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Abstract. We consider a general framework for investigating spectral pollution in the Galerkin
method. We show how this phenomenon is characterised via the existence of particular Weyl
sequences which are singular in a suitable sense. For a semi-bounded selfadjoint operator A

we identify relative compactness conditions on a selfadjoint perturbation B ensuring that the
limiting set of spectral pollution of A and B coincide. Our results show that, under perturbation,
this limiting set behaves in a similar fashion as the essential spectrum.
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1. Introduction

Let A be a self-adjoint operator acting on a separable infinite dimensional Hilbert
space H and let � be an isolated eigenvalue of A. For � � R an interval let 1�.A/ be
the spectral projector of A associated to � . The numerical estimation of � whenever
inf �ess.A/ < � < sup �ess.A/ and, more generally, when

Tr 1.�1;�/.A/ D Tr 1.�;1/.A/ D 1;

constitutes a serious challenge in applied spectral theory. Indeed, it is well estab-
lished that classical approaches, such as the Galerkin method, suffer from variational
collapse under no further restrictions on the approximating space. This often leads
to numerical artefacts which do not belong to the spectrum of A, giving rise to what
is generically called spectral pollution.

The spectral pollution phenomenon occurs in different practical contexts such
as Sturm–Liouville operators (see [1], [32], and [31]), perturbations of periodic
Schrödinger operators (see [7], and [23]) and systems underlying elliptic partial
differential equations (see [2], [4], and [5]). It is a well documented difficulty in
quantum chemistry and physics, in particular regarding relativistic computations; see
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[20], [30], [17], and [15]. It also plays a fundamental role in elasticity and magne-
tohydrodynamics; see [19], [10], [27], and [3]. In recent years this phenomenon has
raised a large interest in the mathematical community; see [23], [18], [21], [12], [13],
[26], and [25]. There are known pollution-free computational procedures alternative
to the basic Galerkin method. These include specialised variational formulations such
as those studied at length in [16], [19], [14], and [24] as well as general methods such
as those proposed in [8], [6], [7], [21], and [12].

A natural approach to deal with spectral pollution is to derive conditions on the
approximating subspaces guaranteeing a “safe” Galerkin method in a given interval of
the real line. These conditions were found in [22] on an abstract setting for operators
with particular block-type structures with respect to decompositions of the ambient
Hilbert space. They turn out to be motivated from techniques in numerical analysis
(see [2], [5], and [27]) and computational physics and chemistry (see references
in [22]).

In the present paper we adopt a more general viewpoint than that of [22]. We
establish an abstract framework for spectral pollution in the Galerkin method and then
examine its invariance under relatively compact perturbations. Our main concern is
primarily theoretical and general in nature. Nonetheless, however, we include various
simple examples which illustrate the many subtleties faced when dealing with spectral
pollution on a practical setting.

The technical context of our results can be summarised as follows. Let D.A/ be
the domain of A. Let L D .Ln/n2N be a sequence of finite dimensional subspaces
of D.A/, dense in the graph norm as n ! 1 (Definition 1)1. Denote by An the
compression of A to Ln. Denote by �.A; L/ the large n limiting set in Hausdorff
distance of the Galerkin method spectra �.An/, (Definition 2). Then �.A/ � �.A; L/

(Proposition 2), however in general equality fails to occur in this identity. An abstract
notion of limiting spectral pollution set can be formulated naturally as,

�poll.A; L/ D �.A; L/ n �.A/:

As it turns, points in the limiting spectral pollution set behave in a similar fashion as
points in the essential spectrum (Proposition 3). Therefore a question arises: what
sort of conditions on a perturbation B ensure �poll.A; L/ D �poll.B; L/? Below we
establish a theoretical framework in order to address this question.

Section 2 and 3 are devoted to a characterisation of �.A; L/ in terms of special
Weyl-type sequences (L-Weyl sequences) and its structural properties. In Defini-
tion 3 we consider a decomposition of �.A; L/ as the union of a limiting essential
spectrum associated with L, �ess.A; L/, and its limiting discrete spectrum counter-
part, �disc.A; L/. The former contains both the true essential spectrum �ess.A/ and
�poll.A; L/ (Proposition 5).

1Below we will often consider a slightly more general framework which covers important applications
such as those involving the finite element method. In this framework we will only require that the subspaces
Ln lie in the domain of the quadratic form associated to A and that the sequence L is dense in the form
sense. However, in this more general setting we restrict our attention to A being semi-bounded.



Weyl theorems and spectral pollution 331

The purpose of sections 4 and 5 is to find conditions on B ensuring

�ess.B; L/ D �ess.A; L/: (1)

According to our main result (Theorem 11), when A and B are bounded from below
and

.A � a/1=2.B � a/�1=2 � 1 (2)

is a compact operator for some a negative enough, (1) holds true. Therefore, an
approximating sequence L will not asymptotically pollute for A in a given interval
if and only if it does not pollute for B in the same interval. This generalises [22],
Corollary 2.5.

Our present approach consists in adapting to the context of limiting spectra, several
classical results for the spectrum and essential spectrum. In turns, this leads to many
unexpected difficulties which we will illustrate on a variety of simple examples. In
particular, we establish (Theorem 7) a limiting spectra version of the spectral mapping
theorem allowing to replace the unbounded operator A by its (bounded) resolvent
.A�a/�1. Remarkably, this theorem fails in general (Remark 4) for operators which
are not semi-bounded.

Acknowledgement. The authors would like to acknowledge financial support from
the British–French project PHC Alliance no. 22817YA. Partial support from the
French Ministry of Research (ANR-10-BLAN-0101) is also acknowledged. They
would also like to thank Éric Ricard for useful discussions.

2. Limiting spectra

We will often restrict our attention to A being bounded from below, however we do
not require this for the moment. Unless otherwise specified, we always assume that
the subspaces Ln are dense in the following precise sense.

Definition 1 (A-regular Galerkin sequences). We say that L D .Ln/, Ln � D.A/, is
an A-regular Galerkin sequence, or simply an A-regular sequence, if for all f 2 D.A/

there exists a sequence of vectors .fn/ with fn 2 Ln such that fn ! f in the graph
norm of A, that is

kfn � f k C kAfn � Af k n!1�����! 0: (3)

The orthogonal projection in the scalar product of H onto Ln will be denoted by
�n W H ! Ln and the compression of A to Ln by An D �nA�Ln

W Ln ! Ln. These
compressions will sometimes be identified with any of their matrix representations.
On sequences .xn/n2N � H of vectors and .Ln/n2N of subspaces Ln � D.A/ we
will often suppress the index and write .xn/ and .Ln/ instead. We will denote by
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xn * x the fact that xn is weakly convergent to x 2 H . When the norm is not
specified, xn ! x will denote the fact that kxn � xk ! 0.

