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Eigenvalues in spectral gaps of differential operators

Marco Marletta1and Rob Scheichl

Abstract. Spectral problems with band-gap spectra arise in numerous applications, including
the study of crystalline structures and the determination of transmitted frequencies in pho-
tonic waveguides. Numerical discretization of these problems can yield spurious results, a
phenomenon known as spectral pollution. We present a method for calculating eigenvalues
in the gaps of self-adjoint operators which avoids spectral pollution. The method perturbs the
problem into a dissipative problem in which the eigenvalues to be calculated are lifted out of
the convex hull of the essential spectrum, away from the spectral pollution. The method is
analysed here in the context of one-dimensional Schrödinger equations on the half line, but
is applicable in a much wider variety of contexts, including PDEs, block operator matrices,
multiplication operators, and others.
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1. Introduction

In the numerical calculation of the spectrum of a self-adjoint operator, one of the
most difficult cases to treat arises when the spectrum has band-gap structure and
one wishes to calculate eigenvalues in the spectral gaps above the infimum of the
essential spectrum. The reason for this difficulty is that variational methods will
generally result in spectral pollution (see, e.g., Rappaz, Sanchez Hubert, Sanchez
Palencia and Vassiliev [22]): following discretization, the spectral gaps fill up with
eigenvalues of the discrete problem which are so closely spaced that it is impossible to
distinguish the spectral bands from the spectral gaps. A number of different strategies
have been proposed to deal with this problem: see Mertins and Zimmermann [26],
Davies and Plum [13] for variants of the classical variational methods, and Boulton
and Levitin [8], Levitin and Shargorodsky [17] and the references therein for an
approach based on quadratic relative spectrum. All of these methods work for general

1The first author thanks the Department of Mathematical Sciences at the University of Bath for their
hospitality during a two month sabbatical in autumn 2008.
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abstract self-adjoint operators in a Hilbert space. There is also a lot of work in the
mathematical physics literature on choosing special bases which do not result in
pollution for certain classes of operators: see, e.g., Lewin and Séré [18] for some
recent results and a review.

For differential operators on infinite domains or with singularities, spectral pol-
lution caused by domain truncation is also well studied: see, e.g., [5], [25], and [11].
Pollution can always be avoided by the choice of appropriate boundary conditions
on the boundary of the truncated domain; in practice, however, devising such ‘non-
reflecting’ boundary conditions can be just as difficult and problem-specific as devis-
ing non-polluting bases.

In [19], Marletta considered the calculation of eigenvalues for Schrödinger equa-
tions

��uC q.x/u D �u;

in infinite domains in Rd , with band-gap spectral structure. A different trick was pro-
posed: exploiting the fact that for many such problems the eigenfunctions are rapidly
decaying, the author proposed changing the problem by replacing the potential q,
making the change

q.x/ �! q.x/C i�s.x/; (1)

where s is a compactly supported “cutoff function” which takes the value1 everywhere
inside a ball of large radius. The parameter � is a nonzero real. The fact that s is
compactly supported means that the essential spectrum of the problem is unchanged.
On the other hand, an eigenfunction belonging to an eigenvalue in a spectral gap,
being exponentially decaying, will see the function s almost as if it took the value 1
everywhere, and so the corresponding eigenvalue � will be perturbed according to

� �! �� � �C i�: (2)

In particular, � � <.��/. Numerical results in [19] indicate that the quality of this
approximation for many problems is surprisingly good, the error due to the pertur-
bation being several orders of magnitude smaller than the error due to discretization,
and that this does not require that � be small. However no error bounds are presented
in [19], which is concerned mainly with proving that spectral pollution remains close
to the real axis for a wide class of potentials.

At this point, we make a brief historical digression. The use of non-self-adjoint
methods and analytic function theory for apparently self-adjoint problems in com-
putational science has a long history. In his Ph.D. thesis in 1967, the Hungarian
computational chemist TamásVertse proposed a method for finding resonances which
was independently discovered subsequently by several different authors and which
is usually now called dilation analyticity or complex scaling: see, e.g., the 1971 pa-
per of Aguilar and Combes [2] or the 1981 paper of Ritby et al. [23]. Numerical
analysts discovered this technique somewhat later and call it the perfectly matched
layer method, generally citing the 1994 paper of Berenger [6]. All of these tech-
niques are designed to solve resonance or scattering problems by deforming them
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into eigenvalue problems for non-self-adjoint operators. Another well known tech-
nique is the limiting absorption principle, which also turns a scattering problem into
a non-self-adjoint problem. The method which we analyse here has some flavour of
both approaches but is actually quite different, and is designed for the problem of
calculating eigenvalues when spectral pollution is an issue.

Acknowledgement. The authors would like to thank an anonymous referee whose
careful reading of two earlier versions and insightful comments have greatly improved
this paper. Any remaining errors are the responsibility of the authors.

2. Summary of results

In this paper we carry out an extensive analysis of the dissipative perturbation tech-
nique for a Schrödinger problem on the half-line Œ0;1/. We establish the following
results for an eigenvalue �� of the problem with dissipative shift i�s.�/which evolves
from an eigenvalue � for � D 0.

(1) We obtain rigorous error bounds on j�� <.�� /j and j=.�� /� i� j in the case in
which q is a compact perturbation of a real periodic function. In particular, we
show that if s.x/ D 0 for x � R and s.x/ D 1 for x � cR, where c 2 .0; 1/ is
a fixed positive constant, then

j�C i� � �� j � C1� exp.�c C2R/; (3)

for positive constants C1 and C2. We also obtain an a-posteriori error bound
which replaces (3) in the case where q is any real-valued potential, locally L1

at every point in Œ0;1/, for which the Schrödinger equation has exponentially
decaying solutions for � outside the essential spectrum.

(2) We show that if the shifted problem is truncated to some interval Œ0; X�, X >

R, then whatever the boundary condition imposed at x D X , any eigenvalue
��;X;good of the truncated problem which converges to �� as X ! 1 satisfies

j�� � ��;X;goodj � C3 exp.�C4.X �R//; (4)

where C3 and C4 are positive constants depending on �� .

(3) If an eigenvalue��;X;bad of the truncated, shifted problem converges, asX ! 1,
to a point which is neither an eigenvalue �� nor a point of essential spectrum
– in other words, if ��;X;bad is responsible for spectral pollution – then

j=.��;X;bad/j � C5 exp.�C6.X � R//; (5)

for further positive constantsC5 andC6. In particular, combining (3), (4), and (5),
for all sufficiently large X,

j=.��;X;good/j � 3�=4; j=.��;X;bad/j � �=4;
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which allows one to avoid calculating polluting eigenvalues, simply by concen-
trating on eigenvalues whose imaginary part exceeds (say) �=2.

