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Abstract. We study the manner in which a sequence of spectral shift functions §(-; H;, Ho_ ;)
associated with abstract pairs of self-adjoint operators (H;, Ho, ;) in Hilbertspaces #;, j € N,
converges to a limiting spectral shift function & (-; H, Ho) associated with a pair (H, Hp) in
the limiting Hilbert space # as j — oo (mimicking the infinite volume limit in concrete
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1. Introduction

We are interested in the manner in which a sequence of spectral shift functions for
abstract pairs of self-adjoint operators (H;, Hy, ;) in Hilbert spaces #;, j € N,
converges to a limiting spectral shift function associated with a pair (H, Hyp) in a
limiting Hilbert space # as j — oo (mimicking the infinite volume limit in concrete
situations). As a concrete application we explicitly treat the case of multi-dimensional
Schrodinger on bounded domains 2; C R”, n € N, exhausting R” as j — oo,
with various boundary conditions on d€2;, j € N (we primarily focus on the cases
1<n<3).

An exhaustive treatment of the special one-dimensional case appeared in [37].

Before we focus on the abstract situation discussed in this paper, it is appropriate
to briefly survey the known results in this area. Consider self-adjoint Schrodinger
operators H; and Ho ; in L*((—j, j)";d"x), n € N, n > 2, generated by the
differential expression —A + V' and —A on (—j, j)", respectively, with Dirichlet
boundary conditions on d(—J, j)*, where 0 < V € L°°(R";d"x) is supported in
(—j.j)" for j € N sufficiently large, and nonzero a.e. Denoting by §(A; H;, Hy, ;)
fora.e. A € R, the spectral shift function associated with the pair (H;, Ho_;) (cf. [77],
Chapter 8), normalized to be zero in a neighborhood of —oo, Kirsch [52] showed in
1987 that (perhaps, somewhat unexpectedly), for any A > 0,

sup [§(A: Hj, Hy, ;)| = oo. (1.1)
JjeN

Moreover, denoting by H and Hj the corresponding self-adjoint Schrodinger oper-
ators in L2(R"™; d"x) generated by the differential expression —A + V and —A on
R”", respectively, one cannot expect pointwise a.e. convergence (or convergence in
measure) of £(-; H;, Ho, ;) (or of a subsequence thereof) to £(-; H, Hy) in the infi-
nite volume limit j — oo by the following elementary argument: For a.e. A > 0,
&(A; H, Hyp) is a continuous function with respect to A, related to the determinant of
the underlying fixed energy scattering matrix. Yet §(-; H;, Ho,;), as a difference of
eigenvalue counting functions corresponding to the number of eigenvalues (counting
multiplicity) of H; and Hy,;, respectively, is integer-valued and hence cannot possi-
bly converge a.e. to a non-constant continuous function as j — oo. In particular, this
argument applies to the one-dimensional context (in which case £(A; H, Hy) — 0 as
A — 00).

Having ruled out pointwise a.e. convergence of spectral shift functions in the
infinite volume limit j — oo in all space dimensions, it becomes clear that one has to
invoke the concept of certain generalized limits. Indeed, in 1995, Geisler, Kostrykin,
and Schrader [31] proved for potentials V' € £1(L?(R3; d3x)) (a Birman—Solomyak
space, cf., e.g., [74], Chapter 4) that for all A € R,

lim E(N' Hj, Ho )d) = / EW:H, Ho)d). — (12)

J=00 J(—00,A] (—00,A]
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Since H; and Hy, ; are bounded from below uniformly with respect to j € N, the
limiting relation (1.2) involving distribution functions of the spectral shift measures
is equivalent to vague convergence of the latter as observed in [49], Proposition 4.3.

In the one-dimensional half-line context, Borovyk and Makarov [14] (see also
Borovyk [13]) proved in 2009 that for potentials V' € L!((0, 00); (1 + |x|)dx) real-
valued, and denoting by Hy the self-adjoint Schrodinger operator in L2((0, R); dx)
and H the corresponding self-adjoint Schrodinger operator in L2((0, o0); dx), both
with Dirichlet boundary conditions (and otherwise maximally defined or defined in
terms of quadratic forms), and analogously for Hy g and Hy in the unperturbed case
V = 0, the following vague limit holds:

Jim [ 6O Hr Hondrg() = [ 60 H Hadg(). g € CoR). (13

In addition, they proved that the following Cesaro limit,
Jim / §(k: Hy. Ho,)dr = §0: H Ho). 1€ R\@u(H) U0} (14)

exists (and the limit in (1.4) extends to A = 0 if H has no zero energy resonance).

Returning to the case of multi-dimensional boxes [—R, R]", Hislop and Miiller
[44] (see also [45]) proved a result going somewhat beyond vague convergence in
2010. More precisely, assuming a real-valued background potential V (© satisfying
VO e K(R"), VJ(FO) € Kioc(R")andapotential 0 < V € Kjoc(R"), supp(V') compact
(cf. [2] and [73] for the definition of (local) Kato classes), they show that

lim / EMHorp+ VO + V. Horp+V©®O)dar £(1)

R—o0 JR

(1.5)
_ / EQ: Hy+ VO 4V, Hy+ VO)dA f(1)
R

for any f € Cy(R), and for any f = x> were J C R is a finite interval. In
addition, they derived a weaker version than the Cesdro limit in (1.4) in the multi-
dimensional context. More precisely, they proved that for every sequence of lengths
{L;}jen C (0,00) with lim;_, o, L; = o0, there exists a subsequence {jx}xen C
N with limg_, o, jx = o0, such that for every subsequence {kg}seny C N with
limy_, o0 kg = 00,

lim — Zé(k H(O) +VO Ly, H(O) + V)
L—>o0

L3 (1.6)
SEMHo+ VO + V. Ho+V?)

for (Lebesgue) a.e. A € R.



228 F. Gesztesy and R. Nichols

Before describing our results we should mention that spectral shift functions
feature prominently in the context of eigenvalue counting functions and hence in the
context of the integrated density of states. We refer, for instance, to [18], [19], [43],
[47], [48], [54], [55], [56], [62], and the references cited therein. For bounds on the
spectral shift function we refer to [19], [47], [48], and [75].

In Section 2 we collect basic properties of spectral shift functions used in the bulk
of this paper. In Section 3 we prove our principal abstract result, the convergence
of a sequence of spectral shift functions &(-; H;, Ho, ;) associated with pairs of self-
adjoint operators (H;, Hy, ;) in Hilbert spaces #;, j € N, to the limiting spectral shift
function &£(-; H, Hy) associated with the pair (H, Hy) in a limiting Hilbert space J¢
as j — oo, thus mimicking the infinite volume limit in concrete situations. Finally,
in Section 4 we provide detailed applications to Schrodinger operators in dimensions
n = 1,2, 3 in the case of Dirichlet boundary conditions and sketch extensions to
higher dimensions n = 4 and Robin boundary conditions.

Finally, we briefly summarize some of the notation used in this paper. Let € be a
separable complex Hilbert space, (-, ) 4 the scalar product in #¢ (linear in the second
argument), and / 4, the identity operatorin J¢. Next, let T" be alinear operator mapping
(a subspace of) a Hilbert space into another, with dom(7") and ker(7") denoting the
domain and kernel (i.e., null space) of 7. The closure of a closable operator S is
denoted by S. The resolvent set, spectrum, essential spectrum, discrete spectrum,
and resolvent set of a closed linear operator in J will be denoted by p(-), o(:),
Oess(+), 0a(+), and p(+), respectively. The Banach space of bounded (resp., compact)
linear operators on J is denoted by B(H) (resp., Boo(H)). The corresponding
{?-based trace ideals will be denoted by B,(#), p > 0. The trace of trace class
operators in J is denoted by tr 4 (-), modified Fredholm determinants are abbreviated
bydety, 5 (I 4+-), p € N(the subscript p being omitted in the trace class case p = 1).

The form sum (resp., difference) of two self-adjoint operators A and W will be
denoted by A +4 W (resp., A —q W = A +4 (—=W)).

Acknowledgments. We are indebted to Barry Simon for helpful discussions.

2. Basic facts on spectral shift functions

In this preparatory section we succinctly summarize properties of the spectral shift
function as needed in the bulk of this paper (for details on this material we refer to
[11], [77], Chapter 8, [78], and [79], Section 0.9 and Chapters 4, 5, and 9).

We start with the following basic assumptions.

