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Polynomials of almost normal arguments in C �-algebras

N. Filonov1and I. Kachkovskiy2

Abstract. The functional calculus for normal elements in C �-algebras is an important tool of
analysis. We consider polynomials p.a; a�/ for elements a with small self-commutator norm
kŒa; a��k 6 ı and show that many properties of the functional calculus are retained modulo
an error of order ı.

Mathematics Subject Classification (2010). 47A60, 46L05, 11E25.

Keywords. C �-algebras, functional calculus, self-commutator, polynomials, Positivstellen-
satz, pseudospectrum.

1. Introduction

Let a be a normal element of a unital C �-algebra A. It is well known that there exists
a unique C �-algebra homomorphism

C.�.a// �! A; f 7�! f .a/

from the algebra of continuous functions on the spectrum �.a/ into A such that
f .z/ D z is mapped into a, �.f .a// D f .�.a//, and

kf .a/k D max
z2�.a/

jf .z/j (1.1)

(see, for example, [4]). It is called the functional calculus for normal elements and is
widely used in analysis.

The aim of the present paper is to introduce an analogue of functional calculus
for “almost normal” elements. More precisely, we shall always be assuming that

kak 6 1; kŒa; a��k 6 ı (1.2)

1The first author was supported by RFBR Grant 11-01-00324-a.
2The second author was supported by King’s Annual Fund Studentship and King’s Overseas Research

Studentship.
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with a small ı. We restrict the considered class of functions to polynomials in z and
Nz and show that some important properties of the functional calculus hold up to an
error of order ı.

If aa� ¤ a�a then the polynomials of a and a� are, in general, not uniquely
defined. We fix the following definition. For a polynomial

p.z; Nz/ D
X
k;l

pklz
k Nzl (1.3)

let
p.a; a�/ D

X
k;l

pkla
k.a�/l : (1.4)

It is clear that the map p 7! p.a; a�/ is linear and involutive, that is Np.a; a�/ D
p.a; a�/� where Np.z; Nz/ D P Nplkzk Nzl . Using the inequality kŒa; bm�k 6 mkbkm�1

kŒa; b�k and (1.2), one can easily show that the map p 7! p.a; a�/ is “almost multi-
plicative”,

kp.a; a�/q.a; a�/ � .pq/.a; a�/k 6 C.p; q/ ı (1.5)

where
C.p; q/ D

X
k;l;s;t

ls jpkl j jqst j :

It takes much more effort to obtain an estimate of the norm kp.a; a�/k. In the case of
an analytic polynomial p.z/ D P

k pkzk , according to the von Neumann inequality,

kp.a/k 6 max
jzj61

jp.z/j defD pmax

where it is only assumed that kak 6 1; see, for example, I.9 in [13].
Our main results are as follows.

Theorem 1.1. Let p be a polynomial (1.3). There exists a constant C.p/ such that
the estimate

kp.a; a�/k 6 pmax C C.p/ı (1.6)

holds for all a satisfying (1.2). Here p.a; a�/ is defined by (1.4), and pmax D
max
jzj61

jp.z; Nz/j.

If a is normal and f is a continuous function then the functional calculus gives
the following more precise estimate,

kf .a/k D max
z2�.a/

jf .z/j: (1.7)

If a 2 A and �j 62 �.a/, j D 1; : : : ; m � 1, then there exists Rj > 0 such that

k.a � �j /�1k 6 R�1
j ; j D 1; : : : ; m � 1: (1.8)

The following theorem gives an analogue of (1.7) for an almost normal a.
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Theorem 1.2. Let a 2 A satisfy (1.2) and (1.8), and let the set

S D fz 2 C W jzj 6 1; jz � �j j > Rj ; j D 1; : : : ; m � 1g (1.9)

be nonempty. For each " > 0 and each polynomial p defined by (1.3) there exists a
constant C.p; "/ independent of a such that

kp.a; a�/k 6 max
z2S

jp.z; Nz/j C " C C.p; "/ı:

Note that, under the conditions of Theorem 1.2, the set S is a unit disk with m�1

“holes” which contains �.a/.
Finally, assume again that a is normal and � … f .�.a//. Then the functional

calculus implies that the element .f .a/ � �/ is invertible and

��.f .a/ � �/�1
�� D 1

dist .�; f .�.a///
: (1.10)

The equality (1.10) also admits the following approximate analogue with �.a/ re-
placed by S and f .�.a// by p.S/, where p.S/ is the image of S under p considered
as a map from C to C.

