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Optimal lower bound of the resonance widths
for a Helmholtz tube-shaped resonator

André Martinez1and Laurence Nédélec

Abstract. The study of the resonances of the Helmholtz resonator has been broadly described in
previous works (see [11] and references therein). Here, for a simple 2-dimensional resonator in
the shape of a tube, we analyze the transition zone where oscillations start to appear. Following
a careful analysis, we obtain an optimal lower bound of the width of the resonances.
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1. Introduction

The Helmholtz resonator was conceived and built by Hermann von Helmholtz to
study resonating cavities and how they are heard by humans. A resonator consists of
a bounded cavity (the chamber) connected to the exterior by a thin tube (the neck of
the chamber). Blowing air into the aperture of the neck creates an instability leading
to pressure oscillations in the chamber. The frequency of the sound that is generated
is determined by the shape of the chamber in a non-obvious way.

Mathematically, this phenomenon is described by the resonances of the Dirichlet
Laplacian ��� on the domain � consisting in the union of the chamber, the neck
and the exterior (see Figure 1).

1Partly supported by Università di Bologna, Funds for Selected Research Topics and Founds for Agree-
ments with Foreign Universities.
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Figure 1. The Helmholtz resonator.

More precisely, the resonances are defined as the eigenvalues of a complex defor-
mation of ���; their real part corresponds to the frequency, while their imaginary
part corresponds to the inverse of the life-time of the vibrational mode. It is therefore
of physical interest to compute these two quantities as precisely as possible. A practi-
cal way to do this is to study this problem asymptotically when the width " of the neck
is arbitrarily small. In this situation, the frequencies are close to those of the chamber
alone (that is, to the real eigenvalues of the Dirichlet Laplacian on the cavity), and
it is possible to find an exponentially small upper bound to the absolute values of
the imaginary part (the width) of the resonances [11]. However, no lower bound is
known in the general case.

Lower bounds have been obtained in a 1-dimensional geometry (see, e.g., [7]
and [8]). The few results in higher dimensions concerning exponentially small widths
of resonances are those of [6], [3], and [9], and they do not apply to a Helmholtz res-
onator. The lower bound obtained in [9] is optimal (see also [5] for a generalization).

We derive here a lower bound in the particular case of a 2-dimensional tube-shaped
resonator (see Figure 2) which is optimal in the sense that it has the same order of
magnitude as the upper bound. We also include calculations indicating that this lower
bound should remain true in the 3-dimensional setting. We discuss here only the case
where the neck has a square cross-section, but anticipate that the result also holds
when the cross-section is circular. The computations would be more delicate then
because the eigenfunctions of the disc are less explicit. The general case where the
complement of the exterior domain is bounded is still completely open.
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Figure 2. The tube-shaped resonator.

2. Geometrical description and results

Consider, in R2, a Helmholtz resonator consisting of a regular bounded open set C

(the cavity), connected to an unbounded domain E through a thin straight tube T ."/

(the neck) of radius " > 0 (see Figure 2). We consider here the case where " is very
small.

More precisely, assume that the Euclidean coordinates .x; y/ of R2 can be chosen
in such a way that, for some L; ı > 0 independent of ", one has:

E D .L;C1/� .�1; 1/I
0 2 @C I
xC \ �

.Œ0; L�� f0g/ [ xE� D ;I
T ."/ D .Œ�ı; L�� .�"; "//\ �

R2nC
�
:

Here, @C is the boundary of C . In particular, as " ! 0C, the resonator �."/
defD

C [ T ."/ [ E collapses to �0
defD C [ Œ0;M0� [ E, with M0 D .L; 0/.

Let P" D ���."/ be the Dirichlet Laplacian on �."/.

Let also PC."/ D ��C[T ."/ be the Dirichlet Laplacian on C."/
defD C [ T ."/.

Finally, let ��C and ��E be the Dirichlet Laplacian on C and E, respectively.
In this situation, the resonances ofP" are defined as the eigenvalues of the operator

obtained by performing a complex dilation with respect to the coordinate x, for x > L
large. We are interested in those resonances of P" that are close to the eigenvalues of
��C . So, let �0 be an eigenvalue of ��C with u0 the corresponding (normalized)
eigenfunction. Set

˛k
defD k�=2; (2.1)

where k 2 N. The quantities ˛2
k

(k � 1) correspond to the thresholds of ��E.
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We assume the following conditions:8̂̂<
ˆ̂:
�0 is simple;

�0 > ˛
2
1 and �0 6D ˛2

k
;

u0 does not vanish on C near the point .0; 0/.