Hypothesis 2.1. Suppose A and B are self-adjoint operators in H with A bounded
from below.
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(i) Assume that B can be written as the form sum of A and a self-adjoint operator
Win #H

B=A4A+4+,W, (2.1)
where W can be factorized into
W = W Wa, (2.2)
such that
dom(W;) 2 dom(|A|'/?), j =1,2. (2.3)

(ii) Suppose that for some (and hence for all) z € p(A),

WalA —z15) V2 (A —z1,)" 12 W € Bo(H), (2.4)

and that

lim [Wa(A—z1,) "Wl g, 30y = O- (2.5)
zl—00

Given Hypothesis 2.1(i), one observes that
dom(|B|'/?) = dom(|4]'/?), (2.6)

and that the resolvent of B can be written as (cf., e.g., the detailed discussion in [33]
and the references therein)

(B —zl,)™"
=(A—zl,)" .7
— (A —zLy) YW Ly, + WaA — 21 5) "W T WA (A — z1,,) 7!,

for all z € p(B) N p(A). In particular, B is bounded from below in # and one
concludes that for some (and hence for all) z € p(B) N p(A4),

[(B—zI,)" —(A—zI,) "] € Bi(H). (2.8)
Moreover, assuming the full Hypothesis 2.1 one infers that (cf. [38])

(B —z15) " —(A—zI,)7h

- _j_zln(det}g((B — 2L ) V2(A — 21 4)"H(B — 21 ) 1/2)) (2.9)

d
= _Eln(det}g(l,}( + WalA —zl4) 7 W),

forall z € p(B) N p(A).
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In addition, Hypothesis 2.1 guarantees the existence of the real-valued spectral
shift function £(-; B, A) satisfying

try(B—zly) ' —(A—zl,)" ") =— %, (2.10)

forall z € p(B) N p(A), and
E(A:B,A) =0, A <inf(o(B),c(A)). (2.11)
E(;B,A) € LY(R; (A% + 1)"1dA). (2.12)

Moreover, for a large class of functions f, for instance, any f such that f () €
LY(R; (|p| + 1)dp), one infers that [ f(B) — f(A)] € B1(H#) and

wp FB) = () = [ /060 B A 2. @.13)

This applies, in particular, to powers of the resolvent, where f(-) = (-—z)™",n € N,
and we refer to [77], Chapter 8, for more details.
Throughout this manuscript we assume that the normalization (2.11) is applied.
For subsequent purpose we summarize the results (2.9) and (2.10) as

(B —zl,) " —(A—zl,)™h

_ E(A;B,A)dA
Tk (A—2)2 (2.14)

d
= _Eln(det,;g(l,;e + Wa(A = z15) " W),

for all z € p(B) N p(A). Here det 4 (-) denotes the Fredholm determinant (cf. [40],
Chapter IV, [69], and [74], Chapter 3).
We also note the following monotonicity result.

If B > A (resp., B < A) in the sense of quadratic forms,

then £(A; B, A) = 0 (resp., £(A; B, A) < 0). (2.15)
Here, B = A is meant in the sense of quadratic forms, that is,
dom(|4['/?) 2 dom(| B|'/?).
(1BI'2 £, sen(B)|BI'2 ) (2.16)

> (|A]Y2 £, sgn(A)|AI"2 f) 4. f €dom(|B|'/?).
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Next, suppose that the self-adjoint operator C in # can be written as the form
sum of B and a self-adjoint operator Q in #,C = B 4, O, where O can be factored
as Q = Q10,, with Q, Q1, and Q5 satisfying the assumptions of W, Wy, and W,
in Hypotheses 2.1. Then the formula

§(A:C, A) =§(A:C, B)+§(A: B, A) 2.17)

holds for a.e. A € R.
Finally, we mention the connection between £(-; B, A) and the Fredholm deter-
minant in (2.9),

EA; B, A) ="t 11&1 Im(In(Z4, + W2 (A — (A +ie)l,4) 1 W)), (2.18)

fora.e. A € R, choosing the branch of In(det 4 (-)) on C such that

lim  In(dety, (I, + Wa(A — z1,,)"TW[)) = 0. (2.19)

[Im(z)|—o0

For applications to multi-dimensional Schrédinger operators the framework in
Hypothesis 2.1 is not sufficiently general and the trace class assumption, (2.4), needs
to be replaced by a weaker Hilbert—Schmidt-type hypothesis as detailed next.

Hypothesis 2.2. Suppose A and B are self-adjoint operators in H with A bounded
from below.

(1) Assume that B can be written as the form sum of A and a self-adjoint operator

W in

B=A+,W, (2.20)
where W can be factorized into
W = W*Ws, (2.21)
such that
dom(W;) 2 dom(|A|'/?), j =1,2. (2.22)

(i1) Assume that, for some (and hence for all) z € p(A),

Wa(A —z14)"" (A—z14) W) € Ba(H), (2.23)

Wa(A —z1,,)" Wy € B(H), (2.24)

and

W (A —z1,) Wil g, e = 0. (2.25)

lim
zl—00



232 F. Gesztesy and R. Nichols

(iii) Suppose that

tr g (A —zI4) 7' W(A —zI4)7) =1(2), z € p(A), (2.26)
where n(+) has normal limits, denoted by n(A + i0), for a.e. A € R.

Then (2.6)—(2.8), (2.10)—-(2.17) remain valid, but (2.9), (2.18), and (2.19) need to
be amended as follows.

Theorem 2.3. Assume Hypothesis 2.2. Then

E(X; B, A) = 'Im(In(deto, g (15, + Wa(A — (A +i0)15,) "1 W/))) 027
+ 2 Mm((A +i0)) + ¢ '

for ae. A € R. Here ¢ € R has to be chosen in accordance with the normaliza-
tion (2.11).

Proof. First, one notes that

[trgp (A —z14) ' W(A —z14)7 1)

= |tr g (Wa(A — 21 )72 W)

< (A - ZIJ()_l W(A - ZI,}()_l ||,531(J() (2.28)
< |Z|_1 [Wi(A — ZI,;()_l/ZHJB(,;e) [W2(A — Zlgf)_l/2||$(gf)
= Clz|™.
zd—o0
Next, one recalls that

(B—zly) ' —(A—zl,) ' + (A—zl,) ' W(A—z1,)""

= (A—z1y) "W Iy + WaA — z1,,) ' W]~} (2.29)

X Wa(A — z1,,) YW Wa(A — z1,)7",
forall z € p(B) N p(A), and hence (cf. [77], Section 1.7) that

try(B—zl4) " —(A—zl,) "+ (A—zl,) "W(A—zl,)")

= try,([15 + WalA —z15) "W " Wa(A — 21,,) W

x [(d/dz)Wa(A — z15)7"]), (2.30)

d
= _Eln(detz,sf (Lge + Wa(A = z14) " W),
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forall z € p(B) N p(A). Consequently,

(B —z15)"" = (A—zI,)"h

B E(A; B, A)dA
ke (A-2)2

d /‘ 1 A
=~ [ €0 B AdA(— — )

dz [ A—z A2+1 2.31)
= —tr g (A —zl4) tW(A —z14)" 1)

d
— Eln(detz,}g(lje + Wa(A —z14)" W),

, d T

=—1n'(z)— Eln(detz,gg Ly + Wa(A —zl4) W),
forall z € p(B) N p(A), and hence
1 A
EA; B, A)dAM — — ——

= 1(z) + In(dety g (14 + Wa(A —z14)"1 W) + C,

for all z € p(B) N p(A), and for some C € C. Taking z < 0, |z| sufficiently
large, (2.25) and (2.28) actually yield

CeR. (2.33)

Moreover, (2.32) demonstrates that dets s (14 + Wa(A — z1,)~1 W) has normal
limits z — A 4+ i0 for a.e. A € R. The Stieltjes inversion formula (cf., e.g., [5]) then
yields (2.27). O

We note that the analog of (2.27) was discussed in [54], Theorems 1.59 and 1.61,
in the concrete context of multi-dimensional Schrédinger operators (an additional
sign-definiteness of potentials was assumed for n = 4).

For subsequent purpose we record the analog of (2.14) (cf. (2.31))

(B —z1,) " —(A—zl,)"h

[ §(:B. A)dA

R (A-2)? (2.34)

= —tryy(A—zI,) TW(A —zI,)™)))

d
— d—ln(detz’gg(lﬂ; + Wh(A — ZI!%,)_IW;),
z
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forall z € p(B) N p(A).

For pertinent literature on (modified) Fredholm determinants and associated trace
formulas we refer, for instance, to [6], [40], Chapter IV, [54], Section 1,6 [69], [74],
Chapter 9, [77], Section 1.7, [78], and [79], Chapters 3 and 9.

We conclude this preparatory section by analyzing the high-energy limiting as-
sumptions (2.5) and (2.25). We start by recalling the following standard convergence
property for trace ideals.

Lemma 2.4. Let p € [1, 00) and assume that R, R,, T, T, € B(H), n € N, satisfy
s-limy, 00 Ry = Rand s-lim, 00 T,, = T and that S, S, € B,(H), n € N, satisfy
limy o0 || Sy — S||£p(]€) = 0. Thenlim, o | Ry Sa T, — RST*”:BP(J() =0.

This follows, for instance, from [41], Theorem 1, from [74], p, 28-29, or from
[77], Lemma 6.1.3, with a minor additional effort (taking adjoints, etc.).

