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Abstract. The paper is concerned with finite Hermitian Toeplitz matrices whose entries in the
first row grow like a polynomial. Such matrices cannot be viewed as truncations of an infinite
Toeplitz matrix which is generated by an integrable function or a nice measure. The main
results describe the first-order asymptotics of the extreme eigenvalues as the matrix dimension
goes to infinity and also deliver unexpected barriers for the eigenvalues. One purpose of the
paper is to popularize once more that questions on the eigenvalues of matrices can be answered
in a very elegant way by passing to integral operators. This idea was introduced by Harold
Widom about fifty years ago. In this way one can also give an alternative proof to results by
William F. Trench on Hermitian Toeplitz matrices with increasing entries.
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1. Introduction and main results

Given a real number a0 and n � 1 complex numbers a1; : : : ; an�1, we denote by
Tn D TnŒa0; a1; : : : ; an�1� the Hermitian n � n Toeplitz matrix whose first row is
constituted by these numbers,

Tn D TnŒa0; a1; : : : ; an�1� D

0
BBB@

a0 a1 : : : an�1

Na1 a0 : : : an�2

:::
:::

: : :
:::

Nan�1 Nan�2 : : : a0

1
CCCA :
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We are interested in the behavior of the eigenvalues of Tn. Much is known if the
numbers ak are the Fourier coefficients of an L1 function or of a Radon measure. In
the first case the numbers ak converge to zero as k ! 1, while in the second they
must necessarily remain bounded. We here study the case where the numbers ak are
equidistant sample values of a polynomial,

ak D p0 C p1k C � � � C p˛�1k˛�1 C k˛; ˛ 2 N; (1)

or, more generally,
ak D k˛ C o.k˛/; ˛ 2 .0; 1/:

This paper was originally motivated by an observation of Stephan Garcia. He
detected numerically that the symmetric Toeplitz matrices

TnŒR; R � h; R � 2h; : : : ; R � .n � 1/h�

are positive definite as long as all entries are positive and asked for a mathematical
explanation of this phenomenon. Figure 1 shows an example and even reveals that
the matrices remain positive definite also when some of its entries become negative
provided the sum of the entries is still positive.

Figure 1. The minimal eigenvalues (asterisks) and the maximal eigenvalues (pluses) of
TnŒ1; 1 � h;1 � 2h; : : : ; 1 � .n � 1/h� with h D 1=10 for 3 � n � 33 and the sum
sn D 2n � 1 � hn.n � 1/ of the entries in the first row and first column (circles). The
minimal eigenvalue is greater than 0:05 for n � 20 and negative for n � 21. We have sn � 1

for n � 20 and sn � �1 for n � 21.
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One is tempted to think of TnŒ1; 1 � h; 1 � 2h; : : : ; 1 � .n � 1/h� as the n � n

Toeplitz matrix which is induced by the symbol

un.'/
defD 1 C

n�1X
kD1

.1 � kh/.eki' C e�ki'/ D 1 C 2

n�1X
kD1

.1 � kh/ cos.k'/

and then to show that un.'/ > 0 for ' 2 Œ0; 2�/. However, as already noticed
by Stephan Garcia and as seen in Figure 2, this is not true. We will prove that the
positive definiteness of the matrices is in fact a consequence of the circumstance that
un.'`/ > 0 for '` D 2�`=.2n � 1/, ` D 1; 2; : : : ; 2n � 2.
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Figure 2. The graph of the symbol function 1 C 2.1 � h/ cos ' C 2.1 � 2h/ cos.2'/ C
2.1 � 2h/ cos.3'/ (h D 1=10, n D 4). The asterisks are the values of the function at '` D
2�`=7.

Another observation from Figure 1 is that for large n the extreme eigenvalues
of Tn seem to move to infinity. Figures 3 to 5 contain more examples and indicate
that the extreme eigenvalues are asymptotically equal to a constant times n˛C1. We
will prove this as well. Figure 3 also indicates that with the exception of the largest
eigenvalue all eigenvalues are negative and that they cluster close to zero before
starting the movement to minus infinity. In other words, Figure 3 makes us surmise
that the negative eigenvalues are asymptotically of the form �c`n2 with very small
positive coefficients c`. All this will be proved. The matrices Tn of Figure 4 will be
shown to have rank 3, and hence n � 3 eigenvalues are exactly zero, which is also
lucidly seen in Figure 4.
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Figure 3. The eigenvalues of TnŒ0; 1; 2; : : : ; n � 1� for 3 � n � 33.

Figure 4. The eigenvalues of TnŒ0; 12; 22; : : : ; .n � 1/2� for 3 � n � 33.
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Herewith our main results. We denote the eigenvalues of Tn by

�1.Tn/ � �2.Tn/ � : : : � �n.Tn/:

We also abbreviate TnŒ0; 1˛; 2˛; : : : ; .n � 1/˛� to Tn;˛ and refer to these matrices as
the canonical matrices. Let K˛ be the integral operator on L2.0; 1/ given by

.K˛f /.x/ D
Z 1

0

jx � yj˛f .y/ dy; x 2 .0; 1/: (2)

The operator K˛ is compact and selfadjoint. For ˛ > 0, it is even a trace class
operator with the trace

tr K˛ D
Z 1

0

jx � xj˛ dx D 0: (3)

We denote its positive eigenvalues by

�1.K˛/ � �2.K˛/ � : : : > 0

and write
�1.K˛/ � �2.K˛/ � : : : < 0

for its negative eigenvalues, all counted with their multiplicity. Finally, we let LC
stand for the index set of the positive eigenvalues, that is, LC D f1; 2; : : : ; mg if K˛

has exactly m < 1 positive eigenvalues, and LC D N if the operator has countably
many positive eigenvalues. The index set L� is defined analogously. By virtue of (3),
the sets LC and L� are not empty.