When A is semi-bounded, we may also consider sequences L D .Ln/ only in
the form domain of A. They may approximate the latter but not necessarily the op-
erator domain. If A � 0, for instance, this simply means that Ln � D.A1=2/ and
L is A1=2-regular but not necessarily A-regular. In our notation, for xn 2 Ln,
Axn 2 D.A1=2/#, the dual of D.A1=2/ as subspace of H . Since �nA

1=2y 2
H # D H and �nA

1=2y ? g for any y 2 H and g 2 H � Ln, the compression
�nA�Ln

W Ln ! Ln is well defined also in this framework. Moreover, a matrix rep-
resentation of An can be obtained in the usual manner, via ŒhA1=2bj ; A1=2bki�dim Ln

jkD1
for a given orthonormal basis fbj g of Ln. As we think that there is no possible
confusion, we will also denote the duality product associated to w 2 D.A1=2/# by
z 7�! hz; wi.

When A is not semi-bounded but its essential spectrum has a gap containing a num-
ber a, we could as well consider sequences .Ln/ which are only jA � aj1=2-regular.
We have chosen to avoid mentioning quadratic forms for operators which are not
semi-bounded, because in practical applications (such as those involving the Dirac
operator) the domain of jA � aj1=2 does not necessarily coincide with the natural
domain upon which the quadratic form is defined.

The limiting spectrum of A relative to the Galerkin sequence L, is the set of all
limit points, up to subsequences, of the spectra of An in the large n limit.

Definition 2 (Limiting spectrum). The limiting spectrum of A relative to L, �.A; L/,
is the set of all � 2 R for which there exists �k 2 �.Ank

/ such that nk ! 1 and
�k ! � as k ! 1.

Since all An are Hermitian endomorphisms, �.A; L/ � R. The following lemma
provides an alternative characterisation of �.A; L/.

Lemma 1 (L-Weyl sequences). The real number � 2 �.A; L/ if and only if there
exists a sequence xk 2 Lnk

such that kxkk D 1 and �nk
.A � �/xk ! 0 as k ! 1.

Proof. According to the definition, � 2 �.A; L/ if and only if there exists �k 2 R
and xk 2 Lnk

with kxkk D 1 such that �k ! � and �nk
.A � �k/xk D 0. As

�nk
.A � �/xk D .�k � �/xk ! 0, one implication follows immediately.
On the other hand, let .xk/ be as stated. Since the An are Hermitian, there

necessarily exists �k 2 �.Ank
/ such that j�k � �j � jj.Ank

� �/xkjj ! 0. Thus
� 2 �.A; L/ ensuring the complementary implication.

We call .xk/ an L-Weyl sequence for � 2 �.A; L/, by analogy to the classical
notion of Weyl sequence [11].

Remark 1. Selfadjointness of An is crucial in Lemma 1. We illustrate this by means of
a simple example. Let H D `2.N/ and .ej / � H be the canonical orthonormal basis
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of this space. Let A be the left shift operator defined by the condition A W ej 7! ej�1
with the convention e0 D 0. Let Lk D Spanfei ; i � kg. For this data an analogous
of Lemma 1 is no longer valid. Indeed, if j�j < 1 and

xk
defD
s

1 � j�j2
1 � j�j2k

kX
iD1

�i�1ei ;

then xk 2 Lk , jjxk jj D 1 and

jjAxk � �xk jj D
s

1 � j�j2
1 � j�j2k j�jk �! 0:

Therefore any point of the open unit disk is associated with an L-Weyl sequence. On
the other hand, however, An is a Jordan block, so �.An/ D f0g for all n 2 N and
hence necessarily �.A; L/ D f0g.

The above characterisation of points in the limiting spectrum combined with the
minimax principle yields the following fundamental statement.

Proposition 2 (The limiting spectrum and the spectrum). Let L be an A-regular
Galerkin sequence or, if A � 0, an A1=2-regular Galerkin sequence. Then,

�.A/ � �.A; L/ (4)

and
�poll.A; L/

defD �.A; L/ n �.A/ � .`� ; `C/ (5)

where

`� defD
8<
:

�1 for inf �.A/ D �1,

inf �ess.A/ otherwise,

and

`C defD
8<
:

C1 for sup �.A/ D C1,

sup �ess.A/ otherwise.

Proof. We start with the general case of an A-regular sequence. The classical charac-
terisation of the spectrum of selfadjoint operators ensures that � 2 �.A/ if and only if
there is a normalised sequence .yk/ � D.A/ such that k.A��/ykk ! 0 (that is .yk/

is a Weyl sequence for �). We will now construct an L-Weyl sequence from .yk/.
According to (3), we can find .xkm/.k;m/2N2 such that xkm 2 Lm, .yk � xkm/ ! 0 and
.A � �/.yk � xkm/ ! 0 as m ! 1. By virtue of a diagonal process, we can extract
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a subsequence such that �mk
.A � �/xkmk

! 0. Dividing by kxkmk
k (which does not

vanish in the k ! 1 limit), gives (4) as consequence of Lemma 1.
When A � 0 and L is only A1=2-regular, a similar proof applies. We explicitly

take xkm
defD � 0

myk where � 0
m is the orthogonal projection onto Lm, for the scalar

product furnished by the quadratic form associated to A. For all z 2 Lm with
jjzjj D 1

jhz; .A � �/xkmij D jhz; .A � �/yki C .� C 1/hz; yk � xkmij
� jj.A � �/ykjj C .� C 1/jjyk � xkmjj;

where we have used that hz; .A C 1/yki D hz; .A C 1/� 0
myki by definition of the

projection � 0
m. Thus

jj�m.A � �/xkmjj � jj.A � �/ykjj C .� C 1/jjyk � xkmjj:
Our assumption that L is A1=2-regular implies that xkm ! yk in D.A1=2/ when
m ! 1. Hence, the desired conclusion is achieved, once again, by a diagonal
argument.

The proof of (5) is a classical consequence of the minimax principle. It may be
found, for instance, in [21], Theorem 2.1, as well as [25] and [13].

In [22], Theorem 1.4, the existence of an A-regular Galerkin sequence L such
that �.A; L/ D Œ`�; `C� is shown. Therefore the inclusion complementary to (4)
does not hold in general. This is a source of difficulties in applications as there is no
known systematic procedure able to identify A-regular Galerkin sequences such that
�.A/ D �.A; L/. By virtue of (5), limiting spectral pollution �poll.A; L/ can only
occur in “gaps” of the essential spectrum.