Lemma 2.5. Let p € [1,00) and assume that A is self-adjoint and bounded from
below in H. Let W;, j = 1,2, be densely defined linear operators in ¥ satisfying

dom(W;) 2 dom(|A|Y/?), j =1,2, (2.35)

and for some zy € p(A),

WaA — 291 ,,) "W € B,(H). (2.36)
In addition, suppose one of the following three conditions holds:
Wi(A —Z015) 7% € By(H), WalA—zol,)" "% € B (H0), (2.37)
Wi(A —Zol,) "% € Bp(H), WalA—zoly) /% € B(H), (2.38)
Wi(A —Zol4) "% € B(H), WalA —zol,) "2 € Bp(H), (2.39)

1 1 1
for =+~ =~, q,r €[1,00). Then
q 1 p

. — -1
Jim W04 =213 "W | g,

(2.40)
= miim WA = 2L5) T Wl g, ) = O
and hence
Jim dety ge (1 + Wa(A - 2L, TW)
(2.41)

= lim  dety g (Iy + WalA — 2L, TWF) = 1.

|Im(z)|—o00
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Proof. We start with the identity

WalA —z1,) W}

= Wal(A — 2ol 4) 71 + (2 — z0)(A — 201 ) 1A — 21 ) HW*

= WalA — 201 3) V2[4 + (z — 20)(A — 21 3,) ' |[Wi(A — Zg1,,) /2%,

(2.42)
forall z € p(A). Combining (2.42) with the fact that
s-im [/ + (z — zo)(A — zlﬂ)_l]
Yo lim [/ A—zI,) =0 (249
= llms(-z)llrgoo[ g+ (@ —20)(A—2l4)" ] =0,
s-lim [/ 4, 4 (z — z9)(A — ZI%)_I]*
Fhreo (2.44)

= slim [l + (z —z0)(A—z1,,)"']* =0,

|Im(z)|—00
then permits the application of Lemma 2.4 to conclude that
||[IJ€ +(z —zo)(A — ZI}()_l][Wl (A— %I}g)_l/z]*”.,@,(}g) —0 (2.45)

as z | —oo and also as |Im(z)| — oo. This implies (2.38) in the case (2.37) is
assumed. The cases where (2.38) or (2.39) are assumed are analogous. Continuity of
det, s (I + T) as a function of 7" with respect to the || - ||$p(}€)—norm, p €[l,00),
yields (2.39). O

The argument in the proof of Lemma 2.5 is analogous to the proof of [77],
Lemma 8.1.1, where the stronger relative trace class assumption Wy* W, (A — z0) ' e
B1(H) is made.

3. An abstract approach to convergence of spectral shift functions

In this section we prove our principal abstract result, the convergence of a sequence of
spectral shift functions £(-; H;, Ho, ;) associated with pairs of self-adjoint operators
(Hj, Ho,j) in Hilbert spaces #;, j € N, to the limiting spectral shift function
&(-; H, Hy) associated with the pair (H, Hy) in a limiting Hilbert space # as j — oo
(mimicking the infinite volume limit in concrete situations).

We start with a precise list of our assumptions employed throughout this section.
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Hypothesis 3.1. Let K be a complex, separable Hilbert space.
(i) Assume that {P;};en is a sequence of orthogonal projections in H, strongly
converging to the identity in ¥,

s-lim P = 1, (3.1)

Jj—o0o
and introduce the sequence of closed subspaces #; = P;J, j € N, of K.

(ii) Let Hy be a self-adjoint operator in #, and for each j € N, let Hy ; be self-
adjoint operators in ¥;. In addition, suppose that Hy is bounded from below in
H, and for each j € N, Hy, ; are bounded from below in J;.

(iii) Suppose that V1, and V, are closed operators in ¥, and for each j € N, assume
that Vi ;, and V5 ; are closed operators in H; such that

dom(V7) N dom(V2) 2 dom(Hy), (3.2)
dom(Vy,;) Ndom(Vz,;) 2 dom(Ho,;), j € N, (3.3)

and

Va(Ho — 2130)7'V¥, Vo j(Ho s — 205 )TV, @0 € Bi(J),  (34)

Va(Ho —z14)", Vo j(Ho,j — zlﬂ,j)_l B0 e Byr(H), (3.5)

(Ho—z1,) Vi, (Hoy — 215 )7V @0 € Ba(X), (3.6)

Jorall j € N and for some (and hence for all) z € C\R. In addition, assume
that

lim [|[Va(Ho — z14)~" V¥l g, 5y = 0,
z—00

3.7
lim V2 (Hoy =210 7V, @ 0llg, ey =0 J € N. Y
Here we used the orthogonal decomposition of # into

Ho=H; &I, jeN. (3.8)

(iv) Assume that for some (and hence for all) z € C\R,
s-lim [(Ho,s —zly )@ _711,(,];] = (Ho—z1,)"". (3.9)

(v) Suppose that for some (and hence for all) z € C\R,

lim ||[V>,;(Ho,; — ZIij )_1Vf’:j @ 0] — Va(Ho — ZI%)—1V1*||£1(J€)

Jme0 (3.10)

=0,
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fim [[V2,(Ho.j = 215,)" @0 = Va(Ho = 2L3) " 3o = 0. (3.1D)

Jim I[(Ho,j — 215 )71 Vi; © 0] = (Ho — 2) ™'Vl 3y5) = 0. (3.12)

(vi) Suppose that
V2 fiV18) g = Vi f.V28) g, f. & € dom(Vy) Ndom(V2),
V2, j fV1,i8) 30 = (V1,5 /. V2,/8) g- [ & € dom(V7, ;) Ndom(V2 ),

forall j € N.

(3.13)

Following Kato [50], Hypothesis 3.1, permits one to define the self-adjoint op-
erator H in J, and for each j € N, the self-adjoint operators H; in J; via their
resolvents (for z € C\R) by

(H—zI,)™!
= (Ho _ZI,;e)_l
— (Ho — ZI]()_lvl*[I]( + Va(Ho — ZI%)_IVl*]_le(HO - ZIJ()_l,
(3.14)
(Hj _Zlgfj)_l
= (HO,j _Zlgfj)_l
(3.15)

— (Ho,j — 213 )7 Vi U, + Va,j(Hoj — 215 )71V ]
x Vo j(Ho — zlﬂj)—l,

for all j € N. Of course, both resolvent equations (3.14) and (3.15) extend by
continuity to p(H) N p(Hop) and p(H;) N p(Hop,;), j € N, respectively.

Lemma 3.2. Assume Hypothesis 3.1. Then
-1
. L -1 - _ _ —1
slim [(H, 2ly) ™ @ — Iﬂ,ﬁ] =(H-zI,)"", zeC\R,  (3.16)
and
[(H —zly)™" = (Ho—zI4) '] € B1(K), z € p(H) N p(Ho), (3.17)

[(Hj —z1y)7" = (Ho,j —zly) 7' € Bi(H)). z € p(H)) N p(Ho,). j €N
(3.18)
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Proof. To prove (3.16) it suffices to combine (3.9)—(3.12), (3.14), and (3.15). Simi-
larly, (3.17) and (3.18) follow upon combining (3.4)—(3.6), (3.14) and (3.15). O

One notes that the trace class and Hilbert—Schmidt assumptions in (3.4)—(3.6)
and (3.10)—(3.12) are by no means necessary for the proof of (3.16). In particular,
B1(H) or B,(H) could be replaced by B(H ) in all these places (and we will use a
Hilbert—Schmidt assumption later in the context of Theorem 3.18).

Remark 3.3. We also note that if Hy ; = col ; for some ¢p € R independent of
Jj € N, and if

lim [[V2;(Ho; — 215 )" Vi, ® Ol gggey = O. (3.19)
zl—00 J i

uniformly with respect to j € N, then (3.15) shows that also /; are bounded from
below, uniformly with respect to j € N, thatis, H; = c/ ; for some ¢ € R

independent of j € N.

Assuming Hypothesis 3.1, we now abbreviate by
§()=§(:H.Ho). §()=E&(Hj.Hoj ). JeN, (3.20)

the Krein spectral shift functions corresponding to the pairs (H, Hp) in # and
(Hj, Hy,;) in #;, respectively. Thus, for z € C\R,

A)dA
(=21, = (Ho— 21" = — [ :
£ (A (3.21)
-1 -1y _ J
g ((Hy = 210) ™ = (Ho =21 )™ = = | 5
with,
£, & e L'"R;(14+2A%)71dA), jeN. (3.22)
In addition, we introduce the perturbation determinants
D(z) = dety, (14 + Va(Ho —z14)"1V"), z € p(H) N p(Hy),
Dj(z) = dety, (I, + V2 ;(Hoj — 215 ) 1V7), (3-23)
z € p(Hj) N p(Ho,;), j € N.
We start with the following preliminary results.
Lemma 3.4. Assume Hypothesis 3.1 and let a, z € C\R. Then
lim In(D;(2)/Dj(a)) = In(D(z)/D(a)). (3.24)
Jj—00
i(A)dA A)dA
lim / 54 = / s , neNl. (3.25)
jooJg A—a)A—2)"  Jr(A—a)(A—2z)"
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Proof. The identities

det%j (I%j + V2, (Ho,;j —ZI%j)_lVlfj)

= detyy (e, + V2, (Ho,j = 2130 ) Vi) @ L)) (3.26)