Theorem 1.3. Let S be defined by (1.9), and let p be a polynomial (1.3). Then for
each " > 0 and ~ > 0 there exist constants C.p; ~; "/, ı0.p; ~; "/ such that for all
ı < ı0.p; ~; "/ and for all � 2 C satisfying dist.�; p.S// > ~ the estimate

k.p.a; a�/ � �1/�1k 6 ~�1 C " C C.p; ~; "/ı

holds for all a 2 A satisfying (1.2) and (1.8).

The authors’ interest to the subject was drawn by its relation with Huaxin Lin’s
theorem; see [6], and [5]. It says that if a is an n � n-matrix satisfying (1.2), then the
distance from a to the set of normal matrices is estimated by a function F.ı/ such
that F.ı/ ! 0 as ı ! 0 uniformly in n. This result implies Theorems 1.1–1.3 with ı

replaced by F.ı/ in the right hand side. By homogeneity reasons, F.ı/ can not decay
faster than Cı1=2 as ı ! 0. Therefore this approach gives weaker results in terms
of power of ı. Also, our results hold in any unital C �-algebra, while the infinite-
dimensional versions of Lin’s theorem require additional index type assumptions on
a; see, for example, [5].

Our proofs are based on certain representation theorems for positive polynomials.
If a real polynomial of x1, x2 is non-negative on the unit disk fx W x2

1 C x2
2 < 1g then,

by a result of [11], it admits a representationX
j

rj .x/2 C �
1 � x2

1 � x2
2

� X
j

sj .x/2 (1.11)
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with real polynomials rj and sj (see Proposition 3.2 below). Representations similar
to (1.11) are usually referred to as Positivstellensatz. We also make use of Positivstel-
lensatz for polynomials positive on the sets (1.9). The corresponding results for sets
bounded by arbitrary algebraic curves were obtained in [2], [9], [10], and [11].

In order to prove Theorem 1.3, we need uniform with respect to � estimates for
polynomials appearing in Positivstellensatz-type representations. In order to obtain
the estimates, we use the scheme introduced in [12] and [7].

Acknowledgements. The authors thank Dr.A. Pushnitski and the referee for valuable
comments.

2. Proofs of the main results

The proofs of all three theorems consist of two parts. This section is devoted to the
“operator-theoretic” part, which is essentially based on Lemma 2.2. The “algebraic”
part is the existence of representations (2.2) for the polynomials (2.3), (2.4), (2.7)
which is discussed in Section 3.

2.1. Positive elements of C �-algebras. Recall that a Hermitian element b 2 A is
called positive (b > 0) if one of the following two equivalent conditions holds (see,
for example, [4], §1.6):

(1) �.b/ � Œ0; C1/:

(2) b D h�h for some h 2 A.

The set of all positive elements in A is a cone: if a; b > 0, then ˛a C ˇb > 0 for all
real ˛; ˇ > 0. There exists a partial ordering on the set of Hermitian elements of A:
a 6 b if and only if b � a > 0. For a Hermitian b,

� kbk1 6 b 6 kbk1 (2.1)

and, moreover, if 0 6 b 6 ˇ1, ˇ 2 R, then kbk 6 ˇ. The following fact is also well
known.

Proposition 2.1. Let h 2 A, � > 0. Then h�h > �21 if and only if the element h is
invertible and kh�1k 6 ��1.

Our proofs use the following simple lemma.

Lemma 2.2. Let a 2 A satisfy (1.2), and let

q D
NX

j D0

r2
j C

m�1X
iD0

� NX
j D0

r2
ij

�
gi ; (2.2)
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where rj , rij , gi are real-valued polynomials of the form (1.3). Assume that

gi .a; a�/ > 0; i D 0; : : : ; m � 1:

Then
q.a; a�/ > �Cı1

with some non-negative constant C depending on rj , rij , gj .

