g:
Taking " D 1 completes the statement that (37) implies (30) in Theorem 3.5.

Now we assume the admissibility condition (30) for A and the observability
condition (38) for A˛. We introduce the projection x� D 1A<�C" x of x on the
spectrum of A below �C ". The spectral theorem yields

kx � x�k 6 1

"
k.A � �/.x � x�/k; (45)

1

�˛�1
k.A˛ � �˛/x�k 6 g.1C "=�/k.A � �/x�k: (46)

Applying (38) to x�, plugging (46) in, and using the monotony of g yields

kx�k2 6 g2.1C "= inf A/M˛.�
˛/k.A � �/x�k2 Cm˛.�

˛/kCx�k2: (47)

To estimate the last term, we apply (30) to x � x�:

1

2
kCx�k2 6 kCxk2 C L.�/k.A � �/.x � x�/k2 C l.�/kx � x�k2:

Plugging this in (47), then plugging the resulting inequality in (39), and simplifying
by (45) and finally by (40) yields (31) with m.�/ D 2m˛.�

˛/ and

M.�/ D max
n
g2

�
1C "

inf A

�
M˛.�

˛/; 2m˛.�
˛/L.�/C 1C 2m˛.�

˛/l.�/

"2

o
:

Taking " D inf A yields the last statement in Theorem 3.5.
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Remark 3.6. In the particular case of second-order equations, the part of the first
sentence concerning exact observability was proved in [46] (without explicitM˛ and
m˛).

3.2. Second order systems. In this section we start with the general framework for
second order systems which suits the boundary control of PDEs. We finish with a
framework which suits the interior control of PDEs better.

3.2.1. “Boundary” second order systems. In addition to first order systems for A,
we consider the dual observation and control second order systems:

Rz.t/C Az.t/ D 0; z.0/D z0 2 H1;

Pz.0/ D z1 2 H0; y.t/D Cz.t/;
(48)

R�.t/C A0�.t/ D Bv.t/; �.0/ D �0 2 H0;

P�.0/ D �1 2 H�1; v 2 L2
loc.RI Y /:

(49)

Example 3.7. We refer to [42], §7.4 and 7.6, for the typical example of the wave
equation on a domain with Dirichlet boundary condition observed from a subset of
the domain, or from the Neumann derivative on a subset of the boundary. We refer
to [42], §7.5, for the examples of plate equations.

We shall now explain how they fit in the general framework of §2.1. The states
x.t/ and �.t/ of the systems (48) and (49) at time t and their state spaces X and X 0
are defined by

x.t/ D .z.t/; Pz.t// 2 X D H1 �H0; �.t / D .�.t/; P�.t// 2 X 0 D H0 �H�1:

X is a Hilbert space with the “energy norm” defined by k.z0; z1/k2 D kp
Az0k2

0 C
kz1k2

0, X 0 is a Hilbert space with norm defined by k.�0; �1/k2 D k�0k2
0 C k�1k2�1,

and X is densely continuously embedded in X 0. These spaces are dual with respect
to the pairing h.z0; z1/; .�0; �1/i D hA1=2z0; A

�1=2�1i0 � hz1; �0i0.
The dual second-order systems (48) and (49) rewrite as dual first order systems (3)

and (4), where u D v, A is defined on the domain D.A/ D D.A/ � D.
p
A/ by

A.z0; z1/ D i.�z1; Az0/, A0 is an extension of A to X 0 with domain X , ˇ D 0, X1

is H2 � H1 with the norm defined by k.z0; z1/k2
1 D kA.z0; z1/k2 D kp

Az1k2
0 C

kAz0k2
0, C 2 L.X1I Y / is defined by C.z0; z1/ D Cz0 and B 2 L.Y IX 0�1/ is

defined by By D .0; By/.
We also consider the dual observation and control first order systems for As=2,

with s > 1:

Pf .t/� iAs=2f .t/ D 0; f .0/ D f0 2 H1; y.t/ D Cf .t/; (50)

P'.t/ � i.A0/s=2'.t/ D Bu.t/; '.0/ D '0 2 H�1; u 2 L2
loc.RI Y /: (51)
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It fits in the general framework of §2.1: X D H1, X 0 D H�1, C D C , A is As=2

with D.As=2/ D H1Cs, A0 is .A0/s=2 with D..A0/s=2/ D Hs�1, ˇ D 0.
We consider the improved resolvent conditions for (50): 9Ls , ls , Ms , ms > 0,

kCf k2 6 Ls

�2.1�1=s/
k.As=2 � �/f k2

1 C lskf k2
1; f 2 H1Cs; � 2 Œ��.As=2/;

(52)

kf k2
1 6 Ms

�2.1�1=s/
k.As=2 � �/f k2

1 CmskCf k2; f 2 H1Cs; � 2 Œ��.As=2/:

(53)

Theorem 3.8. The second order system (48) generated by A is admissible (resp.
exactly observable) if and only if the first order system (50) with s D 1 generated byp
A is admissible (resp. exactly observable).

More precisely, (10) implies (52) for s D 1 with L1 D 2L and l1 D 2l; (11)
implies (53) for s D 1 with M1 D M and m1 D m=2; (52) for s D 1 implies (10)
with L D L1 and l D l1; (53) for s D 1 implies (11) with m D 4m1 and M D
maxfM1; 2m1kCk2

L.D.A/IY /
C 1=.inf

p
A/2g; (52) and (53) for s D 1 implies (11)

with m D 4m1 and M D maxfM1; 2m1L1 C .2m1l1 C 1/=.inf
p
A/2g.

For variable coefficients as in §2.3 the result still holds with inf
p
A replaced by

�C inf
p
A in the two formulas forM . E.g. ifm1 D l1 is constant butM1 D L1 ! 0

slower than 1=�2 as � ! C1, then m is constant and M ! 0 as fast as M1 in the
second formula for M (whereas the first formula does not even ensure M ! 0).

Proof. The theorem follows from the Hilbert spaces isomorphism W fromX D H1�
H0 ontoW D H1�H1 defined by W.z0; z1/ D .z0�iA�1=2z1; z0CiA�1=2z1/=

p
2,

with inverse W�1.w0; w1/ D .w0 C w1; i
p
A.w0 � w1//=

p
2. Unitarity is eas-

ily checked: k.w0; w1/k2
W WD kw0k2

1 C kw1k2
1 D .kp

Az0 � iz1k2
0 C kp

Az0 C
iz1k2

0/=2 D kp
Az0k2

0 C k�iz1k2
0 D k.z0; z1/k2. The operator A for the second

order system (48) is isomorphic to AH D WAW�1 D p
A

�
1 0
0 �1

�
.

The resolvent conditions (10) and (11) for (48) write: 8w0; w1 2 H2, � 2
Œ��.

p
A/,

1

2
kC.w0 C w1/k2 6L.k.pA � �/w0k2

1 C k.pAC �/w1k2
1/

C l.kw0k2
1 C kw1k2

1/;

kw0k2
1 C kw1k2

1 6M.k.pA � �/w0k2
1 C k.pAC �/w1k2

1/

C m

2
kC.w0 C w1/k2:

(Note that the symmetry between w0 and w1 allows to let � vary only in the positive
part of Œ��.A/ D Œ��.

p
A/ [ Œ��.�p

A/.) Taking w1 D 0 proves the first two
implications in the second statement of the theorem.
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The converse for admissibility with L D L1 and l D l1 follows from writing
1
2
kC.w0 C w1/k2 6 kCw0k2 C kCw1k2 and applying (52) with s D 1 to f D w0

and f D w1. To prove the converse for observability, the main step is to apply (53)
with s D 1 to f D w0 and write kCw0k2 6 2kC.w0 C w1/k2 C 2kCw1k2. The
following two alternative subsidiary steps lead to the alternative values for M .

The first value ofM results from kCw1k 6 kCkkp
Aw1k1, and finally simplify-

ing by .inf
p
AC �/kw1k1 6 k.pAC �/w1k1.

To prove the second value ofM , apply (52) with s D 1 tof D w1, change the sign
of � thanks to (17), and finally simplify by kw1k1 6 1

inf
p

AC�
k.pAC �/w1k1.

3.2.2. Fractional second order systems. We also consider the dual observation and
control second order systems for As , with s > 1:

Rz.t/C Asz.t/ D 0; z.0/D z0 2 H1;

Pz.0/ D z1 2 H1�s; y.t/D Cz.t/;
(54)

R�.t/C .A0/s�.t/ D Bv.t/; �.0/ D �0 2 Hs�1;

P�.0/ D �1 2 H�1; v 2 L2
loc.RI Y /:

(55)

They fit the general framework of §2.1: X D H1 �H1�s , A.z0; z1/ D i.�z1; A
sz0/

with the domain X1 D H1Cs � H1, X�1 D H1�s � H1�2s , X 0 D Hs�1 � H�1,
h.z0; z1/; .�0; �1/i D hA1=2z0; A

�1=2�1i0 � hA.1�s/=2z1; A
.s�1/=2�0i0 and therefore

A0.�0; �1/ D i.��1; .A
0/s�0/ with X 0

1 D H2s�1 � Hs�1, X 0�1 D H�1 � H�1�s ,
C.z0; z1/ D Cz0 and therefore By D .0; By/.

The following corollary of Theorem 3.8 (using Theorem 3.5 with H0 and A
replaced by H1 and

p
A, and using Corollary 2.14 for the time), characterizes the

properties of the second order system (48) in terms of improved resolvent conditions
for the first order systems (50).

Corollary 3.9. If the second order system (48) is admissible (resp. exactly observable)
then for any s > 1 the first order system (50) and the second order system (54) are
admissible (resp. exactly observable, moreover they are exactly observable for any
positive time T if �ess.A/ D ;).

More precisely, the second order system (48) is admissible if and only if (52)
holds for some s > 1. Assuming that it is admissible, it is exactly observable if and
only if (53) holds for some s > 1.

The constants L, l , M , m in (10) and (11) for (48) on the one hand, and Ls , ls ,
Ms , ms in (52) and (53) on the other hand are explicitly related here.