= detgg(lﬂ + (V2,j(Ho,j — ZI,}gj)_lvftj ®0)),

forall j € N, together with (3.10) and continuity of det 4, (/ + A) as a function of A

with respect to the trace norm || - || 8, (%)> immediately yield
lim D;(z) = D(z), z e C\R, (3.27)
j—o0

and hence the convergence in (3.24).
Applying (2.9), one verifies that for any a, z € C\R,

EA)dA
In(D(z)/D(a)) = (z —a / —_— (3.28)
(D(2)/D(@)) ' i ea=
§(M)da
In(D;(z)/Dj(a)) =(z—a —_— (3.29)
(D;(2)/Dj(@)) V) i
forall j € N.
To verify (3.25), we start with the basic identities (see, e.g., [77], Chapter 8)
_ - E(A)dA
tr}(((Ho—ZI}g) n—(H—ZI}() n):l’l Rm, (330)
_ n _ —— i (A)dA
tr%j((Hojj—ZIJej) —(H]—Zlgej_) )—n/';m, (331)
forall j € N,n € N, and z € C\R. Next we claim that
,ILH;O g, ((Ho,j — Zlﬂj)_” —(Hj — ZIJC)_”)
(3.32)
=trg(Ho—zl4)™" — (H —z14)™"),
forall n € N and z € C\R. To see this, one notes that
tr(%j ((Ho,; — ZI,}gj)_n —(Hj — ZI}gj)_n)
= tr!%,(((HO,j — Z](%j)_n — (Hj — Z](%j)_n) @ 0)
(3.33)

=try, [((Hoj =zl )" @ _711(,(,];)"

I P
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foralln € N and z € C\R. Since the trace functional is continuous with respect to
the B1 (J)-norm, to verify (3.32), it suffices to prove that

- 1 g n—k -1 -1
D ((Hoj —z13) 7" @ —ly1)  [(Hoj—215) ™" = (H; —2)~ @ 0]
k=1
1 k-1
< ((H, )7t @ Zlﬂji)
(3.34)

converges to

n
D (Ho—z1y) " [(Ho — 21 5) ™" — (H — z1,) 7 '[(H — z1,)'™*  (3.35)
k=1
in B1(H)as j — oo, since (3.34) is the operator under the trace on the r.h.s. of (3.33)

and (3.35) is the operator under the trace on the r.h.s. of (3.32).!
By (3.9), one concludes that

-1 -
. -1 _ k_
slim ((Ho,j — 2l ) @ 7Ie;,fjl) = (Ho —z1 )%™, (3.36)
-1 k—1
. o -1 _ _ 1-k
lim (a1, 2lp)” @ — Iﬂ,j;) = (H —z1,,)'*, (3.37)

Thus, convergence of (3.34) to (3.35), will follow from Griimm’s Theorem [41] (see
also Lemma 2.4 and the discussion in [74], Chapter 2) if we can show that

i [((Ho,j = 215,)™" = (Hj = 21, ) ™) @ 0]

) ) (3.38)
—(Ho—zlg)™ —(H —zlg)" |l g, =0
The convergence in (3.38) follows readily from the identities
((Hj —zly)"" = (Hoj —zly)"") &0
= ((Ho,j —zl, )7V . ®0)
A 1 (3.39)
X (Uge + (Va,j (Hoj =21 )TV, @07 = (0@ L1))
x (Va,j(Hoj = z15)7" @ 0)
and
(Ho—zI1,) ' —(H —z1,)7!
o ¥ (3.40)

= (Ho —zl3) V(14 + Va(Ho — z14,) WV Va(Ho — z1,4) "

"Here we have made use of the identity A” — B" =Y} _, A"k (4 — B)BF 1,
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Hypothesis (3.1) and relation (3.10) yield the strong convergence
s-im([7g, + (Va,j (Hoj — 215 )7V & 0] ' —0e Iﬂ}))
Jj—o00 ’

(3.41)
= [ + Va(Ho — z1,) Vi~
Therefore, (3.41) and (3.11) together with Griimm’s Theorem [41] yield
Jim (e + (Va; (Ho = 215)71Vy, @ O
-0 Ijgji))(Vz,j(HO,j _Zlgfj)_l ® 0) (3.42)

=[I + Va(Ho — z1,,) " V1 'Va(Ho — z14)~"  in Ba(H).
The convergence in (3.42) and (3.12) yields convergence of the r.h.s. of (3.39) to (3.40)
in 81 (H), implying (3.38).
Employing (3.31), (3.30), and (3.38), we have shown that
. §(Ndr / §(M)dA
jlggo/;(/\—z)"ﬂ = L G neN, (3.43)

so that (3.25) holds in the special case @ = z. Thus, it remains to settle the case

z #a.

For z # a one notes that
/ FdL 1 [/ (VdA / & (V) ]
I e N ¥ Vs L P PEE T |

E(A)dA 1 E(A)dA E(A)dA
/[R (A —a)(h —z)n+l z—a[ R (A —z)nt1 _/[R (x—a)(x—z)"]’

for n € N. Convergence in (3.25) now follows from (3.43) and the two identities
in (3.44) via a simple induction on n. We emphasize that (3.24) yields the crucial
first induction step, n = 1, since (3.24) implies, via (3.29) and (3.28), that

S 10T S S T
N R R Aver e ML

(3.44)

O

In the following we denote by Coo(R) the space of continuous functions on R
vanishing at infinity.

Lemma 3.5. Let f, f; € LY(R;dA) and suppose that for some fixed M > 0,
”‘fj”Ll([R;dA) < M, J € N. If

lim /ﬁ(k)d)LP(()LJri)_l,()L—i)_l)
j—oo JR
(3.46)
- / FOdA PO+, A=)
R
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for all polynomials P(-,-) in two variables, then
Jim [ faret) = [ f0digt). geCa®. (AT

Proof. Lete > 0 and g € C(R). Since by a Stone—Weierstrass argument, polyno-
mials in (A £i)7! are dense in Coo (R), there is a polynomial P (-, ) in two variables
such that writing

PA)=P((A+i)"L,A=D)hH, LeR, (3.48)
one concludes that
€
—Pllioopean < . 3.49
”g ”L (R;d A) 2[M + ||f||L1([R;dA)] ( )
By (3.46), there exists an N(e) € N such that
'/ Ji)da {P()L)—/ fdAP (L) < % Jj = N(e). (3.50)
R R
Therefore, if j = N(e),
'/[R fiA)dArg) — /[R fQ)da g(/\)}
< [”fj”Ll([R;d,x) + ”f”Ll([R;d)L)] ||g - ?”LOO([R;(M) (3.51)
+ ‘/ fi(Q)dAP(X) —/ fda {P(A)'
R R
<e
O

Next, we continue with some preparations needed to prove the principal results of
this section. We start by recalling some basic notions regarding the convergence of
positive measures (essentially following Bauer [8], Section 30). Denoting by M (E)
the set of all positive Radon measures on a locally compact space E, and by

ME(E) = {1 € M4(E) | u(E) < +o0}, (3.52)

the set of all finite positive Radon measures on E, we note that in the special case
E=R'nel, Mi([R”) represents the set of all finite positive Borel measures on
R™.

If  is a Radon measure, a point x € E is called an atom of w if u({x}) > 0.

In the following, Co(E) denotes the continuous functions on £ with compact
support, and Cp(E) represents the bounded continuous functions on E.
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Definition 3.6. Let E be a locally compact space.

(i) A sequence {itj}jen C M4 (E) is said to be vaguely convergent to a Radon
measure 4 € M4 (E) if

lim | du;g :/ drg, g€ Co(E). (3.53)

(ii) A sequence {it;}jen C CM{’F (E) is said to be weakly convergent to i € CM{’F (E)
if

im [ du; f =/Ed,uf, f € Cy(E). (3.54)

Jj—oo E

(iii) A Borel set B C E is called boundaryless with respect to the measure © €
Mi(E) (in short, p-boundaryless), if the boundary dB of B has p-measure
equal to zero, u(dB) = 0.

Theorem 3.7 ([8], Theorem 30.8). Suppose that the sequence {ji;}jen C cMi{(E)
converges vaguely to the measure |1 € cMi (E). Then the following statements are
equivalent.

(i) The sequence |i; converges weakly to (L as j — oo.
(i) 1imjso0 1 (E) = p(E).

(iii) For every ¢ > 0 there exists a compact set K of E such that

wi(E\Ke) <e, jeN. (3.55)

Theorem 3.8 ([8], Theorem 30.12). Suppose that the sequence {{t;};en C cMi (E)
converges weakly to L € Mi(E ). Then

lim duj f =/ du f (3.56)
E E

Jj—oo

holds for every bounded Borel measurable function f that is p-almost everywhere
continuous on E. In particular,

lim 11;(B) = (1(B) (3.57)
Jj—00
holds for every u-boundaryless Borel set B.
As usual, finite signed Radon measures are viewed as differences of finite positive

Radon measures in the following.
Next, we slightly strengthen our assumptions a bit.
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Hypothesis 3.9. In addition to Hypothesis 3.1 we now assume the following condi-
tions.