Theorem 1.1. Let ˛ > 0 be a real number, suppose ak D k˛ C o.k˛/ as k ! 1,
and consider Tn D TnŒa0; a1; : : : ; an�1�. Then, as n ! 1,

�nC1�`.Tn/ D �`.K˛/ n˛C1 C o.n˛C1/ for ` 2 LC; (4)

�nC1�`.Tn/ D o.n˛C1/ for ` 2 N n LC; (5)

�`.Tn/ D �`.K˛/ n˛C1 C o.n˛C1/ for ` 2 L�; (6)

�`.Tn/ D o.n˛C1/ for ` 2 N n L�: (7)

If ak is given by (1), then (4) and (6) hold with O.n˛/ in place of o.n˛C1/.

The following two theorems provide us with more precise information for ˛ D 1.

Theorem 1.2. (a) The operator K1 has exactly one positive eigenvalue �1.K1/ and
countably many negative eigenvalues. All these eigenvalues have the multiplicity 1.
The positive eigenvalue of K1 is

�1.K1/ D 2

!2
0

D 0:3471 : : :
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where !0 is the positive solution of the equation 2 C 2 cosh ! � ! sinh ! D 0, and
the negative eigenvalues are

�`.K1/ D � 2

!2
`

where 0 < !1 < !2 < : : : are the positive solutions of the equation 2 C 2 cos ! C
! sin ! D 0. In particular,

�1.K1/ D � 2

�2
; �3.K1/ D � 2

.3�/2
; �5.K1/ D � 2

.5�/2
; : : : :

(b) For the canonical matrices Tn;1, we have �n�1.Tn;1/ � �1=4 for all n � 2.

The first four significant digits of the numerical values of the smallest negative
eigenvalues of K1 are

�1.K1/ �2.K1/ �3.K1/ �4.K1/ �5.K1/ �6.K1/

�0:2026 �0:0638 �0:0225 �0:0133 �0:0081 �0:0058
:

Numerical experiments show that actually �n�1.Tn;1/ < �1=2. We have not been
able to prove this.

Figure 5 illustrates that the asymptotics of Theorem 1.1 with the constants from
Theorem 1.2(a) deliver very good approximations even for small n.

Figure 5. The eigenvalues of Tn;1 D TnŒ0; 1; 2; : : : ; n � 1� for 3 � n � 33 as in Figure 3
(asterisks) and the values �1.K1/ n2, �1.K1/ n2, �2.K1/ n2 (circles).
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The following is a restatement of parts of Theorems 1.1 and 1.2. It proves what
we see in Figure 1.

Theorem 1.3. Let h > 0 and Tn D TnŒR; R � h; : : : ; R � .n � 1/h�.

(a) We have �1.Tn/ � h=4 whenever the sum sn D R.2n � 1/ � hn.n � 1/ of the
entries in the first row and the first column of Tn satisfies sn � h=4.

(b) The smallest and largest eigenvalues of Tn satisfy

�1.Tn/ D �h
2

!2
0

n2 C O.n/; �n.Tn/ D h
2

�2
n2 C O.n/;

where !0 is as in Theorem 1.2.

Things are especially nice in the case where ˛ is an even integer. The following
theorem was essentially established by Trench in [19].

Theorem 1.4 (Thench). Let ˛ be an even natural number.

(a) The operator K˛ has exactly ˛ C 1 nonzero eigenvalues,

�1.K˛/ < : : : < �q.K˛/ < 0 < �p.K˛/ < : : : < �1.K˛/; p C q D ˛ C 1;

and these eigenvalues are the eigenvalues of the matrix

M˛ D
�
.�1/˛�j

�˛

j

� 1

˛ C 1 � j C k

�˛

j;kD0
:

(b) The rank of the canonical matrices Tn;˛ is ˛ C 1 for all n � ˛ C 1 and

�nC1�`.Tn;˛/ D �`.K˛/n˛C1 C O.n˛/ for ` D 1; : : : ; p; (8)

�`.Tn;˛/ D �`.K˛/n˛C1 C O.n˛/ for ` D 1; : : : ; q; (9)

�qC1.Tn;˛/ D : : : D �n�p.Tn;˛/ D 0 for n � ˛ C 1: (10)

Straightforward computation gives that the eigenvalues of M2 are

�1.K2/ D �1

6
D �0:1666 : : : ;

�2.K2/ D 1

12
�

p
5

20
D �0:0285 : : : ;

�1.K2/ D 1

12
C

p
5

20
D 0:1951 : : : :
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This is in perfect accordance with Figure 4, which shows the eigenvalues of Tn;2.
Numerically we obtained that, showing only the first four significant digits, the eigen-
values of M4 are

�0:1046; �0:0070; 0:0010; 0:0046; 0:1059;

while those of M6 equal

�0:0740; �0:0029; �0:0002; �0:0000; 0:0003; 0:0028; 0:0741:

For odd integers ˛, the determination of the eigenvalues of K˛ is in principle
possible, but the computations are very expensive. We will say more about this issue
in Section 5. We confine ourselves to the following.

Theorem 1.5. Let ˛ > 0 be a real number. Then j�1.K˛/j � �1.K˛/, the largest
eigenvalue �1.K˛/ satisfies C˛ � �1.K˛/ � D˛ with

C˛ D
p

2

˛ C 1

s
1

2˛ C 3
C �.˛ C 2/2

�.2˛ C 4/
;

and

D˛ D 1p
.˛ C 1/.2˛ C 1/

;

and the function ˛ 7! �1.K˛/ is monotonically decreasing.

Table 1 exhibits the estimates for some values of ˛, showing only the first four
digits of the numbers. The value �1.K1/ D 0:3471 is from Theorem 1.2(a), the
remaining values for �1.K˛/ are guesses based on computing �n.Tn;˛/=n˛C1 for
some large n.

Table 1. Estimates of C˛ , �1.K˛/, and D˛ .