(4) In addition to “good” eigenvalues��;X;good and polluting eigenvalues��;X;bad, the
truncated, shifted problems will also possess eigenvalues��;X;ess which converge
to the essential spectrum in such a way that for fixed � > 0 and X D R CNa,
where a is the period of the underlying background and N ! 1, they satisfy

=.��;X;ess/ D O.N�1/: (6)

In fact all but finitely many points in any compact subset of the essential spectrum
admit such approximations.

These results are not exhaustive.
Concerning the non-truncated problems, the “compact shift” trick (1) may gen-

erate further eigenvalues. We shall consider the behaviour of such eigenvalues as
functions of � . Taken together, the results in Proposition 1 and Theorem 12 show
that the only possible behaviours are as follows:

(1) �� converges to an eigenvalue � of the unperturbed problem as � & 0.

(2) �� converges to an endpoint of a spectral band as � & 0.

(3) There exists �crit > 0 such that, as � & �crit, �� converges to an interior point
of a spectral band.

(4) As � & 0, �� converges to a “pseudo-gap” in the essential spectrum of a self-
adjoint operator described in Theorem 12. (By a pseudo-gap we mean a point
in the essential spectrum at which the spectral measure has zero derivative.)

Numerical results will be presented to indicate that the second and third possibilities
do appear to be realised in practice. It is worth observing that the critical constant �crit

is strictly positive, something which is not true in the case of self-adjoint perturbations.
All our analysis is one-dimensional with the exception of Theorem 10, which

only uses exponential decay of eigenfunctions and some abstract operator theory. A
result similar to Theorem 10 therefore holds for PDEs, and one of our numerical
experiments in Section 6 is indeed a PDE.

3. Problem statement and background theory

We consider on the half-line Œ0;1/ the Schrödinger equation

� u00 C .q.x/C i�s.x//u D �u; (7)

with boundary condition

cos.˛/u.0/� sin.˛/u0.0/ D 0 (8)
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defined by choosing some ˛ 2 Œ0; �/. Here q is real-valued, locallyL1 and integrable
near 0; the function s is positive, bounded and compactly supported. We assume that
the operator L0 given by

D.L0/ D fu 2 L2.0;1/ j �u00 C qu 2 L2.0;1/; cos.˛/u.0/� sin.˛/u0.0/ D 0g
(9)

and
L0u D �u00 C qu; (10)

is self-adjoint.1 It is known that the multiplication operator S given by

.Su/.x/ D s.x/u.x/; u 2 L2.0;1/ (11)

is compact relative to L0 and hence, for any � 2 R,

�ess.L0 C i�S/ D �ess.L0/ � R:

Proposition 1. For any bounded, compactly supported s, the spectrum of L0 C i�S

converges to the spectrum of L0 as � ! 0.

Proof. Since kSk D kskL1.0;1/ and L0 is self-adjoint,

sup
�2�.L0Ci�S/

dist.�; �.L0// � �kSk D �kskL1.0;1/

(see, e.g., the proof of TheoremV.4.10 in [16]). Thus every spectral point ofL0Ci�S
must converge to a spectral point ofL0 . Because s is compactly supported, �ess.L0/ D
�ess.L0 C i�S/ by [15], Theorem IX.9.3, whatever definition of essential spectrum
is used in the non-self-adjoint case. Thus it remains only to show that any isolated
eigenvalue of L0 can be approximated by an eigenvalue of L0 C i�S as � & 0.
Here we remark that the family T .z/ D L0 C zS is holomorphic at z D 0 in the
sense of Kato [16], Theorem VII.1.3, since L0 C iI is boundedly invertible and
.L0 C iI C zS/�1 is holomorphic in z for small jzj. This means that each isolated
eigenvalue of the family T .z/ has at worst an algebraic singularity at z D 0 [16],
Theorem VII.1.8. In fact, because the Schrödinger equation has at most one square
summable solution for any value of the spectral parameter, the isolated eigenvalues
of L0 are all simple, and hence each of the eigenvalues of T .z/ is holomorphic at
z D 0: in other words, the eigenvalues ofL0 evolve holomorphically into eigenvalues
of L0 C i�S as functions of � , for small j� j.

In order to describe the point spectrum of L0 C i�S we use a technique called
Glazman decomposition [3], § 130, which is equivalent to a two-sided shooting

1This is equivalent to assuming that the associated differential equation is in the so called limit-point
case at infinity, see [12].
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method. Fix � 2 C; fix any non-zero constant h and consider the following two
boundary value problems:

Pleft W

8̂̂<
ˆ̂:

�v00 C .q C i�s/v D �v; x 2 .0; R/;
cos.˛/v.0/� sin.˛/v0.0/ D 0;

v.R/ D h;

(12)

and

Pright W

8̂̂<
ˆ̂:

�w00 C .q C i�s/w D �w; x 2 .R;1/;

w.R/ D h;

w 2 L2.R;1/:

(13)

If these problems can be solved then we may define

mleft.�/ D v0.R/=v.R/ and mright.�/ D �w0.R/=w.R/: (14)

The functionsmleft andmright are one-dimensional Dirichlet to Neumann maps. They
are analytic functions; mleft is meromorphic with poles at the eigenvalues of the non-
self-adjoint Sturm–Liouville problem on Œ0; R� with the given boundary condition
at 0 and homogeneous Dirichlet condition at R, see [9]; the function �mright is
Nevanlinna [12], Chapter 9, eq. (3.14), if supp.s/ � Œ0; R�.

Suppose there exists � 2 C such that

mleft.�/Cmright.�/ D 0 (15)

and define a nontrivial function u by

u.x/ D
´
v.x/=v.R/; x � R;

w.x/=w.R/; x � R:

Then u solves the differential equation �u00 C .qC i�s/u D �u both on .0; R/ and
on .R;1/, is continuous at x D R and, thanks to (15), has continuous first derivative
at x D R. This implies that u is an eigenfunction of L0 C i�S with eigenvalue
�. The converse reasoning is equally straightforward, and we obtain the following
result.

Lemma 2. Suppose thatmleft.�/ andmright.�/ are well defined at � D �. Then � is
an eigenvalue of L0 C i�S if and only if � is a zero of mleft Cmright.

