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Abstract. We prove Lieb–Thirring inequalities with improved constants on the two-dimen-
sional sphere S2 and the two-dimensional torus T 2. In the one-dimensional periodic case we
obtain a simultaneous bound for the negative trace and the number of negative eigenvalues.
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1. Introduction

The Schrödinger operator in L2.Rn/

��C V

with a real-valued potential V that sufficiently fast decays at infinity has a discrete
negative spectrum satisfying the Lieb–Thirring spectral inequalities [20]

X
�i �0

j�i j� � L�;n

Z
V�.x/�Cn=2dx; (1.1)

where V˙.x/ D .jV.x/j ˙ V.x//=2. The Lieb–Thirring constant L�;n is finite for
� � 1=2, n D 1 (for � D 1=2 see [24]); � > 0, n D 2; and � � 0, n � 3 (where
� D 0 is the Lieb–Cwikel–Rozenblum inequality).

The Lieb–Thirring constants satisfy the lower bound

L�;n � Lcl
�;n D 1

.2�/n

Z
Rn

.1� j�j/�Cd� D �.� C 1/

.4�/n=2�.n=2C � C 1/
: (1.2)

Sharp results valid for all dimensions n, L�;n D Lcl
�;n, � � 3=2 were obtained in [18]

(see also [5]). The best known estimate of L�;n for 1 � � < 3=2 from [8] is as
follows

L�;n � R � Lcl
�;n; R D �p

3
D 1:8138 : : : (1.3)
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and improves the previous result [11]: R D 2.
The spectral inequality (1.1) for the negative trace (that is, for � D 1) is equivalent

to the following integral inequality for orthonormal families. Let f'j gN
j D1 2 H 1.Rn/

be an orthonormal family in L2.Rn/. Then �.x/ WD PN
j D1 'j .x/

2 satisfies the
inequality Z

�.x/1C2=ndx � kn

NX
j D1

kr'j k2; (1.4)

where the best constants kn and L1;n satisfy [20], [19]

kn D .2=n/.1C n=2/1C2=nL2=n
1;n : (1.5)

In addition to the initial quantum mechanical applications inequality (1.4) is very
important in the theory of infinite dimensional dynamical systems, especially, for the
attractors of the Navier–Stokes equations (see, for instance, [19], [3], [6], [7], [23]
and the references therein). Accordingly, for satisfying these needs Lieb–Thirring
inequalities (1.4) were generalized to higher-order elliptic operators on domains with
various boundary conditions and Riemannian manifolds [10], [23]. However, no
information was available on the values of the corresponding constants. A differ-
ent approach to the Lieb–Thirring inequalities for periodic functions, based on the
methods of trigonometric series, was proposed in [16].

In this article we shall be dealing with Lieb–Thirring inequalities on manifolds.
We consider the two-dimensional torus T2 D Œ0; 2�	2 (with flat metric) and the
two-dimensional sphere S2. Below we denote by M either T2 or S2. Both the
scalar and vector-functions are considered. We first observe that for scalar functions
inequality (1.4) cannot hold unless we somehow get rid of the constants, and we
assume that the 'j ’s satisfy Z

M

'dM D 0: (1.6)

Accordingly, the Schrödinger operator is of the form

��' C….V'/; where …f D f � 1

jM j
Z

M

fdM; (1.7)

and jM j denotes the measure of M . In Section 2 we obtain a bound for the negative
trace of the operator (1.7) on M

X
�j �0

j�j j � L1.M/

Z
M

V�.x/2dM with L1.M/ � 3

8
:

It is worth pointing out that we obtain the same bound as in the original paper [20]
for the constant L1;2.R2/ improving the previous results in [12], [15]: L1.S2/ � 1=2

and L1.T 2/ � 3=.2�/.
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As in [20] we use the Birman–Schwinger kernel (see also [23]). The current best
known results (1.3) for Rn are, of course, much sharper. However, the argument in [2]
and induction in the dimension [8], [18], [11] are not directly applicable to the case
of the torus and the sphere because of the global condition(1.6) (especially since on
the sphere there is no global coordinate system without singular points).

Next, we consider the case of vector-functions and show that

Lvec
1 .M/ � 3

4
: (1.8)

This is, of course, obvious for the torus since the vector Laplacian acts independently
on the two components of vector-functions. This is not the case for the sphere,
but (1.8) still holds. We also observe that for the sphere (as for any simply connected
manifold) we do not need any orthogonality conditions and the (negative) vector
Laplacian is strictly positive on S2. Using the one-to-one correspondence between
divergence-free and potential vector fields inherent in two dimensions we show that
in the divergence-free case the bound for the corresponding Lieb–Thirring constant
is the same as in the scalar case. Finally, in the three-dimensional case we prove
the inequality for the negative trace for T 3 with the original Lieb–Thirring constant

