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Abstract. This paper provides a new proof of a theorem of Chandler-Wilde, Chonchaiya, and
Lindner that the spectra of a certain class of infinite, random, tridiagonal matrices contain the
unit disc almost surely. It also obtains an analogous result for a more general class of random
matrices whose spectra contain a hole around the origin. The presence of the hole forces
substantial changes to the analysis.
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1. Introduction

Over the last fifteen years there have been many studies of the spectral properties
of non-self-adjoint, random, tridiagonal matrices A, some of them cited in [8], [13],
[14], and [17]. It has become clear that if all of the off-diagonal entries Ai;j with
i � j D ˙1 of the matrices concerned are positive, the almost sure limit as N ! 1
of the spectra of random N �N matrices subject to periodic boundary conditions can
be quite different from the spectral behaviour of the corresponding infinite random
matrix; see [9], [10], [15], and [16]. Indeed the limit in the first case can be the union
of a small number of simple curves, while the second limit has a non-empty interior.

Numerical calculations suggest that the situation is quite different if the off-
diagonal entries have variable signs, but much less has been proved in this situa-
tion, which is the one that we consider here. In a recent paper, [5], Chandler-Wilde,
Chonchaiya, and Lindner made important progress in determining the almost sure
spectrum of a remarkably interesting class of non-self-adjoint, random, tridiagonal
matrices introduced by Feinberg and Zee in [13], and sometimes called random hop-
ping matrices, because the diagonal entries all vanish. Specifically they proved that,
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contrary to earlier conjectures, the infinite, tridiagonal matrix

Ac D
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BBBBBBBBBB@

: : :
: : :

: : : 0 1

cn�1 0 1

cn 0 1

cnC1 0
: : :

: : :
: : :

1
CCCCCCCCCCA

has spectrum that contains the unit disc almost surely; see [5]. The paper assumed
that the entries cn are independent and identically distributed with values in f˙1g.

In the present paper we assume that the entries cn are independent and identically
distributed with values in f˙�g for some fixed � 2 .0; 1�. We assume that the
probability p that cn D � satisfies 0 < p < 1; the corresponding probability
measure on �� D f˙�gZ is denoted by �. The matrix Ac is identified with the
bounded operator acting in the natural manner on `2.Z/.

In Lemma 26 we prove that

Spec.Ac/ � f� W 1 � � � j�j � 1 C �g
by a perturbation argument. We also prove that

Spec.Ac/ � ˚
x C iy W jxj C jyj �

p
2.1 C �2/

�
by obtaining a bound on the numerical range of Ac . There are currently no general
techniques for identifying the precise forms of holes in the spectra of non-self-adjoint
operators, and we have not done so here, but numerical calculations are consistent
with the hypothesis that it is the intersection, H� , of two elliptical regions as defined
in (36); see the figures at the end of Section 7. Little is known about the part of the
spectrum of Ac outside the unit disc even in the case � D 1, but numerical studies
suggest that the boundary of the spectrum has a self-similar fractal structure in that
case; see [5] and [17].

The main result of [5], that the spectrum contains the unit disc almost surely, is
for the case that � D 1, when there is no hole in the spectrum. It depends upon the
identification of a particular sequence c 2 �1 such that the equation Acf D �f has
a bounded solution f for every � 2 C such that j�j < 1.

Our Theorem 7 rederives the main result of [5], in which � D 1, but depends on a
certain operator identity introduced in the next section. Our main result, Theorem 27,
that the spectrum of Ac contains that part of the unit disc which is not in H� , applies
to all � 2 .0; 1/. We give a second proof of this result in Theorem 34, by combining
some results for � D 1 with bounds on the Lyapunov exponents of certain transfer
matrices. Both proofs depend, additionally, on results on the spectra of operators on
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`2.Z/ which have different periodic structures on the positive and negative half-axes.
They also both depend on explicit spectral calculations which we are able to carry
out for certain operators Ac with c having arbitrarily large period.

Our main results, as just stated, concern the spectrum of the (bi-)infinite matrix Ac .
In a shorter final section we spell out implications for the spectra of the corresponding
semi-infinite and finite matrices, illustrating these observations with computations of
the finite matrix spectra. In particular we show, by applying recent results of Lindner
and Roch [19], that, unlike Ac, the semi-infinite matrix has no hole in its spectrum
for � 2 .0; 1/, but contains the unit disc for all � 2 .0; 1�.

Let E� denote the set of all c 2 �� that are pseudo-ergodic in the sense of [10].
Precisely, c 2 E� if for every finite sequence b W f1; : : : ; ng ! f˙�g there exists
m 2 Z such that br D cmCr for all r 2 f1; : : : ; ng. Such sequences c are easy to
construct without any reference to probability theory. The following facts, proved
in [10], and rederived in [18] and [7] as an instance of the application of limit operator
arguments, will be crucial in this paper.

Proposition 1. If b; c 2 E� ; then Spec.Ab/ D Spec.Ac/. Let S� denote this set,
which is the main object of study in the paper. If c 2 �� , then c 2 E� almost surely
with respect to the measure �. Finally

S� D
[

b2��

Spec.Ab/:

To describe a further result we establish, for N 2 N and � 2 .0; 1� let �N;� denote
the union of Spec.Ac/ over all c 2 �� that are periodic with period � N . Let

�1;� D
[

N 2N

�N;� : (1)

One obvious implication of the above proposition is that

�1;� � S� : (2)

As is well-known, the set �N;� is the union of eigenvalues of N � N matrices.
(Precisely, it is the union, over all sequences c and all j˛j D 1, of the eigenvalues of
the matrix A

.N;per/
c;˛ defined in (51) below; see (40) and [11]. For another, equivalent

characterisation see Lemma 20.) This simple observation is useful, in that it provides a
method for computing what prove to be large subsets of S� , and will be one component
in our arguments.

An interesting question is whether �1;� is dense in S� . We do not answer this
question one way or the other, but our method of proof of Theorem 7, showing that
the unit disc is a subset of S1, as a by-product, and with some additional argument,
leads to a proof that �1;1 is dense in the unit disc (Theorem 15).

For the sake of simplicity we will, throughout the rest of the paper, omit the
subscript � in our notations if � D 1. We use N and ZC, respectively, as our
notations for the sets of positive and non-negative integers.
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2. An abstract theorem

In this section we present an abstract theorem that might be interesting in other
contexts. It will be applied in Section 3.

Let A be a bounded linear operator acting on the Hilbert space H and let H D
H e ˚ H o be an orthogonal decomposition of H .

Lemma 2. If A.H e/ � H o and A.Ho/ � H e , then H e and H o are invariant under
the action of A2. If B is the restriction of A2 to H e and M is the restriction of A2 to
H o then

Spec.A2/nf0g D Spec.B/nf0g D Spec.M/nf0g: (3)

If A is invertible then

Spec.A2/ D Spec.B/ D Spec.M/: (4)

Proof. The decomposition H D H e ˚ H o allows one to write the operator A in the
form

A D
�

0 X

Y 0

�
;

where X W H o ! H e and Y W H e ! H o. Therefore

A2 D
�

XY 0

0 YX

�
: (5)

This implies that B D XY and M D YX . The second identity in (3) follows by
some simple algebra that holds for any pair of bounded operators X and Y , and the
first identity is a trivial consequence.

If A is invertible then (5) implies that B and M are also invertible; therefore (4)
is equivalent to (3).

Theorem 3. Let H D `2.Z/, let H e be the closed subspace of sequences whose
supports are contained in the set of even integers, and let H o be the closed subspace
of sequences whose supports are contained in the set of odd integers. Let A be
a bounded operator on H whose matrix satisfies Ar;s D 0 for all r; s such that
jr � sj 6D 1. Then A.H e/ � H o and A.H o/ � H e. Moreover the identities

Spec.A2/ D Spec.B/ D Spec.M/

are valid in either of the following two cases.

Case 1. jAr;sj D 1 for all r; s such that jr � sj D 1.