In the remainder of this section we make the following assumptions:

(A1) q is real-valued, locally L1, and there exists R0 � 0 such that q is periodic
with period a > 0 on ŒR0;1/:

q.x C a/ D q.x/ for all x � R0I (16)
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(A2) s is a cutoff function with support in Œ0; R� for some R � R0:

s.x/ D
´
1; .x < cR/;

0; .x � R/:
(17)

Here 0 < c � 1 is a fixed positive constant. For x 2 .cR;R/ we simply assume that
s is measurable and takes values in Œ0; 1�.

We now consider how to find mright by using Floquet theory [14]. Since q.x/ is
periodic for x � R � R0 and s.x/ D 0 for x � R it is known that for each � 2 C
there exist solutions  .x; �/ and '.x; �/ of (7), and constants 	1.�/, 	2.�/ such that
for x � R, �

 .x C a; �/

 0.x C a; �/

�
D 	1.�/

�
 .x; �/

 0.x; �/

�
;

�
'.x C a; �/

'0.x C a; �/

�
D 	2.�/

�
'.x; �/

'0.x; �/

�
I

(18)

moreover we may write 	1.�/ D exp.ik.�/a/, 	2.�/ D exp.�ik.�/a/, where
=.k.�// > 0 precisely when � does not lie in �ess.L0/. Thus for each � 62 �ess.L0/

the differential equation �u00 C.qCi�s/u D �u has a unique (up to scalar multiples)
solution  .�; �/ 2 L2.0;1/. This solution decays exponentially while '.�; �/ grows
exponentially.

Now consider the solution w of the boundary value problem Pright in (13). By
direct verification, the solution exists if and only if  .RI�/ ¤ 0 and is given by

w.x/ D h .x; �/= .R; �/:

Thus
mright.�/ D � 0.R; �/= .R; �/; (19)

and we deduce from Lemma 2 the following.

Corollary 3. Suppose thatmleft.�/ is well defined and that .R; �/ is nonzero. Then
� is an eigenvalue of L0 C i�S if and only if

mleft.�/ �  0.R; �/= .R; �/ D 0: (20)

Suppose we truncate the problem over Œ0;1/ to a problem on Œ0; X� for some
X > R. At x D X we impose, for some ˇ 2 R, a self-adjoint artificial boundary
condition

cos.ˇ/u.X/ � sin.ˇ/u0.X/ D 0: (21)
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The operator L0 is thus replaced by L0;X defined by

D.L0;X/ D fu 2 L2.0; X/ j � u00 C qu 2 L2.0; X/;
cos.˛/u.0/� sin.˛/u0.0/ D 0;

cos.ˇ/u.X/ � sin.ˇ/u0.X/ D 0g;
(22)

L0;Xu D �u00 C qu: (23)

The spectra of L0;X and L0;X C i�S are now purely discrete. We can characterise
the eigenvalues of L0;X C i�S by replacing problem Pright in the Glazman decom-
position (12), (13) by

Pright;X W

8̂̂<
ˆ̂:

�w00 C .q C i�s/w D �w x 2 .R;X/;
w.R/ D h;

cos.ˇ/w.X/� sin.ˇ/w0.X/ D 0:

(24)

Let  and ' be the functions determined (up to scalar multiples) by (18) and let

 X .x; �/ D  .x; �/� CX.�/'.x; �/; (25)

where

CX .�/ D cos.ˇ/ .X; �/� sin.ˇ/ 0.X; �/
cos.ˇ/'.X; �/� sin.ˇ/'0.X; �/

: (26)

Then a direct calculation shows that the solution of (24), if it exists, is given by

w.x/ D h X .x; �/= X.R; �/:

Defining

mright;X.�/ D �w0.R/=w.R/ D � 0
X .R; �/= X.R; �/; (27)

we obtain the following analogue of Lemma 2 and Corollary 3.

Lemma 4. Suppose thatmleft.�/ is well defined and thatmright;X .�/ is well defined.
Then � is an eigenvalue of L0;X C i�S if and only if

mleft.�/Cmright;X .�/ D 0I (28)

equivalently, if and only if

mleft.�/ �  0
X.R; �/= X.R; �/ D 0: (29)
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4. The effect of interval truncation: convergence rate estimates

Theorem 5. Suppose that assumptions (A1) and (A2) hold; see (16) and (17). For
� > 0 let �� be an eigenvalue of the non-self-adjoint Schrödinger operatorL0C i�S

defined in (9)–(11). Then any approximation��;X;good to�� obtained as an eigenvalue
of the operator L0;X C i�S defined in (22) and (23), satisfies

j�� � ��;X;goodj � C3 exp.�C4.X �R//; (30)

where C3 and C4 are positive constants which depend on �� .

Proof. Without loss of generality it is sufficient to check the cases X D R C Na

whereN 2 N is sufficiently large. The other cases follow by exploiting the latitude in
the choice of the constants c andR in (22) and (23). For instance, ifX D RCNaCb,
with 0 < b < a, then we can replaceR byRCb and use a smaller constant c in (23).

First we observe that �� has strictly positive imaginary part for � > 0; in fact
if u� is the corresponding normalised eigenfunction then a standard integration by
parts yields

=.�� / D �

Z R

0

s.x/ju� .x/j2dx > 0:
Next we observe that as a consequence, neither  .R; �/ nor  X.R; �/ can be zero
in a neighbourhood of � D �� . If we had  .R; ��/ D 0 then from the Floquet
equation (18) we would also have  .R C a; ��/ D 0. Since the cutoff function s
is zero on ŒR; R C a�, this would mean that the strictly complex number �� was an
eigenvalue of a self-adjoint Dirichlet problem over ŒR; RC a�, which is impossible.
If we had  X .R; ��/ D 0 a similar argument would immediately apply since  X
satisfies the self-adjoint boundary condition (21). Since  .R; �/ and  X.R; �/ are
both nonzero in a neighbourhood of �� it follows that mright.�/ and mright;X .�/ are
well defined in a neighbourhood of �� .