4
15�

[20] and some 1:039% larger constant for S3.
In Section 3 we consider the one-dimensional case. Using the idea of C. Foias

[23], p. 440, (see also [9]) and a recent refinement [4] of the multiplicative inequality
characterizing the imbedding PH 1.S1/ ,! L1.S1/ we obtain for the operator

�d
2'

dx2
C….V'/;

acting on 2�-periodic functions with mean value zero the following simultaneous
bound for the negative trace and the number N of negative eigenvalues:

NX
j D1

j�j j C N
1

�2
� 2

3
p
3

Z 2�

0

V.x/3=2� dx:

In Section 4 we prove two main technical results concerning sharp estimates for a
series and a 2D lattice sum depending on a parameter. Corresponding to these sums in
Rn are the integrals depending on a parameter which are easily calculated by scaling.

In conclusion we recall the basic facts concerning the Laplace operator on the
sphere [21]. Let Sm�1 be the .m � 1/-dimensional sphere. We have for the (scalar)
Laplace–Beltrami operator � D div grad:

��Y k
n D ƒnY

k
n ; k D 1; : : : ; km.n/; n D 1; 2; : : : :

Here the Y k
n are the orthonormal spherical harmonics. Each eigenvalue

ƒn D n.nCm � 2/
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has multiplicity

km.n/ D 2nCm � 2

n

 
nCm � 3
n � 1

!
:

For example, for m D 2; 3; 4 we have

S1 W ƒn D n2; k2.n/ D 2;

S2 W ƒn D n.nC 1/; k3.n/ D 2nC 1;

S3 W ƒn D n.nC 2/; k4.n/ D .nC 1/2:

(1.9)

The following identity is essential [21]: for any s 2 Sm�1

km.n/X
lD1

Y l
n .s/

2 D km.n/


.m/
; (1.10)

where 
.m/ D 2�m=2=�.m=2/ is the surface area of Sm�1. In the vector case
we have the similar identity for the gradients of spherical harmonics [13]: for any
s 2 Sm�1

km.n/X
lD1

jrY l
n .s/j2 D ƒn

km.n/


.m/
; (1.11)

We also use the following notation labelling the eigenfunctions and the corre-
sponding eigenvalues with a single subscript

��'i D �i'i ; (1.12)

where

f'ig1
iD1 D fY 1

n ; : : : ; Y
km.n/
n g1

nD1; f�ig1
iD1 D fƒn; : : : ; ƒng1

nD1
km.n/ times

:

2. Lieb–Thirring inequalities on the sphere and on the torus

In this section we obtain estimates for the negative trace of the Schrödinger operators
on the 2D sphere S2 and the 2D torus T 2 D Œ0; 2�	2. Both cases are treated
simultaneously and we denote below by M one of these manifolds. With a slight
abuse of notation a generic point x 2 T 2 and s 2 S2 is denoted by x.

For V 2 L2.M/ we consider the quadratic form on PH 1.M/

QV .h/ D krhk2 C
Z

M

V.x/h.x/2dM; h 2 PH 1.M/: (2.1)
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Here and in what follows PH 1.M/ denotes the subspace of the Sobolev spaceH 1.M/

of functions orthogonal to constants. The form (2.1) is bounded from below and
defines the self-adjoint Schrödinger-type operator

��hC….V h/; h 2 PH 1.M/ (2.2)

with discrete spectrum �1 � �2 � � � � ! 1 accumulating at infinity.
We estimate the negative trace of (2.2) for M D S2 and M D T 2

X
�j �0

j�j j � L1.M/

Z
M

V�.x/2dM: (2.3)

Theorem 2.1. ForM D S2 and M D T 2

L1.T
2/ <

3

8
; L1.S

2/ <
3

8
: (2.4)

Proof. As usual we first assume that the potential V is smooth. Having proved (2.3)
for smooth V we prove the general case by approximating V with smooth poten-
tials Vn. We denote by Nr .V / the number of eigenvalues �j such that �j � r .
Then X

�j �0

j�j j� D �

Z 1

0

r��1N�r .V /dr: (2.5)

We use the Birman–Schwinger inequality (see [23],Appendix, Proposition 2.1, where
this inequality is adapted to the Schrödinger-type operators defined on subspaces).
Setting g.x/ D .V .x/C .1 � t /r/�, we have

N�r .V / � TrŒg1=2.….��C t r/…/�1g1=2	k; r > 0; k � 1; t 2 Œ0; 1	;

where the trace is calculated in L2.M/. Next we use the convexity inequality of
Lieb and Thirring [1], [20]: for positive operators A and C , Tr.A1=2CA1=2/k �
TrAk=2C kAk=2. We obtain

N�r .V / � TrŒgk=2.….��C t r/…/�kgk=2	 D TrŒgk.….��C t r/…/�k	;

where the last equality holds for k > 1, since in this case the operator .….�� C
t r/…/�k is of trace class (and multiplication by gk=2 is bounded in L2.M/).