Case 2. There exist constants ˇ, � such that 0 < ˇ < � < 1 and jAr;sj � ˇ if
r � s D 1, while jAr;sj � � if r � s D �1.
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Proof. Case 1. An elementary calculation establishes that there exists a sequence

f W Z �! C

such that Af D 0, jf2nj D 1 for all n and f2nC1 D 0 for all n, so that A and B are
not invertible viewed as operators on `1.Z/, and thus not invertible as operators on
`2.Z/; see e.g. [21], Theorem 2.5.2. So 0 2 Spec.A/ and 0 2 Spec.B/. Similarly
there exists a sequence f W Z ! C such that Af D 0, jf2nC1j D 1 for all n and
f2n D 0 for all n. Hence 0 2 Spec.M/. The result follows by combining this
with (3).

Case 2. The operator AL associated with the matrix

.AL/r;s D
´

Ar;s if r � s D �1,

0 otherwise,

is invertible and satisfies kA�1
L k � ��1. The operator AR D A � AL satisfies

kARk � ˇ. Therefore A is invertible with

kA�1k D kA�1
L .I C ARA�1

L /�1k � ��1

1 � ˇ=�
D 1

� � ˇ
:

The proof is completed by applying (4).

3. The case � D 1

The following lemma was noted in [5].

Lemma 4. If c 2 � then Spec.Ac/ is invariant with respect to both of the maps
� ! N� and � ! ��. If � 2 S then N� and i� lie in S . Hence S is invariant under
the dihedral symmetry group D2 generated by these two maps.

Proof. The invariance of Spec.Ac/ under complex conjugation follows directly from
the fact that Ac has real entries. If D is the diagonal matrix with entries Dr;r D .�i/r

for all r 2 Z then DAcD�1 D iA�c, so

Spec.Ac/ D iSpec.A�c/: (6)

Iterating this identity yields Spec.Ac/ D �Spec.Ac/. This proves the first part of
the lemma. The second part follows once one observes that c 2 E if and only if
�c 2 E.

The formulae in (7) are related to those in [5], Proposition 2.1, in a way that we
will make explicit in Section 4. However, nothing resembling the following lemma
appears in [5].
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Lemma 5. Given b 2 �, let c D 	C.b/ 2 � be the unique sequence satisfying

c0 D 1; c2n C c2nC1 D 0; c2nc2n�1 D bn; (7)

for all n 2 Z. Then A2
c is unitarily equivalent to Ab ˚ Mb acting in `2.Z/ ˚ `2.Z/,

where
.Mbf /n D �fn�1 C .c2nC1 C c2nC2/fn C fnC1 (8)

for all f 2 `2.Z/. Moreover

Spec.A2
c/ D Spec.Ab/ D Spec.Mb/:

Proof. One may write .Acf /n D cnfn�1 C fnC1 for all n 2 Z, or equivalently
Ac D VcR C L where .Lf /n D fnC1, .Rf /n D fn�1 and .Vcf /n D cnfn for all
f 2 `2.Z/.

Therefore

A2
c D VcRVcR C LVcR C VcRL C L2

D XcR2 C Yc C L2

where Xc and Yc are the diagonal matrices with diagonal entries

Xc;n;n D cncn�1;

Yc;n;n D cn C cnC1:

The operator A2
c has two invariant subspaces

H e D ff 2 `2.Z/ W f2nC1 D 0 for all n 2 Zg
and

H o D `2.Z/ � H e :

After an obvious relabeling of the subscripts, the restriction of A2
c to H e equals Ab

while the restriction of A2
c to H o is equal to Mb , as defined in (8). The final statement

of the lemma is now an application of Theorem 3, Case 1.

We will exploit extensively the formula Spec.A2
c/ D Spec.Ab/ which appears in

the above lemma. The equation Spec.Ab/ D Spec.Mb/ will not play a role in our
subsequent arguments, but makes an intriguing connection between spectra of rather
different tridiagonal operators. Extending this connection slightly, for b 2 � define
c D 	C.b/ and zMb by

. zMbf /n D fn�1 C in.c2nC1 C c2nC2/fn C fnC1;

for all f 2 `2.Z/. Then, arguing as we do above to show (6), we see that

Spec. zMb/ D i Spec.Mb/:



Spectrum of a Feinberg–Zee random hopping matrix 153

In particular, in the case b 2 E when, by Lemma 4, iSpec.Mb/ D iSpec.Ab/ D
Spec.Ab/, we see that

S D Spec.Ab/ D Spec. zMb/:

Thus, in studying S, we are studying both the almost sure spectrum of the infinite
hopping-sign matrix Ab with respect to the measure �, and the almost sure spectrum,
with respect to the same measure, of zMb , a discrete Schrödinger operator with a
particular, complex random potential.

In the next lemma we define the square root of any non-zero complex number to
be the root whose argument lies in .��=2; �=2�.

Lemma 6. If b 2 � and c D 	C.b/ then � 2 Spec.Ab/ if and only if ˙p
� both lie

in Spec.Ac/. If � 2 S then ˙p
� both lie in S .

Proof. Lemma 4 and Lemma 5 imply that the following statements are equivalent.
� 2 Spec.Ab/; � 2 Spec.A2

c/ D .Spec.Ac//2; either
p

� or �p
� lies in Spec.Ac/;

˙p
� both lie in Spec.Ac/.

If � 2 S and b 2 E then � 2 Spec.Ab/ by Proposition 1. Lemma 5 implies that

� 2 Spec.A2
c/ D .Spec.Ac//2 � S2:

Therefore either
p

� or �p
� lie in S. The proof is completed by applying Lemma 4.

Theorem 7. The set S contains[
n2ZC; r2f0;:::;2nC2g

e�ir=2nC1

Œ0; 21=2n

�: (9)

Hence S contains the unit disc in C.

Proof. For n D 0 the theorem states that

Œ0; 2� � f1; i; �1; �ig � S:

This follows by combining Lemma 4 with direct calculations of Spec.Ac/ when
cn D 1 for all n 2 Z (in which case Spec.Ac/ D Œ�2; 2�) and when cn D �1 for all
n 2 Z (in which case Spec.Ac/ D i Œ�2; 2�). For larger n the first statement of the
theorem follows by applying Lemma 6 inductively. The second statement is now a
consequence of the fact that the set (9) is dense in the unit disc.

4. The maps �˙

A crucial role has been played in the proofs above by the nonlinear map 	C on �

introduced in Lemma 5, and this map will be key to the arguments that we make
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throughout this paper. And in fact a sequence which is almost a fixed point of 	C (in
a sense made precise below Lemma 8) is central to the proof of Theorem 7 in [5],
though the proof is quite different and no mapping 	C appears in [5].

The relationship between the above proof of Theorem 7 and that in [5] is clarified
to some extent by the following. Building on the definition of 	C made above, let us
define maps 	˙ W � ! � by 	˙.b/ D c where

c0 D ˙1; c2n C c2nC1 D 0; c2nc2n�1 D bn; (10)

for all n 2 Z. We also define the space inversion symmetry b ! Ob by Obn D b1�n for
all n 2 Z.

Lemma 8. If 	˙.b/ D c then 	�. Ob/ D Oc. In particular 	˙.c/ D c if and only if
	�. Oc/ D Oc. Each of the equations 	˙.c/ D c has exactly one solution.

Proof. Let c D 	C.b/ and d D 	�. Ob/. Then d0 D �1, d2n C d2nC1 D 0, and
d2nd2n�1 D Obn D b1�n for all n 2 Z. Therefore Od0 D d1 D 1. Also

Od2nC1 C Od2n D d1�.2nC1/ C d1�2n D d�2n C d1�2n D 0

and
Od2n

Od2n�1 D d1�2nd1�.2n�1/ D d2.1�n/�1d2.1�n/ D Ob1�n D bn

for all n 2 Z. Therefore Od D 	C.b/ D c and d D Oc.
The proof that c D 	�.b/ implies d D 	C. Ob/ is similar. The other statements of

the lemma follow immediately.

