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Localization of two-dimensional massless Dirac fermions
in a magnetic quantum dot

Martin Könenberg and Edgardo Stockmeyer1

Abstract. We consider a two-dimensional massless Dirac operator H in the presence of a
perturbed homogeneous magnetic field B D B0 C b and a scalar electric potential V . For
V 2 Lp

loc.R
2/, p 2 .2;1�, and b 2 Lq

loc.R
2/, q 2 .1;1�, both decaying at infinity, we show

that states in the discrete spectrum of H are superexponentially localized. We establish the
existence of such states between the zeroth and the first Landau level assuming that V D 0.
In addition, under the condition that b is rotationally symmetric and that V satisfies certain
analyticity condition on the angular variable, we show that states belonging to the discrete
spectrum of H are Gaussian-like localized.
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1. Introduction

Graphene is a two-dimensional lattice of carbon atoms arranged on a honeycomb
structure. Due to its unusual properties it has attracted a great deal of attention
since its discovery; see [4] and [21]. One of the striking facts about graphene is
that the dynamics of its low-energy excitations (the charge carriers) can be described
by massless two-dimensional Dirac operators. An interesting feature of such Dirac
fermions is the lack of localization under the influence of an external electric potential;
see [31] and [15]. This fact, related to Klein’s paradox [4], is due to the peculiar cone-
like gapless structure of the spectrum of massless free Dirac operators.

It was suggested in [7] that it is possible to confine such massless Dirac fermions
in graphene by inhomogeneous magnetic fields of the type B D B0 C b, where
B0 > 0 is a constant and b a perturbation with negative flux that decays at infinity.
The spectrum of the corresponding Dirac operator in a constant magnetic field B0 is
given by the (relativistic) Landau levels. The idea is that as the perturbation b is turned
on eigenvalues will emerge from the Landau levels giving rise to states localized on
the bulk of the support of b. In this manner a so-called (magnetic) quantum dot or

1Both authors have been partially supported by the DFG (SFB/TR12).
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artificial atom can be created. These type of models, also with an external electric
potential V , have been further studied in the physics literature, for instance in [8],
[22], [32], and [16] for the one particle case and in [13] and [9] for the multiparticle
case. The articles [8], [22], [32], and [16] deal with specific electromagnetic fields
for which the model is partly solvable or suitable for numerical computations.

In this article we consider a large class of electromagnetic perturbations .b; V /
with V 2 L

p
loc.R

2/, p 2 .2;1�, and b 2 L
q
loc.R

2/, q 2 .1;1�, both decaying
at infinity. The essential spectrum of the corresponding massless Dirac-operator H
describing the quantum dot is given by the Landau levels. We show that eigenfunc-
tions belonging to the discrete spectrum of H are superexponentially localized, i.e.,
they decay faster than any exponential. In the case when V D 0 we verify the ex-
istence of eigenvalues between the zeroth and the first Landau-level assuming that
b < 0. Assuming that a certain analyticity conditions on the angular variable of V is
fulfilled and that b is rotationally symmetric we prove that those states are actually
Gaussian-like localized. These type of results on superexponential and Gaussian lo-
calization, although new for Dirac operators, are known to hold for spinless magnetic
Schrödinger operators [6], [10], [19], and [29]. We benefit from this insight to prove
our statements. A precise description of our results is given in the next section.

Acknowledgements. Edgardo Stockmeyer thanks Horia Cornean for stimulating
discussions at the conference Spectral days in Santiago de Chile.

2. Results

We consider the massless two-dimensional Dirac operator with an external magnetic
field B W R2 ! R, pointing perpendicularly to the plane, and an electric potential
V W R2 ! R. We are interested in the Hamiltonians

DA
defD � � .p � A/; (1)

H
defD DA C V; (2)

a priori defined on C1
0 .R

2I C2/ � L2.R2I C2/. Here p
defD 1

i r is the momentum of

the particle and �
defD .�1; �2/ is a vector whose entries

�1
defD
�
0 1

1 0

�
; �2

defD
�
0 �i
i 0

�
;

are Pauli matrices. The magnetic fieldB enters in the definitions (1) and (2) by means
of the magnetic vector potential A D .A1; A2/ W R2 ! R2 through the relation

B D @1A2 � @2A1 defD curl A; (3)

which is understood in the sense of distributions.
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Throughout this article we assume the following on .B; V /.

(A1) B D B0CbwhereB0 > 0 is a number andb 2 Lqloc.R
2I R/ for someq 2 .1;1�

and limn!1 k1fjxj�ngbk1 D 0:

(A2) V 2 Lploc.R
2I R/ for some p 2 .2;1� and limn!1 k1fjxj�ngV k1 D 0:

Here 1I .�/ denotes the characteristic function on the set I . Assuming that B ful-
fills (A1) we can always find A 2 Ltloc.R

2I R2/ for some t 2 .2;1� satisfying (3);
see Remark 8. For such magnetic vector potentials and electric potentials V satisfy-
ing (A2) we know that the operators defined in (1) and (2) are essentially self-adjoint;
see Subsection 3.1. We denote their self-adjoint extensions by the same symbols and
their domains by D.DA/ and D.H/ respectively.

To the homogeneous magnetic field B0 we associate the vector potential

A0
defD B0

2
.�x2; x1/; (4)

satisfying curl A0 D B0. It is well known that the spectrum of DA0
consists of

infinitely degenerated eigenvalues .ln/n2Z, called Landau levels, given by

ln
defD sgn.n/

p
2jnjB0; n 2 Z;

where sgn.n/ D n=jnj if n 6D 0 and equals one if n D 0.
Given a self-adjoint operator T we write �pp.T /; �d.T /, and �ess.T / to denote the

pure point, discrete, and essential spectra of T respectively. Our first main result is
as follows.

Theorem 1. Assume that B satisfies (A1) and let A 2 L
p
loc.R

2I R2/; p 2 .2;1�;

with curl A D B . Then, the spectrum of DA is symmetric with respect to zero and

�ess.DA/ D .ln/n2Z :

Moreover,

(a) if b � 0 and strictly negative on some open set, then the discrete spectrum of
DA on .0; l1/ is non-empty, i.e., �d.DA/ \ .0; l1/ 6D ; and

dim.Ran.1.0;l1/.DA/// D 1;

(b) if b � 0 then
dim.Ran.1.0;l1/.DA/// D 0:

This theorem is a consequence of Lemmata 2 and 3. That the spectrum of DA is
symmetric with respect to zero is well known; see, however, Proposition 1.
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Remark 1. A similar result to Theorem 1 is shown in [3] when b is replaced by
�b and � is assumed to be sufficiently large. Moreover, in [3] stronger regularity
assumptions on b are made. In addition, the magnetic vector potential a associated
to b is assumed to decay at infinity. However, the results of [3] hold for more general
background magnetic fields than B0. We note also that our proof differs from the one
in [3].

Remark 2. For Schrödinger and Pauli operators the spectral subspaces obtained by
splitting the Landau levels with electromagnetic perturbations decaying at infinity
have been investigated in the last years; see e.g. [25] and references therein.

Remark 3. Assume that (A1) and (A2) are fulfilled. As a consequence of Lemmata 1
and 2 below,

�ess.H/ D �ess.DA/ D �ess.DA0
/;

for any A 2 Lploc.R
2I R2/; p 2 .2;1�; with curl A D B .

Our next result state that eigenfunctions corresponding to the discrete spectrum
of H are super-exponentially localized.

Theorem 2. Assume that B and V satisfy (A1) and (A2) respectively and let A 2
L
p
loc.R

2I R2/; p 2 .2;1�; with curl A D B D B0 C b. Then, for any eigenfunction
‰ of H D DA C V with H‰ D E‰ and E 2 R n �.DA0

/ the following holds: for
every r 2 Œ2;1� and � > 0 there exists an R > 0 such that

k1fjxj�Rge� jxj‰kr < 1: (5)

This theorem is proven in Section 5.

Remark 4. This type of results are known to hold for magnetic Schrödinger operators
.p�A/2CB . Our proof follows the ideas presented in [6]. In fact, since our operator
is linear in A, some parts of the argument are more straightforward. For instance, we
do not require that b 2 C 1.R2I R/ decays in the C 1-norm as done in [6].