˛ C˛ �1.K˛/ D˛

1 0:3416 0:3471 0:4082

3 0:1187 0:1363 0:1890

5 0:0654 0:0871 0:1231

7 0:0429 0:0645 0:0913

9 0:0309 0:0512 0:0725
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2. Notes

The pioneering results on the asymptotic behavior of the eigenvalues of Hermitian
Toeplitz matrices go back to Kac, Murdock, and Szegő; see paper [10] and the
book [9]. They studied the collective behavior of the eigenvalues, that is, the sum

1

n

nX
kD1

F.�k.Tn// (11)

for certain test functions F , and also the behavior of the extreme eigenvalues �`.Tn/

and �nC1�`.Tn/. Their basic assumption was that Tn D TnŒa0; a1; : : : ; an�1� where
fakg is the sequence of the Fourier coefficients of a smooth function a on the unit
circle.

For the extreme eigenvalues, two major problems were left. The first concerns
higher-order asymptotics for smooth functions a. This problem was thoroughly inves-
tigated by Parter [12], [13], and Widom [23], [24], [25]. Part of these two hero’s work
is outlined in more detail on pages 256–259 of [4]. Recent work on this topic includes
the papers [11], [29]. We also note that paper [5] contains higher-order asymptotics
for the individual eigenvalues �k.Tn/ inside the spectrum, e.g. for k=n ! x 2 Œ0; 1�,
however, under the assumption that a is a Laurent polynomial which is subject to
additional conditions. The second problem was the passage from smooth functions
a to more general functions, and here it was Serra Capizzano [15] and [16] who was
able to prove first-order results under the sole assumption that a be an L1 function.

It took significant efforts to come up with (11) in more general situations. The
limit of (11) was determined by Parter [14] for a 2 L1, by Tyrtyshnikov [20] and [21]
for a 2 L2, and then by Zamarashkin and Tyrtyshnikov [28] for a 2 L1. Eventually,
Tyrtyshnikov and Zamarashkin succeeded in determining the limit of (11) in the case
where fakg is the sequence of the Fourier coefficients of a Radon measure.

In all the situations described above, ak D O.1/. Trench [18] and [19] considered
matrices in which

ak D
mX

j D1

Pj .jkj/�k
j

where Pj are polynomials and �j are complex numbers. Clearly, if j�j j � 1, then
the entries do not remain bounded. Trench proved that the spectrum of Tn is the
union of a “distributed” part, in which sums like (11) have a limit, and an “outlying”
part, which consists of eigenvalues that move to ˙1. In the case where m D 1,
�1 D 1, and P1.k/ D k˛ , Trench’s matrices become our canonical matrices Tn;˛,
and if, in addition, ˛ is an even natural number, he established Theorem 1.4. He did
not consider the integral operator K˛ but rather introduced the coefficients �k.K˛/

and �k.K˛/ directly as the eigenvalues of the matrix M˛ . Note that the Toeplitz
matrix ..j � k/˛/n

j;kD1
(˛ 2 N) is Hermitian if and only if ˛ is even, in which case

.j � k/˛ D jj � kj˛ .
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Widom [26] studied Wiener–Hopf integral operators over .0; 	/ under the assump-
tion that the kernel
.t/ grows more rapidly than every polynomial. He showed that the
two extremal eigenvalues of the operator are asymptotically equal to ˙
.2	/2=2
0.2	/

and that the other eigenvalues are o.
.2	/2=2
0.2	// as 	 goes to 1. Note that for
Wiener–Hopf integral operators the case of polynomial kernels is trivial: making the
change of variables t D 	x, s D 	y, we see that the eigenvalues of the operator given
by

.W�f /.t/ D
Z �

0

jt � sj˛f .s/ ds; t 2 .0; 	/;

are 	˛C1 times the eigenvalues of the operator K˛ defined by (2). Wiener–Hopf
integral operators are the continuous analog of Toeplitz matrices, and the operators
of [26] are the analog of Toeplitz matrices TnŒa0; a1; : : : ; an�1� with ak D e�k where
�k increases more rapidly than log k.

There are many techniques to treat eigenvalues of Toeplitz matrices; see, for
example, [6]. We here employ two of them, which, curiously, are not discussed
in [6]. The first is based on replacing the matrix .aj;k/n�1

j;kD0
by the integral operator

on L2.0; 1/ whose kernel is k.x; y/ D aŒnx�;Œny�, where Œ � � denotes the integral
part. This is an old idea, which was heavily exploited for probably the first time
by Widom [23], [24], [25], [27] and independently by Shampine [17]. The recent
papers [1], [2], [3], [7], and [8] illustrate the power of this idea in several contexts.

The second idea consists in relating the eigenvalues of Toeplitz matrices with
those of cleverly constructed circulant matrices. One choice is the circulant matrix
which is the best approximation to the Toeplitz matrix in the Frobenius norm. This
method is prevailing in the works by Serra Capizzano, Trench, Tyrtyshnikov, and
Zamarashkin, for example. Another well known choice is based on bordering the
n � n Toeplitz matrix to a .2n � 1/ � .2n � 1/ circulant matrix and on exploiting
Cauchy’s interlace theorem. The latter method was used in [29], for instance, and
will be exerted here, too.

We remark that the case ˛ D 0, that is, the case where ak D 1 C o.1/, does
not cause problems. The integral operator K0 is the rank-one operator given by
.K0f /.x/ D R 1

0 f .y/ dy, and in contrast to the case ˛ > 0, the trace of K0 is not zero,
so that we cannot guarantee the existence of both a positive and a negative eigenvalue.
It is easily seen that the only eigenvalue of K0 is 1, the multiplicity being one. Clearly,
�n.TnŒ1; 1; : : : ; 1�/ D n and �k.TnŒ1; 1; : : : ; 1�/ D 0 for 1 � k � n � 1. For ˛ D 0,
Theorem 1.1 amounts to saying that �n.Tn/ D n C o.n/ and �k.Tn/ D o.n/ for
1 � k � n � 1.

