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Microlocal limits of Eisenstein functions
away from the unitarity axis

Semyon Dyatlov

Abstract. We consider a surface M with constant curvature cusp ends and its Eisenstein
functions Ej .�/. These are the plane waves associated to the j th cusp and the spectral
parameter �, .� � 1=4 � �2/Ej D 0. We prove that as Re � ! 1 and Im � ! � > 0, Ej

converges microlocally to a certain naturally defined measure decaying exponentially along the
geodesic flow. In particular, for a surface with one cusp and a sequence of �’s corresponding
to scattering resonances, we find the microlocal limit of resonant states with energies away
from the real line. This statement is similar to quantum unique ergodicity (QUE), which holds
in certain other situations; however, the proof uses only the structure of the infinite ends, not
the global properties of the geodesic flow. As an application, we also show that the scattering
matrix tends to zero in strips separated from the real line.
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1. Introduction

Concentration of eigenfunctions of the Laplacian in phase space dates back to the
papers of Schnirelman [25], Colin de Verdière [3], and Zelditch [30]. Their quantum
ergodicity (QE) result states that on a closed Riemannian manifold whose geodesic
flow is ergodic with respect to the Liouville measure, a density one subsequence of
eigenfunctions converges microlocally to this measure. For manifolds with boundary,
QE was proved in a special case by Gérard–Leichtnam [7] and in general by Zelditch–
Zworski [33]. The paper [7] used the semiclassical defect measure approach taken
here.

The papers [13], [16], [17], [26], and [31] studied the question for finite area hyper-
bolic surfaces, that is hyperbolic quotients with cusps. In particular, [31] established
QE for any such surface, if embedded eigenfunctions are augmented with Eisen-
stein functions on the real line; the latter parametrize continuous spectrum of the
Laplacian arising from the presence of cusps. For the modular surface one has a
stronger statement of quantum unique ergodicity (QUE): any sequence of Hecke–
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Maass forms (see[16] and [26]) or Eisenstein functions on the real line (see [17]
and [13]) converges microlocally to the Liouville measure. Guillarmou and Naud [9]
have recently studied equidistribution of Eisenstein functions for convex co-compact
hyperbolic manifolds; that is, in the presence of funnels, but not cusps. Finally, after
this paper had been posted as a preprint on arXiv, an interesting preprint [22] ap-
peared that addresses similar questions to those we study, in particular proving our
Theorem 1, in the special case of the modular surface. See [19], [24], and [32] for
recent reviews of other results.

The present paper considers an arbitrary surface with cusps and studies phase
space concentration of Eisenstein functions for the spectral parameter � in the upper
half-plane, away from the real line. We show that for a given cusp and a given
limit � > 0 of Im �, there is only one limiting measure – see Theorem 1. This
statement is similar to that of QUE; however, in contrast with the Q(U)E facts listed
above, we do not use any global properties of the geodesic flow, such as hyperbolicity
or ergodicity. Instead, we represent Eisenstein functions as plane waves; that is,
the sum of ‘incoming’ and ‘outgoing’ waves, where the ‘incoming wave’ depends
only at the structure of the manifold at infinity. The main idea of the paper can be
summarized as follows: the microlocal limit of a plane wave is obtained by taking the
natural measure corresponding to the ‘incoming’ part of this wave and propagating
it along the geodesic flow. The key difference from the case Im � ! 0 is that
the corresponding semiclassical measures are exponentially decaying, rather than
invariant, along the geodesic flow.

We restrict ourselves to the case of surfaces with exact cusp ends. However, the
method of the proof could potentially be applied to complete Riemannian manifolds
with a variety of infinite ends, or even to more general self-adjoint semiclassical
differential operators, as long as a notion of plane waves exists. For example, in the
case of a compactly supported metric perturbation of the Euclidean metric on R3,
plane waves are solutions to the equation

.�x � �2/E.�; !I x/ D 0; ! 2 S2; � 2 C;

that have the following form near infinity:

E.�; !I x/ D e�i�!�x C E 00.�; !I x/;

where E 00 is outgoing (for Im � > 0, this means that it lies in L2 of the whole
space). The limiting measure for E.�; !I x/ with Re � ! C1, Im � ! � > 0, and
! ! !0 2 S2 can be obtained by propagating forward along the flow the measure
e2�!0�x dx defined on fjxj � 1; � D �!0g, similarly to the definition of the measure
�j� in (1.11) below.

Our motivation comes from the natural question of quantum ergodicity of res-
onant states. These replace eigenfunctions on non-compact manifolds, and their
equidistribution in phase space was studied in the model of quantized open maps by
Nonnenmacher–Rubin [20]. In a similar setting, Demers and Young [5] have ob-
served that a conditionally invariant measure for a billiard with a hole is determined
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entirely by its behavior in the hole; this is somewhat parallel to the main idea of our
paper presented above. See also an interesting physics paper by Keating et al. [14].

As stated in Theorem 3, microlocal convergence for Eisenstein functions away
from the real line yields a microlocal convergence result for resonant states with
complex energies at a fixed distance from the real line. Although this does not
address the Im � ! 0 case, satisfied by most resonances (see Conjecture 1 below), it
seems to be the first result on microlocal convergence of resonant states of differential
operators.

We proceed to a rigorous formulation of the results. Let .M; g/ be a two-
dimensional complete Riemannian manifold with cusp ends; that is, M is the union
of a compact set and finitely many cusp regions C1; : : : ; Cm, where each Cj possesses
a system of canonical coordinates

.r; �/ 2 .R; 1/ � S1; S1 D R=.2�Z/;

with R some constant, such that the metric g on Cj has the form

g D dr2 C e�2rd�2: (1.1)

A classical example of such M is a finite area hyperbolic surface without conic points.
In fact, the present paper applies to finite area hyperbolic quotients 	nH with conic
points as well, as one can get rid of these by passing to a finite covering space (the
cone angles are rational multiples of � , as the corresponding elliptic transformation
has to generate a discrete subgroup of PSL.2; R/ – see for example [1], Chapter 2).