(H)

Note that the first and last properties are automatically satisfied when �0 is the
lowest eigenvalue of ��C . When �0 is a higher eigenvalues, then the third property
means that 0 does not lie on a nodal line of u0.

By the arguments of [11], we know that there is a resonance �."/ 2 C of P" such
that �."/ ! �0 as " ! 0, and there is an eigenvalue �."/ of PC."/ such that, for all
ı > 0, there is Cı > 0, with,

j�."/� �."/j � Cıe
��.1�ı/L="; (2.2)

for all " > 0 small enough. In particular, since �."/ is real, we obtain immediately
that

j Im �."/j � Cıe
��.1�ı/L=": (2.3)

Our main result here is the following.

Theorem 2.1. Under Assumption (H), there exists N0 > 0 such that, for all " > 0

small enough, one has

j Im �."/j � "N0e��L=":

Remark 2.2. Following the proof carefully, one can see that one can take any
N0 > 10.

Remark 2.3. An extension to the 3-dimensional case is given in Section 9.

The strategy of the proof is the following one.

� By Green’s formula, we reduce the problem to finding a lower-bound estimate
on the resonant state u" in the exterior domain E;

� We find a representation of u" by means of series on both sides of the aperture
fLg � Œ�"; "�;

� By matching the two representations at the aperture, we reduce to finding a
lower-bound estimate on u" inside the neck T ."/;

� Then, using an argument from [2], the required estimate is deduced from an
estimate on u0 near .0; 0/.
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3. Properties of the resonant state

By definition, the resonance �."/ is an eigenvalue of the complex distorted operator,

P".�/
defD U�P"U

�1
� ;

where � > 0 is a small parameter, and U� is a complex distortion of the form,

U�'.x; y/
defD '.x C i�f .x/; y/;

with f 2 C1.R/, f .x/ D 0 if x � L C 1, f .x/ D x for x � L C 2. (Observe
that, by Ichinose’s lemma, the essential spectrum of P".�/ consists of the union of
the half-lines e�2i� Œ˛2

k
;C1/ (k � 1), with 	 D arctan�.)

It is well known that such eigenvalues do not depend on � (see, e.g., [12] and
[10]), and that the corresponding eigenfunctions are of the form U�u" with u" inde-
pendent of�, smooth on R2 and analytic with respect to x in a complex sector around
.LC 1;C1/. In other words, u" is a non trivial analytic solution of the equation
��u" D �."/u" in �."/, such that u"j

@�."/
D 0 and, for all � > 0 small enough,

U�u" is well defined and is in L2.�."// (in our context, this latter property will be
taken as a definition of the fact that u" is outgoing). Moreover, u" can be normalized
by setting, for some fixed � > 0,

kU�u"kL2.�."//
D 1:

In that case, we learn from [11] (in particular Proposition 3.1 and eq. (5.13)), that,
for any ı > 0, one has,

ku"kL2.C[T ."/[.L;LC1/�.�1;1//
� 1 � O.e.ı� �L

2 /="/ (3.1)

and

ku"kH 1..L;LC1/�.�1;1//
D O.e.ı� �L

2
//="/: (3.2)

Now, using the equation ��u" D �u" and Green’s formula on the domain C."/[
.ŒL; LC 1/ � .�1; 1//, we obtain

Im
Z 1

�1

u".LC 1; y/
@ Nu"

@x
.LC 1; y/dy D Im �

Z
C."/[.ŒL;LC1/�.�1;1//

ju"j2dxdy

and thus, by (3.1),

Im � D .1C O.e.ı��=L/="// Im
Z 1

�1

u".LC 1; y/
@ Nu"

@x
.LC 1; y/dy: (3.3)

Therefore, to prove our result, it is sufficient to obtain a lower bound on

Im
Z 1

�1

u".LC 1; y/
@ Nu"

@x
.LC 1; y/dy:

Note that, by using (3.2), we immediately obtain (2.3).
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4. Representation in the thin tube

Let . k/k�1 be an orthonormal basis of eigenvectors of the Dirichlet realization of
�d2=dy2 on L2.�"; "/, with corresponding eigenvalues ˛2

k
="2. More precisely, for

k � 1, we set

 2k�1.y/
defD 1p

"
cos

�
˛2k�1

y

"

�
I

 2k.y/
defD 1p

"
sin

�
˛2k

y

"

�
:

(4.1)

We also set
	k

defD
q
˛2

k
� "2�."/;

where
p� stands for the principal square root, and we denote by u" D u".x; y/ the

resonant state ofP" corresponding to the resonance �."/, that is, the outgoing solution
of the Dirichlet problem, ´��u" D �."/u" in �."/,

uj
@�."/

D 0:

Then, for any x 2 .0; L/, and for " small enough, write

u".x; y/ D
X
k�1

uk.x/ k.y/;

where

uk.x/
defD

Z "

�"

u".x; y/ k.y/dy:

The coefficient function uk satisfies

"2u00
k.x/ D 	2

kuk

and hence
uk.x/ D ak;Ce�kx=" C ak;�e��kx="

for some ak;C; ak;� 2 C. This proves that, for x 2 .0; L/ and " small enough,

u".x; y/ D
1X

kD1

.ak;Ce�kx=" C ak;�e��kx="/ k.y/; (4.2)

where the sum converges in H 2..ı; L� ı/� .�"; "// for any ı > 0. Differentiating
this identity with respect to x, we also obtain,

@u"

@x
.x; y/ D 1

"

1X
kD1

	k.ak;Ce�kx=" � ak;�e��kx="/ k.y/: (4.3)
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5. Representation in the external tube

As in the previous section, set

'2j �1.y/
defD cos.˛2j �1y/I

'2j .y/
defD sin.˛2jy/:

(5.1)

Also, write u" in E as
u".x; y/ D

X
j �1

vj .x/'j .y/;

where the vj satisfy
v00

j D .˛2
j � �."//vj :

Thus we have

vj .x/ D bj;Ce.x�L/
q

˛2
j

�� C bj;�e�.x�L/
q

˛2
j

��
; (5.2)

with bj;˙ 2 C. Note that when Im � < 0, our choice of the square root implies that

Im
q
˛2

j � � > 0.

By Assumption (H), there exists j0 � 1 such that

˛2
j0
< �0 < ˛

2
j0C1: (5.3)

In particular, for " small enough, ˛2
j0
< Re �."/ < ˛2

j0C1. Moreover, by definition,
u" is outgoing, that is, for � > 0 small (but independent of "), the distorted function
u"..1C i�/x; y/ is inL2.Œ2L;C1/�.�1; 1//. Therefore, in view of (5.2) and (5.3),
we necessarily have

bj;� D 0 for j � j0;

bj;C D 0 for j > j0.

In other words, for x > L,

u".x; y/ D
X

j �j0

bj e
i.x�L/

q
��˛2

j 'j .y/C
X

j >j0

bj e
�.x�L/

q
˛2

j
��
'j .y/; (5.4)

where, for any L0 > L, the series converges in H 2..L; L0/ � .�1; 1//.

6. Representation at the aperture

Now consider the trace u".L; y/ of u" on fx D Lg (note that u" is continuous on
�."/ so its trace is a well defined continuous function on .�"; "/).
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Since we have u" 2 H 2.ŒL; L0� � Œ�1; 1�/, with L0 > L arbitrary, and since the
part f.L; y/ W jyj < 1g of the boundary of ŒL; L0� � Œ�1; 1� is smooth, we see that
u".L; y/ is inH 3=2

loc .�1; 1/. However, since u" vanishes identically on f" < jyj < 1g,
we conclude that in fact

u".L; y/ 2 H 3=2.Œ�1; 1�/: (6.1)

On the other hand, on fjyj < "g, u".L; y/ can be decomposed with respect to the
basis . k/k�1 as

u".L; y/ D
X
k�1

Ck k.y/;

where .Ck/ 2 `2.N/. Moreover, since u".L;˙"/ D 0, if we denote by L.Dy/ the
Dirichlet realization of �d2=dy2 on .�"; "/, then (6.1) implies

.L.Dy/C 1/3=4u".L; y/ 2 L2.�"; "/;
and thus, using that L.Dy/ k D ˛2

k
 k , and ˛k � k as k ! 1, we easily conclude

1X
kD1

k3jCkj2 < 1: (6.2)

Now, with the notations of (4.2), we prove

Lemma 6.1. For all k � 1, one has,

Ck D ak;Ce�kL=" C ak;�e��kL=":

Proof. By (4.2), it is enough to prove that the quantity

ku".L; �/� u".x; �/kL2.�";"/

tends to 0 as x ! L�. This is a probably well-known fact, but let us recall the proof.
For x < L and jyj < ", write

u".L; y/ � u".x; y/ D
Z L

x

@xu".t; y/dt:

By the Cauchy–Schwarz inequality,

ku".L; �/� u".x; �/kL2.�";"/
�

p
.L� x/k@xu"kL2..0;L/�.";"//

:

Denoting by u�
" .x; y/

defD u".x C i�f .x/; y/ the function obtained by distorting u",
we also have,

k@xu"kL2..0;L/�.";"//
D k@xu

�
" k

L2..0;L/�.";"//
� kru�

" k
L2.�."//

D O.1/;

and the result follows.