The rest of the paper contains the proofs of Theorems 1.1 to 1.5. Figure 2 is
addressed in Remark 4.3, and further results are provided by Remarks 4.2, 5.1, and 5.2.
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3. Matrices versus integral operators

This section is devoted to the proof of Theorem 1.1. The following result is due to
Widom [23], [24], [25], [27], and Shampine [17].

Lemma 3.1 (Widom and Shampine). Let A D .aij /n�1
i;j D0 be a matrix in Cn�n and

let G be the integral operator on L2.0; 1/ given by

.Gf /.x/ D
Z 1

0

aŒnx�;Œny�f .y/ dy; x 2 .0; 1/;

where Œ � � denotes the integral part. Then a nonzero complex number � is an eigen-
value of A of a certain algebraic multiplicity if and only if �=n is an eigenvalue of G

of the same algebraic multiplicity.

Proof. Let Jk be the interval .k=n; .k C 1/=n/, denote by �
k

the characteristic func-
tion of Jk , and consider the operators

S W Cn �! L2.0; 1/;

.zk/n�1
kD0

7�! p
n

n�1X
kD0

zk�
k
;

R W L2.0; 1/ �! Cn;

f 7�!
�p

n

Z
Jk

f .x/ dx
�n�1

kD0
:

It is easily seen that

RS D I; S� D R; nG D SAR:

It follows that L2.0; 1/ D Ran S ˚ .Ran S/? D Ran S ˚ Ker R and that if f D
g C v with g 2 Ran S and v 2 Ker R, then nGf D SAR.g C v/ D SARg with
SARg 2 Ran S . Consequently, the matrix representations of nG and the identity
operator I with respect to the decomposition L2.0; 1/ D Ran S ˚ Ker R are

nG D
�

SAR 0

0 0

�
; I D

�
SR 0

0 I

�
:
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Using elementary properties of operator determinants we therefore obtain

det
�
I � n

�
G
�

D det

 
SR � .1=�/SAR 0

0 I

!

D det
�
SR � 1

�
SAR

�

D det S
�
I � 1

�
A
�
R

D det RS
�
I � 1

�
A
�

D det
�
I � 1

�
A
�
:

We now use this lemma in the case where A D Tn;˛ is the canonical matrix
TnŒ0; 1˛; 2˛; : : : ; .n � 1/˛�. Let G be the integral operator associated with A as in
Lemma 3.1. To emphasize the dependence on n and ˛, we write Gn;˛ for G. Recall
the integral operator K˛ given by (2). Finally, we put Kn;˛

defD n�˛ Gn;˛ .

Lemma 3.2. The operators Kn;˛ converge to K˛ uniformly, that is, in the norm.

Proof. The operator Kn;˛ � K˛ is the integral operator with the kernel

j Œnx� � Œny� j˛
n˛

� jx � yj˛: (12)

Writing Œnx� � Œny� D n.x � y/ C ın.x; y/ with jın.x; y/j � 2, we see that (12)
goes to zero uniformly in .x; y/ 2 Œ0; 1�2. This implies that kKn;˛ � K˛k ! 0.

Lemma 3.3. As n ! 1,

�nC1�`.Kn;˛/ �! �`.K˛/ for ` 2 LC; (13)

�nC1�`.Kn;˛/ �! 0 for ` 2 N n LC; (14)

�`.Kn;˛/ �! �`.K˛/ for ` 2 L�; (15)

�`.Kn;˛/ �! 0 for ` 2 N n L�: (16)

Proof. We abbreviate Kn;˛ and K˛ to Kn and K, respectively.
Let ` 2 N. There is an M > 0 such that MI C Kn is positive definite for all

n. Consequently, the eigenvalues �nC1�`.MI C Kn/ are just the singular values

`.MI C Kn/. It follows that

�nC1�`.Kn/ D �M C �nC1�`.MI C Kn/ D �M C 
`.MI C Kn/:
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The `-th singular value is equal to the `-th approximation number, that is, to the
distance to the set F`�1 of operators of rank at most `�1. Since Kn ! K uniformly
by Lemma 3.2, we may conclude that

dist.MI C Kn; F`�1/ �! dist.MI C K; F`�1/ D 
`.MI C K/ (17)

and hence

�nC1�`.Kn/ �! �M C 
`.MI C K/: (18)

If ` 2 LC, then 
`.MI C K/ D �`.MI C K/ and we arrive at the conclusion that

�nC1�`.Kn/ �! �M C �`.MI C K/ D �`.K/:

In the case where LC D N, we are done.
So suppose LC is finite, LC D f1; 2; : : : ; pg, and ` � pC1. Then 
`.MICK/ �

M because we may ignore the p largest eigenvalues and the remaining eigenvalues
are all not greater than M . Therefore (18) implies that

lim sup
n!1

�nC1�`.Kn/ � 0: (19)

Applying the previous argument to the operators �Kn, we analogously obtain that

�m.Kn/ �! �m.K/ (20)

for m 2 L� and that
lim sup

n!1
�m.Kn/ � 0 (21)

if L� D f1; 2; : : : ; qg and m � q C 1. Assume first that L� D N. We may then
employ (20) for every natural number m. As n C 1 � ` � m and thus �nC1�`.Kn/ �
�m.Kn/ for all sufficiently large n, we infer from (20) that

lim inf
n!1 �nC1�`.Kn/ � �m.K/:

Because �m.K/ ! 0 as m ! 1, we obtain that

lim inf
n!1 �nC1�`.Kn/ � 0; (22)

which together with (19) yields that �nC1�`.Kn/ ! 0. Finally, under the assumption
that L� D f1; 2; : : : ; qg we can use (21) for m D q C 1, and since n C 1 � ` � q C 1

and hence �nC1�`.Kn/ � �qC1.Kn/ for all sufficiently large n, we arrive again
at (22), which in conjunction with (19) shows that �nC1�`.Kn/ ! 0. This completes
the proof of (13) and (14). The proof of the remaining two relations (15) and (16) is
completely analogous.
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Proof of Theorem 1.1. Lemma 3.1 tells us that the nonzero eigenvalues of Tn;˛ are
related to those of Gn;˛ via