Now we show that for k > 1 (k D 3=2),

N�r .V / � 1

4�

1

k � 1.t r/
1�k

Z
M

.V .x/C .1 � t /r/k�dM: (2.6)
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We first consider the case M D S2. Using the basis (1.12) and identity (1.10), we
have

TrŒgk.….��C t r/…/�k	 D
1X

j D1

.gk.��C t r/�k'j ; 'j /

D
1X

j D1

.�j C t r/�k

Z
S2

g.s/k'j .s/
2dS

D
1X

nD1

.ƒn C t r/�k

Z
S2

g.s/k
2nC1X
lD1

.Y l
n .s//

2dS

D 1

4�

1X
nD1

2nC 1

.n.nC 1/C t r/k

Z
S2

g.s/kdS;

which proves (2.6) for M D S2 in view of Proposition 4.1.
For the torus T2 we use the orthonormal basis .2�/�1eimx , m 2 Z2

0 D Z2 n 0
and obtain

N�r .V / � 1

4�2

X
m2Z2

0

1

.jmj2 C t r/k

Z
T 2

g.x/kdx;

which proves (2.6) for M D T 2 in view of Proposition 4.2.
Next, restricting k to k 2 .1; 2/ and using (2.5) with � D 1 we haveX

�j �0

j�j j � 1

4�

1

k � 1
Z

M

Z 1

0

.t r/1�k.V .x/C .1� t /r/k�drdx:

We evaluate the inner integral setting r D 1
1�t
V�.x/ �: If V � 0 and V� D �V , then

.V .x/C .1� t /r/� D V�.x/.� � 1/� andZ 1

0

.t r/1�k.V .x/C .1 � t /r/k�dr D t1�k.1 � t /k�2B.2� k; 1C k/V�.x/2:

For the optimal t D k � 1 2 .0; 1/ we obtainX
�j �0

j�j j � 1

4�

1

k � 1

B.2� k; 1C k/

.k � 1/k�1.2� k/2�k

Z
M

V�.x/2dM; k 2 .1; 2/; (2.7)

which proves (2.3) with

L1.M/ � 1

4�

B.2� k; 1C k/

.k � 1/k.2� k/2�k

ˇ̌̌
ˇ
kD3=2

D 3

8
:

Remark 2.1. The minimum, in fact, is attained at k D k� D 1:38 : : : , giving
L1.M/ � 0:3605. However, one has to make sure that inequalities (4.1), (4.7) still
hold for k D k�. This can be verified similarly to the case k D 3=2.



Lieb–Thirring inequalities on some manifolds 63

We now consider the vector case important for applications. The case M D T 2

involves no difficulties since the Laplacian acts independently on the components of
a vector field, so we consider M D S2. The Laplace operator acting on (tangent)
vector fields on S2 we define as the Laplace–de Rham operator �dı�ıd identifying
1-forms and vectors. Then for a two-dimensional manifold we have [13]

�u D r div u � rot rot u;

where the operators r D grad and div have the conventional meaning. The operator
rot of a vector u is a scalar and for a scalar  , rot is a vector:

rot u WD � div.n � u/; rot WD �n � r ;
where n is the unit outward normal vector. We note that for the operators rot so
defined, for a scalar  it holds

rot rot D �� .D � div grad /: (2.8)

Integrating by parts, that is, using

.r ; u/L2.T S2/ D �. ; divu/L2.S2/; .rot ; u/L2.T S2/ D . ; rot u/L2.S2/;

we obtain
.��u; u/L2.T S2/ D k rot uk2 C k divuk2:

Next, we have the orthogonal sum L2.T S2/ D H ˚H?:

H D fu 2 L2.TS2/; div u D 0g; H? D fu 2 L2.T S2/; rot u D 0g:
BothH andH? are invariant with respect to � (in then sense that if u 2 H and �u 2
L2.T S2/, then �u 2 H , and similarly for H?) and there exist two orthonormal
systems of eigenvectors: fwj g1

j D1 2 H and fvj g1
j D1 2 H? with the same eigenvalues

� �wj D �jwj ; ��vj D �j vj ; (2.9)

where
wj D �

�1=2
j n � r'j ; vj D �

�1=2
j r'j :

Here the �j ’s and the 'j ’s are the eigenvalues and eigenfunctions of the scalar Lapla-
cian on S2, see (1.12). Both (2.9), and the orthonormality of thewj ’s and vj ’s follow
from (2.8). Hence, corresponding to the eigenvalue ƒn D n.n C 1/ there are two
families of 2n C 1 orthonormal eigenvectors wl

n.s/ and vl
n.s/, l D 1; : : : ; 2n C 1

and (1.11) gives the following important identities: for any s 2 S2

2nC1X
lD1

jwl
n.s/j2 D 2nC 1

4�
;

2nC1X
lD1

jvl
n.s/j2 D 2nC 1

4�
: (2.10)
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We finally observe that �� is strictly positive

� � � ƒ1I D 2I: (2.11)

Having done these preliminaries we consider the quadratic form

Qvec
V .u/ D k rot uk2 C k divuk2 C

Z
S2

V.s/ju.s/j2dS; u 2 H 1.T S2/; (2.12)

which is bounded from below, and defines the self-adjoint Schrödinger operator

��uC V u

with discrete spectrum. We estimate its negative trace

X
�j �0

j�j j � Lvec
1 .S2/

Z
S2

V�.s/2dS: (2.13)

Theorem 2.2.