Remark 5. One essential ingredient in the proof of Theorem 2 is the explicit knowl-
edge of the Green function G0 of DA0

. This is calculated in Appendix A.

In order to obtain Gaussian decay we make further assumptions on .B; V /. Let
T D R=.2�Z/ and let v D v.r; �/; .r; �/ 2 RC � T be the potential V written in
polar coordinates. We assume the following.

(A3) B is radially symmetric, i.e., b.x/ D b.r/; r D jxj.
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(A4) For any .r; �/ 2 RC � T the mapping R 3 a 7! v.r; � C a/
defD va.r; �/ has

an analytic continuation Qvz.r; �/ to C. Moreover, for any � > 0 there exist a
p 2 .2;1� and a real-valued function u� 2 L

p
loc.R

C � T; rdr d�/ such that
k1fr>ngu�k1 ! 0 as n ! 1 and

j Qvz.r; �/j � u� .r; �/;

for any .r; �/ 2 RC � T and z 2 S� defD fz 2 C W j Im zj � �g.

(A5) v is differentiable with respect to r and R 3 a 7! @rv.r; � C a/ can be an-
alytically continued to @r Qvz.r; �/ on C. Moreover, there exist a 	 > 0 such
that for any � > 0 there is 
� > 0 such that j1fr>�g@rvz.r; �/j � 
� for any
.r; �/ 2 RC � T and z 2 S� .

Theorem 3. Assume that B satisfies (A1) and (A3) and V satisfies (A2), (A4),
and (A5). Let A 2 L

p
loc.R

2I R2/; p 2 .2;1�; with curl A D B . Then, for any
eigenfunction ‰ of H D DA C V with H‰ D E‰ and E 2 R n �.DA0

/ the
following holds: For every 0 < ˛ < 1, we have

ke˛B0=4jxj2‰k2 < 1:

This theorem is proven in Section 6.

Remark 6. The analyticity assumption (A4) on the angular variable ofV implies, by a
Paley–Wiener argument, exponential decay of the Fourier modes of the potential in its
angular momentum decomposition; see (40), (41), and (50) below. Assumption (A5)
is similar to (A4) but for the radial derivative of the potential.

Remark 7. The first proof of Gaussian localization for magnetic Schrödinger oper-
ators using assumptions like (A4), but not (A5), was given in [10]. In addition, an
example of a potential decaying at infinity for which the corresponding ground state
decays slower than a Gaussian is also given in [10]. The proof in [10] is based on a gen-
eralized Feynman–Kac formula. An alternative proof using Agmon-type estimates
with localizations in space and angular momentum was given in [19]. A variation of
the method in [19] was used in [29] to treat the general n-dimensional case, again
for magnetic Schrödinger operators. Our proof follows the ideas developed in [19].
However, it turns out to be more involved since our operator is not bounded from
below. To overcome this difficulty we square the Dirac operator (or parts of it). This
is the reason why (A5) is used in our setting.

The article is organized as follows. In Section 3 we review some essentially well
known facts about magnetic Dirac operators. Sections 4, 5, and 6 are devoted to
the proofs of theorems 1, 2, and 3 respectively. The article ends with an appendix
containing some useful technical results.
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3. Preliminaries

3.1. Essential self-adjointness. Throughout this article we consider magnetic po-
tentials A 2 L

p
loc.R

2I R2/ and electric potentials V 2 L
q
loc.R

2/; p; q 2 .2;1�. In
order to show essential self-adjointness of the operators H and DA defined in (1)
and (2) it suffices to prove that

HR'
defD � � .p � 1fjxj�RgA/' C 1fjxj�RgV'; ' 2 C1

0 .R
2I C2/;

is essentially self-adjoint for every R > 0; see [5]. Using that for f 2 Lp.R2I C/
and 2 < p < 1

f .x/.p2 C 1/�1=2

is a compact operator (see [28], Theorem 4.1) we get that 1fjxj�Rg.V � � � A/ is a
relative compact perturbation of D0. This shows essential self-adjointness of HR,
since D0 is essentially self-adjoint on C1

0 .R
2I C2/.

3.2. Gauge invariance. Let A; yA 2 L
p
loc.R

2I R2/; 2 < p < 1; be two vector
potentials with

curl A D curl yA
in the sense of distributions. According to [17] there is a gauge function ŷ 2
W
1;p

loc .R
2I R/ such that

A D yA C r ŷ :
It follows, for any electric potential V 2 Lqloc.R

2I R/; q 2 .2;1�, that

.DA C V / D ei ŷ
.DyA C V /e�i ŷ

:

In particular, ei ŷ
.DyA C V /e�i ŷ is essentially self-adjoint on C1

0 .R
2I C2/.

This can be seen as follows. Note that

D.ei ŷ
.DyA C V /e�i ŷ

/ D ff 2 L2.R2I C2/ W e�i ŷ
f 2 D.DyA C V /g:

Pick functions �; �0 2 C1
0 .R

2I C2/ and a sequence . ŷm/m2N in C1.R2I R/ with
ŷ
m ! ŷ in W 1;p

loc .R
2/ (and hence in W 1;2

loc .R
2/) as m ! 1. Then,

h.DyA C V /�0; e�i ŷ
�i D lim

m!1h.DyA C V /�0; e�i ŷ
m�i

D lim
m!1hei ŷ

m�0; .DyA C V /�i � lim
m!1hei ŷ

m�0; � � r ŷ
m�i

D hei ŷ
�0; .DyA C V /�i � hei ŷ

�0; � � r ŷ�i:
Since �0 is an arbitrary element of a core of DyA C V , it follows that

e�i ŷ
� 2 D.DyA C V /
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and
.DyA C V /e�i ŷ

� D e�i ŷ
.DyA C V � � � r ŷ /�;

which implies that

ei ŷ
.DyA C V /e�i ŷ

� D .DA C V /� ; � 2 C1
0 .R

2I C2/:

Due to the essential self-adjointness of DA C V we deduce that ei ŷ
.DyA C V /e�i ŷ

is also essentially self-adjoint on C1
0 .R

2I C2/ and that the two operators coincide.

3.3. Supersymmetry. For A D .A1; A2/ with Aj 2 L
p
loc.R

2/; p 2 .2;1�, j D
1; 2, we define the following two operators

d1' D Œ.p1 � A1/C i .p2 � A2/�'; ' 2 C1
0 .R

2I C/;

d2' D Œ.p1 � A1/ � i .p2 � A2/�'; ' 2 C1
0 .R

2I C/:

Clearly, we have that

DA �C1

0 .R2IC2/D
�
0 d2
d1 0

�
:

SinceDA �C1

0
.R2IC2/ is essentially self-adjoint it follows that d1 and d2 are closable;

see [30], Section 5.2.2. In addition, setting d
defD d1 one finds that d� D d2 and

DA D
�
0 d�
d 0

�
on D.DA/ D D.d/˚ D.d�/: (6)

It is known that dd� and d�d are self-adjoint with domains D.dd�/ D f' 2
D.d�/ W d�' 2 D.d/g and D.d�d/ D f' 2 D.d/ W d' 2 D.d�/g. Moreover,
there is a unitary map S from Ker.dd�/? to Ker.d�d/?, such that

dd� �Ker.dd�/?D S�d�d �Ker.d�d/? S: (7)

Let us note that we can block-diagonalizeDA using the Foldy–Wouthuysen transfor-
mation. Setting

aC D
´
1=

p
2 on Ker.DA/

?,

1 on Ker.DA/,

a� D
´
1=

p
2 on Ker.DA/

?,

0 on Ker.DA/,

we define the Foldy–Wouthuysen transformation as

U D aC C �3sgn.DA/a� ;
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where sgn.DA/ D DA=jDAj on Ker.DA/
? and equals zero on Ker.DA/ and

�3 D
�
1 0

0 �1
�
:

The unitarity of the above transformation can be easily verified observing that ' 2
Ker.DA/ , �3' 2 Ker.DA/ and that �3sgn.DA/ D �sgn.DA/�3. The latter
relation holds since �3DA D �DA�3 and �3jDAj D jDAj�3. A direct computation
yields

UDAU
� D

�p
d�d 0

0 �p
dd�

�
: (8)

Equation (7) and (8) imply the following statement.