�nC1�`.Tn;˛/ D n�nC1�`.Gn;˛/;

and since Gn;˛ D n˛ Kn;˛ , it follows that

�nC1�`.Tn;˛/

n˛C1
D �nC1�`.Kn;˛/: (23)

Lemma 3.3 now implies that �nC1�`.Kn;˛/ ¤ 0 for ` 2 LC whenever n is suf-
ficiently large. Thus, equality (23) is true for these `, and Lemma 3.3 then yields
that

�nC1�`.Tn;˛/ D �`.K˛/ n˛C1 C o.n˛C1/:

For the remaining `, we have either �nC1�`.Tn;˛/ D 0 or �nC1�`.Tn;˛/ ¤ 0, and in
the last case (23) holds. Thus, again by Lemma 3.3,

�nC1�`.Tn;˛/=n˛C1 �! 0:

To pass from Tn;˛ to Tn, note that Tn D Tn;˛ C Bn with Bn D TnŒb0; b1; : : : ; bn�1�

and bk D o.k˛/. By Weyl’s theorem on the eigenvalues of Hermitian matrices,

j�j .Tn/ � �j .Tn;˛/j � kTn � Tn;˛k D kBnk
for each j , and the norm of the Toeplitz matrix Bn is at most

jb0j C 2 jb1j C : : : C 2 jbn�1j D o.n˛C1/: (24)

This proves (4) and (5). The proof of (6) and (7) is analogous.
Finally, suppose ak is of the form (1). The kernel (12) is O.1=n/ uniformly in

.x; y/ 2 Œ0; 1�2 and hence kKn � Kk D O.1=n/. This allows us to refine (17) to

dist.MI C Kn; F`�1/ D dist.MI C K; F`�1/ C O.1=n/:

Hence �nC1�`.Kn/ D �`.K/ C O.1=n/ and thus

�nC1�`.Tn;˛/ D �`.K/n˛C1 C O.n˛/:

Since bk D O.k˛�1/, the sum (24) and therefore also kTn � Tn;˛k is O.n˛/.

4. Toeplitz versus circulant matrices

If we border a Hermitian n � n matrix An by an n C 1st row and an n C 1st column
to an .n C 1/ � .n C 1/ Hermitian matrix BnC1, then, by Cauchy’s interlace theorem,

�k.BnC1/ � �k.An/ � �kC1.BnC1/ for k D 1; 2; : : : ; n:
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Extending An in this way to a Hermitian .2n�1/� .2n�1/ matrix B2n�1, we obtain

�k.B2n�1/ � �k.An/ � �kCn�1.B2n�1/ for k D 1; 2; : : : ; n: (25)

A symmetric Toeplitz matrix Tn may in this manner be extended to a symmetric
.2n � 1/ � .2n � 1/ circulant matrix C2n�1. For example, starting with

T4 D

0
BB@

1 a b c

a 1 a b

b a 1 a

c b a 1

1
CCA ;

we may by successive symmetric bordering achieve the circulant matrix

C7 D

0
BBBBBBBB@

1 a b c c b a

a 1 a b c c b

b a 1 a b c c

c b a 1 a b c

c c b a 1 a b

b c c b a 1 a

a b c c b a 1

1
CCCCCCCCA

:

The eigenvalues of the N � N circulant matrix with the first column

. b0 b1 : : : bN �1 />

are the values of p.z/
defD b0 C b1z C � � � C bN �1zN �1 at the N roots of zN D 1.

Thus, computing the eigenvalues of C2n�1 and using (25), we get estimates for the
eigenvalues of Tn. To compute and estimate p.z/ for the canonical matrices Tn;1 we
need the following lemma.

Lemma 4.1. Let n � 3. If z2n�1 D 1, z ¤ 1, and zn D ei' , then

Re .z2 C 2z3 C � � � C .n � 2/zn�1/ D 1

2
� 1

4.1 C cos '/
:
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Proof. For arbitrary z ¤ 1,

z2 C 2z3 C � � � C .n � 2/zn�1

D z2.1 C � � � C zn�3/ C z3.1 C � � � C zn�4/ C � � � C zn�1 � 1

D z2 1 � zn�2

1 � z
C z3 1 � zn�3

1 � z
C � � � C zn�1 1 � z

1 � z

D z2

1 � z
.1 C � � � C zn�3/ � .n � 2/zn

1 � z

D z2.1 � zn�2/

.1 � z/2
� .n � 2/zn

1 � z

D z2 � zn

.1 � z/2
� .n � 2/

zn

1 � z
:

Now suppose z2n�1 D 1, put w D zn, and let w D ei'. Clearly,

w2 D z2n D z:

Consequently,

zn

1 � z
D w

1 � w2
D ei'

1 � e2i'
D ei'.1 � e�2i'/

j1 � e2i' j2 D 2i sin '

j1 � e2i' j2 ;

which shows that

Re
� zn

1 � z

�
D 0:

Furthermore,

z2 � zn

.1 � z/2
D w4 � w

.1 � w2/2
D .e4i' � ei'/.1 � e�2i'/2

j1 � e2i' j4

D
e2i'

�
e2i' � e�i'

��
e�i'.ei' � e�i'/

�2

�
.1 � cos 2'/2 C sin2 2'

�2
;
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and taking into account that ei' � e�i' D 2i sin ', we obtain

Re
z2 � zn

.1 � z/2
D 4 sin2 '.cos ' � cos 2'/

.1 � 2.1 � 2 sin2 '/ C 1/2

D 1

4

cos ' � cos 2'

sin2 '

D 1

4

cos ' � 1 C 2 sin2 '

sin2 '

D 1

4

�
2 � 1 � cos '

1 � cos2 '

�

D 1

4

�
2 � 1

1 C cos '

�
:

This implies the asserted formula.