Lower bound of resonances for a Helmholtz resonator 211

Therefore, for jyj < ", we have proved that

u".L; y/ D
X
k�1

.ak;Ce�kL=" C ak;�e��kL="/ k.y/ (6.3)

and X
k�1

k3jak;Ce�kL=" C ak;�e��kL="j2 < 1: (6.4)

In the same way, taking the limit x ! LC, for jyj < 1 we also obtain

u".L; y/ D
X
j �1

bj'j .y/ (6.5)

and X
j �1

j 3jbj j2 < 1: (6.6)

Similar arguments can be performed for the derivative

@xu" 2 H 1.�."/ \ fjyj < L0g/
and they lead to

@xu".L; y/ D 1

"

X
k�1

	k.ak;Ce�kL=" � ak;�e��kL="/ k.y/ (6.7)

in H 1=2.jyj � "/ and

@xu".L; y/ D i
X

j �j0

�q
� � ˛2

j

�
bj'j .y/ �

X
j >j0

�q
˛2

j � �
�
bj'j .y/ (6.8)

in H 1=2.jyj � 1/.

7. Estimates on the coefficients

In this section, taking advantage of the two previous representations of u" at the
aperture, we compute in two different ways the three following quantities:

hu"; @xu"ifLg�Œ�1;1� ; hu"; '1ifLg�Œ�1;1� ; h@xu";  1ifLg�Œ�";"�:

The resulting identities will permit us to give a lower bound on
P

j �j0
jbj j2 in terms

of ja1;�j and to conclude the proof by using an argument from [2].
From now on, we set

Ak;˙
defD ak;˙e˙�kL=":
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Since u".L; y/ vanishes identically on fjyj > "g, in view of (6.3)–(6.8), the two
computations of hu"; @xu"ifLg�Œ�1;1� give the identity

1

"

X
k�1

	k.jAk;Cj2 � jAk;�j2 C 2i Im.Ak;C xAk;�//

D
X

j �j0

i
�q

� � ˛2
j

�
jbj j2 �

X
j >j0

�q
˛2

j � �
�
jbj j2:

(7.1)

By definition, one has

	k D k�

2

r
1 � 4"2

k2
�."/:

Therefore, since j Im �."/j D O.e�ı="/ for some constant ı > 0, one finds Re 	k �
k�=2 as k ! 1, j Im 	k j D O.k�1e�ı="/ and

ˇ̌̌
Im

q
� � ˛2

j

ˇ̌̌
D O.e�ı="/ for all

j � j0. Using these facts and taking the real part in (7.1), we obtain,

1

"

X
k�1

.Re 	k/.jAk;Cj2 � jAk;�j2/C 1

"

X
k�1

O.k�1e�ı="/jAk;CAk;�j/

D O.e�ı="/
X

j �j0

jbj j2 �
X

j >j0

�
Re

q
˛2

j � �
�
jbj j2:

In particular, since Re
q
˛2

j � � D �j

2
.1 C O."2j�2//, we see that there exists a

constant C > 0 such thatX
k�1

Re 	k.jAk;Cj2 � jAk;�j2/

�Ce�ı="
X

j �j0

jbj j2 C C
X
k�1

k�1e�ı="jAk;CAk;�j

� �

2
"

X
j >j0

j.1 � C"2j�2/jbj j2:
(7.2)

Moreover, by (A.2), we see thatX
k�2

kjAk;�j2 D O."�1=2e�2�L="/; (7.3)

and we also know from (B.1) that
P

j �j0
jbj j2 D O.e.ı0��L/="/ for any ı0 > 0.

Therefore, we deduce from (7.2) (with other positive constants C; ı),X
k�1

.k � Ck�1e�ı="/jAk;Cj2

� .1C Ce�ı="/jA1;�j2 C Ce�.�LCı/="

� "
X

j >j0

j.1 � C"2j�2/jbj j2:
(7.4)
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Now, computing the scalar products hu".L; �/; '1i and h@xu".L; �/;  1iL2.jyj<"/

in two different ways (by using (6.3)–(6.8) and the fact that u".L; y/ D 0 on f" <
jyj < 1g), we find X

k�1

�k.Ak;C C Ak;�/ D b1I

1

"
	1.A1;C � A1;�/ D

X
j �j0

i
j

�q
� � ˛2

j

�
bj �

X
j >j0


j

�q
˛2

j � �
�
bj ;

with

�k
defD

Z "

�"

 k.y/'1.y/dy D

8̂<
:̂
0 if k is even,

.�1/k�1
2

4k
p
"

�.k2 � "2/
cos

"�

2
if k is odd;

and


j
defD

Z "

�"

'j .y/ 1.y/dy D

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

0 if j is even,

4
p
" sin.."j � 1/�=2/

�."2j 2 � 1/ if j 6D 1

"
is odd;

p
" if j D 1

"
is odd.

