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Absence of bound states implies non-negativity
of the scattering length

Robert Seiringer1

Abstract. We show that bosons interacting via pair potentials with negative scattering length
form bound states for a suitable number of particles. In other words, the absence of many-
particle bound states of any kind implies the non-negativity of the scattering length of the
interaction potential.
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1. Introduction

While there is a huge literature on two-particle bound states in quantum mechanics,
relatively little is known concerning bound states of more than two particles. Via the
introduction of center-of-mass and relative coordinates, the former question reduces to
a one-particle problem, i.e. the spectral analysis of an operator of the form ��CV.x/,
with � denoting the Laplacian and V a potential, i.e. a multiplication operator, which
decays at infinity. Also for more than two particles the center-of-mass motion can be
separated, but the resulting operator is more complicated, and the potential does not
decay in certain directions.

In this article, we shall show that if the pair interaction potential has a negative
scattering length, there always exist bound states for a suitable number of particles.
At low density and low temperature such a system will thus not behave like an atomic
gas, but will form molecules or even much larger bound clusters. We note that the
atoms used in current experiments on Bose–Einstein condensation of ultra-cold dilute
gases have scattering length of either sign; see, e.g., [3] and [2].

For N � 2, we consider the Hamiltonian

HN D �
NX

iD1

�i C
X

1�i<j �N

v.xi � xj /
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on L2.R3N /, with � the usual Laplacian on R3. We assume that v 2 L1.R3/ is
real-valued and radial, and that v� 2 L3=2.R3/, where v� denotes the negative part
of v, i.e. v�.x/ D maxf0; �v.x/g. Under these assumptions, the quadratic form
defined by HN is bounded from below, and hence HN gives rise to a self-adjoint
operator via the Friedrichs extension [11].

Let EN D inf spec HN denote the ground state energy of HN , and let

†N D min
1�n�N �1

fEN �n C Eng

denote the lowest energy of two separate clusters of particles. Note that EN � †N �
EN �1. The HVZ Theorem [12] implies that if EN < †N , then the N -particle system
has a bound state, i.e. the Hamiltonian HN has, after removal of the center-of-mass
motion, an eigenvalue at the bottom of its spectrum. We note that EN is always
attained in the sector of permutation-invariant functions [6], hence we are effectively
dealing with bosons even though we defined HN on the full space L2.R3N / for
simplicity.

The scattering length of the interaction potential v is defined as

a D lim
R!1 aR

where aR is given by the variational principle ([8] and [7])

aR D 1

8�
inf

´ Z
jxj�R

.2jrf .x/j2 Cv.x/jf .x/j2/dx W f .x/ D 1 for jxj D R

μ
: (1)

The infimum is over all H 1-functions on the ball fjxj � Rg satisfying the boundary
condition f .x/ D 1 on the boundary of the ball. Under the assumption that H2 � 0,
i.e. the absence of two-particle bound states, the existence of a minimizer for (1) was
shown in [8], Appendix A. Note that since aR1

� aR2
C .8�/�1

R
R1�jxj�R2

v.x/dx

for R2 > R1, the limit limR!1 aR always exists for v 2 L1.R3/, but it could equal
�1. It is easy to see that finiteness of a implies that H2 � 0, i.e.

a > �1 H) H2 � 0 : (2)

Eq. (1) is the correct definition of the scattering length only in the absence of two-
particle bound states. The scattering length can be defined by other means (via the
solution to the zero-energy scattering equation) even in the presence of two-particle
bound states (see, e.g., [5]), but it is not given by the above variational principle in
this case. Since our main concern here is the case of H2 � 0, we find it convenient
to work with the definition (1), however.

Our main result is the following.

Theorem 1. If HN � 0 for all N � 2, then a � 0.
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As discussed above, finiteness of a implies that E2 D 0. If a < 0, Theorem 1
implies the existence of an N � 3 with †N D 0 but EN < 0. In other words,
negativity of the scattering length of v implies the existence of bound states of some
kind. We note that the converse of Theorem 1 does not hold. There exist interaction
potentials v with positive scattering length such that H2 � 0 but H3 has negative
spectrum, i.e. with three-particle bound states but no two-particle bound states [1].