Proof of Theorem 1.2(b). We extend Tn;1 to the circulant matrix C2n�1 whose first
column is

. 0 1 : : : n � 1 n � 1 : : : 1 />:

Thus, the polynomial p.z/ may be written as

p.z/ D z C z2 C � � � C z2n�2 C .z2 C 2z3 C � � � C .n � 2/zn�1/

C .z2n�3 C 2z2n�4 C � � � C .n � 2/zn/:

Obviously, p.1/ D n.n � 1/. So let z2n�1 D 1 and z ¤ 1. Then

z C z2 C � � � C z2n�2 D �1; (26)

z2n�3 D Nz2; z2n�4 D Nz3; : : : ; zn D Nzn�1; (27)

and hence
p.z/ D �1 C 2 Re .z2 C 3z3 C � � � C .n � 2/zn�1/:

From Lemma 4.1 we infer that

p.z/ D �1

2

1

1 C cos '
;

where zn defD ei' , and since 1Ccos ' � 2, it follows that p.z/ � �1=4. Consequently,

�2n�1.C2n�1/ D p.1/ D n.n � 1/; �2n�2.C2n�1/ � �1=4:

Due to (25), this implies that �n�1.Tn;1/ � �1=4.
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Remark 4.2. Let F W R ! R be a continuous function with compact support. If ˛ is
an even integer, then Theorem 1.4 implies that the pCq D ˛C1 extreme eigenvalues
of Tn;˛ are eventually outside the support of F and hence

lim
n!1

1

n

nX
kD1

F.�k.Tn;˛// D F.0/: (28)

By Theorem 1.2(b), this cannot be true for ˛ D 1. We claim that if ˛ D 1, then (28)
does also not hold with F.0/ replaced by F.s/ for any s ¤ �1=2. Assume the
contrary. Clearly, we may suppose that s � �1=4. Take an F so that F.x/ � F.y/

for �1 � x � y � �1=4. Put

CF D lim inf
n!1

1

n

nX
kD1

F.�k.Tn;1//;

and

DF D lim sup
n!1

1

n

nX
kD1

F.�k.Tn;1//:

The proof of Theorem 1.2(b) shows that the eigenvalues of C2n�1 are p.1/ D n.n�1/

and the values of �1=.2 C 2 cos '/ at ' D 2�jn=.2n � 1/ for 1 � j � 2n � 2. By
the interlace property,

�k.C2n�1/ � �k.Tn;1/ � �kCn�1.C2n�1/;

and we also know that �2n�2.C2n�1/ � �1=4. Therefore

F.�k.C2n�1// � F.�k.Tn;1// � F.�kCn�1.C2n�1//

for k � n � 1. It follows that

CF � lim inf
n!1

1

n

nX
kD1

F.�k.C2n�1//;

DF � lim sup
n!1

�1

n

n�1X
kD1

F.�kCn�1.C2n�1// C 1

n
F.�n.Tn;1//

�
;

and interpreting the sums as integral sums one gets after some computationsZ 1

0

F
�

� 1

2

1

1 � cos.�x=2/

�
dx � CF

� DF

�
Z 1

0

F
�

� 1

2

1

1 C cos.�x=2/

�
dx:
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For s > �1=2, choose ı > 0 so that �1=2 C ı < s. Taking a function F such that
F.s/ D 1 and F.y/ D 0 for y � �1=2 C ı, we obtain

DF �
Z

1=.2C2 cos.�x=2//�1=2�ı

F
�
� 1

2

1

1 C cos.�x=2/

�
dx

�
Z

1=.2C2 cos.�x=2//�1=2�ı

dx

D
ˇ̌̌°

x 2 .0; 1/ W 1

2 C 2 cos.�x=2/
� 1

2
� ı

±ˇ̌̌
< 1;

which shows that the equality DF D F.s/ is not valid. If s < �1=2, then there
is a ı > 0 such that s < �1=2 � ı and a function F satisfying F.s/ D 0 and
F.�1=2 � ı/ D 1. It follows that

CF �
Z

1=.2�2 cos.�x=2//�1=2Cı

dx > 0;

contradicting the inequality 0 D F.s/ � CF . We conjecture that s D �1=2 is also
impossible.

Proof of Theorem 1.3(a). We extend Tn to the circulant matrix C2n�1 with the first
column

.R R � h : : : R � .n � 1/h R � .n � 1/h : : : R � h/>:

The polynomial p.z/ now becomes

R C .R � h/.z C z2 C � � � C z2n�2/ � h.z2 C 2z3 C � � � C .n � 2/zn�1/

� h.z2n�3 C 2z2n�4 C � � � C .n � 2/zn/:

We have p.1/ D R.2n � 1/ � hn.n � 1/ D sn, and if z2n�1 D 1, z ¤ 1, zn defD ei',
then (26), (27), and Lemma 4.1 show that

p.z/ D R C .R � h/.�1/ � 2h Re .z2 C 3z3 C � � � C .n � 2/zn�1/

D h � 2h
�1

2
� 1

4.1 C cos '/

�

D h

2

1

1 C cos '
� h

4
:

Thus, if p.1/ D sn � h=4, then all eigenvalues of C2n�1 are greater than or equal to
h=4, and we may deduce from (25) that �1.Tn/ � �1.C2n�1/ � h=4.

Remark 4.3. To come back to Figure 2, we note that in the preceding proof we had
not to consider p.z/ for all z on the unit circle but only for the 2n � 1st unit roots.
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5. Eigenvalues of integral operators

Proof of Theorem 1.2(a). Let � ¤ 0 be a real number. This number is an eigenvalue
of the integral operator K1 if and only if

�f .x/ D
Z x

0

.x � y/f .y/ dy C
Z 1

x

.y � x/f .y/ dy (29)

for some function f 2 L2.0; 1/ which does not vanish identically. The right-hand
side of (29) is differentiable almost everywhere, and hence so also is f . Differenti-
ating (29) we obtain

�f 0.x/ D
Z x

0

f .y/ dy �
Z 1

x

f .y/ dy: (30)

The right-hand side and thus also f 0 are again differentiable almost everywhere, and
taking derivatives in (30) we arrive at the equality �f 00.x/ D 2f .x/. Consequently,

f .x/ D A cos !x C B sin !x (31)

where ! 2 .0; 1/ [ i.0; 1/ satisfies !2 D �2=�. Inserting (31) in (29) we obtain
after some computation that

� 2

!2
f .x/ D x

�
� A sin !