Using (7.3) again, we obtain

jA1;C C A1;�j � C0p
"

jb1j C
X
k�2

j�k

�1

Ak;Cj C C0p
"
e��L=" (7.5)

and

jA1;C � A1;�j � C0"
3
2

X
j �j0

jbj j C "

j	1j
X

j >j0

j
j j̨bj j; (7.6)

with some constant C0 > 0.
Then, we observe that j�k=�1j � .k � "2/�1, thus, by (7.4),

X
k�2

j�k

�1

Ak;Cj �
� X

k�2

1

k.k � "2/2

� 1
2

� X
k�2

kjAk;Cj2
� 1

2

� �1

�
jA1;�j2 � "

X
j >j0

j jbj j2
� 1

2 C Ce�.�LCı/=2";

(7.7)

where �1 can be taken arbitrarily close to

� X
k�2

k�3
� 1

2
<
1

2
:
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Inserting (7.7) into (7.5), we obtain

jA1;C CA1;�j � �1

�
jA1;�j2 � "

X
j >j0

j jbj j2
� 1

2 C C0p
"
jb1j C 2Ce�.�LCı/=2": (7.8)

In particular, using the fact that j sin t j � min.jt j; 1/,

j
j j � 4
p
"

�."j C 1/
min

��
2
;

1

j"j � 1j
�
:

On the other hand, setting �0
defD 1C 2

�
� 1:637, and using the fact that j̨ D j�

2
,

j
j j � 4
p

"

�."j C1/
min.�

2
; 1

j"j �1j/, and j	1j D �
2

C O."2/, we obtain

"

j	1j
X

j >j0

j
j j̨ bj j

� .1C C"2/
p
"
�
2

X
j0<j ��0="

"j

"j C 1
jbj j C 4

�

X
j ��0="

"j

"2j 2 � 1 jbj j
�
:

Therefore, by the Cauchy–Schwarz inequality,

"

j	1j
X

j >j0

j
j j̨ bj j � .1C C"2/

r
4
1 C 6

�2

2

�
"

X
j >j0

j jbj j2
� 1

2
; (7.9)

with


1
defD

X
j0C1�j ��0="

"2j

."j C 1/2
; and 
2

defD
X

j ��0="

"2j

."2j 2 � 1/2 :

When " ! 0, 
1 tends to

I1
defD

Z �0

0

tdt

.t C 1/2
D ln.1C �0/ � �0

1C �0

� 0:97 � 0:62 D 0:35

and 
2 tends to

I2
defD

Z 1

�0

tdt

.t2 � 1/2 D �1
2

h 1

t2 � 1

i1
�0

D 1

2.�2
0 � 1/ � 0:298:

Therefore, we deduce from (7.6) and (7.9),

jA1;C � A1;�j � C0"
3
2

X
j �j0

jbj j C �2

�
"

X
j >j0

j jbj;�j2
� 1

2 C C0p
"
e��L="; (7.10)

where �2 can be taken arbitrarily close tor
4
1 C 6

�2

2 � 1:6:
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Summing (7.8) with (7.10) and using the triangle inequality we finally obtain

2jA1;�j � �1

q
jA1;�j2 �X C �2

p
X C

X
j �j0

2Cp
"

jbj j C 3Ce�.�LCı/=2"; (7.11)

where we have set

X
defD "

X
j >j0

j jbj j2:

Now, an elementary computation shows that the map

Œ0; jA1;�j2� 3 X 7! �1

q
jA1;�j2 �X C �2

p
X

reaches its maximum at X D 	2
2

	2
1

C	2
2

jA1;�j, and the maximum value is

�q
�2

1 C �2
2

�
jA1;�j:

Therefore, we deduce from (7.11),

2jA1;�j �
�q

�2
1 C �2

2

�
jA1;�j C

X
j �j0

2Cp
"

jbj j C 3Ce�.�LCı/=2": (7.12)