Let � be the (nonnegative) Laplace–Beltrami operator corresponding to the metric
g; this operator is self-adjoint, its spectrum is contained in Œ0; 1/, and the spectrum
in Œ0; 1=4/ consists of finitely many eigenvalues; see [18], Section 1. The Eisenstein
functions

Ej .�/; j D 1; : : : ; m; Im � > 0; � 62 .0; i=2
;

are unique solutions to the equation1

.� � 1=4 � �2/u D 0; u 2 C 1.M/; (1.2)

that satisfy
u � 1Cj

e.1=2�i�/r 2 L2.M/: (1.3)

Here 1Cj
is the indicator function of the cusp region Cj . To define L2.M/, we use

the volume form Vol induced by g. See Section 3 for details.
We would like to study in particular the (weak) limit of the measure jEj .�/j2 d Vol

as � tends to the infinity in a certain way. It turns out that it is more natural to study

1For hyperbolic quotients, is more conventional to use the parameter s D 1=2� i�, with �2 C1=4 D
s.1 � s/ and the physical region fIm � > 0g corresponding to fRe s > 1=2g. We use the parameter �

to emphasize that our argument belongs to general scattering theory and is applicable to other cases such
as the Euclidean case mentioned above.
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microlocal convergence of Ej .�/ in the sense of semiclassical defect measures. A
definition of these for a compact manifold can be found in [34], Chapter 5; we
use semiclassical notation presented in Section 2. Since M is noncompact and Ej

does not lie in L2, we have to insert compactly supported cutoffs into the following
definition.

Definition 1. Let hn be a sequence of positive numbers tending to zero and un

be a sequence of functions on M bounded uniformly on L2.K/ for each compact
K � M . (The Eisenstein functions satisfy this property by (3.8).) We say that the
sequence un converges microlocally to some Radon measure � on T �M if, for each
pseudodifferential operator A.h/ 2 ‰0 with principal symbol a 2 C 1.T �M/, and
each � 2 C 1

0 .M I R/, we have

hA.hn/�un; �uniL2.M / �!
Z

T �M

�2a d�:

The measure � is called the semiclassical measure associated to the sequence un.

In particular, we can take as A.h/ the multiplication operator by a.z/ 2 C 1
0 .M/:Z

a.z/junj2 d Vol �!
Z

T �M

a.z/ d�:

In other words, the measure junj2 d Vol converges weakly to the pushforward of �

under the projection � W T �M ! M .
We list several basic properties of semiclassical measures; we do not use them in

the present paper, but mention them to explain why the measure �j� defined below is
a reasonable candidate for the microlocal limit of Eisenstein functions. Assume that
�.h/ is a family of complex numbers satisfying2

Re �.h/ D h�1; Im �.h/ �! � > 0 as h ! 0: (1.4)

Note that by (1.2),

.h2� � h2=4 � .1 C ih Im �.h//2/Ej .�.h// D 0: (1.5)

However, P.h/ D h2� is a semiclassical differential operator of order 2; its principal
symbol, which we denote by p, is the square of the norm induced by the metric g

on the cotangent bundle. Therefore, the set fp D 1g is the cosphere bundle S�M ,
consisting of covectors of length 1; moreover, if exp.tV / is the geodesic flow on
T �M and exp.tHp/ is the Hamiltonian flow of p, then

exp.tHp/ D exp.2tV / on S�M: (1.6)

2Same methods apply with Re � ! �1, with signs in certain formulas inverted. The corresponding
semiclassical measures are exponentially increasing along the geodesic flow and concentrated on the
outgoing, rather than incoming, set A

C

j
.
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Let hn be any sequence tending to zero such that the sequence Ej .�.hn// converges
microlocally to some Radon measure �. Applying the methods of proof of [34],
Section 5.2, to (1.5), one can get the following properties:

(i) � is supported on the cosphere bundle: �.T �M n S�M/ D 0;

(ii) � decays exponentially along the geodesic flow: for each A � T �M ,

�.exp.tV /A/ D e�2�t�.A/: (1.7)

We have exponential decay, rather than invariance under the flow, in (1.7), because
the imaginary part of the operator in (1.5) is asymptotic to �2h�. Note that there exist
multiple measures satisfying properties (i) and (ii) above; each geodesic emanating
directly from some cusp carries such a measure. In fact, it can be proved3 that every
Radon measure � satisfying properties (i) and (ii) is supported on the union A� of the
incoming sets A�

j defined below and thus it can be written as an integral, over some
measure on the circle, of measures supported on geodesics emanating directly from
the cusps. The main result of the paper is that there is only one possible semiclassical
measure for Eisenstein functions for fixed j and � > 0.

Theorem 1. Let h > 0 be a small parameter tending to zero, and assume that �.h/

satisfies (1.4). Then for each A.h/ 2 ‰0 with semiclassical principal symbol a, and
each � 2 C 1

0 .M I R/, we have as h ! 0,

hA.h/�Ej .�.h//; �Ej .�.h//iL2.M / �!
Z

�2a d�j� (1.8)

and

hA.h/�Ej .�.h//; �Ej 0.�.h//iL2.M / �! 0; j ¤ j 0: (1.9)

Here �j� is the measure defined in (1.11) below.

Together, (1.8) and (1.9) can be interpreted as follows: for any ˛ 2 Cm, the linear
combination

P
j j̨ Ej .�.h// converges microlocally to the measure

P
j j j̨ j2�j� .