This paper and [5] use three different special sequences. The sequences c˙ are
defined by 	˙.c˙/ D c˙. It follows directly from their definitions that cC;0 D 1 and
cC;1 D �1, while c�;0 D �1 and c�;1 D 1. However

cC;n D c�;n D cC;1�n D c�;1�n

for all n 6D 0; 1. The paper [5] uses the sequence ce such that ce;0 D ce;1 D 1, while
ce;n D c˙;n for all other n. Because of the space inversion symmetry the use of cC
or c� in any proof is really a matter of convenience.

We now turn to the solution of the equation Acu D �u where u W Z ! C is
an arbitrary sequence. The eigenvalue equation is equivalent to the second order
recurrence equation

unC1 C cnun�1 D �un:

Lemma 9. Suppose that c 2 � and Ocn D c1�n for all n 2 Z; that unC1 Ccnun�1 D
�un for some � 2 C and all n 2 Z and u0 D 0, u1 D 1; and that OunC1 C Ocn Oun�1 D
� Oun for all n 2 Z and Ou0 D 0, Ou1 D 1. Then j Ounj D ju�nj for all n 2 Z. In
particular un is bounded as n ! 1 if and only if Oun is bounded as n ! �1.
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Proof. If one puts vn D u�n then

OcnC1vnC1 C vn�1 D c�nu�n�1 C u�nC1 D �u�n D �vn (11)

for all n 2 Z. Define a W Z ! f˙1g by a0 D 1 and an=an�1 D Ocn for all n 2 Z. If
one now puts wn D anvn for all n 2 Z then (11) implies

wnC1 C Ocnwn�1 D �wn

for all n 2 Z. Since w0 D v0 D u0 D 0 it follows that there exist � such that
wn D � Ocn for all n � 1. But jcnj D 1 for all n, so one obtains j� j D 1 by evaluating
this identity for n D 1. Therefore j Ounj D jwnj D jvnj D ju�nj for all n � 1.

Corollary 10. Let uC; u�; ue W Z ! C be the solutions of unC1 C cnun�1 D �un

for all n 2 Z subject to u0 D 0 and u1 D 1, if c is put equal to cC; c�; ce respectively.
Then uC;n D ue;n for all n 2 Z. Moreover ju�;nj D jue;nj for all n 2 Z.

Proof. The first statement is proved by an elementary computation. For the second
we use ce D Oce and c� D OcC. Lemma 9 now yields

ju�;nj D juC;�nj D jue;�nj D jue;nj
for all n 2 Z.

The main step in the proof of Theorem 7 in [5] is contained in the following
proposition (we quote here the parts of [5], Proposition 2.1, which we use immediately
or later in Section 8).

Proposition 11. Let ue be defined as in Corollary 10 and define pi;j 2 Z for i; j 2 N
by the formula

ue;i D
iX

j D1

pi;j �j �1

with pi;j D 0 if j > i . Let Y denote the set of .i; j / 2 N2 such that pi;j ¤ 0. Then
pi;j 2 f0; 1; �1g for all i; j and .i; j / 2 Y if and only if one of the following holds:

(1) i D j D 1;

(2) i and j are both even and .i=2; j=2/ 2 Y ;

(3) i and j are both odd and ..i C 1/=2; .j C 1/=2/ 2 Y ;

(4) i and j are both odd and ..i � 1/=2; .j C 1/=2/ 2 Y .

The following result is an immediate corollary of this proposition and Corollary 10,
which together imply that jue;i j � .1 � j�j/�1 for i 2 Z and j�j < 1.
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Theorem 12. [5] As in Corollary 10, let ue W Z ! C be the solution of unC1 C
cnun�1 D �un for all n 2 Z subject to u0 D 0 and u1 D 1, with c D ce. Then
ue 2 `1.Z/ for j�j < 1, so that Spec.Ace

/ contains the unit disc.

Since Corollary 10 has shown that uC D ue, it is clear from Theorem 12 that
Spec.AcC/ also contains the unit disc. In fact this is precisely its spectrum.

Theorem 13. If cC is the unique solution of 	C.c/ D c then

Spec.AcC/ D fz W jzj � 1g:

Proof. It remains only to show that Spec.AcC/ � fz W jzj � 1g. If � 2 Spec.AcC/

then repeated applications of the first part of Lemma 6 yield �2n 2 Spec.AcC/ for
all n � 1. Since the spectrum is a bounded set, it follows that j�j � 1.

We will (rather arbitrarily) focus on the mapping 	C rather than 	� in the re-
mainder of the paper. The following lemma, which shows that the set of periodic
sequences is invariant under the action of 	C, will play a key role.

Lemma 14. If b 2 � is periodic with period N , i.e. bnCN D bn, n 2 Z, then
c D 	C.b/ is 4N -periodic. Conversely, if b 2 �, c D 	C.b/, and c is 2N -periodic
for some N 2 N, then b is N -periodic.

Proof. First note that, if c D 	C.b/ and one defines Qc 2 � by Qcn D c2n, n 2 Z, then

c D 	C.b/ () . Qc0 D 1; Qcn D �bn Qcn�1; c2nC1 D �Qcn; n 2 Z/: (12)

Therefore

QcmCn D Qcm .�1/n

nY
j D1

bmCj (13)

for all m 2 Z and n 2 N. If b is N -periodic, then

QcmC2N D Qcm

2NY
j D1

bmCj D Qcm

NY
j D1

b2
mCj D Qcm;

for all m 2 Z. Therefore c is 4N -periodic.
Conversely, if c D 	C.b/, for some b 2 �, and c is 2N -periodic for some

N 2 N, then Qc is N -periodic and, from (12), it follows that b is N -periodic.

To illustrate the above lemma, define c�; cC 2 � by c�
n D �1, cC

n D 1, for
n 2 Z, and define the sequences c.m;C/; c.m;�/ 2 �, for m D 0; 1; : : :, by

c.0;˙/ D c˙; c.m;˙/ D 	C.c.m�1;˙//; m 2 N: (14)
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Then explicit calculations of the action of 	C yield that c.1;C/ D 	C.cC/ is 4-periodic
(but not periodic with any smaller period), with c

.1;C/
�1 D c

.1;C/
0 D 1, c

.1;C/
1 D

c
.1;C/
2 D �1. On the other hand, c.1;�/ D 	C.c�/ is 2-periodic (and so also 4-

periodic), with c
.1;�/
n D .�1/n for all n 2 Z.

Both these calculations, of course, are consistent with the lemma, which implies
that c.m;˙/ is N -periodic with N D 4m, so that, using the notation (1) (dropping �

given that � D 1),

Spec.Ac.m;˙// � �4m ; m D 0; 1; : : : : (15)

Although we do not have an explicit formula for the sequences c.m;˙/, it is easy
to compute Spec.Ac.m;˙//. By Lemma 6, if c D 	C.b/, then

Spec.Ac/ D ˚ ˙
p

� W � 2 Spec.Ab/
�
: (16)

The proof of Theorem 7 begins with the observation that Spec.AcC/ D Œ�2; 2� and
Spec.Ac�/ D i Œ�2; 2�. Combining this observation with (16) we easily prove by
induction that

Spec.Ac.m;C// D fr e�ij=2m W 0 � r � 21=2m

; j 2 f0; : : : ; 2mC1 � 1gg (17)

and
Spec.Ac.m;�// D e�i=2mC1

Spec.Ac.m;C//: (18)

Combining equations (15), (17), and (18), we see that we have shown that

fr e�ij=2m W 0 � r � 21=2mC1

; j 2 f0; : : : ; 2mC2 � 1gg � �4m ; m D 0; 1; : : : :

Thus we have shown the following modification of Theorem 7 which, of course,
by (2), has Theorem 7 as a corollary.

Theorem 15. The set �1 contains the set (9), and so is dense in the unit disc in C.

We know Spec.Ac.m;˙// explicitly, but do not have explicit formulae for the
sequences c.m;˙/. However we can show that c.m;˙/ converges pointwise to the
sequence cC, the unique fixed point of 	C, as m ! 1. This is the content of the
next two lemmas. We omit a proof of the first of these lemmas which is an easy
consequence, by simple induction arguments, of the definition of 	C.