Proposition 1. Let A 2 L
p
loc.R

2I R2/ for some p 2 .2;1�. Then, the spectrum of
DA is symmetric with respect to zero and

�].DA/ \ .0;1/ D �].
p
d�d/ n f0g; ] 2 fpp; d; essg:

4. The spectrum of DA

The aim of this section is to show Theorem 1. An important ingredient is the study of
the essential spectrum of DA. In order to do that we modify an argument from [14]
obtaining Lemma 1 below. We combine this with a result from [24] on the infiniteness
of zero modes for Pauli operators (see Lemma 2 below). The proof of the theorem is
then a consequence of Lemmata 2 and 3.

In the following discussion we assume that B D B0 C b with B0 > 0 and b 2
L1loc.R

2I R/ such that jbj1=2 is relative
p

p2 C 1-compact. Let A 2 Lploc.R
2I R2/; p 2

.2;1�; with curl A D B . We start by observing that, for ' 2 C1
0 .R

2I C/,

hd�'; d�'i D
2X

jD1
k.pj � Aj /'k2 C h'; B'i;

hd'; d'i D
2X

jD1
k.pj � Aj /'k2 � h'; B'i

(9)

holds. This implies the commutator relation

h'; Œd; d��'i defD hd�'; d�'i � hd'; d'i D 2h'; B'i; ' 2 C1
0 .R

2I C/: (10)

The idea in [14] is to use this commutator to study the essential spectrum of dd� and
d�d . In order to extend this identity we define these operators as quadratic forms
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and show that Q.b/ � Q.d�d/ D Q.dd�/ and jbj1=2.d�d C 1/�1=2 is a compact
operator. Here Q.�/ is used to denote the form domain.

Let us define

q1.'; '/ D q1Œ'�
defD kd'k2;

q2.'; '/ D q2Œ'�
defD kd�'k2;

with form domains Q.q1/ D D.d/ and Q.q2/ D D.d�/. Since d and d� are closed
(see Subsection 3.3) we have that q1 and q2 are closed and positive. Thus, associated
to qj , j D 1; 2, there is a unique self-adjoint operator Tj characterized as follows:

h ; Tj'i D qj . ; '/;  2Q.qj /; ' 2 D.Tj /;

D.Tj / D f' 2 Q.qj / j 9� 2 L2.R2I C/;8 2 C ; qj . ; '/ D h ; �ig;
(11)

where C is any form core of qj . It is easy to check using (11) that in fact T1 D d�d
and T2 D dd�. Note that since the restrictions of d and d� to C1

0 .R
2;C/ are

closable C1
0 .R

2;C/ is a form core for q1 and q2. We define yet another quadratic
form. For ' 2 C1

0 .R
2;C/ we set

Qq3Œ'� defD
2X

jD1
k.pj � Aj /'k2:

It is known (see [27]) that Qq3 is closable and we denote its closure by q3. Its associated
self-adjoint operator HS

defD .p � A/2 is the usual magnetic Schrödinger operator.
Recall that jbj1=2 is relative

p
p2 C 1-compact. Using the diamagnetic inequality

for jp � Aj (see e.g. [11]) and arguing as in [2], Theorem 2.6, we conclude that
Q.q3/ D D.H

1=2
S / � D.jbj1=2/ and that jbj1=2 is relative H 1=2

S -compact. Thus,
the quadratic form

ˇŒ'�
defD B0k'k2 C hsgn.b/jbj1=2'; jbj1=2'i

is in absolute value bounded with respect to q3 with bound 0. In particular,

q3̇ Œ'�
defD q3Œ'�˙ ˇŒ'�; ' 2 Q.q3/;

is closed. Observing that by (9) we have that q2 �C1

0
D qC

3 �C1

0
and q1 �C1

0
D

q�
3 �C1

0
and using that C1

0 .R
2I C/ is a form core for q1; q2; q3 and q3̇ we conclude

that Q.q1/ D Q.q2/ D Q.q3/ 	 Q and q1 D q�
3 and q2 D qC

3 . Moreover,

dd� D .p � A/2 C B;

d�d D .p � A/2 � B;
(12)

in the sense of quadratic forms on Q and hence the commutator formula (10) extends
to Q.
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Lemma 1. Let B D B0 C b with B0 > 0 and jbj1=2 2 L2loc.R
2I R/ be relativep

p2 C 1-compact. Let A 2 L
p
loc.R

2I R2/; p 2 .2;1�, with curl A D B: Then,
either one of the following statements holds:

(i) �ess.d
�d/ D ;;

(ii) �ess.d
�d/ D f2B0n W n 2 N0g and �ess.dd

�/ D f2B0n W n 2 Ng.

In addition, if V satisfies (A2) then V is relative DA-compact and in particular
�ess.DA/ D �ess.DA C V /.

Remark 8. Note that our assumption on B are satisfied if B fulfills (A1). Indeed, in
this case jbj1=2.p2 C 1/�1=2 is compact by Lemma 12 in Appendix B.

Moreover, note that if B 2 L
q
loc.R

2I R/ for some q > 1 we can always find
A 2 Lploc.R

2I R2/ for some p 2 .2;1�. In order to see this define h to be a solution
of

�h D B: (13)

A local solution to this equation is given by the Newton potential hN of B . We
know that hN 2 W 2;q.
/ by the Calderón–Zygmund inequality, where 
 � R2

is a bounded domain (see e.g. [12], Section 9.4). This property extends to any
solution h of (13) since h � hN is harmonic on 
. Therefore, h 2 W 2;q

loc .R
2/. Now

one can define A
defD .�@2h; @1h/. Clearly, Aj 2 W

1;q
loc .R

2/. By standard Sobolev
inequalities one obtains that Aj 2 Ltloc.R

2I R/ for some 2 < t < 1 if q 2 .1; 2� and
Aj 2 L1

loc.R
2I R/ if q > 2.

Proof. First note that for any � � 0 the operator .d�d C 2B0 C �/�1=2 maps
L2.R2I C/ onto D.

p
d�d/ which equals Q and D.H

1=2
S /. Thus, by the closed

graph theorem, the operator .HS C 1/1=2.d�d C 2B0 C �/�1=2 is bounded. In
particular,

jbj1=2.d�d C 2B0 C �/�1=2

D jbj1=2.HS C 1/�1=2.HS C 1/1=2.d�d C 2B0 C �/�1=2

is compact. Hence, the operator

T .�/
defD .d�d C 2B0 C �/�1=2sgn.b/jbj1=2jbj1=2.d�d C 2B0 C �/�1=2

is also compact. It is easy to see that � > 0 can be chosen so large that kT .�/k < 1.
For such �’s we have, according to the resolvent formula for operators defined as
quadratic forms (see [26]), that

.d�d C 2B0 C 2b C �/�1

D .d�d C 2B0 C �/�1=2.1C T .�//�1.d�d C 2B0 C �/�1=2:

Note that the inverse of 1 C T .�/ is well defined as a geometric expansion. Since
.1 C T .�//�1 � 1 is compact, we conclude that the resolvent difference between
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d�d C 2B0 C 2b C � and d�d C 2B0 C � is also compact. Therefore, by Weyl’s
theorem, the two operators have the same essential spectrum. Using this and (12) we
deduce that

�ess.dd
�/ D �ess.d

�d C 2B0 C 2b/ D �ess.d
�d C 2B0/: (14)

The latter equality and Equation (7) imply (here we follow [14])

S
defD �ess.d

�d/; S � Œ0;1/;

S n f0g D S C 2B0:
(15)

Assume now that S 6D ;, then it is easy to see from (15) that 0 2 S and hence
2B0n 2 S; n 2 N0. Note also that no other points can belong to S . Hence,
using (14) we get that �ess.dd

�/ D 2B0n; n 2 N.
Now, assume that V fulfills (A2). Then, V is relative

p
p2 C 1-compact (see

Lemma 12 in Appendix B). It follows by the diamagnetic inequality that V is relative
H
1=2
S -compact and consequently (arguing as before for b) D.V / � Q and the oper-

ators V.dd� C �2/�1=2 and V.d�d C �2/�1=2 are compact for any � 6D 0. From
these considerations follow that V.DA � i�/�1 is compact, since the identity

.DA � i�/�1

D .D2
A C �2/�1=2Œ.D2

A C �2/�1=2.DA C i�/�

D
�
.d�d C �2/�1=2 0

0 .dd� C �2/�1=2
�

� Œ.D2
A C �2/�1=2.DA C i�/�

holds and the operator in Œ: : : � is bounded. Therefore,

�ess.DA C V / D �ess.DA/:

We note that if b satisfies (A1) then Ker.d�d/ is infinitely degenerated. Indeed,
this follows from the fact that Z

R2

ŒB�Cd2x D 1;

Z
R2

ŒB��d2x < 1;

(where Œf �C and Œf �� are the positive and negative parts of f ) which shows that
B D B0Cb fulfills the conditions of [24], Corollary 3.4. In particular, we know that

Ker.d�d/ D f!e�h j!e�h 2 L2.R2I C/ ; ! is analytic in x1 C i x2g;
where h is a solution of the equation �h D B; see [24]. Therefore, we get the
following result.
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Lemma 2. Assume that B satisfies (A1) and let A 2 Lploc.R
2I R2/; p 2 .2;1�; with

curl A D B . Then,

�ess.d
�d/ D f2B0n j n 2 N0g;

�ess.dd
�/ D f2B0n j n 2 Ng:

(16)

In particular,

�ess.DA/ D �ess.DA0
/ D fln j n 2 Zg:

Moreover, 0 is an isolated point of �.DA/ and �.d�d/.