In particular, for s D 2 we have the following (using Corollary 2.14 for the time)

Corollary 3.10. Admissibility and exact observability for the wave-like equation (48)
hold if and only if 1p

�
k.A � �/xk0 C kCA� 1

2xk is a norm on D.A/ equivalent to
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1p
�

k.A � �/xk0 C kxk0 uniformly for � > inf A > 0, and it implies admissibility

and exact observability (in any positive time T if moreover �ess.A/ D ;) for the
Schrödinger-like equation (50) and the Plate-like equation (54) both with s D 2.

Example 3.11. WhenA is the Dirichlet Laplacian andC is the Neumann derivative at
the boundary, combining corollary 3.10 with [1] gives another proof of Theorem 4.1
and Proposition 5.1.B in [24]: under the geometric condition of Bardos, Lebeau, and
Rauch for the exact observability of the wave equation in H 1

0 � L2 with Neumann
observation, exact observability in arbitrary time holds for the Schrödinger equation in
H 1

0 with Neumann observation and for the plate equation inH 1
0 �H�1 with Neumann

observation. Under the same assumption, the control transmutation method in [30],
Theorem 10.2, yields more information on the Schrödinger equation since it provides
a geometric bound on the cost of fast controls.

Example 3.12. We now use Theorems 3.8 and 3.2 to interpret in terms of differen-
tial operators an initially abstract example due to Thomas Duyckaerts of a positive
self-adjoint operator A� with observation C� 2 L.D.A�/I Y /, Y D C, such that
the Schrödinger group eitA� is exactly observable for all positive time but the heat
semigroup e�tA� is not final-observable for any time, cf. [8], §5.1. Let � denotes
the Laplacian @2

x on the segment Œ0; 1� with Dirichlet boundary condition, which
is negative self-adjoint on L2.0; 1/ with domain D.�/ D H 1

0 .0; 1/ \ H 2.0; 1/.
Let @� denote the derivative at the endpoint 1. It is well-known that the wave
equation Rw � �w D @2

tw � @2
xw D 0 is observable by the Neumann derivative

@� in any time T > 2 on the energy space H 1
0 .0; 1/ � L2.0; 1/ (by the unitar-

ity of the discrete Fourier transform known as Parseval’s theorem). Hence Theo-
rem 3.8 with A D �� and s D 1 yields that

p�� on X D L2.0; 1/ is observ-
able by C D @�.��/�1=2 2 L.H1I Y /, Y D C. Applying Theorem 3.2 with
A D p��, f .t/ D t log.1 C t / and constant M as in example 3.4 yields that
A� WD p�� log.1C p��/ satisfies the logarithmically improved resolvent condi-
tion:

kxk2 6 M�
log2.1C �/

k.A� � �/xk2 Cm�kCxk2; x 2 D.A�/; � 2 R:

Note that we have D..��/"C1=2/ � D.A�/ � D.
p��/, for all " > 0 and C 2

L.D.A�/I Y /.

3.2.3. “Interior” second order systems. The previous Theorem 3.8 is adapted to
boundary observability (for wave and Schrödinger equations) since C 2 L.H2I Y /.
For interior observability, we haveC 2 L.H0I Y / and admissibility is obvious. In the
following version of Theorem 3.8, the assumption made on the observation operator
C is in-between: C 2 L.H1I Y /, equivalently B 2 L.Y IH�1/. Accordingly, we
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may consider a larger space of states .z0; z1/ than the previous “energy space”:

Rz.t/C Az.t/ D 0; z.0/D z0 2 H0;

Pz.0/ D z1 2 H�1; y.t/D Cz.t/;
(56)

R�.t/C A0�.t/ D Bv.t/; �.0/ D �0 2 H1;

P�.0/ D �1 2 H0; v 2 L2
loc.RI Y /:

(57)

It fits in the general framework of §2.1: X D H0 �H�1 with norm k.z0; z1/k2 D
kz0k2

0Ckz1k2�1,X 0 D H1�H0 with the “energy norm” k.�0 ; �1/k2 D k�0k2
1Ck�1k2

0,
the duality pairing is h.z0; z1/; .�0; �1/i D hz0; �1i0 � hA�1=2z1; A

1=2�0i0.
We rewrite the fractional first order systems (34) and (35) with ˛ D s=2:

Px.t/� iAs=2x.t/ D 0; x.0/ D x0 2 H0; y.t/ D Cx.t/; (58)

P�.t/� i.A0/s=2�.t/ D Bu.t/; �.0/ D �0 2 H0; u 2 L2
loc.RI Y 0/: (59)

We also consider the improved resolvent condition for (58): 9Ls , ls , Ms , ms > 0,

kCxk2 6 Ls

�2.1�1=s/
k.As=2 � �/xk2

0 C lskxk2
0; x 2 Hs; � 2 Œ��.As=2/; (60)

kxk2
0 6 Ms

�2.1�1=s/
k.As=2 � �/xk2

0 CmskCxk2 x 2 Hs; � 2 Œ��.As=2/: (61)

Applying Theorem 3.8 to the observation operator CA1=2 2 L.H2I Y / and using
Theorem 3.5 and Corollary 2.14 (as in Corollary 3.9) yields:

Theorem 3.13. Assume C 2 L.H1I Y /. The second order system (56) is admissible
(resp. exactly observable) if and only if the first order system (58) with s D 1 is
admissible (resp. exactly observable). These imply that, for any s > 1, (58) is
admissible (resp. exactly observable, moreover it is exactly observable for any positive
time T if �ess.A/ D ;).

Moreover, (56) is admissible if and only if (60) holds for some s > 1. Assuming
that it is admissible, it is exactly observable if and only if (61) holds for some s > 1.

The constants L, l , M , m in (10) and (11) for (56) on the one hand, and Ls , ls ,
Ms , ms on the other hand are explicitly related. In the following example, we only
state these relations in the case s D 1 (e.g. this is used in [8]).

Example 3.14. Assume the two resolvent conditions for A:

kCxk2 6 L2.�/
�1
�

k.A � �/xk2
0 C kxk2

0

�
; x 2 D.A/; � 2 Œ��.A/;

kxk2 6 M2.�/
�1
�

k.A � �/xk2
0 C kCxk2

0

�
; x 2 D.A/:� 2 Œ��.A/;
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where L2 is positively bounded from below and M2 ! C1 as � ! C1. We
shall compute the asymptotics as � ! C1 of the coefficients in the resolvent
conditions (13) and (14) for the wave-like equation (57). Firstly, the converse in
Theorem 3.5 with ˛ D 2 yields

kCxk2 6 L1.�/k.
p
A � �/xk2

0 C l1.�/kxk2
0; x 2 D.

p
A/; � 2 Œ��.pA/;

kxk2 6 M1.�/k.
p
A � �/xk2

0 Cm1.�/kCxk2
0; x 2 D.

p
A/; � 2 Œ��.pA/;

with l1.�/D 2L2.�
2/,L1.�/D 2maxf9L2.�

2/; 4kCk2
L.H1IY /

g,m1.�/D 2M2.�
2/,

and M1.�/ � 2M2.�
2/max

˚
9
2
; L1.�/ C l1.�/

inf A

�
. Secondly, with the same compu-

tations as in Theorem 3.8, Theorem 3.13 yields (13) and (14) with l.�/ D l1.�/ D
2L2.�

2/, L.�/ D L1.�/ D 2maxf9L2.�
2/; 4kCk2

L.H1IY /
g, m.�/ D 4m1.�/ D

8M2.�
2/ and M.�/ � 2M2.�

2/max
˚

9
2
; L.�/C 2L2.�2/

inf A
; 2L.�/

�
. In particular, if

L2 is a constant, thenL is a constant, andM.�/ � 2M2.�
2/max

˚
9
2
; LC 2L2

inf A
; 2L

�
.

If L2 ! C1 as � ! C1, then L.�/ � 18L2.�
2/ and

M.�/ � 4L2.�
2/M2.�

2/max
n
9C 1

inf A
; 18

o
:

Similarly to Corollary 3.10, we have in the case s D 2:

Corollary 3.15. Admissibility and exact observability for the wave-like equation (57)
hold if and only if 1p

�
k.A � �/xk0 C kCxk is a norm on D.A/ equivalent to

1p
�

k.A � �/xk0 C kxk0 uniformly for � > inf A > 0, and it implies admissibil-

ity and exact observability (in any positive time T if moreover �ess.A/ D ;) for the
Schrödinger-like equation (29).

Remark 3.16. We first discuss earlier results concerning the first part of Corol-
lary 3.15, i.e. admissibility and observability resolvent conditions on A for the ad-
missibility and the observability of the wave-like equation. The implication for ob-
servability was proved in the proof of Theorem 3.4 in [30]. The equivalence under
the additional assumption that the resolvent of A is compact was proved in [38],
Proposition 4.5, for observability, and in [12], Theorem 2.2, for admissibility by a
proof through wavepackets conditions which does not relate explicitly the constants
in the resolvent conditions (as partly explained after [12], Theorem 2.2, the submitted
version of (2.9) in [12] was (7.2.10) in [11] which contains a spurious term in the
right hand side; the privately communicated (52) for s D 2 gets rid of this spurious
term and restricts the spectral interval; it was published as (2.10) in [12]).

Concerning the implication from the wave-like equation to the Schrödinger-like
equation in the second part of Corollary 3.15: it was proved in Theorem 3.1 in [30]
for observability (cf. [42], Theorem 6.7.2, for a simpler proof under the additional
assumption that the resolvent of A is compact, in which the cost cannot be estimated,
cf. Remark 3.17); it was proved in [42], Proposition 6.8.1, for admissibility.
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Remark 3.17. Concerning the implication from the wave-like equation for some
time L > 0 to the Schrödinger-like equation for all times T > 0 in corollaries 3.10
and 3.15, the following stronger result is proved in [30]: without the assumption
�ess.A/ D ;, for all times T > 0, the controllability cost �1;T for the Schrödinger-
like equation satisfies �1;T 6 c exp.˛L2=T / where ˛ is a universal constant and
the positive constant c depends only on the uniform lower and upper bounds for the
ratio between the two norms in Corollaries 3.10 and 3.15 respectively (e.g. in the
case of boundary observation, c depends only on Ls , ls , Ms , ms in (52) and (53) for
s D 2). Although it is not explicit in [30], Theorem 3.1, this statement can be easily
checked on the explicit bound of �1;T at the end of its proof: ˛ and  come from
an independent one dimensional problem, � and d come from [30], Theorem 3.4,
hence from [30], Theorem 6.1, hence depend only on the observability constantsM2

andm2 of the wave-like equation, the admissibility constantK1;1 of Schrödinger-like
equation in time 1 comes from the corresponding constantsL2 and l2 of the wave-like
equation. We do not include here the proof of this result since it combines resolvent
conditions with the quite different control transmutation method.