Since �2
1 C �2

2 � 3 < 4, we have proved

Proposition 7.1. There exist two constants C; ı > 0 such that, for any " > 0 small
enough, one has

jA1;�j � Cp
"

X
j �j0

jbj j C Ce�.�LCı/=":

8. End of the proof

We first observe

Proposition 8.1. There exists a constant C0 > 0, such that

j Im.�/j � 1

C0

� j0X
j D1

jbj j
�2

;

for all " > 0 small enough.
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Proof. Let us compute Im.
R 1

�1
u.LC1; y/ @ Nu.LC1;y/

@x
dy/ with the help of the expres-

sion (5.4). We first obtain

@ Nu"

@x
.x; y/ D

X
j �j0

�i
q
� � ˛2

j bj e
�i.x�L/

q
��˛2

j '1.y/

�
X

j >j0

bj e
�.x�L/

q
˛2

j
��
'j .y/ .x > L/

and thusZ 1

�1

u.LC 1; y/
@ Nu.LC 1; y/

@x
dy

D �
X

j �j0

i jbj j2
q
� � ˛2

j e
�2 Im

q
��˛2

j �
X

j >j0

jbj j2
q
˛2

j � � e�2 Re
q

˛2
j

��
:

Taking the imaginary part, this gives

ˇ̌̌
Im

Z 1

�1

u.LC 1; y/
@ Nu.LC 1; y/

@x
dy

ˇ̌̌

�
X

j �j0

jbj j2 Re
q
� � ˛2

j e
�2 Im

q
��˛2

j �
X

j >j0

jbj j2 Im
q
˛2

j � �e�2 Re
q

˛2
j

��
:

Now, for j > j0, we have
ˇ̌̌
Im

q
˛2

j � �
ˇ̌̌

� C j Im �j, while, for j � j0, there exist

c0; C0 > 0, such that, 2c0 � Re
q
� � ˛2

j � C0, and
ˇ̌̌
Im

q
� � ˛2

j

ˇ̌̌
� C j Im �j.

Then, from (B.1), we obtain

ˇ̌̌
Im

Z 1

�1

u.LC 1; y/
@ Nu.LC 1; y/

@x
dy

ˇ̌̌
� c0

X
j �j0

jbj j2 � e.ı0��L/="j Im �j:

Equation (3.3) combined with the previous estimate gives

j Im.�/j.1C O.e.ı0��L/="// � c0

X
j �j0

jbj j2

and, since
P

j �j0
jbj j2 � j�2

0 .
P

j �j0
jbj j/2, the result follows.

In view of Propositions 7.1 and 8.1, we see that it only remains to find an appro-
priate lower bound on jA1;�j. This will be achieved by using an argument from [2].

Indeed, by Assumption (H), we see that the Dirichlet eigenfunction u0 satisfies
the hypothesis of [2], Lemma 3.1. Then, following the arguments of [2] leading
to (3) in that paper, and using again [11], Proposition 3.1 and eq. (5.13), we conclude
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that, for any ı > 0 and any x 2 .0; L/, there exists C1 such that the resonant state u"

verifies
ku"kL2.Œx;L��Œ�";"�/ � C0"

4:5Cıe��x=2" (8.1)

(see [2], Theorem 1.2). Thanks to this estimate, we can prove the following result.

Proposition 8.2. For any ı > 0, there exists C > 0, such that

jA1;�j � C"4:5Cıe��L=2"; (8.2)

for " > 0 small enough.

Proof. The estimate (7.4) givesX
k�1

jAk;Cj2 � .1C Ce�ı="/jA1;�j2 C Ce�.�LCı/=": (8.3)

Let us compute the quantity ku"kL2.Œx;L��Œ�";"�/ by using the expression (4.2). For
any fixed x, we have

ku"k2
L2.Œx;L��Œ�";"�/

D
X
k�1

jak;Cj2 "

2Re 	k

.eL 2 Re �k=" � ex 2 Re �k="/

C
X
k�1

2Re
�"ak;C Nak;�
2i Im 	k

.eiL 2 Im �k=" � eix 2 Im �k="/
�

C
X
k�1

jak;�j2 "

2Re 	k

.e�x2 Re �k=" � e�L2 Re �k="/:

This leads to the inequality

ku"k2
L2.Œx;L��Œ�";"�/

� 2
X
k�1

jAk;Cj2 C
X
k�1

2jAk;Cjjak;�je�L Re �k="

C
X
k>1

jak;�j2"e�x 2 Re �k=" C ja1;�j2 "