Proof. Due to our previous discussion we see that 0 2 �ess.d
�d/. This combined with

Lemma 1 imply (16). That 0 is an isolated point of �.d�d/ follows by noting that,
since 0 62 �ess.dd

�/, 0 is neither an accumulation point of �.dd�/ nor of �.d�d/.
The statements on �.DA/ are now a consequence of Proposition 1.

Lemma 3. Assume that B satisfies (A1) and let A 2 Lploc.R
2I R2/; p 2 .2;1�; with

curl A D B . Then, we have

(a) If b � 0 and strictly negative on some open set, then

dim.Ran.1.0;
p
2B0/

.DA/// D dim.Ran.1.�p
2B0;0/

.DA/// D 1:

(b) If b � 0 then

dim.Ran.1.0;
p
2B0/

.DA/// D dim.Ran.1.�p
2B0;0/

.DA/// D 0:

Proof. We may choose A
defD .�@2h; @1h/ where h is a solution of �h D B . Due to

Remark 8 we know that A 2 Lploc.R
2;R2/ for some p > 2.

Part (a). Let 
 be an open set with b � 
 < 0. Recall that there are infinitely
many functions !, analytic in x1 C i x2, with  

defD !e�h 2 Ker.d�d/. For such  
we have, using (12),

h ; dd� i D 2h ;B i � 2B0k k2 C 2

Z
�

b.x/j .x/j2dx < 2B0k k2; (17)

where in the last inequality we use the fact that  can not vanish on
. Let . n/n2N

be an orthonormal system such that  n
defD e�h!n 2 Ker d�d with !n analytic in

x1C ix2. ForN 2 N define the self-adjoint matrixMN
defD .h n; dd� mi/1�n;m�N .

It follows from (17) that MN < 2B0. The Rayleigh–Ritz principle implies

0 � �n.dd
�/ � �n.MN / < 2B0; n D 1; : : : ; N;
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where we write

�n.T /
defD sup
'1;:::;'n�1

inf
 2spanf'1;:::;'n�1g?

k kD1; 2Q.T /

h ; T  i

for some self-adjoint operator T. Since N is arbitrary the mini-max principle implies
that dim.Ran.1Œ0;

p
2B0/

.dd�/// D 1. It follows that dim.Ran.1.0;
p
2B0/

.dd�/// D
1, for 0 … �ess.dd

�/ by Lemma 2. The claim is now a consequence of Proposition 1
and (7).

Part (b). In this case we have that dd� � 2B0, since dd� � d�d D 2B � 2B0.
Thus, the claim follows now from Proposition 1 and (7).

5. Super-exponential localization

The proof of Theorem 2 follows the ideas developed in [6]. An essential ingredient
is that, by means of suitable local gauge transformations on certain regions outside
a big ball of radius n centered at the origin, one can replace the operator DA by a
Dirac operator DAn

with An D A0 C an, where an is a magnetic vector potential
of a magnetic field bn satisfying limn!1 kbnk1 D 0. The advantage of this is
that we can obtain explicit Lp estimates (see Lemma 4 below) for the resolvents of
DAn

, conjugated with exponential weights. These estimates can be derived using a
certain resolvent expansion, see (35), in combination with an explicit expression for
the Green kernel of DA0

that can be found in Appendix A below.
Before stating these Lp estimates let us fix some notation. For p; q 2 Œ1;1� we

denote by B.p; q/ the space of bounded operators from Lp.R2I C2/ to Lq.R2I C2/

and write, for T 2 B.p; q/,

kT k
p;q

defD kT k
B.p;q/

: (18)

Let � � 0 and u 2 R2 with juj D 1. We define the exponential weight function as

F.x/
defD � u � x; x 2 R2:

Let bn be a magnetic field with limn!1 kbnk1 D 0 and an be the associated vector
potential in the transversal gauge, i.e.,

an.x/
defD
Z 1

0

bn.sx/ ^ x sds; (19)

where we write a ^ v
defD a.�v2; v1/ for a 2 R and v 2 R2. The proof of the lemma

below can be found at the end of this section.
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Lemma 4. Let Vn 2 L1.R2I R/, n 2 N, be a family of electric potentials satisfying

lim
n!1 kVnk1 D 0:

For any n 2 N define the family of self-adjoint operators DAn
C Vn, where An

defD
A0 C an and an is given in (19). Let z 2 R n �.DA0

/ and q; r 2 Œ1;1� be such that
1 C 1

r
� 1
q

D 1
p

for some p 2 Œ1; 2/. Then, there exists N > 0 such that, for all
n > N , z … �.DAn

C Vn/ and

eF .DAn
C Vn � z/�1e�F 2 B.q; r/: (20)

In what follows we apply the above result to show Theorem 2.

Proof of Theorem 2. For n 2 N and u 2 R2 with juj D 1 set


n D fx 2 R2 W u � x > ng:
For j 2 f1; 2; 3g define �j 2 C1.R2I Œ0; 1�/ with �j D 0 on R2 n
jn and �j D 1

on 
.jC1/n. We choose n so large that

kbk
L1.�n/

< 1:

Since b 2 Lqloc.R
2/; q > 1; we find a vector potential a 2 Lploc.R

2I R2/; p > 2; with
curl a D b (see Remark 8). Define, for x 2 R2,

an.x/ D
Z 1

0

bn.sx/ ^ x sds;

where bn
defD 1�n

b 2 L1.R2/. Observe that

curl a D curl an on 
n;

that 
n is simply connected, and that an; a 2 Lploc.R
2I R2/ for some p > 2. There-

fore, there exists a gauge function Q̂
n 2 W 1;p

loc .
n/ such that (see [17], Lemma 1.1)

r Q̂
n D a � an on 
n: (21)

By multiplying Q̂
n with aC1- cutoff function we may define aˆn 2 W 1;p

loc .R
2/ that

coincides with Q̂
n on 
2n. In particular, we find that

rˆn D a � an on 
2n: (22)

Define now Vn
defD �1V and observe that kVnk1 ! 0 as n ! 1. Then we get, for

any � 2 C1
0 .R

2I C2/ and j 2 f2; 3g, using (22) and the identity �j D �1�j ,

�j .DA C V /� D �j .DA0
� � � a C Vn/�

D �j .DA0
� � � rˆn � � � an C Vn/�

D �j e
iˆn.DA0

� � � an C Vn/e
�iˆn�:
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Set An
defD A0 C an and let ‰ be an eigenfunction of DA with eigenvalue E …

�.DA0
/. By the previous computation we obtain, for any � 2 C1

0 .R
2I C2/ and

j 2 f2; 3g,

h eiˆn.DAn
C Vn �E/e�iˆn� j�j ‰ i D h .DA C V �E/� j�j ‰ i

D h i � � r�j� j‰ i:

This equality extends to any � in the domain of eiˆn.DAn
C Vn � E/e�iˆn , since

C1
0 .R

2I C2/ is a core for eiˆn.DAn
CVn�E/e�iˆn ; Subsection 3.2. Clearly, An and

Vn satisfy the assumptions of Lemma 4. Thus, for n sufficiently large, E … �.DAn
/

and we may replace � by eiˆn.DAn
C Vn �E/�1e�iˆn� obtaining that

�j‰ D �i eiˆn.DAn
C Vn �E/�1e�iˆn.� � r�j /‰; j 2 f2; 3g: (23)

Observe that using (23) for j D 2 in combination with Lemma 4, with q D 2; r D 3,
and F D 0, we obtain that

�2‰ 2 L3.R2I C2/: (24)

We use again (23), for large n, to get in addition that

eF �3‰ D �i eiˆn.eF .DAn
C Vn � E/�1e�F /.e�iˆneF .�r�3/�2‰/: (25)

Since supp.r�3/ � 
3n n
4n we find thanks to (24) that e�iˆneF .�r�3/�2‰ 2
L2.R2I C2/ \ L3.R2I C2/. Thus, we may apply Lemma 4 with q D 3; r D 1 and
q D 2; r D 2 to obtain the decay in the L1 and L2 norms respectively for n � n0
sufficiently large. We obtain the desired bound (5) from (25) by varying F over
finitely many vectors u.

