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A new approach to ratio asymptotics
for orthogonal polynomials

Brian Simanek

Abstract. We use a non-linear characterization of orthonormal polynomials due to Saff in
order to show that the behavior of orthonormal polynomials is uniquely determined by the
normalization and leading coefficient. Several applications of this result are also discussed.
One of our main theorems is that for regular measures on the closed unit disk — including,
but not limited to the unit circle — one has ratio asymptotics along a sequence of asymptotic
density 1.
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1. Introduction

Throughout this paper, we will consider a compactly supported, positive, and finite
measure ¢ with infinite support in the complex plane. Given such a measure, one can
perform Gram-Schmidt orthogonalization on the sequence {1, z,z2,z3,...} in the
space L?(i) and arrive at the sequence {p,(z; i)}, of orthonormal polynomials,
which satisfy

/‘;pn(Z; W) pm(z: )dp(z) = Snm.

We will write pn(z; ) = kpz" + - -+, where k, > 0. The polynomial p,(z; w)k;,
is a monic polynomial and will be denoted by ®,(z; ;). This polynomial satisfies

[®n (5 ) 2() = Inf{| Q||L2(M): 0O = z" + lower order terms},
a property called the extremal property. We also note that k, ! = ||, (-; w)|| L2()-

For a measure p with compact support supp(u), we will let ch(u) denote the
convex hull of the support of  and Pch(u) denote the polynomial convex hull of the
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support of 1, where the polynomial convex hull of a set X is defined as in [21] by

Pch(X) = ﬂ {z:Ip(2)| < ||P||LOO(X)}'
polynomials p # 0

It is not difficult to see that if  is the unbounded component of C \ supp() then
Pch(p) = C \  (see [21]).

One is often interested in the behavior of the polynomials p, in various regions
of the plane. The most general results concern the behavior of p, in C \ Pch(u),
where one is often able to employ potential theoretic techniques (see for example [21]
and [24]). Our main goal will be to show that the behavior of the polynomial p, (z; )
when |z] is sufficiently large is determined only by its leading coefficient and the fact
that it has L?(u)-norm equal to 1. More precisely, in Theorem 2.2 below, we will
show that any other polynomial of the same degree having approximately the same
leading coefficient and approximately the same L?(p)-norm has the same behavior
when |z| is sufficiently large.

The primary tool will be a non-linear characterization of the family of polynomials
{pn(z; ) }n>0 originally proven by Saff in [13], whose proof proceeds as follows.
The orthogonality relation implies that if deg(Q) < n then

/ ot 2 =20 4y = 0

This of course immediately shows that for z & supp(u) one has
(w; w; (w
Q(Z)/ p”—u)du(w) = / Mdu(w)_ 1.1)
CcC Z—W C zZ—Ww

Setting O = p,(-; ) and dividing shows that for any polynomial Q of degree at
most n, we have

pn(w; 1) Q(w)
() _ [1: T (12)
Pu(z5 1) | pn(w; p))? ’ ‘

dp(w)
C Z—Ww
whenever both denominators in (1.2) are non-zero.

At first glance, the utility of (1.2) is not obvious, though some applications are
discussed in [13]. We will apply this formula in cases where Q(z) = Q,(z) is also
n-dependent. The key to our calculations will be to write the numerator on the right
hand side of (1.2) as a perturbation of the denominator and — under suitable hypothe-
ses — show that the perturbation tends to zero as n — oo while the denominator does
not. In order to do so, we will require that the left hand side of (1.2) tends to 1 at
infinity as n — oo and also that Q,(z) has L?(u)-norm tending to 1 as n — oo.
Obviously Q,(z) = pn(z; 1) satisfies these conditions, but we will show that for
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any sequence { Q5 },en of polynomials satisfying these conditions, the left hand side
of (1.2) tends to 1 as n — oo when |z| is sufficiently large.

After proving the key result in the next section, we will apply it in the remaining
sections. We will apply it to prove several results, including a simplification of
the conjecture in [13] and some stability results for p,(z; i) under perturbations
of the measure . Our most important results concern the ratio asymptotics of the
orthonormal polynomials when the measure p is regular (see below) on the closed
unit disk or a lemniscate.

One usually studies the asymptotics of p,(z; 1) outside of ch(u) in one of three
ways; the first is root asymptotics:

lim | py(z: )"/
n—oo
the second is ratio asymptotics:

GO
m ——;
n—00 py_1(z; )

and the third is Szegd asymptotics:

lim 2 (z: )
m ———

,  @(z) analytic on C \ ch(u).
n—oo @(z)"

It is easy to see that the existence of the limit for Szeg6 asymptotics implies the
existence of the limit for ratio asymptotics, which in turn implies the existence of the
limit for root asymptotics, and in general none of the converse statements hold.