(vii) Suppose that Vi, and V; are closed operators in K, and for each j € N,
assume that V1 j, and Vs, ; are closed operators in #; such that

dom(V;) N dom(V>) 2 dom(|Ho|'/?), (3.58)
dom(V; ;) Ndom(V,, ;) 2 dom(|Ho ;|V/?), j € N, (3.59)

and
V = V{*Va is a self-adjoint operator in ¥, (3.60)

and for each j € N,

Vi = V{;Va,; is a self-adjoint operator in J; . (3.61)

(viii) Decomposing V,V;, j € N, into their positive and negative parts,
Ve =A/DIVI£ V],
_ (3.62)
Vie = /DUNV; £ Vil jeN,

Vi are assumed to be infinitesimally form bounded with respect to Hy, and
foreach j € N, V; + are assumed to be infinitesimally form bounded with
respect to Ho, ;.

Hypothesis 3.9 permits us to identify H and H; with the form sums,

H=Hy+qV.
(3.63)
H;=Hy; +4V;, jeN

It also permits one to introduce the positive and negative parts of V' and V; step by
step, and in either order, that is,

H = (Ho+q Vy)+q (=V-) = Ho+q V4 —¢ V-, (3.64)
Hj = (Ho,j +q Vj+) +q (=Vj-) = Ho,j +q Vj+ —¢ Vj—. J €N, (3.65

with resolvent equations of the type (3.14) and (3.15) valid in each case (replacing
Hy, H()’j by Hy +4 V+, Hojj +4 Vj’+, etc.).
In this context we now decompose

£() =§&(s H, Ho)
=§(Ho+4¢ V4 —¢ V-, Ho)
=§(Ho+q Ve —¢ Vo, Ho+¢ Vy) + (5 Ho +4 Vi, Ho),
=§4+() —§-0),

(3.606)
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and
£()=¢&(:H;, Hoj)
= &(s Ho,j +4 Vj+ —¢ Vj,— Ho,j)

=E(:Hoj +¢ Vit —¢ Vies Hoj +q Vit) (3.67)
+§Ci Ho,j +q Vi,j, Ho,j)
=§,+()— &),
with j € N, where
E+() =&(s Ho +¢ V4, Ho) = 0, (3.68)
E-()=—E(Ho+q Vi —q V-, Ho+q Vy) 20, (3.69)
€+()=&(Ho,j +q V4,j. Ho,j) 20, j €N, (3.70)

§,-() =6 Hoj +q Vj+ —q Vi— Ho,j +4 Vj+) 20, jeN. 37D
Theorem 3.10. Assume Hypothesis 3.9 and g € Coo(R). Then

L g O0d £
j—oo Jp A2 41 R A2+ 1

gA) = g(A). (3.72)

Proof. The basic idea of proof consists of verifying that

. £+ (A)dA . o
i [ o
£r (hd (3.73)
_ + N—1 -1
= [T r@n G-

for all polynomials P(:,-) in two variables, and then rely on the Stone—Weierstrass
approximation in Lemma 3.5 to get

§,+(A)dA [ Ex(M)dA

li A) = A1), Coo(R), 3.74
Am )z g() [.3/\2+1g() g € Coo(R) (3.74)

and hence (3.72). To prove (3.73), it suffices to verify

i £j,+(A)dA 1

im : :
j=ooJr AZ+1 (A+iD)m(A—i)"
(3.75)
B EL(A)dA 1

R A2+ 1 (A+i)mA—i)

for m,n € N U {0}, which, in turn, follows once one proves

- E+A)dr 1 _/ Ex(M)dr 1
jlinéo/[k 21 Gxr g et groe ENYORGI0
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since
m n A

1 - G c,
A+iD)ymA—D)" _Z(/\—l-i)j +Z()L_l-)j (3.77)

Jj=1 Jj=1

for appropriate sets of constants ¢; and ¢;. Choosing z = i and @ = Fi in (3.25)
yields (3.76), and therefore (3.73) for all polynomials P. At this point, (3.72) follows
from Lemma 3.5 once one shows the existence of an M > 0 for which

L (M)dA
i % <M (3.78)

for j sufficiently large. Taking (3.76) with n = 0, yields the convergence

[ 5a00dA [ ()R
j—oo JR A2 +1 [Rlz—l-l.

(3.79)

Asaresult, [p(1+ A2)71&; L (X) d A is uniformly bounded with respectto j € N. [

An immediate consequence of Theorem 3.10 is the following vague convergence
result.

Corollary 3.11. Assume Hypothesis 3.9 and let g € Co(R). Then
tim [ &00dig) = [ erdag. (3.80)

Remark 3.12. If the operators Hy,; and H; are actually uniformly bounded from
below with respect to j € N, and hence according to our convention (2.11), § and
&/, J € N, are chosen to be zero in a fixed (i.e., j-independent) neighborhood of
—0o0, then no condition need be imposed on g in a neighborhood of —oo in (3.72)
and (3.80) (apart from measurability of g, of course).

Given the decomposition (3.66)—(3.71), and introducing the measures

Ex(L)dA
A) = | =222
r]éi( ) 7 kz—i-l ,
e (di (3.81)
. i+ )
ng; 4 (A) = | et e N,

for A € R Lebesgue measurable, we are now ready for the principal result of this
paper.
Theorem 3.13. Assume Hypothesis 3.9. Then
. / §(A; Hj, Ho,;)d A
lim
j—= JR A2 41
_ [ §(AsH, Ho)dA

= [R/lz—-i-lf(k)’ J € Cp(R).

)
(3.82)
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Moreover, (3.82) holds for every bounded Borel measurable function f that is ng,
and ng_-almost everywhere continuous on R. In particular,

lim / §(A: Hj, Ho j)dA _/ E(A; H, Ho)d A
S lz—l-l o S lz—l-l

(3.83)

Jj—oo
for every set S whose boundary has ng . and ng_-measure equal to zero.

Proof. Again we decompose £ and §;, j € N, as in (3.66)-(3.71). By (3.74) and
Corollary 3.11, the measure Mg, 4 vaguely converges to the measure g, as j — oo,
respectively. Moreover, by (3.75),

jlirgio g, + (R) = ng, (R). (3.84)

Thus, by Theorem 3.7, one concludes weak convergence of the sequence of measures
Mg, . 1O the measure 7g, as j — oo. That (3.82) holds for every bounded Borel
measurable function that is 7g, -almost everywhere continuous on R now follows
directly from Theorem 3.8. Finally, convergence in (3.83) is also a direct consequence
of Theorem 3.8. O

As immediate consequences of Theorem 3.13, we have the following two results.

Corollary 3.14. Assume Hypothesis 3.9. Then convergence in (3.82) holds for any
bounded Borel measurable function that is continuous almost everywhere with respect
to Lebesgue measure on R. In particular, (3.83) holds for any set S that is bound-
aryless with respect to Lebesgue measure (i.e., any set S for which the boundary of
S has Lebesgue measure equal to zero).

Proof. Noting that ng__are absolutely continuous with respect to Lebesgue measure,
the statements follow directly from Theorem 3.13. O

Corollary 3.15. Assume Hypothesis 3.9. If g is a bounded Borel measurable function
that is compactly supported and Lebesgue almost everywhere continuous on R, then

lim | €Ck: H, Ho.j)dhg(2) = /[R E(: H, Ho)dA g(). (3.85)

Jj—o0o
Proof. If g satisfies the hypotheses of Corollary 3.15, then choosing
fO) =R+ gk

in (3.82) yields the result, noting that f is a bounded (g has compact support)
Borel measurable function and is continuous Lebesgue-almost everywhere (and thus
ng, -almost everywhere) on R. Ol
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Remark 3.16. We briefly summarize the instrumental role of convergence of the
determinants, (3.27), in this work. The proof of (3.25) in Lemma 3.4 goes by simple
induction on n € N in (3.44), and it is precisely (3.27) that yields the first induc-
tion step, n = 1, in (3.44). Convergence of the determinants, (3.27), also proves
indispensable in the proof of weak convergence of the spectral shift functions, that
is, (3.82). To go from vague (cf. (3.72)) to weak (cf. (3.82)) convergence, we simply
apply the abstract Theorem 3.7 together with convergence of the total masses, (3.84).
However, it is (3.75), and therefore (3.27), that guarantees the requisite convergence
of total masses, (3.84).

For applications to multi-dimensional Schrédinger operators we need to extend
the assumptions in Hypothesis 3.9 a bit.

Hypothesis 3.17. Suppose the assumptions made in Hypothesis 3.9 with the exception
of the trace class assumptions (3.4), (3.7), and (3.10).

(ix) Assume that for some (and hence for all) z € p(Hy),

Vz(HO —zI%)—lVl*, Vz,j(Ho,j —ZI%)_ll/jTI ®d0 e 32(%), j (S IN,
(3.86)
and that

lim [[Va(Ho —z13) "Vl g, 5 = 0-
z—o00
(3.87)

lim V2., (Ho., — 2l WV @ 0] gy = 0. jEN.