To construct the measure �j� , we first define the incoming set A�
j and the outgoing

set AC
j . Let .r; �/ be the canonical coordinates in the cusp Cj and .r; �; pr ; p� / be

the induced system of coordinates on T �Cj ; define

Aj̇ D f� 2 S�M j 9t > 0 W G˙t� 2 yAj̇ g;
yAj̇ D f.r; �; pr ; p�/ 2 T �Cj j pr D ˙1; p� D 0g:

(1.10)

3Here is a sketch of the proof. Let K D fr � RC1g � S�M ; since K is compact, we have �.K/ D
c < 1. Then by (1.7) for each l 2 N, �.exp.lV /K/ D e�2�l c and thus the series

P
l �.exp.lV /K/

converges. By Borel–Cantelli lemma, we get the required statement �.S�M n A�/ D 0 if we show
that, for each � 2 S�M n A�, there exist infinitely many l 2 N such that exp.�lV /� 2 K . The latter
follows from the fact that every unit speed backwards geodesic that leaves K enters some cusp region Cj ;
unless this geodesic lies in A�, it will eventually bounce back and return to K , where it will spend an
interval of length at least 1, containing the point exp.�lV /� for some integer l .
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In other words, AC
j is the union of all geodesics going directly into the j th cusp and

A�
j is the union of all geodesics emanating directly from it. Note that Aj̇ need not be

closed; in fact, for hyperbolic surfaces each of them is dense in S�M . The measure
�j� is supported on A�

j and is constructed as follows: we start with the cylindrical

measure e2�r drd� on yA�
j and propagate it to a measure on the whole A�

j using
property (ii) of semiclassical measures; the result converges because � > 0. More
formally, for each continuous compactly supported function a on T �M , we putZ

T �M

a d�j� D lim
t!C1 e�2�t

Z
Cj

e2�r.a B exp.tV //.r; �; �1; 0/ drd�: (1.11)

It can be seen directly that (1.11) defines a Radon measure satisfying properties (i)
and (ii) of semiclassical measures.

The proof of Theorem 1 is based on the representation of Eisenstein functions as
plane waves:

Ej .�/ D E 0
j .�/ C E 00

j .�/;

where E 0
j .�/ D 1Cj

z�.r � R/e.1=2�i�/r is the ‘incoming’ and E 00
j .�/ the ‘outgoing’

part; since � is in the upper half-plane, E 00
j is bounded in L2.M/ uniformly in h. We

now consider the semiclassical Schrödinger propagator eith� D eit.h2�/=h; by (1.2),
we have formally

eith�Ej .�/ D eith.1=4C�2/Ej .�/: (1.12)

Note that jeith.1=4C�2/j D e�2t Im � is exponentially decaying as t ! C1. For a
compactly supported (that is, having compactly supported Schwartz kernel) A.h/ 2
‰0,

hA.h/Ej .�/; Ej .�/i D e�4t Im �heith�A.h/e�ith�Ej .�/; Ej .�/i:
However, as eith� is unitary and E 00

j is bounded in L2.M/, we can replace Ej by E 0
j

with a remainder exponentially decaying in t :

hA.h/Ej .�/; Ej .�/i D e�4t Im �heith�A.h/e�ith�E 0
j .�/; E 0

j .�/i C O.e�2t Im �/:

(1.13)
(The remainder is O.e�2t Im �/ instead of O.e�4t Im �/, as the intersection of the
wavefront set of eith�A.h/e�ith� with S�M lies in fr � 2t C T g for some constant
T depending on the support of A.h/ and thus eith�A.h/e�ith�E 0

j .�/ should be of

size e2t Im �.) We can now perform an explicit computation using Egorov’s theorem
and the formula for E 0

j to see that, as h ! 0, the first term on the right-hand side
of (1.13) converges formally to

e�4�t

Z
Cj

e2�r z�.r � R/2.a B exp.2tV //.r; �; �1; 0/ drd�:

It remains to let t ! C1 to obtain (1.8); (1.9) follows by a similar argument.
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There is however a serious gap in the ‘proof’presented above; namely, the operator
eith� is only defined on L2 and is not properly supported. Since the function Ej .�/

does not lie in L2, the equation (1.12) does not make any sense. Similarly, the
operator eith�A.h/e�ith� is not compactly supported and thus one cannot apply it
to E 0

j .�/. To fix this gap, we use cutoffs depending on t and on the support of A.h/;
see Proposition 5.

One could also try to fix the gap discussed in the previous paragraph by using the
propagator

U.t/ D
 

cos.t
p

�/ sin.t
p

�/=
p

�

�p
� sin.t

p
�/ cos.t

p
�/

!

for the Cauchy problem for the wave equation

.D2
t � �x/u.t; x/ D 0; t 2 R; x 2 M: (1.14)

Indeed, since (1.14) has finite speed of propagation, the elements of the matrix U.t/

act C 1.M/ ! C 1.M/. Define
p

�2 C 1=4 to have positive real part, so that it is

equal to � C O.h/. By (1.2), the function eit
p

�2C1=4Ej .�/ solves (1.14) and for

ÅEj .�/ D .1; i
p

�2 C 1=4/Ej .�/

we have U.t/ ÅEj .�/ D eit
p

�2C1=4 ÅEj .�/. One could then try to argue as above, us-
ing that U.t/ is unitary on PH 1.M/ ˚ L2.M/ to estimate the contribution of E 00

j .�/,

and using that U.�t /.1; i
p

�2 C 1=4/E 0
j .�/ is a Lagrangian state associated to prop-

agating yA�
j by exp.tV /, to calculate the contribution of E 0

j .�/.
As an application of Theorem 1, we derive a bound on the scattering matrix S.�/.

For each two cusps Cj , Cj 0 , define Sjj 0.�/ by

Ej jCj 0 .�I r; �/ D ıjj 0e.1=2�i�/r C Sjj 0.�/e.1=2Ci�/r C � � � ;

where .r; �/ are canonical coordinates on Cj 0 , ı is the Kronecker delta, and the dots
denote the terms corresponding to terms with k ¤ 0 in the Fourier series expan-
sion (3.1) of Ej jCj 0 in the � variable.