Example 3.18. Combining Corollary 3.15 with the interior control version of [1]
yields: under the geometric condition of Bardos, Lebeau, and Rauch for the wave
equation in H 1

0 � L2 with L2 interior controls, exact controllability in arbitrary
time holds for the Schrödinger equations generated by fractional Laplacians .��/˛,
˛ > 1=2, in L2 with L2 interior controls. Recall that the heat equation generated by
these fractional Laplacians (a.k.a. anomalous diffusion), is null-controllable in any
positive time without geometric condition on the control set, cf. e.g. [31].

4. Semidiscretization of a system with positive A

The framework of this section is the same as the previous section. In particular we
keep the notations introduced at the beginning of section 3: a positive A, its scale
of Sobolev spaces Hs and its observation system (28). This section introduces a
finite-dimensional approximation of this system which encompasses a wide range of
numerical schemes where the state spaceH0 is a space of functions on the continuum
Rd discretized on non-uniform meshes. It investigates the links between the infinite-
dimensional system (28) called the continuous system and such finite-dimensional
approximation called semidiscretized system because it applies to the discretization
of spatial variables but not the time variable, cf. [14] for time discretization.

4.1. Approximation spaces. Let .V h/h>0 be a family of finite-dimensional vector
spaces with injections Jh W V h ! H0. We assume that the rangeHh WD J hVh of the
injection Jh is included in D.

p
A/, therefore inducing a Hilbert structure on V h from

each Hs , s 6 1. Let V h
s denote V h with the corresponding norm kvks D kJhvks,
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v 2 V h. The dual J �
h

W H0 ! V h
0 , defines the H0-orthogonal projection JhJ

�
h

from
H0 onto Hh, and the identity operator J �

h
Jh on V h.

Let 	h be theH1-orthogonal projection fromH1 ontoHh. The only approxima-
tion assumption we make is: k.I � 	h/A

�1=2k1 D O.h/, i.e. 9c0 > 0,

kx � 	hxk1 6 c0hkxk2; x 2 D.A/; h > 0: (62)

In other words kA1=2x � A1=2	hxk0 6 c0hkAxk0, recalling kxks D kAs=2xk0.
Only the asymptotics h ! 0 matters in this section, hence h can be restricted to

a finite interval h 2 .0; h0/. When the approximation space V h is based on a finite
element, h is usually the maximal cell diameter of the mesh hK , or h D h	

K for some
fixed � > 0.

Remark 4.1. The approximation assumption (62) is satisfied whenJh is the canonical
injection of the H1-conformal approximation space V h D Hh based on the P1

Lagrange finite element for a shape-regular family of affine, simplicial, geometrically
conformal meshes, cf. e.g. [10], Proposition 1.134, where JhJ

�
h

and 	h are denoted

…
0;1

c;h
and …1;1

c;h
, or [36], §3.5, where they are denoted P 1

h
and …1

1;h
. In practice (62)

is weaker than (1.9) in [13] where JhJ
�
h

and h are denoted 	h	
�
h

and h	 , since (1.9)
in [13] is satisfied only for quasi-uniform meshes, cf. e.g. [10], Proposition 1.134(iii),
or (3.5.21) in [36]. Quasi-uniform meshes satisfy the inverse inequality (65), cf. [10],
Remark 1.143(i), or (6.3.21) in [36], which is not assumed here unless explicitly.

Remark 4.2. The following Lemma 4.4 proves that (62) is equivalent to: 9c1 > 0,

inf
v2V h

.kx � Jhvk0 C hkx � Jhvk1/ 6 c1h
2kxk2; x 2 D.A/; h > 0;

or to the existence of an interpolation operator Ih W D.A/ ! V h such that: 9c1 > 0,

kx � JhIhxk0 C hkx � JhIhxk1 6 c1h
2kxk2; x 2 D.A/; h > 0:

The approximation assumption appears in the literature in one of these three forms.

Remark 4.3. The framework of this section can be slightly generalized by consid-
ering two bounded linear operators: an injection Jh W V h ! H0 and an interpolation
operator J �

h
W H0 ! V h (not necessarily the adjoint of Jh) such that J �

h
Jh is the iden-

tity operator on V h. In this case J �
h
Jh is still a projection fromH0 ontoHh although

this projection is not necessarily orthogonal, hence the only failing statements in this
section are the first two parts of Lemma 4.8. Moreover, in practice Lemma 4.8 holds
anyway since interpolation operators are usually required to satisfy (71), e.g. finite
element interpolation operators for a shape-regular family of affine meshes does, cf.
e.g. [10], Corollary 1.109. This framework also generalizes to infinite-dimensional
Hilbert spaces .V h/h>0. In this case, whenever the admissibility of finite-dimensional
systems is used explicitly in a proof, the corresponding statement should assume the
admissibility of the semidiscrete system.
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The approximation assumption (62) is the same as (1.7) in [39] (which deals
with stabilization rather than observability, and with second rather than first order
systems) and (1.4) in [6] where h is denoted h	 . Indeed, each of these papers makes
a second approximation assumption: (1.8) in [39] and (1.5) in [6]. They are both a
consequence of the first according to the following lemma (which is a simple version
of the Aubin–Nitsche lemma, cf. e.g. [10], Lemma 2.31).

Lemma 4.4. The approximation assumption (62) (in H1) implies the approximation
in H0: k.I � 	h/A

�1=2kL.H0/ D O.h/ and k.I � 	h/A
�1kL.H0/ D O.h2/.

More precisely, (62) implies, with the same constant c0,

kx � 	hxk0 6 c0hkxk1; x 2 H1; h > 0; (63)

kx � 	hxk0 6 c2
0h

2kxk2; x 2 H2; h > 0: (64)

Proof. Since A and 	h are selfadjoint on H1, the H1-adjoint of .I � 	h/A
�1=2 is

A�1=2.I �	h/, hence they have the sameH1 operator norm and its square is the H1

operator norm of the latter times the former. Therefore

k.I � 	h/A
�1=2kL.H0/ D kA�1=2.I � 	h/kL.H1/

D k.I � 	h/A
�1=2kL.H1/

D c0h;

asd

k.I � 	h/A
�1kL.H0/ D k.I � 	h/

2A�1kL.H0/

D kA�1=2.I � 	h/.I � 	h/A
�1=2kL.H1/;

D k.I � 	h/A
�1=2k2

L.H1/

D .c0h/
2;

where .I � 	h/
2 D I � 	h since I � 	h is an H1-orthogonal projection as 	h.

4.2. Galerkin approximation of the unitary group. In the framework of §4.1,
the Ritz–Galerkin variational method considers the finite-dimensional positive self-
adjoint operator Gh D .

p
AJh/

�.
p
AJh/ W Vh ! Vh and approximates A by the

non-negative selfadjoint operator Ah D .
p
AJhJ

�
h
/�.

p
AJhJ

�
h
/ D JhGhJ

�
h

on H0.
Their spectra are related by �.Ah/ D �.Gh/ [ f0g.

Lemma 4.5. The infimum of the spectrum satisfies inf Gh > inf A > 0.
The spectrum satisfies �.Gh/ � Œinf A; �0=h

2� if this inverse inequality holds

hkxk1 6 p
�0kxk0; x 2 Hh: (65)
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Proof. The first inequality results from .inf
p
A/2 D inf A and

inf Gh D inf
v2Vh

hGhv; vi0

kvk2
D inf

x2H h

hpAx;pAxi0

kxk2
0

> inf
x2D.

p
A/

hpAx;pAxi0

kxk2
0

D .inf
p
A/2:

Using (65):

supGh D sup
v2Vh

hGhv; vi0=kvk2 D sup
x2H h

kxk2
1=kxk2

0 6 �0=h
2:

The definition ofGh implies that the norm in V h
1 coincides with the “H1 Sobolev

norm corresponding to Gh” and the dual norms also coincide, i.e.

kvk1 D kJhvk1 D kG1=2

h
vk0;

kvk�1 D kJhvk�1 D kG�1=2

h
vk0; v 2 V h:

(66)

Lemma 4.6. This equality of bounded operators on H0 defines Gh in terms of 	h:

	hA
�1 D JhG

�1
h J �

h : (67)

The approximation assumption (62) is k.A�1 �JhG
�1
h
J �

h
/xk1 6 c0hkxk0, x 2 H0.

It implies Ah converges to A in H1 strongly in the resolvent sense, i.e.

.A � z/�1x �! .Ah � z/�1x in H1; x 2 H1;=z ¤ 0:

Proof. For all v 2 V h, h	hA
�1x; Jhvi1 D hA�1x; Jhvi1 D hx; Jhvi0 D hJ �

h
x; vi0

D hG�1
h
J �

h
x; vi1 D hJhG

�1
h
J �

h
x; Jhvi1. This proves (67).

Let R0.z/ D .A � z/�1, z … �.A/, and Rh.z/ D Jh.Gh � z/�1J �
h

, z … �.Gh/.
According to Lemma 4.5, the distance of 0 to �.A/ and to �.Gh/ is greater than inf A,
hence kRh.0/k 6 1= inf A, h > 0. For all z 2 C such that jzj < inf A, the Neumann
series Rh.z/ D P1

kD0 z
kRh.0/

kC1 converges for all jzj < inf A and h > 0 and
the approximation assumption implies Rh.0/x ! R0.0/x in H1 as h ! 0, hence
Rh.z/x ! R0.z/x inH1. This property is propagated to all z 2 C such that =z ¤ 0

by Neumann series similarly, since the distance of z to �.A/ and to �.Gh/ is greater
than =z. This completes the proof of the convergence in the strong resolvent sense,
since �.Ah/ � R and Rh.z/ D .Ah � z/�1 for z … �.Ah/.