If mleft.�� / is well defined, then we can use Lemmata 2 and 4. We know that

mleft.�� /Cmright.�� / D 0; (31)

and we seek points ��;X;good which satisfy (30) together with the truncated-problem
eigenvalue condition

mleft.��;X;good/Cmright;X.��;X;good/ D 0: (32)

Using (25) and the definitions of mright and mright;X it follows that for each fixed �,

mright.�/ �mright;X .�/ D O.CX.�//:

Now we exploit the Floquet equation (18) together with the fact that X D R C Na

to deduce that

CX .�/ D
�	1.�/
	2.�/

�N
CR.�/: (33)
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Observe that for some constants c� < 1 and cC > 1, we have j	1.�/j < c� < 1 and
j	2.�/j D j	1.�/j�1 > cC > 1, uniformly with respect to � in a neighbourhood of
�� , because �� does not lie in a spectral band. It follows that CX.�/ is exponentially
small in N , uniformly with respect to � in a neighbourhood of �� . Thus, in addition
to (31), we have from (32) and (33) that

j.mleft.�/Cmright.�// � .mleft.�/Cmright;X.�//j � jCR.�/j
� c�
cC

�N
(34)

uniformly with respect to � in a neighbourhood of �� . It follows by a standard zero-
counting argument for analytic functions (Lemma 20 in the Appendix) that there exist
points ��;X;good which satisfy (32) and are such that

j�� � ��;X;goodj � O
� c�
cC

�N=�
; (35)

where 
 is the algebraic multiplicity of �� (i.e. the order of the zero of mleft.�/ C
mright.�/ at �� ); moreover, any solutions of (32) which converge to �� must sat-
isfy (35).

This proves the result for the case whenmleft.�� / is well defined. Whenmleft has
a pole at �, then � cannot be an eigenvalue of L0 C i�S because mright and mright;X

cannot have poles off the real axis: as already shown,  .R; �/ and  X .R; �/ cannot
have zeros off the real axis.

Theorem 6. Suppose that assumptions (A1) and (A2) hold; see (16) and (17). For
� > 0 let ��;X;bad be an eigenvalue of the non-self-adjoint Schrödinger operator
L0;X C i�S defined in (22) and (23) which converges, as X ! C1, to a point
which is not in the spectrum of L0 C i�S . Then for some positive constants C5 and
C6,

=.��;X;bad/ � C5 exp.�C6X/:
Proof. As in the proof of Theorem 5 it suffices to consider the case X D R C Na

whereN 2 N. Let� D limX!1 ��;X;bad. We shall use the fact that ��;X;bad satisfies

mleft.��;X;bad/Cmright;X.��;X;bad/ D 0: (36)

From (25), (26), and (27), and from (33) in the proof of Theorem 5, we deduce that

mright;X .�/ D mright.�/

 
1�

�
�1.�/
�2.�/

�N
CR.�/

'0.R;�/
 0.R;�/

1 �
�
�1.�/
�2.�/

�N
CR.�/

'.R;�/
 .R;�/

!
(37)

and we remark that off the real axis, the functions  .R; �/,  0.R; �/, '.R; �/ and
'0.R; �/ have no zeros. The Floquet multipliers 	1 and 	2 are also continuous func-
tions of � with j	1.�/j < 1 and j	2.�/j D j	1.�/j�1 > 1 for � outside the essential
spectrum. There are two cases to consider.
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Case 1 (=.�/ ¤ 0). Then � lies off the essential spectrum, and so from (37) we
can deduce that mright;X.�/ converges locally uniformly to mright.�/ as X ! 1 (this
fact also follows even for more general problems from the classical Titchmarsh–Weyl
nesting circle analysis; see, e.g., Coddington and Levinson [12], Chapter 9). From
this locally uniform convergence, together with the fact that ��;X;bad ! �, we obtain,
for large X ,

mright;X.��;X;bad/ � mright.�/CO
�	1.�/
	2.�/

�N
;

and so mright;X.��;X;bad/ ! mright.�/ as X ! 1. But from (36) this yields

mleft.�/Cmright.�/ D 0:

From Lemma 2 this means that � is an eigenvalue of L0 C i�S , a contradiction.
Thus � must be real and, by hypothesis, must lie in a spectral gap.

Case 2 (� is real and lies in a spectral gap). Again � lies off the essential spectrum
so we still have �	1.��;X;bad/

	2.��;X;bad/

�N �
�	1.�/
	2.�/

�N
;

which is exponentially small. From (37) the only way that we can fail to have
mright;X .��;X;bad/ ! mright.�/ as X ! 1 is if either CR.��;X;bad/ is exponentially
large or if one of .R; ��;X;bad/, 0.R; ��;X;bad/ is exponentially small; equivalently,
if and only if at least one of the following functions of �,

 .R; �/;  0.R; �/; cos.ˇ/'.R; �/� sin.ˇ/'0.R; �/ (38)

is exponentially small when evaluated at � D ��;X;bad. But the functions of �
defined in (38) have no zeroes off the real axis and have non-zero derivatives with
respect to � on the real axis (otherwise certain self-adjoint problems over one period
ŒR; R C a� would have eigenvalues with algebraic multiplicity exceeding 1, which
is impossible). Thus ��;X;bad must be exponentially close to the real axis, which
completes the proof.

Finally we obtain an estimate which deals with rate of convergence of points
approximating the essential spectrum. Note that for each�ess 2 �ess.L0/ D �ess.L0C
i�S/ the existence of approximating points ��;X;ess in �.L0;X C i�S/ is not difficult
to establish in the self-adjoint case � D 0, see, e.g., the results on spectral inclusion
in [5]. The question here is to obtain both existence of such approximating points,
and a rate of convergence, in the dissipative case � > 0.

Theorem 7. Assume that hypotheses (A1) and (A2) hold. Then for any point �ess of
the essential spectrum which is neither a band end nor a zero of  0.RI �/= .RI �/�
mleft.�/, there exists a constant C independent of N and an approximating sequence
of eigenvalues ��;RCNa;ess such that =.��;RCNa;ess/ � CN�1 for all sufficiently
large N .
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Proof. We first consider the result for a self-adjoint case. Let �ess be any interior
point of a spectral band. Consider the self-adjoint problem on ŒR; RCNa� for large
N , equipped with Dirichlet boundary conditions at x D R and at x D R C Na.
Let �N be any eigenvalue of this problem; denote its eigenfunction by uN . Up to
normalization we must have

uN .x/ D  .xI�N / �
� .RCNaI�N /
'.RCNaI�N /

�
'.x; �N /;

since this satisfies the differential equation together with the Dirichlet condition
uN .RCNa/ D 0. This yields, in terms of the Floquet multipliers 	1 and 	2,

uN .x/ D  .xI�N / �
�	1.�N /
	2.�N /

�N� .RI�N /
'.RI�N /

�
'.x; �N /: (39)