Lvec
1 .S2/ � 3

4
: (2.14)

Proof. Using the basis (2.9), identity (2.10), similarly to Theorem 2.1

N�r .V / � TrŒgk.�� C t r/�k	

D
1X

j D1

.gk.�� C t r/�kwj ; wj /C
1X

j D1

.gk.�� C t r/�kvj ; vj /

D 2
1

4�

1X
nD1

2nC 1

.n.nC 1/C t r/k

Z
S2

g.s/kdS

� 1

2�

1

k � 1.t r/
1�k

Z
S2

g.s/kdS;

and we complete the proof as in Theorem 2.1.

Remark 2.2. We point out that in view of (2.11) no orthogonality condition is required
in Theorem 2.2 for the vector Laplacian on S2.

The same estimate also holds for T 2

Lvec
1 .T 2/ � 3

4
: (2.15)

However, in this case we have to assume that u has zero average.

Spectral inequalities (2.3) and (2.13) are equivalent to the integral inequalities for
orthonormal families. As before, M stands for S2 or T 2.
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Theorem 2.3. Let f'j gN
j D1 2 PH 1.M/ be an orthonormal scalar family. Then for

�.x/ WD PN
j D1 'j .x/

2 the following inequality holds:

Z
M

�.x/2dM � k2

NX
j D1

kr'j k2; k2 � 3

2
: (2.16)

If a family of vector fields fuj gN
j D1 2 H 1.TM/ is orthonormal in L2.TM/, then

Z
M

�.x/2dM � kvec
2

NX
j D1

.k rot uj k2 C k divuj k2/; kvec
2 � 3; (2.17)

where �.x/ D PN
j D1 juj .x/j2. If, in addition, div uj D 0 .or rot uj D 0/ for

j D 1; : : : ; N , then

Z
M

�.x/2dM �

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

ksol
2

NX
j D1

k rot uj k2; divuj D 0;

kpot
2

NX
j D1

k divuj k2; rot uj D 0;

(2.18)

where

ksol
2 D kpot

2 � kvec
2

2
� 3

2
: (2.19)

Proof. In two dimensions the relation (1.5) between the constants k2 and L1 is as
follows (the fact that we are dealing with manifolds does not play a role)

k2 D 4L1: (2.20)

This proves (2.16) and (2.17). For the sake of completeness we recall the proof
of (2.18), (2.19) from [15]. By symmetry inherent in the two-dimensional case

divu D 0 , rot Ou D 0; where Ou D n � u:

Furthermore, u1; : : : ; uN are orthonormal if and only if Ou1; : : : ; OuN are orthonormal.

This shows that ksol
2 D kpot

2 . Let us prove the inequality ksol
2 � kvec

2

2
. Letu1; : : : ; uN be

orthonormal and let div uj D 0, j D 1; : : : ; N . We set �.x/ D PN
j D1 juj .x/j2 and

consider the family of2N vector functionsu1 ; : : : ; uN ; Ou1; : : : ; OuN . Since div uj D 0

and rot Ouj D 0, j D 1; : : :N , we have .ui ; Ouj / D 0 for 1 � i; j � N , and the whole
family is orthonormal. Applying (2.17) to this family of 2N functions and taking
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into account that juj .x/j D j Ouj .x/j and div Ouj .x/ D � rot uj .x/ we obtain

4

Z
M

�.x/2 dx D
Z

M

� NX
j D1

.juj .x/j2 C j Ouj .x/j2/
�2

dx

� kvec
2

NX
j D1

�krot uj k2 C kdiv Ouj k2
� D 2kvec

2

NX
j D1

krot uj k2:

Therefore ksol
2 � kvec

2 =2 � 3=2.

Remark 2.3. The lower bound for k2.M/ is the same as in R2

k2.M/ � 1

2�
: (2.21)

For instance, for the sphere we take the firstN eigenfunctions (1.12) and use the fact
that �j D Œj 1=2	.Œj 1=2	C 1/ � j . Then

N 2 D
�Z

S2

�.s/dS

�2

� 4�k�k2 � 4�k2

NX
j D1

�j � 2�k2N
2:

Accordingly, in view of (2.20),

L1.M/ � 1

8�
:

The same lower bound holds for T 2 since in this case �j � j=� .