This convergence in the strong resolvent sense is called “convergence in the gen-
eralized sense” in [23], §.VIII.1.2, where the following two spectral properties are
deduced. All open sets containing a point of �.A/ contain at least a point of �.Ah/

for sufficiently large h, i.e. the spectrum does not expand suddenly in the limit (in
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particular, with Lemma 4.5: infh inf Gh D inf A). If � 2 R is not an eigenvalue of
A, then the finite dimensional spectral projections 1Ah<� D Jh 1Gh<� J

�
h

satisfy

k.1A<� � 1Ah<�/xk1 �! 0; x 2 H1: (68)

The following theorem is a quantitative version of the semigroup approximation
result in [23], Theorem IX.2.16, i.e. convergence in the strong resolvent sense implies
strong convergence of the generated semigroups uniformly on finite time intervals.

Theorem 4.7. If xh ! x in H0 (resp. inH1) then eitAhxh ! eitAx in H0 (resp. in
H1) uniformly on finite intervals of t .

More precisely, (62) implies these convergence rates in H1 and H0:

k.eitAh � eitA/xk1 6 c0h.tkxk4 C 2kxk2/; x 2 H4; h > 0; t 2 R; (69)

k.eitAh � eitA/xk0 6 c2
0h

2.tkxk4 C 2kxk2/; x 2 H4; h > 0; t 2 R: (70)

Proof. We recall (IX.2.27) in [23, ] which is simply verified by taking time derivatives:
with R."/ D ."C A/�1 and Rh."/ D ."C Ah/

�1,

Rh."/.e
itAh � eitA/R."/ D i

Z t

0

ei.t�s/Ah.R."/�Rh."//e
isAds:

Taking the limit " ! 0 yields, since Rh."/ ! JhG
�1
h
J �

h
D 	hA

�1 due to (67), and
since Rh."/e

itAh D eitAhRh."/:

.eitAh	h � 	he
itA/A�2 D i

Z t

0

ei.t�s/Ah.I � 	h/A
�1eisAds:

Combining this with (62), (64) and the unitarity of the group first yields

k.eitAh	h � 	he
itA/xk1 6 c0htkxk4; x 2 H4; h > 0; t 2 R;

k.eitAh	h � 	he
itA/xk0 6 c2

0h
2tkxk4; x 2 H4; h > 0; t 2 R;

then completes the proof of (69) and (70). These imply the first statement of the
theorem since H4 D D.A2/ is dense in H1 and in H0, and the group is unitary.

The following lemma is used to approximate initial data inTheorems 4.14 and 4.19.

Lemma 4.8. The approximation assumption (62) implies

kx � JhJ
�
h xk0 6 c0hkxk1; x 2 H1; h > 0; (71)

kx � JhJ
�
h xk�1 6 c0hkxk0; x 2 H0; h > 0; (72)

kx � JhJ
�
h xk�1 6 c2

0h
2kxk1; x 2 H1; h > 0; ; (73)

JhJ
�
h
x ! x in H0 for all x 2 H0 and Ah	hA

�1x ! x in H�1 for all x 2 H�1.
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Proof. Using that JhJ
�
h

hence I �JhJ
�
h

areH0-orthogonal projection, kJhJ
�
h
�k0 6

k�k0, � 2 H0, and kx � JhJ
�
h
xk0 6 kx �	hxk0, x 2 H1, Hence (62) implies (71).

Replacing 	h by JhJ
�
h

and H1 byH0 in the proof of Lemma 4.4 deduces (72), (73).
To prove the first convergence, let x 2 H0 and " > 0. There exists x" 2 H1 such

that kx � x"k0 6 ". Taking � D x � x" yields kJhJ
�
h
.x � x"/k0 6 " and (71) yields

kx" � JhJ
�
h
x"k0 6 c0hkx"k1. Hence kx � JhJ

�
h
xk0 6 2" C c0hkx"k1. Taking

first the lim sup as h ! 0 then the limit " ! 0 completes the proof of the first
convergence.

The second convergence is proved similarly by density of H0 in H�1 since, for
x" 2 H0, Ah	hA

�1x" D JhGhJ
�
h
JhG

�1
h
J �

h
x" D JhJ

�
h
x", and, for � D x � x" 2

H�1, kAh	hA
�1�k�1 D kGhJ

�
h
	hA

�1�k�1 D kJ �
h
	hA

�1�k1 D k	hA
�1�k1 6

kA�1�k1 D k�k�1 using (67), (66), and that 	h is anH1-orthogonal projection .

4.3. “Interior” semidiscrete systems. In order to define the semidiscrete observa-
tion system for the generator Gh:

Pvh.t / � iGhv
h.t / D 0; vh.0/ D vh

0 2 Hh; yh.t / D Chv
h.t /; (74)

it seems natural to approximate the observation operator C by

Ch D CJh; C 2 L.H1I Y /: (75)

In order for this definition of Ch to make sense we must assume C 2 L.H1I Y /.
As already mentioned in §3.2.3, this assumption is in-between the general case C 2
L.H2I Y / adapted to boundary observability of PDEs and the bounded case C 2
L.H0I Y / adapted to interior observability of PDEs.

The norm of Ch in L.V h
1 I Y / is the norm of C in L.H1I Y /.

4.3.1. Convergence of the observation systems. In this framework, the following
proposition discusses the convergence of the discrete observation yh in (74) to the
continuous observation y in (28) depending on the convergence of the initial data
J hvh

0 to x0 in H1. It uses the following lemma.

Lemma 4.9. Assume (28) is admissible. Consider .vh/h>0 in V h and x 2 H0.
Weakly in L2.0; T I Y /: Che

itGhG�1
h
vh + CeitAA�1x implies Che

itGhvh +

CeitAx.

Proof. If x 2 D.A/ thenCA�1eitAx 2 C 1.0; T I Y / hence the following integration
by parts is justified, therefore by admissibility of (28) and density of D.A/ in H0:

i

Z T

0

hCA�1eitAx; '0.t /idt D
Z T

0

hCeitAx; '.t/idt;
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for x 2 H0, and ' 2 C 1
comp.0; T I Y /. Since Hh is finite dimensional, (74) is admis-

sible and similarly

i

Z T

0

hChG
�1
h eitGhvh; '0.t /idt D

Z T

0

hChe
itGhvh; '.t/idt; vh 2 Hh:

The density of C 1
comp.0; T I Y / in L2.0; T I Y / completes the proof.

Proposition 4.10. Assume (75). Consider a family .vh/h>0 inV h. IfJhv
h ! x inH1

then Che
itGhvh ! CeitAx in Y uniformly on finite intervals. More precisely, (62)

implies the convergence rate

k.Che
itGhJ �

h � CeitA/xk 6 kCkL.H1IY /c0h.tkxk4 C 2kxk2/;

for all x 2 H4, h > 0, t 2 R.
If Jhv

h + x in H1 then Che
itGhvh + CeitAx in L2.0; T I Y / for all T > 0.

If Jhv
h + x in H�1, x 2 H0 and (28) is admissible then Che

itGhvh + CeitAx

in L2.0; T I Y / for all T > 0.

Proof. The first implication results from the convergence in H1 in the first part of
Theorem 4.7, since Che

itGh D CeitAhJh and C 2 L.H1I Y /. Moreover (69)
implies the convergence rate since Che

itGhJ �
h

� CeitA D C.eitAh � eitA/.
The strong convergence implication in the first part of Theorem 4.7 also implies

the weak convergence implication: if xh + x in H1 then eitAhxh + eitAx in H1

uniformly on finite intervals of t . Using Che
itGh D CeitAhJh and C 2 L.H1I Y /

again results in the second implication in Proposition 4.10.
To prove the third implication, we assume Jhv

h + x in H�1, equivalently
JhG

�1
h
vh + A�1x in H1. By the second implication, we have Che

itGhG�1
h
vh +

CA�1eitAx in L2.0; T I Y /. Lemma 4.9 completes the proof.

4.3.2. From continuous to filtered discrete observability. We consider improved
resolvent conditions for (28), s > 0: 9Ls , ls , Ms , ms > 0,

kCxk2 6 Ls

�s
k.A� �/xk2

0 C lskxk2
0; x 2 H0; � > inf A; (76)

kxk2
0 6 Ms

�s
k.A � �/xk2

0 CmskCxk2; x 2 H0; � > inf A: (77)

Unfortunately such conditions do not imply the corresponding conditions for the
semidiscrete system (74) uniformly with respect to h. Therefore we consider uni-
form conditions for the semidiscrete system (74) restricted to the filtered space
1Gh<
=h� V h, where � and � are positive filtering parameters: 9L0

s , l 0s , M 0
s ,m0

s > 0,

kChvk2 6 L0
s

�s
k.Gh � �/vk2

0 C l 0skvk2
0; (78)

kvk2
0 6 M 0

s

�s
k.Gh � �/vk2

0 Cm0
skChvk2; (79)
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where, in both equations, v 2 1Gh<
=h� V h and �=h� > � > inf A:

Theorem 4.11. Assume (75). Recall the approximation assumption (62) with c0.
If the continuous system (28) is admissible (resp. moreover exactly observable)

then, for all � > 0 (resp. for � > 0 small enough), there exists T > 0 such that the
semidiscrete system (74) restricted to the filtered space 1Gh<
=h V

h is admissible in
time T (resp. moreover exactly observable in time T ) uniformly in h 2 .0; �/.

If the second order system (56) is admissible and exactly observable then, for all
� > 0 small enough, for all T > 0, the semidiscrete system (74) restricted to the
filtered space 1Gh<
=h V

h is admissible and exactly observable in time T uniformly
in h 2 .0; �/.

If C 2 L.H0I Y / and the second order system (56) is admissible and exactly ob-
servable then, for all � > 0 small enough, for all T > 0, the semidiscrete system (74)
restricted to the filtered space 1Gh<
=h4=3 V h is admissible and exactly observable
in time T uniformly in h 2 .0; �/.