For large, negative a, the existence of three-particle bound states is well known;
see [4], [14], [9], [13], and [10]. Our Theorem 1 implies that a does not actually have
to be large for bound states to exist. As long as it is negative, bound states exist, but
they might require more than three particles.

We note that if
R

R3 v.x/dx < 0, then a < 0. In this case, it is not difficult to see
that there exist bound states for an infinite sequence of particle numbers. This follows
from the fact that EN � � const N 2 for large N , while obviously EN � const N if
bound states exist only for finitely many particle numbers. It remains an open problem
to decide whether bound states exist for an infinite sequence of particle numbers for
all interaction potentials with a < 0.

Theorem 1 can be extended to dimensions larger than three. It does not extend
to one and two dimensions, however. The corresponding expression (1) in one or
two dimensions is always positive in the absence of two-particle bound states; see
[8] and [7]. Another important difference concerns the fact that arbitrarily shallow
negative potentials lead to the existence of two-particle bound states in one and two
dimensions, which is not the case in three and more dimensions.

2. Proof of Theorem 1

We shall assume that a < 0, and show that for large enough N we can find a
‰ 2 L2.R3N / with h‰ j HN ‰i < 0. Since a < 0 and v 2 L1.R3/, we can find an
R > 0 such that aR C .8�/�1

R
jxj>R

v.x/dx < 0. As a consequence, there exists a

non-negative function ' W RC ! RC with '.t/ D 1 for t � R such that

b D
Z
R3

.2'0.jxj/2 C v.x/'.jxj/2/dx < 0 : (3)

For instance, one can choose ' to be the minimizer of (1) for jxj � R. By an
approximation argument, we can assume ' to be bounded without loss of generality.
That is, for some c � 0, we have

'.t/2 � 1 C c �.R � t /

for all t � 0, with � denoting the Heaviside step function

�.t/ D
´

1 for t � 0,

0 for t < 0.
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For g 2 C 1
0 .R3/ real-valued and with

R
R3 g.x/2dx D 1, we shall consider the

function

‰.x1; : : : ; xN / D '.t/

NY
kD1

g.xk/;

where
t D t .x1; : : : ; xN / D min

1�i<j �N
jxi � xj j :

Note that t is Lipschitz continuous and differentiable almost everywhere. A simple
calculation yields

NX
kD1

jrk'.t/j2 D 2'0.t /2 :

An integration by parts shows that

NX
kD1

Z
R3N

jrk‰j2dx1 � � � dxN

D 2

Z
R3N

'0.t /2

NY
j D1

g.xj /2dxj � N

Z
R3N

g.x1/�g.x1/'.t/2dx1

NY
j D2

g.xj /2dxj :

(4)

Here we have also used the permutation-symmetry of ‰ in the last term, in order to
replace the sum over k by just one summand, multiplied by N . We can bound

'0.t /2 �
X
i<j

'0.jxi � xj j/2

and hence the first term on the right side of (4) is bounded above by

N.N � 1/

Z
R6

g.x/2'0.jx � yj/2g.y/2 dx dy :

To bound the second term, we simply use '.t/2 � 1 C c. We shall also drop the
positive part of g.x/�g.x/, and arrive at the upper bound

NX
kD1

Z
R3N

jrk‰j2dx1 � � � dxN

� N.N � 1/

Z
R6

g.x/2'0.jx � yj/2g.y/2 dx dy C .1 C c/N kŒg�g��k1 ;

(5)

where Œs�� D maxf0; �sg denotes the negative part.
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Next we shall investigate the expectation value of the interaction potential. Be-
cause of the permutation-symmetry of ‰, it suffices to consider h‰ j v.x1 � x2/‰i,
multiplied by N.N � 1/=2, the number of pairs of particles. To bound this term, we
shall use the fact that

j'.t/2 � '.jx1 � x2j/2j

� .1 C c/
� NX

j D3

�.R � jx1 � xj j/ C
NX

kD2

NX
j DkC1

�.R � jxk � xj j/
�
:

(6)

To see the validity of this bound, note that the left side is at most 1 C c. The right
side is at least 1 C c, unless all the pairs .xk ; xj / with fk; j g ¤ f1; 2g are separated
a distance larger than R, in which case it equals zero. Also the left side is then zero,
however; either jx1 �x2j � R, in which case it is zero since also t � R and '.s/ D 1

for s � R, or jx1 � x2j < R, in which case t D jx1 � x2j. In any case, (6) holds.
Using (6), we have

h‰ j v.x1 � x2/‰i

�
Z
R6

g.x/2v.x � y/'.jx � yj/2g.y/2 dx dy

C .1 C c/
.N � 2/.N � 3/

2

� Z
R6

g.x/2jv.x � y/jg.y/2 dx dy

�

�
� Z

R6

g.x/2�.R � jx � yj/g.y/2 dx dy

�

C 2.1 C c/.N � 2/

Z
R9

g.x/2jv.x � y/jg.y/2�.R � jy � zj/g.z/2 dx dy dz :

(7)

The terms on the second line on the right side can be bounded with the aid of a
Schwarz inequality asZ

R6

g.x/2jv.x � y/jg.y/2 dx dy � kvk1kgk4
4

and Z
R6

g.x/2�.R � jx � yj/g.y/2 dx dy � 4�

3
R3kgk4

4 :

Similarly, we can bound the integral in the last line of (7) asZ
R9

g.x/2jv.x � y/jg.y/2�.R � jy � zj/g.z/2 dx dy dz � 4�

3
R3kvk1kgk21kgk4

4 :
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As a result, we have thus shown that

h‰ j v.x1 � x2/‰i

�
Z

R6

g.x/2v.x � y/'.jx � yj/2g.y/2 dx dy

C .1 C c/
2�

3
.N � 2/R3kvk1..N � 3/kgk8

4 C 4kgk21kgk4
4/ :

(8)

By combining the bounds (5) and (8), we obtain

h‰ j HN ‰i

� N.N � 1/

2

Z
R6

g.x/2h.x � y/g.y/2 dx dy

C .1 C c/N
�
kŒg�g��k1 C �

3
N 2R3kvk1kgk4

4.N kgk4
4 C 4kgk21/

�

where h denotes the function

h.x/ D 2'0.jxj/2 C v.x/'.jxj/2 :

Note that
R

R3 h.x/dx D b < 0 by (3).
Let g0 2 C 1

0 .R3/ be real-valued and L2-normalized. For L > 0, we shall choose

g.x/ D L�3=2g0.x=L/ :

Then g is also L2-normalized, and satisfies

kgk4 D L�3=4kg0k4 ; kgk1 D L�3=2kg0k1; kŒg�g��k1 D L�2kŒg0�g0��k1:

Denoting the various constants collectively by C , we thus have

h‰ j HN ‰i

� N.N � 1/

2

Z
R6

g.x/2h.x � y/g.y/2 dx dy C C
N

L2

�
1 C kvk1

N 3R3

L4

�
:

(9)

The first term on the right side equals

N.N � 1/

2L6

Z
R6

g0.x=L/2h.x � y/g0.y=L/2 dx dy :

Since h is an L1-function, we can use dominated convergence in Fourier space to
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conclude that

lim
L!1 L�3

Z
R6

g0.x=L/2h.x � y/g0.y=L/2 dx dy

D
Z
R3

h.x/dx kg0k4
4

D bkg0k4
4 < 0 :

For all L large enough, we can thus bound

N.N � 1/

2L6

Z
R6

g0.x=L/2h.x � y/g0.y=L/2 dx dy � b

4

N.N � 1/

L3
kg0k4

4

(where the 4 in the denominator could be replaced by any number larger than 2). If
we choose L � N � L3=2, the last term in (9) is much smaller than N 2=L3 for
large L. For this choice of N , we thus have h‰ j HN ‰i < 0 for large enough L.
This concludes the proof.
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