Define a function of .xI�/, following the notation of (25), by

 RCNa.xI�/ D  .xI�/ � r.�/N
� .RI�/
'.RI�/

�
'.x; �/;

where r.�/ D 	1.�/=	2.�/. The fact that  RCNa.RI�N / D uN .R/ D 0 means
that

1� r.�N /
N D 0; (40)

since  .RI�/ is always non-zero for real �. Using the representations 	1.�/ D
exp.iak.�//, 	2.�/ D exp.�iak.�//, where =.k.�// D 0 on the spectral bands, we
see that r.�/ D exp.2iak.�// and so �N must be a root of one of the equations

k.�/ D 
�

Na
; 
 D 0;˙1;˙2; : : : : (41)

We can now describe how to ensure that �N � �ess D O.N�1/.
Provided �ess is not an endpoint of a spectral band then k0.�ess/ > 0, where

dash denotes differentiation. This follows easily from results in Eastham [14]; see
Lemma 21 in the appendix below. Now choose 
 D 
N according to the formula


N D d��1Nak.�ess/e; (42)

so that
k.�ess/ � 
N�

Na
D O.N�1/:

Hence (41) becomes k.�/ D k.�ess/ C O.N�1/. Since k0.�ess/ > 0 the Newton–
Kantorovich [20] Theorem guarantees the existence, for all sufficiently large N , of a
root �N such that

�N D �ess CO.N�1/:
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Our next aim is to generalise this to the non-self-adjoint case over Œ0; RCNa�with
� ¤ 0. The condition which must be satisfied in this case is not  RCNa.RI�/ D 0

but
 0
RCNa.RI�/

 RCNa.RI�/ D mleft.�/;

see (29). This rearranges to yield, instead of (40),

r.�/N D  0.RI�/= .RI�/�mleft.�/

'0.RI�/='.RI�/�mleft.�/
: (43)

When � D �ess, the right hand side of (43) has modulus � 1. To see this, we
make two observations. Firstly, when � is an interior point of the essential spectrum,
some standard Floquet manipulations show that  0.RI�/= .RI�/ is the complex
conjugate of '0.RI�/='.RI�/. Secondly, an integration-by-parts of the type in [12],
p. 227, shows that =.mleft.�// > 0 for =.�/ < � , that =. 0.RI�/= .RI�// � 0 for
=.�/ � 0, and hence that =.'0.RI�/='.RI�// � 0 for 0 � =.�/ < � .

Thus provided  0.RI�ess/= .RI�ess/ �mleft.�ess/ ¤ 0, (41) is replaced by

k.�/ D 
�

Na
C 1

2iNa
log

� 0.RI�/= .RI�/�mleft.�/

'0.RI�/='.RI�/�mleft.�/

�
; 
 D 0;˙1; : : : ;

in which the real part of the logarithm is negative. If we choose 
 D 
N according
to the previous criterion (42) then we get

k.�/ D k.�ess/C 1

2iNa
log

� 0.RI�/= .RI�/�mleft.�/

'0.RI�/='.RI�/�mleft.�/

�
CO.N�1/:

Since k0.�ess/ > 0, this equation will have a root Q�N for all sufficiently large N ,
by the Newton–Kantorovich Theorem [20], satisfying Q�N D �ess C O.N�1/, with
=. Q�N / > 0. Denoting this root by ��;RCNa;ess yields the required result.

Remark 8. The condition that  0.RI�ess/= .RI�ess/�mleft.�ess/ be non-zero will
be satisfied for almost every choice of � , since mleft is an analytic non-constant
function of � .

Remark 9. A less satisfactory aspect of Theorem 7 is that since the quasi-momentum
k.�/ is generally not differentiable at the ends of the spectral bands, the theorem does
not give any error estimate for the approximations to the endpoints of the spectral
bands. However in the case � D 0 a simpler approach using Weyl singular sequences
establishes that every point of the essential spectrum can be approximated with error
at worst O.N�1=2/, without exception: exploiting the fact that for � 2 �ess.L0/, the
function j .�; �/j (say) is a-periodic, one constructs functions uN with support in
.R;R C Na/ such that �u00

N C quN D �uN on ŒR C a; R C .N � 1/a� with the
properties that Z RC.jC1/a

RCja
juN j2 D 1; j D 1; : : : ; N � 2;
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and, on ŒR; RC a� [ ŒRC .N � 1/a; RCNa�,

j � u00
N C .q � �/uN j D O.1/:

These have the properties that SuN D 0 and

k.L0 � �/uN k
kuN k D k.L0 C i�S � �/uN k

kuN k D O.N�1=2/:

The approximation property is then immediate for the self-adjoint operator L0 but
not for the non-self-adjoint operator L0 C i�S .

5. Eigenvalue evolution with respect to the coupling constant,
for general potentials

In this section we consider problems on half-lines without truncation and examine the
evolution of spectral points as functions of the “coupling constant” � . We maintain
the assumption (A2) on the cutoff function s but drop the assumption of eventual
periodicity in (A1). We already know from Proposition 1 that eigenvalues �� must
converge to spectral points of L0 as � & 0: in other words, the perturbation i�S is
not responsible for spectral pollution. We now consider in more detail the behaviour
of eigenvalues �� of L0 C i�S whose real parts approximate eigenvalues of L0, for
small � ; we also consider the behaviour of those �� which converge to points of the
essential spectrum of L0 with decreasing � .

Theorem 10. Suppose that assumption (A2) holds; see (17). Let � be an isolated
eigenvalue ofL0 with eigenfunction u. For each sufficiently small � > 0, let �� be an
isolated eigenvalue of the non-self-adjoint Schrödinger operator L0 C i�S defined
in (9)–(11) with eigenfunction u� , and suppose �� ! � as � ! 0. Then the inner
products hu� ; ui remain bounded away from zero, uniformly with respect to R and
� , for all sufficiently small � > 0.

If, additionally, the following assumption

(A10) ju.x/j � C exp.�C2x/ for some positive constants C and C2

holds, then there exists C1 > 0, independent of R, such that for all R > 0,

j�C i� � �� j � C1� exp.�c C2R/; (44)

where c 2 .0; 1/ is the constant appearing in assumption (A2).

Proof. If � is sufficiently small then we may surround � by a contour � which is such
that � is the only spectral point of L0 inside � and �� is the only spectral point of
L0C i�S inside � . Since kSk D 1 independently ofR and as L0 is self-adjoint, we
have j���� j � � independently ofR so the contour � can be chosen independently
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of R. The Riesz projection for L0 C i�S associated with the �� , u� is given by
P D 1

2�i

R
�
.� � .L0 C i�S//�1d�, which can be written as

P D 1

2�i

Z
�

.� � L0/�1d�C �

2�

Z
�

.� � L0 � i�S/�1.S � I /.� � L0 � i�/�1d�:

The second integral above is O.�/ for small � , uniformly in R since kSk D 1

independently of R. The first integral is just the projection for the unperturbed
operator L0. Thus hu� ; ui D hu; ui CO.�/, proving the first result.