Proof of Lemma 4. Recall that the magnetic vector potential is given by An D A0 C
an where an is defined in (19).

A simple calculation shows that the vector potential

anx0.x/ D
Z 1

0

bn.x0 C s.x � x0// ^ .x � x0/ sds; x0 2 R2; (26)

is also a vector potential of the magnetic field bn. A crucial property of anx0 is that

janx0.x/j � kbnk1 � jx � x0j; x; x0 2 R2: (27)

Since curl an
x0 D curl an there exists a function 'n W R2 ! R with

rx'n.x; x0/ D an.x/ � anx0.x/: (28)

We may further require that
'n.x; x/ D 0: (29)
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The proof of Lemma 4 is based upon Lp estimates for the resolvent expansion (35)
below. We start by defining the relevant objects and list their Lp properties. For
z 2 Rn�.DA0

/ letG0.x; x0; z/ be a representation of the Green kernel of .DA0
�z/�1

as 2�2-matrix. Due to (60) from Appendix A and the triangular inequality we obtain
that

keF.x/G0.x; x0I z/e�F.x0/kC2˝C2 � e��.x�x0/C� jx�x0j!.x � x0I z/ defD gF .x � x0/:

We observe that thanks to (61) we have that8<
:
gF 2 Lt .R2/ t 2 Œ1; 2/;
jxjgF 2 Lt .R2/ t 2 Œ1;1�:

(30)

We introduce, for n 2 N, the integral operators

Sn.z/; Tn.z/ W L2.R2I C2/ �! L2.R2I C2/

with

.Sn.z/f /.x/
defD
Z

R2

ei'n.x;x0/G0.x; x0I z/f .x0/dx0; (31)

.Tn.z/f /.x/
defD
Z

R2

� � anx0.x/ ei'n.x;x0/G0.x; x0I z/f .x0/dx0; (32)

where'n is determined by (28) and (29). Notice that in view of (30), (27), andYoung’s
inequality (see [18], Section 4.2) both operators are well defined and bounded. In
fact, since

k.eF Tn.z/e�F /.x; x0/kC2˝C2 � kbnk1jx � x0jgF .x � x0/;

we find by (30) and Young’s inequality that, for q 2 Œ1;1�,

lim
n!1 keF Tn.z/e�F kq;q D 0: (33)

Furthermore, a similar argument implies that, for q; r 2 Œ1;1� and t 2 Œ1; 2/ with
1
t

D 1C 1
r

� 1
q

,

sup
n2N

keF Sn.z/e�F kq;r < 1: (34)

Our next task is to show the following resolvent formula in L2.R2I C2/, for n 2 N
so large that kTn.z/k2;2 < 1, see (33),

.DAn
� z/�1 D Sn.z/

1X
kD0

Tn.z/
k: (35)
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Pick functions f 2 L2.R2I C2/ and g 2 C1
0 .R

2I C2/ and, we find

h.DAn
� z/g; Sn.z/f i

D
Z

R2

D
Œ.DAn

� z/g�.x/;
Z

R2

ei'n.x;x0/G0.x; x0I z/f .x0/ dx0E
C2
dx

D
Z

R2

Z
R2

he�i'n.x;x0/Œ.DAn
� z/g�.x/; G0.x; x0I z/f .x0/iC2 dx dx0;

where Young’s inequality together with Lemma 11 from Appendix A enabled us to
use Fubini’s theorem in the last equality. Observe that due to (28)

e�i'n.x;x0/Œ.DAn
� z/g�.x/ D Œ.DA0

� � � anx0 � z/e�i'n.�;x0/g�.x/:

Hence, using again Fubini’s theorem,

h.DAn
� z/g; Sn.z/f i DZ

R2

D Z
R2

G0.x0; xI z/Œ.DA0
� z/e�i'n.�;x0/g�.x/ dx; f .x0/

E
C2
dx0

�
Z

R2

Z
R2

h� � anx0.x/e�i'n.x;x0/g.x/; G0.x; x0I z/f .x0/iC2 dx0 dx

D hg; f i � hg; Tn.z/f i:

(36)

For the first integral after the first equality above we used (29) together with the fact
that G0 is the Green kernel of DA0

and thus, for any Qg 2 C1
0 .R

2I C2/,Z
R2

G0.x0; xI z/Œ.DA0
� z/ Qg�.x/ dx D Qg.x0/ a.e.

Now, since DAn
is essentially self-adjoint on C1

0 .R
2I C2/ we can extend the iden-

tity (36) for allg 2 D.DAn
/. From this extension follows thatSn.z/mapsL2.R2I C2/

in D.DAn
/ and

.DAn
� z/Sn.z/f D f � Tn.z/f; f 2 L2.R2I C2/:

This yields, for n large enough, the operator identity

Sn.z/ D .DAn
� z/�1.1� Tn.z//;

from which follows (35).
We observe that (20), for Vn D 0, is a consequence of (33), (34), and

keF .DAn
� z/�1e�F kq;r � keF Sn.z/e�F kq;r �

1X
kD0

.keF Tn.z/e�F kq;q/k :
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Note that the last sum above converges for n large enough due to (33).
In order to show (20) for Vn 6D 0 we note that by Hölder’s inequality

kVneF .DAn
� z/�1e�F kq;q �kVnk1keF .DAn

� z/�1e�F kq;q �! 0; (37)

as n ! 1. Therefore, the following computation is meaningful for n large enough

keF .DAn
C Vn � z/�1e�F kq;r

D keF .DAn
� z/�1.1C Vn.DAn

� z/�1/�1e�F kq;r

� keF .DAn
� z/�1e�F kq;r

1X
mD0

kfVneF .DAn
� z/�1e�F gmkq;q :

This finishes the proof.

6. Gaussian-localization

In this section we show Theorem 3 on Gaussian localization of eigenfunctions with
energies in the discrete spectrum of

H D DA C V;

under the assumptions (A1)–(A5) stated in the introduction. We choose the magnetic
vector potential to be given by

A.x/
defD r�1A.r/

��x2
x1

�
; A.r/ D r�1

Z r

0

B.s/s ds: (38)

If B 2 L
q
loc.R

2;R/ it is easy to see, using Hölder’s inequality, that if q 2 .1; 2�

then A 2 L
p
loc.R

2I R2/, for some p 2 .2;1/, and that A 2 L1
loc.R

2I R2/ whenever
q 2 .2;1� .

The proof of Theorem 3, given in Subsection 6.3, follows the ideas of [19] consist-
ing inAgmon-type estimates with localizations in space and in the angular momentum
variable. Of course, we have to adapt the method of [19] since our Hamiltonian is
not bounded form below.

In Subsection 6.1 we transform the operator H to polar coordinates and we de-
compose it in the angular momentum variable mj . The analyticity condition (A4)
on V permits us to obtain exponential decay in jmj j of eigenfunctions of H with
eigenvalues E 2 �d.H/; see Lemma 5 in Subsection 6.2. In order to obtain the
Agmon estimates, in Subsection 6.3, we square the transformed free Dirac operator
K
.2/
0 ; see (39) for its definition. The Gaussian decay is essentially due to a positive

term in .K.2/
0 /2 that goes like r2. This term is in competition with a term that behaves

like mj when mj � 0. The Gaussian weights in the Agmon estimates are localized
in the region where mj . r2. The complementary region, on the other hand, is
controlled by the exponential decay in jmj j.
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6.1. Unitary transform. In the following we derive an equivalent representation
of H . We denote by U the unitary map that represents H in polar coordinates; see
e.g. [30], Section 7.3.3.