Theorem 2. Consider two cusps Cj ; Cj 0 and assume that �j�.AC
j 0 / D ; (in partic-

ular, this is true for hyperbolic surfaces, as AC
j 0 \ A�

j consists of countably many
geodesics). Then for �.h/ satisfying (1.4),

Sjj 0.�.h// �! 0 as h ! 0:

In other words,

Sjj 0.�/ D o.1/; 0 < C �1 < Im � < C; Re � ! 1:



188 S. Dyatlov

This estimate is not always optimal: in the special case of the modular surface M D
PSL.2; Z/nH, the scattering coefficient S.�/ is related to the Riemann zeta function
by the formula [27], Section 2.18,

S.�/ D p
�

.�2i�/	.�i�/

.1 � 2i�/	.1=2 � i�/
:

Given that both .z/ and �1.z/ are bounded in every half-plane fRe z > 1 C C �1g
(either by Dirichlet series or by Euler product representation), the basic bound on the
zeta function in the critical strip (see [27], eq. (5.1.4)) gives

jS.�/j D O.j�j� min.Im �;1=2/�/; Im � � C �1: (1.15)

The bound (1.15) is optimal for Im � > 1=2, and no optimal bounds are known
for 0 < Im � < 1=2. It would be interesting to see if semiclassical methods can yield
an effective bound on the scattering coefficients, and compare such bound to (1.15).

Finally, we address the question of microlocal convergence of resonant states.
Assume that for some �, the matrix S.�/ is not invertible; that is, there exists ˛ 2
Cm n f0g such that, for each j 0, X

j

j̨ Sjj 0.�/ D 0: (1.16)

This is equivalent to saying that �� is a resonance; i.e., a pole of the meromorphic
continuation of the resolvent .� � 1=4 � �2/�1 to the lower half-plane (see for
example [18], Section 5). Moreover, a resonant state at �� is given by

P
j j̨ Ej .�/.

Theorem 1 immediately implies the following result.

Theorem 3. Assume that ��n is a sequence of resonances satisfying (1.4) for some
hn ! 0. Let un be a sequence of corresponding resonant states and assume that it
converges microlocally to some measure �. Then � is a linear combination of the
measures �1� ; : : : ; �m� defined by (1.11).

The fact that semiclassical measures for resonant states are exponentially decaying
along the geodesic flow is parallel to Theorem 4 of [21]; a similar fact has been
obtained in the setting of quantized open maps in [20]. However, the concentration
statement (see[21], eq. (1.15)) is vacuous in our case, as the set 	�

E from [21] (not
	C

E , as Re.��/ < 0) is the whole cosphere bundle. In fact, [21] heavily use the fact
that resonant states are outgoing, while Eisenstein functions studied in the present
paper need not satisfy the outgoing condition (which in our case is (1.16)).

For surfaces with only one cusp, resonant states away from the real line have to
converge microlocally to a single measure; however, we do not address the question
of the behavior of the kernel of S.�/ for multiple cusps. For other types of infinite
ends (such as the convex cocompact case), the scattering matrix S.�/ is replaced by
an operator acting on a certain infinite dimensional Hilbert space. The distribution of
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resonances in strips of fixed size and the behavior of the kernel of S.�/ is controlled
by the trapping phenomenon in the compact part of our manifold, while the restriction
on the set of possible semiclassical measures provided in this paper only uses behavior
at infinity.

Finally, it would be natural to ask an analogue of the quantum ergodicity ques-
tion: where do most resonant states microlocally converge if we drop the restriction
Im � ! � > 0? Theorem 3 does not provide the answer because most resonances
are located o.1/ close to the real line. To make this last statement precise, we as-
sume that there are only finitely many embedded eigenvalues (which is true under
certain genericity assumptions – see [2], Théorème 7, and [23]), let Res be the set of
resonances, counted with multiplicities, and recall the Weyl law; see [18], eq. (0.5):

j Res \fj�j � h�1gj D Area.M/

2�
h�2.1 C o.1//:

We claim that for each " > 0,

j Res \fj�j � h�1; Im � < �"gj D o.h�2/: (1.17)

The proof of (1.17) is based on Corollary 3.29 of [18]:

X
�2Res

j Im �j
j�j2 < 1: (1.18)

If (1.17) is false, then there exist "; ı > 0 and a sequence hj ! 0 such that

j Res \fj�j � h�1
j ; Im � < �"gj � 2ıh�2

j :

However, by the upper bound provided by the Weyl law, there exists a constant C0

such that
j Res \fC �1

0 h�1
j � j�j � h�1

j ; Im � < �"gj � ıh�2
j : (1.19)

We pass to a subsequence of hj such that hj =hj C1 > C0. Then the sets of resonances
counted in (1.19) for different j do not intersect each other, and the sum of j Im �j=j�j2
over each of these sets is bounded from below by "ı, contradicting (1.18).

By (1.17), a density one subsequence of resonances converges to the real line; the
corresponding semiclassical measures are invariant with respect to the geodesic flow
and a natural candidate is the Liouville measure.

Conjecture 1. Assume that M is a surface with cusp ends whose geodesic flow is
ergodic with respect to the Liouville measure �0. Then there exists a density one
subsequence of resonant states in any strip fIm � > �C g converging microlocally to
�0.

The proof of (1.17) and Conjecture 1 have been suggested by Maciej Zworski.
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The paper is organized as follows. In Section 2, we review some notation and
facts from semiclassical analysis. In Section 3, we present basic facts about Eisen-
stein functions and prove Theorems 1 and 2. Finally, in Section 4, we consider the
special case of finite area hyperbolic surfaces and describe the canonical measures
�j� from (1.11) via the action of the fundamental group of M ; we also prove Theo-
rem 1 in this case for Im � > 1=2 using the classical definition of Eisenstein functions
as series.

Acknowledgements. I would like to thank Maciej Zworski for his interest in the
project and helpful advice. I would also like to thank Steven Zelditch for several
helpful discussions on the nature of measures satisfying (1.7) and in particular direct-
ing me to the formula (4.5), and Stéphane Nonnenmacher andYves Colin de Verdière
for many suggestions for improving the manuscript. I am especially thankful to an
anonymous referee for reading the paper carefully and many useful remarks. Finally,
I am grateful for partial support from NSF grant DMS-0654436.

2. Semiclassical preliminaries

In this section, we briefly review the portions of semiclassical analysis used below;
the reader is referred to [34] for a detailed account on the subject.