Let us now see how �poll.A; L/ can be characterised in a more precise manner in
terms of particular L-Weyl sequences.

Definition 3 (Limiting essential spectrum). We denote by �ess.A; L/ the set of all
� 2 �.A; L/ for which there exists an L-Weyl sequence .xk/ as in Lemma 1 with
the additional property that xk * 0.

By analogy to the classical notions, we will call �ess.A; L/ the limiting essential
spectrum of A associated to L and the corresponding sequence .xk/ a singular L-
Weyl sequence.

Remark 2. From the definition it follows that �ess.A C K; L/ D �ess.A; L/ for any
selfadjoint operator K 2 K.H /.

Definition 4 (Limiting discrete spectrum). The residual set �disc.A; L/ D �.A; L/ n
�ess.A; L/, will be called the limiting discrete spectrum of A associated to L.
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We illustrate these definitions by means of various simple examples.

Example 1 (A a bounded operator). Let H D Spanfeṅ gn2N where eṅ is an orthonor-
mal set of vectors in a given scalar product. Let Ln D Spanfe1̇ ; : : : ; eṅ�1; fng where
fn D .cos �/eC

n C .sin �/e�
n for � 2 .0; �=2/. Let2

A D
X
n�1

jeC
n iheC

n j;

that is, A is the orthogonal projector onto Span.eC
n / and �.A/ D �ess.A/ D f0; 1g.

Then �.An/ D f0; 1; cos2 �g for all n and �.A; L/ D �ess.A; L/ D f0; 1; cos2 �g.
Here xn D e�

n is a singular L-Weyl sequence associated to � D 0, xn D eC
n is a

singular L-Weyl sequence associated to � D 1 and xn D fn is a singular L-Weyl
sequence associated to � D cos2 � .

Example 2 (A a semi-bounded operator). Let H be as in Example 1 and define

Ln D Spanfe1̇ ; : : : ; eṅ�1; e�
n g:

For fṅ D sin. 1
n
/ e�
n ˙ cos. 1

n
/ eṅ , let

A D
X

n2jf C
n ihf C

n j �
X

jf �
n ihf �

n j

which has a 2 � 2 block diagonal representation in the basis .eṅ /. Then �ess.A/ D
f�1g and �disc.A/ D fn2 W n 2 Ng. On the other hand

�.An/ D f�1; n2 sin2
1

n
� cos2

1

n
; 1; : : : ; .n � 1/2g;

where �1 is an eigenvalue of multiplicity n � 1. Therefore

�ess.A; L/ D f�1; 0g and �disc.A; L/ D fn2 W n 2 Ng:
The former is a consequence of Proposition 3(ii) while the latter follows from Propo-
sition 5(iii) below.

We can verify directly the validity of the latter as follows. Assume that conversely
.xk/ was a singular L-Weyl sequence associated with �2 2 �disc.A/. Then we have
�nk

.A � �2/xk ! 0 and xk * 0. For m < nk

pm�nk
.A � �2/xk D .A � �2/pmxk

where pm D P
i�m jf ˙

i ihf ˙
i j. Then, on the one hand,

kpnk�1xk � hf C
� ; xkif C

� k2 � jj.A � �2/pnk�1xkjj2 �! 0

2Here and elsewhere we use the bra-ket notation jf ihgj to denote the linear operator 7! hg; if .
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so that jjpnk�1xk jj2 C jj.A � �2/pnk�1xk jj2 ! 0 as k ! 1. On the other hand,

.A � �2/.xk � he�
nk

; xkie�
nk

/ D .A � �2/pnk�1xk :

Since jh.A � �2/e�
n ; e�

n ij D jn2 sin2 1
n

C cos2 1
n

� �2j ! j2 � �2j > 0, projecting
each term onto Lnk

yields he�
nk

; xki ! 0 also. But then 1 D jjxk jj ! 0, which is a
contradiction, so there are no singular L-Weyl sequences for �2.

Example 3 (A a strongly indefinite operator). Let H and Ln be as in Example 2.
Let fṅ D 1p

2
eC
n ˙ 1p

2
e�
n . Let

A D
X

njf C
n ihf C

n j �
X

njf �
n ihf �

n j:
Then �.A/ D f˙n W n 2 Ng D �disc.A/. On the other hand

�.A; L/ D Z; �ess.A; L/ D f0g and �disc.A; L/ D f˙n W n 2 Ng:
The proof of the latter is similar to that of the analogous property in Example 2.

3. Limiting spectra and the behaviour of singular L-Weyl sequences

We now examine more closely various basic properties of the limiting spectra �.A; L/,
�ess.A; L/ and �disc.A; L/. These properties can be deduced via an analysis of the
behaviour of different types of L-Weyl sequences.

Proposition 3 (Limiting essential and discrete spectra and the spectrum). Let L be
an A-regular Galerkin sequence, or, if A � 0, an A1=2-regular Galerkin sequence.
Then

(i) the limiting spectrum �.A; L/ and the limiting essential spectrum �ess.A; L/ are
closed subsets of R;

(ii) moreover �ess.A/ � �ess.A; L/ and �disc.A; L/ � �disc.A/.

Proof. The proof of (i) involves a standard diagonal argument and it is left to the
reader. For the second statement we need the following auxiliary result which will
be used repeatedly below.

Lemma 4. A sequence xk 2 Lnk
is such that kxkk D 1, xk * x and �nk

.A � �/xk
! 0, only when x 2 Ker.A � �/.

Proof of Lemma 4. Suppose that .xk/ satisfies the hypothesis with L an A-regular
Galerkin sequence. Let f 2 D.A/ and fn 2 Ln such that fn ! f in the norm of
D.A/. Then h�nk

.A � �/xk ; fnk
i ! 0: On the other hand, since fk ! f in D.A/,

h�nk
.A � �/xk; fnk

i D hxk ; .A � �/fnk
i ! hx; .A � �/f i:
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Thus hx; .A � �/f i D 0 for all f 2 D.A/, so that x 2 D.A�/ D D.A/ and
.A � �/x D 0 as required.

Suppose now that A � 0 and L is only A1=2-regular. The hypothesis implies
that .xk/ is a bounded sequence in D.A1=2/. Then the proof reduces to the same
argument, but taking this time fnk

in D.A1=2/.