A measure p is called regular if

1/n

lim «, /" = capacity(supp(u))

n—>oo
(see [12] for an elementary discussion of capacity). If K is a compact set then a
measure [ is said to be regular on K if p is regular, supp() € K, and the boundary
of Pch(K) is contained in supp(ut). Regularity is a necessary and sufficient condition
for the existence of root asymptotics (see Theorem 3.1.1 in [21]). Although ratio
asymptotics need not hold for regular measures (see the example in section 3.1), we
can say something about the asymptotic behavior of p,/p,—1. We prove that if the
measure /. is regular on D = {z: |z| < 1}, then the ratio zp,_1(z; 1)/ pu(z; i)
converges to 1 uniformly on compact subsets of {z: |z| > 1} as n tends to infinity
through a subsequence of asymptotic density 1. Using the methods of [18], one can
show a similar result holds for compactly supported measures on R with essential
support equal to [—2,2]. We also show that if the measure p is regular on the
lemniscate E,, = {z: |z — 1| < 1} then the ratio (z" — 1) py—m(z; )/ pu(z; 1)
converges to 1 uniformly on compact subsets of C \ ch(j¢) as 7 tends to infinity through
a subsequence of asymptotic density 1. The advantage of working on a lemniscate
is that there is a monic polynomial whose L°°-norm is 1 on the lemniscate, while
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for more general supports this is not necessarily the case. If this is not the case, then
we cannot obtain convergence of p,/p,—1 by our methods, but we can describe the
behavior of p,/p,—k, for a possibly unbounded sequence {k,} (see Section 4 for
details).

The strength of our results is rooted in the weak assumptions we place on the
measure i in order to arrive at a ratio asymptotic result. Many ratio asymptotic
results arise as a consequence of Szeg6 asymptotics (see [15] and [22]), which is a
stronger conclusion than ratio asymptotics and hence requires stronger hypotheses on
the measure. In [13], Saff places bounds on |p, / py—1| for arbitrary compactly sup-
ported measures using methods similar to ours. The results in [5] concern orthogonal
polynomials on the real line and are in the same spirit as our Theorem 2.2, though
Theorem 2.2 is much more general.

In addition to studying ratio asymptotics for consecutive orthonormal polyno-
mials, we will also consider ratios of orthonormal polynomials corresponding to
different but related measures. In particular, we will study the Uvarov transform,
which is obtained by adding a point mass to the measure /:

Uy = U+ 16k, t>0;

and the Christoffel transform, which is obtained by multiplying p by the square
modulus of a monomial:

dv*(z) = |z — x|?du(z).

In both cases, we show that the asymptotic behavior of the orthonormal polynomials
outside of ch(u) is unchanged provided the pure point (for the Uvarov transform) or
the zero of the monomial (for the Christoffel transform) satisfies the condition

. 2
lim 1P (1.3)

—1
n=o0 3o I (s ) ?

(see (5.2) in Section 5). The condition of regularity is equivalent to

lim sup | pu (z: ) |V/" = 1
n—>oo
for every z in the outer boundary of the support of i, except perhaps on a set of
capacity O (see Theorem 3.1.1 in [21]). Therefore, condition (1.3) — when applied to
a point x in the outer boundary of supp (i) — qualitatively tells us that x is not a point
at which | p, (x; p)| grows exponentially (see also Theorem 1.3 in [4]).

After proving the key fact about ratios of polynomials in the next section, we
will apply it in the case when the orthonormal polynomials correspond to a measure
supported on the closed unit disk in Section 3. We also include a brief digression
where we show that if i is any regular measure on D then there is a subsequence N C
N of asymptotic density 1 so that the probability measures {| p, (z; 1)|?>d(z) }n=0
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converge weakly to normalized arc-length measure on the unit circle as n — oo
through . In Section 4, we will apply the results of Section 2 to orthonormal
polynomials whose measure of orthogonality has a more general support. The main
theorem in Section 4 is analogous to results in Section 3, but requires a small sacrifice
in the strength of the conclusion due to the added generality. Finally, in Section 5, we
will apply the results of Section 2 to prove our stability results concerning orthonormal
polynomials when the measure is perturbed in specific ways. The foundation for all
that follows is Theorem 2.2 in the next section.

Acknowledgements. It is a pleasure to thank my advisor Barry Simon for his guid-
ance during this research and Vilmos Totik for useful feedback on an early draft of
this work. Many thanks are also due to the anonymous referees for many suggestions
about the content and exposition of this paper. This material is based upon work
supported by the National Science Foundation Graduate Research Fellowship under
Grant No. DGE-1144469.

2. The key fact

In this section, we will prove the crucial property mentioned in the introduction,
which we will apply in later sections. Before we prove our main result of this section,
we make the following simple calculation:

Lemma 2.1. Let 1 be a measure with compact support supp(un) < C and suppose z
satisfies z & ch(u). There is a constant A; > 0 so that

| pn(w; )2
C Z—w

du(w)| > A,

for every n € N. Furthermore, the constant A; may be bounded uniformly from
below on any compact subset of C \ ch(u).

Proof. Since z ¢ ch(j), we can find a 6 € R so that miny, ech(y) Re[eifz — elfw] =
dist(z, ch(u)). Therefore

| pa(w: )|
|z —w|?
dist(z, ch(w))

sup |z —wl?
w Esupp(iL)

AN
Re[e_ie M Re[e 9z — e P w]du(w)

C Z—Ww

du(w)} _

as desired. The uniformity in A, is now obvious. O
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Lemma 2.1 assures us that the integral on the left hand side of (1.1) is non-zero
when z € ch(u), for if it were zero then the right hand side of (1.1) would also vanish
for every choice of Q and we have just shown that it cannot vanish for Q = p,(z; ).
Therefore, the division step in the derivation of (1.2) is justified whenever z & ch(u).
Furthermore, we have demonstrated that the denominator on the right hand side
in (1.2) is non-zero for appropriate z.