!
C B

!
C B cos !

!

�
C A

� 1

!2
C sin !

!
C cos !

!2

�

C B
�

� cos !

!
C sin !

!2

�
� 2

!2
f .x/;

which holds for almost all x if and only if

A.� sin !/ C B.1 C cos !/ D 0; (32)

A.1 C ! sin ! C cos !/ C B.sin ! � ! cos !/ D 0: (33)

For this system to have a nontrivial solution A; B it is necessary and sufficient that

det

 
� sin ! 1Ccos !

1C! sin !Ccos ! sin !�! cos !

!
D �2 � 2 cos ! � ! sin ! D 0:

The equation 2C2 cos ! C! sin ! D 0 has countably many solutions !1 < !2 < : : :

on the positive real half-line .0; 1/ and exactly one solution i!0 on the positive
imaginary half-line i.0; 1/. It is easily seen that !k D k� if k is odd and that the
positive solution of the equation

2 C 2 cos i! C i! sin i! D 2 C 2 cosh ! � ! sinh ! D 0
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is !0 D 2:40035 : : :. Thus, the set of the eigenvalues � D �2=!2 of K1 is exactly
as asserted in Theorem 1.2(b). Finally, the rank of the matrix 

� sin ! 1 C cos !

1 C ! sin ! C cos ! sin ! � ! cos !

!

is 1 for ! 2 fi!0; !2; !4; : : :g because then sin ! ¤ 0 and it is 1 for ! 2 f!1; !3; : : :g
because in that case sin ! � ! cos ! ¤ 0. It follows that the solutions .A; B/

of (32), (33) always span a one-dimensional space, and hence all eigenvalues have
the multiplicity 1.

Remark 5.1. The method employed to prove Theorems 1.1 and 1.2(a) works for
many other types of Hermitian matrices as well, for instance, for Toeplitz–plus–
Hankel matrices. Let Tn D .aij /n�1

i;j D0 where aij D uP.ji � j j/ C vQ.i C j / with
nonzero real numbers u; v, positive real numbers ˛; ˇ, P.k/ D k˛ C o.k˛/, and
Q.k/ D kˇ C o.kˇ /. In addition to the operator K˛ given by (2), we now encounter
the integral operator Lˇ defined by

.Lˇ f /.x/ D
Z 1

0

.x C y/ˇ f .y/ dy; x 2 .0; 1/;

which in this context appeared already in [27]. Put K D uK˛ if ˛ > ˇ, K D vLˇ if
˛ < ˇ, and K D uK˛ CvKˇ if ˛ D ˇ. Then the conclusions of Theorem 1.1 remain
true with n˛C1 replaced by nmax.˛;ˇ/C1 and with �`.K˛/ and �`.K˛/ replaced by the
positive eigenvalues �`.K/ and the negative eigenvalues �`.K/ of K. For example,
the operator K1 C L1 has exactly one positive eigenvalue, �1.K1 C L1/ D 2=!2

0

where !0 is the positive solution of the equation cosh !�! sinh ! D 0, and countably
many negative eigenvalues, �k.K1CL1/ D �2=!2

k
where !k ranges over the positive

solutions of the equation cos ! C ! sin ! D 0.

Proof of Theorem 1.3(b). We have Tn D RE � hTn;1 where E is the matrix all
entries of which are 1. A theorem by Weyl states that if A; B are Hermitian matrices,
then their equally ordered eigenvalues satisfy j�j .A/ � �j .B/j � kA � Bk. Since
kREk D R n, we deduce from Weyl’s theorem that

�j .Tn/ D �j .�hTn;1/ C O.n/

D �h�nC1�j .Tn;1/ C O.n/

for all j . But from Theorems 1.1 and 1.2(a) we know that

�1.Tn;1/ D �1.K1/n2 C O.n/

D � 2

�2
n2 C O.n/;
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and

�n.Tn;1/ D �1.K1/n2 C O.n/

D 2

!2
0

n2 C O.n/:

This completes the proof.

The following proof of Theorem 1.4 is different from (and in our opinion simpler
than) Trench’s proof in [19] but has recourse to that proof when dealing with the ranks
of M˛ and Tn;˛.

Proof of Theorem 1.4. If ˛ is an even integer, then jx � yj˛ D .x � y/˛ . Conse-
quently, a real number � ¤ 0 is an eigenvalue for K˛ if and only if there is a nontrivial
f 2 L2.0; 1/ such that

�f .x/ D
Z 1

0

.x � y/˛f .y/ dy

D
X̨
j D0

.�1/˛�j
�˛

j

�
xj

Z 1

0

y˛�j f .y/ dy:

The right-hand side is a polynomial in x, and hence f is necessarily of the form
f .x/ D f0 C f1 C � � � C f˛x˛ . With this ansatz the equation becomes

X̨
j D0

xj �fj D
X̨
j D0

.�1/˛�j
�˛

j

�
xj
X̨
kD0

fk

Z 1

0

y˛�j yk dy

D
X̨
j D0

xj
X̨
kD0

.�1/˛�j
�˛

j

� 1

˛ C 1 � j C k
fk;

and this equation has a nontrivial solution if and only if � is an eigenvalue of the
matrix M˛ . Thus, the nonzero eigenvalues of K˛ are just the eigenvalues of the
.˛ C 1/ � .˛ C 1/ matrix M˛ .