More precisely, for � D 1 and any s > 0, setting c
 D maxf.c0�/
2; c0�g: for

all � > 0, (76) implies (78) with L0
s D 4Ls and l 0s D 4ls C 2.kCk2 C 2ls C

2Ls= inf As/c2

; for � > 0 small enough such that ds D 1 � c2


.1 C 4mskCk2 �
4Ms= inf As/ > 0, (77) implies (79) with M 0

s D 2Ms=ds and m0
s D 2ms=ds . Here

kCk D kCkL.H1IY /.

Proof. According to Proposition 2.9, � > inf A in (76), (77), (78), (79) can be
equivalently replaced by � > 0 since inf Gh > inf A > 0. For s D 0, the range of
� can be equivalently replaced by � 2 R. Thus, the first (resp. second) implication
of the theorem results from the last part of the theorem with s D 0 (resp. s D 1)
according to Theorems 2.3 and 2.4 (resp. Theorem 3.13 and Remark 3.17).

To prove the last part of the theorem let v 2 V h and consider xh D A�1JhGhv. It
satisfiesAxh D JhGhv and 	hx

h D Jhv due to (67), hence xh �Jhv D .I �	h/x
h,

.A � �/xh � Jh.Gh � �/v D ��.I � 	h/x
h; Cxh � Chv D C.I � 	h/x

h:

Using Lemma 4.4,C 2 L.H1I Y / and (62), this implies kxh�Jhvk0 6 c2
0h

2kAxhk0,

k.A � �/xh � Jh.Gh � �/vk0 6 c2
0h

2�kAxhk0;

kCxh � Chvk=kCk 6 c0hkAxhk0:

Let � D 1, s > 0, � > 0 and �=h > � > 0. For v 2 1Gh<
=h V
h, kAxhk0 D

kGhvk0 6 .�=h/kvk0. Hence all the above norms are bounded by c
kvk0 for h < �.
Plugging these bounds in (76) and (77) for xh, and factoring out kvk2

0 yields (78)
and (79) with the constants stated in the theorem.

To prove the third implication of the theorem, we assume C 2 L.H0I Y /, (76),
and (77) with s D 1. The above bound is now replaced by

kCxh � Chvk=kCk 6 c2
0h

2kAxhk0;
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which is better than ��s=2k.A � �/xh � Jh.Gh � �/vk0 6 c2
0h

2�1�s=2kAxhk0 for
s < 2, � > 1. For v 2 1Gh<
=h4=3 V h, kAxhk0 D kGhvk0 6 .�=h/4=3kvk0.
Plugging these bounds in (76) and (77) with s D 1 for xh, yield (78) and (79) with
s D 1 and errors bounded by the square of c2

0h
2..�=h/4=3/1�1=2C1kvk0 for h < �,

where the power of h is zero.

4.3.3. From filtered discrete to continuous observability. We prove that general-
ized resolvent conditions for the continuous system (28),

kCxk2 6 L.�/k.A� �/xk2
0 C l.�/kxk2

0; x 2 D.A/; � > �0 > 0; (80)

kxk2
0 6 M.�/k.A � �/xk2

0 Cm.�/kCxk2; x 2 D.A/; � > �0 > 0; (81)

where l , L,m andM are bounded positive functions on .0;C1/, can be obtained as
theh-limit of the followingh-uniform resolvent conditions for the semidiscrete system
(74) restricted to the filtered space 1Gh<f .h/ V

h, where f W .0; h0/ ! .0;C1/

decreases and f .h/ ! C1 as h ! 0:

kChvk2 6 L.�/k.Gh � �/vk2
0 C l.�/kvk2

0; (82)

kvk2
0 6 M.�/k.Gh � �/vk2

0 Cm.�/kChvk2; (83)

where, in both equations, v 2 1Gh<f .h/ V
h, and � 2 Œ�0; f .h//.

Theorem 4.12. Assume (75). The semidiscrete admissibility (resp. observability)
resolvent condition (82) implies (80) (resp. (83) implies (81)).

Proof. Consider x 2 D.A/ and � > � > �0. It is enough to prove (80) and (81) for
x replaced by 1A<� x since kx � 1A<� xk2 D kA 1A>� xk0 ! 0 as � ! 1. Let
h� > 0 such that f .h�/ > �, and let vh D 1Gh<� J

�
h
	hx 2 1Gh<f .h/ V

h for all h 2
.0; h�/. Since 1Ah<� 	h �1A<� D .1Ah<� � 1A<�/	h C1Ah<�.I �	h/, using (68)
and (62) yields kJhv

h � 1A<� xk1 D k.1Ah<� 	h � 1A<�/xk1 ! 0 as h ! 0.
Since C 2 L.H1I Y /, this convergence implies kChv

h � C 1A<� xk D kC.Jhv
h �

1A<�/xk ! 0. Since JhGhv
h D Jh 1Gh<�GhJ

�
h
	hA

�1Ax D 1Ah<�Ax due
to (67), since k.1A<� � 1Ah<�/Axk0 ! 0 due to (68), the convergence Jhv

h !
1A<� x in H1 hence in H0 implies kJ h.Gh � �/vh � .A � �/ 1A<� xk0 ! 0.
Therefore, taking the limit h ! 0 in (82) and (83) for vh implies (80) and (81) for
1A<� x.

4.3.4. Convergence of the filtered control systems. We consider the semidiscrete
control system dual to (74) with Bh D .A1=2Jh/

�A�1=2B D GhJ
�
h
	hA

�1B (which
is both the dual of Ch W V h

1 ! Y and the adjoint of Ch W V h
0 ! Y ),

P h.t /� iGh 
h.t / D Bhu

h;  h.0/ D  h
0 2 Hh; uh 2 L2

loc.RI Y /: (84)
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The norm of Bh in L.Y IV h�1/ is the norm of C in L.H1I Y /. According to Theo-
rems 2.3 and 2.4, the admissibility and exact observability resolvent conditions (82)
and (83) for constant l , L, m and M are equivalent to the admissibility and exact
observability of (74) restricted to the filtered space 1Gh<f .h/ V

h for some T > 0 uni-
formly in h. As in definitions 2.1 and 2.2, the dual notions for (84) are the following.
There is an admissibility cost KT such that:

����
Z T

0

eitGhBhu
h.t /dt

����
2

6 KT

Z T

0

kuh.t /k2dt; uh 2 L2.RI Y /: (85)

There is a controllability cost �T > 0 such that: 8 0 2 Hh, 9uh 2 L2.RI Y /,
uh.t / D 0; t … Œ0; T �;

1Gh<f .h/  
h.T / D 0; and

Z T

0

kuh.t /k2dt 6 �T k h
0 k2

0:

(86)

The following theorem discusses the convergence of the inputs uh for the dis-
crete system (84) to the input u for the continuous system (29) depending on the
convergence of the initial data Jh 

h
0 to �0. It needs the notion of minimal control in-

vestigated by Jacques-Louis Lions, a.k.a. HUM control after the Hilbert Uniqueness
Method he introduced (cf. [25]), and the characterization of this minimal control u
in (29) as the only control being also an observation y in (28). For completeness, we
prove this result and the same result for the discrete system (84).

Proposition 4.13. If (28) is admissible and exactly observable in time T at cost �T

then among all the inputs u such that the solution of (29) satisfies �.T / D 0, there
is one of minimal norm in L2.0; T I Y / and this is the only one for which there exists
x0 2 H0 such that u.t/ D CeitAx0, t 2 Œ0; T �. Moreover it satisfies

kx0k0 6 �T k�0k0 and � hx0; �0i0 D
Z T

0

ku.t/k2dt 6 �T k�0k2
0: (87)

If (74) restricted to the filtered space 1Gh<f .h/ V
h is exactly observable in timeT ,

among all the inputs uh such that the solution of (84) satisfies 1Gh<f .h/  
h.T / D 0,

there is one of minimal norm in L2.0; T I Y / and this is the only one for which there
exists vh

0 2 1Gh<f .h/ V
h such that uh.t / D Che

itGhvh
0 , t 2 Œ0; T �.

Proof. The Hilbert space H0 with the hermitian scalar product h�; �i0 is also a real
Hilbert space with the scalar product <h�; �i0. Consider the strictly convex C1 func-
tional J defined on the real Hilbert space H0 by density and admissibility as

J.x/ D 1

2

Z T

0

kCeitAxk2dt C <hx; �0i0; x 2 D.A/: (88)
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Exact observability implies J.x/ > 1
2�T

kxk2 C <hx; �0i0, hence J is coercive.
Therefore J has a unique minimizer x� 2 H0, i.e. J.x�/ D infx2H0

J.x/, and the
gradient rJ computed with respect to the real scalar product <h�; �i0 vanishes at x�,
hence

0 D eiTArJ.x�/ D
Z T

0

ei.T �t/ABCeitAx�dt C eiTA�0:

This equation also says that the solution of (29) with the input u�.t / D CeitAx�
reaches the final state �.T / D 0. In terms of this u�, hrJ.x�/; x�i0 D 0 writes

Z T

0

ku�.t /k2dt D
Z T

0

kCeitAx�k2dt D �hx�; �0i0: (89)

The second equality and observability yield 1
�T

kx�k2
0 6 �hx�; �0i0 6 kx�k0k�0k0.

Hence kx�k0 6 �T k�0k0. Plugging this in (89) yields (87) for x� and u�.
Integrating by parts in time the scalar product in H0 of (28) and (29) yields:

heiTAx0; �.T /i0 D hx0; �0i0 C
Z T

0

hCeitAx0; u.t/idt; (90)

for all x0, �0 in H0 and u in L2.RI Y /. Thus u controls �0 in time T if and only if

0 D hx; �0i0 C
Z T

0

hCeitAx; u.t/idt; x 2 H0: (91)

The minimality of u� results from this consequence of (89) and (91) with x D x�:

ku�k2
L2.0;T IY /

D
Z T

0

ku�.t /k2dt

D
Z T

0

hu�.t /; u.t/idt
6 ku�kL2.0;T IY /kukL2.0;T IY /:

Writing (91) twice with x D x0 � x�, once with u.t/ D CeitAx0 and once with
u�.t / D CeitAx�, then taking the difference of the two equations yields

0 D
Z T

0

hCeitAx; u.t/ � u�.t /idt D
Z T

0

kCeitAxk2dt:

Exact observability deduces kxk2 D 0, therefore x0 D x� hence u D u�.
The second implication is proved similarly considering the functional Jh defined

on the real Hilbert space 1Gh<f .h/ V
h with scalar product <h�; �i0 by

Jh.v/ D 1

2

Z T

0

kChe
itGhvk2dt C <hv;  0i0; v 2 1Gh<f .h/ V

h:
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The projection 1Gh<f .h/ commutes with eiT Gh and, for this scalar product,

rJh.v/ D 1Gh<f .h/

Z T

0

e�itGhBhChe
itGhvdt C 1Gh<f .h/ 0:

The solution of (84) with uh satisfies 1Gh<f .h/ 
h.T / D 0 if and only if, as (91),

0 D hvh
0 ;  

h
0 i0 C

Z T

0

hChe
itGhvh

0 ; u
h.t /idt; vh

0 2 1Gh<f .h/ V
h: (92)

Admissibility holds since 1Gh<f .h/ V
h is finite dimensional (this proposition does

not mention uniformity in h).