2Re 	1

e�x 2 Re �1="

and thus, by the Cauchy–Schwarz inequality

ku"k2
L2.Œx;L��Œ�";"�/

� 4
X
k�1

jAk;Cj2 C 4
X
k>1

jak;�j2e�x 2 Re �k=" C ja1;�j2"e�x 2 Re �1=":

Using (8.3) and (A.2), we deduce

ku"k2
L2.Œx;L��Œ�";"�/

� C ja1;�j2e�x 2 Re �1=" C C"e�.�LCı/=" C C"�C e�x 2 Re �1="e�x2C0=":

(8.4)
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Now using (8.1), we get

"c.1� "�ce�x2C0=" � C"�ce�.�.L�x/Cı// � ja1;�j2; (8.5)

with c
defD 9C 2ı. Thus, for " small enough, we obtain

C"c � ja1;�j2:
Combining the results of Propositions 7.1, 8.1, and 8.2, our main result Theo-

rem 2.1 follows.

9. An extension to dimension 3

Here, we consider the similar problem in dimension 3, obtained by taking tubes with
square sections. That is, C is a regular bounded open subset of R3, and we have, in
Euclidean coordinates .x; y; z/,

E D .L;C1/�Q1;

0 2 @C ;
xC \ ..Œ0; L� � f0g/ [ xE/ D ;;
T ."/ D .Œ�ı; L��Q"/ \ .R3nC/;

where Q1
defD f.y; z/ I jyj < 1; jzj < 1g, and Q"

defD "Q1.
Again, we consider the resonances of the resonator �."/

defD C [ T ."/[ E. Now,
the thresholds of ��E are given by the quantities ˛2

j C ˛2
k

(j; k � 1).
As before, let �0 be an eigenvalue of ��C , and let u0 be the corresponding

normalized eigenfunction.
In this situation, the lower estimate of [11] becomes

Im �."/ D O.e�.1�ı/�L
p

2="/;

where �."/ stands for any resonance that tends to�0 as " ! 0C, and ı > 0 is arbitrary.
We assume the following conditions:8̂̂<

ˆ̂:
�0 is simple;

�0 > 2˛
2
1 and �0 6D ˛2

j C ˛2
k

for all j; k � 1;

u0 does not vanish on C near the point .0; 0/.

(H0)

Then, we have the following result.

Theorem 9.1. Under Assumption (H0), there exists N1 > 0 such that, for all " > 0

small enough, the only resonance �."/ close to �0 satisfies

j Im �."/j � "N1e��L
p

2=":
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Remark 9.2. It follows from the proof that any N1 > 12 can be taken.

Proof. The computations are very similar to those in dimension 2, and we highlight
here only what is specific to dimension 3. The notations are similar, but their meaning
is modified as follows. For k D .k1; k2/ 2 N2, we set

˛k
defD

�k1�

2
;
k2�

2

�
2 R2I

	k
defD

p
j˛k j2 � "2�."/I

 k.y; z/
defD  k1

.y/ k2
.z/I

'k.y; z/
defD 'k1

.y/'k2
.z/:

We also define

j0
defD maxfjkj W k 2 N2; j˛k j < �0g D maxfjkj W k 2 N2; jkj < 2�0=�g:

(Here, jkj stands for the Euclidean norm of k, so in particular, j0 � p
2.) With these

notations, the representation formulas (4.2) and (5.4) remain valid with the following
changes:

� P1
kD0 must be replaced by

P
k2N2 ;

� j � j0 and j > j0 must be respectively replaced by jj j � j0 and jj j > j0;

� y must be replaced by .y; z/;

� .�"; "/ and .�1; 1/ must be respectively replaced by Q" and Q1.

Computing in two ways the quantities hu"; @xu"ifLg�Q1
, hu"; '1;1ifLg�Q1

, and
h@xu";  1;1ifLg�Q"

, we find the following analogs of (7.4), (7.5), and (7.6):

X
k2N2

.jkj � C jkj�1e�ı="/jAk;Cj2

� .1C Ce�ı="/jA1;1;�j2 C Ce�.�L
p

2Cı/=" � "
X

jj j>j0

jj j.1 � C"2jj j�2/jbj j2;

jA1;1;C C A1;1;�j � C0

"
jb1;1j C

X
jkj>p

2

j �k

�1;1

Ak;Cj C C0p
"
e��L

p
5=2";

jA1;1;C � A1;1;�j � C0"
2

X
jj j�j0

jbj j C "

j	1;1j
X

jj j>j0

j
j j̨ bj j;
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where we have set


j1;j2

defD 
j1

j2

D 16"