Lemma 16. If b 2 � and c D 	C.b/, then c0 D cC;0 and c1 D cC;1. If, for some
N 2 N, bm D cC;m for m D 1; : : : ; N , then also cm D cC;m for m D 2; : : : ; 2N C1.
If, for some N 2 ZC, b�m D cC;�m for m D 0; 1; : : : ; N , then b�m D cC;�m for
m D 1; 2; : : : ; 2N C 2.
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Lemma 17. Let b 2 �, and define c.n/ 2 � for n 2 N by c.1/ D 	C.b/ and
c.nC1/ D 	C.c.n//, n 2 N. Then, for n 2 N,

c.n/
m D cC;m; m D 2 � 2n; 3 � 2n; : : : ; 2n � 1;

so that c.n/ ! cC pointwise and Ac.n/ converges strongly to AcC as n ! 1. Further,

Spec.Ac.n// � f� W j�j � 21=2ng:
Proof. The first equation follows by induction from Lemma 16. The second equation
follows by induction from (16) and the trivial bound that Spec.Ab/ � f� W j�j � 2g,
which holds for all b 2 �.

5. The mapping ��;C

For the rest of the paper we consider operators Ac for which the coefficients cn take
values in f˙�g, where 0 < � � 1; that is, in the notation we have introduced in the
introduction, we assume that c 2 �� , for some � 2 .0; 1�.

The mapping 	C that we have introduced continues to play an important role. We
extend the mapping so that it operates on ��2 , defining, for � 2 .0; 1�,

	�;C W ��2 �! ��

by
	�;C.c/ D �	C.��2c/: (19)

In other words, for b 2 ��2 , c D 	�;C.b/ is the unique sequence in �� satisfying

c0 D �; c2n C c2nC1 D 0; c2nc2n�1 D bn: (20)

Main properties of the mapping 	�;C for our purposes are contained in the fol-
lowing extension of Lemma 6. We will need to refer to a number of circular annuli,
and use in this lemma and subsequently the notation

ŒŒa; b�� D f� W a � j�j � bg: (21)

Lemma 18. If b 2 ��2 and c D 	�;C.b/ 2 �� , then

. � 2 Spec.Ab/ () .˙
p

� 2 Spec.Ac/ /: (22)

Hence

. � 2 S�2/ H) .˙
p

� 2 S� / (23)

and

. ŒŒa; b�� � S�2/ H) .ŒŒa1=2; b1=2�� � S� /: (24)
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Proof. We modify the calculations in Section 3. Lemma 4 is valid as it stands. In
Lemma 5 we assume that b 2 ��2 , and define c 2 �� by c D 	�;C.b/, and apply
Case 2 of Theorem 3 in place of Case 1. This leads to the conclusion Spec.A2

c/ D
Spec.Ab/ as in Lemma 6. (23) and (24) follow by choosing b 2 E�2 and using
Proposition 1.

6. Periodic and paired periodic operators

To prove our main theorem we need results on operators Ac on `2.Z/ that have one
periodic structure for n � 0 and another for n < 0 (which we term paired periodic
operators). The essential spectrum of such an operator is the union of the essential
spectra of the periodic operators involved, which may be calculated explicitly using
their Bloch decompositions.

There may also be substantial inessential spectrum, in particular, open subsets of
the spectrum where Ac � �I is Fredholm but has non-zero index. These parts of the
spectrum (and the corresponding values of the index) can be computed by application
of general results for block Toeplitz operators, which have been developed to a high
degree of sophistication; see [1], [3], [2], [4], and the references therein. We need
only a small part of this theory, and it is easy to develop this from first principles.
We do this in a short Lemma 25 below, inspired by earlier analysis in [12], [9], [10],
and particularly Theorem 12 in [10]. Both the proof of Lemma 25, and the effective
application of this lemma to prove Theorem 27, depend on the next two lemmas
which describe properties of the spectra and eigenfunctions of periodic operators.

We assume throughout this section that the parameter � 2 .0; 1/.

Lemma 19. Let

ˆ.
; �/ D Re.
/2

.1 C �/2
C Im.
/2

.1 � �/2
; (25)

where 
 2 C and �1 < � < 1. Then the quadratic equation

z2 � 
z C � D 0 (26)

has a solution satisfying jzj D 1 if and only if ˆ D 1. If ˆ < 1 then both solutions
satisfy jzj < 1. If ˆ > 1 then one solution satisfies jzj < 1 and the other satisfies
jzj > 1.

Proof. For � 2 R, z D ei� is a solution of (26) if and only if

cos.�/ D Re.
/

1 C �
; sin.�/ D Im.
/

1 � �
;

so that (26) has a solution satisfying jzj D 1 if and only if ˆ.
; �/ D 1.
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The set U D f
 2 C W ˆ < 1g is connected and contains the origin. Since
the solutions of (26) depend continuously on 
 , and both solutions satisfy jzj < 1

if 
 D 0, it follows that both satisfy jzj < 1 for all 
 2 U . The case ˆ > 1 is
similar.

The following lemma is closely related to a similar result for the non-self-adjoint
Anderson model in [10], Theorem 11.

Lemma 20. If c 2 �� and � 2 C then the space of all solutions of Acf D �f

is two-dimensional. If c is periodic with period p then the asymptotic behaviour as
n ! ˙1 of the solutions is determined by the solutions z1; z2 of the polynomial
z2 � 
.�/z C � D 0, where 
.�/ is a monic polynomial in � with degree p, given by

.�/ D tr.Tp/, where Tp D XpXp�1 : : : X1 and

Xn D
�

0 1

�cn �

�
;

and � D det.Tp/ D ˙�p. Ordering the two solutions so that jz1j � jz2j, there are
three cases.

(1) � lies in the closed set

Bc D f� W jz1j D 1 and jz2j D �pg:
This set is the spectrum of Ac, equivalently, the set of � for which Acf D �f

has a bounded solution.

(2) � lies in the open set

Ic D f� W 1 > jz1j � jz2j > �pg:
This is the case if and only if all solutions of Acf D �f decay exponentially as
n ! C1.

(3) � lies in the open set

Oc D f� W jz1j > 1 and jz2j < �pg:
This is the case if and only if there exists a solution of Acf D �f that decays
exponentially as n ! C1 and grows exponentially as n ! �1, and another
solution that decays exponentially as n ! �1 and grows exponentially as
n ! C1.

Proof. The sequence f W Z ! C is a solution of Acf D �f if and only if fnC1 C
cnfn�1 D �fn for all n 2 Z. This recurrence relation can be rewritten in the form�

fn

fnC1

�
D

�
0 1

�cn �

� �
fn�1

fn

�
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D Xn

�
fn�1

fn

�

D Tn

�
f0

f1

�
;

where Tn D XnXn�1 : : : X1. If c is periodic with period p, then the asymptotic
behaviour of the two-dimensional space of eigenfunctions f is determined by the
magnitude of the eigenvalues z1; z2 of Tp . These are the solutions of the equation
z2 � 
z C � D 0 where 
 D tr.Tp/ and � D det.Tp/. A simple induction establishes
that the .i; j /-th entry of Tp is a polynomial in � with degree less than p unless
i D j D 2 in which case it is a monic polynomial with degree p. Therefore 
 is a
monic polynomial in � with degree p. However

det.Tp/ D
pY

rD1

det.Xr / D c1 : : : cp D ˙�p

does not depend on �. The continuous dependence of the roots of a polynomial on
its coefficients implies that Bc is closed while Ic and Oc are open. An application of
Lemma 19 now completes the proof. One sees, in particular, that

Spec.Ac/ D Bc D f� W ˆ.
; �/ D 1g:
Our next lemma enables us to determine the sets Ic and Oc for certain important

periodic sequences c, and to determine the spectra of certain paired periodic operators.
We continue with the assumptions and notation of Lemma 20.

Lemma 21. If V is a connected component of CnBc then V � Ic or V � Oc . If
V is unbounded then V � Oc , and if 0 2 V then V � Ic . If CnBc has exactly two
components then the bounded component equals Ic and the unbounded component
equals Oc .

Proof. We first observe that V , Ic , and Oc are all open sets and that their definitions
imply directly that Ic and Oc are disjoint. Therefore V D .V \ Ic/ [ .V \ Oc/,
where the two intersections on the right-hand side are disjoint. Since V is connected,
it follows that V D V \ Ic or V D V \ Oc This completes the proof of the first
statement.