We assume that h > 0 is a parameter, the smallness of which is implied in all
statements below. Consider the algebra ‰s.Rd / of pseudodifferential operators with
symbols in the class S s.Rd /, defined as follows: a function a.x; �I h/ smooth in
.x; �/ 2 R2d lies in this class if and only if for each compact set K � Rd and each
multiindices ˛; ˇ, there exists a constant C˛ˇK such that

sup
.x;�/2K�Rd

j@x
˛@

�

ˇ
a.x; �I h/j � C˛ˇKh�is�jˇ j:

The only difference with the invariant symbol classes studied in [34], Section 9.3, is
that we do not require uniform bounds as x ! 1. However, this does not matter
in our situation, as we will mostly use compactly supported operators; e.g. those
operators whose Schwartz kernels are compactly supported in Rd � Rd . As in [34],
Section 13.2, we can define the algebra ‰s.M/ for any manifold M . The compactly
supported elements of ‰s.M/ act H t

„;loc.M/ ! H t�s
„;comp.M/ with norm O.1/ as

h ! 0, where H t
„;loc and H t�s

„;comp are semiclassical Sobolev spaces.
To avoid discussion of simultaneous behavior of symbols as � ! 1 and h ! 0,

we further require that the symbols of elements of ‰s are classical, in the sense that
they posses an asymptotic expansion in powers of h, with the term next to hk lying in
S s�k (see [6], Section 2.1, for details). Following [28], Section 2, we introduce the
fiber-radial compactification xT �M of the cotangent bundle. (The use of xT �M slightly
simplifies the statement of Proposition 1 below. However, as all other microlocal
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analysis is happening in a compact subset of T �M , one could easily avoid fiber-radial
compactification if needed.) Each A 2 ‰s has an invariantly defined (semiclassical)
principal symbol �.A/ D a 2 C 1.T �M/, and h�i�sa extends to a smooth function
on xT �M . We then define the characteristic set of A as fh�i�sa D 0g � xT �M and
say that A is elliptic on some U � xT �M if U does not intersect the characteristic set
of A.

We use the definition of semiclassical wavefront set WFh.A/ � xT �M for A 2
‰s.M/ found in [28], Section 2, or [6], Section 2.1. The wavefront set of A is empty
if and only if A lies in the algebra h1‰�1.M/ of smoothing operators such that
each of C 1.M � M/ seminorms of their Schwartz kernels decays faster than any
power of h. For A; B 2 ‰s.M/, we say that A D B microlocally on some open
U � xT �M , if WFh.A � B/ \ U D ;. Also, we say that A 2 ‰s.M/ is compactly
microlocalized, if WFh.A/ does not intersect the fiber infinity @. xT �M/; in this case,
A 2 ‰s.M/ for all s 2 R.

We now recall several fundamental facts from semiclassical analysis.

Proposition 1 (Elliptic estimate). Let P 2 ‰s.M/, be properly supported, A 2
‰t .M/, t � s, be compactly supported, and assume that P is elliptic on WFh.A/ �
xT �M . Then there exists a compact set K � M and a constant C such that for each
u 2 H s

„;loc.M/,

kAukL2.M / � C kP ukL2.K/ C O.h1/kukL2.K/:

Proposition 2. Assume that M is a manifold with prescribed volume form and P.h/ 2
‰s is a properly supported self-adjoint operator on L2.M/ with principal symbol
p 2 C 1.T �M I R/. Let

eitP.h/=h W L2.M/ �! L2.M/; t 2 R;

be the corresponding Schrödinger propagator, defined by means of spectral theory;
it is a unitary operator. Let also exp.tHp/ be the Hamiltonian flow of p on T �M .
Then (with constants below depending on t ), we have the following results.

1 (Microlocalization). The operator eitP.h/=h is microlocalized on the graph of
exp.�tHp/ in the following sense: if A; B 2 ‰0.M/ are compactly supported and
B is compactly microlocalized, and

exp.tHp/.WFh.A// \ WFh.B/ D ;; (2.1)

then AeitP.h/=hB D O.h1/L2!L2 .

2 (Egorov’s Theorem). Let A 2 ‰0.M/ be compactly supported and compactly
microlocalized, with principal symbol a. Then there exists a compactly supported
and compactly microlocalized operator At 2 ‰0.M/ such that

eitP.h/=hAe�itP.h/=h D At C O.h1/L2.M /!L2.M / : (2.2)



192 S. Dyatlov

Moreover, WFh.At / � exp.�tHp/.WFh.A//, and the principal symbol of At is
a B exp.tHp/.

A proof of Proposition 1 in the closely related microlocal case is given in Theo-
rem 18.1.24’ of [11]; see for example [6], Section 2.2, for the semiclassical case. For
Proposition 2, see [34], Theorem 11.1, or [6], Proposition 2.6.

3. Proofs

We start by studying the equation (1.2) in some cusp Cj . Consider the Fourier series

ujCj
.r; �/ D

X
k2Z

u
j

k
.r/eik� : (3.1)

By (1.1), eq. (1.2) takes the form

Œ.Dr C i=2/2 C k2e2r � �2
u
j

k
.r/ D 0; k 2 Z: (3.2)

For k D 0, (3.2) is a constant-coefficient ODE and we have

u
j
0.r/ D u

j
Ce.1=2Ci�/r C uj�e.1=2�i�/r ; (3.3)

for some constants u
j
˙.

Now, we extend the function r smoothly from the union of all Cj to the whole
M so that r � R outside of the cusp regions. As before, let 1Cj

be the indicator
function of the cusp Cj . Finally, fix a cutoff function z� 2 C 1.RI Œ0; 1
/ such that
supp z� � .0; 1/ and supp.1 � z�/ � .�1; 1/.