The following theorem will be used heavily for the applications in the remainder
of this paper. It tells us that the behavior of the orthonormal polynomials when |z| is
large is determined only by its normalization and its leading coefficient.

Theorem 2.2. Suppose [ is a (finite) and compactly supported measure on C. For
each n € N, choose a polynomial Q,, of degree exactly n and leading coefficient t,
so that the following properties hold:

(1) hmn—>oo ||Q”||L2(M) = 1;

(i1). limy— o0 Tn/kn = 1.

Then

lim @) _ 1 .1
n—00 py(z; ()

Jor all z & ch(p). Furthermore, the convergence is uniform on compact subsets of
C \ ch(w).

Remark 1. The proof will show that we get the same conclusion if we only define
Q,, for n in some subsequence and then send n — oo through that subsequence.

Remark 2. By evaluating Q,(-)/pn(-; 1) at infinity, we see that the second con-
dition in Theorem 2.2 is necessary for (2.1) to hold. Additionally, since k! =

[@n (5 )l ;2 ()’ the second condition and the extremal property imply
tim inf Qa2 > Hminf o)l &5 0) 2, = 1.
so the first condition of Theorem 2.2 is really a statement about the lim sup.

Remark 3. We will show by means of an example in Section 5.2 that we cannot
extend the conclusion of Theorem 2.2 to include the boundary of Pch(u). However,
we will be able to say something about what happens at points z that are outside
Pch(u), but inside the convex hull of the support of u (see the end of Section 3).
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Proof. Fix z & ch(u). By (1.2), we have

Dn (W; ,LL) Qn (w)
0,(2) /C dpw)

zZ—w

pn(zip) | pn(w: p)|?
C Z—Ww

dp(w)

dp(w)

zZ—w

T — B )
/ |pn(w; )l du(w) + / Pn(w; )(Qn(w) — pu(w; w))
_Jc z—-w C

Ipn(wzu)lzd
C Z—Ww

u(w)
(2.2)

By Lemma 2.1, the denominator and the matching term in the numerator in (2.2) stay
away from 0, so we need only show the second term in the numerator goes to 0 as
n — oo. For this, we apply the Schwarz inequality to see that

2 _ . 2

- inf |z —wl?
wech(u)

(w)

/ Pn(w; 1) (Qn(w) — pp(w; M))d
w
C

Z—w

The norm can be expanded as
. 2 2 .
1Pn 122, + 190122,y = 2Rel(Qn (W), pa(w: 1))

Our first hypothesis on Q, implies that the sum of the first two terms tends to 2 as
n — oo. By the orthogonality relation, we may replace Q, (w) in the inner product
by tuk;, ! pn(w; 1t). We now apply the second hypothesis on Q,, and arrive at (2.1).

To prove the statement concerning uniformity, notice that Lemma 2.1 proves that
convergence holds uniformly on compact subsets of C \ ch(x) so by the maximum
modulus principle, we get uniformity on any closed set in C \ ch(j1), even those that
include infinity. O

In the remaining sections, we will see how one can apply Theorem 2.2.

3. Application: measures supported on the unit disk

Now we will present some applications of Theorem 2.2 to measures supported on the
closed unit disk. We will pay special attention to ratio asymptotics of the orthonormal
polynomials. Ratio asymptotics for orthonormal polynomials on the unit circle or an
interval have been studied extensively; see for example [1], [2], [5], [9], [10], [11],
[16], [17], and [23]. We will focus on regular measures on the closed unit disk D and
restrict ourselves to finding a subsequence along which we have the desired behavior.
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In Section 3.2, we will examine the behavior of the measures {| p,, (z; 1)|>d(z) }n=0
when p is regular on D.

Before we proceed with the statement and proof of our results, we state the fol-
lowing technical lemma. We recall that for a set of natural numbers &' € N, we
define its asymptotic density as

. #HNN{LL2,...,n}}
lim

n—00 n

provided this limit exists.

Lemma 3.1. Let N C N be a subsequence with asymptotic density 1. There exists
a subsequence N1 C N also of asymptotic density 1 so that if { € Z is fixed then
every sufficiently large m € Ny can be written as q + £ for some g € N.

Remark 4. An equivalent condition on N in the statement of the lemma is that if
{ € 7 is fixed then for all sufficiently large m € Ny, the set {m — [£|,m — |{| +
1,...,m + |£|} is contained in N .

Proof. Theideais to think of the set N\ N as being gaps in the set N and then to widen
the gaps in smart way. More precisely, let M = N \ N and let [n] = {1,2,...,n}.
If k € N is fixed, then by definition of asymptotic density, one has
kM N [n]|
lim ——— =

n—oo n

01

where | X| denotes the cardinality of the set X. Therefore, by a standard argument,
we can find a sequence of natural numbers {k,};° ;, which is non-decreasing and is
unbounded so that
. kp|M O [n]|
lim —— =

n—o00 n

Foreverym € M, letU,, = {m — (kp, —1),...,m,...,m+ k,, — 1} and define

M= | Un.