We now turn to the proof of (ii) in Proposition 3. The fact that�ess.A/ � �ess.A; L/

is proved similarly to (4). It should only be noted that the L-Weyl sequence found
for � 2 �ess.A/ additionally satisfies xkmk

* 0. For the inclusion �disc.A; L/ �
�disc.A/ note that, if � 2 �disc.A; L/, there exists xk 2 Lnk

such that kxkk D 1,
xk * x 6D 0 and �nk

.A � �/xk ! 0. As � 62 �ess.A/ (by the previous part), then
either � 2 �disc.A/ or � 62 �.A/. By Lemma 4, the latter is impossible.

Remark 3. If �ess.A/ D �ess.A; L/ then automatically �disc.A/ D �disc.A; L/ and
�.A/ D �.A; L/.

We will now examine more closely singular L-Weyl sequences associated to
points � 2 �ess.A; L/.

Proposition 5 (Singular L-Weyl sequences). Let L be an A-regular Galerkin se-
quence, or, if A � 0, an A1=2-regular Galerkin sequence. The real number � 2
�ess.A; L/ if and only if

(i) either � 62 �.A/ and there exists �k ! � and yk 2 Lnk
such that yk * 0 and

�nk
.A � �k/yk D 0;

(ii) or � 2 �ess.A/ and there exists �k ! � and yk 2 Lnk
such that yk * 0 and

�nk
.A � �k/yk D 0;

(iii) or � 2 �disc.A/ and for any " > 0

Rank.1.��";�C"/.An// � Rank.1f�g.A// C 1

for all n large enough.

In cases (i) and (iii), � can in some sense be regarded as a point of spectral pollution
for A relative to L. In case (iii), � 2 �.A/, but the multiplicity of the approximating
spectrum �.An/ is too large for n large, leading to the wrong spectral representation
of A in the limit n ! 1. In our definition of the polluted spectrum �poll.A; L/

in (5), we have chosen to require that � … �.A/, following [22]. Any � 2 �.A/

satisfying (iii) could also be considered as a spurious spectral point. However, in
case (ii), the singular L-Weyl sequence .yk/ behaves like a classical singular Weyl
sequence.

Only in cases (i) and (ii) the existence of a singular L-Weyl sequence .yk/ con-
sisting of exact eigenvectors of Ank

such that �nk
.A � �k/yk D 0 and �k ! �

is guaranteed. In case (iii) it may occur that all the eigenvectors of Ank
whose
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corresponding eigenvalue converges to �, converge weakly to a non-zero element
of Ker.A � �/, and that only a linear combination of these eigenvectors converges
weakly to zero. This can be illustrated by means of a simple example.

Example 4 (Spectral point satisfying Proposition 5(iii)). Let H D Spanfe0; eṅ g
where e0; eṅ form an orthonormal basis. Let

A D
1X
nD1

jeC
n iheC

n j �
1X
nD1

je�
n ihe�

n j:

Then �.A/ D f�1; 0; 1g and �ess.A/ D f�1; 1g. The eigenvalue 0 has multiplicity
one and associated eigenvector e0. Let

Ln D Spanfe1̇ ; : : : ; eṅ�1; fṅ g;
where

fṅ D e0 C ˛ṅ eC
n � ˛�

n e�
nq

1 C .˛ṅ /2 C .˛�
n /2

for

˛ṅ D ˙
vuut 1 ˙ 1

n2

2.1 � 1
n2 /

:

Then �.A; L/ D f0; ˙1g D �ess.A; L/. In this case An has two eigenvalues ap-
proaching zero in the large n limit, with corresponding eigenvectors f C

n and f �
n . It

is readily seen that fṅ * e0=
p

2 and so only the difference f C
n � f �

n tends weakly
to zero.

Proof of Proposition 5. Let � 2 �ess.A; L/ � �.A; L/. By definition of �.A; L/

there exists a normalised sequence .yk/ such that �nk
.A � �k/yk D 0 and �k ! �.

The main question is whether one can ensure that yk * 0 weakly. Up to extraction
of a subsequence, we may assume that yk * y 2 Ker.A � �/ (by Lemma 4). If
� … �.A/, then Ker.A � �/ D f0g and necessarily y D 0, thus (i) follows.

For the proof of (ii) we require the following auxiliary result.

Lemma 6. Let V � D.A/ be a subspace of dimension d > 0, with associated
orthogonal projector �V . Let " > 0 be such that

k�V.A � �/xk � "kxk for all x 2 V :

There exists N > 0 and a sequence of spaces Wn � Ln of dimension d , such that
for all n � N

k�Wn
.A � �/yk � 2"

p
dkyk for all y 2 Wn:
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Proof of Lemma 6. We firstly assume that L is A-regular. Let .ej / be a fixed orthonor-
mal basis of V . Then there exists enj 2 Ln such that jjenj �ej jjD.A/ ! 0 when n ! 1.

The Gram matrix Gn
defD .heni ; enj i/1�i;j�d converges to the d � d identity matrix as

n ! 1, and therefore, for sufficiently large n, Wn
defD spanfenj ; j D 1; :::; dg has

dimension d . Now we define an orthonormal basis for Wn by

f n
j

defD
dX
kD1

.G�1=2
n /kj enk :

Since .G
�1=2
n /kj ! ıkj and enj ! ej in the graph norm, it is then clear that

kej � f n
j kD.A/ �! 0; n �! 1:

This shows in particular that k.�Wn
� �V /Ak ! 0, k�Wn

� �Vk ! 0 and hence
that k�Wn

.A � �/f n
j � �V .A � �/ejk ! 0. Let N > 0 be such that

k�Wn
.A � �/f n

j k � 2" for all n � N; j D 1; : : : ; d:

For y D Pd
jD1 Oyjf n

j 2 Wn, we get

k�Wn
.A � �/yk � 2"

dX
jD1

j Oyj j � 2"
p

dkyk;

which ensures the desired property.
When A � 0 and L is only A1=2-regular, the proof is the same, using convergence

in D.A1=2/ and the fact that k.�Wn
� �V/A1=2k ! 0

The proof of (i) in Proposition 5 is achieved as follows. Assume that � 2 �ess.A/.
For all d 2 N there exists a subspace Vd � D.A/, such that dim Vd D d2 and

k.A � �/yk � 1

d2
kyk for all y 2 Vd ;

see for instance [11], Lemma 4.1.4. According to Lemma 6 and an inductive argu-
ment, there is a sequence .nd / � N and d2-dimensional subspaces Wd � Lnd

, such
that

k�nd
.A � �/yk � 2

d
kyk for all y 2 Wd :

This ensures that And
has at least d2 eigenvalues in the interval Œ� � 2=d; � C 2=d�.