Take a cusp Cj and define the ‘incoming’ part of the Eisenstein function by

E 0
j .�/ D 1Cj

� z�.r � R/e.1=2�i�/r 2 C 1.M/: (3.4)

Then

Fj .�/ D .� � 1=4 � �2/E 0
j .�/ D 1Cj

Œ�; z�.r � R/
e.1=2�i�/r 2 C 1
0 .M/:

Assume that for some constant C0, we have

C �1
0 � Im � � C0; Re � > 1: (3.5)

Since � is self-adjoint, the resolvent

.� � 1=4 � �2/�1 W L2.M/ �! L2.M/

is well-defined and the only solution to (1.2) satisfying (1.3) is given by [18], Section 3,

Ej .�/ D E 0
j .�/ C E 00

j .�/;

E 00
j .�/ D �.� � 1=4 � �2/�1Fj .�/:

(3.6)

We can estimate E 00
j uniformly in L2.M/.
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Proposition 3. There exists a constant C such that for each � satisfying (3.5),

kE 00
j .�/kL2.M / � C: (3.7)

It follows that for each compact K � M , there exists a constant CK such that for
each � satisfying (3.5),

kEj .�/kL2.K/ � CK : (3.8)

Proof. It follows from the definition of Fj that kFj kL2 D O.j�j/. However, since �

is self-adjoint,

k.� � 1=4 � �2/�1kL2!L2 � 1

j Im.�2/j D O.j�j�1/

and (3.7) follows. Next, (3.8) follows from (3.7) and the fact that kE 0
j kL2.K/ �

CK .

Also, Ej is microlocalized on the cosphere bundle S�M .

Proposition 4. Assume that A.h/ 2 ‰s.M/, s � 2, is compactly supported and
WFh.A/ \ S�M D ;. Let h D .Re �/�1. Then kA.h/Ej .�/kL2.M / D O.h1/.

Proof. Follows from Proposition 1 applied to (1.5) and (3.8).

We now prove the key technical estimate, approximating Ej .�/ on a fixed compact
set by the result of propagating the appropriately cut off ‘incoming wave’ E0

j .�/.

Proposition 5. Assume that � satisfies (3.5). As before, let h D .Re �/�1. Then for
each T > R, t > 0,

kz�.T � r/.Ej .�/ � eith.1=4C�2/e�ith� z�.T C 2t C 1 � r/E 0
j .�//kL2.M /

D Ot;T .h1/ C O.e�2t Im �/:

Here the Ot;T notation means that the constants in O.�/ depend on t and T . The
constant in O.e�2t Im �/ is independent of T; t; h. Note also that z�.T �r/ 2 C 1

0 .M/.

Proof. First of all, we have by (3.7),

keith.1=4C�2/e�ith� z�.T C 2t C 1 � r/E 00
j .�/kL2

� e�2t Im �kE 00
j .�/kL2 D O.e�2t Im �/:

Therefore, it suffices to prove that

kut kL2 D Ot;T .h1/; (3.9)
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where for 0 � s � t , we define

us D z�.T � r/.Ej .�/ � eish.1=4C�2/e�ish� z�.T C 2t C 1 � r/Ej .�//:

Since z�.T � r/z�.T C 2t C 1 � r/ D z�.T � r/, we have u0 D 0; next,

Dsus D z�.T � r/eish.1=4C�2/e�ish�h.� � 1=4 � �2/z�.T C 2t C 1 � r/Ej .�/

D z�.T � r/eish.1=4C�2/e�ish�hŒ�; z�.T C 2t C 1 � r/
Ej .�/:

Let X.h/ 2 ‰0 be compactly supported and compactly microlocalized in a small
neighborhood of the cosphere bundle S�M , but equal to the identity microlocally
near fr � T C 2t C 1g \ S�M . Then by Proposition 4

khŒ�; z�.T C 2t C 1 � r/
.1 � X.h//Ej .�/kL2 D Ot;T .h1/: (3.10)

Now, by Part 1 of Proposition 2,

kz�.T � r/e�ish�hŒ�; z�.T C 2t C 1 � r/
X.h/kL2!L2 D Ot;T .h1/: (3.11)

To verify (2.1), we note that each point � 2 WFh.hŒ�; z�.T C 2t C 1 � r/
X.h//

lies close to the cosphere bundle S�M (depending on the choice of X.h/) and inside
fr > T C 2tg; therefore, by (1.6), the curve exp.Œ0; t 
Hp/� lies in Cj \ fr > T g,
and thus does not intersect the support of z�.T � r/. Here we use the fact that in each
cusp region Cj , the derivative of the function r along the geodesic flow is bounded
by 1, which can be verified directly using (1.1).

Since the operator in (3.11) is compactly supported, by (3.8) we get

kz�.T � r/e�ish�hŒ�; z�.T C 2t C 1 � r/
X.h/Ej .�/kL2 D Ot;T .h1/: (3.12)

Combining (3.10) with (3.12), we arrive at

kdsuskL2 D Ot;T .h1/I
integrating this from 0 to t , we get (3.9).

Armed with Proposition 5, we can make rigorous the ‘proof’ of the main theorem
given in the introduction.

Proof of Theorem 1. Let A 2 ‰0 be compactly supported with principal symbol a;
it suffices to prove (1.8) and (1.9) without the cutoff �. We may assume that A is
compactly microlocalized; indeed, if WFh.A/\S�M D ;, then hAEj .�/; Ej 0.�/i D
O.h1/ by Proposition 4 and (3.8). In fact, we may assume that WFh.A/ is contained
in a small neighborhood of S�M .

Fix T > R such that A is supported in fr < T � 1g, so that

A D z�.T � r/Az�.T � r/:
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By Proposition 5,

z�.T � r/Ej .�/ D eith.1=4C�2/ z�.T � r/e�ith� z�.T C 2t C 1 � r/E 0
j .�/

C Ot .h
1/L2 C O.e�2t Im �/L2 :

(3.13)

Take some j; j 0; substituting (3.13) into the expression

hAEj .�/; Ej 0.�/i D hAz�.T � r/Ej .�/; z�.T � r/Ej 0.�/i;
and using the fact that the left-hand side of (3.13) is O.1/ in L2 by (3.8), we get

jhAEj .�/; Ej 0.�/i � e�4t Im �h zAt E
0
j .�/; E 0

j 0.�/ij � Ce��t C Ot .h
1/;

zAt D z�.T C 2t C 1 � r/eith�Ae�ith� z�.T C 2t C 1 � r/;
(3.14)

where we use that Im � > �=2 for h small enough. Here C is a constant depending
on A and T , but not on t or h. Therefore,

lim
t!C1 lim sup

h!0

jhAEj .�/; Ej 0.�/i � e�4t Im �h zAt E
0
j .�/; E 0

j 0.�/ij D 0;

and thus

lim
h!0

hAEj .�/; Ej 0.�/i D lim
t!C1 e�4t Im � lim

h!0
h zAt E

0
j .�/; E 0

j 0.�/i; (3.15)

provided that the double limit on the right-hand side exists. To compute this limit,
let At 2 ‰0 be the compactly supported operator from part 2 of Proposition 2, with
P.h/ D h2�. Then WFh.At / � fr � T C 2tg; therefore,