0

MEM
Then _
. IMOn]l . 2k | M N [n]]
lim sup ——— < limsup —— =0,
n—00 n n—00 n

so N\ M has density 1. Define &7 = N\ M and let £ € Z be fixed. Clearly M
is divided into blocks so that the first and last |£| elements of any sufficiently large
block are not in M. In other words, if we shift every block of N to the left or right
by |£], all but finitely many blocks land in .V, which is the desired conclusion. [

Lemma 3.1 easily allows us to establish two relevant results for measures sup-
ported on the real line. The first of these involves ratio asymptotics and can be stated
as follows.
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Theorem 3.2. Let o be a measure supported on some compact subset of the real
line. Assume further that y is regular and has essential support equal to [—2,2].
Define p(w) = %(w + v w? — 4), which is the conformal map from the complement
of [-2, 2] to the exterior of the closed unit disk. There exists a subsequence N C N
of asymptotic density 1 so that

i P@Pn1z)
m — =

1 (3.1)
n2 pa(zip)

for all z & supp(p).

The second result concerns the weak limits of the measures {| pn(z; )|*du(z)} nen.
It can be stated as follows.

Theorem 3.3. Let (1 be a measure supported on some compact subset of the real line.
Assume further that [ is regular and has essential support equal to [—2,2]. There
exists a subsequence N C N of asymptotic density 1 so that

w-lim_ | pa (x5 ) Pdp(x) = do(x) (3.2)

nenN
where w is the equilibrium measure for the interval [—2,2].
We will prove both results simultaneously.

Proofs. Let {a,, b, }neN be the recursion coefficients for the orthonormal polynomi-
als and the measure ., that is

Xpn (X5 ) = An1 Pry1 (X5 1) + bpg1 pu(X; () + an pp—1(x; p).

Since p is regular, then by Theorem 1.1 in [20] and Lemma 3.1 above, we may find
a subsequence N C N of asymptotic density 1 so that for every m € Z, we have

li_>m an+m =1 and li_>m bp+m = 0. 3.3)
‘nen ‘nen

Theorem 3.2 now follows by mimicking the second proof of Theorem 2.1 in [18].
Similarly, Theorem 3.3 follows by mimicking proof of Proposition 3.3 in [18]. [

Remark 5. An inspection of the proof of Proposition 3.3 in [18] and the second
proof of Theorem 2.1 in [18] reveals that we do not actually need regularity to prove
Theorems 3.2 and 3.3. We only require boundedness of the recursion coefficients
and (3.3). By choosing the coefficients b, to be identically zero and the coefficients
a, to be very small on a sufficiently sparse subsequence, one can construct examples
to show that the converse to both results is false.
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As indicated by (3.3), the proofs of Theorems 3.2 and 3.3 depend heavily on the
existence of a recursion relation satisfied by the orthonormal polynomials. Our main
goal in this section is to prove analogs of (3.1) and (3.2) for measures on the closed
unit disk; a setting in which the orthonormal polynomials do not in general satisfy a
finite term recursion relation.

3.1. Ratio asymptotics on the disk. We begin with a result that is related to the
conjecture in [13]. There, it is conjectured that for a measure p of a certain form
on D, one has p,(z; t)/(zpu—1(z; 1)) — 1 for all z in C \ D. As a corollary, one
then concludes that k,k,_; — 1 asn — oo (recall k, is the leading coefficient
of p,(-; ). We will show that in fact the corollary implies the conjecture. More
precisely, we will show that we need only verify the ratio asymptotic behavior at
infinity to deduce it for all of C \ D. This can be viewed as a unit disk analog of

Theorem 1.7.4 in [16].

Theorem 3.4. Let i be a measure on D and N C N a subsequence so that

lim Knic = 1. (3.4)

Then

lim P&

n2 pa(zip)
uniformly on compact subsets of C \ D.

Remark 6. The condition (3.4) does not imply dD < supp(u). Indeed there are
examples of measures whose essential support is exactly two points and (3.4) holds
with & = 2N + 1; see Example 1.6.14 in [16].

Proof. We will apply Theorem 2.2 with Q,, = zp,—1(z; t). We need only verify the
first condition in Theorem 2.2; the other condition is immediate from our hypotheses.
The upper bound
lim sup 1Onll2() =1
nenN

is obvious while the lower bound follows from Remark 2. O

From Theorem 3.4, we deduce the following corollary, which is an analog of (3.1)
for regular measures on the unit disk. It also tells us that if the conjecture in [13] is
false, then it can only fail along a sparse subsequence.

Corollary 3.5. Let i be a regular measure on D. There exists a subsequence N C N
of asymptotic density 1 so that

lim Zpn—1(Z ) 1 (3.5)

nzee pa(zip)
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uniformly on compact subsets of C \ D.
Remark 7. We will generalize this result in Example 2 in Section 4.