Theorem 4.14. Assume (75). Consider a family of initial data . h
0 /h>0 in V h and

a family of inputs .uh/h>0 in L2.0; T I Y / such that uh controls  h
0 in time T in the

filtered space 1Gh<f .h/ V
h, i.e. the solution of (84) satisfies 1Gh<f .h/ 

h.T / D 0.
If Jh 

h
0 + �0 weakly inH�1 and uh + u weakly in L2.0; T I Y / then u controls

�0 in time T , i.e. the solution of (97) satisfies �.T / D 0.
Assume the discrete system (74) restricted to the filtered space 1Gh<f .h/ V

h with
the V h

0 norm and the system (28) are admissible and exactly observable in time T
uniformly in h (equivalently (85) and (86) hold, and (29) is admissible and exactly
controllable in time T ). If Jh 

h
0 ! �0 in H0 then the minimal control uh of  h

0

converges in L2.0; T I Y / to the minimal control u of �0 given in Proposition 4.13.
E.g. this applies to  h

0 D J �
h
�0 for all �0 in H0, cf. Lemma 4.8.

Proof. As in the proof of Proposition 4.13, integrating by parts in time the duality
pairing between H1 and H�1 of (96) and (97), u controls �0 if and only if

0 D hx0; �0i1;�1 C
Z T

0

hCeitAx0; u.t/idt; x0 2 H1; (93)

and uh controls  h
0 in time T in the filtered space 1Gh<f .h/ V

h if and only if (92).
As in the proof of Theorem 4.12, consider x0 2 D.A/, � > � > 0, h� > 0 such that
f .h�/ > �, and vh

0 D 1Gh<� J
�
h
	hx0 2 1Gh<f .h/ V

h for all h 2 .0; h�/. Recall
from the proof of Theorem 4.12, Jhv

h
0 ! 1A<� x0 inH1 as h ! 0. Proposition 4.10

deduces Che
itGhvh

0 ! CeitAx0 in L2.0; T I Y /. Therefore the two assumptions of
the first implication allows taking the limit h ! 0 in (92) and yield (93) for x0

replaced by 1A<� x0. Taking the limit � ! 1 and recalling from the proof of
Theorem 4.12 1A<� x0 ! x0 in H2, hence in H1, yield (93) for x0 in H2, hence in
H1 by density. This completes the proof of the first implication.

Letuh.t / D Che
itGhvh

0 be the minimal control of h
0 andu�.t / D CeitAx� be the

minimal control of �0 provided by the Hilbert Uniqueness Method in Proposition 4.13.
Similarly to (87) we have

kvh
0k0 6 �T k h

0 k0 and � hvh
0 ;  

h
0 i0 D

Z T

0

kuh.t /k2dt 6 �T k h
0 k2

0; (94)
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where �T is the uniform controllability cost in (86). Since  h
0 converges in H0, we

deduce thatJ hvh
0 anduh are bounded respectively inH0 andL2.0; T I Y /. We deduce

that, after extracting a sequence if needed, .uh/ has a weak limit u inL2.0; T I Y / and,
after extracting again a sequence if needed, .J hvh

0 / has a weak limit x0 inH0. Since
Jh 

h
0 ! �0 in H0 hence in H�1, the first implication now ensures that u controls

�0 in time T . Since J hvh
0 ! x0 in H0 hence in H�1, Proposition 4.10 ensures

uh.t / D Che
itGhvh

0 + CeitAx0 in L2.0; T I Y /. Therefore u.t/ D CeitAx0 in
L2.0; T I Y /. Hence Proposition 4.13 ensures that x0 D x� and u D u�. Thus u�
is the only accumulation point of .uh/ weakly in L2.0; T I Y /, hence uh + u� in
L2.0; T I Y /. Since J hvh

0 + x0 D x� in H0 and J h h
0 ! �0 in H0, the left hand

side of the equality in (94) converges to the right hand side of (89). Hence the norm
of uh converges to the norm of u�. Since we already proved the weak convergence
of uh to u� in L2.0; T I Y /, this proves the strong convergence, which completes the
proof of the second implication.

Remark 4.15. The investigation in §4 was triggered by the approach introduced
by Sylvain Ervedoza in [11] under the assumptions C 2 L.H� I Y /,  2 Œ0; 1/

and A�1 is compact. After the version of [12] and [13] in [11] was submitted, the
author privately communicated to Ervedoza an improvement of the filtering scale
now included in [12] and [13]. E.g. with the current notations Ervedoza proved his
main theorem with (6.1.11) in [11], � D min f2.1� /; 2=5g, using a version of the
resolvent condition which he called interpolation inequalities; the author improved it
to (1.11) in [13], � D min f2.1� /; 2=3g, using Proposition 2.9 instead. Similarly,
the author improved (7.1.12) in [11] into (1.12) in [12], cf. [12], Remark 3.1.

Theorem 4.11 improves Theorem 1.3 in [13] in four ways: the approximation
assumption (62) is weaker in practice (cf. Remark 4.1), the assumption on the ob-
servation operator C 2 L.H1I Y / is weaker, A�1 is not assumed to be compact, the
filtering power � D min f2.1� /; 2=3g is improved into � D 1.

The converse Trotter–Kato type Theorem 4.12 is not considered in [13].
The second part of Theorem 4.14 improves Theorem 6.2 in [13] by eliminating,

thanks to Lemma 4.9, the dubiously used assumption (6.11) in [13] which limited to
C 2 L.H0I Y / the validity of Theorem 6.2 in [13] and the validity of the convergence
of the observation. Proposition 4.10 also improves this convergence of the observation
in particular by providing explicit convergence rates. Theorem 4.7 is proved here,
with no claim of originality, since we could not find the proof of the similar Lemma 6.4
in [13] in the reference given for it.

4.4. “Boundary” semidiscrete systems. To address the general case of §3 which
suits boundary observability of PDEs, i.e.C 2 L.H2I Y /, we need to modify the def-
inition (75) of the approximate observation operator. Thus we consider the semidis-
crete observation system (74) with (75) replaced by:

Ch D CA�1JhGh; C 2 L.H2I Y /: (95)
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Note that kChvk 6 kCkL.H2IY /kGhvk0 but the V h
2 norm kvk2 was not defined as

kGhvk0.

4.4.1. Convergence of the observation systems. Similarly to Proposition 4.10:

Proposition 4.16. Assume (95). Consider a family .vh/h>0 in V h and x 2 D.A/.
If JhGhv

h ! Ax in H0 then Che
itGhvh ! CeitAx in Y uniformly on finite

intervals of t . More precisely, (62) implies the convergence rate: 8h > 0, 8t 2 R,

k.Che
itGhJ �

h 	h � CeitA/xk 6 kCkL.H2IY /c
2
0h

2.tkxk6 C 2kxk4/; x 2 H6:

If JhGhv
h + Ax inH0 thenChe

itGhvh + CeitAx inL2.0; T I Y / for all T > 0.
If Jhv

h + x in H0, x 2 H1 and (96) is admissible then Che
itGhvh + CeitAx

in L2.0; T I Y / for all T > 0.

Proof. The first implication results from the convergence inH0 in Theorem 4.7, since
Che

itGh D CA�1eitAhJhGh and CA�1 2 L.H0I Y /. Since (67) is equivalent to
A D JhGhJ

�
h
	h on D.A/, we haveChe

itGhJ �
h
	h�CeitA D CA�1.eitAh �eitA/A.

Therefore (70) implies the convergence rate in Proposition 4.16.
The second implication in Proposition 4.16. is proved as in Proposition 4.10.
To prove the third implication, we rewrite the assumption Jhv

h + x in H0, as
JhGh.G

�1
h
vh/ + A�1.Ax/ inH0. The second implication yieldsChe

itGhG�1
h
vh +

CA�1eitAx in L2.0; T I Y /. Since x 2 H1 and (96) is admissible, this completes the
proof as in Lemma 4.9.

4.4.2. Continuous and filtered discrete observability. For boundary observation
and in relation to the second order system (48), it is natural to consider the unitary
group on H1 instead of H0, i.e. we consider (50) and (51) for s D 2:

Px.t/� iAx.t/ D 0; x.0/ D x0 2 H1; y.t/ D Cx.t/; (96)

P�.t/ � iA0�.t/ D Bu.t/; �.0/ D �0 2 H�1; u 2 L2
loc.RI Y /: (97)

We consider improved resolvent conditions for (96): 9Ls , ls , Ms , ms > 0,

kCxk2 6 Ls

�s
k.A � �/xk2

1 C lskxk2
1; x 2 H3; � > 0; (98)

kxk2
1 6 Ms

�s
k.A � �/xk2

1 CmskCxk2; x 2 H3; � > 0: (99)

Recall from (66) that the V h
1 norm on V h is kvk1 D kJhvk1 D kG1=2

h
vk, v 2 V h.