Concluding this section we briefly consider the three-dimensional case. For S3

we see from (1.9) that the eigenvalue ƒn D n.nC 2/ has multiplicity .nC 1/2 and
arguing as in Theorem 2.1 and setting k D 2 we obtain using Proposition 4.3

N�r .V / � 1

2�2

1X
nD1

.nC 1/2

.n.nC 2/C t r/2

Z
S3

g.s/2dS

� ıS3

8�
.t r/�1=2

Z
S3

g.s/2dS:

For the torus T3 using the basis of exponentials .2�/�3=2eimx , m 2 Z3
0 we have

N�r.V / � 1

8�3

X
m2Z3

0

1

.jmj2 C t r/2

Z
T 2

g.x/2dx

<
ıT 3

8�
.t r/�1=2

Z
T 3

g.x/2dx:
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We set t D 1=2 and for a fixed x 2 M calculate the integralZ 1

0

.t r/�1=2.V .x/C .1� t /r/2�dr D 32

15
V�.x/5=2

and obtain using (2.5) the following result.

Theorem 2.4. The negative spectrum of the operator ��C….V �/ on M D S3 or
T 3 satisfies X

�j �0

j�j j � L1.M/

Z
M

V�.x/5=2dM;

where

L1.M/ � ıM
4

15�
:

Here ıS3 D 1:0139 : : : and ıT 3 D 1.

3. One-dimensional two-term Lieb–Thirring inequalities

The imbedding of the Sobolev space H l .R/, l > 1=2, into the space of bounded
continuous functions can be written in the form of a multiplicative inequality

kf k21 � c.l/kf k2�1=lkf .l/k1=l ; (3.1)

where the sharp constant c.l/ was found in [22]:

c.l/ D .2l˛˛.1 � ˛/1�˛ sin �˛/�1; ˛ D 1=.2l/: (3.2)

It was also shown there that there exists a unique (up to dilations and translations)
extremal function. For periodic functions with zero average f 2 PH l .S1/ inequal-
ity (3.1) holds with the same sharp constant (3.2), however, there are no extremal
functions [14]. An important improvement of (3.1) for 2�-periodic functions has
been recently obtained in [4], where it was shown that

kf k21 � c.l/kf k2�1=lkf .l/k1=l �K.l/kf k2: (3.3)

For all l the constant K.l/ > 0 and, in particular, K.1/ D 1=� and K.2/ D 2=.3�/,
so that

kf k21 � 1 � kf kkf 0k � 1

�
kf k2; kf k21

� .4=27/1=4kf k3=2kf 00k1=2 � 2

3�
kf k2;

(3.4)

where all four constants are sharp and no extremal functions exist.
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Theorem 3.1. Suppose that f'j gN
j D1 � PH l .S1/ is an orthonormal family inL2.S1/.

Then for �.x/ WD PN
j D1 'j .x/

2 the following inequality holds:

Z 2�

0

�.x/2lC1dx CN �K.l/2l � c.l/2l

NX
j D1

k'.l/
j k2: (3.5)

Proof. For any � 2 RN using (3.3) with f .x/ D PN
j D1 �j'j .x/ we have

ˇ̌̌ NX
j D1

�j'j .x/
ˇ̌̌2 � c.l/

� NX
j D1

�2
j

� 2l�1
2l
� NX

i;j D1

�i�j .'
.l/
i ; '

.l/
j /

� 1
2l �K.l/

� NX
j D1

�2
j

�
;

by orthonormality. Setting �j D 'j .x/ we obtain

�.x/2 � c.l/�.x/
2l�1

2l

� NX
i;j D1

'i .x/'j .x/.'
.l/
i ; '

.l/
j /

� 1
2l �K.l/�.x/;

or

�.x/2lC1 CK.l/2l�.x/ � �.x/
�
�.x/CK.l/

�2l

� c.l/2l

NX
i;j D1

'i .x/'j .x/.'
.l/
i ; '

.l/
j /:

Integrating and again using orthonormality we finally obtain (3.5).

For V.x/ � 0 we consider the following quadratic form on PH l .S1/Z 2�

0

'.l/.x/2dx �
Z 2�

0

V.x/'.x/2dx; (3.6)

which is bounded from below and defines a Schrödinger-type operator

� d2l'

dx2l
�….V'/: (3.7)

In view of compactness of S1 the spectrum of this operator is discrete.