Remark 8. In Proposition 3.4 in [13], the author verifies boundedness of the ra-
tio (3.5) under related hypotheses.

Proof. To apply Theorem 3.4, we need to verify that /<,,/<n__11 — 1 along some sub-

sequence of asymptotic density 1. If we define y, = knk, !, then each y, > 1.
Regularity implies (]_[;?:1 yj)l/ " — 1 so y, tends to 1 along a subsequence of
asymptotic density 1 as desired. O

Corollary 3.5 cannot be improved to give us convergence as n tends to infinity
through all of N as the following example shows.

Example 1. Let ;& be a probability measure supported on the unitcircle. To every such
measure, one can canonically assign a sequence {y, |2, of complex numbers in the

unit disk by setting o, = —P,11(0; ). Conversely, any such sequence determines
a probability measure p on dD; see Chapter 1 in [16]. This sequence satisfies

|Gy
S =1— |on] (3.6)
|| n(‘, /L)”Lz(u)

(see eq. (1.5.12) in [16]). Let us define the measure u by defining

ifn =2/ for some j € N,

1
2
oy =
Ov

otherwise.

One can easily see that this measure is regular. However

Zpyi (25 ) _ V3

Prip1(E ) e 2
so we can only apply Corollary 3.5 to the subsequence & = N\ {2/ 4+ 1: j € N}.
Now let us turn our attention to measures supported on the unit circle dD. In this

case, the polynomials do satisfy a recursion relation and therefore one can actually
strengthen the conclusion of Theorem 2.2.

Theorem 3.6. Let  be a probability measure supported on the unit circle and let
Oy be as in Theorem 2.2. Then

Qn()
Pn(-i )

in L2(3D, 49).

21
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Proof. We use the Bernstein—Szegd Approximation Theorem (Theorem 1.7.8 in [16])

to calculate

e'?) 12d0

/ O Ee L = [ 104 dute) — 1
o 'pu(e’®ip) D

by hypothes1s Theorem 2.2 establishes uniform convergence on compact subsets of
C \ D and we have just established convergence of norms so the result follows by
Theorem 1 in [3]. O

3.2. Weak asymptotic measures. Consider now the unit disk analog of (3.2).
Lemma 3.1 tells us that if p is a regular measure on D, then there exists a subse-
quence M C N of asymptotic density 1 so that for every m € Z we have

lim « -1 — 1,
n—o0 n+mKn 1
neM

To see this, we let N be the subsequence as in Corollary 3.5 and let M be the
subsequence of N constructed by Lemma 3.1. Then if m > 0, we have

Kn4+m _ Knd4m  Knidm—1 Kn+1
Kn Kn4+m—1 Kn4+m—2 Kn
Since {n,n +1,...,n 4+ m} C N whenever n € M (for large n), we see that all of

the ratios in the above equality tend to 1 as n — oo through M. A similar argument
works if m < 0.

This observation will allow us to make further conclusions about regular measures
supported on D. More specifically, we will address possible weak limits of the
sequence of probability measures {|p,(z: it)|?du(z)}nen. Without the regularity
hypothesis, the set of weak limit points can be hard to control. Indeed, Example 8.2.9
in [16] shows that for measures on dD, the set of weak limit points of the sequence
{1 pn(z; 0)|?d(2) }nen can be all probability measures on dD. Theorem 9.3.11in [17]
tells us that if 41 is supported on dD then | p, (z; u)|*du(z) — % weakly if and only
if for every k € N fixed we have ®,(0; )P, 4% (0; u) — 0 as n — oo; see also
Theorem 9.7.3 in [17]. Itis easy to see that this condition is independent of regularity.

The author and Simon have separate proofs that if y is regular on dD then

d0
o lef (= Pdpu(z) — 22

weakly as n — oo; see [14], and [19]. This suggests convergence along a sequence
of density 1 and we will show this is the case. In fact, we will show that if  is any
regular measure on D then there is a subsequence & € N of asymptotic density 1 so
that

w-lim_ | pa (23 ) dpu(z) =

newnN

2n
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The first step is to show that the weak limits we are interested in are measures on dD.
This is the content of the following lemma.

Lemma 3.7. Let i be a measure on D, m € N fixed, and N € N a subsequence so
that

nli_)rrolo Kn+mK;1 =1.

nenN
If K € D is a compact set then

tim, [ Ipa(zi 0P = 0.

nenN

Proof. Let K C D be a fixed compact set and assume K C {z: |z|] < R < 1}. For
contradiction, let us suppose that there is a subsequence N; € N and B > 0 such
that

[ 1@uGzi P an = BIou

for all n € N;. Then for these n, we have

| SO = (1= B0 G0 g

We then use the extremal property to calculate

©nim (0l = [ " OaGiPdi+ [ 12000 P
K D\K

=& [ 10 GipPdnt [ 10aG0Pd
K D\K

= RZ”’/ Id>n(z;u)|2du+R2’”/_ |Pn (25 ) *dpt
K D\K

ra=rem [ el
D\K
= Rzm”q)n(ﬂ)”iz(u) + (1 - R2m)(1 - ﬂ)”cbn(ﬂ)”iz(u)
= (1= B —=R*) [ @n()I7 2,
which contradicts our hypothesis when n € N is sufficiently large. O

Now we can prove an analog of (3.2) for regular measures on the closed unit disk.