Lemma 20(1) implies that

Bc D Spec.Ac/ � f� W j�j � 1 C �g:
Therefore CnBc has only one unbounded component V and it contains f� W j�j >

1 C �g. To prove that V � Oc it is sufficient by the first part of this proof to find a
single point � 2 V \ Oc . The fact that 
 is a polynomial with degree p implies that
j
.�/j ! 1 as j�j ! 1. This implies that the solutions of z2 � 
.�/z C � D 0,
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where � D ˙�p, are z 	 
.�/ and z 	 �=
.�/ to leading order for all large enough
j�j. Therefore � 2 Oc for all such �.

The proof is completed by proving that 0 2 Ic . For � D 0 one has Tp D
XpXp�1 : : : X1 where each Xr is of the form

�
0 1˙� 0

�
. If p D 2m it follows that

Tp D � ˙�m 0
0 ˙�m

�
. The fundamental equation must therefore take one of the forms

z2 � 2�mz C �2m D 0, z2 C 2�mz C �2m D 0, or z2 � �2m D 0. In each case both
solutions have modulus �p=2 < 1. The same holds if p D 2m C 1.

The final statement of the lemma is a consequence of the following observations.
There must be a component of CnBc that contains 0 and there must be an unbounded
component. The first part of the proof shows that these are distinct, and the extra
hypothesis is that there are no other components.

Our next task is to determine the sets Bc ; Ic , and Oc for certain particular periodic
sequences.

Lemma 22. If cn D � for all n 2 Z then Spec.Ac/ is the ellipse

Spec.Ac/ D
°
u C iv W u2

.1 C �/2
C v2

.1 � �/2
D 1

±
(27)

D
°
�ei� W � D 1 � �2p

1 C �2 � 2� cos.2�/

±
: (28)

Moreover the interior U of the ellipse equals Ic and the exterior V of the ellipse
equals Oc .

Proof. We have p D 1 and T1 D �
0 1�� �

�
, so 
.�/ D � and � D � . Using (25) we

deduce that Spec.Ac/ is given by (27). The proof is completed by using Lemma 21.

Lemma 23. If cn D �� for all n 2 Z then Spec.Ac/ is the ellipse

Spec.Ac/ D
°
u C iv W u2

.1 � �/2
C v2

.1 C �/2
D 1

±
(29)

D
°
�ei� W � D 1 � �2p

1 C �2 C 2� cos.2�/

±
: (30)

Moreover Ic is the interior of the ellipse and Oc is the exterior of the ellipse.

Proof. We have p D 1 and T1 D �
0 1
� �

�
, so 
.�/ D � and � D �� . We omit the rest

of proof, which is almost identical to that of Lemma 22.

In the following lemma, starting from Lemmata 22 and 23, and making successive
applications of Lemma 18, we compute the spectra of a family of periodic sequences,
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namely the sequences c˙ D �c.n;˙/ 2 �� , defined by (14). By Lemma 14, these
sequences are periodic of period � 4n.

This next lemma applies for 0 < � < 1. The corresponding result for � D 1 is
equations (17) and (18) above.

Lemma 24. Suppose n 2 ZC and cC D �c.n;C/, c� D �c.n;�/. Then

Spec.Ac˙/ D f �ei� W � D �ṅ .�; �/g (31)

where

�C
0 .�; �/ D 1 � �2

.1 C �2 � 2� cos 2�/
1=2

;

��
0 .�; �/ D 1 � �2

.1 C �2 C 2� cos 2�/
1=2

;

and, for n 2 N,

�ṅ .�; �/ D .�0̇ .2n�; �2n

//1=2n D .1 � �2nC1
/1=2n

�
1 C �2nC1 
 2�2n cos .2nC1�/

�1=2nC1
:

Moreover,

Ic˙ D f �ei� W 0 � � < �ṅ .�; �/g
and

Oc˙ D f �ei� W � > �ṅ .�; �/g:

Proof. Our proof of (31) is by induction. We note first that (31) holds for n D 0 by
Lemmata 22 and 23. Suppose now that (31) holds for some n � 0 and all 0 < � < 1.
Then

Spec.A�2c.n;˙// D f�ei� W � D �ṅ .�; �2/g
D f�ei� W � D .�0̇ .2n�; �2nC1

//1=2ng:

Since �c.nC1;˙/ D �	C.c.n;C// D 	�;C.�2c.n;C//, it follows from Lemma 18 that

Spec.A�c.nC1;˙// D f˙
p

� W � 2 Spec.A�2c.n;˙//g:
Combining these equations, we see that (31) holds with n replaced by nC1. Thus (31)
follows by induction.

The formulae for Ic˙ and Oc˙ follow from (31) and Lemma 21.
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We remark that ��
n .�; �/ D �C

n .� ˙ �=2nC1; �/, so that the spectra of Ac˙ in the
above lemma are related by

Spec.AcC/ D e˙i�=2nC1

Spec.Ac�/:

This is a symmetry which is surprising from an inspection of the sequences c˙, which
need not even have the same period. (For example, as observed in Section 4, cC has
period 4 and c� period 2 in the case n D 1.)

In principle, since c˙ is periodic, (31) should be computable alternatively from
the characterisation of the spectrum for general periodic sequences in Lemma 20.
As an example of this, for the sequence c� D �c.1;�/ which has period 2, with
c�

n D .�1/n� , the transfer matrix T2 is given by

T2 D X2X1 D
�

0 1

�� �

� �
0 1

� �

�
D

�
� �

�� �� C �2

�
:

Applying Lemmata 19 and 20 with 
 D �2 and � D ��2, we find that Spec.Ac/ is
the set of all � D u C iv for which

.u2 � v2/2

.1 � �2/2
C .2uv/2

.1 C �2/2
D 1:

If one puts � D �ei� , then this may be rewritten in the form (31).
The main point of the above theory and calculations are to prove and prepare the

use of the following result on operators Ac that are paired periodic operators. To state
this result let us introduce the notations

E� D
n
x C iy W x2

.1 C �/2
C y2

.1 � �/2
< 1

o
(32)

and

E�� D
n
x C iy W x2

.1 � �/2
C y2

.1 C �/2
< 1

o
; (33)

so that E� and E�� are the interiors of the ellipses introduced in Lemmata 22 and
23.

The following lemma is analogous to [10], Theorem 12, proved there for the
non-self-adjoint Anderson model.

Lemma 25. Suppose that c 2 �� is periodic and 
 2 f�; ��g, and define c� 2 ��

by c�
n D cn, for n � 0, and c�

n D 
 for n < 0. Then

Spec.Ac�/ � xIxc n E� :

Proof. Since Spec.Ac�/ is closed it is enough to show that Spec.Ac�/ � Ic n xEx
� .

So suppose that � 2 Ic n xEx
� . Then, by Lemmata 22 and 23 and Lemma 20, since
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� 62 xEx
� , it follows that there exists a non-trivial solution f of Ac�f D �f such that

fn ! 0 exponentially as n ! �1. Since � 2 Ic , again applying Lemma 20, it
follows that this solution f also decays exponentially as n ! C1. Thus � is an
eigenvalue of Ac� so � 2 Spec.Ac�/.

7. First proof of the main theorem

This section is devoted to the proof of Theorem 27, in which we assume that 0 <

� < 1.

Lemma 26. We have
Spec.Ac/ � ŒŒ1 � �; 1 C ��� (34)

and
Spec.Ac/ � ˚

x C iy W jxj C jyj �
p

2.1 C �2/
�
; (35)

for every choice of c 2 �� .

Proof. We regard VcR as a small perturbation of L in the identity Ac D VcR C
L, noted in the proof of Lemma 5. Since L is a unitary operator with spectrum
fz W jzj D 1g, we have

k.L � zI /�1k D j1 � jzj j�1

for all z not on the unit circle. The inclusion (34) now follows from kVcRk D � by
a perturbation argument; see [11], Theorem 9.2.13.