Now we know that .L0 C i�S/u� D ��u� and that .L0 � i�I /u D .� � i�/u.
Take the inner product of the first of these equations with u to obtain

h.L0 C i�S/u� ; ui D ��hu� ; ui (45)

and take the inner product of the second equation with u� to obtain

h.L0 � i�I /u; u�i D .� � i�/hu; u�iI (46)

use the fact that L0 and S are self-adjoint and that u and u� both lie in the domain
of L0, which is contained in the domain of S , to rearrange (46) as

h.L0 C i�I /u� ; ui D .�C i�/hu� ; ui: (47)

Now subtract (45) from (47) to obtain

Œ.�C i�/ � �� �hu� ; ui D i�h.I � S/u� ; ui D i�hu� ; .I � S/ui:
The inner product hu� ; ui on the left hand side is bounded away from zero for all
sufficiently small � , uniformly with respect to R. At the same time, using hypothe-
ses (A10) and (A2),

k.I � S/uk � C exp.�c C2R/
for some positive constants C and C2. This proves the result.

Remark 11. There are many potentials for which eigenfunctions u exhibit expo-
nential or super-exponential decay: potentials satisfying (A1), for instance, as well
as potentials for which q.x/ ! C1 as x ! C1. The estimation of the expo-
nential decay rate for an eigenfunction in terms of the distance of the corresponding
eigenvalue from the essential spectrum is extensively studied in the literature: see,
e.g., [21] and the references therein, in particular Agmon [1].

Let LR;D denote the self-adjoint operator on ŒR;1/ given by the expression
LR;Du D �u00 C qu with Dirichlet boundary condition u.R/ D 0 and suppose that
its spectral measure 	right is absolutely continuous. Note that �ess.LR;D/ D �ess.L0/

and denote by �ess;inc.L0/ 	 �ess.L0/ the set of all points of the essential spectrum
of L0 at which 	right is strictly increasing.
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Theorem 12. Suppose that q is real-valued and locally L1 and that the operator L0
given by (9) and (10) is self-adjoint. Suppose further that the cutoff function s is a
step function, taking the value 1 on Œ0; R/ and 0 on .R;1/, as in (17) with c D 1.
Let �� be an eigenvalue ofL0 C i�S that converges non-tangentially to the real axis
as � & �crit � 0, to a point � 2 �ess;inc.L0/. Then �crit > 0.

Proof. Referring back to (13), denote by  .x; �/ the solution of Pright for the partic-
ular choice h D 1. The solvability of Pright is guaranteed for any non-real � since the
underlying operator is self-adjoint and hence has a resolvent which is well defined for
non-real �. The existence ofmright.�/ D � 0.R; �/ is thus guaranteed for =.�/ ¤ 0,
and we have, as in (15),

mleft.�� I �/Cmright.�� / D 0; (48)

where we make the dependence of mleft on � explicit in the notation. It will also be
convenient to denote �� by �.�/ throughout the rest of this proof. In (48) we observe
that in view of the fact that s is a step-function satisfying the hypothesis (A2), we
have mleft.�I �/ D mleft.� � i� I 0/, so (48) becomes

mleft.�.�/ � i� I 0/Cmright.�.�// D 0: (49)

It is known (see, e.g., [12], p. 228) that =.�mleft.zI 0// is of the same sign as =.z/ and
=.�mright.z// is of the same sign as =.z/. Taking imaginary parts in (49) immediately
shows that =.�.�/ � i�/ < 0 when =.�.�// > 0, which can be proved more easily
by numerical range estimates. We now let � & �crit so that �.�/ approaches � 2 R.
Because the limit is non-tangential, by hypothesis, the Titchmarsh–Kodaira formula
gives

lim
�&�crit

=.�mright.�.�/// D �
d	right

d�
.�/ > 0;

where 	right is the spectral measure associated with LR;D and the strict inequality
d�right

d�
.�/ > 0 holds by hypothesis. Thus, necessarily,

lim
�&�crit

=.�mleft.�.�/ � i� I 0// < 0: (50)

However the problem Pleft has no essential spectrum, so mleft has no cut-line singu-
larities on the real axis. Hence (50) gives

=.�mleft.� � i�critI 0// < 0;
which implies that �crit > 0 since =mleft.zI 0/ D 0 for real z and =.�mleft.zI 0// > 0
for =.z/ > 0. This completes the proof.

Remark 13. Borisov and Gadyl’shin [7] consider an abstract perturbationH0CL� of
a periodic Schrödinger operatorH0, in which L� is bounded but not necessarily self-
adjoint. They prove that, given a compact set K intersecting the essential spectrum
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of H0, there exists a constant �crit > 0 such that for 0 � � < �crit there are no
eigenvalues of H0 C L� in K \ �ess.H0/. The present result, however, is stronger
in one respect. It implies that if K contains no band ends then, for sufficiently small
� > 0, there are no eigenvalues either in K \ CC or in K \ �ess.L0/.

To see this, recall that in (49) the functions mleft and mright are analytic away
from band ends. For � D 0 there will be finitely many solutions of (49) in K, all
on the real axis, and none in K \ CC. For small � > 0, say 0 < � � �0, there
will still only be finitely many solutions of (49) in K, and hence only finitely many
in K \ CC, say �1.�/; : : : ; ��.�/. Using Theorem 12, each of these solutions will
have a corresponding strictly positive critical value of � , say � .1/crit ; : : : ; �

.�/
crit . Taking

�K
defD min.� .1/crit ; : : : ; �

.�/
crit / we therefore find that for 0 < � < �K there are no

solutions of (49) in K \ CC. There are also no eigenvalues in K \ �ess.L0/, since
the differential equation does not have square summable solutions for � 2 �ess.L0/.

This result depends on dissipativity. In the case where iS is replaced by just S ,
the result is false, in general, as eigenvalues may immediately emerge from the top
of spectral bands as soon as � > 0.