Theorem 3.2. Suppose that there exist N negative eigenvalues ��j � 0, j D
1; : : : ; N of the operator (3.7). Then both the negative trace and the number N of
negative eigenvalues satisfy the following inequality

NX
j D1

�j CN �
�K.l/
c.l/

�2l � 2l

.2l C 1/
2lC1

2l

� c.l/
Z 2�

0

V.x/
2lC1

2l dx: (3.8)



Lieb–Thirring inequalities on some manifolds 69

Proof. Let the orthonormal eigenfunctions 'j .x/ correspond to the eigenvalues ��j .
Then Z 2�

0

'
.l/
j .x/2dx �

Z 2�

0

V.x/'j .x/
2dx D ��j :

Setting as before �.x/ WD PN
j D1 'j .x/

2 and using (3.5) we obtain

NX
j D1

�j D
Z 2�

0

V.x/�.x/dx �
NX

j D1

k'.l/
j k2

� kV kL 2lC1
2l

k�kL2lC1
� 1

c.l/2l
k�k2lC1

L2lC1
�N �

�K.l/
c.l/

�2l

� max
y

�
kV kL 2lC1

2l

y � 1

c.l/2l
y2lC1

�
� N �

�K.l/
c.l/

�2l

:

Calculating the maximum we obtain (3.8).

Remark 3.1. It is worth pointing out that unlike c.l/, the constants K.l/ are not
dimensionless and forL-periodic functions (with mean value zero) we haveKL.l/ D
K2�.l/.2�=L/. For example, for l D 1,

Z L

0

�.x/3dxCN 4

L2
�

NX
j D1

k'0
j k2;

NX
j D1

�j CN
4

L2
� 2

3
p
3

Z L

0

V.x/3=2dx:

(3.9)

Remark 3.2. If the potential V is even (and periodic), then the subspace of odd
periodic functions is invariant for the operator

� d2l

dx2l
' � V';

and the orthogonal projection … (1.7) can be omitted.

4. Auxiliary inequalities

Proposition 4.1. For � � 0 and k D 3=2

H.�/ WD �2k�2

1X
nD1

2nC 1

..n.nC 1/C �2/k
<

1

k � 1: (4.1)
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Proof. Since

H.�/ D ��2

1X
nD1

.2nC 1/f .n.nC 1/=�2/; (4.2)

where

f .x/ D 1

.x C 1/k
and

Z 1

0

f .x/dx D 1

k � 1;
the fact that inequality (4.1) holds for all � � �0, where �0 is sufficiently large,
follows from Lemma 4.1 below, which gives the asymptotic expansion of H.�/ for
large �:

H.�/ D 1

k � 1 � 2

3

1

�2
C o.1=�2/:

The point �0 D 5:0833 is specified in the Appendix (see Section 5). On the finite
interval Œ0; �0	 we make sure that (4.1) holds by numerical calculations. The graph
of H.�/ on Œ0; �0	 is shown in Fig. 1.

Lemma 4.1. Suppose that f is sufficiently smooth and sufficiently fast decays at
infinity. Then the following asymptotic expansion as � ! 1 holds forH.�/ defined
in (4.2):

H.�/ D
Z 1

0

f .x/dx � 1

�2

2

3
f .0/C o.1=�2/: (4.3)

Proof. We consider the following partitioning of the half-line x � 0 by the points

an D an.�/ D .n � 1/n
�2

; n D 1; : : : :

Then a direct inspection shows that

��2

1X
nD1

nf .n.nC 1/=�2/ D 1

2

1X
nD1

f .anC1/.anC1 � an/;

��2

1X
nD1

.nC 1/f .n.nC 1/=�2/ D 1

2

1X
nD1

f .anC1/.anC2 � anC1/:

Therefore

H.�/ D 1

2
f .a2/.a2 � a1/ C

1X
nD2

f .an/C f .anC1/

2
.anC1 � an/ :

Next, we recall the trapezoidal formula for the approximate calculation of the integrals
(see, for instance, [17]):

bZ
a

f .x/dx D f .a/C f .b/

2
.b � a/CRa;b.f /; (4.4)
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where

Ra;b.f / D � .b � a/3
12

f
00
.�/; a < � < b:

This gives

Z 1

0

f .x/dx D
1X

nD1

Z anC1

an

f .x/dx

D
Z a2

a1

f .x/dx C
1X

nD2

f .an/C f .anC1/

2
.anC1 � an/C

1X
nD2

Ran;anC1
.f /

D H.�/C
Z a2

a1

.f .x/ � f .a2/=2/dx C
1X

nD2

Ran;anC1
.f /:

(4.5)

Since a1 D 0 and a2 D 2=�2 we clearly have

lim
�!1�2

Z a2

a1

.f .x/ � f .a2/=2/dx D f .0/:

For the third term, using (4.4) with

�n 2 .an; anC1/; �n D n2

�2
C 
nn

�2
; j
nj < 1 (4.6)

we obtain

lim
�!1�2

1X
nD2

Ran;anC1
.f / D �2

3
lim

�!1
1

�

1X
nD1

.n=�/3f 00.�n/

D �2
3

lim
�!1

1

�

1X
nD1

.n=�/3f 00.n2=�2/

D �2
3

Z 1

0

x3f 00.x2/dx

D �1
3
f .0/;

as the following integration by parts shows:Z 1

0

x3f 00.x2/dx D 1

2

Z 1

0

x2Œf 0.x2/	0xdx D �
Z 1

0

xf 0.x2/dx D 1

2
f .0/:

Thus, the last two terms in (4.5) are both of order 1=�2 and add up to 2
3�2f .0/. The

proof is complete.
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Proposition 4.2. For � � 0 and k D 3=2

F.�/ WD �2k�2
X

m2Z2
0

1

.jmj2 C �2/k
<

�

k � 1
: (4.7)

Proof. The function F.�/ for k > 1 has the following asymptotic expansion as
� ! 1:

F.�/ D �

k � 1
� 1

�2
CO.e�C�/: (4.8)

This follows from the Poisson summation formula (see, e. g., [21])X
m2Zn

f .m=�/ D .2�/n=2�n
X

m2Zn

Of .2�m�/; (4.9)

where F .f /.�/ D Of .�/ D .2�/�n=2
R

Rn f .x/e
�i�xdx. For the function f .x/ D

1=.1C x2/�k , x 2 R2, this gives

F.�/ D 1

�2

X
m2Z2

f .m=�/ � 1

�2
f .0/ D �

k � 1 � 1

�2
C 2�

X
m2Z2

0

Of .2��m/:

The third term is exponentially small as � ! 1 since f is analytic in the strip
Re z1 < a, Re z2 < a, a <

p
2=2, and therefore j Of .�/j � C.a; k/e�aj�j, see

Remark 4.1. This proves (4.8). Hence (4.7) holds for all � 2 Œ�0;1/.
To specify �0 for k D 3=2 we take advantage of the formula [21]:

F .1=.1C x2/.nC1/=2/.�/ D 1

cn.2�/n=2
e�j�j; x 2 Rn; (4.10)

where
1

cn

D �.nC1/=2

�..nC 1/=2/
D
Z

Rn

dx

.1C x2/.nC1/=2
:

In the two-dimensional case with k D 3=2

F.�/ D �

k � 1
� 1

�2
C 2�

X
m2Z2

0

e�2��jmj:

Therefore (4.7) is equivalent to showing that the inequality

2�
X

m2Z2
0

e�2��jmj <
1

�2
(4.11)
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holds for all � > 0. To estimate the series on the right-hand side we write down the
numbers jmj2 D m2

1 Cm2
2, m 2 Z2

0, in the increasing order counting multiplicities
and denote them by �j : f�j g1

j D1 D fm2
1 Cm2

2; m 2 Z2
0g: For � � 1 we denote by

N.�/ the number of �j ’s less than or equal to � (the number of points with integer
coordinates inside the circle of radius

p
�):

N.�/ D
X

�j ��

1:

We inscribe the circle of radius
p
� into the square with side 2

p
�C 1 and cross out

the origin. We obtain

N.�/ � .2
p
�C 1/2 � 1 D 4�C 4

p
� � 8�:

For � D �j this gives j D N.�j / � 8�j so that �j � j
8

.

Returning to (4.11) and setting below L WD ��=2
p
2 we have

X
m2Z2

0

e�2��jmj D
1X

j D1

e
�2���

1=2
j �

1X
j D1

e�2Lj 1=2 D e�L

1X
j D1

e�L.2j 1=2�1/

� e�L

1X
j D1

e�Lj 1=2

< e�L

Z 1

0

e�Lx1=2

dx D 2e�L

L2

D 16

�2�2
e

� ��

2
p

2 ;

and inequality (4.11) is satisfied for all � � �0 D 2
p

2
�

log 32
�

D 2:0896. In fact,
�j � j=4 (see [15]), which gives � � �0 D 2

�
log 16

�
D 1:0363. On the finite

interval Œ0; �0	 we verify (4.7) on a computer, see Fig. 1.

Remark 4.1. Shifting for x1 and x2 the domain of integration by ˙ia and using
analyticity we obtain

j Of .�/j � e�aj�j

2.k � 1/.1� 2a2/k�1
;

and we can specify �0 for any fixed k > 1 similarly to k D 3=2.

Remark 4.2. Inequalities (4.1) and (4.7) hold for k D 1:38 : : : .
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Figure 1. Graphs of the functionsH.�/ and k�1
�
F.�/ on the corresponding intervals Œ0; �0	

for k D 3=2.

Proposition 4.3. The following inequalities hold for � � 0:

HS3.�/ WD �

1X
nD1

.nC 1/2

.n.nC 2/C �2/2
� ıS3

Z 1

0

r2dr

.r2 C 1/2
D ıS3 � �

4
;

FT 3.�/ WD �
X

m2Z3
0

1

.jmj2 C �2/2
< ıT 3

Z
R3

dx

.x2 C 1/2
D ıT 3 � �2;

(4.12)

where ıS3 D 1:0139 : : : and ıT 3 D 1.