Theorem 3.8. Let u be a regular measure on D. There is a subsequence N € N of
asymptotic density 1 so that

. o
w- lim | pa(z; ) dp(z) = >—.

nenN 27[
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Proof. As mentioned above, we may begin with a subsequence N € N of asymptotic
density 1 so that for every m € N we have

lIim « Kl =1.
ot n+mhky
nenN

It then follows from Lemma 3.7 that if K € D is compact, we have

)LHQO/KIPn(Z:M)IZdM(Z) = 0.

nenN

We conclude that any weak limit of the measures {| p, (z; i) |?dt(2) }ne is supported
on dD.

Let o be such a weak limit point and N; € N the corresponding subsequence.
Then for every fixed k € N we have (by the extremal property)

Gt = [ 100G Pduc), G)

Asn — oo through Ny, the left hand side of (3.7) tends to 1 while the right hand side
tends to || D (-; 0) ||22(0). However, clearly ||®x(-;0) ||22(0) < ||z* ”i2(o) =1, so

we must have || Py (+; 0) ||i2 ©) = 1, which implies (using notation from Example 1)
aj(0)=0, j=012,....k—1.

Since k € N was arbitrary, this implies ¢ is normalized arc-length measure on dD as
desired. O

Finally, we conclude this section by exploring the behavior of the ratio (1.2) when
z is inside the convex hull of the support of w but outside the polynomial convex
hull of the support of x. The calculations in the proof of Theorem 2.2 imply that the
second term in the numerator on the right hand side of (2.2) still tends to 0 in this
case, so we can obtain the same conclusion as Theorem 2.2 (without the uniformity)
if we can show that the denominator on the right hand side of (2.2) stays away from
zero (perhaps on some subsequence).

It is clear that if z ¢ supp(u) then the sequence

. 2
[ ),

is bounded uniformly on compact subsets of C \ supp(i), so Montel’s Theorem
implies that some subsequence converges uniformly on compact subsets to an analytic
function /(z). It is possible that the limiting function /(z) vanishes at a point inside
the convex hull of the support of the measure. For example, let u be a measure
supported on [—2, —1] U [1, 2] satisfying u(A4) = u(—A) for all measurable sets A.
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Since the measure is symmetric about zero, so are the orthonormal polynomials so

we conclude 5
supp(1t) w

i.e. the limiting function /(z) satisfies 4(0) = 0.

However, this example tells us how we can look for the zeros of /(z). Indeed,
Proposition 2.3 in [19] tells us that if u is a regular measure, then for any function f
that is analytic in a neighborhood of Pch(i) we have

lim
n—oon + 1

/ £ )| pj (w: wPdp(w) = / F(w)de, (w)

where w,, is the equilibrium measure for the support of (., assuming that the support
W has strictly positive capacity, see Theorem 3.6.1 in [21]. Therefore, if

/ —dw, () # 0 (3.8)
C Z—

then we can find a subsequence N, C N of positive density such that

Ipn(w M)|2
nEJVZ{ /

We conclude that if u is regular, capacity(supp(r)) > 0, the hypotheses of Theo-
rem 2.2 are satisfied, z ¢ Pch(u), and (3.8) holds, then the conclusion (2.1) holds as
n tends to infinity through ;. As mentioned earlier, we will show later by means of
an example that one cannot in general extend Theorem 2.2 to include the boundary
of Pch(); see Section 5.2 below.

PP g (w)“ > 0.

4. Application: measures supported on regions

If a measure y is supported on an arbitrary region G, we cannot prove a result quite as
precise as Theorem 3.2 or Corollary 3.5 using our methods. The main difficulty is that
the conformal maps sending the exterior of D to the exterior of D or the complement of
[—2, 2] have finite Laurent expansions, which simplifies matters computationally. To
make up for this, we will approximate the exterior conformal map with polynomials.
The price we will pay is that we will reach a conclusion about p, / p,—x,, fora possibly
unbounded sequence {k, }, but see Example 2 below.

Our proof in this setting will require use of a specific sequence of polynomials
called the Faber polynomials (see [8]), which we will denote by {F},(z)},>0. Given
a bounded region G C C, let  be the unbounded component of C \ G, which is
simply connected in the extended complex plane. Let ¢ denote the conformal map
sending 2 to C \ D satisfying ¢(00) = oo and ¢’ (c0) > 0. There are three conditions



388 B. Simanek

given in [7] that guarantee the uniform convergence of F,, —¢" to 0 on Q as n — oo.
Whenever this convergence property holds (for example if G satisfies any of the three
conditions in [7]), we will say G is of class I and write G € I". Also note that if
G has logarithmic capacity 1 then F, is a monic polynomial of degree n for every
n e N.

Our result is the following theorem.

Theorem 4.1. Let i be a measure on the closure of a bounded region G € T with
logarithmic capacity 1. Let N, M C N be infinite subsequences so that for each
jEM, KnK;_l P 1 asn — oo through N. Then there exists a non-decreasing and
unbounded sequence {k; },cn of elements of M such that

o @) Pk (210 _
1im =
o pn(z; 1)

1 4.1)

for all z & ch(w). Furthermore, the convergence is uniform on compact subsets of
C \ ch(w).