Remark 14. For the case of a trivial periodic background – q 
 0 – the proof of
Theorem 12 becomes particularly straightforward. The solution of the differential
equation which is in L2.0;1/ is given by

 .x/ D
8<
:cos

�p
� � i�.x�R/�C i

q
�

��i� sin
�p
� � i�.x �R/�; x < R;

exp
�
i
p
�.x �R/�; x > R:

Here
p
� is chosen to have positive imaginary part when =.�/ > 0. Imposing the

boundary condition  .0/ D 0 yields, for �, the transcendental equation

i
p
�

tan
�p
� � i�R�p
� � i� D 1: (51)

If we suppose that �� is a family of solutions of this equation with =.�� / ! 0 as
� ! �crit, then we can deduce that �crit > 0: otherwise, with �� ! � � 0, and
� ! �crit D 0, we would obtain

i tan
�
R

p
�
� D 1;

which is impossible for � � 0.
It should also be mentioned that there is a uniform �crit > 0 for this problem:

there exists �crit > 0 such that for 0 � � < �crit the problem has no eigenvalues at
all. Some simple asymptotic expansions for large � and small � , namely

p
� � i� �

p
�
�
1 � i�

2�

�
;
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tan
�p
� � i�R

� �
tan

�
R

p
�
�C i tanh

�
R�

2
p
�

�
1� i tan

�
R

p
�
�

tanh
�
R�

2
p
�

� ;
show that (51) becomes

tan
�
R

p
�
�C i tanh

� R�
2
p
�

�
� �i �

�
1 � i �

2�

�
tan

�
R

p
�
�

tanh
� R�
2
p
�

�
:

Comparing real and imaginary parts shows that this equation has no solutions for
large �.

6. Examples and numerics

Example 15. For our first example we take

� u00 C
� �40
1C x2

C sin.x/
�
u D �u; u.0/ D 0: (52)

The first three spectral bands for this problem are

Œ�0:378489;�0:347669�; Œ0:594800; 0:918058�; Œ1:293166; 2:285157�:

There are infinitely many eigenvalues in the gaps between the spectral bands, accu-
mulating at the lower ends of the bands, and their spacing is exponentially small (see
Schmidt [24]). This makes it impossible to distinguish most of them from the band
end.

We made the perturbation

q.x/ 7�! q.x/C i��
Œ0;R	

.x/

and examined the resulting eigenvalues. For � D 1
4

, Figure 1 shows a plot of j�C i�

��� j againstR for one of the eigenvalues in the spectral gap .�0:347669; 0:594800/,
with the vertical axis on a logarithmic scale. This appears to indicate that our for-
mula (3) is a tight estimate, with C1 � 8:72 and C2 � 0:2006.

With R D 48 fixed, Figure 2 shows the effect of truncating the problem to a fixed
interval Œ0; X�, X > R. The horizontal axis is X � R. This plot indicates that our
estimate (4) is tight, with C3 � 0:00087 and C4 � 0:5431.

Examining the behaviour of spurious eigenvalues predicted by (5) is rather more
difficult because, for second order ODEs with one regular and one singular endpoint,
there is at most one spurious eigenvalue in each spectral gap. The approach taken
was to fix X at a value which gives a spurious eigenvalue following the approach in
[19], § 6.1, Table 1, and then vary R rather than X . The results in Figure 3 appear to
show that (5) is tight, with C5 � 0:019, C6 � 0:1376.



Eigenvalues in spectral gaps of differential operators 311

10�1

10�2

10�3

10�4

10�5

30 35 40 45 50 55 60 65

Figure 1. Logarithmic plot of j�C i� � �� j against R.
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Figure 2. Logarithmic plot of j�� � ��;X;goodj against X �R.
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Figure 3. Logarithmic plot of =.��;X;bad/ against X �R; X D 64 was fixed.



312 M. Marletta and R. Scheichl

Finally, we attempted to verify whether or not the O.N�1/ error estimate in (6)
for approximation of the essential spectrum is correct. This is a little more difficult
again: if the eigenvalues ��;X;ess are indexed so as to behave as continuous functions
ofX , then all but finitely many eigenvalues will converge to the bottom of the essential
spectrum. However by fixing a value � in the middle of a spectral band and always
choosing, for eachN , the eigenvalue��;RCNa;ess closest to�, we were able to produce
Figure 4, which gives very convincing numerical evidence that it is impossible to
achieve better than O.N�1/ convergence.

10�1

10�2

10�3

10�4

101 102 103

Figure 4. Plot of =.��;RCNa;ess/ against R CNa.

Example 16. Continuing with (52), we examined the behaviour of eigenvalues as
functions of � under the perturbation

q.x/ 7! q.x/C i��
Œ0;50	

.x/:

Figure 5 shows the trajectories of six eigenvalues for � 2 Œ0:025; 0:1�. The essential
spectrum is marked by dense asterisks along a part of the real axis. The leftmost
eigenvalue (real part approximately 0.56) emerges from an eigenvalue in a spectral
gap for � D 0. The second eigenvalue, real part approximately 0.59, appears to
emerge from the lower endpoint of a spectral band; recall, however, that there are
infinitely many eigenvalues in the gap, accumulating at the lower end of the band,
with exponentially small spacing.

The remaining eigenvalues all appear to arise from interior points of the spectral
band, some of which may correspond to spectral concentrations [10]. The slowest to
emerge is the one giving rise to the eigenvalue with real part approximately 0.78. At
the level of resolution shown in this graph it looks as if �crit � 0:025 for this eigen-
value, because with � D 0:025 we see that the other eigenvalues have already lifted
off, while this particular one appears still to be stuck on the real axis. However since
=.�/ does not change sign as � passes through �crit it is actually almost impossible
to determine �crit accurately by numerical means.
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Figure 5. One gap eigenvalue and five points of essential spectrum giving rise to six eigenvalues
for a dissipative perturbation of the original self-adjoint operator.

Example 17. As mentioned in Remark 14, in the case of a zero periodic background
we can find the critical value(s) of � at which eigenvalues emerge from the essential
spectrum of the free Laplacian under perturbation,

�d
2u

dx2
C i��

Œ0;R	
.x/u D �u; u.0/ D 0;

by solving, for real � � 0 and � > 0, the transcendental equation

ˆ.�; �/ D i
p
�

tan
�p
� � i�R

�
p
� � i�R � 1 D 0:

We solved this equation numerically with R D 50 by minimising jˆj, obtaining

�crit � 0:0379727; � � 0:3003689:

Example 18. This example falls slightly outside the scope of the ODE theory of
this paper; however the methods used to prove Theorem 10 are not specific to ordi-
nary differential equations, and apply equally to partial differential equations with
exponentially decaying eigenfunctions.