Proof. Note that q is real-valued, so q.a; a�/ is self-adjoint. Since gi .a; a�/ > 0,
we have gi .a; a�/ D b�

i bi for some bi 2 A. Then

rij .a; a�/gi .a; a�/rij .a; a�/ D .birij .a; a�//�.birij .a; a�// > 0:

We also have rj .a; a�/2 > 0. From (1.5), we have���q.a; a�/ �
X

j

rj .a; a�/2 �
X
i;j

rij .a; a�/gi .a; a�/rij .a; a�/
��� 6 C 0ı;

and now the proof is completed by using (2.1).

2.2. Proofs of Theorems 1.1–1.3

Proof of Theorem 1.1. Proposition 3.2 below implies that the polynomial

q.z; Nz/ D p2
max � jp.z; Nz/j2 (2.3)

admits a representation (2.2) with m D 1, g0.z; Nz/ D 1 � jzj2 because, by the
definition of pmax, the polynomial q is non-negative on the unit disk.

Let us apply Lemma 2.2 to q. By (1.2), we have g0.a; a�/ D 1 � aa� > 0.
Therefore

q.a; a�/ > �C1.p/ı1

from which, using (2.3) and (1.5), we get

p2
max1 � p.a; a�/�p.a; a�/ > �C2.p/ı1;

p.a; a�/�p.a; a�/ 6 .p2
max C C2.p/ı/1

and

kp.a; a�/k 6 pmax C C2.p/ı

2pmax
:

Proof of Theorem 1.2. By Theorem 3.1, the polynomial

q.z; Nz/ D p2
max C "pmax � jp.z; Nz/j2 (2.4)

admits a representation (2.2) with

g0.z; Nz/ D 1 � jzj2; gi .z; Nz/ D jz � �i j2 � R2
i ; i D 1; : : : ; m � 1; (2.5)
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because it is strictly positive on the set S . Note that

S D fz 2 C W gi .z; Nz/ > 0; i D 0; : : : ; m � 1g: (2.6)

Proposition 2.1 and (1.8) imply

gi .a; a�/ D .a � �i 1/.a � �i 1/� � R2
i 1 > 0;

so we can again apply Lemma 2.2. Using (1.5), we obtain

q.a; a�/ > �C1ı1; C1 > 0;

p.a; a�/p.a; a�/� 6
�
p2

max C "pmax C C2.p; "/ı
�

1;

and

kp.a; a�/k 6 pmax

s
1 C "

pmax
C C2.p; "/ı

p2
max

6 pmax C " C C2.p; "/ı

pmax
:

Proof of Theorem 1.3. Fix � > 0. By Theorem 3.1, the polynomial

q.z; Nz/ D jp.z; Nz/ � �j2 � ~2 C �: (2.7)

also admits a representation (2.2) with the same gi given by (2.5). This is because, by
the definitions of � and ~, we have q.z; Nz/ > 0 for all z 2 S . Since gi .a; a�/ > 0,
Lemma 2.2 implies

q.a; a�/ > �Cı1; C > 0:

Using (2.7) and (1.5), we obtain

.p.a; a�/ � �1/�.p.a; a�/ � �1/ > .~2 � � � C 0ı/1: (2.8)

Let us choose � and ı0 such that � C C 0ı 6 ~2=2. Now, (2.8) and Proposition 2.1
give

k.p.a; a�/ � �1/�1k 6 .~2 � � � C 0ı/�1=2 6 ~�1 C �

~2
C C 0ı

~2
:

Choosing � 6 "~2, we obtain the required inequality with ~�2C 0 instead of C .
The constant C 0, in general, depends on p; ~; � , and �. Let us show that the

theorem holds with C independent of �. For j�j > kp.a; a�/k C ~ it is obvious as

k.p.a; a�/ � �1/�1k 6 1

j�j � kp.a; a�/k 6 ~�1:

Thus we can restrict the consideration to the compact set

M D f� 2 C W j�j 6 kp.a; a�/k C ~; dist.�; p.S// > ~g:
The estimate q.z; Nz/ > � holds for all � 2 M . The number N of the polynomials
rj and rij as well as their powers and coefficients are bounded uniformly on M

by Remark 3.8. Since C 0 depends only on these parameters, C may be chosen
independent of �.