The rank of M˛ does not change when deleting the factor .�1/˛�j
�

˛
j

�
in the

j -th column,

rank M˛ D rank
� 1

˛ C 1 � j C k

�˛

j;kD0
: (34)

Applying the formula

det
� 1

uj C vk

�
D

Y
j >k

.uj � uk/.vj � vk/

Y
j;k

.uj C vk/
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for Cauchy determinants with uj D ˛ C 1 � j and vj D j to the matrix on the
right of (34), we see that the determinant of this matrix is nonzero. It follows that
rank M˛ D ˛ C 1, which implies that all eigenvalues of M˛ are nonzero and that
therefore K˛ has exactly ˛ C 1 nonzero eigenvalues. This completes the proof of
part (a).

Formulas (8) and (9) are immediate from (4) and (6). A matrix of the form .aj bk/

has rank 1. The j; k entry of Tn;˛ is

.j � k/˛ D
X̨
mD0

.�1/˛�m
� ˛

m

�
j mk˛�m

and hence rank Tn;˛ � ˛ C 1 for all n. (We learned this argument from Eugene
Tyrtyshnikov when he was visiting Chemnitz in May 2000.) From (8) and (9) we
infer that Tn;˛ has ˛C1 nonzero eigenvalues whenever n is large enough. This shows
that rank Tn;˛ D ˛ C 1 for n � n0.˛/. Clearly, for these n the zero eigenvalues are
�j .Tn;˛/ with q C 1 � j � n � p. Trench [19] was able to show that actually
n0.˛/ D ˛ C 1. This completes the proof of (b).

Remark 5.2. Let ˛ be an odd natural number. After ˛ C 1 times differentiating the
equation �f .x/ D .K˛f /.x/, which reads

�f .x/ D
Z x

0

.x � y/˛f .y/ dy C
Z 1

x

.y � x/˛f .y/ dy; (35)

we arrive at the differential equation �f .˛C1/.x/ D 2˛Š f .x/. Writing � D 2˛Š=!˛C1

we see that f must be of the form

f .x/ D
X̨
kD0

Ak exp.!e2�ik=.˛C1/x/:

Inserting this in (35) we obtain a linear system for the unknown coefficients A0 ; : : : ; A˛.
The matrix of the system is an .˛ C 1/ � .˛ C 1/ matrix M˛.!/ which depends on
!. The eigenvalues of K˛ are given by � D 2˛Š=!˛C1 where ! ranges over the
solutions of the equation det M˛.!/ D 0 lying on ˛ C 1 rays starting at the origin.

Proof of Theorem 1.5. The matrix Tn;˛ has nonnegative entries and is irreducible.
The theorem of Perron and Frobenius therefore implies that �n.Tn;˛/ D kTn;˛k.
Hence j�1.Tn;˛/j � �n.Tn;˛/, and dividing this inequality by n˛C1 and then passing
to the limit n ! 1, we deduce from Theorem 1.1 that j�1.K˛/j � �1.K˛/.

The norm kK˛k does not exceed the Hilbert–Schmidt norm kK˛k2, and as

kK˛k2
2 D

Z 1

0

Z 1

0

jx � yj2˛ dx dy

D 1

.˛ C 1/.2˛ C 1/
;
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we get the estimate �1.K˛/ � D˛. On the other hand, kK˛k � kK˛1k=k1k where
1 is the function which is identically 1. Obviously, k1k D 1. We have

kK˛1k2 D
Z 1

0

� Z 1

0

jx � yj˛ dy
�2

dx

D 1

.˛ C 1/2

Z 1

0

.x˛C1 C .1 � x/˛C1/2dx;

and this is just C 2
˛ . Thus, �1.K˛/ � C˛ .

Finally, to prove that �1.K˛/ is a monotonically decreasing function of ˛, let
˛ < ˇ. Again by Perron–Frobenius theory, the spectral radius �n.Tn;ˇ / of Tn;ˇ

increases when any entries of the matrix increase. Since

jj � kjˇ D jj � kjˇ�˛jj � kj˛ � .n � 1/ˇ�˛jj � kj˛ ;

we conclude that �n.Tn;ˇ / � .n � 1/ˇ�˛�n.Tn;˛/. Dividing this inequality by
nˇC1 and passing to the limit n ! 1, we obtain �1.Kˇ / � �1.K˛/ by virtue of
formula (4).
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[10] M. Kac, W. L. Murdock, and G. Szegő, On the eigenvalues of certain Hermitian forms.
J. Rational Mech. Anal. 2 (1953), 767–800. MR 0059482 Zbl 0051.30302

[11] A. Yu. Novosel’tsev and I. B. Simonenko, Dependence of the asymptotics of extreme
eigenvalues of truncated Toeplitz matrices on the rate of attaining the extremum by the
symbol. Algebra i Analiz 16 (2004), 146–152. English transl. St. Petersburg Math. J. 16
(2005), 713–718. MR 2090855 Zbl 1091.47024

[12] S. V. Parter, Extreme eigenvalues of Toeplitz forms and applications to elliptic difference
equations. Trans. Amer. Math. Soc. 99 (1961), 153–192. MR 0120492 Zbl 0099.32403

[13] S. V. Parter, On the extreme eigenvalues of Toeplitz matrices. Trans. Amer. Math. Soc. 100
(1961), 263–276. MR 0138981 Zbl 0118.09802

[14] S. V. Parter, On the distribution of the singular values of Toeplitz matrices. Linear Algebra
Appl. 80 (1986), 115–130. MR 0851935 Zbl 0601.15006

[15] S. Serra Capizzano, On the extreme spectral properties of Toeplitz matrices generated
by L1 functions with several minima/maxima. BIT 36 (1996), 135–142. MR 1431579
Zbl 0851.15008

[16] S. Serra Capizzano, On the extreme eigenvalues of Hermitian (block) Toeplitz matrices.
Linear Algebra Appl. 270 (1998), 109–129. MR 1484077 Zbl 0892.15014

[17] L. F. Shampine, Some L2 Markoff inequalities. J. Res. Nat. Bur. Standards, Sect. B 69
(1965), 155–158. MR 0193295 Zbl 0143.08702

[18] W. F. Trench, Asymptotic distribution of the spectra of a class of generalized Kac–
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