UHU � D H .1/ D K
.1/
0 C v.r; �/;

K
.1/
0

defD S�f�i @r C ir�1�3J3 � i �3A.r/g;

acting on H .1/ defD L2.RC/˝ L2.T I C2/2, where

J3
defD �i @� C 1=2�3; S�

defD
�
0 e�i �

ei � 0

�
:

Next we identify L2.T I C2/ with `2.Z/2 by means of the transformation

F W L2.T I C2/ �! `2.Z/2

given by

F Œf �.j /
defD 1p

2�

Z 2�

0

M�e
�imj �f .�/ d�;

for f 2 L2.T I d�/2, where mj D .2j C 1/=2; j 2 Z, and

M�
defD
�
ei �=2 0

0 i e�i �=2

�
:

Under these transformations we find the decomposition

L2.R2I C2/ Š H .2/ defD
M
j2Z

L2.RCI dr/2

and the corresponding operator

H Š H .2/ D K
.2/
0 CW;

which is essentially self-adjoint on D .2/ defD F UC1
0 .R

2I C2/. For h 2 D .2/,K.2/
0 D

F UDAU
�F � acts as

.K
.2/
0 h/.r; j / D .�i �2@r C �1.�mj r�1 C A.r///h.r; j /; (39)

where we used the fact that F S�F
� D �2, that F S��3F

� D i �1, and that F J3F
�

is the multiplication operator by mj . The electric potential W D F vF � acts as

.W h/.r; l/
defD
X
j2Z

Ov.r; l � j /h.r; j /; (40)
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where

Ov.r; n/ D 1

2�

Z 2�

0

e�in�v.r; �/d�; n 2 Z: (41)

Two other quantities play an important role in our analysis, namely W1
defD F @rvF �

given by

.W1h/.r; l/
defD
X
j2Z

@r Ov.r; l � j /h.r; j /; (42)

and W2
defD F @�vF � that acts as

.W2h/.r; l/
defD
X
j2Z

i .j � l/ Ov.r; l � j /h.r; j /: (43)

6.2. Rotation-analyticity. For f 2 H .1/ and a 2 R we set

.Uaf /.r; �/
defD .eiJ3af /.r; �/ D ei�3a=2f .r; � C a/:

We call a vector f 2 H .1/ rotation-analytic, if and only if the series

X
n2N

kJ n3 f k
nŠ

	n; 	 > 0;

has an infinite radius of convergence. We start by presenting a lemma that gives
us some a priori decay of some eigenfunctions of H .2/ in the angular momentum
variable.

Lemma 5. Assume that (A1)–(A4) hold. Let ‰ 2 H .2/ be an eigenfunction ofH .2/

to the eigenvalue E 2 �d .H .2//. Then, for every � > 0, we have

X
j2Z

Z 1

0

e2� jmj jj‰.r; j /j2dr < 1:

Proof. The proof is analog to the one given in [19], Section 3. We sketch it here for
the reader’s convenience. Due to Lemma 14 (in Appendix B) fH .1/.z/gz2C defined
on D.K

.1/
0 / through

H .1/.z/ D K
.1/
0 C Qvz;

is an analytic family of type (A); see [23]. Note that when a 2 R the identity
H .1/.a/ D UaH

.1/U �
a holds. Moreover, by Lemma 13 (in Appendix B) we have

that

Qvz.K.1/
0 � i /�1
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is a compact operator in H .1/ for any z 2 C. Therefore, �ess.H
.1/.z// D �ess.K

.1/
0 /

by Weyl’s theorem. Arguing with analytic perturbation theory and using the fact that
the spectrum ofH .1/.a/ andH .1/ is the same for a real (see e.g. the proof of Theorem
XIII.36 in [23] for a similar argument) we find that E 2 �d.H

.1// of multiplicity
N 2 N is also an eigenvalue of H .1/.z/ of the same multiplicity.

Let Pz be the N -dimensional E-eigenprojection of H .1/.z/. Since rotation-
analytic vectors are dense in H .1/ (see e.g. [20]) we find some rotation-analytic
vectors f1; : : : ; fN such that RanP0 D SpanfP0f1; : : : ; P0fN g: Observing that, for
a 2 R and j 2 f1; : : : ; N g,

UaP0fj D PaUafj ;

we find an analytic continuation of a 7! UaP0fj 2 H .1/ to the complex plane. In
particular, eiJ3zP0fj belongs to H .1/ for any z 2 C. Let ‰1 2 RanP0 be such that
F‰1 D ‰. By the discussion above we get that

F eJ3�‰1 2 H .2/; � 2 R:

This ends the proof since .F eJ3�‰1/.r; j / D emj �‰.r; j / and

X
j2Z

Z 1

0

e2� jmj jj‰.r; j /j2dr

�
X
j2Z

Z 1

0

e�2�mj j‰.r; j /j2dr C
X
j2Z

Z 1

0

e2�mj j‰.r; j /j2dr < 1:

6.3. Agmon-type Estimate. In this section we deduce the Agmon estimates needed
in the proof of Theorem 3. They were obtained in [19] for the case of a magnetic
Schrödinger operator. These estimates uses heavily the fact that the Schrödinger
operator is bounded from below. As we commented before we will obtain these
estimates for the square of the Dirac operator K.2/

0 .
Fix a number QB > B0 and note that, due to (A2), there exists R0 > 0 so large

that the estimate (47) is fulfilled and moreover

k1fr>R0gBk < QB; r > R0: (44)

We set, for 0 < q2 < q1 < 1,

r.j /
defD

8̂̂<
ˆ̂:

s
4 QB

.q21 � q22/B
2
0

mj mj � 0

0 mj < 0;

and


q1;q2

defD f.r; j / 2 RC � Z j r � r.j /g:
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Moreover, we define

	.r; j /
defD

8̂̂̂
<
ˆ̂̂:
q2B0=4.r

2 � r.j /2/ mj � 0; r � r.j /;

q2B0r
2=4 mj < 0;

0 mj � 0; r < r.j /:

Eventually we will choose q2 to be sufficiently close to 1. A direct calculation shows
that

j	.r; j1/ � 	.r; j2/j � q2 QB
.q21 � q22/B0

jj1 � j2j:

Let 	"
defD 	.1C "	/�1. It is easy to see that

j	".r; j1/ � 	".r; j2/j � q2 QB
.q21 � q22/B0

jj1 � j2j: (45)

Finally, for R > R0, we fix a smooth function fR in r with bounded derivatives in
RC � Z satisfying

fR.r; j / D
8<
:
1 r � 2R and .r; j / 2 
q1;q2

;

0 r � R or .r; j / 62 
q1;	q2
;

where � 2 .0; 1/ is a fixed number that will be chosen sufficiently close to 1. Note
that 
q1;q2

� 
q1;	q2
.

Let ‰ be the eigenfunction from Theorem 3 and y‰ defD F U‰ be a normalized
eigenfunction ofH .2/ with corresponding energyE 2 �d .H .2//. We set, forR > R0
and ı 2 .0; �/,

g
defD eı�"fR y‰: (46)

Observe that ı can be chosen arbitrarily close to 1.