The inclusion (35) depends on an estimate of the numerical range of Ac . Fol-
lowing [11], Section 9.3, x C iy 2 Num.Ac/ if there exists f 2 `2.Z/ such that
kf k D 1 and x C iy D hAcf; f i. This implies that

x D 1

2
h.Ac C A�

c /f; f i;

y D � i

2
h.Ac � A�

c /f; f i:

Therefore

x C y D 1

2
hBf; f i;

where
B D .Ac C A�

c / � i.Ac � A�
c /:

A simple calculation shows that Bm;n D 0 unless jm � nj D 1, while

Bn;nC1 D xBx
n
xCx

1
x
;
x
n D .1 ˙ �/ � i.1 
 �/:
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Therefore jBnC1;nj D jBn;nC1j D p
2.1 C �2/ for all n 2 Z and

x C y � 1

2
kBk �

p
2.1 C �2/:

The other three steps in the proof of the bound for jxj C jyj are similar.

The statement of our main theorem refers to the open set

H� D E� \ E�� ; (36)

the intersection of the ellipses E� and E�� . This set satisfies

ŒŒ0; 1 � ��� � xHx
� � ŒŒ0; r� �� (37)

where

r� D 1 � �2

p
1 C �2

: (38)

Theorem 27. If 0 < � < 1 then

f� W j�j � 1gnH� � S� :

Proof. Note first that if c˙ and �ṅ .�; �/ are defined as in Lemma 24, then

�ṅ .�; �/ � ��;n D
�1 � �2nC1

1 C �2n

�1=2n

;

for all � 2 R, so that Ic˙ � f� W j�j < ��;ng. Thus, defining c� 2 �� as in
Lemma 25, with c D cC or c� and 
 D ˙� , we see from Lemma 25 that

Spec.Ac�/ � xIxc n E� � f� W j�j � ��;ng n E� : (39)

Applying Proposition 1, it follows that, for all n 2 N,

S� � f� W j�j � ��;ng n H� :

The theorem follows since supn ��;n D 1 and S� is closed.

Lemma 26 and Theorem 27 together establish that there is a hole in S� which is
at least as big as f� W j�j < 1 � �g and which is no larger than H� . The numerical
computations we have been able to carry out are consistent with a hypothesis that the
hole is precisely the set H� , i.e. they are consistent with a hypothesis that Spec.Ac/\
H� D ; for every c 2 �� , and hence for every c 2 E� .

It should be pointed out, however, that these numerical computations are only for
instances where c is periodic, for which we have a characterisation of the spectrum
in Lemma 20. Thus, strictly speaking, our calculations are evidence of the possibly
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weaker result that �1;� \ H� D ;; they become evidence that Spec.Ac/ \ H� D ;
with a hypothesis that �1;� is dense in the part of S� that is contained in the unit
disc. This latter statement may or may not be true for � 2 .0; 1/, but we have shown
in Theorem 15 that it is true for � D 1.

As an example of the numerical computations we have carried out, the right hand
side of Figure 1 shows the union of Spec.Ac/ over all periodic c 2 �� for which
the period N � 12. It is clear from this figure that �12;� \ H� D ; for � D 0:5.
We note that, rather than using the characterisation in Lemma 20, we use for these
computations the standard Bloch-decomposition formula (e.g. [11]) that

Spec.Ac/ D
[

j˛jD1

Spec.A.N;per/
c;˛ /; (40)

where A
.N;per/
c;˛ is the N � N matrix defined in (51) below.

Figure 1. Plots of Spec.Ac/ for the case when c is periodic and � D 0:5. The two plots show
the sets �N;� � S� , the union of the spectra for all sequences c of period � N , for N D 2

(left) and N D 12 (right). The two ellipses visible in the left-hand plot, the boundaries of
E� and E�� defined in (32) and (33), are the components of �1;� ; the other closed curve is
Spec.Ac/ for c D �c.1;�/, i.e. cn D .�1/n� , given explicitly in Lemma 24. Also shown in
each plot are the boundaries of the inclusion sets from Lemma 26, namely the circles of radius
1 ˙ � , and, in dashed lines, the boundary of the set (35). The boundary of H� , which we
conjecture is a hole in the spectrum S� , is highlighted in a thicker line.

It is not feasible to calculate �N;� , the union of all 2N �1 periodic spectra of period
N , for very much larger values of N . In Figure 2 we sample �100;� , for � D 0:5,

plotting the union of the spectra of 105 randomly chosen N � N matrices A
.N;per/
c;˛ .

By randomly chosen we mean here that, in each realisation, N 2 f1; : : : ; 100g is
randomly chosen, with higher probabilities for the smaller matrix sizes, and then
the vector c D .c1; : : : ; cN / is randomly chosen, with each cn D ˙� independent
and identically distributed with Pr.cn D �/ D 0:5, and finally the phase factor ˛ is
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randomly chosen from a uniform measure on the unit circle. We see in the figure that
clearly, as they have to, the spectra are constrained to lie in the inclusion sets shown
in Lemma 26. We also note that all the spectra lie outside H� .

Figure 2. Plots of 105 instances of Spec.A
.N;per/
c;˛ / for � D 0:5, computed as described in the

text, with N randomly chosen in the range 1 � N � 100.

8. Second proof of the main theorem

In Theorem 34 of this section we provide a second proof that

f� W j�j � 1gnH� � S� (41)

for all � 2 .0; 1/. This proof has a lot in common with the previous one, but it reveals
more about the asymptotic behaviour of the solutions of the second order recurrence
relation for certain choices of c 2 �� . A key role in this section is played by the
sequence ce 2 �� defined in Section 4, which sequence was central to the proof of
Theorem 7 that appears in [5] (see Theorem 12 above for more details).

We start with some calculations that do not depend on � . Throughout this section
Qcn 2 f˙1g is defined for all n � 1 by the rules Qc1 D 1, Qc2n D Qc2n�1 Qcn, and
Qc2n C Qc2nC1 D 0. (In other words, Qcn D ce;n, for n � 1.) The first few values are
shown in Table 1. We will obtain a bound on a transfer matrix Tm;� associated with
this sequence and use this bound to prove Theorem 34.

Let u W ZC ! C be the solution of unC1 D �un � Qcnun�1 such that u0 D 0

and u1 D 1, so that u is the restriction to ZC of the bi-infinite sequence ue already
studied in [5] and discussed in Section 4. We have observed already in Proposition 11
that un is a polynomial of degree n � 1 in � with integer coefficients for all n � 2.
Similarly, if v W ZC ! C is the solution of vnC1 D �vn � Qcnvn�1 such that v0 D 1

and v1 D 0, it is easy to see that vn is a polynomial of degree n � 2 with integer
coefficients for all n � 2.
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Table 1. Values of Qcn; un; vn for 1 � n � 9.

n Qcn un vn

1 1 1 0

2 1 � �1

3 �1 �2 � 1 ��

4 �1 �3 ��2 � 1

5 1 �4 C �2 � 1 ��3 � 2�

6 �1 �5 � � ��4 � �2 C 1

7 1 �6 C �4 � 1 ��5 � 2�3 � �

8 �1 �7 ��6 � �4 � 1

9 1 �8 C �6 C �4 � 1 ��7 � 2�5 � 2�3 � 2�

One may check the computations of um and vm in Table 1 by confirming the
determinantal identity umvmC1 � vmumC1 D ˙1 for all m � 1, the left hand side
being a polynomial in �. Here we are referring to a determinantal identity for the
transfer matrix Tm;�, defined by

Tm;� D
�

vm um

vmC1 umC1

�
;

which transfers the data of any solution of xnC1 D �xn � Qcnxn�1 from f0; 1g to
fm; m C 1g in the sense that

Tm;�

�
x0

x1

�
D

�
xm

xmC1

�
:

It is easy to verify (see Lemma 20 above) that

Tm;� D XmXm�1 : : : X1 (42)

where

Xr D
�

0 1

�Qcr �

�
(43)

has determinant Qcr 2 f˙1g for every r � 1.
The proof of Theorem 34 we will give below was motivated by numerical evidence

that
tr.T2r ;�/ D �2r � 2

holds for all r � 1 and all � 2 C; see Table 2. We prove this crucial identity in
Lemma 31.
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Table 2. Values of tr.Tn;�/ for 1 � n � 8.

n tr.Tn;�/ D unC1 C vn

1 �

2 �2 � 2

3 �3 � �

4 �4 � 2

5 �5 � �3 � 3�

6 �6 � �2

7 �7 � �5 � 2�3 � �

8 �8 � 2

Lemma 28. Let T be a 2 � 2 matrix with determinant ı and trace 
 . If 
2 6D 4ı

and � is the absolute value of the larger root of z2 � 
z C ı D 0 then there exists a
constant b such that

kT rk � b � r

for all r � 1. If 
2 D 4ı then for every " > 0 there exists a constant b" such that

kT rk � b".� C "/r (44)

for all r � 1.