At D z�.T C 2t C 1 � r/At z�.T C 2t C 1 � r/ C Ot .h
1/L2!L2 I

by (2.2), zAt D At COt .h
1/L2!L2 . Since both At and zAt are compactly supported,

we can replace zAt by At in (3.15). By (1.6), the principal symbol of At on S�M is
at D a B exp.2tV /.

For j ¤ j 0, the supports of the functions E 0
j .�/ and E 0

j 0.�/ do not intersect
(as they lie in different cusp regions); since At is pseudodifferential and compactly
supported, we get

hAt E
0
j .�/; E 0

j 0.�/i D Ot .h
1/

and (1.9) follows.
We now assume that j D j 0. We can use the definition (3.4) of E 0

j , the definition
of semiclassical quantization, and the method of stationary phase to get for each t ,

AtE
0
j .�/ D 1Cj

.a B exp.2tV //.r; �; �1; 0/z�.r � R/e.1=2CIm �/re�ir=h

C Ot .h/L2
comp

:
(3.16)
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Indeed, restricting to the cusp Cj , in local coordinates .r; �/ (we will also need to
restrict to a topologically trivial subset of the circle, where � 2 R gives a valid
coordinate) the left-hand side of (3.16) becomes

.2�h/�2

Z
e

i
h

..r�r 0;��� 0/�.pr ;p� /�r 0/at .r; � I pr; p� /

z�.r 0 � R/e.1=2CIm �/r 0

dprdp� dr 0d� 0 C O.h/:

The stationary points of the phase ˆ D .r � r 0; � � � 0/ � .pr ; p�/ � r 0 are given by
r 0 D r; � 0 D �; pr D �1; p� D 0 and at these points, ˆ takes the value �r and its
Hessian has determinant 1 and signature 0. Applying the method of stationary phase,
we get (3.16).

We now multiply (3.16) by E 0
j .�/ and integrate, remembering that the volume

form on Cj is given by e�r drd� and Im � ! � as h ! 0:

lim
h!0

hAtE
0
j .�/; E 0

j .�/i

D
Z

Cj

z�.r � R/2e2�r.a B exp.2tV //.r; �; �1; 0/ drd�:
(3.17)

Here .r; �; pr ; p� / are the coordinates on T �Cj induced by the coordinate system
.r; �/ on Cj . Letting t ! C1 and recalling (1.11), we get from (3.17)

lim
h!0

hAEj .�/; Ej .�/i D
Z

S�M

a d�j� ;

which proves (1.8).

We can explain (3.16) using the theory of semiclassical Lagrangian distributions
(see [10], Chapter 6, or [29], Section 2.3, for a detailed account, and [12], Section 25.1,
or [8], Chapter 11, for the closely related microlocal case) as follows. By (3.4), the
function

E 0
j .�/ D 1Cj

� z�.r � R/e.1=2CIm �/re�ir=h

is a Lagrangian distribution associated to the Lagrangian yA�
j from (1.10), with the

principal symbol z�.r �R/e.1=2CIm �/r . Since At is pseudodifferential and compactly
supported, At E

0
j .�/ is also a Lagrangian distribution associated to yA�

j , and its prin-
cipal symbol is the product of the principal symbol of E 0

j .�/ and the restriction of

the principal symbol of At to yA�
j , proving (3.16).

Finally, we estimate the scattering coefficient by the mass of Eisenstein series on
the outgoing set.

Proof of Theorem 2. Fix a cusp Cj 0 and take compactly supported and compactly
microlocalized A 2 ‰0..R; RC1// such that WFh.A/ � fpr > 0g, and the principal
symbol a.r; pr/ of A satisfies a.R C 1=2; 1/ ¤ 0. Let � 2 C 1

0 .R/ have �.0/ D 1.
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Denote u.h/ D Ej .�.h// and recall that Sjj 0.�.h// D u
j 0

C .h/ is defined by (3.3).
We then have for each ı > 0,

juj 0

C .h/j D O.1/kAu
j 0

0 .h/kL2 CO.h1/ D O.1/kAıu.h/kL2.M / CO.h1/; (3.18)

uniformly in ı, where Aı D �.hD�=ı/A is a pseudodifferential operator supported
in Cj 0 . However, by Theorem 1 we have, as h ! 0,

kAıu.h/k2
L2.M /

D hA�
ı Aıu.h/; u.h/iL2.M / !

Z
S�Cj 0

j�.hp�=ı/a.r; pr/j2 d�j� :

By our assumption, �j�. yAC
j 0 / D 0; therefore,

lim
ı!0

lim
h!0

kAıu.h/kL2.M / D
Z

yAC

j 0

ja.r; pr/j2 d�j� D 0

and we are done by (3.18).

4. Hyperbolic surfaces

In this section, we consider the special case M D 	nH, where H is the Poincaré
half-plane model of the hyperbolic plane and 	 � PSL.2; R/ is a Fuchsian group of
the first kind, so that M is a finite area hyperbolic surface. Denote by �	 W H ! M

the projection map. The conformal boundary @H D R [ f1g is a circle, as can be
seen by using the Poincaré ball model. This section is not used anywhere else in
the paper and is provided as a quick reference for readers familiar with the theory of
hyperbolic surfaces.