Let .f
nd

j /d
2

jD1 � Lnd
be an orthonormal set of d2 eigenvectors of And

, with

associated eigenvalues .�
nd

j /d
2

jD1 satisfying j�nd

j � �j � 2=d . We inductively define



340 L. Boulton, N. Boussaïd, and M. Lewin

the following singular L-Weyl sequence for �:

y1 D f
n1

1 ;

y2 D f
n2

ı2
with 1 � ı2 � 22 such that jhy2; y1ij � 1=

p
2;

y3 D f
n3

ı3
with 1 � ı3 � 32 such that jhy3; yj ij � 1=

p
3 for j D 1; 2;

:::

yd D f
nd

ıd
with 1 � ıd � d2 such that

jhyd ; yj ij � 1=
p

d for j D 1; : : : ; d � 1:

The existence of ıd is guaranteed by the fact that

1 D kykk2 �
d2X
jD1

jhyk ; f
nd

j ij2 for all k D 1; : : : ; d � 1:

Indeed, there are at most d indices j in the above summation, such that jhyk ; f
nd

j ij2 �
1=d . Hence, in total, there are at most d.d � 1/ indices j such that jhyk ; f

nd

j ij2 �
1=d for at least one k D 1; :::; d � 1. Since d.d � 1/ < d2 for d � 1, we
deduce that there is at least one index j

defD ıd such that jhyk ; f
nd

j ij2 � 1=d for all

k D 1; :::; d � 1. By construction kydk D 1 and jhyi ; yj ij � 1=
p

max.i; j /. Thus
yk * 0 as k ! 1, ensuring (ii).

Note that, conversely, if (i) or (ii) holds true, then � 2 �ess.A; L/ by Definition 3.
Let us now prove that if � 2 �ess.A; L/ \ �disc.A/, then (iii) holds true. Let

xk 2 Lnk
be a singular L-Weyl sequence: �nk

.A � �/xk ! 0, jjxk jj D 1 and
xk * 0. Let V D Ker.A ��/ 6D f0g and d D dim.V/. For n sufficiently large there
is a space Wn � Ln of dimension d such that for all " > 0, there exists N > 0 such
that

k�n.A � �/yk � "kyk for all y 2 Wn

whenever n � N . Let �k D SpanfWnk
; xkg. Since xk * 0 and Wnk

does not
increase in dimension in the large k limit, necessarily dim.�k/ D d C 1 for all k

large enough. For all " > 0 there exists M > 0 such that

k�nk
.A � �/yk � "kyk for all y 2 �k

whenever k � M . This ensures that �.Ank
/ \ .� � "; � C "/ contains at least d C 1

points counting multiplicity and hence the claimed conclusion is achieved.
It only remains to prove that (iii) implies � 2 �ess.A; L/. Each individual eigen-

vector of Ank
might not converge weakly to 0, however there is a linear combination

of them that does it. We prove this as follows. Let .f k
j /dC1
jD1 be an orthonormal set

of d C 1 eigenvectors

Ank
f k
j D �kj f k

j ; j D 1; : : : ; d C 1:
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Up to extraction of subsequences we may assume that f k
j * fj 2 Ker.A � �/ for

all j D 1; : : : ; d C 1. If fj D 0 for some j , then the desired conclusion follows.
Otherwise, since dim Ker.A � �/ D d , there exist coefficients .aj / 2 CdC1 n f0g
such that

PdC1
jD1 ajfj D 0. Therefore, we may take

yk
defD

PdC1
jD1 ajf k

jqPdC1
jD1 jaj j2

as singular L-Weyl sequence for �. This completes the proof of Proposition 5.

4. Mapping of the limiting spectra

In this section we establish mapping theorems for the different limiting spectra. They
are a natural generalisation of the analogous well-known result for �.A/ and �ess.A/;
see for example [29], Section XIII.4. From now on we assume that A is bounded
from below and we take L to be an .A � a/1=2-regular Galerkin sequence with
a < inf �.A/.

Theorem 7 (Mapping of the limiting spectra). Let A be semi-bounded from below
and let a < inf �.A/. Assume that L is an .A � a/1=2-regular Galerkin sequence.
Then

� 2 �.A; L/ () .� � a/�1 2 �..A � a/�1; G / (6)

and

� 2 �ess.A; L/ () .� � a/�1 2 �ess..A � a/�1; G /; (7)

where G D ..A � a/1=2Ln/n2N.

Remark 4. Recall that a selfadjoint operator A is unbounded (D.A/ ¨ H ) if and
only if 0 2 �..A � a/�1/ for one (hence for all) a 62 �.A/. As it turns out, A is
unbounded if and only if 0 2 �ess..A�a/�1; G / for one (and hence all) a < min �.A/

and .A � a/1=2-regular sequence L. Formally in Theorem 7 this corresponds to the
case C1 2 �.A/ and .C1 � a/�1 D 0.

Evidently a result analogous to Theorem 7 can be established when A is semi-
bounded from above. However, here A is required to be semi-bounded, in order
to be able to use a square root .A � a/1=2 in the definition of G , and also for a
more fundamental reason. When a is in a gap of the essential spectrum, it would
be natural to expect an extension of the above result by considering, for example,
G D .jA � aj1=2Ln/n2N. The following shows that this extension is not possible in
general.
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Example 5 (Impossibility of extending Theorem 7 for A strongly indefinite). Let
H be as in Example 2. Define Ln D Spanfe1̇ ; : : : ; eṅ�1; cos.�n/ eC

n C sin.�n/ e�
n g

with �n
defD �=4 � �=.2n/ for a fixed � 2 .0; 1/. Let

A D
X

njeC
n iheC

n j �
X

nje�
n ihe�

n j:

Then �.A/ D f˙n W n 2 Ng D �disc.A/. On the other hand

�.A; L/ D �.A/ [ f�g; �ess.A; L/ D f�g and �disc.A; L/ D �.A/:

Now
A�1 D

X
n�1jeC

n iheC
n j � n�1je�

n ihe�
n j

and G D pjAjL D L. Since A�1 is compact we have

�.A�1; G / D �.A�1/
and

�ess.A
�1; G / D �ess.A

�1/ D f0g:

Thus � 2 �ess.A; L/ whereas 1=� 62 �.A�1; G /.

In fact the following example shows that no general extension of this theorem
is possible whenever a lies in the convex hull of the essential spectrum, even for
A 2 B.H /.