Polynomials of almost normal arguments in C �-algebras 361

2.3. Corollaries and remarks

Remark 2.3. As mentioned in the beginning of the section, the proofs rely on the
existence of representations of the form (2.2) for certain polynomials. In addition, we
need continuity of such a representation with respect to the parameter � to establish
Theorem 1.3. We are also interested in the possibility of explicitly computing the
constants C and ı0, which may be important in applications. It is clearly possible if
we have explicit formulae for the polynomials in (2.2). We show below that this can
be done in Theorems 1.2 and 1.3 (see Remark 3.8).

Remark 2.4. In general, it is not possible to find a constant C in Theorem 1.1 which
would work for all polynomials p. As an example, consider A D M2.C/,

a D
�

0
p

ı

0 0

�
; 0 < ı < 1:

It is clear that a satisfies (1.2). Let " < 1. There exists a continuous function f such
that f .z/ D �1=z whenever jzj > " and jf .z/j 6 1=" for jzj 6 1. There also exists
a polynomial q.z; Nz/ such that jq.z; Nz/ � f .z/j 6 " for jzj 6 1. Now, let

p.z; Nz/ D 1

"
.z C z2q.z; Nz//:

Then pmax 6 2 C "2, but p.a; a�/ D a=" and kp.a; a�/k D p
ı=". Taking " small,

we see that (1.6) can not hold with a C independent of p.

Proposition 2.5. Under the assumptions of Theorem 1.2, there exists a constant
C.p; "/ such that

k Im p.a; a�/k 6 max
z2S

j Im p.z; Nz/j C " C C.p; "/ı:

Proof. It suffices to apply Theorem 1.2 to the polynomial

q.z; Nz/ D p.z; Nz/ � p.z; Nz/

2i
:

In other words, if the values of p on S are almost real, then the element p.a; a�/

itself is almost self-adjoint.

Proposition 2.6. Under the assumptions of Theorem 1.2, there exists a constant
C.p; "/ such that

kp.a; a�/p.a; a�/� � 1k 6 max
z2S

ˇ̌jp.z; Nz/j2 � 1
ˇ̌ C " C C.p; "/ı; (2.9)

kp.a; a�/�p.a; a�/ � 1k 6 max
z2S

ˇ̌jp.z; Nz/j2 � 1
ˇ̌ C " C C.p; "/ı: (2.10)
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Proof. It is sufficient to apply Theorem 1.2 to the polynomial q.z; Nz/ D jp.z; Nz/j2 �1

and use (1.5).

Remark 2.7. Denote the right hand side of (2.9) and (2.10) by � . If � < 1, then

.1 � �/1 6 p.a; a�/�p.a; a�/ 6 .1 C �/1

and

.1 � �/1 6 p.a; a�/p.a; a�/� 6 .1 C �/1;

which implies that p.a; a�/ and p.a; a�/�p.a; a�/ are invertible. The element

u D p.a; a�/.p.a; a�/�p.a; a�//�1=2

is unitary (because it is invertible and uu� D 1) and close to u,

kp.a; a�/ � uk 6
p

1 C �
� 1p

1 � �
� 1

�
�! 0 as � �! 0:

Thus if the absolute values of p on S are close to 1 then p.a; a�/ is close to a unitary
element.

Definition 2.8. The set

�".a/ D f� 2 C W k.a � �1/�1k > 1="g [ �.a/

is called the "-pseudospectrum of the element a 2 A.

Its main properties are discussed, for example, in [3], Chapter 9. Note that, under
the assumptions of Theorem 1.3, �".a/ � O".S/ for all " > 0, where O".S/ is the
"-neighborhood of S . If a is normal then

�~.p.a; a�// D O~ .p.�.a/// ; ~ > 0:

The following statement is Theorem 1.3 reformulated in these terms.