�2

sinŒ."j1 � 1/�=2�
."2j 2

1 � 1/

sinŒ."j2 � 1/�=2�

."2j 2
2 � 1/ ;

�k1;k2

defD �k1
�k2

D
� Z "

�"

 k1
.y/'1.y/dy

�� Z "

�"

 k2
.z/'1.z/dz

�
:

Using the fact that �k1;k2
=�1;1 � .k1 � "2/�1.k2 � "2/�1, this also gives

jA1;1;C C A1;1;�j

� Q�1

�
jA1;1;�j2 � "

X
jj j>j0

jj jjbj j2
� 1

2 C C0

"
jb1;1j C Ce�.�L

p
2Cı/=2";

(9.1)

where Q�1 can be taken arbitrarily close to

� X
j.k1;k2/j>p

2

j.k1; k2/j�1k�2
1 k�2

2

� 1
2
< 7=10: (9.2)

On the other hand, the estimate on 
j used for proving (7.9) is too rough here,
but, keeping 
j in its actual form, we obtain in a similar way

jA1;1;C � A1;1;�j � C0"
2

X
jj j�j0

jbj j C Q�2

�
"

X
jj j>j0

jj jjbj j2
� 1

2
; (9.3)

where Q�2 can be taken arbitrarily close to the quantity

J D 16

�2
p
2

� Z 1

0

Z 1

0

p
x2 C y2 sin2..x � 1/�=2/ sin2..y � 1/�=2/

.x2 � 1/2.y2 � 1/2
dxdy

� 1
2
:

(9.4)
Now, a numerical computation gives

J � 1:56 < 16=10:

In particular, for " small enough, we have

Q�2
1 C Q�2

2 <
72 C 162

100
D 3:05 < 4: (9.5)

(We remark that the numerical computation ofJ may create some trouble near infinity
because of the oscillations of the sine function. However, a sufficiently good upper
bound can be obtained by substituting 1 for sin when the argument becomes larger
than 15, that is essentially when x or y are larger than 10.)
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At this point, we can complete the proof as in the 2-dimensional case, first by
deducing from (9.1), (9.3), and (9.5) that we have

jA1;1;�j � C

"

X
jj j�j0

jbj j C Ce�.�L
p

2Cı/=2"; (9.6)

then, using

Im �."/ D .1C O.e�ı=h// Im
Z

Q1

u.LC 1; y; z/
@ Nu
@x
.LC 1; y; z/dydz;

this leads to

j Im �."/j � 1

C

� X
jj j�j0

jbj j
�2

: (9.7)

Finally, using again [2], eq. (3), we obtain

jA1;1;�j � C"5Cıe��L
p

2=2" (9.8)

and the result follows from (9.6)–(9.8).

Appendix A

Using the equation P"u" D �."/u"; we obtain

ku"kL2.C[T ."// C k�u"kL2.C[T ."// D O.1/;

uniformly in ".
Since u" 2 H 2.C [ T ."// the trace theorem applies at x D c" with c > 0

sufficiently large, and a scaling proves that

ku".c"; y/kH 1=2.�";"/ D O."�1=2/;

k@u"

@x
.c"; y/kL2.�";"/ D O.1/:

In particular, we have

k.L.Dy/C 1/1=4u".c"; y/kL2 D O."�1=2/

and, using the same argument as for (6.2), we easily concludeX
k�1

kjak;Cec�k C ak;�e�c�k j2 D O."�1=2/
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and X
k�1

k2jak;Cec�k � ak;�e�c�k j2 D O.1/:

We deduce X
k�1

kjak;Cec�k j2 D O."�1=2/ (A.1)

and X
k�1

kjak;�e�c�k j2 D O."�1=2/: (A.2)

Appendix B

This appendix is devoted to the proof of the estimate

X
j �j0

jbj j2 C
X

j >j0

jbj j2e� Re
�q

˛2
j

��
�

D O.e.ı��L/="/: (B.1)

Using (5.4), we compute

ku"k2
L2..L;LC1/�.�1;1//

D
X

j �j0

jbj j2
Z

.L;LC1/

e
�2.x�L/ Im

�q
��˛2

j

�
dx

C
X

j >j0

jbj j2
Z

.L;LC1/

e
�2.x�L/ Re

�q
˛2

j
��

�
dx

and thus

ku"k2
L2..L;LC1/�.�1;1//

� 1

C

X
j �j0

jbj j2 C 1

C

X
j >j0

jbj j2e� Re
�q

˛2
j

��
�
;

for some positive constant C . With the inequality (3.2), this gives (B.1).
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