Lemma 6. We find constantsR1 > R0 and c > 0 such that, for any ı 2 .�1; 1/; 	 >
R1, and j 2 f0; 1; 2g,

sup
">0

k ��eı �"Wj e
�ı �"��k < c; (47)

where W0
defD W and ��

defD 1fr>�g. In particular, the commutator

ŒK
.2/
0 ; W0� D �i �2W1 C i �1

r
W2 (48)

satisfies the estimate

sup
">0

k eı �"fRŒK
.2/
0 ; W0�e

�ı �"k < 2c; R > R1: (49)
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Proof. We show (47) only for j D 2, for the other cases follow analogously. For any
m 2 Z and r > 0we define the analytic function C 3 z 7! hm.r; z/

defD e�imz Qvz.r; 0/.
Using (41) and the decay and analyticity assumptions on v (A5) we find for any r > 	
(sufficiently large), m 2 Z, and � 2 R that there is a constant C > 0 such that

jyv.r; m/j D 1

2�

ˇ̌̌
ˇ
Z 2�

0

hm.r; �/d�

ˇ̌̌
ˇ D 1

2�

ˇ̌̌
ˇ
Z 2�

0

hm.r; � � i �/d�

ˇ̌̌
ˇ

�e
�m�

2�

Z 2�

0

u2j� j.r; �/d� � k��u2j� jk1e�m� � Ce�m� :

(50)

Here we also used Cauchy’s integral theorem and the fact that hm.r; z/ is 2�-periodic
with respect to Re.z/. In particular, replacing � by �� in the above estimate we see
that, for � > 0 and m 2 Z, the bound ��jyv.r; m/j � Ce�jmj� holds. Therefore,
using (45), (43), and Young’s inequality for `2.Z2I C2/ in combination with the
Cauchy–Schwarz inequality for L2..0;1/I C/, we get, for � sufficiently large and
every f 2 H .2/, that jhf; ��eı �"W2e

�ı �"��f ij is bounded byZ 1

0

X
l2Z

jf .r; l/j
X
j2Z

j��yv.r; l � j /j jl � j jeı� jl�j j jf .r; j /jdr � zCkf k2;

for some constant zC > 0, where �
defD q2

QB
.q2

1�q2
2 /B0

.

Equation (49) follows from (47) and (48). Equation (48) is a consequence of

ŒK
.2/
0 ; W � DF ŒK

.1/
0 ; v�F � (51)

DF
�

� iS�@rv C S��3

r
@�v

�
F �; (52)

and the fact that F S�F
� D �2 and F S��3F

� D i �1.

Before continuing let us state a simple technical result.

Lemma 7. For any � 2 R we have that e��"fR y‰ 2 D.K
.2/
0 /.

Proof. Let � > 0 and � 2 F UC1
0 .R

2I C2/. First observe that a simple computation
shows that

.@re
��"fR/e

�
r

extends to a bounded operator on H .2/. In addition, e
r y‰ 2 H .2/ by Theorem 2.
Therefore, we get by explicit calculation on F UC1

0 .R
2I C2/, that

hK.2/
0 �; e��"fR y‰i D hfRe��"K

.2/
0 �; y‰i

D hK.2/
0 fRe

��"�; y‰i C hi �2.@re��"fR/�; y‰i

D h�; e��"fRK
.2/
0

y‰i � i h�; �2.@re��"fR/e
�
r .e
r y‰/i:
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Since � can be chosen arbitrarily from the domain of essential self-adjointness of
K
.2/
0 we get the desired result.

An important role in our analysis is played by the quantity

Q
defD RehK.2/

0 eı �"g;K
.2/
0 e�ı �"gi; (53)

which is well defined due to Lemma 7. Before we show Theorem 3 we state two
preparatory lemmata whose proofs are given in the next subsection.

Lemma 8. There are R; "-independent constants C1; C2 > 0 such that, for R > R1
sufficiently large,

Q � .C1R
2 � C2/kgk2:

Lemma 9. There is anR; "-independent constant C3 and an "-independent constant
C.R/ such that, for R > R1 sufficiently large,

Q � C3kgk2 C C.R/kgk:

Proof of Theorem 3. Fix ı; q1; q2 2 .0; 1/. Combining Lemma 9 and 8 we find, for
R > R1 sufficiently large,

kgk � .C1R
2 � C2 � C3/�1C.R/ (54)

Since the right hand side of (54) is independent of " we obtain, by the monotone
convergence theorem,

keı� y‰k2 D lim
"!0

keı�" y‰k2 � .sup
">0

kgk C keı�.1� fR/k/2 < 1:

ForM > 1 define

z
q1;q2;M D f.r; j / 2 RC � Z j r2 � Mr.j /2g:
We have that z
q1;q2;M � 
q1;q2

. Thus, for any .r; j / 2 z
q1;q2;M , we get

	.r; j / D q2B0

4
.r2 � r.j /2/ � q2B0

4

�
1� 1

M

�
r2:

Therefore, setting ˛
defD ıq2.1�M�1/, we obtain

ke˛B0=4r
2

1z�q1;q2;M

y‰k < 1: (55)

If .r; j / 62 z
q1;q2;M then

mj � .q21 � q22/B
2
0 r
2

4M QB
defD ˇr2:
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Thus, thanks to Lemma 5 we deduce, for any � > 0, that

keˇ�r2

1z�c
q1;q2;M

y‰k < 1: (56)

Choosing � D ˛=ˇ � B0=4 and combining (56) with (55) we conclude that

ke˛B0=4r
2 y‰k < 1:

The latter holds for˛ > 0 arbitrarily close to 1, since ı and q2 can be chosen arbitrarily
close to 1 and M > 1 can be as large as we want. This proves the theorem.

6.4. Proof of Lemmata 8 and 9 . Before we give the proof of Lemmata 8 and 9 we
need a preparatory result.

Lemma 10. For R > R1 sufficiently large we have that

kK.2/
0 gk2

H .2/ � �2q22B
2
0kr gk2=4 � kr�1 gk2=4 � QB kgk2:

Proof. Let us write g D .gC; g�/T and gj̇
defD g˙.�; j /. By Equation (39) we have

kK.2/
0 gk2

H .2/

D
X
j2Z

.k.@r �mj r�1 C A.r//gC
j k2 C k.�@r �mj r�1 C A.r//g�

j k2/:

Furthermore, dropping the term �@2r , we get

k.˙@r �mj r�1 C A.r//gj̇ k2

� hgj̇ ; ..m2j 
mj /r
�2 C A.r/2

�
gj̇ i C hgj̇ ;
@rA.r/� 2mj r

�1A.r/
�
gj̇ i:

Observe that (A2) implies that

1

r2

Z r

0

b.s/sds D o.1/ ; as r ! 1: (57)

This can be seen by splitting the integral above in the regions where b.s/s is integrable
and the one where b decays in the L1- norm. Hence, given q3 2 .q1; 1/ we find,
using (57), a constant R2 > R1 such that, for all r > R2,

B.r/ � q3B0 ; A.r/ � q1B0r=2;

j@rA.r/j � QB; A.r/ � QBr=2:
(58)

Therefore, for all r > R > R2, we get

k.˙@r �mj r
�1 C A.r//gj̇ k2

� hgj̇ ; .�r�2=4C q21B
2
0 r
2=4� 2mj r�1A.r/� QB/gj̇ i;
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where we also use that .m2j ˙mj / � �1=4.
Assume that mj < 0. Since q1 > q2 and A.r/ > 0, for r > R2, we find that

k.˙@r �mj r�1 C A.r//gj̇ k2 � hgj̇ j �q22B20 r2=4� r�2=4 � QB�gj̇ i:
Assume now that mj � 0. Recall that A.r/ � QBr=2, for r > R2. Using that
mj � r2.q21 � �2q22/B20=.4 QB/ on supp g � 
q1;	q2

we get

k.˙@r �mj r
�1 C A.r//gj̇ k2

� hgj̇ j .q21B20 r2=4� r�2=4 �mj QB � QB/gj̇ i
� hgj̇ j .�2q22B20 r2=4� r�2=4 � QB/gj̇ i:

This finishes the proof.

Proof of Lemma 8. Notice that

e˙ı �"K
.2/
0 e�ı �" D K

.2/
0 CZ˙�" ; Z˙�"

defD ˙i ı@r	"�2:

Thus, we have

Q D Reh.K.2/
0 CZ��"/g j .K.2/

0 C Z�"/gi

D kK.2/
0 gk2 � ı2k@r	"gk2:

Since j@r	"j � j@r	j � q2B0r=2 we find

Q � kK.2/
0 gk2 � .1=4/ı2q22B20krgk2:

Combining this with Lemma 10 and that supp g � f.r; j / j r � Rg we obtain (recall
that 0 < ı < � < 1)

Q � ..�2 � ı2/q22B20R2=4� R�2=4 � QB/kgk2:
This concludes the proof.