We also consider the improved resolvent conditions (78) and (79) for the semidiscrete
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system (74) but with this V h
1 norm instead of the V h

0 norm: 9L0
s , l 0s , M 0

s , m0
s > 0,

kChvk2 6 L0
s

�s
k.Gh � �/vk2

1 C l 0skvk2
1; (100)

kvk2
1 6 M 0

s

�s
k.Gh � �/vk2

1 Cm0
skChvk2; (101)

where, in both equations, v 2 1Gh<
=h� V h; and �=h� > � > 0. Similarly to
Theorem 4.12, we have:

Theorem 4.17. Assume (95). The semidiscrete admissibility (resp. observability)
resolvent condition (82) implies (80) (resp. (83) implies (81)) when replacing theH0

norms by H1 norms and D.A/ by H3 in all these resolvent conditions.

Proof. Few modifications of the proof of Theorem 4.12 are necessary.
Consider x 2 H3 and � > � > �0. It is enough to prove (80) and (81) for x re-

placed by 1A<� x since kx�1A<� xk3 D kA 1A>� xk1 ! 0 as� ! 1. Let h� > 0

such thatf .h�/ > �, and let vh D 1Gh<� J
�
h
	hx 2 1Gh<f .h/ V

h for allh 2 .0; h�/.
Recall from the proof of Theorem 4.12 that kJhv

h ! 1A<� xk1 ! 0 as h ! 0 and
JhGhv

h D 1Ah<�Ax. Moreover k.1A<� � 1Ah<�/Axk1 ! 0 due to (68). Hence
kJ h.Gh � �/vh � .A � �/ 1A<� xk1 ! 0. Since Chv

h D CA�1JhGhv
h D

CA�1 1Ah<�Ax and CA�1 2 L.H0I Y / due to (95), this also implies kChv
h �

C 1A<� xk D kCA�1.1Ah<� � 1A<�/Axk ! 0. Therefore, replacing theH0 norms
by H1 norms and D.A/ by H3 and taking the limit h ! 0 in (82) and (83) for vh

implies (80) and (81) for 1A<� x.

Similarly to Theorem 4.11 for the direct implications and due to Theorem 4.12
for the converse implications:

Theorem 4.18. Assume that the observation operators satisfy (95).
The continuous system (96) is admissible (resp. moreover exactly observable) if

and only if, for all � > 0 (resp. for � > 0 small enough), there exists T > 0 such
that the semidiscrete system (74) restricted to the filtered space 1Gh<
=h2=3 V h with

the V h
1 norm is admissible (resp. moreover exactly observable) in time T uniformly

in h 2 .0; 1/.
If the second order system (48) is admissible and exactly observable then, for

� > 0 small enough, for all T > 0, the semidiscrete system (74) restricted to the
filtered space 1Gh<
=h V

h with the V h
1 norm is admissible and exactly observable in

time T uniformly in h 2 .0; 1/.
The continuous system (28) is admissible (resp. moreover exactly observable) if

and only if, for all � > 0 (resp. for � > 0 small enough), there exists T > 0 such
that the semidiscrete system (74) restricted to the filtered space 1Gh<
=h V

h with the
V h

0 norm is admissible (resp. moreover exactly observable) in time T uniformly in
h 2 .0; 1/.
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More precisely, for s 2 Œ0; 4/ and � D 1=.1 � s=4/ (resp. s 2 Œ0; 3/ and � D
2=.3� s/), for all � > 0, (76) implies (78) (resp. (98) implies (100)); for � > 0 small
enough (77) implies (79) (resp. (98) implies (100)).

Proof. According to Proposition 2.9, � > 0 in (98), (99), (100), (101) can be equiv-
alently replaced by � > inf A since inf Gh > inf A > 0. For s D 0, the range of
� can be equivalently replaced by � 2 R. Thus, the first and third (resp. second)
implication of the theorem results from the last part of the theorem with s D 0 (resp.
s D 1) according to Theorems 2.3 and 2.4 (resp. Theorem 3.8).

To prove the last part of the theorem let v 2 V h and consider xh D A�1JhGhv

as in the proof of Theorem 4.11. Due to (95), we now have Chv D Cxh.
Recall from the proof of Theorem 4.11 that Lemma 4.4 implies:

kxh � Jhvk0 6 c2
0h

2kAxhk0; k.A � �/xh � Jh.Gh � �/vk0 6 c2
0h

2�kAxhk0:

For v 2 1Gh<
=h� V h, kAxhk0 D kGhvk0 6 .�=h�/kvk0. Plugging these bounds
in (76) and (77) for xh yield (78) and (79) with errors bounded by the square of
c
h

2��.2�s=2/kvk0 for h < 1, where the power of h is zero for � D 1=.1� s=4/, and
c
 D max

˚
.c0�/

2; c0�
� ! 0 as � ! 0.

Similarly, the approximation assumption (62) yields:

kxh � Jhvk1 6 c0hkAxhk0; k.A � �/xh � Jh.Gh � �/vk1 6 c0h�kAxhk0:

For v 2 1Gh<
=h� V h, kAxhk0 D kGhvk0 6 .�=h�/1=2kvk1. Plugging these
bounds in (98) and (99) forxh yield (100) and (101) with errors bounded by the square
of c
h

1��.3�s/=2kvk0 forh < 1, and the power ofh is now zero for� D 2=.3�s/.

4.4.3. Convergence of the filtered control systems. We consider the semidiscrete
control system (84) dual to (74) with Bh D GhJ

�
h
A�1B (which is both the dual

of Ch W V h
2 ! Y and the adjoint of Ch W V h

0 ! Y ). Note that kG�1
h
Bhyk0 6

kCkL.H2IY /kyk.

Theorem 4.19. Assume (95). Consider a family of initial data . h
0 /h>0 in V h and

a family of inputs .uh/h>0 in L2.0; T I Y / such that uh controls  h
0 in time T in the

filtered space 1Gh<f .h/ V
h, i.e. the solution of (84) satisfies 1Gh<f .h/ 

h.T / D 0.
If Jh 

h
0 + �0 weakly inH�1 and uh + u weakly in L2.0; T I Y / then u controls

�0 in time T , i.e. the solution of (97) satisfies �.T / D 0.
Assume the discrete system (74) restricted to the filtered space 1Gh<f .h/ V

h with
the V h

1 norm and the system (96) are admissible and exactly observable in time T
uniformly in h. If Jh 

h
0 ! �0 inH�1 then the minimal control uh of h

0 converges in
L2.0; T I Y / to the minimal control u of �0. E.g. this applies to h

0 D GhJ
�
h
	hA

�1�0
for all �0 in H�1, cf. Lemma 4.8.
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Proof. Few modifications of the proof of Theorem 4.14 are necessary.
In the proof of the first implication, Proposition 4.16 replaces Proposition 4.10.

In order to apply this Proposition 4.16 to vh
0 as in the proof of Theorem 4.14, recall

from the proof of Theorem 4.12 that JhGhv
h
0 ! A 1A<� x0 in H0 as h ! 0.

The proof of the second implication uses the Hilbert Uniqueness Method as in
Proposition 4.13 but the H0 scalar product in the functional (88) is replaced by the
duality pairing between H1 and H�1. Thus (87) and (94) are replaced by

kx0k1 6 �T k�0k�1 and � hx0; �0i1;�1 D
Z T

0

ku.t/k2dt 6 �T k�0k2�1;

(102)

kvh
0k1 6 �T k h

0 k�1 and � hvh
0 ;  

h
0 i1;�1 D

Z T

0

kuh.t /k2dt 6 �T k h
0 k2�1:

(103)

Since  h
0 converges in H�1, we deduce that J hvh

0 and uh are bounded respectively
in H1 and L2.0; T I Y /. We deduce that, after extracting a sequence if needed, .uh/

has a weak limit u in L2.0; T I Y / and, after extracting again a sequence if needed,
.J hvh

0 / has a weak limit x0 inH1. Since Jh 
h
0 ! �0 inH�1 strongly hence weakly,

the first implication now ensures that u controls �0 in time T . Since J hvh
0 + x0

in H1 hence in H0, Proposition 4.16 ensures uh.t / D Che
itGhvh

0 + CeitAx0 in
L2.0; T I Y /. Therefore u.t/ D CeitAx0 in L2.0; T I Y /. As in Proposition 4.13, we
deduce x0 D x� and u D u�. Thus u� is the only accumulation point of .uh/weakly
in L2.0; T I Y /, hence uh + u� in L2.0; T I Y /. Since .J hvh

0 / + x0 D x� in H1

and .J h h
0 / ! �0 in H�1, the left hand side of the equality in (103) converges to

the left hand side of the equality in (102). Hence the norm of uh converges to the
norm of u D u�. Since we already proved the weak convergence of uh to u� in
L2.0; T I Y /, this proves the strong convergence, which completes the proof of the
second implication.

4.5. Second order semidiscrete systems

4.5.1. Framework for the Galerkin approximation of second order systems.
Section 3.2 explains how the second order observation systems both in the “bound-
ary” case (48) and the “interior” case (56) fit in the general framework of §2.1. Since
they are dual to each other, from now on the state space and the operator generating
the observation system are denoted by X and A in the “boundary” case, by X 0 and
A0 in the “interior” case (X is the “energy space” for the wave equation). Using the
new notation

Zs D HsC1 �Hs; k.z0; z1/k2
s D kAz0k2 C kz1k2

D kA.sC1/=2z0k2
0 C kAs=2z1k2

0;
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these state spaces and operators are defined by

X D Z0 D X 0
1 D D.A0/; D.A/ D X1 D Z1;

X�1 D Z�1 D X 0; Z�2 D X 0�1;

with duality pairing h.z0; z1/; .�0; �1/i D hA1=2z0; A
�1=2�1i0 � hz1; �0i0,

A.z0; z1/ D i.�z1; Az0/; A0.z0; z1/ D i.�z1; A
0z0/:

Thus A0 is an extension of A to Z�1 with domain Z0.
The spectra and spectral projections of A and A are linked by the isomorphism

W in the proof of Theorem (3.8):

�.A/ D �.
p
A/ [ �.�p

A/; 1A2<�.z0; z1/ D .1A<� z0; 1A<� z1/: (104)

In both cases the observation operator C is bounded on the domain of the generator
of the observation system, it is defined by C.z0; z1/ D Cz0 and the dual control
operator B is defined by By D .0; By/. Thus C 2 L.Z1I Y / and B 2 L.Y IZ�2/

in the “boundary” case, C 2 L.Z0I Y / and B 2 L.Y IZ�1/ in the “interior” case.
The approximation spaces are W h D W h �W h with injections Jh W W h ! Z0

defined by Jh.w0; w1/ D .Jhw0; Jhw1/. LetW h
s denoteW h with the norm kwks D

kJhwks, w 2 W h, induced by Jh from Zs . The dual J�
h

W Z0 ! W h
0 is defined by

J�
h
.z0; z1/ D .J �

h
	hz0; J

�
h
z1/. The Z0-orthogonal projection from Z0 onto Zh is

JhJ�
h

defined by JhJ�
h
.z0; z1/ D .	hz0; JhJ

�
h
z1/, and J�

h
Jh is the identity operator

on W h.
The Ritz–Galerkin variational method considers the finite-dimensional positive

self-adjoint operator on Gh onW h
0 defined by Gh.w0; w1/ D i.�w1; Ghw0/, approx-

imates A by the non-negative selfadjoint operator Ah D JhGhJ�
h

on Z0 defined by
Ah.z0; z1/ D .�J �

h
Jhz1; Ah	hz0/, approximates C by the observation operator Ch

defined by Ch.w0; w1/ D Chw0, and approximates B by the control operator Bh

defined by Bhy D .0; Bhy/. In the “interior” case the definition of Ch is (75) thus
Ch D CJh, in the “boundary” case the definition ofCh is (95) thus Ch D CA�1JhGh.