(x) Suppose that for some (and hence for all) z € C\R,

jlggo I[V2,;(Ho,j — ZIJ(j)_IV:j ® 0] — Vo (Hp — ZI}()_1V1*||;32(J() = 0.
(3.88)

Theorem 3.18. Assume Hypothesis 3.17. Then the assertions of Theorem 3.10,
Corollary 3.11, Theorem 3.13, and Corollaries 3.14 and 3.15 hold.

Proof. 1t suffices to delineate the necessary changes in the proofs due to the Hilbert—
Schmidt hypotheses (3.86) and (3.87) as opposed to the trace class assumptions (3.4),
(3.7), and (3.10).

With (3.21) still valid, we abbreviate the modified perturbation determinants by

Dy (z) = dety ge (15 + Va(Ho — z15)7'V)*), z € p(H) N p(Hop),

= 3.89
D2.j(2) = deta,se, (Iy, + Vo, (Hoj — 21y )1V, G5

z € p(Hj) N p(Ho,j), j € N.
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Consequently, by (2.34), for z € C\R,

d E(A)dA _ _
ElnDz(z) =) G try, (Ho — z145) ' V(Ho — z1,) 7). o
d £:(L)dA _ _ ‘
ElnDz,j(z) = . (j\ —)2 — trﬂ,j ((Hy — ZIJ(,-) le(HO — Zlﬂ,j) 1),
for j € N. In analogy to (3.28), (3.29), one then obtains (a,z € C\R)
—a) E(V)dA
% (2 —a)d—2) G391
D )
=(z— a)tr%(Vz(Ho — ZI%)_l(HO — aIJe)_lVl*) + 1[1(#8),
and
£ (A)dA
S Ay 7
D .
= (z—a)tyy (Vo (Hoj —z215) " (Hoj —aly )7WV7)) + ln(Dz’{EZ;),
sJ
(3.92)
for j € N. By (3.88),
lim D, ;(z) = D2(2), (3.93)
Jj—00
and by (3.11) and (3.12),
lim try, (V2,j(Ho,j — z)" (Ho,j —a)~1Vy))
Jmee (3.94)

= tr,,(Va(Ho — z14) " (Ho — al,)~'V/¥).

At this point one can follow the proof of Lemma 3.4 step by step, implying the validity
of (3.43). In addition, (3.90)—(3.94) yield

. §MNdh / E()dA
iz Jg A—a)A—z)  Jg(A—a)A—2)

a,z € C\R, (3.95)

and hence the first induction step (3.45) also holds under Hypothesis 3.17, imply-
ing the assertions in Lemma 3.4. The latter is the crucial input for the proof of
Theorem 3.10 and hence for Corollary 3.11, which both extend to the current Hy-
pothesis 3.17.

Finally, the proofs of Theorem 3.13 and Corollaries 3.14 and 3.15 extend without
change under Hypothesis 3.17. Ol
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Remark 3.19. We conclude with a brief remark on an alternative approach to con-
vergence of spectral shift functions. In cases where a fixed Hilbert space is natu-
rally given, an abstract convergence result of spectral shift functions in the L(R;
(A2 4 1)"'d X)-norm, based on trace norm convergence of resolvents, has been given
in [77], Lemma 8.7.5, with a refinement in the case of semibounded self-adjoint op-
erators in [60], Lemma 8.3. This is then applied to derive relative oscillation theory
results in essential spectral gaps between different Sturm—Liouville operators in [59]
and [60]. This approach differs from the one developed in this paper as in our case
one cannot expect subsequences of spectral functions to converge pointwise a.e. as
discussed in the paragraph following (1.1).

4. Applications to Schrodinger operators

In our final section we briefly illustrate the applicability of Theorems 3.13 and 3.18
to (multi-dimensional) Schrodinger operators.

(I) The one-dimensional case. Assuming
V e LY(R; dx) real-valued, 4.1

and introducing the differential expression t by

d2
T=—os V(x), xe€lJ, (4.2)

with J C R an appropriate open interval, we introduce the self-adjoint Schrodinger
operator H, p) o8 in L?((a, b); dx), with Dirichlet boundary conditions at x = a, b

(H@p),p /)(x) = (tf)(x), x€(a.b),

J € dom(H(g,p),p) 4.3)
= {g € L*((a.b);dx) |
8.8 € AC([a,b]): g(a) = g(b) = 0: tf € L*((a.b); dx)}.

and the self-adjoint Schrodinger operator H in L2(R; dx),
(Hf)(x) = (2f)(x), x€R,

f edom(H) ={g € L*(R:dx) | g.8' € ACioc(R); tf € L*(R; dx)}.

(4.4)

Here AC([a, b]) (resp., ACioc(R)) abbreviates the set of absolutely continuous func-
tions on [a, b] (resp., the set of locally absolutely continuous functions on R).

In the special case where V' = 0 a.e. on R, the operators in (4.3) and (4.4) are
denoted by Hy (4,5),p and Hy, respectively.
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The Dirichlet Green’s functions (i.e., the integral kernels of the resolvents) asso-
ciated with Hy (4,5),p and Hy are then given by

Go,@ap),0(z, x,x)
= (Ho.ap).0 — ZLap)) " (x,x)

sin(zY/2(x — a)) sin(z'/2(b — x")). (4.5)
1 a<x<x <b,

- z1/2 sin(zl/z(b — a)) sin(zl/z(x/ —a)) Sin(Zl/z(b — X)),

a<x <x<b,

forall z € C\{n?n?(b — a) ?}en, and

i

2Te””z'x—f', x.x' €eR  (4.6)
yA

Go(z,x,x') = (Ho — zIg) "' (x,x") =

for all z € C\[0, c0) such that Im(z'/2) > 0, respectively, where I ; denotes the
identity operator in L?(J; dx) for J C R an interval.

Moreover, we also recall the integral kernels for the square root of resolvents
(cf. [32], p. 325, and [37]),

1/2 _
RO,/(a,b),D(Z,X’X/) = (Hotab).0 — 2l (ap)) "2 (x, x)

| oo @.7)
= ;/ dt t72Go by, p(z — 1, x, X)),
0

forall z € C\{n?n2(b —a) ?}nen and x, x’ € [a, b], and
R (z.x.x') = (Ho— zIp) 2 (x.x) = n " H{P 2 x = X)), (48)

for all z € C\[0, o) such that Im(z'/2) = 0, and x, x" € R, where Hél)(-) denotes
the Hankel function of the first kind and order zero (cf. [1], Section 9.1). Moreover,
employing domain monotonicity for Dirichlet Green’s functions (see, e.g., [26], Sec-
tion 1.VIL.6), that is,

0< GO,(a,b),D (—FE, x, x’) < Go’(a/,b/)jp(—E, X, x’) < Go(—E, x, x’), 4.9)
forall x,x” € [a,b] C [a’,b'] and E > 0, and inserting (4.9) into (4.7) yields

0< RYZ ) p(—E.x.x) < RY*(—E.x.x), x.x'€a.b]. E>0. (4.10)
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In fact, the upper bound in (4.9) can be made more explicit by noting
0 < Go,(a,b),p(—E, x,x’)

1 [eEl/z(x—a) _ e—El/z(x—a)][eEl/z(b—x’) _ e—El/z(b—x’)]

T 2E12 eE'/2(b—a) _ p—E'/2(b—a)

EY2(x+x'—b—a) _ ,EY/2(a+x'—b—x)
I [e e I @

— f— / -
= GO( E, x,x) 2E1/2 eEl/2(b_a) _e_El/Z(b—a)

1 [eEl/z(b—i-a—x—x’) _ eEl/z(x—i-a—b—x’)]

" 2EV2 oE2(b—a) _ o—E/2(b—a) :
< Go(—E, x,X),

fora < x < x’ < b, and analogously for a < x’ < x < b. (One verifies that all
square brackets in (4.10) are nonnegative.) The relations in (4.11) also show that

lim  Go,@ap),p(—E.x,x") = Go(—E,x,x") pointwise, (4.12)

al—oo,btoo

that is, for fixed £ < 0 and x, x” € R. (The latter is easily seen to extend to all fixed
z € C\R)

Next, one factors V' as

V(x) = u(x)v(x),
v(x) = V()3 (4.13)
u(x) = v(x) sgn(V(x)).

for all x € R, and introduces
Via.b)(x) = V(X)|(a,p)-
V(a.b)(X) = v(¥)|(a.0), (4.14)
U(a,p) (X) = u(X)|(a,5)

for all x € (a, b). Then in the notation employed in Section 3,

u corresponds to V5, v corresponds to V;* (4.15)
U(q,p) cotresponds to V3 ;, V(g p) corresponds to Vl’f Iz (4.16)
a | —oo, b 1 oo corresponds to j —> 00, etc. 4.17)

Moreover, the estimate

—X

0< HP )< Cin(+—) —

14+ x/2mx/2 41’

x>0, (4.18)
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for a suitable constant C > 0 (cf. [1], Section 9.6, for the proper asymptotic relations
as x | 0and x — oo, implying (4.18)) then readily proves that

u(Ho + I) V2, u(Hy + Ig) " € Bo(L%(R; dx)), (4.19)

u(Ho+ Ie)™'v B (4.20)
= [u(Ho + I)"*[v(Ho + Ir)""/** € B1(L?(R; dx)),

[(H + Ir)™" — (Ho + Ir) "] € B1(L*(R; dx)). 4.21)

At this point it is possible to verify that each item in Hypothesis 3.9 applies
and hence that Theorem 3.10, Corollary 3.11, Theorem 3.13, and Corollaries 3.14
and 3.15 all hold in the context of Dirichlet boundary conditions at x = a, b.