Proposition 2.9. Under the assumptions of Theorem 1.3, for all " > 0 and ~ > 0

there exist C.p; ~; "/ and ı0.p; ~; "/ such that

�~0.p.a; a�// � O~.p.S//; ı < ı0.p; ~; "/;

where .~ 0/�1 D ~�1 C " C C.p; ~; "/ı.

Proof. Assume that dist.�; p.S// > ~. By Theorem 1.3, k.p.a; a�/ � �1/�1k 6
.~ 0/�1 and, consequently, � … �~0 .p.a; a�//.
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3. Representations of non-negative polynomials

This section is devoted to a special case of the following theorem, which is often
called Putinar’s Positivstellensatz. As usual, we denote the ring of real polynomials
in n variables by RŒx1; : : : ; xn�.

Theorem 3.1 ([9]). Let g0; : : : ; gm�1 2 RŒx1; : : : ; xn�. Let the set

S D fx 2 Rn W gi .x/ > 0; i D 0; : : : ; m � 1g
be compact and nonempty. If a polynomial p 2 RŒx1; : : : ; xn� is positive on S then
there exist an integer N and polynomials

ri ; rij 2 RŒx1; : : : ; xn�; i D 0; : : : ; m � 1; j D 0; : : : ; N;

such that

p D
NX

j D0

r2
j C

m�1X
iD0

� NX
j D0

r2
ij

�
gi : (3.1)

The first result of this type was proved in [2] for the case m D 1 with S being a
disk. The proof was not constructive and involved Zorn’s Lemma. In [9], Theorem 3.1
was proved in a similar way. In [12] and [7], an alternative proof of Theorem 3.1 was
presented with its major part being constructive and based on the results of [8].

In Section 2, we have used Theorem 3.1 with the polynomials

g0.x/ D 1 � jxj2; gi .x/ D jx � �i j2 � R2
i ; i D 1; : : : ; m � 1; (3.2)

where x D .x1; x2/, jxj2 D x2
1 C x2

2 , �i 2 R2, and Ri 2 R. Let

S D fx 2 R2 W gi .x/ > 0; i D 0; : : : ; m � 1g: (3.3)

As before, the set S is a unit disk with several “holes” centered at �i and of radii Ri .
In this section, we give a constructive proof of Theorem 3.1 for the polynomi-

als (3.2). It turns out that in this case the proof simplifies and can be made completely
explicit.

If we replace positivity of p with non-negativity, then for m D 1 the result still
holds.

Proposition 3.2. Let p 2 RŒx1; x2� be non-negative on the unit disk fx 2 R2 W jxj
6 1g. Then for some N it admits a representation

p D
NX

j D0

r2
j C

� NX
j D0

s2
j

�
.1 � jxj2/;

where rj ; sj 2 RŒx1; x2�, j D 0; : : : ; N .
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Proposition 3.2 is a particular case of [11], Corollary 3.3. We have used it to
obtain the representation (2.2) for the polynomial (2.3) in Theorem 1.1. Note that,
in contrast with Proposition 3.2, the condition p > 0 on S in Theorem 3.1 cannot be
replaced by p > 0; see Remark 3.9 below.

3.1. Constructive proof for the polynomials (3.2). The proposed proof relies on
the general scheme introduced in [12] and [7] for Theorem 3.1. We have made all
the steps constructive and also added a slight variation, the possibility of which was
mentioned in [7]. Namely, instead of referring to results of [12] which use [8], we
directly apply the results from [8]; see Proposition 3.5 and Lemma 3.7 below.

We need the following explicit version of the Lojasiewicz inequality; see, e.g., [1].
Recall that the angle between intersecting circles is the minimal angle between their
tangents in the intersection points.

Lemma 3.3. Let g0; : : : ; gm�1 be the polynomials (3.2). Assume that S ¤ ¿ and
none of the disks fx W gi .x/ > 0g with i > 0 is contained in the union of the others.
Then for any x 2 Œ�1; 1�2 n S the following estimate holds:

dist.x; S/ 6 �c0 minfg0.x/; : : : ; gm�1.x/g:
If the circles Si D fx W gi .x/ D 0g are pairwise disjoint or tangent, then c0 D R�1

min
where Rmin D min

iD0;:::;m�1
Ri with R0 D 1. Otherwise, c0 can be chosen as

c0 D
p

2 C 1

R2
min sin.'min=2/

;

where 'min is the minimal angle between the pairs of intersecting non-tangent cir-
cles Si .