Proof. The eigenvalues z˙ of T are the roots z of z2 � 
z C ı D 0. The condition

2 6D 4ı implies that the eigenvalues are distinct, so T is diagonalizable – there exists
an invertible matrix B such that

T D B

�
zC 0

0 z�

�
B�1:

Therefore

kT rk D kB

�
zrC 0

0 zr�

�
B�1k � kBk kB�1k� r :

The slightly worse bound (44) is obtained when 
2 D 4ı because one has to use the
Jordan canonical form for T .

Lemma 29. The identity det.T2n;�/ D 1 holds for all n � 1 and all � 2 C.

Proof. If m 2 N then (42) and (43) imply

det.T2m;�/ D
mY

rD1

det.X2r X2r�1/ D
mY

rD1

. Qc2r Qc2r�1/ D
mY

rD1

Qcr D det.Tm;�/:
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It follows by induction that

det.T2n;�/ D det.T1;�/ D Qc1 D 1:

The following lemma depends on Proposition 11 above, abstracted from [5],
which notes properties of the integer coefficients pi;j of the polynomials

ui D
iX

j D1

pi;j �j �1:

Lemma 30. The polynomial um is even for odd m and odd for even m. Its leading
term is �m�1. If m D 2n and n � 2 then

um D �m�1; (45)

umC1 D �1 C �m=2

m=4X
rD0

˛r�2r ; (46)

where ˛r 2 f0; 1; �1g for all r .

Proof. The statements in the first two sentences may be proved by induction, using
the definition of um. We prove (45) and (46) for m D 2n by induction in n, noting
that both hold for n � 3; see Table 1. As in Proposition 11, let Y denote the set of
.i; j / 2 N2 such that pi;j 6D 0.

To prove (45) suppose that .2nC1; j / 2 Y . Proposition 11 implies that j is even
and that .2n; j=2/ 2 Y . The inductive hypothesis now implies that j=2 D 2n, so
j D 2nC1.

To prove (46) suppose that .2nC1 C 1; j / 2 Y . Proposition 11 implies that j is
odd and either .2n; .j C 1/=2/ 2 Y or .2n C 1; .j C 1/=2/ 2 Y . In the first case
we have already proved that .j C 1/=2 D 2n, so j D 2nC1 � 1. In the second
case the inductive hypothesis implies that .j C 1/=2 � 2n�1 C 1, so j � 2n C 1 or
.j C 1/=2 D 1, so j D 1.

We finally have to evaluate the constant coefficient �m of um when m D 2n C 1.
This may be done by considering the defining recurrence relation in the case � D 0,
namely �rC1 D �Qcr�r�1 subject to �0 D 0 and �1 D 1. This implies that

�2mC1 D
mY

rD1

Qc2r

for all m 2 N. Therefore �5 D �3 D �1 and

�8mC1 D
mY

rD1

. Qc8r Qc8r�2 Qc8r�4 Qc8r�6/
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D
mY

rD1

. Qc4r Qc8r�1 Qc8r�2 Qc4r�2 Qc8r�5 Qc8r�6/

D
mY

rD1

. Qc4r Qc4r�2/

D �4mC1

for all m 2 N. A simple induction now implies that �m D �1 for m D 2n C 1 and
all n � 1.

Lemma 31. If m D 2n and n � 2 then


 D tr.Tm;�/ D vm C umC1 D �m � 2 (47)

for all � 2 C.

Proof. The proof uses the identity vmumC1 � umvmC1 D 1 of Lemma 29 together
with the two identities proved in Lemma 30. These are identities within the com-
mutative ring Z.�/ of all polynomials with integer coefficients in the indeterminate
quantity �, but they imply similar identities in the commutative ring Z. O�/ of all
polynomials with integer coefficients in an indeterminate quantity O� that satisfies the
identity O�m�1 D 0. (Equivalently one may start by disregarding all terms in the
identities that involve �r with r � m � 1.) The identities then simplify to

OumC1 D �1 C p;

Ovm OumC1 D 1;

where

p. O�/ D O�m=2

m=4X
rD0

˛r
O�2r

satisfies p2 D 0 in Z. O�/. The second equation can be solved for Ovm, yielding

Ovm D �1 � p

and hence O
 D �2. Returning to the original variable � one deduces that


 D �2 C
X

r�m�1

ˇr�r :

But (cf. Lemma 30) it is easily shown that vn is an even polynomial of degree n � 2

for odd n. Thus, and by Lemma 30, 
 D vm C umC1 is an even polynomial of degree
m with leading coefficient 1, so 
 D �m � 2.
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Lemma 32. Following the assumptions and notation of Lemma 28, suppose that
ı D 1 and that there exist m 2 ZC and � 2 C such that 
 D �m � 2. Then there
exists a constant b such that

kT rk � b 4r max.j�jrm; 1/

for all r � 1.

Proof. Case 1. If j�j � 1 it suffices to obtain bounds on the solutions z˙ of z2 �

z C 1 D 0 when j
 j � 3. The solutions satisfy

jz˙j D
ˇ̌̌
ˇ̌


2
˙

r

2

4
� 1

ˇ̌̌
ˇ̌ � 3

2
C

p
13

2
< 4:

Lemma 28 now implies that kT rk � b 4r for all r � 1.
Case 2. If j�j > 1 it suffices to obtain bounds on the solutions z˙ of z2�
zC1 D

0 when j
 j � 3j�jm. The solutions satisfy

jz˙j D
ˇ̌̌
ˇ̌


2
˙

r

2

4
� 1

ˇ̌̌
ˇ̌ < 4j�jm:

Lemma 28 now implies that kT rk � b 4r j�jrm for all r � 1.

Lemma 33. Let Xn, n 2 Z, be a periodic sequence of 2 � 2 matrices with period
m and let Tr D XrXr�1 : : : X1 for all r � 1. If there exist constants b0; � such
that k.Tm/sk � b0� s for all s � 0, then there exists a constant b2 such that kTrk �
b2� r=m for all r � 1.

Proof. Every r 2 ZC may be written in the form r D sm C v where s � 0 and
0 � v < m. Using the identity Tsm D .Tm/s , one obtains

kTrk D kXrXr�1 : : : XsmC1Tsmk
D kXvXv�1 : : : X1.Tm/sk
� kXvXv�1 : : : X1kb0� sm

� b0b1� s

� b2� r=m;

where b2 D b0b1 and

b1 D max
0�v�m�1

fkXvXv�1 : : : X1kg:
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Theorem 34. One has
f� W j�j � 1gnH� � S� (48)

for all � 2 .0; 1/.

Proof. Given � 2 .0; 1/ we put m D 2d where d 2 N is large enough to yield

�1=2 < h D 4�1=m: (49)

We use the identities
ı D det.Tm;�/ D 1

and

 D tr.Tm;�/ D �m � 2

proved in Lemmata 29 and 31 and valid for all � 2 C. Let c 2 �� be the periodic
sequence with period m such that cn D � Qcn for all 1 � n � m. The main task is to
prove that if j�j < h then all solutions  W Z ! C of

nC1 D �n � cnn�1 (50)

decay exponentially as n ! C1. This will imply, by Lemma 20, and using the
notations of that lemma, that

Ic � f� W j�j < hg:
Arguing as in the proof of Theorem 27, it will then follow from Lemma 25 and
Proposition 1 that

S� � f� W j�j � hg n H� ;

this holding for any h D 4�1=m such that (49) holds and m D 2d , so that

S� � f� W j�j < 1g n H� :

Since S� is closed, (48) will follow.
Thus it remains only to show that all solutions of (50) decay exponentially at C1.