The case of a half-line with R replaced by [0, co) and (a, b) by (0, R), R > 0, has
been dealt with in great detail in [37] (in part, using techniques developed in [34]).
In [37] also the case of all separated self-adjoint boundary conditions was discussed
in depth, by invoking Krein-type resolvent equations that reduce general separated
boundary conditions to the case of Dirichlet boundary conditions. This strategy also
applies to all separated self-adjoint boundary conditions in the current case of R and
(a, b); we omit further details at this point. (See also [66], Chapters 2, 3, 5, and 9,
for a detailed treatment of the case n = 1.)

(II) The two and three dimensional case (with Dirichlet boundary conditions).
Assuming

Ve R,s forsomed > 0,real-valued, if n = 2, (4.22)
VeRsNLY(R? d3x), real-valued, if n = 3, (4.23)

where
Ry5 =1{V: R* - C, measurable | VT 14115V e LY(R? d?x)}, (4.24)

1% V(x'
R3 =3V: R® — C, measurable | d3xd3x' M
RS |x — x’|?

oo}, (4.25)
(with R3 the set of Rollnik potentials), we introduce the differential expression
T=—-A+V(x), xeQ, (4.26)

with Q € R”?, n = 2, 3, an appropriate open set.

Denotingby Bg € R”,n = 2, 3, the open ball of radius R > 0, centered at the ori-
gin, we now introduce the self-adjoint Schrodinger operator Hp . p in L?(Bg; d"x),
n = 2,3, with Dirichlet boundary conditions at dBg, by

(Hpg.p f)(x) = (tf)(x). x € Bg,

f € dOH’l(HBR,D) 4.27)
={g € L*(Br:d"x) | g € Hy(BR): 1 € L*(Br:d"x)},
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and the self-adjoint Schrodinger operator H in Lz([R”; d"x),n = 2,3, by
(Hf)(x) = (tf)(x), xeR",

f € dom(H) (4.28)
={ge L*(R";d"x) | g € H'(R"); tg € L*(R";d"x)}.
Here tf = —Af + Vf is interpreted in the sense of distributions (i.e., in D’(BR),
resp., D'(R"), n = 2, 3).

In the special case where IV = 0 a.e. on R”, the operators in (4.27) and (4.28) are
denoted by Ho_ g,,p and Hy, respectively, and given by

Ho,Br,p = —A,

dom(HO,BR,D)
= {g € L*(Br;d"x) | g € Hy(Br) N H*(Br); —Ag € L*(Bg;d"x)},
(4.29)
and
Hy = —A, dom(Hy) = H?*(R"). (4.30)
The method of images (cf. [20], p. 264) then permits one to explicitly compute
the Dirichlet Green’s function for the ball Bg as
GO,BR,D (Zv X, -x/) = (HO,BR,D - ZIBR)_l(xv -x/)

= Ynl(z, |x _x/|) - 1ﬂn(za %

X —

R? D 4.31)

Tigs

forall z € C\[0,00) and x # x’, x, x’ € Bgr, where

fIHél)(Zl/zr), n=2,

Yn(z,r) = oiz!/2r

- 1 = 37
[47r] "

for all z € C\[0, 00), such that Im(z'/2) > 0 and r > 0, with Hél)(-) again the
Hankel function of the 1st kind and order zero. Similarly,

Go(z,x,x") = (Ho — zIgn) "1 (x, x")
= 1p‘l’l(z7 |x _x/|)
%Hél)(zl/2|x —x']), n=2, (4.32)

eizl/zlx—x/l
_ n=3,
[4m|x —x'[]



Weak convergence of spectral shift functions 255

for all z € C\[0, 00), such that Im(z/2) > 0, with x # x’, x,x’ € R", n = 2, 3.
Here I denotes the identity operator in L?(Q2;d"x) for @ € R” an open set.
Consequently,

1Go.8.0(z. %, x)| < CYn(z. [x —x']), (4.33)

for all x # x’, x,x’ € R", n = 2, 3, for some constant C > 0. Moreover, one gets
as a pointwise limit

Rlim Go,Br,p(z,x,x") = Go(z,x,x'), (4.34)
-0

forall z € C\[0,00), x # x’, x,x’ € R".
Next, one again factors V' as

V(x) = u(x)v(x),
v(x) = V()| (4.35)
u(x) = v(x) sgn(V(x)).
for all x € R”, and introduces
VBg(x) = V(X)|Bg.
UBR(X) = v(X)|Bp, (4.36)
UBg (x) = u(x)|Bg-

for all x € Bg. Then in the notation employed in Section 3,

u corresponds to 15, v corresponds to V;* (4.37)
upy corresponds to V3, j, vp, corresponds to V', (4.38)
Br —> R" as R 1 oo corresponds to j —> 00, etc., (4.39)

and using again the estimate (4.18) in the case n = 2, one concludes that forn = 2, 3,

u(Ho + Ign) "2 € B4(L*(R"; d"x)),

(4.40)
u(Ho + Ign) ™' € B(L*(R"; d"x)),
n —1
u(Ho + Ign)~ v @41)
= [u(Ho + Ign)"Y2[v(Ho + Ign)"Y?]* € Bo(L2(R";d"x)),

[(H + Ign)" ' — (Ho + Ign) "1 € B (L*(R"; d"x)), (4.42)

n -1 n -1
(Ho + Ign)~'V(Ho + Ign) (4.43)

= [u(Ho + Ign) "*[v(Ho + Ign) '] € B1(L*(R"; d"x)).
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More precisely, the fact that u(Hq + Ign)~! € B»(L?*(R";d"x)) follows from an
application of [74], Theorem 4.1, and thus u(Ho + Ign)""/? € B4(L*(R";d"x))
follows from the fact that T € B4(H) if and only if T*T € B,(J). Indeed, one
chooses for T the operator u(Ho + Ign)~"/? and defines the self-adjoint and unitary
operator S of multiplication by sgn(V(x)) with sgn(V(x)) = 1 for V(x) = 0 a.e.
and sgn(V(x)) = —1 for V(x) < 0 a.e.

Moreover, an application of [74], Proposition 4.4, then also proves that

u(Ho + Ign) "2 ¢ Bo(L*(R"; d"x)),
(4.44)

u(Ho + Ign)~ v ¢ 31(L2([R”; d"x)),

forn = 2, 3. Indeed, since T*T € B;(H)ifandonlyif T € B, (H ), again choosing
for T the operator u(Ho+ Ign)~"/? proves that u(Ho+ Ign ) ~'/? ¢ B (L*(R; d"x))
since (|p|*> + 1)~ ¢ L?2(R:d"p) forn = 2,3.

This illustrates that even though (4.43) holds in dimensions n = 2, 3 (just like
it holds for n = 1, cf. (4.21)), the use of the 2-modified Fredholm determinant
dety 72(pn.gny)(-) in connection with formulas of the type (3.90) is inevitable in
dimensions n = 2, 3 (as opposed to the case n = 1). Thus, Hypothesis 3.9 needed to
be extended to Hypothesis 3.17 in order to be able to handle the multi-dimensional
casesn = 2,3.

We also note in connection with (2.26) that

' (z) = trp2gn.gnyy(Ho — zIgn) "1V (Ho — zIgn)™1)
1
- d?x V(x), n=2,
drz Jp2 (4.45)
i 3 _
872172 Jo d°xV(x), n=3,

and hence (cf. also [33]),

1
E(A, H, Ho) = ;Im(ln(detz,LZ([Rn;dnx)(l[kn + M(H() — (A + iO)IRn)_IU)))

1
— d’xV(x), A>0,n=2,
4 R2
/\1/2

T —/ A3xV(x), A>0,n=3,
47T2 R3
0, A<0,n=2,73,

(4.46)

in accordance with the normalization (2.11).
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At this point it is possible to verify that each item in Hypothesis 3.17 applies
and hence that Theorem 3.10, Corollary 3.11, Theorem 3.13, and Corollaries 3.14
and 3.15 all hold in the context of Dirichlet boundary conditions at dBg forn = 2, 3.
(We also refer to [12], [16], and the references cited therein, in the case n = 2, and
to the detailed treatment of the case n = 3 in [67], Chapters [-1V.)

(iii) Possible generalizations. Without providing full details, we will hint at various
possible extensions including more general regions and other boundary conditions.