Proof of Lemma 9. We clearly have

Q � jhK.2/
0 eı�"g; fR.E �W /y‰ij C jhK.2/

0 eı�"g; �2.@rfR/y‰ij: (59)

We analyze each of the above terms separately. Using that .K.2/
0 CW /y‰ D E y‰ and

noting that WfR extends trivially to a bounded operator (for R > R1 large enough),
we have, for any � 2 F UC1

0 .R
2I C2/,

hK.2/
0 �; fR.E �W /y‰i
D h.E �W /fRK

.2/
0 �; y‰i

D hK.2/
0 fR.E �W /�; y‰i C hŒ.E �W /fR; K

.2/
0 ��; y‰i

D h�; .E �W /2fR y‰i C h�; ŒW;K.2/
0 �fR y‰i C h�; i �2.@rfR/.W �E/y‰i:
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This identity extends to any � 2 D.K
.2/
0 /, in particular, we may choose � D eı�"g

(see Lemma 7). Thus, using Lemma 6, we find a constant C > 0, independent of R
and ", such that

jhK.2/
0 eı�"g; fR.E �W /y‰ij

� kgk keı�" Œ.E �W /2fR C ŒW;K
.2/
0 �fR C i �2.@rfR/.W �E/�y‰k

� Ckgk keı�" y‰k � Ckgk.kgk C keı�.1� fR/k/:

We now treat the second term in (59). We define the operators ‡ and L acting, for
any h 2 H .2/ and .r; j / 2 RC � Z, as

.‡h/.r; j / D e�jmj jh.r; j /;
.Lh/.r; j / D .2�1�2.mj r

�1 C A.r//.@rfR‡h/.r; j /:

Clearly, since A.r/ is bounded on the support of @rfR – for R > R1 large enough;
see (58) – L is an anti-symmetric bounded operator on H .2/. With these definitions
we have, using again the eigenvalue equation, that for any � 2 F UC1

0 .R
2I C2/

hK.2/
0 �; �2.@rfR/y‰i

D hK.2/
0 �2.@rfR/�; y‰i C h�; 1supp@rfR

.i @2rfR y‰ � L‡�1 y‰/i
D h�; 1supp@rfR

�
�2.@rfR/.E �W /y‰ C i @2rfR y‰ � L‡�1 y‰�i:

Note that ‡�1 y‰ 2 H .2/ by Lemma 5. Next, we extend this identity to � 2 D.K
.2/
0 /

and replace � by eı�"g. Using that eı�"1supp@rfR
is bounded uniformly in " > 0, we

find "-independent constants C.R/; C 0.R/ > 0 such that

jhK.2/
0 eı�"g; �2.@rfR/y‰ij
� C 0.R/kgk keı�1supp @rfR

k.k‡�1 y‰k C k1supp@rfR
W y‰k/

� C.R/kgk;

where in the last inequality we use again Lemma 5. Therefore, we obtain from (59)
and the above bounds that

Q � kgk�Ckgk C Ckeı�.1 � fR/k C C.R/
�
;

which concludes the proof.
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A. Bounds for the Green function of DA0

Let

�.x � x0/ defD B0jx � x0j2
4

;

�.x; x0/ defD �B0
2
.x1x

0
2 � x2x0

1/:

Lemma 11. Let z 2 R n �.DA0
/ and let G0.x; x0; z/, x; x0 2 R2, be a representation

of the Green kernel of .DA0
� z/�1 as 2 � 2-matrix. Then we have that��G0.x; x0I z/��

C2˝C2 � e��.x�x0/!.x � x0I z/; (60)

for some function !.�I z/ W R2 ! RC that satisfies

sup
x2R2

jxje�"jxj!.xI z/ < 1; " > 0: (61)

Proof. Recall that by Proposition 1 we have for E 6D 0 that ˙E 2 �.DA0
/ if and

only if E2 2 �.dd�/ n f0g D �.d�d/ n f0g, where

d�d D .p � A0/2 � B0;
dd� D .p � A0/2 C B0:

(62)

A simple computation using (6) yields, for any z 2 R n �.DA0
/,

.DA0
� z/�1 D .DA0

C z/.D2
A0

� z2/�1

D
 
z.d�d � z2/�1 d�.dd� � z2/�1
d.d�d � z2/�1 z.dd� � z2/�1

!
:

(63)

It is well-known that the Green function of .p � A0/2 is given by

Œ.p � A0/2 � ���1.x; x0/

D .4�/�1�.˛/ei�.x;x0/e��.x�x0/U.˛; 1; 2�.x � x0//;
(64)

where U is a confluent hypergeometric function and ˛ D �1=2.�=B0 � 1/ … �N;
see for instance [6], Lemma 2.2.

Combining (62), (63), and (64) we obtain that the Green kernel of DA0
is given

by

G0.x; x0I z/ D ei�.x;x0/��.x�x0/

 

11.x; x0I z/ 
12.x; x0I z/

12.x; x0I z/ 
22.x; x0I z/

!
;
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where we define ˛˙ D �1=2..z2 ˙ B0/=B0 � 1/ and


11.x; x0I z/ defD .4�/�1z�.˛C/ U.˛C; 1; 2�.x � x0//;


12.x; x0I z/
defD .4�/�1B0�.˛� C 1/ U.˛� C 1; 2; 2�.x � x0//fi .x1 � x0

1/C .x2 � x0
2/g;


22.x; x0I z/ defD .4�/�1z�.˛�/ U.˛�; 1; 2�.x � x0//:

Here we also used that d
dt
U.˛;1; t/ D �˛�U.˛� C 1; 2; t /; see [1], eq. (13.4.22).

Since �˛˙ 62 N0, the bounds (60) and (61) follow now from the asymptotic formulae
for U ; see [1], eq. (13.5.2), eq. (13.5.7), and eq. (13.5.9).

B. The family fH .1/.z/gz2C

Throughout this section we assume that (A1)–(A4) are satisfied and use that notation
introduced in Section 6. Our concern is the family of operators fH .1/.z/gz2C defined
a priori on the dense subspace UC1

0 .R
2;C2/ of H .1/ as

H .1/.z/
defD K

.1/
0 C Qvz; z 2 C: (65)

We first state a technical lemma.

Lemma 12. Let T be a (complex-valued) multiplication operator on L2.R2;C2/

with T 2 L
p
loc.R

2;C2/; p 2 .2;1� and limn!1 k1fjxj>ngT k1 D 0. Then, T is

relative
p

p2 C 1-compact.

Proof. For n 2 N write T D T1 C T2 where T1 is supported inside the ball Bn.0/ �
R2 and T2 on the complement of Bn.0/. Then T1 is relative

p
p2 C 1-compact;

see [28], Theorem 4.1. Moreover,

kT .p2 C 1/�1=2 � T1.p2 C 1/�1=2k � kT2k �! 0;

as n ! 1, from which follows the claim.

Lemma 13. For any z 2 C the operator zvz.K.1/
0 C i /�1 is compact in H .1/.

Proof. Let z 2 C and � > 0with � > jzj. Due to the inequality j Qvzj � u� on RC �T
and the fact that u� 2 Lp.RC � T; rdr d�/ (for some 2 < p � 1) we see that Qvz
is well defined on the domain of K.1/

0 . Let Qu� D U �u�U . It suffices to show that
U � QvzU.DA C i /�1 is compact in L2.R2I C2/. This is, however, a consequence of
Lemma 12 and the discussion at the end of the proof of Lemma 1.
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Lemma 14. fH .1/.z/gz2C defined in (65) extends to an analytic family of type (A)
with domain D.H .1/.z// D D.K

.1/
0 /.

Proof. Due to Lemma 13 we know that, for any z 2 C, H .1/.z/ extends to a closed
operator with D.H .1/.z// D D.K

.1/
0 /. It is enough to show that, for any ' 2

D.K
.1/
0 / the mapping C 3 z 7! H .1/.z/' 2 H .1/ is analytic.

By the assumption (A5) we have, for any .r; �/ 2 RC � T , that the power series
Qvz.r; �/ D P

n2N0
v.n/.r; �/zn with

v.n/.r; �/ D 1

2� i

I
j� jDs

Qv�.r; �/
�nC1 d�; (66)

for some s > 0, has an infinite convergence radius. In addition, we clearly get
from (66) that jv.n/.r; �/j � u2s.r; �/=s

n for any .r; �/ 2 RC � T . In particular, we
find that

kv.n/'k � 1

sn
ku2s'k ; ' 2 D.K

.1/
0 /:

Therefore, for any jzj < s,

vz' D
X
n2N0

v.n/zn'; ' 2 D.K
.1/
0 /:

This concludes the proof since s > 0 can be chosen arbitrarily large.
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