Example 6 (Impossibility of extending Theorem 7 for a 2 Convf�ess.A/g). Let
H D L2.��; �/ and Af .x/ D sgn.x/f .x/ for all f 2 H . Then �.A/ D �ess.A/ D
f˙1g. If L is any A-regular sequence, then �.A; L/ � Œ�1; 1�. Fixing a D 0 yields
.A � a/�1 D A. Thus also �.A�1/ D f˙1g and �..A � a/�1; G / � Œ�1; 1�, for any
A-regular sequence G . If we construct a sequence L D .Ln/ leading to a spurious
eigenvalue � 2 �ess.A; L/ \ .�1; 1/, we will always have ��1 … �ess.A

�1; G /, no
matter what G is. We thus see that Theorem 7 cannot be extended to include a in the
convex hull of the essential spectrum.

Proof of Theorem 7. Statement (6) will follow immediately from the next result.

Lemma 8 (Mapping for the spectrum of compressions). Let A be semi-bounded from
below, let a < inf �.A/ and Ln � D..A � a/1=2/. Then

� 2 �.�nA�Ln
/ () .� � a/�1 2 �.pn.A � a/�1�Gn

/

where Gn D .A � a/1=2Ln and pn is the associated orthogonal projector.
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Proof. Note that � 2 �.An/ if and only if there exists x 2 Ln n f0g such that

�n.A � a/1=2..� � a/�1 � .A � a/�1/.A � a/1=2x D 1

� � a
�n.A � �/x D 0:

By fixing y D .A � a/1=2x 2 Gn n f0g, it is readily seen that � 2 �.An/ if and only
if there exist y 2 Gn n f0g such that

h.A � a/1=2u; ..� � a/�1 � .A � a/�1/yi D 0

for all u 2 Ln. Therefore, the statement � 2 �.An/ is equivalent to the existence of
y 2 Gn n f0g such that ..� � a/�1� .A � a/�1/y ? Gn which, in turns, is equivalent
to pn..� � a/�1 � .A � a/�1/y D 0.

We now turn to the proof of (7). We begin by establishing an alternative charac-
terisation of the limiting essential spectrum and then we formulate a stability result
for the limiting spectra with respect to compact perturbations of the regular Galerkin
sequence.

Lemma 9 (Alternative characterisation of �ess.A; L/). Let

F .A/
defD ff .A/ W f 2 Cc.R n �ess.A/; R/g

and

F ˙.A/
defD ff .A/ W f 2 Cc.R n �ess.A/; R˙/g:

Then

�ess.A; L/ D
\

B2F .A/

�.A C B; L/

D
\

B2F C.A/

�.A C B; L/

D
\

B2F �.A/

�.A C B; L/:

(8)

Here Cc.�; R/ denotes the set of all real-valued continuous functions of compact
support in the open set �. Note that F .A/ is a real vector space and F ˙.A/ are
cones, all spanned by projectors onto the eigenspaces of A associated with isolated
eigenvalues of finite multiplicity. At the end of this section it will become clear the
reason why we highlight the right hand side characterisation in (8).

Proof of Lemma 9. We only prove the first equality of (8) as the proof of the other
ones follows exactly the same pattern. It is well-known that

�ess.A/ D
\

B2F .A/

�.A C B/: (9)
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Since all the operators in F .A/ are of finite rank, then �ess.A C B/ D �ess.A/ for all
B 2 F .A/. Hence (9) is equivalent to\

B2F .A/

�disc.A C B/ D ¿: (10)

From Remark 2, it follows that �ess.A C B; L/ D �ess.A; L/ for all B 2 F .A/.
Therefore �.ACB; L/ D �disc.ACB; L/[�ess.A; L/. Moreover �disc.ACB; L/ 	
�disc.A C B/, by Proposition 3. Hence, by (10),\

B2F .A/

�disc.A C B; L/ �
\

B2F .A/

�disc.A C B/ D ¿

and the result is proved.

Lemma 10. Let T D T � be such that kT k < 1 and let L be a T -regular sequence.
Let K 2 K.H /. If �1 62 �.K/, then

�ess.T; L/ D �ess.T; .1 C K/L/

and

�disc.T; L/ D �disc.T; .1 C K/L/:

Proof of Lemma 10. We firstly prove that

�ess.T; L/ n �disc.T / D �ess.T; .1 C K/L/ n �disc.T /: (11)

Since
L D .1 C K/�1.1 C K/L D .1 � K.1 C K/�1/.1 C K/L; (12)

it suffices to show that the left hand side of (11) is contained in the right hand side.
Let � 2 �ess.T; L/ n �disc.T /. If � 2 �ess.T /, a direct application of Proposition 3(ii)
ensures that � lies also in the right hand side of (11), so we can assume that � 62
�.A/. According to Proposition 5(i), there exists �k ! � and xk 2 Lnk

such that
kxkk D 1, xk * 0 and �nk

.T � �k/xk D 0. For all vk 2 Lnk
, and hence for all

wk D .1 C K/vk 2 .1 C K/Lnk
, we have

0 D h.T � �k/xk ; vki
D h.1 C K�/�1.T � �k/xk ; .1 C K/vki
D h.1 C K�/�1.T � �k/xk ; wki:

Let qk be the orthogonal projection onto .1 C K/Lnk
. Then

qk.1 C K�/�1.T � �k/xk D 0:
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Now .1 C K�/�1 D 1 � zK where zK D K�.1 C K�/�1 2 K.H /. Hence

qk.1 � zK/.T � �/xk �! 0:

But, since kT k < 1 and xk * 0, zK.T � �/xk ! 0, so that also qk.T � �/xk ! 0.
Thus qk.T � �/yk ! 0 for yk D .1 C K/xk * 0. By re-normalising yk in the
obvious manner, we obtain a singular L-Weyl sequence for � 2 �.T; .1 C K/L/,
ensuring (11).

To complete the proof of the first identity in the conclusion of the lemma, suppose
that � 2 �ess.T; L/ \ �disc.T /. For any 	 6D � let zT D T C .	 � �/1.��";�C"/.T /

where " > 0 is sufficiently small. Then � 2 �ess. zT ; L/ n �disc. zT /. By virtue of (11)
and Remark 2, � 2 �ess. zT ; .1 C K/L/ D �ess.T; .1 C K/L/ as needed.

We now show the second identity in the conclusion of the lemma. By virtue
of (12) and the first identity which we just proved, it is enough to verify

�disc.T; L/ � �.T; .1 C K/L/:

This, in turns, follows from Proposition 3-(ii) and (4), since

�disc.T; L/ � �disc.T /

and

�.T / � �.T; .1 C K/L/

taking into account that .1 C K/L is a T -regular sequence.