In this context we find it convenient to recall some facts on positivity preserving
(resp., improving) operators. Suppose (X, -4, i) is a o-finite measure space and
K = L?(X;du) a complex, separable Hilbert space. Then A € B(K) is called
positivity preserving (resp., positivity improving) if

0# feX, f=0uae = Af =0 (resp., Af > 0) u-ae. (4.47)

(We refer, e.g., to [15], [21], [22], Chapter 7, [28], [29, Sect. 8], [30], [39], [42], [53],
[57], [58], [61], [63], [65], Section XIII.12, [68], [70], [72], and the references cited
therein for the basics of this subject.) Positivity preserving (resp., improving) of A
will be denoted by

A>=0 (resp., A > 0). (4.48)

(or by 0 < A (resp., 0 < A)). Similarly, if A, B € B8(K), then
A= B >0 (resp.,, A> B >0) (4.49)

(or0 < B < A (resp.,, 0 < B < A)) imply that A, B, and A — B are positivity
preserving (resp., positivity improving).

Considering the contraction semigroup 7(t) = e " ¢t > 0, with H > 0 self-
adjoint in KX, one uses well-known relations

(H+ My) ' = /Ooo dte e ) >0, (4.50)
et = shim((t/m)H + Ix]™". 120, (4.51)
to prove that
e s positivity preserving forallt > 0

Lo : (4.52)
< (H + A y) " is positivity preserving for all A > 0.

Analogous statements hold if H = 0 is replaced by H > c¢Ix for some ¢ € R.
Moreover, we note that if A is an integral operator with integral kernel A(x, x”)
for di ® du-ae. x, x' € X, and assuming A(-,-) € L' (X x X;du ® dyu), then

A>0 & A(x,x)=0 fordu @ du-ae. x,x' € X, (4.53)
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with dju ® dp denoting the product measure on X x X. Clearly, A > 0if A(-,-) > 0
du ® du-ae.

We also remark that these notions of positivity preserving (resp., improving)
naturally extend to a two-Hilbert space setting in which one deals with a second
Hilbert space L?(Y;dv) with Y C X and ft = uly, see, for instance, [15], [53].
This is also frequently done in connection with (nondensely defined) quadratic forms
(cf., e.g., [24], p. 61-62), and we will employ this notation in the following without
further comment.

First, we turn to the case of Dirichlet boundary conditions for general nonempty,
open, bounded sets 2 C R”, n € N, rather than just balls Bg C R”, R > 0. In this
context one recalls that the Dirichlet Laplacian —Ag p in L?(Q;d"x), by definition,
is the uniquely associated self-adjoint and strictly positive operator with the closure
of the sesquilinear form

[T (0. Lz e @) (4.54)

with domain the Sobolev space H 01 (R2) (see, e.g., [24], Section 1.8, [27], Chapter VII,
[65], Section XIII.15). Domain monotonicity for the Dirichlet Laplacian then takes
on the form (cf., [9], [24], Section 2.1, [65], Appendix 1 to Section XIII.12)

0 < e 'CA21.D) g ot (CAay D) 4 >, (4.55)
or equivalently,
UES (_Aﬂl,D + A1191)_1 < (_Aﬂz,D + A’Iﬂz)_l, A > 0, (456)

assuming 21 C 2, C R”, ; nonempty, open, and bounded, j = 1,2. (Positivity
preserving in (4.55) and (4.56) actually extends to positivity improving if §2; are con-
nected, j = 1,2, and  is strictly contained in €2, such that —Aq, p # —Agq,,p,
cf. [53]). In particular, this yields the domain monotonicity of heat kernels,

0 <e'CAa1p)(x vy < e A2 (x X)), 120, x,x' € Q C Q. (4.57)

or equivalently, the domain monotonicity of Green’s functions for Dirichlet Lapla-
cians,
0 < Go,o,.p(—A,x,x") < Go,g,,p(—4, x,X), (4.58)

forall A > 0, x,x’ € Q1 C Q,, x # x’, where

Go,o.p(z,x,x') = (—Ag,p — zIg) ' (x,x),

for all x,x’ € Q, denotes the Green’s function of (i.e., the integral kernel of the
resolvent of) the Dirichlet Laplacian —Agq p in L?(R:d"x), n € N. We note that
domain monotonicity of heat kernels as in (4.57) also follows from their representation
in terms of Wiener measure (see, e.g., [30], [71]).
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Gaussian upper and lower bounds on heat kernels have been studied very exten-
sively in the literature (see, e.g., [4], [23], [24], Chapter 3, [76], and the references
therein). Here we just mention the rough Green’s function estimate based on domain
monotonicity, that is, on & C R” (see also [51], Section 1.2, [76]),

Go,o,p(—A,x,x")

1 (27r|x — x/|)(2—n)/2

< Go(—hoxx) = (T3 Kr—2/2(A2[x = x'))

(4.59)

Carqnlx — x|, n =3,
Cralln(l+ x —x'|™H|, n=2,

with A > 0,and x, x" € Q, x # x’, with Ky (-) the modified irregular Bessel function
of order « (cf. [1], Section 9.6) and

Go(z,x,x") = (Hy — zIgn) "1 (x, X'), (4.60)

for all z € C\[0, ), x,x" € R", x # x’, and n € N, the Green’s function of the
self-adjoint realization of —A in L2(R"; d"x),

Hy = —A, dom(Hy) = H?*(R"). (4.61)

The estimate (4.59) ignores all effects of the boundary 92 of €2, but it suffices for
the purpose at hand (cf. (4.18) and (4.32)).

Itis worth noting that these considerations extend to Schrodinger operators defined
as form sums —Agq p +4 V in L?(Q;d"x), assuming 0 < V € L} (Q;d"x),n € N
(and also to additional, appropriately relatively form bounded, potentials), see [24],
Chapters 1-3. In addition, a Feynman—Kac approach to semigroups can be applied
as long as V4 belong to appropriate Kato classes (cf. [2], [17], and [25]).

The case of Neumann boundary conditions, and more generally, that of Robin
boundary conditions, is a bit more involved as domain monotonicity does not hold
even for general convex domains (cf. [7] and [46]) and a certain regularity of the
boundary d€2 of 2 needs to be assumed. In addition, reflecting Brownian motion only
works for special and sufficiently regular domains € C R”. Still, one can proceed
along the following lines, assuming €2 to be bounded and smooth, for simplicity. (The
case of minimally smooth, that is, bounded Lipschitz domains, will be considered
elsewhere [36].)

The Neumann sesquilinear form in L2(£2; d"x) is given by

/ d"x (Vu)(x) - (Vv)(x), u,ve HY(Q), (4.62)
Q

and its uniquely associated self-adjoint and nonnegative operator in L2(Q;d"x)
represents the Neumann Laplacian —Agq n. The corresponding Neumann boundary
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condition then reads (du/dv)|sg = 0, u € dom(—Agq ), with v the normal unit
vector to d2 and d/dv denoting the normal derivative.
Similarly, for 6 € C(052), the Robin sesquilinear form is of the type

s Tm - (0w + [ am e e@uEnE). wo e @)

@ o (4.63)
with d"~!w the surface measure on 92 (cf. [35] for more details). The uniquely
associated self-adjoint operator in L2(2; d"x) then represents the Robin Laplacian
—Agq 9. The corresponding Robin boundary condition is of the form (du/0v)|sq +
Oulpo =0, u € dom(—Agq p).

Assuming 21 € Q, and 0 < 61(§) < 6,(§), £ € 2, one then has the positivity
preserving relations proved in [15], [53] (see also [10], p. 22)

0 < e~ t2a.p) < o~1(-Ag,.p)
(4.64)

< e_t(_As'Zz,Hz) < e_t(_AQngl) < e_t(_Aﬂz.N),

~ ~

for t = 0, or, equivalently,

0= (=Aq, p+Arg) ' < (~Aq,p + Alg,) ™"
< (—Ag,0 +Ao) ! < (A, 0 + Ag,) ! (4.65)
< (~Aq, N + A,

for A > 0. (Again, positivity preserving in (4.64) and (4.65) actually extends to
positivity improving if €2; are connected, j = 1,2, 1 is strictly contained in €2,
such that —Aq, p # —Agq,,p, and i # 0, such that —Aq, 9, # —Aq,.¢,, cf.
[53D.

Relations (4.64) and (4.65) then yield analogous pointwise bounds on heat kernels
and Green’s functions to those in (4.57) and (4.58) and we note that Gaussian upper
bounds for Neumann heat kernels are available in the literature (see, e.g., [4] or [24],
Theorem 3.2.9).

We conclude by noting that in dimensions n > 3, suitably higher modified Fred-
holm determinants det,, ;2(gn.gny)(-), p = p(n) € N, must be applied. This is
discussed in some detail in [78] and in [79], Chapter 9, and under somewhat dif-
ferent assumptions on V' (sign definiteness of V, but otherwise more general local
singularities of V' are permitted) in [54], Section 1.6. It is possible to remove the
sign definiteness assumptions on V' (as discussed in parts (I) and (II), see also [54],
Theorem 1.61, for 1 < n < 3). Moreover, one should establish the connection
with higher-order spectral shift functions (the Koplienko spectral shift function for
Hilbert-Schmidt class perturbations B, (L?(R";d"x)) and its recent extension to
BP(LZ([R”; d"x))-perturbations, p € N, p = 3, derived in [64] (see also [3]). This
lies beyond the scope of this paper and will be taken up elsewhere.
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