We first find an interpretation of (1.7) in terms of the group action; this is parallel
to the representation of measures invariant under the Hamiltonian flow in Patterson–
Sullivan theory (see for example [1], Section 14.2). We parametrize the cosphere
bundle S�H by

T W .@H � @H/� � R ! S�H;

where .@H � @H/� is the Cartesian square of the circle @H minus the diagonal. The
map T is defined as follows. Take .q1; q2/ 2 .@H � @H/� and let �q1q2

.t / be the
unique unit speed geodesic (that is, a semicircle in the half-plane model) going from
q1 to q2, parametrized so that �.0/ is the point of � closest to i 2 H. We put

T .q1; q2; t / D .�q1q2
.t /; P�q1q2

.t //:

Now, consider a Radon measure � on S�M satisfying (1.7). We can lift it to a
measure �0 on S�H; then

T ��0 D Q� � e�2�t dt; (4.1)
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where Q� is some Radon measure on .@H � @H/�.
For each � 2 PSL.2; R/, we can calculate

�.T .q1; q2; t // D T

�
�.q1/; �.q2/; t C 1

2
log

ˇ̌̌
ˇ� 0

B.q1/

� 0
B.q2/

ˇ̌̌
ˇ
�

;

where � 0
B.q/ is the derivative of � considered as a transformation on the ball model

B with the identification map H ! B given by z 7! .z � i/=.z C i/; if

�.z/ D az C b

cz C d
;

�
a b

c d

�
2 SL.2; R/; (4.2)

then

j� 0
B.q/j D q2 C 1

.aq C b/2 C .cq C d/2
:

We see then that the measure �0 defined by (4.1) is invariant under the action of 	 on
S�B if and only if for each � 2 	 ,

�� Q� D j� 0
B.q1/j� j� 0

B.q2/j�� Q�; (4.3)

where
.�� Q�/.A/ D Q�..� � �/.A//; A � .@B � @B/�:

In particular, if O� is a Radon measure on @B such that for each � 2 	 ,

�� O� D j� 0
B.q/j2�C1 O�; (4.4)

then a measure Q� satisfying (4.3) is given by (compare with eq. (14.14) in [1], bearing
in mind that we use the half-plane model)

Q� D jq1 � q2j�2.�C1/jq1 C i j2.�C1/jq2 C i j2� O� � dq2: (4.5)

Now, fix a cusp region Cj on M and assume for simplicity that 1 2 @H is
a preimage of the corresponding cusp. Let 	1 be the group of all elements of 	

fixing 1; without loss of generality, we may assume that it is generated by the shift
z ! z C 1. Then all the preimages of the cusp of Cj are given by

f�.1/ j �	1 2 	=	1gI
i.e., they are indexed by right cosets of 	1 in 	 . Note that, for � given by (4.2),

�.1/ D a=c; j� 0
B.1/j D 1

a2 C c2
: (4.6)

A canonical system of coordinates on Cj is given by

.r; �/ 2 .Rj ; 1/ � S1 7�! �	

�� C ier

2�

�
: (4.7)
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Proposition 6. The lift of the measure �j� defined in (1.11) corresponds under (4.1)
to .2�/2�C1 Q�, with Q� given by (4.5), and

O� D
X


	12	=	1

ıa=c

.a2 C c2/2�C1
I (4.8)

here ı denotes a delta measure. (Note that the values a=c are distinct for different
cosets, as 	1 is the stabilizer of 1.)

Proof. The measure O� is well-defined, as the seriesX

	12	=	1

1

.a2 C c2/2�C1
D

X

	12	=	1

.Im ��1.i//2�C1 (4.9)

converges, by convergence of Eisenstein series (4.10). By (4.6), the measure O�
satisfies (4.4); therefore, it produces a measure � supported on the cosphere bundle
S�M and satisfying (1.7). Moreover, since O� is supported on the set of the preimages
of the cusp of Cj , � is supported on A�

j . It then suffices to study the restriction of �

to yA�
j . To this end, take A � .Rj ; 1/ � S1 and consider

zA D f.r; � I �1; 0/ 2 T �Cj j .r; �/ 2 Ag � yA�
j :

Since

T .1; q; t / D
�
q C i ji C qje�t ; �i

et

ji C qj
�
;

we get

zA D �	T .f.1; q; t / j .q; t / 2 {Ag/;
{A D f.�=.2�/; �r C ln.2�/ C ln ji C �=.2�/j/ j .r; �/ 2 Ag:

Then

�. zA/ D
Z

.q;t/2 {A
ji C qj2�e�2�t dqdt D .2�/�2��1

Z
A

e2�r drd�

and the proof is finished by the definition (1.11) of �j�.

In particular, for the modular surface the measure O� is given by

O� D
X

m;n2Z
n�0; m?n

ım=n

.m2 C n2/2�C1
:

Finally, we note that for � > 1=2 one can prove Theorem 1 for hyperbolic surfaces
using the series representation for the Eisenstein function

zE.�I z/ D .2�/1=2�i�
X

	1
2	1n	

.Im �.z//1=2�i�; z 2 H: (4.10)



200 S. Dyatlov

This series converges absolutely (see [15], Theorem 2.1.1); since it is invariant under
	 and each of its terms solves (1.2) on H, it gives rise to a solution yE.�; z/ of (1.2).
It can also be seen that (4.10) converges in L2 of a fundamental domain of 	 , if we
take out the term with � D 1; therefore, yE.�; z/ satisfies (1.3) and we have

zE.�I z/ D Ej .�I �.z//:

The .2�/1=2�i� prefactor here is due to the fact that in our normalization of the
Eisenstein series, the incoming term is given by e.1=2�i�/r , and a canonical system
of coordinates is given by (4.7), with a 2� factor there since the stabilizer of the cusp
is generated by the transformation z 7! z C 1, while we need the fr D 0g circle to
have length 2� .

One then proceeds as in the proof of Theorem 2 of [9], by analysing the microlocal
limit of each term of the Eisenstein series and showing that the off-diagonal terms
of the sum hA zE; zEi are negligible. (The analysis of [9] is dramatically simplified,
as we are not asking for an estimate on the remainder and thus one can sum over
an h-independent number of the elements of the group in Lemma 7 of [9] and use
standard microlocal analysis.)
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