Our problem is to compute an eigenvalue of the Schrödinger equation

��uC q.x/u D �u; x 2 R2;
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in which q describes a perturbed periodic medium:

q.x; y/ D cos.x/C cos.y/ � 5 exp.�x2 � y2/:

This problem has band-gap spectral structure, and we treated it with the perturbation

q.x; y/ 7! q.x; y/C i

4
.1 � tanh.jxj � 30//.1� tanh.jyj � 30//:

The resulting problem was truncated to the rectangle Œ�60; 60�2, equipped with
Dirichlet boundary conditions and solved using MATLAB PDETool with a user-
adapted mesh. Figure 6 shows an eigenvalue lifted into the upper half plane by the
dissipative perturbation.

0

0:2

0:4

0:6

0:8

1

1:2

�1 �0:8 �0:6 �0:4 �0:2 0 0:2

Figure 6. Computed spectrum of perturbed periodic Schrödinger equation. The genuine
eigenvalue has been shifted into the upper half plane. Spectral pollution stays close to the real
axis, as one would guess by Theorem 6.

The eigenvalue calculated was

�� D �0:09698C .1� 10�9/i I

Boulton and Levitin [8] obtained � 2 Œ�0:09697 � ";�0:09697 C "� with " D
3:39 � 10�4. The real part of our computed �� agrees with the result in [8] so well
that we suspect that both results are 30 times more accurate than the error bound in [8].
The error in the imaginary part (10�9) is also very small. Note the spectral pollution
on the real axis below �� , caused by domain truncation. In fact this pollution will fill
the whole spectral gap if the domain is large enough. One can also see in Figure 7
the qualitative difference between the contour plot of a genuine eigenfunction and a
polluting eigenfunction.
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Figure 7. Genuine and polluting eigenfunction: it is clear which is which.
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Example 19. We consider for ı � 0, x 2 Œ0;1/ the problem

� u00 C x2 exp.�ıx2/u D �u; u.0/ D 0: (53)

For ı D 0 this is the harmonic oscillator problem and its eigenvalues are well known
to be the integers 4k � 1, k 2 N. For ı > 0, however small, the problem has no
eigenvalues at all, and the spectrum is purely absolutely continuous. The problem
with small ı > 0 exhibits spectral concentrations near the integers 4k � 1; see
Aslanyan and Davies [4].

Table 1 shows numerical results for the case ı D 10�2. Taking R D 5 for this
problem results in anmleft .�/which has some very close (pole,zero) pairs – the Dirich-
let and Neumann eigenvalues in the first two columns of the table. The eigenvalues
of the dissipative problem which emerge upon adding a perturbation i��

Œ0;5	
.x/ do

indeed emerge with real parts in the intervals between the corresponding Neumann
and Dirichlet eigenvalues.

Table 1. Dirichlet and Neumann eigenvalues for problem on Œ0; 5� compared with eigenvalues
in upper half plane for dissipatively perturbed problem on Œ0;1/. Note that the un-perturbed
problem on Œ0;1/ has no eigenvalues.

Pole of mleft Zero of mleft Dissipative,
(Dirichlet eigenvalues) (Neumann eigenvalues) � D 0:2

2:9621125 2:9621124 2:9621125C 0:2000000i

6:8083144 6:8082846 6:8083001C 0:1999999i

10:5272610 10:5247488 10:5260768C 0:1999939i

14:1401140 14:0178056 14:1095773C 0:1997539i

17:8348945 17:2277815 17:5519026C 0:1959618i

7. Conclusions

The technique of relatively compact dissipative perturbation appears to be a compu-
tationally attractive tool for avoiding spectral pollution. Eigenvalues of interest are
moved into a part of the complex plane where they are well isolated from spurious
points, giving numerical methods which are much quicker and more efficient. There is
no evidence of problems with pseudospectra, even though the resulting problems are
non-normal. The approach can easily be implemented as an add-on to legacy codes;
requires very few additional lines of programming; and appears to be much more
computationally efficient than the pessimistic remarks at the end of the introduction
in [19] suggest.
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8. Appendix

Lemma 20. Let f be an analytic function having a zero of order 
 � 1 at a point z0
and let .f"/ be a family of analytic functions parametrised by a (small) parameter "
such that for some constants C; r > 0, and all sufficiently small j"j,

jf .z/ � f".z/j � C j"j (54)

for all jz � z0j � r . Then there exists a constant K such that for all sufficiently
small j"j, the function f" has 
 zeros in the disc with centre z0 and radius Kj"j1=�.
Moreover there are no other zeros of f" which converge to z0 as " tends to zero.

Proof. By making an affine change of variables if necessary, we may assume without
loss of generality that z0 D 0. On a circle jzj D 	 of sufficiently small radius 	 > 0,
inside which f has only the isolated zero of multiplicity 
 at the origin, there will
exist positive constants m1, m2 such that

m1	
� � jf .z/j � m2	

� : (55)

Provided " is sufficiently small to ensure that m1	� > C j"j, then (55) and (54) will
yield

jf .z/ � f".z/j < jf .z/j; jzj D 	;

so by Rouché’s theorem f and f" have the same number of zeros in the disc
jzj < 	. Taking 	 D 2.C j"j=m1/1=� gives the required existence result with
K D 2.C=m1/

1=� ; taking 	 D 	."/ to be greater than the greatest absolute value of
any zero of f" which converges to 0 as " tends to zero, we also deduce that there can
be no others beyond those already counted.

Lemma 21. In terms of the Hill discriminant D.�/ the quasi-momentum k.�/ satis-
fies, at the interior points of any spectral band,

ak0.�/ D ˙D0.�/p
4 � .D.�//2 ; (56)

in which the sign is chosen so that k0.�/ > 0. Consequently, k0.�/ is non-zero at all
interior points of spectral bands, and if � D � is such a point then

ak.�C i"/ � ak.�/C i"k0.�/ (57)

in which k0.�/ > 0.

Proof. The quasi-momentum k is related to the Hill discriminant by the equation

exp.2iak.�//�D.�/ exp.iak.�//C 1 D 0I
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see [14], p. 2. This means thatD.�/ D 2 cos.ak.�//. Differentiating with respect to
� gives (56). The fact that D0.�/ does not vanish at interior points of spectral bands
is part of the proof of [14], Theorem 2.3.1. Equation (57) is immediate by Taylor
expansion. The sign of k0 is determined to ensure <.iak.�C i"// < 0 for " > 0,
so that our solution  .�; �C i"/ lies in L2.0;1/ for " > 0; this means we require
k0.�/ > 0 for real � in a spectral band.
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