Proof. We will apply Theorem 2.2 with Q,(z) = Fx, (z)pp—k,(z; n) for some
appropriate k, € M. First note that our hypotheses imply that if the sequence
{kntnen grows slowly enough then K”Kn_—lkn tends to 1 as n — oo through M.
Therefore, the second condition of Theorem 2.2 is satisfied by Q. Remark 2 puts a
lower bound on the lim inf of the L?(j)-norm of Q. To put an upper bound on the

lim sup, we see

. 2 2
| 1Bty @t G510 = 1Py B

forevery n € N. Therefore || Oyl 12(,) < | +&n Where e, > Otends to O as n — oo
through N provided {k; },e. is unbounded (this is because G € I' and |p(w)| = 1
for all w € dL2). By invoking Theorem 2.2, we conclude that

i Fr,(2) pn—k, (z; 1)
m =
noe pn(z; 1)

1 4.2)

for all z ¢ ch(p) and the convergence is uniform on compact subsets of C \ ch(p).
Since F, — ¢" tends to 0 on 2 as n — oo, (4.2) implies (4.1). Ol

Although Theorem 4.1 is an analog of Theorem 3.4 for more general supports,
proving an analog of Corollary 3.5 or Theorem 3.2 is more challenging. The difficulty
lies in the fact that it is possible to have ||, (-; M)HLZ(M) > ||<I>n_1(u)||L2( ) when
the support of the measure is not the closed unit disk. The following exampfé shows
that we can strengthen the conclusion of Theorem 4.1 to more closely resemble that
of Theorem 3.2 if some power of the conformal map ¢ is a monic polynomial.
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Figure 1. The boundary of the set E3.

Example 2. Considertheset E,, = {z: |z —1| < 1} (pictured below form = 3). In
this case, Fy,,(z) = z™ —1 (see Example 3.8 in [8]) so that if 1 is a measure supported
on Eyn, we can write [ ®n (5 1)l 120 < [1®n(: 10|20y for all m € N.IF g is
regular, then we have

n—1

. 1/n . 1\

1 = lim (Kpkn+41-* Kn+m—1) = lim (Kl...Km 1_[Kj+ij ) .
n—o00 n—>00 1

]:

We can now apply the same reasoning as in the proof of Corollary 3.5 to conclude that

there is a subsequence N C N of asymptotic density 1 so thatlim,—co nen knk, 1y =

1. Furthermore, || Fyn (2)| oo (E,,) = 1 so the proof of Theorem 4.1 shows that in fact
we have

Fn(2) pn—m(z: 1) — lim ™ = 1) pp—m(z: ) _

lim 1
gl Pz 1) n2se Pz 1)

for all z & ch(u). Notice that if we set m = 1 we recover Corollary 3.5. The same
calculation applies in any situation where some power of the conformal map ¢ is a
monic polynomial.
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5. Application: stability under perturbation

5.1. The Uvarov transform. Another application of Theorem 2.2 is to show that
the behavior of the polynomials {p,(z; it)},>0 is stable under certain perturbations
of the measure. In the following example, we consider the Uvarov transform of a
measure (see [6]), meaning we add a single point mass to the measure /.

Example 3. Let 4 be a measure with compact support and x € C. We will show
that for any 1 > 0 we have

. Pu(zip +16y)
hm _ =

1 5.1
n—=oo  pu(z;p) e

uniformly on compact subsets of C \ ch(x) if and only if

. 2
n—oco K, _1(x,x; k)

where K, (y,z;pn) = Z}l:o pi(yiu)pj(z; n). We will apply Theorem 2.2 with
On = pn(z; t + t8x). The proof of Theorem 10.13.3 in [17] applies in this setting
also to show that
[P (3 e + tax)”iZ(M-i-th) T+ 1Kn(x, x5 p)
”cbn(’ﬂ)”iZ(M) 1 +tKn—l(x’ X;/’L)

(5.3)

JACHDI. t

=1+ .
Kn_l(X,X;M) r+ Kn—l(va;M)_l

Notice that,
t

lim
n—>oot 4 Kp—1(x,x; )71
always exists and lies in the interval (0, 1]. Therefore, if we assume (5.2) holds

then (5.3) verifies the second condition in Theorem 2.2 for Q,. To verify the first
condition, write Q, = 7, P, (-; © + t85) and notice

1914 18122005y = 1€ G022 + 1@t + 1801225,

Dividing through by ||®, (-;  +18x) ||i2 (ut182) and using our above calculations, we
get | Qnll ;2 R 0 as n — oo, which verifies the first condition in Theorem 2.2
and hence proves (5.1).

If (5.2) does not hold, then (5.3) shows that we do not even get the desired

convergence at infinity so we cannot possibly have (5.1).

Remark 9. The condition (5.2) is discussed further in Theorem 10.13.5 in [17] and
also in [4].
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Remark 10. The Uvarov transform on the unit circle was studied extensively by
Wong in [25].