We now complete the proof of Theorem 7 by showing (7). Let � 2 �ess.A; L/.
By virtue of Lemma 9, this is equivalent to the statement

� 2 �.A C B; L/ for all B 2 F C.A/:

Since B � 0 and a < minŒ�.A C B/�, according to (6) the latter is equivalent to

.� � a/�1 2 �..A C B � a/�1; GB/ for all B 2 F C.A/

where GB D .A C B � a/�1=2L. Since B has finite rank and is therefore compact,
Lemma 10 ensures that the above in turns is equivalent to

.� � a/�1 2 �..A C B � a/�1; G0/ for all B 2 F C.A/:

Note that 0 62 �..A C B � a/1=2.A � a/�1=2/ as the corresponding operator is
an invertible function of A. Now .A C B � a/�1 D .A � a/�1 C zB , where zB D
�.A�a/�1B.ACB �a/�1 runs over all of F �..A�a/�1/ as B runs over all F C.A/

and conversely. For the latter note that f 2 F C.A/ if and only if �f ..
 � a/�1/ 2
F �..A � a/�1/. Thus, once again by Lemma 9, � 2 �ess.A; L/ is equivalent to

.� � a/�1 2 �ess..A � a/�1; G /:

This completes the proof of Theorem 7.
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Remark 5. The above proof mimics the proof of the classical Mapping Theorem for
the essential spectrum which can be deduced from the characterisation

�ess.A/ D
\

B2K.H/

�.A C B/;

see, e.g., [28].

5. Stability properties of the limiting essential spectrum

In this final section we present the main contribution of this paper. It strongly depends
on the validity of Theorem 7.

Theorem 11 (Weyl-type stability theorem for the limiting spectra). Let A and B

be two selfadjoint operators which are bounded below. Assume that for some a <

inff�.A/; �.B/g,
D..B � a/1=2/ D D..A � a/1=2/ (13)

and
.A � a/1=2..B � a/�1=2 � .A � a/�1=2/ 2 K.H /: (14)

Then
�ess.A; L/ D �ess.B; L/

for all sequences L D .Ln/ which are simultaneously .A � a/1=2-regular and
.B � a/1=2-regular.

Under assumption (13), condition (14) is equivalent to the same condition with
the roles of A and B reversed:

.B � a/1=2..A � a/�1=2 � .B � a/�1=2/ 2 K.H /: (15)

Note however that (13) and (14) do not imply necessarily that an A-regular sequence
is also B-regular. For this it is enough to consider an example where D.A/ 6D D.B/.
Let A D @4x with domain

D.A/ D H 4.0; 1/ \ fu.0/ D u.1/ D 0; u00.0/ D u00.1/ D 0g � L2.0; 1/ D H :

Let B D @4x C j1ih1j.1 � @2x/ with domain

D.B/ D H 4.0; 1/ \ fu.0/ D u.1/ D 0; u00.0/ D u00.1/ D R 1
0 u.x/dxg 6D D.A/:

Then A1=2 D �@2x and B1=2 D �@2x C j1ih1j both with domain

D.A1=2/ D D.B1=2/ D H 2.0; 1/ \ fu.0/ D u.1/ D 0g:
Since A1=2.B�1=2 � A�1=2/ D j1ih1jB�1=2 is a rank-one operator, A and B satisfy
the hypotheses of Theorem 11, but clearly A-regular sequences Ln � D.A/ n D.B/

are not B-regular.
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Remark 6. The KLMN theorem [29] ensures that if B � A is a densely defined
symmetric A-form-bounded operator with bound less than 1, then (13) holds for a

sufficiently negative.

The following example from [22] shows that Theorem 11 cannot be easily gen-
eralised to operators which are not semi-bounded.

Example 7 (Relatively compact perturbations of the Dirac operator). Let A D D0

and B D D0 C V where D0 denotes the free Dirac operator with unit mass [33]
and V 2 C 1

c .R3/ is a smooth non-negative function of compact support. The
ambient Hilbert space here is H D L2.R3; C4/. Under the additional assumption
that sup V D jjV jjL1.R3/ < 1, it is guaranteed that 0 … �.B/. Furthermore it can be
verified that

D.jAj1=2/ D D.jBj1=2/ D H 1=2.R3; C4/

and that
jAj1=2.jBj�1=2 � jAj�1=2/ 2 K.H /:

As a consequence of [22], Theorem 2.7, it is known that there exists a B-regular
Galerkin sequence L D .Ln/ such that

�ess.B; L/ � Œ0 I sup V �: (16)

These Galerkin spaces comprise upper and lower spinors, meaning that

Ln D Span
n�

f n
1

0

�
; : : : ;

�f n
dn

0

�
;
�

0

gn1

�
; : : : ;

� 0

gn
d 0

n

�o

for suitable .f n
j /; .gnj / � L2.R3; C2/. This basis is known to be free of pollution if

the external field V D 0, that is

�.A; L/ D �.D0/ D .�1; �1� [ Œ1; 1/ D �ess.A; L/:

Hence �ess.A; L/ ¤ �ess.B; L/ so Theorem 11 fails for operators which are strongly
indefinite.

Proof of Theorem 11. Denote by K the operator on the left side of (14). Then

.B �a/�1�.A�a/�1 D .A�a/�1=2K.B �a/�1=2C.A�a/�1K 2 K.H /: (17)

Let G
defD .A � a/1=2L. According to (7),

� 2 �ess.A; L/ () .� � a/�1 2 �ess..A � a/�1; G /:

By Remark 2,
�ess..B � a/�1; G / D �ess..A � a/�1; G /:
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Let G 0 D .B � a/1=2L. Then

G D .A � a/1=2L D .A � a/1=2.B � a/�1=2G 0 D .1 C K/G 0:

Note that K D .A � a/1=2.B � a/�1=2 � 1 and �1 62 �.K/ as a consequence of the
fact that 0 62 �..A � a/1=2.B � a/�1=2/ by (13). According to Lemma 10,

�ess..B � a/�1; G / D �ess..B � a/�1; G 0/: (18)

The conclusion follows by applying Theorem 7 again, this time to operator B .

Corollary 12. Let A and B be two bounded-below selfadjoint operators such that (13)
holds true for some a < inff�.A/; �.B/g. Assume that C

defD B � A is a densely
defined symmetric operator such that

C 2 B.D..B � a/ˇ /; H / (19)

and
.A � a/�˛C.B � a/�ˇ 2 K.H / (20)

for some 0 � ˛; ˇ < 1 with ˛ C ˇ < 1. Then

�ess.A; L/ D �ess.B; L/

for all sequences L D .Ln/ which are simultaneously .A � a/1=2-regular and
.B � a/1=2-regular.