To see that this holds, define xn D ��n=2n and � D ��1=2� so that (50) may be
rewritten in the form

xnC1 D �xn � Qcnxn�1

for 1 � n � m. Where � D max.1; j�j/, Lemma 32 now yields

k.Tm;�/rk � b 4r� rm

for all r 2 N. Lemma 33 with � D 4�m implies

kTr;�k � b 4r=m� r ;

and hence
jxr j � b3 4r=m� r ;

again for all r 2 N. Hence, where ' D max.�1=2; j�j/,
jr j � b3 4r=m� r� r=2 D b3.'h�1/r

for all r 2 N. Since 0 < ' < h, it follows that  decays exponentially.
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9. Semi-infinite and finite matrices

All our results so far have focused on calculations of the spectrum of the bi-infinite
matrix Ac. In this final section we say something about the spectrum of the semi-
infinite matrix

AC
c D

0
BBBB@

0 1

c1 0 1

c2 0
: : :

: : :
: : :

1
CCCCA

in the case that c D .c1; c2; : : :/ 2 f˙�gN is pseudo-ergodic (contains every finite
sequence of ˙� ’s as a consecutive sequence). We also say something (though have
mainly unanswered questions) about the finite N � N matrices

A.N /
c D

0
BBBBBB@

0 1

c1 0 1

c2 0
: : :

: : :
: : : 1

cN �1 0

1
CCCCCCA

and

A.N;per/
c;˛ D

0
BBBBBB@

0 1 ˛cN

c1 0 1

c2 0
: : :

: : :
: : : 1

˛�1 cN �1 0

1
CCCCCCA

: (51)

Here A
.N /
c is tridiagonal, A

.N;per/
c is tridiagonal except for “periodising” entries in

row 1 column N and row N column 1 (in these entries we assume that j˛j D 1),
and each cj D ˙� : we have in mind particularly the random case where the cj ’s are
independent and identically distributed random variables taking the values ˙� .

Our main result on the spectrum of Ac , proved in the previous sections, is that
it contains the set f� W j�j � 1g n H� . We suspect that H� is a genuine hole in the
spectrum for 0 < � < 1, i.e. that H� \ S� D ;. We have not shown this result
but have shown in Lemma 26 the weaker result that f� W j�j < 1 � �g \ S� D ;.
Our first result in this section is that this hole is not present in the spectrum of the
semi-infinite matrix. The proof depends on recent results on semi-infinite pseudo-
ergodic operators due to Lindner and Roch [19], derived using characterisations of
the indices of those Fredholm operators whose matrix representations are banded
semi-infinite matrices in terms of so-called “plus indices” of limit operators, these
characterisations derived using K-theory results for C �-algebras in [20].
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Theorem 35. Suppose c 2 f˙�gN is pseudo-ergodic. If � D 1 then Spec.AC
c / D S .

For all � 2 .0; 1�, f� W j�j � 1g � Spec.AC
c /.

Proof. In the case that � D 1 it is shown in [6] that Spec.AC
c / D S . Thus, for � D 1,

f� W j�j � 1g � S D Spec.AC
c /

follows from Theorem 7 (or [5], Theorem 2.3). For all � 2 .0; 1� it follows from [19],
Theorem 2.1, that the essential spectrum of AC

c , i.e. the set of � 2 C for which
AC

c � �I C is not Fredholm (here I C is the identity operator on `2.N/), is the set S� .
Thus and by Theorem 27,

.f� W j�j � 1g n H�/ � S� � Spec.AC
c /:

It remains to show that H� � Spec.AC
c /. But, applying Theorem 2.4 in [19] (note

that the set E�.U; W / in the notation of Theorem 2.4 in [19] is precisely the set H�

for this operator), it follows that, for � 2 H� , either AC
c � �I C is not Fredholm or

AC
c � �I C is Fredholm with index 1: in either of these cases � 2 Spec.AC

c /.

Our other result in this section is to say something about the spectra (sets of
eigenvalues) of the finite matrices A

.N /
c and A

.N;per/
c;˛ . The notations �N;� and �1;�

are as defined in and above equation (1) (and �N and �1 are our abbreviations for
� D 1).

Theorem 36. If 0 < � � 1, j˛j D 1 and c 2 f˙�gN , then

Spec.A.N;per/
c;˛ / � �N;� � �1;� � S�

while
Spec.A.N /

c / � p
��2N C2 � p

��1 � p
�S:

If � D x C iy is an eigenvalue of A
.N;per/
c;˛ then 1 � � � j�j � 1 C � and jxj C jyj �p

2.1 C �2/ , while if � is an eigenvalue of A
.N /
c then jxj C jyj � 2

p
� .

Proof. The first of these statements is clear from the definition of �N;� , eq. (40),
and Proposition 1 which gives that �1;� � S� . The second of these statements
is shown for � D 1 in [6], Theorem 4.1. The second statement follows for 0 <

� < 1 by the observation that, where d 2 f˙1gN , c D �d 2 f˙�gN , and DN

is the diagonal matrix with leading diagonal .1; �1=2; �; : : : ; � .N �1/=2/, it holds that
D�1

N A
.N /
c DN D p

� A
.N /

d
: The last sentence then follows from Lemma 26.

Note that in the last sentence of the above theorem the condition jxj C jyj � 2
p

�

implies both that j�j � 1 C � and that jxj C jyj � p
2.1 C �2/ .

In Figure 3 we plot the spectra of A
.N /
c and A

.N;per/
c;˛ for N D 2000 and ˛ D 1

for a typical realisation with the entries c 2 f˙�gN randomly chosen with the cj
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independently and identically distributed with Pr.cj D �/ D 0:5 and � D 0:9025 so
that

p
� D 0:95 (the several other realisations we have computed are very close in

appearance to these plots). Theorem 36 tells us that Spec.A
.N /
c / � 0:95�1 � 0:95S

and that Spec.A
.N;per/
c;˛ / � S0:9025, and that if � D x C iy is an eigenvalue of A

.N /
c

then jxjCjyj � 1:9, while if � is an eigenvalue of A
.N;per/
c;˛ then 0:075 � j�j � 1:9025

and jxj C jyj � p
2.1 C �2/ � 1:905.

Figure 3. Plots of Spec.A
.N /
c / (left) and Spec.A

.N;per/
c;˛ / (right) for a case when N D 2000,

� D 0:9025, ˛ D 1, and the entries of the vector c D .c1; : : : ; cN / are independent and
identically distributed with Pr.cj D ˙�/ D 0:5 for each j (the same vector c is used in the
two plots).

It is clear from Figure 3 that Theorem 36 is only the beginning of the story. We
observe in the figure a hole in the spectrum of A

.N;per/
c;˛ , but it is a hole of radius

approximately 0.6, not 0.075, with a large proportion of the eigenvalues positioned
on the boundary of this hole, while outside the hole the spectra of A

.N;per/
c;˛ and A

.N /
c

appear near identical. The same qualitative behaviour is visible in Figure 4, which is a
similar plot except that � is reduced to 0.5 and we change the probability distribution,
making it twice as likely that the entries of the vector c are �� rather than � . This
change of probability distribution introduces an asymmetry, in particular an asym-
metry in the hole in the spectrum (if we instead compute with Pr.cj D �/ D 1=2

then typical realisations have spectra which are approximately invariant under the
dihedral symmetry group D2 of the square). Of course our methods, which are not
probabilistic, have nothing to say about such asymmetries, indeed nothing, beyond
Theorem 36, to say about the almost sure spectra of A

.N /
c or A

.N;per/
c;˛ as N ! 1.
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Figure 4. Plots of Spec.A
.N /
c / (left) and Spec.A

.N;per/
c;˛ / (right) for a case when N D 2000,

� D 0:5 and the entries of the vector c D .c1; : : : ; cN / are independent and identically
distributed with Pr.cj D �/ D 1=3.
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