In fact, the calculations Example 3 prove our next result. It shows that if a measure
is perturbed in a way that does not affect the asymptotic behavior of the monic
orthogonal polynomial norms, then it also does not affect the asymptotic behavior of
the orthonormal polynomials outside ch(t).

Corollary 5.1. Let ju1 and o be two measures with compact support such that

[®n (5 k) L2u1)

im =1.
n=>00 || @y (-5 (b1 + M2l L2, +110)

Then

. pal(zip + po)
Iim ——— =1
n—00 pn(z;ul)

forall z & ch(y).

5.2. The Christoffel transform. A second kind of perturbation we will consider is
the Christoffel transform of a measure (see [6]), where we multiply the measure by
the square modulus of a monomial; that is, we define

dv*(z) = |z — x|?du(2). (5.4)

The location of the point x will not be arbitrary; indeed we will have to place a
hypothesis on the point x as in (5.2). We will see later (Corollary 5.4 below) that this
forces x to lie in the convex hull of the support of .

For every n € N, we recall the notation K, (y, z; 1) to mean the reproducing
kernel for polynomials of degree at most n and the measure p, which is given by

Ka(y,z) = ) pi (i) p; (Z o). (5.5)
j=0

A very simple calculation provides us with the following formula (see Proposition 3
in [6]):
Prg1(x; 1)

%G frEnm). 50

1
Pp(z:v%) = —(<I>n+1(2; ) —
Z—X
We can now prove the following result.

Theorem 5.2. Let (1 be a measure with compact support and let v* and  be related
by (5.4) where x satisfies (5.2). Then

. (= X)pn=1(z;vY)
lim —
n—00 Pn(z; 1)

1 (5.7)

uniformly on compact subsets of C \ ch(j).
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Proof. We wish to apply Theorem 2.2 with O, (z) = (z—x) pn—1(z; v¥). First notice
that

. 2
[ = x)Pp—1(:; Vx)”Lz(M) 1

101 V) o,

by definition, which verifies the first condition of Theorem 2.2. By formula (5.6), we
calculate

”Qn”i2(u) =

| ®r—1( Vx)”iz(vx) = [ = x)Pn-1( Vx)”iz(u)

|y (x: ) |?

= | @, (: )| i
” n( IU“)HL2(M)+ Kn—l(va;,u“)

The leading coefficient 7, of Qp is just ||®,—1(; vx)||221(vx) so we have

o = [@n )l g (1 + (1)

asn — oo by our assumption (5.2). This verifies the second condition of Theorem 2.2
and hence the desired conclusion follows. Ol

Remark 11. By Theorem 3.6, if the measure p in Theorem 5.2 is supported on the
unit circle, then in fact we get H?(C \ D) convergence in (5.7).

Combining Theorem 5.2 with Example 3, we deduce the following corollary.

Corollary 5.3. Let i be a measure with compact support, x € C, andt > 0. If x
satisfies (5.2) then
U Gl 0) 2 1AL
m =
n—co  pp(z;p +18x)

uniformly on compact subsets of C \ ch(u).

The following example illustrates Theorem 5.2 and shows that in general we
cannot hope to extend the results of Theorem 2.2 to the boundary of Pch(jt).

Example 4. Let p be two-dimensional area measure on the unit disk D so that
pn(zipn) = ,/””iz”. It is easily seen that in this case, the point 1 satisfies (5.2) so

we will consider the Christoffel transform given by v!. By the example in Section IV.6
in [22] (or equation (5.6) above), we know that

L1y 2 . k 2 n—k
p,,(z,v)_\/ﬂ(n+l)(n+2)(n+3)k2=;(k+1)z (A+z4z22 4425,
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We then see that

(z = Dpa(z:vh)
pn+1(Z;M)
B 2(z—1)
ozt +2)/(n + D(n +3)

n
Dk + DUz 4224427
k=0

2 ((n+1)(n+2)_n+1 2 1 )

T w+Jarhmtys 2z T

2 z zn zh+1
which clearly tends to 1 as n — oo if |z| > 1, in accordance with Theorem 5.2.
It is clear that

(z = Dpa—1(z:vh)
pn(zi 10)

=0,

z=1

so we cannot in general hope to extend Theorem 2.2 to include convergence on the
boundary of Pch(i). However, in this example all of the zeros of p,(z; ) are
contained in D 50 (z — 1) pp—1(z; V1) pn(z; )~ ! is a function in H>°(C \ D) and as
such

/2” (@ = Dpuc1(@®:v) d6 (2= Dpaci(z:0)
0

pn(el?; ) 2 Pn(zi 1) 2=00
_ Kn—l(vl) 1
Kn(u)

as n — oo, which suggests we do have convergence to 1 almost everywhere on dD
in this example. A short calculation reveals that this is the case.

Theorem 5.2 also yields the following corollary (see also Theorem 1.3 in [4]).
Corollary 5.4. If x & ch(u) then (5.2) fails.

Proof. Since all zeros of p,,(-; u) are contained in ch(u), we have

(z = X)pn-1(z:v%)

=0
pn(zi ) i

for every n € N, which means (5.2) cannot possibly hold for otherwise, by Theo-
rem 5.2 this expression would have to converge to 1. O
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