We omit the proof of Lemma 3.3 because it is elementary and involves nothing
but school geometry.

For the polynomials

q.x/ D
X

j˛j6d

q˛x˛ 2 RŒx1; : : : ; xn�;

where ˛ D .˛1; : : : ; ˛n/ is a multiindex, consider the norm

kqk D max
˛

jq˛j ˛1Š : : : ˛nŠ

.˛1 C : : : C ˛n/Š
: (3.4)

The following proposition is also elementary and is proved in [7].

Proposition 3.4. Let x; y 2 Œ�1; 1�n, q 2 RŒx1; : : : ; xn�, and deg q D d . Then

jq.x/ � q.y/j 6 d 2nd�1=2kqkjx � yj:
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The next proposition, which is a quantitative version of Pòlya’s inequality, is proved
in [8].

Proposition 3.5. Let f 2 RŒy1; : : : ; yn� be a homogeneous polynomial of degree d .
Assume that f is strictly positive on the simplex

�n D
n
y 2 Rn W yi > 0;

X
i

yi D 1
o
: (3.5)

Let f� D min
y2�n

f .y/ > 0. Then, for any N > d.d�1/kf k
2f�

� d; all the coefficients of

the polynomial .y1 C : : : C yn/N f .y1; : : : ; yn/ are positive.

Further on, without loss of generality, we shall be assuming that 0 6 gi .x/ 6 1

for all x 2 S (if not, we normalize gi multiplying them by positive constants).

Lemma 3.6. Under the conditions of Theorem 3.1 with g given by (3.2), let p� D
min
x2S

p.x/ > 0. Then

p.x/ � c0d 22d�1=2kpk
m�1X
iD0

.1 � gi .x//2kgi .x/ > p�

2
; x 2 Œ�1; 1�2; (3.6)

where an integer k is chosen in such a way that

.2k C 1/p� > mc0d 22dC1=2kpk;

and c0 is the constant from Lemma 3.3.

Proof. Let x 2 S . Then p.x/ > p�. Due to our choice of k, the elementary
inequality

.1 � t /2kt <
1

2k C 1
; 0 6 t 6 1; k > 0; (3.7)

implies that the absolute value of the second term in the left hand side of (3.6) does
not exceed p�

2
.

Assume now that x 2 Œ�1; 1�2nS . Let y 2 S be such that dist.x; y/ D dist.x; S/.
Then Proposition (3.4) and Lemma 3.3 yield

p.x/ > p.y/ � jp.x/ � p.y/j
> p� � d 22d�1=2kpk dist.x; S/

> p� C c0d 22d�1=2kpkgmin.x/;

(3.8)

where gmin.x/ is the (negative) minimum of the values of gi .x/. Note that we have
.1 � gmin.x//2k > 1. From (3.8), we get

p.x/ � c0d 22d�1=2kpk.1 � gmin.x//2kgmin.x/

> p.x/ � c0d 22d�1=2kpkgmin.x/ > p�:
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On the other hand, (3.7) and the choice of k imply that the terms with gi .x/ > 0

contribute no more than

.m � 1/c0d 22d�1=2kpk
2k C 1

6 p�

2

to the sum (3.6). The remaining terms in (3.6) with gi .x/ < 0 may only increase the
left hand side.

Lemma 3.7. Let p 2 RŒx1; x2� and p� D min
x2Œ�1I1�2

p.x/ > 0. Then, for some

M 2 N,
p D

X
j˛j6M

b˛�
˛1

1 �
˛2

2 �
˛3

3 �
˛4

4 (3.9)

where b˛ > 0 and

�1.x/ D 1 C x1

4
; �2.x/ D 1 � x1

4
;

�3.x/ D 1 C x2

4
; �4.x/ D 1 � x2

4
:

(3.10)

This lemma was obtained in [8] for arbitrary convex polyhedra and associated lin-
ear functions �k . Below we prove it for the square Œ�1; 1�2, because in this particular
case the formulae are considerably simpler.