Proof. Calculations show that the function HS3.�/ attains a global maximum at
�� D 3:312 : : : , which is 1:0139 : : : DW ıS3 times greater than HS3.1/ D �=4.
In calculations we can also take advantage of the fact that forHS3.�/ there exists an
explicit formula. In fact, using the formula

1X
nD1

n2

.n2 C �2/2
D �

4

coth.��/

�
C �2

4
.1� coth2.��//;

and noting that n.nC 2/ D .nC 1/2 � 1 we see that HS3.�/ is equal to

�

4

�p
�2 � 1 coth.�

p
�2 � 1/C �2�

4
.1� coth2.�

p
�2 � 1// � 1

�3
:

Unlike the 2D case, for large �, HS3.�/ > HS3.1/ D �=4.
For the second sum the Poisson summation formula and (4.10) give

FT 3.�/ D �2 � 1

�3
C �2

X
m2Z3

0

e�2��jmj D �2 � 1

�3
CO.e�C�/:
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We find a�0 such that FT 3.�/ < �2 on Œ�0;1/ and then verify the inequality on the
remaining finite interval Œ0; �0	 by calculations. We omit the details concerning �0

that are similar to those in Proposition 4.2. The graphs of HS3.�/ and FT 3.�/ are
shown in Figure 2.
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Figure 2. Graphs of the functions 4
�
HS3.�/ and 1

�2FT 3.�/.

5. Appendix. Estimate of �0 for the sphere

Lemma 5.1. For k D 3=2 inequality (4.1) holds for � 2 Œ�0;1/, where �0 D
5:0833.

Proof. It follows from (4.5) that we have to show that for f .x/ D 1=.x C 1/k and
� � �0 Z a2

a1

f .x/dx � a2f .a2/=2 > �
1X

nD2

Ran;anC1
.f /; (5.1)

the main task being specifying �0. Since f .x/ is monotone decreasing,Z a2

a1

f .x/dx > a2f .a2/;

and the left-hand side is greater than

1

�2

1

.1C 2
�2 /

k
>

1

�2

�
1� 2k

�2

�
D t � 2kt2 DW Lk.t /; t D ��2: (5.2)

For the right-hand side of (5.1) with f 00.x/ D k.k C 1/=.x C 1/kC2 and � in (4.6)
satisfying � > n.n � 1/=�2 > ..n� 1/=�/2 we have

�
1X

nD2

Ran;anC1
.f / D 2k.k C 1/

3�2

1

�

1X
nD2

.n=�/3

.�n C 1/kC2
; (5.3)
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and
1

�

1X
nD2

.n=�/3

.�n C 1/kC2
<
1

�

1X
nD1

..nC 1/=�/3

..n=�/2 C 1/kC2

D 1

�

1X
nD1

g1.n=�/C 3

�2

1X
nD1

g2.n=�/

C 3

�3

1X
nD1

g3.n=�/C 1

�4

1X
nD1

g4.n=�/;

where gj .x/ D x4�j

.x2C1/kC2 , j D 1; 2; 3; 4. The function g1.x/ has a unique global

maximum attained at x0 D �
3

2kC1

�1=2
: Therefore

1

�

1X
nD1

g1.n=�/ < x0g1.x0/C
Z 1

x0

g1.x/dx

D 9.2k C 1/k

.2k C 4/kC2
C 1

2k.k C 1/

.5k C 4/.2k C 1/k

.2k C 4/kC1
DW G1.k/:

Similarly (replacing x0 in the integral by 0)

1

�

1X
nD1

g2.n=�/ <
.k C 1/kC1=2

.k C 2/kC2
C 1

2

�.3=2/�.k C 1=2/

�.k C 2/
DW G2.k/;

1

�

1X
nD1

g3.n=�/ <
.2k C 3/kC3=2

.2k C 4/kC2
C 1

2

1

k C 1
DW G3.k/;

1

�

1X
nD1

g4.n=�/ <
1

2

�.1=2/�.k C 3=2/

�.k C 2/
DW G4.k/:

which gives that the right-hand side in (5.1) is less than

2k.k C 1/

3
.G1.k/t C 3G2.k/t

3=2 C 3G3.k/t
2 CG1.k/t

5=2/ DW Rk.t /

and R3=2.t / D 0:5317 � t C 1:5844 � t3=2 C 3:2851 � t2 C 1:3333 � t5=2. Obviously,
L3=2.t / D t � 3t2 � R3=2.t / for t 2 Œ0; t0	, where t0 is the first root of the equation
L3=2.t / � R3=2.t / D 0. We find that t0 D 0:0387. Accordingly, (5.1) holds for all
� � �0 D .1=t0/

1=2 D 5:0833. Explicitly calculating the integral on the left-hand
side of (5.1) and estimating the series involving g2 and g3 in the same way as g1 we
haveR3=2.t / D 0:5317 � tC0:90074 � t3=2 C2:8054 � t2 C1:3333 � t5=2 and therefore
can improve the estimate: �0 D 3:9229.
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