Remark 7. Let A be a given bounded-below selfadjoint operator and assume that A

has a gap .a; b/ in its essential spectrum in the following precise sense,

�ess.A/ \ .a; b/ D ¿; tr.1.�1;a/.A// D tr.1.b;1/.A// D C1:

Let …
defD 1.c;1/.A/ where a < c < b. Results shown in [22] ensure that, when the

Galerkin spaces Ln are compatible with the decomposition H D …H ˚ .1 � …/H

(i.e. when … and �n commute for all n), there is no pollution in the gap: �ess.A; L/\
.a; b/ D ¿. According to [22], Corollary 2.5, when

.B � a/�1C.A � a/�1=2 2 K.H /; (21)

then �ess.B; L/ D ¿ as well.
In this respect, Theorem 11 can be seen as a generalisation of these results. Al-

though condition (20) is stronger than (21), the statement guarantees that the whole
polluted spectrum will not move irrespectively of the .A � a/1=2-regular Galerkin
family L and not only for those satisfying Œ…; �n� D 0 for all n.
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Example 8 (Periodic Schrödinger operators). Let A D �
 C Vper where Vper is a
periodic potential with respect to some fixed lattice R � Rd (for instance R D Zd ).
Let C D W.x/ be a perturbation. Assume that

Vper 2 L
p
loc.R

d / where

8̂̂̂
<
ˆ̂̂:

p D 2 if d � 3;

p > 2 if d D 4;

p D d=2 if d � 5;

and that
W 2 Lq.Rd / \ L

p
loc.R

d / C L1
" .Rd /

for max.d=2; 1/ < q < 1. Then (20) holds true for suitable ˛, ˇ and a, and therefore

�ess.�
 C Vper C W; L/ D �ess.�
 C Vper; L/ (22)

for all A-regular Galerkin sequence L. See [22], Section 2.3.1.
A Galerkin sequence L which does lead to any pollution in a given gap, can be

found by localised Wannier functions; see [22] and [9]. In practice, these functions
can only be calculated numerically, so it is natural to ask what would be the pol-
luted spectrum when they are known only approximately. According to (22), the
polluted spectrum will not increase in size more than that of the unperturbed operator
�
 C Vper.

Example 9 (Optimality of the constants in Corollary 12). Let H , L, eṅ and fṅ be
as in Example 2. Let

A D
X
n

n`jf C
n ihf C

n j C
X

jf �
n ihf �

n j

and

B D
X
n

nr jeC
n iheC

n j C
X

je�
n ihe�

n j:

The matrix representation of A and B in the basis eṅ is made out of 2�2 blocks placed
along the diagonal. More precisely A D diagŒAn�, B D diagŒBn� and C D diagŒCn�;
where

An D R�n
�

n` 0

0 1

�
Rn;

Bn D
�

nr 0

0 1

�
and

Cn D An � Bn
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for

Rn D
 

cos 1
n

sin 1
n

� sin 1
n

cos 1
n

!
:

Fix a D 0 and let L D A�˛CB�ˇ . The matrix representation of L in the basis e˙
k

is
L D diagŒLn� where we can calculate explicitly the entries as

.Ln/11 D � n�ˇr�˛`Cr cos2
1

n
C n�ˇr sin2

1

n

� n�r.ˇ�1/ sin2
1

n
C n�ˇr�˛`C` cos2

1

n
;

.Ln/12 D cos
1

n
sin

1

n
.n�`.˛�1/ � n�˛`/;

.Ln/21 D cos
1

n
sin

1

n
.n�ˇr�˛`C` � n�ˇr�˛`Cr � n�ˇr C n�r.ˇ�1//;

.Ln/22 D sin2
1

n
.n�`.˛�1/ � n�˛`/:

Therefore L is compact, given the following

` D 2; 0 < ˇ; ˛ < 1; 0 < r < 2;

�ˇr � 2˛ C 2 < 0; ˛ > 1=2; ˇ > 1 � 1

r
:

(23)

On the other hand, for ` D 2,

�ess.A; L/ D f1; 2g and �ess.B; L/ D f1g:
This example suggests that condition (20) in Corollary 12 is quasi-optimal for the
stated range of ˇ and ˛ as illustrated by Figure 1. Note however that in this exam-
ple (13) is only satisfied when r D `.

Proof of Corollary 12. Assume firstly that 0 � ˛ � 1=2. The proof reduces to
showing that the operator K defined by expression (14) is compact. Let

L D .A � a/�˛C.B � a/�ˇ

be the operator given by (20). Since ˇ < 1, we have D.B �a/ � D.B �a/ˇ ; see [11],
Theorem 4.3.4. Then, by (19), LH � D..A � a/˛/ and Cx D .A � a/˛L.B � a/ˇx

for all x 2 D.B � a/. By virtue of (20),

.A � a/1=2.A � a C s/�1C.B � a C s/�1 2 K.H /
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˛

ˇ

1

2

3

Figure 1. The region labelled 1 for the parameters ˇ and ˛ is covered by the conditions of
Corollary 12. If A and B satisfy (20) for .ˇ; ˛/ in this region, then the limiting essential
spectrum is preserved. The region labelled 2 shows the parameters ˇ and ˛ in condition (23)
of Example 9. The region labelled 3 is generated by exchanging the roles of ˇ and ˛. It is not
enough for A and B to satisfy (20) for .ˇ; ˛/ in these two regions, to guarantee preservation
of the limiting essential spectrum.

for all s � 0. Moreover

.A � a/1=2..A � a C s/�1 � .B � a C s/�1/x
D .A � a/1=2.A � a C s/�1C.B � a C s/�1x

for all x 2 H , as this identity is satisfied in a dense subspace of H . Thus

K D � 1

�

Z 1

0

.A � a/1=2.A � a C s/�1C.B � a C s/�1 dsp
s

D � 1

�

Z 1

0

f.A � a/1=2.A � a C s/�1.A � a/˛g
Lf.B � a/ˇ .B � a C s/�1g dsp

s
:

Both terms in brackets multiplying L are bounded operators, then the integrand in
the second expression is also a compact operator. Moreover, the integral converges
in the Bochner sense as its norm is O.sˇC˛�2/ for s ! 1 and O.s�1=2/ for s ! 0.
Thus K 2 K.H / in this case and Theorem 11 implies the desired conclusion.

Now suppose that 1=2 < ˛ < 1, so that 0 � ˇ � 1=2. Since

D.A � a/˛ � D.A � a/1=2 D D.B � a/1=2 � D.B � a/ˇ ;
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then C 2 B.D.A � a/˛; H /. Hence the operator .B � a/�ˇC.A � a/�˛ is bounded
and .B � a/�ˇC.A � a/�˛x D L�x for all x 2 H . The proof is then completed by
exchanging the roles of A and B.
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