Proof. Consider the following R-algebra homomorphism

' W RŒy1; y2; y3; y4� ! RŒx1; x2�; yi 7! �i .x/:

It suffices to find a polynomial Qp 2 RŒy1; y2; y3; y4� with positive coefficients such
that '. Qp/ D p. If

p D
X

iCj 6d

pij xi
1x

j
2

and

Qp1.y/ D
X

iCj 6d

2iCj pij .y1 � y2/i .y3 � y4/j .y1 C y2 C y3 C y4/d�i�j ;

then '. Qp1/ D p because

'.y1 C y2 C y3 C y4/ D 1; 2'.y1 � y2/ D x1; 2'.y3 � y4/ D x2:

Let
V D fy 2 �4 W 2y1 C 2y2 D 2y3 C 2y4 D 1g;
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where �4 is the simplex (3.5). If y 2 V then Qp1.y/ D p.4y1 � 1; 4y3 � 1/ > p�,
as .4y1 � 1; 4y3 � 1/ 2 Œ�1; 1�2. For an arbitrary y, let y0 2 V be such that
dist.y; y0/ D dist.y; V /. Then, from Proposition 3.4,

Qp1.y/ > Qp1.y0/ � j Qp1.y/ � Qp1.y0/j > p� � d 222d�1k Qp1k dist.y; V /: (3.11)

Let
r.y/ D 2.y1 C y2 � y3 � y4/2:

It is easy to see that '.r/ D 0 and

r.y/ D .2y1 C 2y2 � 1/2 C .2y3 C 2y4 � 1/2; 8y 2 �4:

If we rewrite the last expression in the coordinates .y1 C y2/=
p

2, .y1 � y2/=
p

2,
.y3 C y4/=

p
2, .y3 � y4/=

p
2 (obtained by two rotations by the angle 	=4), then we

get
r.y/ > 8 dist.y; V /2; y 2 �4: (3.12)

Let

Qp2.y/ D Qp1.y/ C 24d�6d 4k Qp1k2

p�
.y1 C y2 C y3 C y4/d�2r.y/:

We still have '. Qp2/ D p. Inequalities (3.11) and (3.12) imply that

Qp2.y/ > p� � d 222d�1k Qp1k dist.y; V / C 24d�3d 4k Qp1k2

p�
dist.y; V /2

D 24d�3d 4k Qp1k2

p�

�
dist.y; V / � p�

d 222d�1k Qp1k
�2 C p�

2

> p�
2

;

for all y 2 �4.
Finally, since Qp2 is homogeneous, Proposition 3.5 with N > d.d�1/k Qp2k

p�

� d

shows that all the coefficients of

Qp.y/ D .y1 C y2 C y3 C y4/N Qp2.y/

are positive. Applying the homomorphism ' to Qp, we obtain the desired representation
of p.

End of the proof of Theorem 3.1. Let us apply Lemma 3.6 to p. It is sufficient to find
a representation of the left hand side of (3.6), because the second term is already of
the form (3.1). By Lemma 3.7, the left hand side of (3.6) can be represented in the
form (3.9). Note that �i can be rewritten as

1

4
.1 ˙ x1;2/ D 1

8
..1 ˙ x1;2/2 C g0.x/ C x2

2;1/: (3.13)

Substituting the last equality into (3.9), we obtain the desired representation for (3.6)
and, therefore, for p.
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3.2. Some remarks

Remark 3.8. If gi are given by (3.2) then, in principle, it is possible to write down
explicit formulae for the polynomials appearing in (3.1). Indeed, assume that we
have a polynomial p such that p.x/ > p� > 0 for all x 2 S . Then

p.x/ D Op.x/ C c0d 22d�1=2kpk
m�1X
iD0

.1 � gi .x//2kgi .x/; (3.14)

where k is chosen in such a way that .2k C 1/p� > mc0d 22dC1=2kpk. The second
term in the right hand side of (3.14) is an explicit expression of the form (3.1), and
the coefficients of Op can be found from (3.14). From Lemma 3.6, we know that
Op.x/ > p�=2 for all x 2 Œ�1I 1�2. Now it suffices to represent