The dual observation and control systems generated by Gh are:

Rwh.t /CGhw
h.t / D 0; wh.0/ D w0 2 V h;

Pwh.0/ D w1 2 V h; y.t/ D Chw
h.t /;

(105)

R‰h.t /C Gh‰h.t / D Bhu
h.t /; ‰.0/ D ‰0 2 V h;

P‰.0/ D ‰1 2 V h; u 2 L2
loc.RI Y /:

(106)

We still denote by	h the projection defined onH1�H1 by	h.z0; z1/ D .	hz0; 	hz1/.
The approximation assumption (62) and its consequence (63) write:

kz � 	hzk0 6 c0hkzk1; z 2 Z1; h > 0: (107)
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As in Lemma 4.6, in terms of 	h, Gh is defined by

	hA�1 D JhG �1
h J�

h ; (108)

hence k.A�1 � JhG �1
h

J�
h
/zk0 6 c0hkzk0, x 2 H0. Therefore Ah converges to A

in Z0 strongly in the resolvent sense. In particular, if � 2 R is not an eigenvalue of
A, then the finite dimensional spectral projections 1Ah<� D Jh 1Gh<� J�

h
satisfy

k.1A<� � 1Ah<�/zk0 ! 0; z 2 Z0: (109)

The proof of Theorem 4.7, (107) and (108) yield:

Theorem 4.20. If zh ! z in Z0 then eitAhzh ! eitAz in Z0 uniformly on finite
intervals of t , i.e. the solutions z and w of (48) and (105) satisfy

sup
t2Œ0;T �

.kwh.t / � z.t/k1 C k Pwh.t / � Pz.t/k0/ ! 0;

with .z.0/; Pz.0// 2 H1 � H0; T 2 R. More precisely, (62) implies the conver-
gence rate

k.eitAh � eitA/zk0 6 c0h.tkzk2 C 2kzk1/; z 2 W2; h > 0; t 2 R: (110)

If .z.0/; Pz.0// 2 H3�H2,wh.0/ D 	hz.0/, and Pwh.0/ D 	h Pz.0/, then the solutions
z and w of (48) and (105) satisfy

kwh.t /� 	hz.t/k1 C k Pwh.t /� 	h Pz.t/k0 6 c0ht .kz.0/k3 C kPz.0/k2/ ;

for all h > 0 and t 2 R.

4.5.2. Convergence of the observation systems. The proof of Proposition 4.16
yields:

Proposition 4.21. Assume (95). Consider a family .wh/h>0 in W h and z 2 D.A/.
If JhGhw

h ! Az in Z0 then Che
itGhwh ! CeitAz in Y uniformly on finite

intervals of t . More precisely, (62) implies the convergence rate

k.Che
itGhJ�

h	h � CeitA/zk 6 kCkL.H2IY /c0h.tkzk3 C 2kzk2/;

with z 2 Z3, h > 0, and t 2 R.
If JhGhw

h + Az in Z0 then Che
itGhwh + CeitAz in L2.0; T I Y / for all

T > 0.
If Jhv

h + z in Z0 and (48) is admissible then Che
itGhwh + CeitAz in

L2.0; T I Y / for all T > 0.

In the “interior” case, the proof of Proposition 4.10 yields:
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Proposition 4.22. Assume (75). Consider a family .wh/h>0 in W h and z 2 D.A/.
If Jhw

h ! z inZ0 then Che
itGhwh ! CeitAz in Y uniformly on finite intervals

of t . More precisely, (62) implies the convergence rate:

k.Che
itGhJh � CeitA/zk 6 kCkL.H1IY /c0h.tkzk2 C 2kzk1/;

with z 2 Z2, h > 0, and t 2 R.
If Jhw

h + z in Z0 then Che
itGhwh + CeitAz in L2.0; T I Y / for all T > 0.

If Jhw
h + z in Z�1 and (56) is admissible then Che

itGhwh + CeitAz in
L2.0; T I Y / for all T > 0.

4.5.3. Continuous and filtered discrete observability. As in §4.3.2, §4.3.3, we
consider the semidiscrete system (105) restricted to the filtered space 1G 2

h
<f .h/W

h,

where f W .0; h0/ ! .0;C1/ decreases and f .h/ ! C1 as h ! 0, and in
particular we consider the filtering scale f .h/ D �=h� , where � and � are positive
parameters.

As in (104), the link between the first and second order filtered spaces is

1G 2
h

<f .h/W
h D 1Gh<f .h/ V

h � 1Gh<f .h/ V
h:

Due to Theorem 3.8 and the last part of the Theorem 4.18 with s D 1 for the direct
implications, and due to Theorem 4.17 for the converse implications we obtain:

Theorem 4.23. Assume that the observation operators satisfy (95).
The second order system (48) is admissible (resp. moreover exactly observable) if

and only if, for all � > 0 (resp. for � > 0 small enough), there exists T > 0 such that
the semidiscrete system (105) restricted to the filtered space 1G 2

h
<
=h2=3 W

h, with the

W h
0 norm is admissible (resp. moreover exactly observable) in time T uniformly in

h 2 .0; 1/.

In the “interior” case, Theorem 3.13 and the proof of Theorem 4.11 yield:

Theorem 4.24. Assume that the observation operators satisfy (75).
The second order system (56) is admissible (resp. moreover exactly observable)

if and only if, for all � > 0 (resp. for � > 0 small enough), there exists T > 0 such
that the semidiscrete system (105) restricted to the filtered space 1G 2

h
<
=hW

h, with

theW h�1 norm is admissible (resp. moreover exactly observable) in time T uniformly
in h 2 .0; 1/.

Assume C 2 L.H0I Y /. The second order system (56) is admissible (resp. more-
over exactly observable) if and only if, for all � > 0 (resp. for � > 0 small enough),
there exists T > 0 such that the semidiscrete system (74) restricted to the filtered
space 1G 2

h
<
=h4=3 W

h, with the W h�1 norm is admissible (resp. moreover exactly ob-

servable) in time T uniformly in h 2 .0; 1/.
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4.5.4. Convergence of the filtered control systems. The proofs of Theorems 4.19
and 4.14 respectively in the “boundary” case (95) and “interior” case (75) yield:

Theorem 4.25. Assume (95) (resp. assume (75)). Consider a family of initial data
.‰h

0 ; ‰
h
1 /h>0 in W h and a family of inputs .uh/h>0 in L2.0; T I Y / such that uh

controls .‰h
0 ; ‰

h
1 / in time T in the filtered space 1G 2

h
<f .h/W

h, i.e. the solution

of (106) satisfies 1G 2
h

<f .h/‰
h.T / D 1G 2

h
<f .h/

P‰h.T / D 0.

If .Jh‰
h
0 ; Jh‰

h
1 / + .�0; �1/ weakly in Z�1 and uh + u weakly in L2.0; T I Y /

then u controls .�0; �1/ in time T , i.e. the solution of (49) satisfies �.T / D P�.T / D 0.
Assume the discrete system (105) restricted to the filtered space 1G 2

h
<f .h/W

h with

the W h
0 norm (resp. the W h�1 norm) and the system (48) (resp. the system (57)) are

admissible and exactly observable in time T uniformly in h. If .Jh‰
h
0 ; Jh‰

h
1 / !

.�0; �1/ in Z�1 (resp. in Z0) then the minimal control uh of .‰h
0 ; ‰

h
1 / converges in

L2.0; T I Y / to the minimal control u of .�0; �1/ in (49) (resp. in (57)). E.g. this
applies to all .�0; �1/ 2 Z�1, .‰h

0 ; ‰
h
1 / D .J ��0; GhJ

�
h
	hA

�1�1/, (resp. to all
.�0; �1/ 2 Z0, .‰h

0 ; ‰
h
1 / D .J �	h�0; J

��1/), cf. Lemma 4.8.

Remark 4.26. The direct implications in Theorem 4.24 improve Theorem 1.1 in
[12] in four ways: the approximation assumption (62) is weaker in practice (cf.
Remark 4.1), the assumption on the observation operator C 2 L.H� I Y /,  2 Œ0; 1/,
is weakened into C 2 L.H1I Y /, A�1 is not assumed to be compact, the filtering
power � D min f2.1� /; 1g in (1.12) in [12] (which is already the author’s improve-
ment of Ervedoza’s (7.1.12) in [11], cf. [12], Remark 3.1) is improved into � D 1

for C 2 L.H1I Y / and � D 4=3 for C 2 L.H0I Y /. The converse implications in
Theorem 4.24 are not considered in [13].

The second part of Theorem 4.25 in the “interior” case improves Theorem 6.1 in
[12] by eliminating the dubiously used assumption (6.11) in [12] which limited to
C 2 L.H0I Y / the validity of Theorem 6.1 in [12]. The explicit convergence rates
of the observations in Proposition 4.22, and the “boundary” case in Theorems 4.25
and 4.23 were not considered in [13].
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