Op.x/ D
X

kCl6 Od
Opkl xk

1 xl
2

in the form (3.1). Consider the following polynomials

Qp1.y/ D
X

iCj 6 Od
2iCj Opij .y1 � y2/i .y3 � y4/j .y1 C y2 C y3 C y4/

Od�i�j ;

Qp2.y/ D Qp1.y/ C 24 Od�4 Od 4k Qp1k2

p� .y1 C y2 C y3 C y4/
Od�2.y1 C y2 � y3 � y4/2;

and
Qp.y/ D .y1 C y2 C y3 C y4/N Qp2.y/

where

N >
2 Od. Od � 1/k Qp2k

p� � Od:

If we replace yi , i D 1; 2; 3; 4, with �i .x/ given by (3.10) in the definition of Qp,
then we get Op.x/. The coefficients of Qp are positive. Therefore, if we substitute yi

with �i and then apply (3.13), we obtain an expression of the form (3.1) for Op.x/.
Combining it with (3.14), we get the desired expression for p. As a consequence, if
we have a continuous family of positive polynomials with a uniform lower bound on
S and uniformly bounded degrees, then the polynomials in the representation (3.1)
may also be chosen to be continuously depending on this parameter, and also with
uniformly bounded degrees.

Remark 3.9. In [10], an analogue of Theorem 3.1 for a non-negative polynomial p

and m > 1 was established under some additional assumptions on the zeros of p.
The next theorem shows that, in general, Theorem 3.1 may not be true if p > 0.
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Theorem 3.10. Let gi be defined by (3.2), and assume that �i ¤ �j for some i and
j . Then the polynomial gi gj can not be represented in the form (3.1).

This result is probably well known to specialists, although we could not find it in
the literature. For reader’s convenience, we prove it below.

Let gi be defined by (3.2), and let

Si D fx 2 R2 W gi .x/ D 0g;
Si.C/ D fx 2 C2 W gi .x/ D 0g:

Lemma 3.11. Let q 2 RŒx1; x2� be a polynomial such that q.x/ D 0 on an open arc
of Si . Then gi j q (that is, q is divisible by gi ).

Proof. Consider q as an analytic function on Si.C/. Since the set Si .C/ is con-
nected, q � 0 on the whole Si .C/. Hilbert’s Nullstellensatz (see, for example, [14],
Section 16.3) gives that gi j qk for some integer k (in CŒx1; x2� and, consequently,
in RŒx1; x2�). As the polynomial gi is irreducible, we have gi j q.

Lemma 3.12. Let �i ¤ �j . Then Si .C/ \ Sj .C/ ¤ ¿.

Proof. Let the circles Si and Sj be given by the equations

.x1 � a1/2 C .x2 � a2/2 D R2
1;

.x1 � b1/2 C .x2 � b2/2 D R2
2:

Subtracting one from the other, we get a system of a linear and a quadratic equa-
tion. The linear one is solvable because �i ¤ �j . Substituting the solution into
the quadratic equation, we reduce it to a non-degenerate quadratic equation in one
complex variable, which also has a solution.

Proof of Theorem 3.10. Assume that p D gigj satisfies (3.1). The left hand side
of (3.1) vanishes on the set Si \ @S . All the terms r2

k
and r2

kl
gk in the right hand side

of (3.1) are non-negative on Si \ @S , and therefore are equal to zero on this set. By
Lemma 3.11, they all are multiples of gi . Similarly, all the terms in the right hand
side are multiples of gj . Therefore, gi j rk , gj j rk , and g2

i g2
j j r2

k
.

Since the polynomials gk and gi are coprime for all k ¤ i , we have g2
i j r2

kl
for

k ¤ i and g2
j j r2

kl
for k ¤ j . Thus any term in the right hand side of (3.1) is a

multiple of either g2
i gj or gig

2
j . Dividing (3.1) by gi gj , we see that the left hand

side is identically equal to 1, and the right hand side vanishes on the intersection
Si.C/ \ Sj .C/ which is nonempty by Lemma 3.12. This contradiction proves the
theorem.
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